Results in Physics 73 (2025) 108240

Contents lists available at ScienceDirect

Results in Physics

FI. SEVIER

journal homepage: www.elsevier.com/locate/rinp

Check for

Non-Fourier heat transfer analysis of sandwich conical shells with GPLs | e
reinforced face sheets and porous core under moving heat flux

Yasin Heydarpour ®, Parviz Malekzadeh *-', Hanxing Zhu b"®, Morteza Mohammadzaheri ¢

@ Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 7516913798, Iran
b School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
¢ Engineering Department, German University of Technology, Halban 130, Oman

ARTICLE INFO ABSTRACT

Keywords:

Sandwich conical shells
Nanocomposite face sheets
Porous core

Non-Fourier heat transfer
Moving heat flux
Graphene platelets

In this work, as a first attempt, the thermal behavior of nanocomposite sandwich conical shells under internal
axisymmetric moving heat flux based on the non-Fourier heat transfer is investigated. In order to capture the
influences of the finite heat wave speed, the hyperbolic heat transfer equation is used. The face sheets of the
nanocomposite sandwich shell are made of graphene platelets (GPLs) reinforced polymer matrix. The core layer
is fabricated from a GPLs reinforced porous composite material. In both core layer and face sheets, GPLs have
uniform distribution and random orientation. Through a two-dimensional layerwise approach, the differential
quadrature method (DQM) and the nonuniform rational basis spline (NURBS) curves based multi-step technique
are employed to discretize the governing equations in the spatial and temporal domains, respectively. The
performance of the present method is demonstrated by performing convergence study and comparing the results
in the limit cases with those reported in literature. Following the approach validation, parametric studies are
carried out to elucidate the influences of heat flux speed, porosity distribution and amounts, GPLs weight
fractions and the shell-thickness-to-length ratio on the thermal responses of the sandwich conical shells under
investigation. The results show that the speed of moving heat flux and GPLs weight fractions have significant
effects on the thermal responses of the shells. But the porosity distribution and amounts have less effect on the
thermal behavior of the shell. In addition, the increase of the heat flux speed decreases the traveled distance by
the heat wave front and the increase of the weight fraction of GPLs increases the heat wave speed.

Introduction

Truncated conical and cylindrical shells are widely used in aerospace
engineering, marine engineering, civil and mechanical engineering, for
example, in aircraft propulsion systems, underwater vehicles, space-
craft, missiles and reactors [1-9]. In most cases, these structural ele-
ments must withstand high temperature changes and mechanical stress
while minimizing their weight and maximizing their structural perfor-
mance. On the other hand, the increasing demand for high-performance
composites has aroused great interest in characteristics such as high
strength and stiffness to weight ratios, high fatigue life, low cost, tailor-
made properties, for use in modern industries like aerospace. Heat
transfer is fundamental in many industrial applications of composite
shells. In such applications, accurately predicting the thermal behavior
of the truncated conical shells made of advanced composites under
varying temperature conditions is crucial for design and manufacturing
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[10].

In recent years, advancements in manufacturing technologies,
especially the creation of 3D printing [11], have allowed the construc-
tion of advanced new composite materials by using nanofillers. These
advancements have improved thin-walled structures so as to survive
harsh conditions. Carbon nanotubes (CNTs), graphene and its de-
rivatives are the most widely used nanofillers to fabricate advanced
polymer-based nanocomposites in recent years [12-19]. In comparison
with CNTs, graphene is a extensively available nanomaterial with rela-
tively low cost and excellent mechanical properties [20]. Also, due to
their larger contacting surface area and the stronger bonding with the
matrix, GPLs provide more reinforcing effects than CNTs [21,22]. These
interesting properties have made the graphene one of the most prom-
ising nano-reinforcement material to be used to produce high perfor-
mance advanced composite materials [23,24]. On the other hand, the
existence of pores in composite materials, either purposeful or

E-mail addresses: malekzadeh@pgu.ac.ir, p_malekz@yahoo.com (P. Malekzadeh), zhuh3@cardiff.ac.uk (H. Zhu).

https://doi.org/10.1016/j.rinp.2025.108240

Received 30 January 2025; Received in revised form 23 March 2025; Accepted 29 March 2025

Available online 5 April 2025

2211-3797/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-3209-6831
https://orcid.org/0000-0002-3209-6831
mailto:malekzadeh@pgu.ac.ir
mailto:p_malekz@yahoo.com
mailto:zhuh3@cardiff.ac.uk
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2025.108240
https://doi.org/10.1016/j.rinp.2025.108240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2025.108240&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Heydarpour et al.

