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In the ongoing network cybersecurity arms race, the defenders face a significant disadvantage as they must
detect and counteract every attack. Conversely, the attacker only needs to succeed once to achieve their goal.
To balance the odds, Autonomous Cyber Network Defence (ACND) employs autonomous agents for proactive
and intelligent cyber-attack response. This article surveys the state of the art of Autonomous Blue and Red
Teaming agents, as well as cyber operations environments. We begin by presenting a detailed set of criteria
for ACND algorithms and systems that evaluate the preparedness of integrating autonomous agents into
real-world networked environments. Our analysis identifies critical research gaps and challenges within the
ACND landscape, including issues of autonomous agent explainability, continuous learning capability under
evolving threats, and the development of realistic agent training environments. Based on these insights, we
discuss promising research directions and open challenges that need to be addressed for the deployment of
ACND agents in real-world networks.
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1 Introduction
As government and private sectors worldwide shift towards fully digitised systems for essential
operations, they become increasingly vulnerable to a range of cyber adversaries, from individual
cyber-attackers to organised hostile states. With this worldwide digital transition, coupled with an
increasing global deficit in cybersecurity expertise [30], cyber defence mechanisms are becoming
increasingly outdated in terms of defending against novel cyber-attacks. Therefore, there exists a
need for the incorporation of advanced autonomous defence architectures and techniques [66, 84]
within all digital infrastructures such as enterprise networks and operational technology (OT)
networks. Despite existing technical publications and white papers addressing autonomous defence
solutions, their limitations in countering novel and realistic cyber-attacks call for more structured
and streamlined research and development. Such efforts are essential to hasten their deployment
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within real-world digital infrastructures. As a solution, this paper provides a comprehensive
systematic literature review on Autonomous Cyber Network Defence (ACND), an area that focuses
on autonomous decision-making agents for networked systems to mitigate a plethora of existing and
potential cyber-attacks. To provide a holistic understanding of the area, the paper defines ACND and
analyses literaturewithin different divisions of the area. The analysis is conducted through an overall
ACND Requirements Table 3 (in Section 4.2), which pinpoints potential objectives to accelerate the
real-world deployment of such autonomous decision-making agents within networked systems
through efficient environment and algorithmic design.
Overall, very few surveys have highlighted the requirement of autonomous decision-making

agents for defending against cyber-attacks within networked systems. Recent publications in-
clude [63] which provides a detailed review on Reinforcement Learning (RL) solutions for moving
target defence, cyber defence and honeypots. The publication also provides the development of RL
solutions within cybersecurity through control-theoretic principles. However, the review does not
address the development process of networked systems that enable the integration of autonomous
decision-making agents for cyber defence and offence. In contrast, this paper presents a detailed
development pipeline—from simulation to emulation—through the proposed Autonomous Cyber
Operations Gym.. Wang et al. [133] also focus on the development of RL solutions for network
defence and attack, along with addressing future challenges similar to [63]. However, their work
does not thoroughly analyse the networked systems on which such agents could be developed,
which is an imperative part of ACND. The authors of [18] provide a review on Machine Learn-
ing (ML) solutions in cybersecurity, specifically focusing on datasets that accelerate research in
intrusion detection systems. While the implementations mentioned by this survey form a part of
automation approaches in cybersecurity, intrusion detection approaches do not apply to ACND as
they do not involve an autonomous decision-making component for network attack or defence.
Burke et al.’s white paper [19] provide an in-depth review on the type of potential projects within
Active Cyber Defence (AcCD). This was conducted by creating multiple ML-based abstract candi-
date projects revolving around automated defence and automated attack, and overall automated
security planning. While some of them apply to Autonomous Cyber Network Defence mentioned
in this paper, the white paper does not focus on the potential of utilising autonomous agent train-
ing environments for the transition towards their real-world deployment, nor does it provide a
comparison of autonomous decision-making algorithms utilised for autonomous network attack
and defence. Yu et al. [137] developed a white paper on Multidisciplinary University Research
Initiative (MURI) for Adaptive Cyber Defence, which addressed the importance of adaptation and
adversarial techniques which are synonyms to autonomous blue and red teaming respectively. In
addition, they developed several high-level frameworks and projects covering topics also discussed
by Burke et al.’s white paper, AcCD [19]. However, the paper did not address the need for the
development of network simulation and emulation systems that will be pivotal for the transition
towards real-world deployment of autonomous decision-making agents. DARPA introduced the
Cyber Agents for Security Testing and Learning Environments (CASTLE) program [2], which uses
RL agents for autonomous defence (blue team) and assessment (red team) in a realistically simulated
and emulated networked system gym. The program is segmented into three specialisations: red
team RL, blue team RL, and purple teaming, each undergoing parallel development. The overall
project is structured into three phases aimed at the real-world deployment of the RL agents and
environments. This program aligns with the high-level motivations outlined in this paper, and we
provide a detailed technical requirements analysis within these phases, focusing on the technical
development of the three specialisations, allowing for the overall real-world deployment of ACND.

This work identifies the necessity for a structured and streamlined technical pathway for the real-
world implementation of robust autonomous defence algorithms within ACND. To facilitate this,
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the domain is segmented into two concurrent research and development sub-areas: the development
of Autonomous Blue and Red Teaming, and the simultaneous advancement of the Autonomous
Cyber Operations Gym. Detailed definitions of these and other relevant terms can be found in
Section 2. Overall, the contributions of this paper include:

• Organisation of concepts within the area of Autonomous Cyber Network Defence through
a Requirements Table. Highlighting the need of two important areas within Autonomous
Cyber Network Defence. Namely, Autonomous Blue and Red Agent development, and the
development criteria of Autonomous Cyber Operation Gyms to facilitate Autonomous Cyber
Network Defence capabilities.

• Assessment of publications classified as Autonomous Blue Teaming, Autonomous Red Team-
ing and Autonomous Cyber Operations Gyms within Autonomous Cyber Network Defence
literature through the Requirements Table.

• Identification of novel and realistic open problems and their corresponding challenges within
the Autonomous Cyber Network Defence literature. Facilitating future streamlined research
directions for the eventual real-world deployment of Autonomous Cyber Network Defence
agents within networked systems.

This article is organised as follows: We first introduce important terms used frequently in this
paper (Section 2). Then, Section 3 addresses the research methodology utilised to find relevant
ACND publications. Subsequently, Section 4 elaborates the curated terminology of ACND and its
differentiation from similar terminologies used within recent literature. This section then provides
the importance of the area in National Strategies. Lastly, the section provides a comprehensive
Requirements Table that will be used to evaluate the selected publications recognised to be as part
of ACND. Section 5 elaborates and critiques on the autonomous defence and attack (defined as
autonomous blue and red team) agents in custom ACO Gyms through the ACND Requirements in
Section 4. Section 6 elaborates an exhaustive list open-source and closed-source ACO Gyms and
assesses them using the ACND Requirements in Section 4. Section 5 elaborates a list of published
autonomous agents within ACO Gyms and evaluates them using the ACND Requirement in Sec-
tion 4. Section 8 provides a discussion identifying the open research areas and their corresponding
challenges within ACND literature using the analysis conducted in the previous sections. Lastly,
Section 9 concludes the article by summarising the area of ACND.

