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Abstract
Objective: Despite growing evidence, the mechanisms connecting adipose tis-
sue (AT) function to type 2 diabetes (T2DM) remain incompletely understood. 
A detailed analysis of AT transcriptomes could offer valuable insights into this 
relationship. Here, we examined gene expression patterns in bulk subcutaneous 
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1   |   INTRODUCTION

Adipose tissue (AT) is a major endocrine and complex 
organ that plays a significant role in metabolic homeo-
stasis.1–8 Transcriptomic studies on AT and diabetes have 
recently shed light on its role in type 2 diabetes mellitus 
(T2DM) development.9–13 However, much of the diabetes 
literature relies on blood cells or pancreatic islets sam-
ples, rather than AT.12,14,15 Moreover, most studies have 
focused on visceral AT (VAT), while subcutaneous AT 
(SAT) has been less studied. This perspective has over-
looked the critical significance of SAT as an essential 
indicator of metabolic changes within the body, gener-
ating a gap in the current research landscape of diabe-
tes.16,17 In addition, while Next-Generation Sequencing 
(NGS) offers high throughput and untargeted analysis, 
valuable for complex diseases, many studies on diabetes-
associated AT transcriptomes still rely on microar-
rays and RT-qPCRs.12,14–17 We identified only one SAT 

transcriptome study performed with the RNA-Seq tech-
nique in subjects with T2DM, which analysed the SAT's 
whole transcriptome of Asian Indians through RNA-Seq 
analysis, linking T2DM with altered lipid, glucose and 
protein metabolism, adipogenesis defects, and inflam-
mation.18 However, this study only involved fat biopsies 
from 10 individuals. We did not find studies focusing on 
RNA-Seq SAT transcriptome associated with serum glu-
cose and blood HbA1c levels in humans involving a large 
sample size (see Appendix S1).

It is essential to deepen our understanding of AT biol-
ogy and its changes along the progression of diabetes and 
its complications. The current study focused on the SAT 
transcriptome and its links to serum glucose and blood 
HbA1c levels. Our results reinforce current knowledge 
and provide insights that might aid in better understand-
ing the underlying pathophysiological mechanisms. We 
also identify several potential expression markers of met-
abolic control.
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AT, focusing on biological pathways and cellular composition associated with 
glycated haemoglobin (HbA1c) levels.
Methods: A transcriptomic dataset was obtained from subcutaneous AT sam-
ples of 901 adults collected during elective surgical procedures. We characterized 
cellular composition within subcutaneous AT in association with blood HbA1c 
levels by performing bulk adipose transcriptomes cell deconvolution analysis. 
We also conducted differential gene expression and overrepresentation analyses. 
We validated our cross-sectional study using two independent validation cohorts, 
performing further downstream analyses.
Results: Subcutaneous AT from subjects with increased HbA1c had lower adi-
pocytes, smooth muscle, pericytes and other endothelial cell numbers. Pathways 
associated with HbA1c levels included cellular senescence and telomere-related 
pathways and extracellular matrix organisation. We identified the expression of 
RHO GTPases associated with HbA1c not previously linked to glucose homeosta-
sis, with a possible sexual dimorphism shaped by the obesity state. The findings 
were confirmed in both longitudinal cohorts. At the gene level, HLA-DR, CCL13, 
and S100A4 mRNA levels were strongly correlated with HbA1c levels.
Conclusions: This study underscores the utility of AT transcriptome analysis 
in unravelling T2DM complexities. Our findings enhance knowledge of glucose 
homeostasis' molecular and cellular underpinnings, paving the way for potential 
therapeutic targets to mitigate the impact of AT dysfunction in metabolic diseases.
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2   |   RESEARCH DESIGN AND 
METHODS

2.1  |  Clinical study. recruitment of study 
subjects

The study sample involved adults from the ADIPOMIT 
cohort (n = 901), who had a surgical intervention sched-
uled between 2009 and 2020 that allowed the removal of 
SAT and had given written informed consent. Exclusion 
criteria included: diagnosis of infectious diseases or 
inflammation within a month prior to the study; liver 
diseases, thyroid dysfunction or systemic diseases such 
as lupus or rheumatoid arthritis; undergoing cancer 
treatment; or being pregnant or in the breastfeeding 
period. Further details on the sample can be found in 
Table  S1A,B and in the cohort descriptive analysis in 
Appendix S1.

Data collection included the gathering of SAT sam-
ple biopsies for their RNA-Seq analysis; serum samples 
were extracted in a postabsorptive state before surgery. 
All actions have received appropriate approvals from 
the Ethics, External Scientific and Fatbank Internal 
Scientific Committees CEIm Code: 2019.062. Please refer 
to Research Design and Methods in Appendix S1 for addi-
tional information on data collection.

Adipose tissue collection and handling. AT samples 
were obtained from SAT depots during elective surgical 
procedures (mainly gastric-by-pass and gynaecology-
related surgeries; see Table  S1A). Samples were imme-
diately transported to the laboratory (5–10 min) under 
strictly aseptic conditions, washed in PBS, dissected 
(150 mg pieces), flash-frozen in liquid nitrogen and stored 
at −80°C.

