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Abstract

Mathematical models can help to describe complex biological sys-
tems and offer insights about mechanisms via the refinement of gov-
erning equations. In this study we demonstrate the synthesis of a
mechanistic model of neonatal murine sepsis using genetic program-
ming (GP). We leverage GP to discover candidate structures for ordi-
nary differential equations (ODEs) consistent with measured cytokine
trajectories, while embedding domain knowledge as scaffolding to con-
strain the search space. The approach balances expressivity with inter-
pretability, generating ODE candidates that reflect plausible biological
interactions. We further incorporate Gaussian process regression to
estimate unknown initial conditions robustly from sparse time series.
The resulting pipeline recovers models that capture key features of cy-
tokine dynamics in pathogen-infected and control cohorts, and yields
interpretable mechanisms suitable for onward experimental validation
and refinement.

1 Introduction

Sepsis is defined as a dysregulated host response to an infection [I2]. Due
to the nature of sepsis as a syndrome, with the activation of a variety of
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Figure 1: Simple flowchart showcasing idea behind genetic program.

biological systems, sepsis cannot be truly understood through one system
alone, at a particular time point. The complexity of sepsis arises from the
interplay between a variety of components and its heterogeneity [14]. Mech-
anistic models are often used to help describe complex systems in biology. A
large proportion of these mechanistic models relies upon systems of ordinary
differential equations (ODEs).

Due to the scale of biological networks, when creating models, it is im-
portant to consider the scope within which the model will provide insights
and address the pertinent questions. However, this does rely on modellers
having a thorough understanding of the underlying mechanisms as well as
any kinetic parameters [11]. This often leads modellers to generate complex
equations to accurately represent the system, or rely on standard proto-
typical systems of equations. Nonetheless, it is difficult to strike a balance
between the right model complexity and abstraction.

Genetic programs (GPs) are a class of evolutionary algorithms that al-
low us to generate and evolve expressions. As an extension to Genetic
Algorithms: GP starts with an initial population of individuals, and then
through the use of genetic operators known as crossover and mutation, the
GP evolves the population based upon an objective function and fitness value
[1]. Traditionally, GPs represent individuals as symbolic trees comprised of
primitive functions, such as arithmetic operations, as well as terminal sets,
such as numeric constants, and inputs [9]. This representation may, there-
fore, be adopted to encode ODE models.

The inference of an ODE model via the use of GP has been a growing
area of research. In [3], an approach was proposed where a given individ-
ual in the GP consists of a set of trees, where fitness is evaluated through
numerical integration and parameters through the embedding of a genetic
algorithm. In [6], symbolic regression is used to derive an initial population,
aiming to reduce computational complexity. [7] showed how a GP can be
integrated with least mean square solution to identify ODEs, and illustrated
the approach on different problems. In most cases, the existing approaches
are general, and may not be able to exploit the knowledge modellers have.
Furthermore, they have not been used in the context of sepsis. Addressing
these gaps, our core contributions in this paper are:

o We show how a function and terminal set can be defined from expected
model structures, and provide a scaffolding for ODEs generated via a
GP.



o We illustrate the use of Gaussian process regression for identifying
unknown initial conditions.

e We demonstrate the proposed approach with experimental data col-
lected from pathogen-infected and non-infected control group labora-
tory mice.

2 Proposed Pipeline

In a typical mechanistic modelling approach, modellers would propose a
structure based on assumptions and relevant model parameters. A param-
eter optimisation stage would follow to locate the best fit to the data. Our
proposed framework in this paper is to instead ask the modellers to define
function and terminal sets, within a scaffolding ODE, and then evolve sys-
tems of equations and associated parameters. Solving these evolved ODEs
would provide us with a temporal realisation of the system, and thus enable
us to estimate the fitness. In Figure [I, we show a simplistic view of the
proposed pipeline from the initial data set to the creation of the GP and we
will discuss this further in the following section.

2.1 Modeller-defined Scaffolding

Blood was taken from neonatal mice, that were either given a placebo or
murine cytomegalovirus (MCMYV) infection on postnatal day 1 [2,[8]. A total
of 30 samples were taken across day 2, 7, 14, 21 post-infection: three samples
per condition for day 2 post-infection, and four samples per condition for the
remaining time points. Collected blood samples are then used in microarray
analysis, through which we identify the gene expression patterns in a given
DNA sample. Note, one sample from day 2 was identified as an outlier and
was thus removed from further analysis.