2 Key Definitions
This article comprises of several technical terminologies that are commonly used within the fields
of cybersecurity and artificial intelligence. This section will define the key terminologies used
within this document.

Autonomous Red Teaming: Red Teaming is a technique used within military and industry
operations to uncover networked system vulnerabilities or to find exploitable gaps in operational
concepts, with the overall goal of reducing surprises, improving and ensuring the robustness of
the networked system [25]. In the context of this paper, autonomous red teaming refers to an
autonomous agent possessing a set of operations (to uncover vulnerabilities and exploits within the
networked system) as their action space. In the context of this paper, the overall aim of autonomous
red teaming is to ensure the robustness of the autonomous blue team agent (definition elaborated
below) in terms of defending the system against known vulnerabilities and exploits.
Autonomous Blue Teaming: Blue Teaming is a technique responsible for defending a networked
system by maintaining its security posture against a set of mock attackers that aim to exploit gaps
and vulnerabilities of the networked system. Typically the Blue Team must defend against real
or simulated attacks 1) over a significant period of time and 2) in a representative operational
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context (e.g., as part of an operational exercise)1. In the context of this paper, Autonomous Blue
Teaming refers to an autonomous agent possessing a set of operations as their action space to
destroy malicious processes from entering the networked system through its nodes/endpoints.
Autonomous Cyber Operations Gym: Autonomous Cyber Operations (ACO) is concerned with
the defence of computer systems and networks through autonomous decision-making and action.
It is particularly required where the deployment of security experts to cover every network and
location is becoming increasingly untenable, and where systems cannot be reliably accessed by
human defenders, either due to unreliable communication channels or adversary action. ACO Gyms
are networked system environments that facilitate the use of autonomous red and blue teaming
agents in order to further strengthen the networked systems of the future from ever-evolving
cyber-attacks [121]. ACO Gyms aim to address and reduce the ‘reality gap’ of potential networked
systems, used in [124] by combining learning on simulations with testing in a real environments.
Simulated Network: A Simulated Network is an ACO Gym (or a part of the ACO Gym’s training-
testing strategy) that is designed as a finite state machine. The creation is usually completed in the
form of code that includes objects that correspond to the components, agents and actions within
the simulated network. [90]
Emulated Network: An Emulated Network is an ACO Gym (or a part of the ACO Gym’s training-
testing strategy) that is designed through a group of virtual machines (or a docker container with
several network drivers), which are used to create a computer networked system [90].
Sequential Response: Sequential response, or sequential decision-making refers to algorithms
that take the dynamics of the world into consideration, thus delaying segments of the problem until
it is solved [42]. It is a fundamental task faced by any intelligent agent in an extended interaction
with its environment which demands a set of decisions that are concerned with short and long-term
decisions in order to reach a state that acts as an overall target within the environment [80]. In
the context of this paper, sequential decision-making algorithms are considered in this paper as
Autonomous Blue and Red Teaming agents due to the complexity of the network that requires
navigation before a target action is taken by the autonomous agent (e.g. launching an exploit in a
host within a different subnet).
Single-step Response: Single-step response algorithm refers to decision-making actions that only
focus on the short-term outcomes. For example, in temporal context, the algorithm at time t(n) will
perform calculations solely for a solution at time t(n + 1).

3 Review Methodology
Amethodology inspired by [71] was implemented to find all relevant articles for this review. In order
to interpret the overall definition of ACND and the research questions for this article, an initial set of
white papers [19, 73, 91] from national and international government institutions and organisations
(mentioned in section 4.1) were utilised. Backward snowballing [68] was utilised to further find
relevant similar and relevant papers. These papers addressed the need for autonomous response
solutions in networked systems within a variety of different areas, allowing us to categorise areas
where autonomous response could be utilised within the existing areas of ACND terminology,
specifically, Autonomous Red and Blue Teaming.

3.1 ResearchQuestions
To harness the concepts proposed for ACND, research questions were developed to establish a
search strategy and utilise the scrutinised literature to delineate forthcoming research trajectories
and challenges. Addressing the research questions articulated herein will equip future AI and

1https://csrc.nist.gov/glossary/term/blue_team
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Cyber Security researchers to undertake studies within ACND, pinpointing essential research gaps
necessary for publishing significant work. This requires employing the most effective algorithms
in optimal ACO Gyms, specifically targeting a research gap identified in this study. Such a strategy
promises to significantly streamline research and development efforts within the field of ACND
and enhance the broader landscape of cyber security. The research questions (RQs) are as follows:

• RQ1: What is the role of Autonomous Cyber Network Defence in the current and projected
cyber landscape?

• RQ2: What are the most promising algorithmic approaches used in Autonomous Cyber
Network Defence?

• RQ3: What are the most suitable environments in which better algorithmic approaches could
be developed?

• RQ4: What future research directions and challenges must be undertaken to enable the
real-world deployment of Autonomous Cyber Network Defence solutions?

The first research question (answered in Section 4.1) investigates the importance of ACND and
its projected role in safeguarding networks. We will address this question by primarily reviewing
government and funding agency strategy documents (highlighted in Table 2), as ACND is currently
predominantly supported by state-sourced funding 2.
The next two research questions aim to investigate distinct but complementary aspects of

ACND. RQ2 seeks to identify the most promising algorithmic approaches by surveying past works
identified as ACND literature (in Section 5), while RQ3 explores the most suitable environments
for the development of these advanced algorithmic approaches (in Section 6). It aims to understand
where (in terms of infrastructure, technology, and support systems) these algorithms can be best
developed and refined to enhance their effectiveness in real-world applications. By addressing these
two aspects, researchers can contribute to building more resilient and adaptive systems that are
capable of defending against the increasingly sophisticated landscape of cyber threats.

Finally, the fourth research question aims to map out the necessary research paths and challenges
(shown in Section 8) that need addressing to enable the effective real-world application of ACND
solutions. Deploying such advanced systems in actual operational environments goes beyond
theoretical research and development. The outcome of this inquiry will provide a comprehensive
blueprint for transitioning ACND from a research and development phase to full-scale opera-
tional deployment, thus closing the gap between theoretical possibilities and practical usability in
defending against cyber threats.

3.2 Search Terminology Strategy
After identifying the initial set of research questions, the next step involves searching for relevant
primary studies. As elaborated in this section, RQ4 was developed only after the initial research
questions were answered. In order to optimise our search for relevant papers, popular digital
libraries including IEEE, ACM Digital Library, Springer Science Direct and Google Scholar were
utilised. A list of strings grouped within 3 overall themes of ACND were collectively identified
(shown in Table 1 as themes a, b and c). The strings from all different overall themes are then grouped
together in 3 different groups of permutation combinations as an aim to identify publications in
digital libraries that:

2https://www.thinkdigitalpartners.com/uncategorised/2022/09/29/the-22-billion-future-of-the-uks-cybersecurity-
insights-for-suppliers/
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• i: allow us to explore and rank the performance of identified algorithmic families in Au-
tonomous Blue Teaming (RQ1, RQ2).