RNA extraction and transcriptomics analyses. RNA 
was extracted from SAT samples and sequenced using 
Illumina. Information on RNA sample preparation and 
RNA libraries is available in the Appendix S1.

2.2  |  Study design

This cross-sectional study on the ADIPOMIT cohort 
aimed to characterize cellular composition within SAT in 
association with blood HbA1c levels, to determine the as-
sociation between SAT gene expression patterns, serum 
glucose and blood HbA1c levels, and to identify associ-
ated biological pathways based on the analysis of RNA-
Seq samples from the adult population. Additionally, the 
research sought to ascertain whether these SAT gene ex-
pression patterns and pathways associated with HbA1c 
and glycemic levels are modified by particular population 

characteristics such as sex, obesity or antidiabetic medica-
tion. With this aim, different analyses were performed in 
the exploratory cohort and further validated in two differ-
ent cohorts.

2.3  |  Statistical analysis

Figure  S1 illustrates the statistical analyses performed. 
Statistical analyses were performed using R version 
2024.04.2 (https://​www.​r-​proje​ct.​org/​).

2.3.1  |  Spearman correlations and stepwise 
multiple regression models associating SAT 
gene expression and glycemic markers

Aiming to perform an initial study of the association be-
tween SAT gene expression patterns and blood glucose 
parameters, we performed Spearman partial correlation 
analyses to explore the relationship between blood HbA1c 
and serum glucose levels and SAT gene expression across 
all subjects, stratified by sex and by obesity status. When 
necessary, the correlations were adjusted for sex, age, 
sample origin and BMI.

Subsequently, we applied stepwise multiple linear 
regression analyses to further investigate the associa-
tion between HbA1c and the top 10% of genes with the 
strongest positive correlation in all subjects, in men, in 
women and in subjects with or without obesity. Again, 
the regressions were adjusted for glucose, age, sex and 
BMI.

2.3.2  |  Differential expression analyses and 
pathway characterization

The first analysis included all 901 RNA-Seq samples. The 
association with RNA-Seq expressed genes was indepen-
dently assessed for both glycemia (as a continuous vari-
able) and for HbA1c as a categorical variable (i.e. HbA1c 
above and below 5.7% (39 mmol/mol), following the 
Centers for Disease Control and Prevention criteria for 
T2DM). Sensitivity analyses were then performed, strati-
fied by sex, by obesity status and including only nonmedi-
cated patients.

A differential gene expression (DGE) analysis was 
conducted to identify genes associated with glycemic or 
HbA1c levels. The statistical analyses were conducted 
using the ‘limma’ R package, performing robust linear 
regression models adjusting for the sex, BMI, age and 
sample origin covariables, performing complete case 
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analyses. p-values were adjusted for multiple compari-
sons based on the Sequential Goodness of Fit metatest 
(SGoF), establishing an adjusted p-value (pSGoF) < .05 
as a threshold for significance. The pathways related 
to differentially expressed genes (DEGs; pSGoF < .05) 
associated with glycemia or HbA1c levels in the SAT 
were identified through an over-representation anal-
ysis (ORA) based on the Reactome database using the 
ConsensusPathDB tool. A q-value < .05 was used as a 
threshold for statistical significance.

For more information on the data collection, RNA ex-
traction and transcriptomics and bioinformatic analyses, 
see methods in Appendix S1.

2.3.3  |  Deconvolution of SAT cellular 
composition

To delve into SAT cellular composition in association 
with T2DM, cell deconvolution analysis was performed 
using our bulk RNA sequencing (RNA-seq) data from 
741 subjects grouped by HbA1c levels above (n = 360; 
mean = 6.8%) and below 5.7% (n = 381; mean = 5.3%). 
After bulk RNA-seq count matrix normalization to 
Counts Per Million, differential expression analysis 
was performed using the Mann–Whitney U test with p-
values adjustment via Benjamini–Hochberg. Then, cell 
type marker genes were curated from single-cell RNA 
sequencing datasets and integrated with marker genes 
from multiple studies compiled in PanglaoDB, creat-
ing a comprehensive reference list of AT-resident cell 
gene signatures. GSEA19 assessed cell type composition 
differences between High and Low HbA1c groups, con-
sidering gene-phenotype association, using the 14 cell 
type-specific marker gene sets as references to generate 
enrichment scores. An adjusted p-value < .05 was con-
sidered statistically significant. Positive normalized en-
richment scores indicated higher proportions of a cell 
type in the ‘High HbA1c’ group compared to the ‘Low 
HbA1c’ group, and vice versa. Single-sample Gene Set 
Enrichment Analysis (ssGSEA)20 provided enrichment 
scores for cell type-specific marker genes in the SAT 
of individual participants. The Mann–Whitney U test, 
followed by Benjamini-Hochberg correction for mul-
tiple comparisons, was used to investigate differences 
in cell type abundances between High and Low HbA1c 
groups. Spearman's correlation evaluated the relation-
ship between HbA1c levels and cell type enrichment 
scores. All statistical analyses were performed using R 
4.1.0 (https://​www.​r-​proje​ct.​org/​). More information 
can be found in the bioinformatic analysis section in 
Appendix S1.

