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ABSTRACT
This study presents an innovative approach to identify electrical discharges by proposing an algorithm incorporating fractal
geometry concepts. Based on the box-countingmethod, our algorithm is developed to detect and track the progression of electrical
discharges leading to flashover. This is achieved by calculating the fractal dimension of discharge images which are visual
representations of electrical activity recorded during experiments on a planar glass insulator model subjected to different levels of
contamination. First, the RGB image is transformed into a binarymatrix using the NIBLAK binarization algorithm. Subsequently,
the acquiredmatrix is converted into a squarematrix, and its fractal dimension is computed for various resolutions. The final fractal
dimension of the image is calculated using the least squaresmethod. This latter is applied to the fractal dimensions (FDs) across all
resolutions. According to our algorithm, discharge images have FD values ranging from 1.15 to 1.25. FD increases are observedwith
applied voltage and non-soluble deposit density (NSDD). The density and activity of discharges also increase with FD. Specifically,
a discharge is considered “no-arc” if FD is less than 1.2 and “arc” otherwise.

1 Introduction

High-voltage (HV) insulators are of critical importance in elec-
trical transmission and distribution grids, as they are designed
to function effectively even in the harshest climatic conditions.
Consequently, monitoring the performance of these insulators,
particularly under pollution, is of paramount importance to
ensure the safe and continuous operation of the power grid [1–6].

To prevent flashover incidents and control the progression of
electrical discharges, it is essential to develop dependable tools
for real-time assessment of the performance of outdoor insulators
[7, 8].

Monitoring insulator performance necessitates the prediction
and forecasting of contamination severity [3, 5, 6, 8, 9]. Typically,
this pollution assessment is conducted by investigating the leak-
age current (LC) [5, 10], or alternatively, through image analysis
[1, 11, 12].

Several studies have focused on diagnosing polluted insulators by
the (LC).

Chaou et al. [13] used recurrence quantification analysis (RQA)
with eight indicators to analyse leakage current waveforms
under different pollution levels. These indicators were applied to
classificationmethods like KNN, Naïve Bayes, and SVM, showing
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a strong correlation between RQA indicators and pollution
severity.

Similarly, Al Khafaf and El-Hag [14] developed a feed-forward
neural network (FFNN) algorithm to predict and monitor fluc-
tuations in the peak leakage current on polluted insulators,
demonstrating significant correlations between peak leakage
current changes and contamination levels.

In another study, Salem et al. [15] focused on the time-frequency
characteristics of the leakage current to assess the condition
of polluted polymeric insulators through laboratory tests on a
33 kV insulator string. They analysed temporal and frequency-
domain indicators such as the curve slope index and crest factor,
confirming their effectiveness in condition assessment.

Additionally, Salem et al. [16] introduced an index, Rh′, based
on leakage current harmonics, to assess the risk of pollution on
wet high-voltage glass insulators. They found that Rh′ outper-
formed the traditional 5th/3rd index in predicting flashover risk,
particularly when the ratio of soluble to insoluble deposits was
considered.

Gouda et al. [17] also contributed by developing a wireless device
for monitoring high-voltage insulator contamination. The device
continuously measures leakage current bursts, calculates the
RMS value and sends alerts when a risk of power failure is
detected. Tested in the laboratory, the device, powered by a
solar bank, achieved an accuracy of 91.66% after 50 trials on
insulators with different pollution levels. Together, these studies
contribute to the advancement of insulator monitoring and
flashover risk prediction using innovative techniques like RQA,
neural networks, and harmonic analysis of leakage current.

In addition to leakage current-based methods, a recent study
[18] introduces a probabilistic approach using the finite ele-
ment method (FEM) to model insulator flashover and assess
the failure risk under contamination. The voltage distribution
along the insulator surface is estimated using FEM, while a
random rotating urningwheel simulates the arc propagation. The
flashover probability is determined for various contamination
levels, and the Kolmogorov–Smirnov test is used to derive the
contamination-based probability density function. The accuracy
of the model is validated by comparison with the literature, and
failure risk is calculated to predict transmission line outage rates.

However, beyond classical methods, fractal theory offers a
powerful analytical tool for assessing the condition of polluted
insulators by analysing the leakage current behavior [19–21].

Fractal analysis is a diagnostic technique for the real-time
assessment andmonitoring of insulator conditions. It is also used
in image analysis and processing [22].

The theory of fractal geometry was introduced by Benoît Mandel-
brot [23], who described it as a method to mathematically repre-
sent the irregular and fragmented shapes commonly observed in
nature [23]. Unlike traditional Euclidean geometry, which deals
with smooth and regular objects like lines, circles, and cubes,
fractal geometry addresses complex, self-similar patterns that
exhibit detail at every scale. Self-similaritymeans that a small part

FIGURE 1 The first stages of Koch’s classical construction. All end
points of the generated line segments are part of the final curve.

of the fractal structure resembles the whole, nomatter howmuch
you zoom in.

A fractal image is generally understood to be an image con-
structed in a recursive or self-similar manner. For instance,
consider the branching patterns of blood vessels, tree branches, or
even coastlines. These objects are considered fractal because their
intricate structures exhibit high degree of similarity at different
scales [23]. A well-known visual example of a fractal pattern is
the Koch Curve [24] (see Figure 1), which reveals increasingly
complex detail as it is magnified.

Fractal geometry has emerged as an efficacious and reliable
analytical tool in various disciplines. In the field of electricity,
fractal geometry is employed for modelling and analysing electric
discharge phenomena [25]. The latter have an obvious fractal
appearance [26]. Consequently, it can be defined by the fractal
dimension. In reality, the electric discharge ismultifractal [27]. Its
shape transforms at each stage of its progression. This results in a
fractal dimension that depends on the stage of progression. Con-
sequently, in this study, the fractal dimension of the discharges at
each stage of progression until total flashover is calculated.