Y -
! \
. : . [l

Results in Physics 73 (2025) 108240

1 ] \ 4l
: a1 =-cpus
Do )
; \ \ I I I
! | i A I | = Polymer matrix
/ I \ N

TN |

(@)

unintended, lowers the overall stiffness of the constructed composite
structure. However, adding small amounts of GPLs to the base material,
remarkably compensates this drop in stiffness [25-37]. In addition to
their stiffness, GPLs can also effectively increase the thermal conduc-
tivity of reinforced nanocomposites [38].

Expectedly, the heat conduction analysis of multi-layer and com-
posite materials is more complicated than that of one-layer homoge-
neous isotropic media [39-42]. In spite of its merits, analytical solutions
are limited to problems with relatively simple geometries and boundary
conditions. Consequently, to handle the complicated heat transfer
problems of nanocomposite structures, the use of efficient and accurate
numerical methods become essential for their in-depth study.

There are some research works concerning the heat transfer analysis
of cylindrical and conical shells made of different materials. Here, some
recent ones are reviewed briefly. Amiri Delouei et al. [43] employed a
combination of Laplace transform, Fourier transform, and meromorphic
functions to present an analytical solution for the two-dimensional
axisymmetric conduction heat transfer analysis of a functionally
graded (FG) cylindrical shells. Tokovyy et al. [44] proposed an analyt-
ical technique to analyze the two-dimensional steady state temperature
distributions in laminated hollow cylinders composed of layers with
different materials. In another work, Tokovyy [45] analytically esti-
mated two-dimensional steady state temperature distributions in a
radially FG cylindrical shell. In both these works, it was assumed that the
temperature varies along the radial and circumferential directions only.

Norouzi and Rahamani [46,47] developed analytical solutions for
the two-dimensional heat conduction transfer analysis of anisotropic
conical shells by employing appropriate transformation and the sepa-
ration of variables method. Erfan Manesh et al. [48,49] analytically
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Fig. 1. The geometry and coordinate system of multilayer GPLRC truncated conical shell.

investigated two-dimensional steady and unsteady conduction heat
transfer in heterogeneous anisotropic composite conical shells with
temperature-dependent thermal conductivities. Heydarpour and Agh-
dam [50] introduced a new multistep technique based on the NURBS
curves to analyze the nonlinear transient heat transfer of functionally
graded truncated cone under conventional thermal boundary condi-
tions. In another study, Heydarpour and Malekzadeh [51] numerically
performed the three-dimensional heat transfer analysis of multilayer
functionally graded GPLs reinforced composite truncated conical shells
subjected to stationary thermal boundary conditions based on non-
Fourier conduction heat transfer law. Huang et al. [52] established a
heat transfer model for a multilayer composite cylinder with porous
media in the context of Fourier’s law and validated the proposed model
by designing an experiment. Duan et al. [53], through the use of
simplifying assumptions and reduction of three-dimensional heat
transfer equation to a one-dimensional one, analyzed the transient heat
conduction within a conical probe surrounded by a semi-infinite thermal
medium. Then, they used Laplace transform and solved the resulting
ordinary differential equation. Amiri Delouei et al. [54] presented a two-
dimensional analytical solution to estimate the temperature distribution
in a functionally graded conical shell. Mohammadlou et al. [55] studied
the steady state axisymmetric thermoelastic responses of a thin-walled
conical shell subjected to uniform heat flow along its side surfaces.
They assumed there are thermal insulation at both ends of shell and
utilized the Galerkin finite element method to solve the semi-coupled
steady state thermoelastic equations.