2.3.4  |  Validation cohort 1

An independent validation cohort (Table  S2) included 
16 selected women with obesity, to whom SAT samples 
were extracted both before and after bariatric surgery 
(BS) PREVIOUSLY PUBLISHED.21 All subjects were 
of Caucasian origin, had stable body weight for at least 
3 months before entering the study, and had no infec-
tions or systemic diseases other than T2DM or obesity. 
Liver and thyroid dysfunction were specifically ex-
cluded by biochemical work-up, among other exclusion 
criteria further described in Appendix  S1. Serum was 
collected before surgery and analysed by routine labora-
tory tests. Total RNA was extracted and purified from 
AT and cell debris. Microarray RNA expression profiles 
were obtained from each sample using the Affymetrix 
GeneChip Human Gene 2.0 ST Array and the miRNA 
3.0 Array, respectively. Analyses included gene expres-
sion profiles in SAT before and around 2 years after 
surgery-induced weight loss. More information on the 
data collection and analyses, RNA extraction and tran-
scriptomic analysis can be found in Appendix  S1 and 
elsewhere.21

2.3.5  |  Validation cohort 2

A second independent validation cohort (Table  S3) in-
cluded 24 subjects without diabetes from the ADIPOINST 
cohort. All participants were of Caucasian origin, 
aged 30–55 years. These subjects had morbid obesity 
(BMI > 35 kg/m2), had maintained stable body weight 
for at least 3 months prior to the study, and were free 
from other underlying pathology. Exclusion criteria in-
cluded being treated with medications affecting insulin 
metabolism; having serious systemic diseases unrelated 
to obesity, inflammatory systemic conditions or chronic 
viral infections, liver disease or thyroid dysfunction; fol-
lowing chronic anti-inflammatory treatments; and have 
suffered any infections within 1 month before the study, 
were recruited from the Endocrinology Service at Hospital 
Dr. Josep Trueta. The study protocol (Project Code 
LBPFGF19, approval number 2016.051) was reviewed and 
approved by the Ethics Committee of Hospital Dr. Josep 
Trueta. All subjects provided written informed consent. 
Further details on the cohort can be found in Table S3 and 
elsewhere.22

Before surgery, serum was collected and analysed by 
routine laboratory tests. During elective surgery, adipose 
tissue samples were obtained from SAT depots. Statistical 
analyses included gene expression profiles in SAT, rep-
licating DGE analyses in the exploratory cohort and 
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performing enrichment analyses. More information on 
the data collection and analyses, RNA extraction and sta-
tistical analysis can be found in Appendix S1.

3   |   RESULTS

3.1  |  Adipose tissue expression of genes 
is associated with HbA1c levels

We performed Spearman partial correlations between 
HbA1c and gene expression in all subjects within the ex-
ploratory cohort (adjusting for age, bmi, sex and sample 
origin), as well as in subjects with obesity and in women 
(adjusting for age, bmi and sample origin). We identified 
multiple gene transcripts significantly correlated with 
HbA1c levels in all groups, with a level of significance of 
p < .001 (Table S4A).

Following stepwise multiple linear regression models 
were performed. The dependent variable in these models 
was HbA1c, while the independent variables included 
the top 10% of genes correlated with HbA1c in the pre-
viously described correlation analyses, along with sex, 
age, BMI and blood glucose levels. This analysis was 
conducted in all subjects within the exploratory cohort, 
as well as on specific subgroups: subjects with obesity 
(adjusting for the same covariates and using the top 10% 
of genes correlated with HbA1c in subjects with obesity) 
and women (adjusting for age, BMI and blood glucose 
levels, and using the top 10% of genes correlated with 
HbA1c in women). We identified HLA-DRB1, CCL13, 
TCF23, TP53I3 and ST14 mRNAs in SAT as significantly 
and independently associated with HbA1c levels in all 
patients (Table S4B). Significant genes in the models in-
clude HLA-DRA, LAT, PKN2-AS1, TP53I3 and S100A4 
in women; HLA-DRB1 and CCL13 in subjects with obe-
sity. In all three models, HLA-DRB1 explains around 
2% of the variance of HbA1c, even after controlling for 
serum glucose levels (Table S4B).

3.2  |  Adipose tissue expression of genes 
belonging to inflammation, immune 
system and RHO GTPases pathways is 
associated with serum glucose and blood 
HbA1c levels

3.2.1  |  Association of SAT gene expression 
with HbA1c status and serum glucose levels in 
all patients

We observed significant associations of gene transcripts 
with HbA1c status (n = 740) and with glycemia (n = 856) 

(see Table S5A,B, respectively). A total of 4195 genes were 
differentially expressed in relation to blood HbA1c levels, 
and 1889 genes related to serum glucose levels.

ORA results show an association of HbA1c status 
with numerous pathways, mainly the immune sys-
tem, inflammation-related pathways and RHO GTPases 
(Figure 1A, Table S5C, Figure 1B). Similar results were ob-
served for serum glucose levels (Figure S2 and Table S5D).

3.2.2  |  Sensitivity models

We analysed the association between blood HbA1c and 
serum glucose levels and SAT gene expression in women 
(n = 531), men (n = 209), subjects with simple or morbid 
obesity (n = 685), subjects without obesity (n = 55) and 
nonmedicated subjects (n = 167).