The fractal dimension has been employed in numerous stud-
ies to analyse the dielectric breakdown phenomenon through
the modelling of electric discharges. This results in simulated
branched structures that are very different from real discharge
shapes. Building on the foundation of fractal theory, its practical
applications extend to optimize machining processes, as demon-
strated by studies focusing on surface quality and morphology in
electrical discharge machining techniques. To achieve improved
surface quality through precise parameter adjustments using the
fractal dimension, Mukhopadhyay et al. [28] integrated artificial
neural networks (ANN) and genetic algorithms (GA) to optimize
wire electrical discharge machining (WEDM) parameters. Their
research focuses on discharge current, voltage, and pulse times,
demonstrating how these adjustments effectively improve surface
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properties. Feng et al. [29] also utilized fractal theory to evaluate
surface morphology in micro electrical discharge machining.

Sawada et al. [30] were the first to apply fractal theory to electric
discharges, analysing the fractal properties of branched discharge
structures in a stochastic model of dielectric breakdown. They
introduced a key variable “R” that controls branch formation.
However, they did not account for the local electric field, which
caused discrepancies between simulated and real discharges. Two
years later, Niemeyer et al. [31] improved the model by including
the effect of the local electric field, demonstrating a correlation
between discharge propagation and the field. Building on this,
Wiesmann et al. [32] proposed a new fractal model of dielectric
breakdown, called WZ.

Petrov et al [33] employed a fractal approach to quantify the prob-
ability of lightning strikes for modelled structures. Furthermore,
the researchers considered the voltage drops that occur during the
discharge.

In their study, Perera et al [34] used a stochastic dielectric
breakdown model to simulate lightning discharges in both 2D
and 3D domains. The authors evaluated the correlation between
the fractal dimension of the discharge models and the value
of the local electric field power, η. The fractal dimension of
the simulated 3D discharge patterns and the 2D images of the
lightning discharges were compared by taking projections of the
simulated patterns. Additionally, the influence of ground objects
on simulated lightning discharges was investigated.

Khelil et al [25] developed a fractal model describing the proba-
bility of lightning discharge interception of a grounded vertical
rod when inserted in a rod-plane space. The height of the two
grounded rods (representing a protective object and an object
protected against lightning), their separation distance, and their
location relative to the live rod were considered as parameters
influencing the voltage and the breakdown time.

Four years later, they developed a fractal lightning protection
model that considers the physical phenomena involved in the
development of the electrical discharge [35]. The model incor-
porates the real physical conditions of discharge propagation,
including downward and upward discharges from the protection
system. It takes into account the voltage drop and the random
nature of lightning discharges. The instantaneous breakdown
voltage is estimated using both empirical equations and simu-
lated discharge figures, with the model giving results in good
agreement with experimental data.

To encompass the statistical nature of voltage breakdown in air
for the coordinated insulation of transmission lines, Molas et al.
[36] proposed a 3D fractal dimension calculation applied to a pop-
ulation of electrical discharges generated with a 3.4 MV lightning
pulse and a 2.3 MV switching pulse under controlled laboratory
conditions for sphere-sphere and sphere-plane electrode systems.
The results demonstrate the ability of the method to effectively
classify different types of discharges.

The novelty of this study lies in the application of fractal
geometry to characterize images of electrical discharges, aiming
to investigate the surface condition of a polluted insulator where

FIGURE 2 Laboratory test arrangement. H.V.T indicates high volt-
age transformer; R.T, regulating transformer; I.T, isolating transformer;
V.R, voltage regulator; I.M, insulator model; P.C, personal computer.

these discharges occur. Our method is non-invasive, using highly
detailed image analysis to avoid direct contact with the insulator,
unlike techniques based on leakage current. It also allows for
real-time monitoring of discharges and is sensitive to surface
irregularities and subtle changes, offering improved detection
of pollution variations by applying fractal analysis directly to
RGB images. This integration of RGB imaging provides a more
detailed and comprehensive assessment tool, complementing
traditional methods. To this end, we have initially developed
an algorithm for calculating the fractal dimension of images of
electrical discharges evolving on a model of a polluted insulator.
Specifically, an algorithm based on the box-counting method
was implemented. The efficacy of the proposed algorithm was
evaluated by applying it to the fractal curve of the Fibonacci
word at a 90◦ angle, which has a well-documented fractal
dimension. Furthermore, the algorithm was tested on the results
obtained by Khelil [37]. These tests demonstrated the reliability of
our algorithm. Subsequently, the fractal dimension of discharge
images extracted from videos recorded during flashover tests
on a flat insulator model subjected to pollution was calculated
using the aforementioned algorithm. Finally, the influence of
the applied voltage and the non-soluble deposit density (NSDD)
on the fractal dimensions of the discharge images was studied,
and the electrical discharges in the images were classified into
two categories, “arc” and “no-arc,” according to their fractal
dimensions.

2 Experimental Setup

Experiments were conducted at the High Voltage Laboratory
of ENP (Ecole Nationale Polytechnique) using a flat insulator
model that was exposed to uniform pollution. The experimental
apparatus comprises a high-voltage test transformer (300 kV/50
kVA, 50 Hz), powered by a voltage regulator (220/500 V, 50 kVA,
50 Hz), a capacitive divider (with a 1000:1 ratio), and a model of
a plan glass insulator of 50 cm by 50 cm by 5 mm (Figure 2). Two
rectangular aluminium electrodes (50 mm by 3 cm by 2 µm) were
employed, with a separation distance of 29.2 cm. This distance
corresponds to the leakage path of the 1512L cap and pin outdoor
insulator, which is primarily utilized by the Algerian Company
of Gas and Electric Power (SONELGAZ). The insulator model
(Figure 3) is positioned on a wooden support at a height of 100 cm
from the ground (Figure 4). At the same height as the insulator
model, a video camera (Full HD, 20 Megapixels) is employed to
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FIGURE 3 Laboratory plane model profile [38] and schematic
illustration of the pollution application process.