The literature review indicates that the thermal analysis of the
sandwich truncated conical shells with GPLs reinforced face sheets
(GPLR-FS) and porous core (GPLR-PC) subjected to moving heat flux is
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not investigated yet. These types of thermal problems have both aca-
demic value and industrial applications. On the other hand, it is well
known that the classical Fourier heat conduction law cannot capture the
effect of finite value of heat wave speed in thermal problems with sud-
denly applied thermal loadings. Hence, it cannot predict the conduction
heat wave propagation and also an accurate estimation of the temper-
ature in the structures under such a thermal loadings. Therefore, this
study aims to undertake a comprehensive analysis of the non-Fourier
thermal characteristics of these types of advanced structures under
complex thermal conditions. For this purpose, a layerwise approach is
employed to derive the non-Fourier heat conduction equations of each
layer of the sandwich truncated conical shells. The thermal compati-
bility conditions at the interface of the adjacent layers are implemented
exactly. Also, the external boundary conditions are satisfied at the inner
and outer surfaces together with the ends of the shell. With the proposed
numerical method, the strong form of these conditions at the boundaries
and the layer interfaces and the non-Fourier heat conduction equations
at the interior points of the shell layers are discretized. The validity of
the proposed approach is demonstrated through its convergence
behavior and comparison with existing solutions in the limit cases. Then,
the effects of the heat flux speed, porosity distribution and amounts,
GPLs weight fractions and the shell-thickness-to-length ratio on the
thermal responses of the sandwich truncated conical shells with GPLs
reinforced face sheets and porous core are presented and discussed.

Mathematical simulation

The sandwich conical shell under investigation has three perfectly
bonded co-axial layers and is shown in Fig. 1. As illustrated in this figure,
the core layer is made of a porous material, which is reinforced by GPLs.
Also, the face sheets are built from a GPLs reinforced polymer matrix. In
each layer, the GPLs are continuously and evenly distributed throughout
its thickness. A coordinate system r-6-z 6 is used to signify the material
points of the shell (see Fig. 1 (a) and (b)). The geometric parameters of
the shell, including its length L, smallest inner radius R;, largest inner
radius R,, the semi-apex angle f, mean radius R,, (at the section z =
0.5Lcosp) and layer thickness h, are shown in Fig. 1 (a). The formulation
for the estimation of the effective material properties and the funda-
mental equations based on the non-Fourier heat conduction are pre-
sented in the next section.

The estimation of shell layers material properties

Due to low variation of the mass density and specific heat capacity of
the nanocomposite materials resulted from reinforcing an isotropic
polymer matrix by GPLs, their equivalent values are evaluated using the
rule of mixture. Accordingly, the equivalent mass density p and specific
heat capacity c of the face sheets are formulated as [51]

P = PmVm + PepVorL (€)]
€ = CnVm+CcaprVarr 2

where Vgp, and V,, represent the GPLs and matrix volume fractions of
the shell layer, respectively, which obey the relation Vgp, + Vip = 1.
Thus, the subscripts m and GPL denote the matrix and GPLs. In order to
simplify the realization and calculation of the GPLs volume fraction, it is
expressed in terms of its weight fraction Wgpy, as

WGPL

3
Werr + (Pgpr/pm)(1 — Wep) 3

VGPL =
However, the effective thermal conductivity is estimated using the
relation introduced by Chu et al. [56,57]

k  2/3(Vep, —1/y)
km H(y) +1/(kgpr/km — 1)

+1 “4)
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where y is a fitting parameter and y = agpr/tgpr in which agpr, bgpr and
tep, are the GPLs length, width and thickness, respectively. In addition,
the function H(y) has the following definition [56,57]

7ln(;(+\/)(271>)(7 1
T

The existence of porosities in the core layer affects its material
properties. The porosity density changes in the thickness direction have
been more reported than those in other directions in the literature. In
this study, the same FG porosity distribution patterns that have been
usually used in the previous researches are considered. Accordingly, the
effective thermal conductivity (k), specific heat capacity (c) and density
(p) of the porous core are approximated as

k(r) = k1 —E(r,e0)], c(r) = cc[1—E(reo)],
E(r,em)] (6a-c).

where k¢, c. and p, are the effective thermal conductivity, specific
heat capacity and density of the GPLR core without porosity (a perfect
one), respectively. Also, the porosity functions E(z, ey) for each of the
three types of porosity distribution patterns are as follows [35,37].

Type 1: E(z,e,) = e,cos[z(0.5—T7)]

Type 2: E(z,e,) = 1 —e4cos[z(0.5 —7)]

Type 3: E(2,e,) = e,cos(0.577) (7a-c).