3.2.2.1  |  Association of SAT gene expression with 
HbA1c levels in women and men
Biological sex subtly yet ubiquitously modulates tissue 
gene expression, affecting many biological processes. By 
stratifying, we aimed to control for this variable.

Significant associations of gene transcripts and HbA1c 
levels were found both in women (Table  S6A) and men 
(Table  S6B). The ORA revealed an association be-
tween HbA1c levels and numerous pathways in women 
(Figure  2A and Table  S6C) and in men (Figure  2B and 
Table  S6D), including several immune, inflammation-
related pathways. In women, associated pathways related 
to RHO GTPases include: MIRO GTPases, RHOBTB3, 
RAC1, RAC2, RHOA, CDC42, RAC3, RHOG and RHOD. 
We did not detect any significant association with RHO 
GTPases in men.

3.2.2.2  |  Association of SAT gene expression with 
HbA1c levels in patients with obesity and morbid 
obesity, and with blood HbA1c and serum glucose levels 
in patients without obesity
Obesity is associated with low-grade chronic inflamma-
tion, which contributes to the metabolic syndrome devel-
opment and its associated complications, such as T2DM.23 
SAT gene expression in individuals with obesity may im-
pact glucose homeostasis.24 Obesity might thus act as a 
confounder and/or modifier. We assessed the association 
between HbA1c levels and SAT gene expression in pa-
tients with simple obesity (30 ≤ BMI < 35 kg/m2) and mor-
bid obesity (BMI ≥ 35 kg/m2), on one hand, and in patients 
without obesity (BMI ≤ 30 kg/m2), on the other hand.

We observed numerous significant associations of SAT 
gene transcripts and HbA1c levels in subjects with obe-
sity (Table  S7A), but only some relevant transcripts in 
subjects without obesity (Table S7B). HbA1c levels were 
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associated with numerous pathways in subjects with 
obesity (Figure 3A and Table S7C). Associated pathways 
mirrored those from the full participant set, including the 
immune system, inflammation-related pathways and sig-
nalling by RHO GTPases.

In contrast, in subjects without obesity, HbA1c lev-
els were associated with only two pathways: eicosanoid 
ligand-binding receptors and prostanoid-ligand receptors 
(Figure  3B and Table  S7D). However, it is important to 
consider that we evaluated only 55 samples. On the other 
hand, when assessing the potential association between 
glycemia and SAT gene expression in patients without obe-
sity (n = 57), we identified associations with several genes 
(Table S7E) and pathways (Figure 3C and Table S7F).

3.2.2.3  |  Association of SAT gene expression with 
HbA1c levels in nonmedicated patients
Antidiabetic drug intake is a confounder as it can alter 
RNA expression profiles in addition to affecting glyce-
mia.10 Therefore, we performed association analyses 
of SAT's gene expression with HbA1c levels consider-
ing only patients not medicated with antidiabetic drugs, 
using a robust linear regression model adjusted for age, 
BMI and sex. More information on this subgroup can be 
found in Table S1A. Some transcripts were found signifi-
cant (Table S8A). Again, an ORA based on DEGs with a 
pSGoF < .1 revealed the association of HbA1c levels with 
several pathways, including the immune system or RHO 
GTPases (Figure S3 and Table S8B).

3.3  |  Deconvolution analysis in 
experimental cohort ADIPOMIT

According to cell deconvolution analysis, immune cells, 
including neutrophils and macrophages were overrepre-
sented in subjects with HbA1c levels above 5.7%, while 
adipocytes, smooth muscle cells (SMCs), pericytes and 
other endothelial cells were underrepresented (Figure 4). 
This finding aligns with correlations shown in Figure 4, 

where blood HbA1c levels are positively associated with 
enrichment scores for macrophages and neutrophils and 
negatively associated with adipocytes and endothelial 
cells. Multiple regression models further supported these 
associations between cell type fractions and HbA1c lev-
els, also when accounting for age, sex and BMI covariates 
(Table S9).

3.4  |  Validation cohort 1 results

HbA1c levels decreased significantly after BS, as well as the 
expression of selected genes related to RHO GTPases and 
associated with HbA1c levels in our findings (Figure 5). 
An ORA based on DEGs (pSGoF < .05) revealed that the 
immune system, inflammation and RHO GTPase-related 
pathways were differentially expressed before and after 
bariatric surgery (Figure 5 and Table S10A,B).

Robust linear regression models showed that HbA1c 
significantly explains variation in RAC2, ARHGAP22 and 
ARHGAP4 gene expression, while BMI is significantly 
associated with ARHGAP30 and ARHGAP4 expression 
(Table S11).

3.5  |  Validation cohort 2 results

The overrepresentation analysis with the KEGG database, 
based on DEGs (pSGoF < .1) (Table  S12A), confirmed 
again that immune system-related pathways were sig-
nificantly associated with HbA1c levels in obese subjects 
without diabetes (Table S12B).