FIGURE 4 Disposition of insulator model and video camera [12].

capture the evolution of discharges until flashover. Subsequently,
the recorded data were processed on a personal computer (PC).

Before each test, the insulating surface is subjected to an initial
cleaning process with tap water, followed by a drying phase. Sub-
sequently, the surface is further cleaned with isopropyl alcohol in
order to eliminate any traces of pollution. The insulator model
is then subjected to uniform pollution utilizing sand collected
from Naama City (southern Algeria) at a height of 20 m. To take
into account the impact of the sand quantity on the insulator
model, we considered four different amounts (15, 30, 45, and
60 g), corresponding to NSDD values of 0.01, 0.02, 0.03, and 0.04
g/cm2, respectively. A highly accurate electronic scale was used
to measure these quantities accurately. The NSDD values are

calculated according to IEC 60815 [39]. The formula for NSDD is
expressed as follows:

NSDD =
𝑊𝑠

𝐴
(1)

Here, A represents the surface area of the polluted insulator
model in square centimetre and𝑊𝑠 theweight of the sand amount
in grams.

The sand is manually spread on the experimental model using
a sieve. The sand layers were moistened with distilled water
(conductivity of 2 µS/cm measured with a conductivity meter)
using a 20 mL sprayer, applied five times at a consistent distance
of 50 cm from each side of the insulator model (Figure 3). Each
test for a given NSDD value was repeated five times to ensure
accuracy.

3 Statistical Analysis of the Correlation Between
Fractal Dimension, Voltage, and NSDD: Confidence
Intervals and Analysis of Variance (ANOVA)

In this section, we introduce the statistical method of confidence
intervals (CIs) [40] calculation to strengthen the reliability of our
findings on the correlation between fractal dimension, applied
voltage, and the NSDD on polluted insulators. The use of CIs
provides an interval within which the true parameter value of
a parameter (such as the slope of a regression model [41]) is
expected to fall with a specified level of confidence. For our
study, we compute 95% [40] confidence intervals to quantify the
precision of our estimates and to assess the statistical significance
of the observed relationships.

To investigate the relationship between fractal dimension, applied
voltage (V) and the NSDD, we first perform a multiple linear
regression analysis. The regression model can be written as
follows [41]:

FD = 𝛽0 + 𝛽1V + 𝛽2NSDD + 𝜖 (2)

Here 𝛽0 is the intercept, 𝛽1 is the regression coefficient for voltage,
𝛽2 is the regression coefficient for NSDD and 𝜖 is the error term.

The regression coefficients 𝛽1 and 𝛽2 represent the effect of
voltage and NSDD on the fractal dimension, respectively. To
determine the precision of these estimates, we calculate the 95%
confidence intervals for 𝛽1 and 𝛽2.

The formula for a confidence interval for a regression coefficient
𝛽𝑖 is [41]:

𝐶𝐼 = 𝛽𝑖 ± 𝑡𝛼∕2,𝑑𝑓 × 𝑆𝐸
(

𝛽𝑖

)
(3)

where 𝛽𝑖 is the estimated regression coefficient, 𝑡𝛼∕2,𝑑𝑓 is the
critical value from the t-distribution with 𝑑𝑓 degrees of freedom
at a 95% confidence level and SE(𝛽𝑖) is the standard error of the
estimated coefficient.

By calculating the confidence intervals for both 𝛽1 and 𝛽2, we
assess whether the intervals contain zero. If the interval does not
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TABLE 1 Confidence Interval calculation results for voltage and
NSDD about FD.

Voltage NSDD

Intercept 𝛽0 −218.2618 −0.3051
Slope 𝛽𝑖 220.4222 0.2793
Intercept CI [−237.1685, −199.3551] [−0.3760, −0.2342]
Slope CI [204.5962, 236.2482] [0.2202, 0.3384]
R-squared 0.9781 0.8375

contain zero, it indicates that the corresponding variable has a
statistically significant impact on the fractal dimension.

MATLAB (version 9.3.0) was used to calculate the confidence
intervals (CI) for the relationship between the fractal dimension,
applied voltage, and the NSDD. Linear regression analysis was
conducted using the regress function. The tinv function was
used to calculate the 95% confidence intervals for the regression
coefficients. The standard errors of the coefficients 𝛽0, 𝛽1 𝑎𝑛𝑑 𝛽2

were calculated using the variance-covariance matrix.

The input data for this analysis comprises three vectors: applied
voltage (V), fractal dimension (FD), and NSDD. Each vector
contains 𝑁 data points (N = 21), ensuring that all vectors are of
equal length for consistency in the regression analysis. The vec-
tors represent measurements taken under various experimental
conditions (Section 2) to capture the relationship between FD,
V, and NSDD. The results of the confidence interval calculations
for the FD, the applied voltage and the NSDD are summarized in
Table 1.

The results for the voltage indicate a strong and statistically
significant positive relationship between the FD and the applied
voltage. The slope coefficient of 220.4222 suggests that for each
unit increase in FD, the applied voltage increases by approxi-
mately 220.42 units, highlighting the significant influence of FD
on voltage. The 95% confidence interval for the slope, ranging
from 204.5962 to 236.2482, further confirms the reliability of
this relationship as the interval does not include zero, ensuring
statistical significance. In addition, the R-squared value of 0.97813
indicates that 97.81% of the variation in applied voltage can be
explained by the fractal dimension, leaving only 2.19% attributed
to other factors or random variation.