H(y) )

p(r) = p[l -

where a =0, mand 7 = {r;ﬁ;)}’ which indicates 0 <7 < 1. Also,

e,(a = 0, m) is the porosity coefficient and are determined as [35,37]

e =1 —Lmin (8)
Pec

where p,;, is the minimum value of the GPLR porous core density. ey
can be related to eq as

en=1—+/1—¢ 9

In this work, to perform rational studies with different porosity distri-
bution patterns, the same values for the masses of the GPLR porous cores
are considered.

Non-Fourier heat conduction equations

Neglecting the internal heat generation source and based on the
hyperbolic heat transfer, the following equations present the constitu-
tive transfer equation and the balance of energy principle for each
nanocomposite layer of the sandwich shell respectively [51]

T

-
todl 4 G = —kVT (10a)
ot
oT -
reg= V-4 (10b)

where T = T(r, 2, t) ] represents the temperature, ¢ (r,2,t) the heat flux
vector at an arbitrary material point (r,0,2), t time, 7o the relaxation
time and V the three-dimensional gradient vector in the cylindrical
coordinate system, respectively. Using Eq. (10a) to remove ¢ from Eq.
(10b), the result becomes

10/ ,0T\ 0 [, 0T oT T
?5(”‘5) *&("a) =/ C(&*%?) (1)
A circumferentially uniform moving ring heat flux is assumed to be
applied on the inner surface of the sandwich shell.
Atr =R;: —k%—z =qo6(z — 20(t)) (12).
where go and 2, are the strength and the position of the moving heat
flux along the z-axis, respectively. Also, the symbol §( ) represents the
Dirac delta function. In this study, without loss of the generality of the
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Fig. 2. The physical and computational domains.

solution technique, it is assumed that the heat flux moves with a con-
stant speed u along the z-axis and enters the shell at time t = 0. There-
fore, it can be written as 2o (t) = ut in Eq. (12).

Along the shell outer surface, the convection heat transfer is assumed
to take place. Therefore.

Atr =Ry —k% =h (T - Ts) (13).

where T, and h. are the shell outer media temperature and the
convection heat transfer coefficient, respectively.

Without any restriction due to the formulation and solution tech-
nique, the isolation thermal conditions are assumed on the ends of the
shell surfaces (i.e., 2 = 0 and z = Lcosp).

Atz =0and z = Leosp: %L = 0 (14a,b).

Also, the initial thermal conditions are assumed to be.

= 0(15a,b).
=0

In addition to the mentioned thermal boundary conditions on the
shell surfaces which are due to environmental effects, the following
thermal compatibility conditions at the interface of two adjacent layers
of the truncated conical sandwich shells must be fulfilled.

T(RY.t) = T(R™,¢ ), k2

i

T(r7 z, 0) = TOa ()T(:)‘f,t)

— kT
r:Rf)

fore=1, 2, 3 (16a,

r=RV
i

b).
where e = 1, 2 and 3 signify the inner face sheet, the core layer and
the outer face sheet layer of the sandwich shell, respectively.

Solution technique

Due to complicated shell geometry and the non-Fourier heat transfer
equation (11) subjected to the prescribed boundary and compatibility
thermal conditions, it is very difficult to obtain the corresponding so-
lution analytically. Therefore, in this work, a combined numerical
technique is employed to get the solution, which is briefly reviewed in
the next subsection. The DQM based on the direct projection of the
Heaviside function [58] is utilized to discretize the governing equations
in the spatial domain (detailed in subsections 3.1). Then, the resulting
system of differential equations are solved in time domain using NURBS
based on a multi-step technique [59,60], details of which are presented

in subsections 3.2.
Spatial discretization: DQM-Heaviside function

To present a computationally efficient and accurate solution tech-
nique, the DQM based on the direct projection of the Heaviside function
together with the NURBS based multi-step method technique is
employed to obtain the temperature distribution in the sandwich conical
shell with nanocomposite face sheets and pros core [58-60]. Accord-
ingly, the governing equations are discretized in the spatial domain and
transformed into time domain as a system of initial value differential
equations.