4   |   DISCUSSION

While VAT has long been acknowledged for its significant 
contribution to the onset of metabolic disorders, recent 
evidence suggests that both SAT and VAT experience dis-
ruptions in their homeostasis in environments conducive 

F I G U R E  1   (A) Dotplot of significant Reactome pathways that are differentially expressed (q-value < .01) in SAT samples of subjects 
with HbA1c levels above and below 5.7% (n = 740). Significant pathways resulted from an over-representation analysis (ORA) of genes 
differentially expressed (DEGs, pSGoF < .05) in HbA1c levels above and below 5.7% while controlling for age, sex, BMI and sample origin, 
identified from the SAT RNA-Seq data in the ADIPOMIT exploratory cohort. The ORA was performed with ConsensusPathDB, considering 
the Reactome database. Pathways are shown in the y-axis; Counts refer to the number of significantly DEGs that belong to the given 
pathway (or gene-set); Gene Ratio (x-axis) is calculated as count/set size (being set size the number of genes in a given pathway). Dots are 
coloured according to pathways' q-value. Pathways related to the immune system, inflammation and RHO GTPases are highlighted in 
colour. (B) Emapplot of significant pathways that are differentially expressed (Reactome database, q-value < .05) in SAT samples of subjects 
with HbA1c levels above and below 5.7%. Significant pathways resulted from an ORA of DEGs (pSGoF < .05) in HbA1c levels above and 
below 5.7%. Dots are coloured according to q-value; dot size represents the number of genes involved in each pathway; nodes link pathways 
with shared significant genes, with a minimum percentage of overlap genes of .2.
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to metabolic disturbances.25 Cutting-edge research has as-
sociated proinflammatory macrophages in SAT with insu-
lin resistance (IR), and reduced body weight with reduced 
SAT inflammation.26

Studies have revealed a notable increase in macro-
phage infiltration in SAT depots among lean individuals 
with metabolic syndrome compared to their metabolically 
healthy counterparts, whereas differences in VAT infiltra-
tion were minimal.26 This suggests that the condition of 
SAT more accurately reflects an individual's overall met-
abolic state than VAT. Thus, monitoring the condition of 
SAT provides valuable insights into an individual's meta-
bolic well-being.

This study strengthens evidence linking HbA1c levels 
to SAT inflammation across cellular populations, pathway 
and gene expression levels, confirming again the value 
of SAT reflecting metabolic state, particularly glycemic 
control.

We identified several cellular populations that may re-
flect SAT inflammation in high blood HbA1c conditions. 
Our analyses also identified several genes and numerous 
pathways associated with HbA1c and glycemia, detailed 
in the Tables S5–S12. Immune system and inflammation-
related pathways are associated with HbA1c across all 
subgroup analyses. Common pathways associated with 
HbA1c in all subjects, in men, women and individuals 
with obesity include the immune system, neutrophil de-
granulation, the innate immune system, MHC class II an-
tigen presentation and cytokine signalling in the immune 
system. RHO GTPases are also among the most signifi-
cantly associated pathways, including signalling by RHO 
GTPases, and Miro, RHOBTB3, RAC1, RHOA, CDC42 and 
RhoG GTPases. Analyses in women and in subjects with 
obesity show highly similar results. The differences be-
tween men and women are primarily RHO GTPases path-
ways, present in women but not in men. Furthermore, 
RHO GTPases are not associated with HbA1c in subjects 
without obesity. In individuals without obesity, pathways 
associated with HbA1c include eicosanoid ligand-binding 
receptors and prostanoid ligand receptors, both of which 
are related to the immune system and inflammatory 
response.

Associated genes and pathways identified align with 
existing knowledge on glucose homeostasis, diabetes, 

metabolic diseases and SAT's physiological and patho-
physiological processes involved in these conditions. For 
instance, pathways such as PI3K, PI3K/Akt2 and phos-
phoinositides, which we identified, are known to partic-
ipate in glucose homeostasis.27 Results are also consistent 
with prior transcriptomic studies, which have revealed 
that the immune system, inflammation, cancer signalling, 
cell cycle pathways, ubiquitin-proteasome systems, altered 
lipid, glucose and protein metabolism and IR are associ-
ated with diabetes, all pathways that we have encountered 
in this analysis.9,10,12 These findings reinforce the validity 
of our results, obtained in a tissue whose transcriptome 
has not been extensively studied.

4.1  |  Immune cells are overrepresented 
in subjects with HbA1c levels above 5.7, 
while adipocytes, smooth muscle cells 
(SMCs), pericytes and other endothelial 
cells are underrepresented

The positive strong and highly significant association be-
tween macrophages and neutrophils and HbA1c levels, 
being overrepresented in AT of subjects with HbA1c levels 
over 5.7%, was consistent across the different deconvolu-
tion analysis of AT cellular composition (Figure 4). This 
result was also coherent with our previous results indicat-
ing an association between glucose HbA1c levels and AT 
expression of genes related to inflammation and immune 
system pathways and aligned with existing literature, as 
already discussed.

The negative association between HbA1c levels and 
endothelial cells and adipocytes was strong and highly 
significant. Pericytes and SMCs representation in AT was 
also underrepresented in subjects with HbA1c levels over 
5.7%.