• ii: allow us to explore and rank the performance of identified algorithmic families in Au-
tonomous Red Teaming (RQ1, RQ2).

• iii: allow us to discover the best possible environments in which the most suitable algorithms
could be developed, trained and tested (RQ1, RQ3).

3.3 Overall Relevant Content Extraction
Due to the area of ACND gaining popularity only recently, backward snowballing [68] and forward
snowballing [134] were conducted for several searches in order to find publications and code
repositories relevant to ACND that were not listed in the search strategy. For example, with
areas such as “autonomous cyber operations gym” being a recently created terminology within
this area, backward snowballing aided us to identify other popular publications (with respective
implementations found in code repositories) that were created before this term was officially
introduced. In addition, a manual search was conducted to identify the latest ACND related papers
(alongwith papers highlighting further potential areas within the domain) that cited the publications
identified through the search strategy. Through this search strategy, a total of 132 papers were
shortlisted. The papers selected were passed through another screening process based on their
abstract and conclusion in order to select the papers that align to the scope of ACND, reducing the
selected relevant papers to 70. Lastly, the remaining papers were then fully read and analysed as
further screening step, leading to 55 papers selected for this review overall. Figure 1 suggests the
overall steps included within this search methodology.

4 Autonomous Cyber Network Defence
Autonomous Cyber Network Defence (ACND) is a topic that has recently been mentioned within a
few publications and news articles over the last decade, in light of the increasing cyber-attacks
that have occurred over the last few years. To define and interpret this term, a brief review was
completed.
Rege et al. [106] provided a high-level description of ACND algorithms as a decision-making

system with expert-level ability inspired by how humans reason and learn, citing a publication [12]
producing an autonomous blue agent within a custom networked system. Ko et al. [72] provided a
terminology for ACND when elaborating the purpose of the Defence Advanced Research Projects
Agency (DARPA) grand challenge 3, where it described ACND as systems that are able to self-
discover, prove, and correct software vulnerabilities in real-time without human intervention. In
2016, Baah et al. [99] provided a generalised overview of an ACND system. The paper described

3https://www.darpa.mil/program/cyber-grand-challenge

Fig. 1. A flowchart of the overall Research Methodology described in Section 3.
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a. Algorithmic
Approaches

b. Autonomous
Blue-Teaming

c. Autonomous
Red-Teaming

- "Artificial Intelligence" ‡ - "Autonomous Cyber Operations Gym" - "Malware"
- "Machine Learning" OR "Deep Learning" ‡ - "Process Killing" - "Process"
- "OpenAI" AND "Gym" ★ - "Cyber Defence" OR "Cyber Defense" - "Penetration" AND "Testing"
- "Reinforcement Learning" ‡ - "Malware" - "Offensive Cybersecurity"
- "Game Theory" ‡ - "Deception" - "Autonomous Malware"
- "Generative Modelling" ★ - "Response" - "Privilege Escalation"
- "Automated" OR "Automatic" OR
"Autonomous" OR "Automation" ‡ - "Wargaming" OR "War-gaming" - "Adversary Emulation"

- "Response" † - "Cyber Resilience" - "Wargaming" OR
"War-gaming"

- "Advanced Persistent Threats"
OR "APT"

- "Red Team" OR "Red Teaming"
OR "Red-teaming"

- "Blue Team" OR "Blue-teaming"
OR "Blue Teaming" - "Reconnaissance"

- "Cyber Threat Intelligence"
- "Autonomous Cyber Operations Gym"
- "Cyber Defence" OR
"Cyber Defense"
- "Deception"

Table 1. This table outlines the overarching themes used for search terminology. (a) lists algorithmic ap-
proaches and terminologies that enable autonomous responses, which are essential for Autonomous Cyber
Network Defence agents. (b) includes terms associated with Autonomous Blue Teaming, while (c) contains
those related to Autonomous Red Teaming. Legend: ★— The keyword has been individually combined with
each term from column (a); † — The keyword has been individually combined with each term from column
(b); ‡ — The keyword has been combined with all possible pairwise combinations of terms from both (a)
and (b).

ACND as a response that begins with detection of an ongoing attack or an existing vulnerability in
the network. The paper highlighted that speed and accuracy of detection is important in order to
take action to mitigate threats before they can do damage to network assets or disrupt missions. It
also illuminates a solution of machine learning analytics that can distinguish between suspicious and
benign network activity, and automated fuzzing techniques that can discover previously unknown
vulnerabilities in software. Benjamin et al. [12] define the ACND term through their project called
Cognitive Support for Intelligent Survivability Management (CSISM), where the authors implement
an Autonomous Cyber Network Defence decision-making mechanism with expert level ability. The
ACND system observes and alerts the relevant users, and then takes defensive actions to ensure the
survivability of the computing capability of the network. The authors realise that producing such
an expert-level response in real-time with uncertain and incomplete information is a difficult target.
However, they realise that there is a stepping-stone between the development of autonomous
reasoning and learning through the use of cognitive architectures for cyber defence operations.

Burke et al. [19] from the Alan Turing Institute introduced a research initiative focusing on Active
Cyber Defence (AcCD) through a white paper, which focuses on seeking increased automation
within an enterprise to bolster network defenders and cybersecurity. Note, it is important to address
the difference between the term AcCD and ACND lies in the inclusion of Automated Security
Planners within AcCD, which are used to enhance human decision-making, while ACND strictly
focuses on autonomous red and blue-teaming, primarily for the overall development of autonomous
blue teaming agents. Overall, the paper explains that intelligent automation is essential to enable
system defenders to manage the risk posed by highly autonomous future threats and attack, and
defend the systems at cyber-relevant national scale. The white paper also elaborated the need
for autonomous red and blue teaming. However, it only provided high-level information on the
research directions within all areas without a further technical development pipeline. The use of
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Artificial Intelligence has been suggested within such systems as a way to intelligently understand
the terrain (i.e., networked system) for detecting and responding to complex cyber-attacks with
minimal errors.

Applebaum et al. [7] introduce the term Autonomous Cyber Network Defence in the context of
tabular Q-learning, defining it as the use of ML to train agents that autonomously defend systems
while minimising self-damage from noisy sensor data. While conceptually aligned with our view of
ACND, their definition is limited in scope. It overlooks the parallel development of simulation-to-
emulation environments such as ACO Gyms and omits the critical role of autonomous red agents.
This paper extends the definition by incorporating both red and blue agents within an integrated
training and evaluation framework.