Since the computational domain of the DQM is a rectangular one, a
transformation between the physical domain (i.e., the skewed cross
section of the nanocomposite shell layer) and the computational domain
is required. This can be easily done by employing the following geo-
metric relations that map the skewed quadrilateral cross-section of the
shell into a rectangular one

r =Ry + & —nsinf, z = ncosp a7)

where ¢ and , denote the variables of coordinate system in the compu-
tational domain (see Fig. 2). Now, each of the transformed face sheets and
the core layers are discretized into N; and N,, grid points in the {— and
n—directions, respectively. According to the DQM, the resulting non-
Fourier heat conduction (11) is employed and discretized at the domain
grid points in each layer. In addition, the external boundary conditions and
interface compatibility conditions are discretized exactly at the corre-
sponding boundary and interface grid points. To reduce the paper length,
the DQM discretization procedure is only applied to Eq. (11) and after that

it takes the following form  ky(1+tan?g) S Bo T +

okij kij N N,
(1 + tan2ﬁ) (Tg) i + 7 e +5ifn,»sin/;] Do 1Agnij + kijsec2/3 Z""ZIBJ'.’"T,-,,
i
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N: N,

+secﬂtanﬂ< ) 2A7n7kin+2kytanﬂsecﬂ Z > ALAL T
j n=1 m=1 n=1
dT; d*T;
pycg<dt + Toj dt;’) 18)

where Aj and Bfi(a = &, 1) represent the first and second-order DQM
weighting coefficients of the a—direction, respectively [51]. After
completing the DQM discretization procedure of Eq. (11) in all the three
sandwich shell layers and the related boundary and interfacial
compatibility conditions, one gets a system of initial value differential
equations, which can be represented in the matrix form as

@T  _dT
M et C v

+KT =f 19)
where T is the vector of unknown temperature at all grid points; also, M,
C and K are the coefficient matrices and the load vector is denoted by
f(t). The components of these matrices and vector are derived through
the discretized form of Egs. (11)-(14) and (16).

Temporal discretization: The NURBS based multi-step method

At this stage, a suitable numerical technique should be adopted to
solve the system of ordinary differential equations (19) subjected to the
corresponding initial conditions. This task can be performed using the
traditional numerical methods such as those of the finite difference-
based schemes, for example Newmark’s time integration family, or
other recently proposed ones [61-71]. However, it has been shown that
the time integration scheme developed based on the NURBS curves has
better performance over Newmark’s method [50,65,67-71]. In order to
apply this technique for solving the system of second-order differential
equations (19), these equations can be broken down into a set of the
first-order ones.

dT
dt (20a,b).

dy =

where y = T. It should be mentioned that when using this method,
the various schemes can be generated by only varying the weighting
coefficients (w;) and/or the order of NURBS curves. In the current work,
the four-step scheme, which has the following weight coefficients
[50,51], is chosen to solve Egs. (20a,b).

w1 =0.001,w; = 0.001,w3 = 2 and w4 = 3 (21a-d).

Based on this approach, the set of these ordinary differential equa-
tions is transformed into the following system of explicit algebraic
equations, respectively

Tpi1 = Tn + A(1.50002585y, — 0.50005291y, , + 0.00002827y, ,

—0.00000120y/, )
(22)

Wnir = Wn+ AL(1.50002585(, — 0500052915, 1 + 0.00002827, 5
— 0.0000012{,_3)
23)

where At is the time step size and

7 =M"(—Cy—KT +f) @24
When using this algorithm, to initiate the solution procedure, the values
of the unknown vectors T and y at the first four steps of time increments
must be known. In this regard, the values of the unknown vectors at the
time t = O are used as their values at the beginning of the procedure.
Then, their values at the other three steps of time increments are

Results in Physics 73 (2025) 108240

Table 1

Material properties of the epoxy and GPLs [68].
Material Epoxy GPLs
p (kg/mS) 1200 1062.5
¢ (J/kgK) 1110 644
a(1/K) 60 x 107° 5x 107°
k (W/mK) 0.246 3000

estimated through the multi-step formulations. By continuing the pro-
cedure, Egs. (20a,b) are discretized and changed to a set of algebraic
equations, which can be solved easily using an existing standard solution
technique. The output of this process is the values of the unknown
vectors T and y at the end of each time step, which finally provides the
time history of the temperature at the DQM grid points of each of the
sandwich shell layers.