All these cell types—macrophages, neutrophils, endo-
thelial cells, adipocytes, pericytes and SMCs—have been 
identified as canonical in human WAT.28

Adipocytes, smooth muscle, pericytes and endothe-
lial cells are crucial cell types for AT functioning and its 
irrigation. Endothelial cells and pericytes are part of the 
blood vessels structure and regulate the vascular system, 
while smooth muscle cells in AT regulate blood flow, 

F I G U R E  2   (A) Dotplot of Reactome pathways that are significantly associated (q-value < .01) with HbA1c levels in women's SAT 
samples (n = 531). Significant pathways resulted from an ORA of DEGs (pSGoF < .05) significantly associated with HbA1c levels while 
controlling for age, BMI and sample origin, identified from the women's SAT RNA-Seq data in the ADIPOMIT exploratory cohort. Pathways 
related to the immune system, inflammation and RHO GTPases are highlighted in colour. (B) Dotplot of Reactome pathways that are 
significantly associated (q-value < .05) with HbA1c in men's SAT samples (n = 209). Significant pathways resulted from an ORA of DEGs 
(pSGoF < .05) significantly associated with HbA1c levels while controlling for age, BMI and sample origin, which were identified from the 
men's SAT RNA-Seq data in the ADIPOMIT exploratory cohort. Pathways related to the immune system and inflammation are highlighted 
in colour.
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tissue structure, support adipocyte function and ongoing 
research suggests that they could participate in signalling 
pathways that influence AT.29 Imbalance in these cell pop-
ulations can lead to a loss of AT's vascular integrity.30 Their 
underrepresentation in AT of subjects with high HbA1c 
can be explained due to the complex interplay between 
SAT dysfunction and vascular complications in diabetes. 
Hyperglycaemia induces oxidative stress, contributing to 
vascular dysfunction by reducing nitric oxide bioavailabil-
ity, while vascular dysfunction impairs insulin delivery to 
SAT, exacerbating insulin resistance and worsening hyper-
glycaemia. Vascular dysfunction can also lead to hypoxia 
and can impair angiogenesis, resulting in adipocyte necro-
sis. Both hyperglycaemia and vascular dysfunction pro-
mote inflammation in SAT, which contributes to vascular 
dysfunction and hyperglycaemia, creating a vicious cycle. 
Together with hyperglycaemia, low-grade inflammation 
induced by proinflammatory immune cells and released 
cytokines is another hallmark underlying endothelial dys-
function in diabetic vascular complications.31

ASPCs were positively associated with HbA1c levels. 
Different studies have observed an ASPCs expansion—
as a reaction to maintain homeostasis and the death of 
adipocytes, or to excess circulating lipids and glucose in 
hyperglycemia or insulin resistance development—while 
showing impaired function in altered metabolic condi-
tions, failing to enter adipogenic lineage.32 In fact, hy-
perglycemic conditions may foster senescence of ASPCs, 
affecting lineage commitment.33,34 Therefore, even if 
ASPCs increase with higher HbA1c levels, adipogenesis is 
often impaired, leading to AT dysfunction instead of effec-
tively counteracting hyperglycemia.

Moreover, Emont et  al. 2022 performed a deconvo-
lution analysis to estimate cell type proportions in bulk 
SAT RNA-sequencing data in men, finding the adipocytes' 
relative abundance negatively correlated with BMI, and 
ASPCs' and myeloid cells' positively correlated.28 Given 
the positive correlation between BMI and HbA1c, these 
findings are consistent with ours. Figure  4 shows pos-
itive and significant Spearman's correlations between 
BMI and HbA1c levels in our cohort, suggesting again the 

potential confounder role of BMI in the association be-
tween HbA1c and cell types proportion. Nonetheless, the 
multiple regression models assessing cell types overrepre-
sented in relation to HbA1c levels were adjusted for BMI. 
After adjustment, adipocytes and ASPCs appeared to be 
more strongly, positively and significantly associated with 
HbA1c levels, while endothelial cells were more strongly, 
negatively and significantly associated. Immune cells re-
mained strongly and significantly positively associated 
compared to the same analyses without adjusting for BMI 
(Table S9). We therefore hypothesise that these cell types' 
relation with diabetes or altered insulin sensibility is inde-
pendent of BMI confounding effect.

4.2  |  Immune system and inflammation 
pathways expression in SAT is associated 
with blood HbA1c and serum glucose levels

Immune system and inflammation-related pathways con-
sistently emerged in all stratified analysis. Among them, 
we consistently found: innate and adaptive immune sys-
tems, neutrophil degranulation, cytokine signalling in the 
immune system, interleukins and MHC antigen presen-
tation. This association aligns with existing knowledge. 
Further information can be found in supplemental infor-
mation on immune system and inflammation pathways 
associated with HbA1c levels in SAT and their link with 
T2DM in Appendix S1.