The definition of Autonomous Cyber Operations (ACO) will also need to be addressed relative to
ACND in order to clarify specific research directions within ACND as compared to ACO. Standen et
al. [121] define ACO as the parallel development of autonomous red (attacker) and autonomous blue
(defender) agents within a networked system that combat one another in a game-playing scenario.
ACND differs from ACO through its focus being on the overall development of autonomous blue
agents, where autonomous red agents are particularly designed as an autonomous penetration
testing agent facilitating holistic adversarial training. The development of ACO Gyms in the lens of
ACND also differs to the development of ACO Gyms in that they must be designed to specifically
for the development of autonomous blue teaming agents.

When compiling all the literature mentioned above, we interpret Autonomous Cyber Network
Defence as a terminology focusing on the autonomous decision-making agents for cyber systems
(such as enterprise network, industrial control systems) to mitigate highly complex cyber-attacks.
The development of an ACND system could be conducted through a combination of different types
of operations. This includes the development of autonomous blue-teaming agents within ACO
Gyms as a mode of terrain (to replicate real-world cyber systems), where autonomous red teaming
agents are used to adversarially validate, develop and strengthen the autonomous blue team agents
for an overall goal of their deployment within networked systems.

4.1 ACND Importance within National Strategy Documents
From our initial set of white papers and search strategy, we discovered that several government-
based organisations have made it clear that AI will soon be forefront within cybersecurity in terms
of detecting, responding to attacks within networked systems, along with creating autonomous
attacks to discover vulnerabilities. Table 2 elaborates the importance of ACND within different
countries and organisations, allowing us to decipher our first research question.

4.2 ACND Requirements
The North Atlantic Treaty Organisation (NATO) and US Army Research Laboratory outlined re-
quirements for Autonomous Cyber Agents by producing a reference architecture and technical
roadmap, Autonomous Intelligent Cyber-defence Agent (AICA) Reference Architecture (AICA) [73].
A specific part of the document focuses on the high-level strategic deployment and the ethical
concerns on the battlefield of autonomous agents. A few requirements in AICA relevant for this
paper have been included in a domain-specific manner within the summarised Requirements Table
for ACND (Table 3) due to their relevance within defending digital infrastructures against cyber-
attacks through autonomous defence agents. Compiling the literature utilised within the initially
collected white papers, the table includes a structured format of compiled essential requirements of
autonomous red and blue agents (A) along with ACO Gym requirements (G), which will incorporate
the usage of autonomous red and blue agents.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2025.



Towards the Deployment of Realistic Autonomous Cyber Network Defence: A Systematic Review 1:9

Country/Alliance Department/Strategy Reference to ACND

Australia
Department of Defence [120]

Suggests the need to expand cybersecurity
skills and integrating AI into it. DoD is
coordinating research and investment in AI
capabilities to strengthen capability across the
information and cyber domains.

AI for Decision-Making Initiative 2022 [4]

Aims to develop 30 more AI-based challenges
for researchers, including the TTCP CAGE
Autonomous Cyber Network Defence Challenge to
produce AI-based autonomous decision
blue teaming algorithms for instantaneous
response against cyber-attacks.

Royal Air Force of Australia [34]
Advises continuous evaluation in which
decisions can be made by machines and
which must be made by humans.

Canada National Cybersecurity Strategy [33]
Specifically mentioned the importance of
defence and security applications with
autonomous decision support

Defence Research and Development [36]

The publication suggests that a combination
of deep learning and RL algorithms for accurate
identification of evolving threats, and then
recommend or execute an appropriate course
of action.

United Kingdom Defence Artificial Intelligence Strategy [130]

Discusses the new risks from AI-Enhanced
Cyber Threats which operate
at speeds and at scales preventing actions
by human operators in a timely manner.

Government Cybersecurity Strategy [98]

Described AI as an emerging technology
to focus on. Proposes to explore AI in the
context of detecting malicious activity
and in some cases to “enable autonomous
response to threats”

NATO Cooperative Cyber Defence Centre of Excellence [92]
Suggest the need for Nation States to
adopt and explore AI-enabled Cyber
Defence.

NATO AI Strategy [91] The strategy includes "collaboration on AI
technologies for Cyber Defence.

United States of America DARPA CASTLE[2]

A long term strategy to develop autonomous
Red, Blue and Purple Teaming for
algorithmic development of autonomous defence,
autonomous attack and ACO Gyms.

Army Research Laboratory [73]
Designed a reference architecture
providing an outline on development
of autonomous agents within ACND

Table 2. Overview of the National Strategy Papers on ACND

The requirements in this table are grouped into six key categories, each representing a critical
sub-area that demands focused research attention. Effective generalisation within ACO Gyms and
ACND algorithms will enhance system flexibility and robustness, enabling them to adapt naturally
to changes in networked environments. Strategic high-level decision-making empowers agents
to operate with structure, transparency, trustworthiness, and adaptability in complex, dynamic
scenarios. Investigating diverse algorithmic learning approaches will help researchers evaluate and
uncover more effective methods for training and deploying autonomous agents. Enhancing multi-
agent collaboration in ACND will facilitate strategic coordination among agents, strengthening
defence capabilities and reducing the inherent asymmetry in cyber defence scenarios. To support
progress, we advocate for open-source, well-documented collaboration across the ACND research
community, helping to streamline and accelerate the broader deployment of ACND systems. Finally,
ensuring agent resilience requires continuous exposure to a wide range of adversarial conditions
throughout the training and deployment pipeline, fostering the development of more secure and
reliable autonomous defenders. Overall, Table 3 contributes to ACND as a checklist for researchers
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Requirement Summary

Generalisation

- (G.1.1) ACO Gym will need to generalise to new settings and have the ability to seamlessly
add components
- (G.1.2) ACO Gym would need to be able to add different types of autonomous agents.
- (G.1.3) Networked system training-testing must promote transfer from
simulation to a real world design, including aspects like matching real networked system latency
operations delays within networked systems. Examples include a hybrid of simulation and emulation
within training-testing strategies.
- (G.1.4) ACO Gym must have capability of scaling the network to larger sizes (additional subnets) without
configuration issues
- (A.1.1) Autonomous agent will need to generalise their decisions relevant to the autonomous agent type it represents.
- (A.1.2) Autonomous agent will have to generalise and adapt to structural changes within
the ACO Gyms (addition and removal of subnets and endpoints).
- (A.1.3) Autonomous red and blue agents must be designed to sustain their high performance
from simulation to real-world deployment.

High Level
Decision-Making

- (G.2.1) ACO Gyms must be designed to explain their state after specific events occur
within the networked system.
- (G.2.2) ACO Gyms will need to be framed into MDP/POMDP format in order to allow for
autonomous decisions to be made.
- (A.2.1) For planning and collective response plans, sequential algorithms will need to be considered.
- (A.2.2) AICA reference architecture argues that both Game Theory and Artificial Intelligence
would be suitable for implementation within ACND.
- (A.2.3) The designed autonomous agents will require a "deep" architecture to sustain their
performance according to the complexity of the ACO Gyms.
- (A.2.4) Additionally, agents will need to be able to be explainable [17, 56, 69], i.e., justify their
real-time decisions made in order for them to be operational within real-world networked systems.