Results and discussions

In this section, the presented approach is first validated and then,
some parametric studies are conducted and discussed. The material
properties of the matrix (i.e., epoxy) of the face sheets and GPLs are
given in Table 1. Unless otherwise is specified, in presenting the nu-
merical results, the following non-dimensional parameters are used to
better generalize and interpret the results.

Fo =7 = 1/;;1;11 =L, (=} (25a-d).

where a( = k/pc) is the thermal diffusivity of the sandwich shells. In
addition, if other values are not given, the geometric dimensions of GPLs
[51] and the sandwich shell, and also the values of the thermal pa-
rameters are assumed to be

dgpr = 2.5 (}lm) ,bGPL =1.5 (}lm) ,tepr = 1.5 (nm),Rm =1 (m) ,L
=1(m),h=0.1(m),

qo = 50000 (W/mz)To = T = 300(K)h, = 100 (W/m’K)
Verification

The correctness of formulation and accuracy of the solution method
are verified by performing the convergence study and comparing the
results with some existing results in the open literature. In this regard,
the convergences of dimensionless temperature of the multilayer trun-
cated conical shells with the GPLRC-FS and GPLR-PC against the number
of time step N, for both the NURBS based multi-step technique and
Newmark’s scheme are compared in Table 2. The results are provided
for two different values of the dimensionless relaxation time. The fast
rate of convergence of the NURBS based multi-step technique is
observable. Also, it can be seen that the present multi-step method yields
results with very little CPU time, which is almost 0.1 % of the time spent
when using the Newmark’s time integration scheme.

The influences of the DQM grid points on the convergence of
dimensionless temperature distribution along the shell thickness for the
multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC are
presented in Fig. 3. The rapid convergence of the method when
increasing the DQM grid points is quite evident. Based on these
convergence studies, it is concluded that 200 time steps and 25 DQM
gird points in each direction is sufficient to obtain the satisfactory
converged results.

The approach is validated by analyzing a functionally graded cylin-
der under thermal environment and comparing the results with those
reported in other references. The sandwich truncated conical shell is
degenerated to cylindrical one by setting f = 0. A comparative evalu-
ation of results is performed with the solutions provided by Santos et al.
[72]. They applied a semi-analytical finite element model to analyze the
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Table 2

Results in Physics 73 (2025) 108240

The convergence of dimensionless temperature of the multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC using NURBS based multi-step technique
and Newmark’s scheme [Wgp, = 1%,¢{ = 0,77 = 0.5,e9 = 0.4, porosity type 1, = 15°,Fo =1,u=1(cm/s)].

T NURBS based multi-step method Newmark’s method

N; T CPU time (s) T CPU time (s)

0.01 20 3.791 0.015894 4.526 6.447044
60 4.548 0.021765 4.705 17.298792
100 4.723 0.030194 4.762 28.312309
200 4.814 0.061143 4.825 54.631392
300 4.821 0.097584 4.828 86.849102
400 4.821 0.136187 4.829 112.989265

0.03 20 3.813 0.013904 4.807 6.332125
60 4.371 0.023760 4.982 17.892612
100 4.846 0.028167 5.002 26.402607
200 5.022 0.070849 5.031 57.846187
300 5.030 0.094298 5.034 86.823790
400 5.030 0.147328 5.034 114.123805

Fig. 3. The convergence of dimensionless temperature against the number of
differential quadrature grid points for the multilayer truncated conical shell
with the GPLRC-FS and GPLRC-PC [Wgp, = 0.3%,7 = 0.5,e0 = 0.4, porosity
type 1, = 15°,Fo=1,u = 1 (cm/s),7z = 0.03].

Table 3

Material properties of ceramic (Zirconia) and metal (steel) [72].
Material Zirconia steel
k(W/em°C) 2.09 20
p(kg/m?) 5700 8166
c(J/kg °C) 531.9 325.35

FG cylindrical shells under the following thermal boundary and initial
conditions based on the uncoupled classical thermoelasticity.

Atr =R T(r,z,t) = To(1 — e °%) (26a).

Atr =R,: k9 +h.T = 0 (26b).