The results for the NSDD indicate a statistically significant
positive linear relationship between the FD and the NSDD, with a
slope coefficient of 0.2793. This means that for each unit increase
in FD, the NSDD increases by approximately 0.2793 units. The
95% confidence interval for the slope ranges from0.2202 to 0.3384,
confirming that the relationship is reliable and not due to random
variation, as the interval does not include zero. The model’s
R-squared value of 0.83752 suggests that approximately 83.75%
of the variation in NSDD can be explained by the variation in
FD, indicating a strong relationship between these two variables.
Notably, the negative intercepts for both voltage andNSDD reflect
the estimated values when the fractal dimension is zero, which,
though not physically meaningful, are essential for defining the

linear models, with their narrow confidence intervals confirming
the precision and statistical significance of the estimates.

Overall, the results obtained from the confidence interval calcu-
lations show a clear correlation between the FD, applied voltage,
and NSDD.

In addition to using confidence intervals to analyse the rela-
tionship between the fractal dimension (FD) of the discharge
images, the applied voltage, and the degree of pollution (NSDD),
we utilized Analysis of Variance (ANOVA) [42]. This statistical
method determines whether variations in the FD are significantly
influenced by different levels of voltage or NSDD by comparing
the variance between group means and within groups. Unlike
confidence intervals, which estimate the precision of relation-
ships, ANOVA directly tests the impact of these factors, thereby
strengthening the conclusions of our study. ANOVA was applied
to test the hypothesis that changes in the applied voltage orNSDD
levels significantly influence the fractal dimension of discharge
images. The null hypothesis (H0) and the alternative hypothesis
(H1) are stated as follows:

∙ H0: The means of the fractal dimension across different
voltage or NSDD levels are equal (no significant effect).

∙ H1: At least one group mean is different (a significant effect
exists).

The ANOVA test statistic, F, is calculated using the formula [42]:

𝐹 = 𝑀𝑆𝐵

𝑀𝑆𝑊
=

𝑆𝑆𝐵

𝑘−1

𝑆𝑆𝑊

𝑁−𝑘

=
𝑆𝑆𝐵 (𝑁 − 𝑘)

𝑆𝑆𝑊 (𝑘 − 1)
(4)

where:

∙ MSB (mean square between): Represents the variability
between group means.

∙ MSW (mean square within): Represents the variability within
each group.

∙ SSB: Sum of squares between groups

∙ SSW: Sum of squares within groups

∙ k: Number of groups

∙ N: Total number of observations

The decision to reject or accept the null hypothesis is based on
the calculated F-statistic and its corresponding p-value, which is
a statistical measure used to determine the significance of results,
indicating the probability of observing the data assuming the null
hypothesis is true [42]. If the p-value is less than the chosen
significance level α = 0.05 [43], the null hypothesis is rejected,
indicating that the means are significantly different.

In our case, the fractal dimension (FD) is the dependent variable
while the applied voltage levels and the NSDD levels are the
independent categorical variables.

By applying ANOVA, we aim to quantify the influence of voltage
and NSDD on the fractal dimension values and determine
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TABLE 2 ANOVA results for NSDD and voltage effects on fractal dimension.

Source Sum of squares Degree of freedom Mean Square F-statistics p-values

NSDD 14.6875 2 7.3437 445.1779 1.6902e-10
Voltage 2.1476 5 0.4295 26.0372 1.9765e-05
Error term 0.1650 10 0.0165 / /
Total variance 17.0000 17 / / /

TABLE 3 Typical discharge evolution until flashover [12].

Step Typical discharge phenomena

1 No obvious arc discharge at 14.2 s (Figure 4a)
2 Weak spark at 15.5 s (Figure 4b)
3 Discharge in the shape of brushes at 15.9 s

(Figure 4c)
4 Short local arc discharge at 16.3 s (Figure 4d)
5 Dense small arc discharge at 17 s (Figure 4e)
6 Bright main arc discharge 17.2 s (Figure 4f)
7 Intensive main arc discharge at 17.8 s (Figure 4g)
8 First and final arc flashover stages at 18 s

(Figure 4h,i)

whether significant differences exist between these levels.
This complements the confidence interval analysis previously
conducted and provides additional statistical evidence for the
observed relationships. A two-way analysis of variance (ANOVA)
was performed using MATLAB (version 9.3.0). The analysis
yielded an ANOVA table (Table 2), summarizing key parameters
such as the sum of squares, degrees of freedom, mean square
values, F-statistics, and p-values for each factor. The results
indicated that NSDD has a highly significant effect on the
fractal dimension (FD), as evidenced by the very small p-value
(1.69×10−10), which indicates a strong relationship between
NSDD levels and FD. Voltage also has a statistically significant
effect on FD, though its impact is smaller compared to NSDD, as
reflected in the p-value (1.98×10−5) and the sum of squares. The
error term is small, suggesting that most of the variance in FD
can be explained by NSDD and voltage.

The results of the ANOVA, including the F-statistic and p-values
presented in Table 2, confirm that ANOVA revealed strong corre-
lations between the fractal dimension (FD), applied voltage, and
NSDD, highlighting significant interactions and dependencies
between these variables.

4 Flashover Stages

Previous studies [1, 9, 12] have focused on the evolution of
discharges from their inception to flashover. Chaou et al [1]
opted for two categories namely arcing and non-arcing. In
this investigation, we adopted the same eight stages or typical
discharges that characterize the flashover as considered in an
earlier study [12]. Indeed, we present in Figure 5 and Table 3

FIGURE 5 Stages of flashover process [12].

the flashover process of the experimental model under NSDD
pollution of 0.02 g/cm2.