Learning - (A.3.1) AICA [73] opens up on the possibility of enabling continual learning within ACO Gyms.
- (A.3.2) But also argues the importance of training-testing approaches.

Multi-agent
Collaboration

- (G.4.1) ACO Gyms must be designed in a way to allow for multi-agent reinforcement
learning (MARL) to operate.
- (A.4.1) Multi-Agent System representations would be required to train the autonomous agents and for
action/strategy negotiation. 4. AICA, combined with a MARL survey produced by [136], suggests utilising
combinations of communication approaches and centralised training & Decentralising Execution
solutions at a bear minimum.

Research
Collaboration

A requirement is the need to explain and collaborate with other researchers within AcCD [19]
that coincides with ACND. Thus:
- (G.5.1) ACO Gym must be open-source for researchers to contribute further to implementations
- (G.5.2) Documentation for ACO Gyms must be available for further development of gyms
and ease of research and implementation of autonomous agents within them

Resilience

The AICA reference architecture highlights the need for resilience against differing malware samples
and other algorithmic attacks. Therefore:
- (G.6.1) ACO Gyms must be designed to allow for autonomous red agent to adversarially train
the autonomous blue agent to reduce the number of incorrect actions.
- (G.6.2) ACO Gyms must be able to incorporate cyber-attacks and
algorithmic attacks (e.g. backdoor attacks on DRL agents [3, 138]) plausibly curated by an adversarial insider.
- (A.6.1) To improve performance of autonomous blue team agent (the sole purpose of ACND),
adversarial training through an autonomous red agent must be encouraged.
- (A.6.2) Autonomous red agents must be provided with a wide variety of cyber-attacks (specified
within the MITRE ATT&CK framework)
- (A.6.3) Autonomous red agents must be provided with a variety of algorithmic attacks [41]
(such as adversarial examples) on the trained autonomous blue agents to address autonomous blue agent’s
algorithmic vulnerabilities.
- (A.6.4) Autonomous blue and red agent must be able to launch deception defence and attacks respectively.

Table 3. This table provides a list of Requirements for ACND to streamline its deployment within real
networked systems.

to streamline their implementations and research contributions, which will expedite the eventual
deployment of ACND operations within real-world networked systems.

5 ACND algorithms used within Custom ACO Gyms
As mentioned in the section 4.2, a typical ACND system comprises of a type of networked system,
which possesses the provision to allow autonomous red and blue team game-playing scenarios.
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Recent publications within ACND have utilised autonomous decision-making algorithms such as
Game Theory (GT), Machine Learning (ML) and RL for autonomous blue and red teaming within
custom ACO Gyms. A comprehensive overview on the fundamentals of GT and RL can be found
in [119] and [123] respectively.

ML-based solutions (alongwith RL-based solutions [94, 107, 115]) have also been utilised solely for
quick incident and intrusion response over the years [50, 96, 128]. Specifically, Zago et al [139] utilise
ML techniques to analyse, detect and react against existing and upcoming cyber threats, including
botnets. The proposed approach combines unsupervised and supervised approaches to create a
scalable detection and reaction framework willing to decrease the error rate as well as increasing
the efficiency in terms of computational resources. The approach uses dimensionality reduction
algorithms and uses publicly available datasets for intrusion detection for its implementation. While
sole ML-based implementations like this allow the mitigation of specific types of attacks, they lack
the ability to defend against sophisticated attacks that require a multi-step response.
An example of a threat that requires a multi-step response is a ransomware attack that has

already spread partially through the network. Once the attack is detected, containment actions
are first taken to prevent further spread. This step might involve disconnecting infected machines,
applying network segmentation, or temporarily shutting down network access. Following from
this, the focus shifts to removing the ransomware from all infected machines and restoring data
from backups. This step requires careful planning to avoid reinfection and to ensure data integrity.
A rapidly acting autonomous defence system can potentially address the threat sooner.

Additionally, like zero-sum GT-based solutions, their performance does not scale to larger
enterprise networks due to the algorithms not being complex enough to generalise state spaces
further away from the scenario in operation. Cam et al. [21] also highlight how most ML-based
solutions (which include supervised and unsupervised learning algorithms) provide solutions to a
single-step learning problem, a feature of the algorithm that makes it infeasible for implementing
it as ACND-based solutions within networked systems. Therefore, the publications selected for this
section focus on sequential response that is required for autonomous agent to stop cyber-attacks
within an overall networked system.

The rest of this section provides an overview of the recent publications within autonomous
response for blue and red teaming respectively within custom networked systems, and analyses the
publications based on their autonomous agents and custom ACO Gyms through the Requirements
Table in section 4.2.

5.1 Autonomous Blue Team Solutions
The autonomous blue agent within a network system must be perpetually vigilant to defend the
entire attacker surface in real-time, while the attacker only needs to succeed once within a single
location. Due to this asymmetric scenario between cyber-attackers and defenders, the defenders
with limited resources cannot afford to prepare for all possible attacks.

In this subsection, we focus on addressing Posture-related vulnerabilities (PrV), a concept in-
troduced by Huang et al. [63] that highlights the inherent disadvantage faced by the blue team
compared to the network attackers. Specifically, the blue team must continuously monitor and
protect the entire attack surface from unauthorised access, while attackers only need to find and
exploit a single vulnerability to succeed. Due to this disadvantage in security posture, a blue team
with limited resources cannot afford to prepare for all possible attacks. Table 4 below evaluates the
autonomous blue teaming publications along with their custom ACO Gyms.
Table 4 shows relevant ACND autonomous blue teaming publications within networked systems
designed solely for their respective autonomous blue team agent implementations. The table
highlights most publications meeting requirements A.1.1, A.1.2, A.2.1, A.2.2. This is specifically
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because most publications highlight the need for a sequential blue agent response [21], as opposed
to single-shot blue agent responses that are not feasible to defend the systems against modern day
cyber-attacks. This is further shown by all publications framing the problem as an MDP/POMDP
(G.2.2), which allows autonomous agents to take sequential response through the transitioning
of states, that signifies a combination of actions taken within specific nodes of a networked
system. However, while the requirements of A.1.2 are met within the specific publications, they
are simulation based networked system implementations, which means that the system does not
completely represent the complexity of configuration changes of the real-world networked systems.
This is specifically highlighted in A.1.3 requirement which is not met by most publications in
Table 4 that only test their algorithms within simulated networked systems. Most publications
did not meet A.2.3 that is required within complex networked environments for appropriate
generalisation of long-term actions for the agent. Only DRL implementations were able to fill this
requirement, making them more suitable. Dhir et al. [35] also suggested the use of Causal Inference

Autonomous Blue Team Custom Networked System Publications

Requirements [144] [15] [62] [95] [85] [46] [37] [23] [27] [21] [132] [47] [131] [118] [109]