Following microarray analysis, and filtering, we perform differential gene
analysis to return 3,898 genes that are deemed to have a significant differ-
ence across the time series and between conditions. Although this process
has reduced the size of the dataset, there is still multiple time points and
replicates. Due to this, we perform PCA on the dataset with the intention
of reducing the overall dimensionality of the data. Informed by the resulting
PCA scree plot, we focus on the first two principal components only.

We observe how the first principal component (PC1) generally captures
the temporal aspect of the data. The second component (PC2) captures
a strong separation between the two conditions. By looking towards the
genes which have the strongest influence on each component, i.e. those
with the greatest loading values, we can start to explore the corresponding
biological pathways (BPs). From PCI1, we return BPs that correspond to
cell maturation and activation, along with cell growth. For PC2, we return
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Figure 2: Plots showcasing the change in fitness measure of the outputted
ODE model at each iteration for three chosen runs. Note the 25th and 75th
percentile has been added to each plot, and we also limit iterations to 3000.

BPs corresponding to activation and regulation of the immune response, as
well as cell killing.

The nature of the BPs highlighted by PCA allow us to assume that PC1
is related to cell development. Hence, we will describe PC1 with a time-
dependent variable u = u(t). Similarly, we note that PC2 is related to the
immune response, and we will describe it with a time-dependent variable
v = v(t). Additionally, we introduce a variable w = w(t) which acts as a
link between these two components. Although we do not have information
on w, we currently assume that w represents the infection. The introduction
of this third variable is argued from a biological basis, currently it allows us
to illustrate a more general framework, however this can be later revisited.

Given this information, we can start building the framework for our ODE
model.
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This framework includes two unknown functional forms f and g, that
we wish the genetic program to identify. Using the infected PCA data, we
are able to return two functions, which when implemented into the ODE
model produces lines that fit the shape of the data and potentially capture
interactions between the two variables. Note that, as we are interested in
the shape of the data, more so than the numerical values, we bound the data
assuming that the fitted curves cannot go below the given data. To enforce
this, and ensure biological relevance, we add on the minimum value of the
data to ensure that u = 0 or v = 0 are not crossed by the trajectory.

Equation has two unknown parameters o and 8. We set o = 0.05
and 8 = 0.001 based on analysis on a range of values. Also, as our data
starts from day 2, the initial conditions are not known. To identify a reason-
able approximation of these, we fit a Gaussian process regression model in



GPyTorch [5] with Spectral Mixture Kernel and a learned constant mean,
trained with an Adam optimiser. Tracing back the mean predictions to day
0, we estimate u(0) = 22.05, v(0) = 11.42, w(0) = 11.42. Note, due to
the lack of data for w, currently the same initial condition applied to v was
arbitrarily selected for w as well. The basis of this choice stemmed from the
provided dependency of w on v.

2.2 Genetic Program

We make use of the DEAP package [4] throughout the creation of the GP.
Using functions provided, we can express our equations in the forms of
tress. Where we define the function set to consist of the following operations
{+,—,n,%,"}. Note that (—) can refer to both subtraction as well as the
unary minus operator. Also note for division we prevent division by zero.
The terminal set consists of the variables u and v when working with function
f. For function g, the terminal set consists of variables u, v and w. For both
functions, the terminal set also consists of random integer values of range
[1,10].

Two genetic operators are used during the GP process, these are called
crossover and mutation. As we are handling a pair of equations simulta-
neously, when returning a parent to use by the operators, we are in fact
referring to a pair of equations. Parents are selected using roulette wheel
selection, where we have adapted the approach to apply to a minimisation
problem. Following selection, a crossover rate of 0.8 and a mutation rate of
0.2 is used. Note, due to the likelihood of selected parents encountering a
death penalty due to failing checks, we repeat both crossover and mutation
a maximum of 5 times.

We define the fitness measure as the root-mean-square error (RMSE)
between the observed data and the simulated response from the generated
equations. To return this measure we first use the SymPy package [10] to
simplify the returned ODE’s. We then use the Scipy package [13] and the
‘odeint’ function to solve across the time series, making use of the LSODA
algorithm. We incorporate the use of both static and death penalty to avoid
ODE models that either raise errors during this process or produce results
that violate biological relevance. This allows us to derive a set of responses
for the four days for which we have observed data and subsequently compute
the RMSE. As we are handling a pair of equations, this does result in the
production of two separate RMSE values. Currently, we take the average of
these two values to represent the fitness of the solution. Our overall aim of
the GP is to minimise this average fitness value.