At about 25 kV, the first luminosities appear on both sides of the
insulator model electrodes. At about 50 kV, these luminosities
become more apparent, and at 53 kV they develop into scattered
bright spots (Figure 5a). These spots begin to coalesce into weak
sparks as the applied voltage is increased to 55 kV (Figure 5b). At
60 kV, the sparks grow into brush discharges (Figure 5c). At 63 kV,
the arc structure, consisting of tiny partial arcs, begins to appear
(Figure 5d). It is important to note that the arcs generated so far
are not regional.

A new phase describing the discharge evolution process is
observed starting at 65 kV. During this phase, some arcs begin
to fade. Conversely, two small arcs form on either side of
the electrodes. Compared to the high voltage side, the arc on
the ground side is longer. Denser and brighter arcs remain
(Figure 5e). The length of the localized arcs increases and the
total number of arcs decreases slightly after 66 kV (Figure 5f).
The localized arcs become longer, denser, and thicker at 67 kV,
eventually producing main arcs (Figure 5g). Flashover begins at
67.5 kV and occurs after the two arcs make contact, as shown in
Figure 5h,i, which represent the first and last stages of flashover,
respectively. The thickness of the flashover decreases from the
initial to the final phase of the flashover. It is noteworthy that
for each value of NSDD, the flashover process is identical to that
described above.

6 of 14 IET Science, Measurement & Technology, 2025
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5 Binarization Results on Some Discharge
Images

In this section, the main techniques of image segmentation by
simple thresholding are compared by applying them to discharge
images presented in Figure 5. This study allows selecting the
thresholding algorithm to be adopted for our investigation.

Camera images are typically colour images. A colour image
consists of three layers: red, blue, and green (RBG) [44].

Grayscale is a range of monochromatic shades from black to
white. Therefore, a grayscale image contains only shades of Gray
and no colour. Images commonly referred to as “black andwhite”
in everyday language are called grayscale images in the digital
image domain. An image with only two grayscale levels: 0 (black)
and 1 (white) is called a binary image [45].

Simple thresholding segmentation methods (binarization),
which are sensitive to noise, convert a grayscale image into a
binary image based on the intensities of the pixels that make up
the image to classify it into a particular category. If a pixel has
a value within a certain threshold range, it is assigned a value
of one; otherwise, it is assigned a value of zero, where S1 and
S2 represent the upper and lower limits of the threshold range.
Often, only S1 is given, assuming that S2 is the highest intensity
value in the image. These techniques allow binarization of the
image but with a loss of information. These losses do not have a
significant impact on the images used, as they retain their main
aspects [46].

There are global and local thresholding methods. Global thresh-
olding ones apply a single intensity threshold to the entire image
to separate it into two classes (background and object). The most
common global thresholding methods include the Otsu method
[47] and the Isodata method [48].

When the distribution of grayscale levels in an image is almost
non-uniform, distinguishing between the background and the
object of the image cannot be achieved with a single global
threshold. It is necessary to consider the grayscale level of each
pixel by assigning it a specific threshold based on the content in its
vicinity. This is the principle behind local binarization methods.
Among themost common localmethods are those of Bernsen [49]
and Niblack [50].

Table 4 summarizes the results of binarizing four discharge
images using the segmentation methods mentioned above. The
Brensen and Niblack methods were evaluated for window sizes
of 15 × 15 and 25 × 25, respectively.

The results of these four methods were compared. Based on
visual criteria, the Niblack algorithm appears to outperform
the other methods in terms of thresholded image quality and
information preservation. After a thorough visual examination of
the experimental results, the main observations are summarized
below:

➢ The Otsu and Isodata methods show their effectiveness
for discharge images. However, these two methods did not

TABLE 4 Binarization results of discharge images using segmenta-
tion methods of Otsu, Isodata, Bernsen and Niblack.

Test images

Otsu

Isodata

Bernsen

Niblack

produce truly sharp binary images, for the simple reason that
some background pixels were assigned to the object. Given
that each background pixel should take 0, and each object
pixel should take 1.

➢ With the Brensen approach, the resulting binary image
usually contains a significant amount of background noise,
especially in the background areas.

➢ The Niblackmethod solves the problem of background noise
that occurs in theBrensenmethod. Thismethod shows better
performance than the other testedmethods and works better
especially when the images have extremely small intensity
variations. For this reason, we have chosen to use theNiblack
method for image binarization.

6 Algorithm for Fractal Dimension Computation
With the Box-Counting Approach

This section describes the development of an algorithm based
on the box-counting method to calculate the fractal dimension.
The algorithm was applied to discharge images extracted from
videos recorded during tests on a high-voltage insulator model.
The validation of our algorithmwas performed using numerically
modelled discharge images by [37] aswell as the fractal dimension
of the Fibonacci word, which has a known fractal dimension.
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Among the techniques discussed by Mandelbrot [23], the box-
counting method is recognized as the most suitable for fractal
dimension (FD) estimation [51], due to its simplicity and effec-
tiveness for studying temporal signals [52] and images [53, 54].
The box-counting method is based on the concept of “covering”
the image with a rectangular coordinate grid (box). The number
of these boxes is counted to determine how many are required to
completely cover the active elements in the image under study. It
widely regarded as themost effective technique for estimating FD
[54]. For this reason, the box-counting method (BC) is one of the
most commonly used techniques [55, 56].

In this section, we developed an algorithm in the MATLAB
environment (version 9.3.0) to calculate the fractal Dimension
(FD) of discharge images using the box-counting method. This
algorithm is based on counting the number of boxes needed to
completely cover the discharges in the image, calculating the FD
atmultiple resolutions. The FD of the image is typically estimated
by the least squares method or by its average value across all
resolutions.

Firstly, we consider a colour image coded in RGB of dimension
Di*3 (Di being the initial dimension of the image to be processed).
Next, we cover the entire image with boxes of the same size e
(resolution). Then we count the number of active boxes N(e),
that is, the number of boxes needed to cover the discharges
in the image. Finally, the FD of the image is computed using
Equation (5) [57].