A.1.1 + + + + + + + + + + + +

A.1.2 + + + + + + + + +

A.1.3 + + +

A.2.1 + + + + + + + + + + + + + + +

A.2.2 + + + + + + + + + + + + +

A.2.3 + + + + +

A.2.4 + +

A.3.1

A.3.2 + + + + + + + + + + + + + + +

A.4.1 + +

A.6.1 + + +

A.6.2 + +

A.6.3

A.6.4 + +

G.1.1 + + + + + + + + + + +

G.1.2 + + + + + + +

G.1.3 + + + +

G.1.4 + + + + + + + + + +

G.2.1 + + + +

G.2.2 + + + + + + + + + + + + + + +

G.4.1 + + +

G.5.1 +

G.5.2 +

G.6.1 + + + +

G.6.2

Table 4. Autonomous Blue Team Solutions within custom networked systems
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algorithms [48, 61, 67, 108, 140] that could maintain their performance within ACO Gyms. Most
publications in Table 4 also do not meet explainability requirement of A.2.4, which is essential for
utilisation of any autonomous agents within Security Operations Centre (SOC) environments, in
which such agents will need to be certified before they are in operation. Only 2 of the selected
publications met A.4.1, in which both publications implemented autonomous response against
specific cyber-attacks (i.e., DDoS, as opposed to an agent that could detect and respond to a variety
of cyber-attacks). Such requirement is highlighted in the form of A.6.1 and A.6.2, which suggests the
need to continually develop the knowledge base of the autonomous blue agent through adversarial
training against a variety of cyber-attacks. Moreover, the lack of implementations that fill the A.6.1
requirement also hinders the development of autonomous blue agents against algorithmic attacks
mentioned in A.6.3, an area in which no publications highlighted in Table 4 have implemented
solutions for.
Requirement A.6.4 in the context of autonomous blue teaming refers to defender agents which

have the capacity to strategically launch deceptive elements that enhance the defence of a networked
system through an increase in threat detection functions. Applications of Cyber Deception in
literature seek to integrate high-fidelity deceptive assets into existing infrastructures with the
purpose to mislead or slow down adversaries and ultimately thwart their cognitive processes.
These assets are typically encapsulated inside virtual environments that resemble their physical
counterparts; and have two overall aims: first, the defence of a system through the enhancement
of threat detection functions such as lures and decoys, and second, the ability to misdirect and
quarantine attackers to support the gathering of Cyber Threat Intelligence (CTI). Deception-based
Cyber Defence (DCD) platforms counter classic attacker-defender asymmetries by executing and
maintaining preventative cybersecurity tools that, unbeknown to an adversary, obfuscate the
true security posture of a network. In fact, the use of DCD is becoming an increasingly prudent
choice in the mitigation of PrV(s) on the account that adversaries must ‘minesweep’ through a
sea of supposed vulnerabilities in order to execute a successful cyber-attack. Wang et al. [132]
and Ghao et al. [47] both consider the notion of combining the use of intelligent algorithms
with dynamic deployment strategies in order to analyse adversary behaviour. Both solutions
succeed in training a blue agent to select optimal deployment strategies but fall short of many
generalisation and resilience-based requirements due to the link between the attackers with the
associated environment. As previously mentioned, solutions such as [47] which incorporate DRL
typically meet the high-level decision-making requirement A.2.3. The use of DRL in this instance is
sensible because the authors are aware of the impact that general attacker-defender scenarios have
on the space complexity of typical RL algorithms. This is because Deep Neural Networks (DNNs)
are introduced to make policy-based deployment decisions without the need to manually engineer
the state space. In the context of ACND, determining a reward path through the trial and error of
all possible states can often converge to computational intractability as the scale of the network
environment grows; thus, by harnessing the predictive element of a DNN, knowledge becomes
generalised by approximating each Q value rather than storing and looking up every distinct state.
The authors in [47] utilise online learning to update defence models with newly collected attack
information, although this is of a ‘non-continual’ variety, meaning continual learning techniques
have not been implemented to address concerns regarding catastrophic interference, thereby failing
to meet requirement A.3.1. Leveraging the approximations of DRL, Li et al. [78] proposes an optimal
defensive deception framework by creating System Risk Graphs (SRG) which model adversary
actions. The attack models are then used to train a DRL agent to generate optimal deployment
strategies within micro-service architectures. Incorporating defensive deception into container-
based cloud environments is sensible as, like the diversity and scale of typical OT networks, the
virtualisation of technology and the dynamism of container services exposes a glut of additional
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attack vectors to an already overwhelming issue. Through the intelligent deployment of deceptive
assets, the expanding threat surface can be maintained and prevented. The authors highlight the
issue of scalability when modelling network environments and threat models as high-dimensional
input spaces, implementing a DRL framework that scaled up to 60 nodes. In a different light, Walter
et al. [131] draws attention to the prospect of augmenting ACND environments with defensive
cyber deception components by adapting the source code of an existing open-source ACO Gym
called CyberBattleSim [125]. This paper falls short of many requirements as the solution does not
necessarily create a dedicated blue agent. Instead, the aim of the paper was to gain insight by
observing the impact of active cyber deception on attacker behaviours which can ultimately inform
autonomous blue teaming agents.

In terms of the requirement of networked systems within the publications mentioned in Table 4,
G.1.1 and G.1.2 were met within most simulated networked system publications. However, as
mentioned previously, simulated systems do not represent the real-world systems accurately,
hence the reason why very low number of mentioned implementations are able to meet the G.1.3
requirement. Similar to the requirement A.4.1, G.4.1 is an area in which networked systems will
need to be developed in order to facilitate the inclusion of autonomous agents. Areas of research
development also include G.4.1 and G.6.1, in which networked systems will need to be designed to
allow such requirements. Overall, through our analysis, the most optimal autonomous blue teaming
algorithm seen within literature is DRL due to it’s ability to meet most algorithmic requirements in
the ACND Requirements Table 3, answering our second research question. Using the analysis, it
can be understood that many more requirements can be met by DRL algorithms, however, they
(like all other algorithms) are highly dependent on the ACO Gym they are developed within.