4.3  |  RHO GTPase expression in SAT is 
associated with HbA1c in women with 
obesity, but not in men or in subjects 
without obesity

RHO GTPases expression in SAT was associated with 
HbA1c and glycemia in the analysis of all patients, and 
with HbA1c in women, in patients with obesity, and in 
nonmedicated subjects. It should be noted that most 
ADIPOMIT participants were women and had simple or 

F I G U R E  3   (A) Dotplot of Reactome pathways that are significantly associated (q-value < .001) with HbA1c levels in SAT samples from 
patients with obesity (n = 685). Significant pathways resulted from an ORA of DEGs (pSGoF < .05) significantly associated with HbA1c levels 
while controlling for age, sex, BMI and sample origin, identified from the SAT RNA-Seq data. Pathways related to the immune system, 
inflammation and RHO GTPases are highlighted in colour. (B) Dotplot of Reactome pathways that are significantly associated (q-value < .05) 
with HbA1c levels in SAT samples from patients without obesity (n = 55). Significant pathways resulted from an ORA of DEGs (pSGoF < .05) 
significantly associated with HbA1c levels while controlling for age, sex, BMI and sample origin, identified from the SAT RNA-Seq data. 
Pathways related to the immune system and inflammation are highlighted in colour. (C) Dotplot of Reactome pathways that are significantly 
associated (q-value < .05) with serum glucose levels in SAT samples from patients without obesity (n = 57). Significant pathways resulted 
from an ORA of DEGs (pSGoF < .05) significantly associated with serum glucose levels while controlling for age, sex and BMI, identified 
from the SAT RNA-Seq data. Pathways related to the immune system and inflammation are highlighted in colour.
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morbid obesity. When assessing subjects without obesity, 
even considering the vast majority were women, RHO 
GTPases were not associated with HbA1c levels. Similarly, 
RHO GTPases were not associated with HbA1c or glyce-
mia in men (even considering a pSGoF < .1, results not 
shown). Note also that most men had obesity or morbid 
obesity.

Differences between men and women, potentially 
interacting with obesity, could explain these results. 
However, we could not rule out that they might be caused 
by the composition and characteristics of the different 
subgroups or due to different sample sizes (n men = 209; 
n women = 531): further studies are needed to clarify it. 
Few studies have focused on the sexual dimorphism in 
RHO GTPases expression in relation to diabetes and glu-
cose homeostasis. A study found male-biased expression 
of RHO GTPases at transcriptomic, lipidomic and me-
tabolomic levels in mice neutrophils.35 Another publica-
tion also identifies sexual dimorphism in RHO GTPase 
expression in pluripotent stem cell-derived myoblasts of 
nondiabetic and diabetic insulin-resistant individuals.36

The RHO family of GTPases are key regulators of 
the actin cytoskeleton and vesicle traffic, modify axon 
outgrowth and growth cone motility, have crucial roles 
in triggering inflammation and multiple immune func-
tions, and are now emerging as regulators of metabolic 
homeostasis.37 They seem to have an essential func-
tion on regulating glucose metabolism in health and 
disease, but this is still an emerging field. It is known 
they participate in serum glucose control via actions 
in metabolically active tissues such as AT. They are in-
volved in the pancreatic release of insulin and the re-
sulting insulin stimulation of glucose into AT, and they 
likely also play insulin-independent roles in maintain-
ing glucose homeostasis.38 For example, evidence sug-
gests key functions for RAC1, CDC42 and RHOA in 
maintaining glucose homeostasis. RAC1 and CDC42 
are considered important players in glucose-stimulated 
insulin secretion via actin reorganization, enabling 
insulin-containing vesicle translocation to the plasma 
membrane in response to increased serum glucose con-
centration.38 Evidence is more limited regarding MIRO, 
RHOG, RHOD, RAC2, RAC3 and RHOBTB3 link with 
glucose homeostasis. Recently, RAC2 has been associ-
ated with IR in epiploic AT.39 Our results support the 

role of RHO GTPases in glucose homeostasis. Further 
discussion can be found in the Appendix  S1 on RHO 
GTPases and glucose homeostasis in Appendix S1.

4.4  |  CCL13 and S100A4 and HLA-DR 
gene expression in SAT is associated with 
HbA1c and could potentially serve as 
T2DM biomarkers

We have identified several genes whose expression may 
be indicative of high HbA1c levels, as well as inflamma-
tion and related comorbidities, and could be valuable in 
early diabetes diagnosis. Nonetheless, further research is 
needed to elucidate how these genes and their variants 
may influence the risk of T2DM.

S100A4, CCL13, HLA-DRB1 and HLA-DRA were 
among the genes most strongly and positively correlated 
with HbA1c levels in our analyses and were included in 
the regression models as significant variables in explain-
ing HbA1c levels, following a stepwise analysis of vari-
ous factors (Table S4A,B). Given the consistency of these 
associations in the literature, these genes are potential 
biomarkers for further complications of T2DM. More 
information on the possible links between SAT gene ex-
pression and T2DM is described in the supplemental in-
formation on HbA1c-associated genes in Appendix S1.