FDbc = lim
n→∞

log (N (e))

log (1∕e)
(5)

The various steps taken during the design of the developed
algorithm are summarised in the flowchart presented in Figure 6.
To understand the process of calculating the fractal dimension
using this algorithm, the flowchart is followed by a detailed
explanation of its steps.

The flowchart in Figure 6 follows the steps outlined below:

a. We acquire the (RGB) image of the discharge with dimen-
sions Di*3, which will be the subject of the FD calculation.

b. We convert the RGB image into a grayscale image of dimen-
sion Di, where the only colours are shades of Gray. This
conversion is done by calculating the luminance value of each
pixel, which is a weighted sum of the RGB values, this step
simplifies the image by removing colour information while
preserving intensity variations, which are crucial for further
analysis.

c. We transform the resulting grayscale image into black and
white because the box-counting algorithm we developed
requires a binary input image. This involves segmentation,
wherewe used theNiblack segmentationmethod (detailed in
Section 5). At the end of this step, the image is represented by
a binarymatrix of dimensionDi, where each element is either
1 or 0, corresponding to the segmented regions of interest and
background.

d. We fill the matrix with background elements to make it
square and have its dimension as a power of 2 (D0 = 2n◦*2n◦ )

FIGURE 6 Flowchart of the proposed box-counting algorithm.

(2n◦ represents the number of rows/columns of the obtained
square matrix). An illustrative example of this operation is
explained in Figure 7.

e. We initialize the total number N of boxes to the size of the
matrix as the first resolution. This step involves dividing the
binary matrix into smaller, equally sized square boxes, where
each box covers an area of dimension e x e (where 𝐞 is the
box size). At this initial resolution, the box size e is set to 1,
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FIGURE 7 Example of filling the background of a matrix with
dimensions 24.

FIGURE 8 Example of calculating the number of active boxes.

FIGURE 9 Illustration of a shortened matrix using the logical
summation of its elements.

meaning that each pixel is treated as an individual box and
we calculate the number of active boxes N(e) which refers
to the boxes containing at least one pixel with a value of 1.
Figure 8 illustrates this step.

f. The FD for each resolution is given by the formula:

𝐹𝐷 =
log (𝑁 (𝑒))

log (1∕𝑒)
(6)

At each iteration, we shorten the matrix from Figure 9. This
gives us new values of e and N(e). Thus, we form vectors
from the recorded values of 1/e and N(e) once all iterations are
completed.

g. Now, we consider the shortened matrix as a new resolution,
where the box dimension e is given by the formula: e =
2n◦ − n. This step marks the progression of the algorithm
to a coarser resolution, where larger boxes are used to
cover the matrix. By enlarging the box size, we aim to

FIGURE 10 Discharge shapes: (a) for x= 0 cm and h= 2 cm; (b) for
x = 2 cm and h = 2 cm; (c) for x = 3.7 cm and h = 2 cm [37].

capture the global structure of the fractal pattern at multiple
scales. The same aforementioned steps are repeated at this
new resolution. This iterative procedure continues, with the
resolution becoming progressively coarser, until the size of
the shortened matrix is strictly less than 1, meaning no more
subdivisions are possible. Through this multi-resolution
analysis, the algorithm systematically measures the fractal
dimension across different scales.

h. Eventually, we obtain two vectors containing the values of
N(e) and e for all resolutions. Using the least squaresmethod,
we calculate the slope of Equation (5). This slope represents
the fractal dimension of the image.

7 Algorithm Validation

The box-counting algorithm that we developed is validated
using a set of digitally modelled lightning discharge images in
an environment protected by a vertical lightning rod. For this
purpose, different positions (x) and heights (h) of the lightning
rod were considered [37]. The fractal dimensions of such images
were calculated using the expression (7) used byDjemai [58]. This
expression is given by the following relation:

𝐷𝑓 =
ln (𝑛𝑏 (𝑖))

ln (𝑙𝑜𝑛 (𝑖))
(7)

where nb(i) is the number of branches at the i-th step and lon(i)
is the length of branches at the i-th step.

Figure 10 shows the shapes of simulated discharges for a lightning
rod height of h = 2 cm and different values of the position x. The
discharge shapes simulated by Khelil [37] were used to compare
the fractal dimensions obtained by our box-counting algorithm
with those calculated using Formula 7. This allows testing and
validating the effectiveness of our algorithm.

Table 5 compiles the estimated fractal dimensions using formula
7 as well as those calculated by our algorithm, along with the
errors between them, for various values the of positions (x) and
heights (h) of the lightning rod. We found that the relative error
between the fractal dimensions (FD1) calculated by [37] using
formula 7 and those (FD2) calculated by our algorithm does not
exceed 2.53%.

The box-counting algorithm that we have implemented is also
examined based on a reference image whose fractal dimension
is known in advance. For this purpose, the Fibonacci word
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TABLE 5 Comparison of the FDs calculated both by formula 6 and by our algorithm for different values of the positions (x) and heights (h) of the
lightning rod.

h (cm) x (cm) FD1 FD2

Absolute error:
|FD1 − FD 2|

Relative
error (%)

0.2 0 1.1420 1.1493 0.0073 0.64
0.2 0.2 1.1590 1.1496 0.0094 0.81
0.2 0.37 1.1530 1.1329 0.0201 1.74
0.2 0.38 1.1420 1.1441 0.0021 0.18
0.2 0.38 1.1140 1.1102 0.0038 0.34
0.2 0.4 1.1300 1.1246 0.0054 0.48
0.2 0.4 1.1330 1.1409 0.0079 0.70
0.2 0.6 1.1250 1.1535 0.0285 2.53
0.2 1 1.1480 1.1636 0.0156 1.36
0.3 0 1.1620 1.1327 0.0293 2.52
0.3 0.2 1.1360 1.1220 0.0140 1.23
0.3 0.4 1.1500 1.1481 0.0019 0.16
0.3 0.6 1.1360 1.1403 0.0043 0.38
0.3 0.62 1.1360 1.1316 0.0044 0.39
0.3 0.63 1.1310 1.1352 0.0042 0.37
0.3 1 1.1420 1.1626 0.0206 1.80