Atz =0, L:T(r,2,t) =0 (26c,d)

T(r,z,0) =0 (26€)

Moreover, the material properties vary through the shell thickness
from the ceramic at the inner surface to the metal at the outer surface
along with the power law distribution as

Present
eeee= 2D [72]

p=10
p=0.5
p=0.1
Pure Steel

0.3

0o p

=02

0.1

0.0 0.2 0.4 0.6 0.8 1.0

G

Fig. 4. Comparison of the dimensionless temperature distribution across the
thickness of an FG hollow cylinder [R; =4 (cm), R, = 6 (cm),t =1 (s),L =
20 (cm), T = T/To ,n = 0.5].

P(r) =P.+ (Pm — P.)Vn (27)

P
where P denotes a generic material property and V,,, = (RT—RIQ repre-

sents the volume fraction of the metal phase, in which p is the power law
index, subscripts ¢ and m signify the ceramic and metal materials,
respectively. The material properties of metal and ceramic are given in
Table 3. Fig. 4 shows the comparisons between the non-dimensional
temperature distribution across the shell thickness for the two ap-
proaches and different values of the power law index p. The close
agreement between the two approaches demonstrates the accuracy of
the approach proposed in the current study.

In order to further show the accuracy of the present approach, the
thermal analysis of an FG cylindrical shell with too large-to-diameter
ratio for which the analytical solution exists, is presented. This
example is chosen from Ref. [73], in which it was assumed that the
thermal conductivity varies as

k = ko™ (28)

where m is the material graded index and ko is a constant material and a
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1.0 A A 1 N N

Present

eeee= Exact

o m=0.5
O =0
O m=-0.5 }

Fig. 5. Comparison of the dimensionless temperature in the FG hollow cylinder
subjected to non-uniform temperature rise with exact solution (R; = 1,R,/Ri =
3,L/R; =10,T = T/Ty ,n = 0.5).

value of 2 (W/mK) is assumed for it in this example. The following
thermal boundary conditions are employed at the inner and outer sur-
faces of the shell

T(R;) = 0 °C, T(R,) = 100 °C (29a,b).

The variations of the non-dimensional temperature along the FG
shell thickness obtained using the present approach and those of the
analytical solution are compared in Fig. 5. This comparison study is
conducted for different values of the material graded index (m). The
closeness of the results further indicates the high precision of this
approach.
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Parametric studies

From Eq. (11), it can be seen that the heat wave speed is equal to

chzg' Thus, by increasing the relaxation time, the heat wave speed must

decrease. To verify this fact, the effect of dimensionless relaxation time
on the dimensionless temperature of the sandwich truncated conical
shell with the GPLRC-FS and GPLRC-PC is illustrated in Fig. 6. In Fig. 6
(a), the variation of dimensionless temperature along the shell thickness
direction is shown, meanwhile, in Fig. 6(b) the time history of dimen-
sionless temperature at midpoint of the shell is exhibited. The results
show that by increasing the dimensionless relaxation time, the distance
traveled by the heat wave front reduces. This issue indicates that the
heatwave velocity reduces by increasing the relaxation time, which
verify the results predicted by the formulation given in the first line of
this paragraph. The results also indicate that the used theory can detect
the front of heat wave. As a results of the reduction of the heat wave
speed, it can be seen from this figure that by increasing the dimen-
sionless relaxation time, the maximum dimensionless temperature
decrease (see Fig. 6(b)). Also, it can be observed that before reaching the
steady state solution, the differences between the results are significant.
These results also indicate the importance of non-Fourier heat transfer
analysis for the problems with suddenly applied thermal loadings.

The impact of GPLs weight fraction on the through-the-thickness
variation and time histories of the dimensionless temperature of the
sandwich truncated conical shell with the GPLRC-FS and GPLRC-PC are
presented in Fig. 7. It can be observed that increasing the weight fraction
of GPLs increases the heat wave speed but decreases the maximum
temperature. This is because the increase of the GPLs weight fraction
increases the thermal conductivity considerably, but reduces both the
mass density and specific heat capacity of the structure slightly. On the

k .
,Tm) it can be

concluded that by increasing the thermal conductivity and decreasing
the mass density and specific heat capacity, the heat wave speed in-
creases. On the other hand, when increasing the GPLs weight fraction
from zero to one percent, the mass density and specific heat capacity
almost remain constant but the thermal conductivity increase up to 78
%. Consequently, by increasing the GPLs weight fraction, the maximum

other hand, from the heat wave speed formulation (i.e.,
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Fig. 6. The effect of nondimensional relaxation time on the nondimensional temp