5.2 Autonomous Red Team Solutions
The existing literature on autonomous red teaming solutions can be split into three categories:
assistance to security analysts with attack planning, penetration testing or red teaming “automation”,
and red agent research conducted in gym environments. The later categories relate closely to ACO
goals/objectives, whilst the former is an intermediary step towards it.
The attack path planning category utilises scanning information outputted from penetration

testing tools such as Nmap or Nessus to design a POMDP (G.2.2) representing a corporate network.
The Common Vulnerability Scoring System (CVSS) scores 5 from vulnerability scans are then
utilised to define the transition probabilities. [45] also utilised the CVSS scores to inform the
rewards (landing on the host as an administrator for instance). Researchers then utilise RL/DRL
algorithms (A.2.2) on these environments to reach set objectives (while adding negative penalties at
each step to avoid loops). For example, [45] and [26] utilised this approach to generate action plans
to assist a human expert in reaching testing objectives with the DQN algorithm (A.2.3). Finally,
it should be noted that tools such as Bloodhound 6 offer attack path planning focusing on Active
Directory weaknesses, without utilising ML.
To automate penetration testing, one can extend the DRL game defined in the paragraph above
to incorporate actions of penetration testing or red teaming tools (A.6.2). In fact, [142] did so to
automate penetration testing with the Metasploit framework 7, whereas [83] utilised the PowerShell
Empire framework 8 to automate post exploitation activities. Furthermore, researchers have anal-
ysed specific tasks of red teaming and attempted to automate them. For example, [74] automated

5https://nvd.nist.gov/vuln-metrics/cvss
6https://github.com/BloodHoundAD/BloodHound
7https://www.metasploit.com/
8https://github.com/EmpireProject/Empire
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privilege escalation through RL. One could envision multiple cells of the MITRE ATT&CK matrix 9

being automated in this fashion, such as defence evasion as seen in [39]. Overall, there is a need
for a system to continuously evolve the autonomous red teaming agent to append new types of
attacks within its action space. A combination of open-source red-teaming such as Atomic Red
Team 10, ATTPwn 11, Infection Monkey 12 and APTSimulator 13 follow the MITRE ATT&CK matrix
and can be used by DRL agents to execute specialised scanning and attack techniques.

Given that research into RL for autonomous red team solutions can be abstracted into simulated
environments (described in further detail in ACO Gyms, G.1.3), the literature also comprises of
such research (making it the most relevant algorithm for autonomous red teaming aswell). For
example, [122] build DRL agents in the Network Attack Simulator Gym [114]. The authors trained
agents in five different scenarios of varied sizes and complexity, which were built with the PPO
and DQN algorithms. They trained them on smaller scenarios to see how they performed in the
larger ones at testing time, where PPO seemed to generalise slightly better. Given the exponential
growth in action sets, researchers have begun analysing the use of Hierarchical RL in this setting, in
fact [127] did so in the CyBORG Gym environment [121] where they proposed a Hierarchical DQN
algorithm. Research in the open-source gyms are summarised through the list of requirements in
Table 5.

Finally, it should be noted that GTModels (A.2.2) have also been explored (an example is provided
by [28]), but in this case they are utilised to aid decision makers, such as in cyber war-gaming.

6 Autonomous Cyber Operations Gym
As shown in the previous section, the lack of common open-source ACO Gyms prevent the
possibility for an independent, accelerated development of autonomous blue and red agents (and
ACO Gyms). This section aims to answer the third research question and provides a detailed
overview of literature that have recently developed ACO Gyms along with the autonomous agents
developed and published within literature and websites. Such ACO Gyms are simulated and/or
emulated networked systems designed specifically for the development of autonomous blue and
red team solutions. Given the availability of several resources, different publications have produced
different strategies for training and testing environments, algorithm development type, and the
types of cyber-attacks.

6.1 Training strategies
The most common approach to training and testing involves validating agents within the same
environment used for training, whether simulated or emulated. This limits the ability to assess
generalisation (i.e., requirements A.1.1, A.1.2 in Table 3) and prevents agents from fully leveraging
the complementary strengths of different environments—scalability in simulation and realism in
emulation—thereby falling short of requirement G.1.3.

Several research papers have strived to make progress in the domain of generalisation. For exam-
ple, [122] built DRL agents in the Network Attack Simulator Gym [114]; a simulated environment
to conduct research in autonomous penetration testing. Autonomous agents were trained in five
different scenarios (encompassing subnets, hosts, vulnerabilities) of varied sizes and complexity,
where the authors adopted both the PPO and DQN algorithms. After training the autonomous
agents on scenarios of lower complexity, the impact on performance in larger complexity scenarios
9https://attack.mitre.org/matrices/enterprise/
10https://github.com/redcanaryco/atomic-red-team
11https://github.com/Telefonica/ATTPwn
12https://github.com/guardicore/monkey
13https://github.com/NextronSystems/APTSimulator
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Autonomous Red Team Custom Networked System Publications

Requirement [83] [74] [45]

A.1.1

A.1.2

A.1.3 +

A.2.1 + + +

A.2.2 + + +

A.2.3 + + +

A.2.4

A.3.1

A.3.2

A.4.1

A.6.1

A.6.2

A.6.3

A.6.4

G.1.1 + +

G.1.2

G.1.3 + + +

G.1.4 + +

G.2.1

G.2.2 + + +

G.4.1

G.5.1

G.5.2

G.6.1

G.6.2
Table 5. Autonomous Red Team solutions within custom networked systems
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was experimented with, where the PPO provided superior generalisation. The cutting-edge plat-
forms built to conduct research in ACND designed by [90], [121] or [79] all involve a simulated
environment to train agents in a time efficient manner. In addition, emulations of the environment
can be spun up on cloud providers with services running, actual malware performing malicious
actions and autonomous blue agents with abilities to close ports or remove infections (mapping to
the action spaces of the simulation). Another approach involves “real world” testing after training
is performed in a simulated environment. One example worth mentioning are task specific agents,
for example, [74] enumerated all possible privilege escalation techniques from the MITRE ATT&CK
matrix and built an agent with DQN to perform this task. In order to speed up the learning process,
they trained their agent in simulated environment built with Python and then conducted their
testing in the “real world” (a Windows Virtual Machine). They measured its performance based on
how many steps were needed to escalate privileges, for some cases/vulnerabilities, the autonomous
agent outperformed human experts.

6.2 Existing Autonomous Cyber Operations Gyms
For the acceleration of research within the domain of autonomous red and blue teaming agents
within networked systems, open-source networked systems, or Autonomous Cyber Operations
Gym (ACO Gyms) will be required. The provision of ACO Gyms will allow researchers to streamline
their focus on meeting the autonomous agent based requirements in Table 3. In addition, this allows
researchers to also focus on developing more open-source ACO Gyms that meet the networked
system requirements in Table 3. Below is a review of existing environments which are designed for
cybersecurity research. The review begins with providing an overview of the existing open-source
ACO Gym environments, and then delves into other closed-source emulated (and other simulated)
ACO Gym environments that have been published within literature. Each part compares ACO
Gyms amongst the other open-source/closed-source ACO Gyms using the ACND Requirements
table (3) for ACO Gyms.