FIGURE 11 Fractal curve of the Fibonacci word for 𝛼 = 90◦.

fractal shown in Figure 11 is used as a means to test and
validate the effectiveness of our algorithm. The image presented
in Figure 11 is generated using an online Fibonacci word fractal
generator (onlinemathtools.com). This tool generates fractals of
the Fibonacci word, which is a self-similar plane curve generated
from Fibonacci words. The length, height, and number of itera-
tions of the fractal selected to validate our algorithm are 900 px,
600 px, and 20 iterations, respectively.

The Hausdorff dimension of the generalized Fibonacci fractal
word for an angle α is defined by the relation [59]:

DF = 3
log ∅

log

(
1 + cos 𝛼 +

√
(1 + cos 𝛼)

2 + 1

) = 1, 6379 (8)

where ∅ = 1+
√

5

2
and 𝛼 = 90◦

The fractal dimension obtained by our proposed box-counting
algorithm is equal to 1.6083, with an error of 2.96% compared to
the theoretical dimension.

8 Results and Discussion

In this section, we use fractal theory to diagnose the surface
condition of a polluted insulator. Subsequently, the box-counting
algorithm we implemented was adapted to calculate the fractal
dimension of a set of discharge images. These images were
extracted from videos recorded during pollution flashover tests
on an experimental model.

The heatmap in Figure 12 illustrates the relationships between
NSDD, Voltage, and FD. The colour coding provides an intu-
itive interpretation; cool colours represent lower FD values,
while warm colours indicate higher values. This shows that
NSDD has a dominant effect, significantly increasing FD as
pollution levels rise, while applied voltage exerts a moder-
ate influence, causing slight increases in FD. The gradient
from lower to higher FD values highlights the combined
impact of these factors, demonstrating that FD increases
slightly with applied voltage and more substantially with
NSDD.

We investigated the influence of applied voltage (ranging from
35 to 67 kV) and NSDD values (0.02, 0.03, and 0.04 g/cm2) on
the fractal dimensions of discharge images. The resulting fractal
dimensions are presented in Figures 13 and 14.

10 of 14 IET Science, Measurement & Technology, 2025
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FIGURE 12 Heatmap of FD values for different NSDD and applied
voltage.

FIGURE 13 Variation of fractal dimension in discharge images as
function of applied voltage for different NSDD values.

FIGURE 14 Variation of the fractal dimension of discharge images
with respect to NSDD for different applied voltage values.

8.1 Study of the Fractal Dimension of Discharge
Images as a Function of Applied Voltage

Figure 13 illustrates the variation of the fractal dimension (DF)
in discharge images concerning the applied voltage, considering
different values of NSDD. The results indicate that the fractal
dimension of the discharge images generally falls within the
range of 1 to 2. This is expected since our discharge evolves on
a plane.

TABLE 6 Discrimination between no-arc and arc discharges for
NSDD 0.02, 0.03, and 0.04 g/cm2.

NSDD
(g/cm2)

Range of
applied voltage FD

Type of
discharge

0.02 50 to 60 Є [1,1583, 1,1910] No-arc
51 to 67 Є [1,2009, 1,2423] Arc

0.03 40 to 50 Є [1,1586, 1,1917] No-arc
51 to 58 Є [1,2015, 1,2430] Arc

0.04 35 to 46 Є [1,1588, 1,1920] No-arc
47 to 55 Є [1,2019, 1,2435] Arc

According to this figure, we first observe that, for a given NSDD
value, the fractal dimension (FD) increases non-linearly with
the applied voltage. However, the FD increases rapidly for the
lowest NSDD value (0.02 g/cm2), where the discharges tend to
occupymore space in the image, resulting in a significantly larger
number of boxes.

For the highest NSDD value (0.04 g/cm2), the fractal dimension
(FD) increases less rapidly due to the gradual evaporation of the
pollution layer. This evaporation is attributed to the increasing
current density on the insulating surface, where water gradually
evaporates as a result of Joule heating. This results in a slow evolu-
tion of the discharge space filling in the image. Consequently, the
FD increases gradually and progressively. Experimental observa-
tions indicate that flashover can occur when the FD approaches
the value of 1.24. At this maximum FD value, the discharges
in the image appear dense and their filling is nearly complete
(Figure 5g).

The fluctuations observed at the beginning of each graph are due
to the fact that, during the initial stages of the flashover phe-
nomenon, the discharges appear as scattered and dispersed points
(Figure 5a,b,c), which appear and disappear rapidly until some
of them join to form arc structures. The presence of these arcs
tends to attenuate or even eliminate the fluctuations, as the arcs
dominate the image compared to small bright spots. Therefore,
as shown in Table 6, we propose the discrimination between two
main types of discharges: arc-type discharges and no-arc type
discharges, based on the calculated fractal dimensions.

Based on the discrimination presented in the previous table,
we have concluded that we can detect the presence of arc type
electrical discharges from recorded images by calculating their
fractal dimensions (FD). Thus, if the FD of the discharge image
is strictly less than 1.2, the discharge is of the ‘no-arc’ type.
Conversely, if it is greater than this value, the discharge is of the
‘arc’ type.

The distinction between “arc” and “no-arc” discharges offers a
non-invasive monitoring tool for insulators. This approach can
be integrated into automated systems, enabling early detection
of dangerous discharges, optimizingmaintenance schedules, and
reducing costs by intervening only when the fractal dimension
(FD) reaches a critical threshold. It is particularly useful for
remote monitoring, especially in hard-to-access areas, and could
contribute to the development of safety standards based on FD
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for more effective management of risks associated with insulator
pollution.