Prior to the GP we create an initial dataset consisting of 10,000 unique
pairs of equations, representing f(u,v) and g(u, v, w). Checks are performed
to ensure returned equations are mathematically sound and can be simpli-
fied. We then calculate the resulting average RMSE, rank by minimising



Table 1: Parameter settings.

Parameter Value
Population size 100
Number of generations 3500
Crossover rate 0.8
Mutation rate 0.2
Maximum depth 10

Maximum length of equation 200

error, and retain the top 100 pairs of equations to be provided to the GP.
The GP undergoes 3500 iterations before outputting the best performing
ODE model. All parameters used in the GP are summarised in Table

3 Results and Discussion

We performed 20 repeats of the described GP. Out of these only 5 did not
reach the average 3000 iterations (instead reaching between 2000 and 3000)
and were removed from analysis. Runs were then sorted based on the final
fitness measure of the outputted ODE model. In Figure [2] we focus on the
worst, average and best performing runs, plotting their fitness measure over
time. These plots illustrate how regardless of final performance, the fitness
measure does decrease over time, showcasing how the GP is evolving and
optimising the provided framework to better represent the data.

Figure [3| shows the solutions to the ODE equations returned for the best
performing run (Figure 2c¢) against the true data. Here we see that PC1,
known as u, representing the development of cells, produces a smooth line
that fits closely to the true data. PC2, known as v, which represents the
immune response, struggles slightly to reach the points of day 7 and day
14. However, the qualitative behaviour is captured. Considering the limited
dataset, consisting of only four time points, our work shows potential in the
application of GP to mechanistic modelling. Although more time points
would naturally assist the GP in identifying the temporal dynamics more
accurately, our current work showcases the natural optimising ability present
in GP.

These results show that our approach can derive models that accurately
capture the qualitative dynamics underlying the PCA output, but they don’t
necessarily capture the data quantitatively. The potential of our GP lays
in its ability to capture the key underlying mechanisms, facilitating the
exploratory phase of modelling. In the current form, the evolutionary search
only works when provided an initial framework. So, although we do not need
complete biological understanding in deriving the equations, the algorithm
does still need some basic understanding to work from. This reinforces the
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Figure 3: Plotted outputs of the best-performing run as shown in Figure

2c. The top plot refers to variable u, PC1, whilst the bottom plot refers to
variable v, PC2.

notion that GPs cannot simply replace modellers. Rather, we envision this
to be an integration of the traditional modeller role into all steps of the
genetic programming.

This work focussed on developing a framework for mechanistic learning
of the dynamics following infection in the neonate mice. The uninfected tra-
jectory has informed the construction of the model framework, allowing us
(the modellers) to build hypotheses in the model equations that can explain
the divergent infected trajectories. Our next work will look to explicitly in-
corporate the uninfected data into the GP, to derive a new set of ODEs for
this new scenario. This is where our fundamental belief of the importance
that modellers have in the GP comes into play. Our GP would be able to



capture the divergent trajectories, however, it will then be up to modellers
to analyse the outputs and identify the interactions.

4 CONCLUSION

In this paper, we introduce a novel approach to modelling for sepsis that
builds upon the techniques in place for GP. We showcase the potential of this
approach to overcome the limitations in place by modellers. One limitation
being the thorough understanding of biological systems required. Another
being the complexity required to represent these systems effectively and the
difficulty in interpretation that modellers can face. This can lead modellers
to rely on a system of standard prototypical equations. Through the creation
of a GP we showcase the potential that this work can have in understanding
the underlying mechanisms surrounding given data. However, these results
would mean nothing without the use of modellers to analyse and interpret
the interactions between variables. Modellers are also needed to establish
the key initial framework from which the genetic program depends on. Our
approach cannot simply replace modellers, as without this scaffolding GPs
may produce good fits that do not make any mechanistic sense. With the
complex nature of sepsis, the ability to truly capture those underlying me-
chanics is key. Therefore there must be a logistic effort between modellers
and GP to help build ODE models to effectively map the trajectory of sepsis.
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