S100A4 association with inflammation and T2DM has 
been considerably described.40 S100A4 has been identified 
as a novel SAT adipokine linked to IR, inflammation and 
hypertrophy independently of BMI, although its function 
needs to be further studied.41 Higher levels of S100A4 
have been suggested as a marker of IR in adults with obe-
sity.42 An association of S100A4 with IR and white adipose 
tissue (WAT) dysfunction in prepubertal populations has 
also been reported.43

CCL13 has been involved in many chronic inflam-
matory diseases.44 It has been associated with islet in-
jury and inflammation in T2DM, as there is a two- to 
three-fold increase in islet concentrations of chemok-
ines, including CCL13, and cytokines compared with 
the normoglycemic state.45 CCL13 expression in human 
islets has also been shown to correlate negatively with 
insulin secretion and positively with HbA1c, coherently 
with our results.46

F I G U R E  4   (A) Histogram showing subjects' count and blood HbA1c (%) levels, including Student's t-test assessing differences between 
the high HbA1c group (above 5.7%) and the low (below 5.7%). (B) Spearman's correlation between BMI (kg/m2) and HbA1c (%). (C) HbA1c 
(%) versus GSVA scores regression analysis (β), after correcting for age, sex and BMI. (D) UMAP of cell type composition. Clustering 
indicates similarities in expression patterns based on cell deconvolution analysis. (E) Volcano plot of cell types from deconvolution analysis, 
showing fold change (FC) and p-values comparing high versus low HbA1c levels.
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4.5  |  Results from the validation 
cohorts are consistent with our 
experimental cohort

Subjects within the validation cohort 1 had undergone 
bariatric surgery and therefore were expected to have both 
lower BMI and HbA1c levels. Consistently, differentially 
expressed pathways between pre-and post-surgery states 
were very similar to differentially expressed pathways 
associated with HbA1c levels in the ADIPOMIT cohort. 
These include the immune system, inflammation and 
RHO GTPase-related pathways. Results are also consist-
ent with existing studies. For instance, recent findings sug-
gest that surgery-induced weight loss may lead to changes 
in inflammatory response in AT.21 On the other hand, a 
decrease in HbA1c levels was observed after bariatric sur-
gery in our validation cohort 1, along with a decrease in 
expression levels of genes related to RHO GTPases, such 
as RAC2, ARHGAP22, ARHGAP30 or ARHGAP4, sug-
gesting a positive correlation between these RHO GTPases 
expression and HbA1c levels (Figure  5). These results 
complement and are in line with those arising from the 
ADIPOMIT cohort, as RHO GTPase-related pathways 

were associated with HbA1c levels in women with obe-
sity. Robust linear regression models further suggested 
that HbA1c and BMI levels may shape these changes in 
RHO GTPases expression (Table  S11), coherently with 
our results showing that obesity status may play a role. 
Overall, this validation cohort 1 enabled us to suggest that 
HbA1c levels might shape RHO GTPase expression, as 
well as inflammation and immune system pathways.

An additional validation cohort 2 validated the find-
ings from the enrichment analyses in the exploratory 
cohort, again revealing multiple immune system–related 
pathways significantly associated with HbA1c levels in 
morbidly obese subjects without diabetes.

4.6  |  Limitations

Five percent of samples (44 patients out of a total of 901) 
lacked data on glucose, and a seventeen percent lacked 
data on HbA1c (160 patients out of a total of 901). Missing 
data can introduce bias into a study when the missing-
ness is not random. Consequently, only complete cases 
were used in our analyses to ensure consistency and 

F I G U R E  5   (A) Validation cohort 1 study design. Women with obesity were recruited and SAT samples were obtained during bariatric 
surgery after informed consent. SAT was again extracted around 2 years after from the same patients. N = 30 from 16 patients with pre- 
and post-BS data. (B–F) Boxplots showing change in HbA1c levels (%) (B), RAC2 (C), ARHGAP22 (D), ARHGAP30 (E) and ARHGAP4 
expression levels as normalized intensities (F) between pre- and post-bariatric surgery states. (G) Dotplot of significant Reactome pathways 
that are differentially expressed (q-value<EXP-05; 33 most significant pathways) in SAT samples taken before and after bariatric surgery 
from women within the validation cohort 1 (n = 16). Significant pathways resulted from an over-representation analysis (ORA) of genes 
differentially expressed (DEGs, pSGoF < .05). No covariables were considered. The ORA was performed with ConsensusPathDB, considering 
the Reactome database.
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comparability across variables. If the data is Missing 
Completely at Random (MCAR), this approach does not 
introduce bias.

5   |   CONCLUSION

In summary, we observed an association between 
inflammation-related cellular populations, pathways 
and gene expression with HbA1c and glycemic levels in 
SAT. At the cellular population level, macrophages and 
neutrophils overrepresentation in SAT at high HbA1c 
conditions reflects tissue inflammation, while the under-
representation of crucial cell types such as adipocytes, 
smooth muscle, pericytes and endothelial cells suggests 
their dysfunction and imbalance at hyperglycemic condi-
tions, related to vascular and adipogenesis complications 
and leading to AT dysfunction.

At the biological pathway level, immune system and 
inflammation pathways were consistently associated with 
hyperglycemic conditions across different sensitivity anal-
yses and in the validation cohorts. Interestingly, RHO 
GTPase expression was associated with HbA1c only in 
women with simple or morbid obesity, but not in men or 
in women without obesity.

In line with these results, the expression of HLA-DR, 
CCL13 and S100A4 genes in SAT is strongly correlated 
and appears to explain HbA1c levels. Considering SAT's 
importance in reflecting general metabolic status, these 
genes hold potential as early biomarkers for T2DM 
complications.

Further investigation is needed to infer the causality 
of the associations found. Nonetheless, our results bring 
added value in the field by focusing on less-studied SAT 
transcriptomes using Next-Generation Sequencing tech-
niques based on a large number of SAT samples, which is 
necessary and scarce in existing literature.
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