8.2 Study of the Fractal Dimension of Discharge
Images as a Function of NSDD

Figure 14 depicts the evolution of the fractal dimension (FD) of
discharge images as a function of NSDD for different applied
voltages ranged from 50 kV to 55 kV.

According to Figure 14, we observe that the fractal dimension
(DF) increases non-linearly with the value of the NSDD for each
applied voltage. Such variation indicates an increase in discharge
activity on the surface of the insulator, which is reflected in a
denser filling of the discharges in the image. For all applied
voltage values, it is observed that the increase in FD slows down
(in the order of 0.021) between the highest NSDD values, namely
0.03 and 0.04 g/cm2. Thus, we observe that the variation in FD
from the lowest NSDD (0.02 g/cm2) to the value (0.03 g/cm2)
is relatively significant (in the order of 0.039). Therefore, FD
quantifies the evolution of NSDD in a remarkable way.

The correlation between fractal dimension (FD) and NSDD offers
valuable insights for real-time monitoring of insulator pollution
levels without the need for invasive methods or direct measure-
ments. This approach allows pollution levels to be estimated
from images of energized insulators, providing early warning
to maintenance teams before critical thresholds are reached. By
incorporating FD calculations into monitoring systems, cleaning
or replacement actions can be planned more effectively based
on actual data, reducing maintenance costs and extending the
lifespan of insulators by intervening only when FD indicates
dangerous levels of pollution. These findings contribute to the
development of standards for assessing the safety of insulators in
polluted environments and optimizing interventions. However,
it is important to acknowledge some limitations, such as the
reliance on image quality and the need for further validation in
diverse different field conditions. Future research could explore
the integration of additional variables, such as environmental
factors, to enhance the accuracy of pollution assessments and
improve the robustness of the monitoring system. This non-
invasive, data-driven approach based on FD represents a valuable
tool for improving insulator management and maintenance
practices, contributing to safer and more efficient electrical
systems.

8.3 Practical Implementation Considerations

We acknowledge the importance of addressing the practical
implementation of the proposed methodology in real-world
scenarios. To integrate this approach into existing monitoring
systems, several hardware and software components are required.
High-resolution cameras that are capable of capturing discharge
activity on insulators under varying lighting and environmental
conditions form the foundational hardware requirement. For
real-time processing, edge computing devices such as NVIDIA
Jetson modules can be employed to run the fractal dimension
calculation algorithm. On the software side, platforms such as
MATLAB or Python, combined with image processing libraries

like OpenCV, facilitate the analysis and computation of fractal
dimensions. While the proposed method offers cost-effective
monitoring through the use of non-invasive techniques, initial
investments in hardware, software licensing, and system cal-
ibration must be considered. Despite these initial costs, the
long-term benefits, including reduced maintenance costs, early
hazard detection, and enhanced system reliability, justify the
implementation of this approach in industrial settings. Future
work could explore streamlining the algorithm for integration
into fully automated monitoring systems.

8.4 Broader Implications and Future Directions

While the proposed methodology focuses on the analysis of dis-
charge activity in contaminated insulator models, it has broader
implications. For instance, the fractal geometry approach could
be adapted to diagnose other materials or systems where surface
irregularities affect performance, such as in corrosion detection
or quality control in manufacturing. In addition, this work lays
the groundwork for extending fractal-based diagnostic meth-
ods to insulators exposed to varied environmental conditions
and to different types of electrical equipment. Future research
could explore the integration of machine learning techniques to
enhance classification accuracy and scalability. Thus, this study
not only advances the understanding of discharge phenomena
but also opens new avenues for interdisciplinary applications and
innovations in diagnostic technologies.

9 Conclusion

This paper presents a novel methodology for analysing dis-
charge activity and monitoring flashovers in uniformly polluted
insulator models, leveraging fractal geometry to characterize
discharge images. The proposed algorithm calculates the fractal
dimension (FD) of discharge images using the box-counting
method. The approach involves binarizing RGB images with the
Niblackmethod, transformingmatrices into squarematrices, and
calculating FDs over multiple resolutions.

The algorithm was validated by comparing its results to estab-
lished benchmarks, showing a maximum relative error below
3%. Applied to discharge images, the FD values ranged from 1.15
to 1.25, increasing with applied voltage and non-soluble deposit
density (NSDD). Notably, discharges were classified as “no-arc”
for FD values below 1.2 and “arc” otherwise, demonstrating the
reliability of FD as a diagnostic metric.

This study confirms that fractal analysis of discharge images
offers a non-invasive, real-time method for monitoring insulator
pollution levels. By correlating FD with NSDD, this approach
facilitates early hazard detection, reducesmaintenance costs, and
supports informed decision-making for cleaning or replacement
actions. However, certain limitations of the proposed method
should be acknowledged. The accuracy of FD calculations can be
affected by image quality, with noise or low resolution potentially
affecting the binarization process and FD estimation. In
addition, varying lighting conditions might impact the visibility
of discharge features, emphasizing the need for validation under
different lighting scenarios. Furthermore, calibration is essential
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when applying the method to different types of insulators
or environmental conditions to ensure its robustness. These
findings contribute to developing safety standards and optimize
maintenance strategies, particularly in remote or challenging
environments. Furthermore, integrating this method into
existing monitoring systems requires high-resolution cameras,
edge computing devices, and image processing platforms, which,
despite their initial cost, offer significant long-term benefits.

These findings not only contribute to improve maintenance
strategies for electrical insulators but also open the door to
broader applications of fractal geometry in diagnostics and mon-
itoring in various fields, inspiring future research and practical
advances.
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