6.2.1 Open-source Gyms. Firstly, The Cyber Battle Sim [125] (CBS) environment is created for
training autonomous red agents that focus on the lateral movement phase of a cyber-attack in an
environment that simulates a fixed network with configured vulnerabilities. The red agent utilises
exploits (specific code that remotely accesses a network and gain elevated privileges, or move
deeper into the network) for lateral movement while a pre-defined blue agent aims to detect the
red agent and obstruct access. The CBS environment can define the network layout and the list of
vulnerabilities with their associated nodes. In CBS, the modelled cyber assets capture OS versions
with a focus to illustrate how the latest operating systems and up-to-date patches can deliver
improved protections. The implementation can also be extended due to its design for autonomous
blue agent training. In fact, [131] have implemented this by incorporating blue teaming deception
into the environment. The developers ensured sufficient complexity exists in the environment
to abstract the cells of the MITRE ATT&CK matrix for vulnerabilities (to be exploited by red
agents to get rewards). Overall, the documentation is sufficient to create new scenarios/networks,
tweaking reward functions (values of compromised services and costs of exploitation) and adding
vulnerabilities to services. While this allows users to extensively experiment with the environment,
the code only exists for implementation within a simulated domain, thus, questioning the realism
of the environment.

The Gym IDS Game [54] is a simplistic Markov game built upon the OpenAI gym environment.
The attacker has two types of available actions:

• Reconnaissance action
• Attack of type 1...m
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The defender also has two types of actions at his disposal:
• Monitoring action
• Defensive action of type 1...m

Different scenarios exist for either training a blue or red agent (or both). Unfortunately, the gym
environment is overly simplistic and only provides a simulated environment, meaning that, like
CBS, it also provides low realism. Similarly, to the Gym IDS Game described above, the Gym Threat
Defence gym [86] is also a simulation-based system with a POMDP set-up. However, in this case,
the authors have designed it as a purely defensive game where the defender has four different
available actions.

• No action
• Blocking a service
• Disconnecting a machine
• Performing action 2 and 3 in parallel

One can define the probabilities of detection for each node, the attack probabilities, the spread
probabilities, and the initial state.

Similar to the environments mentioned, the Optimal Intrusion Response Gym [55] is a Markov
game built upon the OpenAI Gym libraries. The environment comprises of a simulated enterprise
network with 6 subnets, with several hosts, each comprising of an IDS. Unfortunately, the game is
overly simplistic for our use case as the defender can only select from two actions.

• ”Stop” will block the gateway. This will degrade the IT service and has a cost associated with
it. However, it will also ensure the infection is contained.

• “Continue” is a non-action.
After doing some simulations/tests, [55] discovered that the blue agents they trained are more
likely to “Stop" earlier when facing a stealthy attacker than against a noisier one.

The Network Attack Simulator environments [114], is purely built for training autonomous red
agents (as there is no blue agent) to test AI systems in penetration testing tasks. This environment
is built upon OpenAI gym and allows the ability to create scenarios by defining the number of hosts,
services, the observability mode (fully observed for instance) and the asset criticality of the hosts
in question. Finally, one can decide the vulnerabilities present on the network and define the cost
of actions (cost of a subnet scan for instance). The red agent can select from seven different action
types: Exploitation, Privilege escalation, Service scan, Operating system scan, Subnet scan, Process
scan and No action. The goal of the project is to train red agents in performing penetration tests
against simulated scenarios, while no blue agent interferes with the environment. Recently, the
environment was extended to, NASimEmu, which included both simulation and emulation [65] 14.
The agent 15 that is developedwithin simulation can be seamlessly deployedwithin emulation. Novel
inclusion within this include dynamic scenarios that represent prototypical situations, e.g., typical
university or corporate networks. In these scenarios, some attributes are fixed (network topology,
OSs, services and exploits), while some are left to change (network size and hosts’ configuration).

The CyBORG environment [121] is designed specifically for training blue agents. However simi-
larly to CBS, it can simply be extended for red teaming use cases. The environment allows training
and testing in simulated and emulated environments respectively. The simulated environment
comprises of an agent interacting with a scenario modelled in a finite state machine (FSM), in
which each state represents systems and networks. An action satisfying a respective pre-condition
is required to move from one state to another. The state also provides specific details such as the

14https://github.com/jaromiru/NASimEmu
15https://github.com/jaromiru/NASimEmu-agents
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creation and deletion of individual files, or the making or breaking of network connections. All
combined, an ideal training environment is generated for both the defender and adversarial agent.
Once the autonomous agent is trained, it can be tested in the emulator, which comprises of AWS
virtual machines to create a high fidelity cybersecurity environment in which the autonomous
agent interacts with. The purpose of the environment is to act as a platform for research in ACND,
whereby challenges are open to the public. Namely, the TTCP Cage Challenge 1, 2, 3 and 4. The
challenges are enterprise network environments with ascending complexity (in terms of the ob-
servation and action space for the red and blue agent). In Table 6, all CybORG challenges have
been added encapsulated into one column to address the overall contributions provided by the
contributors.

In the TTCP CAGE Challenge 2, which is an extension of CC1, the action sets for the blue agent
are exhaustive.

• Remove - removes malware from a host.
• Restore - if malware has elevated privileges it cannot be removed, and the host must be
restored from backup (with a cost associated with it).

• Analyse - monitoring does not always detect infection (5/100 times) but performing an
analysis on the host will always detect it.

• Decoy service - sets up a decoy service on a specific host to delay and detect red agent activity
(there are 7 different services available).

• No action - Monitoring occurs regardless of other actions.
Scenarios can be defined in YAML files (i.e network topology and asset criticality). In addition, the
project comes with varying red agents utilising different strategies. Finally, the documentation
is exhaustive and details the high-level desired actions of an autonomous blue agent. On top of
this simulated environment, CAGE Challenge 2 extends to an emulation (which is closed source),
which can be spun up on AWS to validate the trained agents.

TTCP CAGE Challenge 3 [52] requires participants to develop autonomous defences for a
network of drones, pre-compromised by malware during manufacturing, to establish a necessary
communication network. The challenge is set within the CybORG environment, focusing on a
scenario with 18 drones at constant risk from dormant firmware malware, operating in a 100x100
area with a 30-unit communication radius and a maximum 100-unit bandwidth. Teams alternate
in discrete steps to achieve their aims, with the environment automatically providing offensive
(red) and neutral (green) teams, and researchers guiding the defensive (blue) team. The green team,
representing one agent per drone, simulates ground operative bandwidth demand, while blue and
red teams vie for drone control, totaling 18 active agents. Drone movements and network structure,
dictated by a randomised swarming algorithm, remain constant, allowing researchers to focus on
combating malware through software command and control tactics as a distinct challenge. The
reward function, accessible at every timestep through the standard OpenAI gym interface, motivates
the creation of Multi-Agent Reinforcement Learning (MARL) agents, evaluating their defensive
performance by averaging scores over 1000 episodes, each up to 500 steps. The optimal score in
the challenge is 0, indicating flawless message delivery, with -9000 as the minimum, reflecting
complete message failure for an episode.

A recently released TTCP CAGE Challenge 4, the network architecture is divided into four sub-
networks, including two deployed networks, the Headquarters (HQ) network, and the Contractor
network, all interconnected via the internet. The deployed networks are further segmented into two
security zones - a restricted and an operational zone, whereas the HQ network is organised into
three security zones: a Public Access Zone, an Admin Zone, and an Office Network. The Contractor
network, in contrast, comprises a singular UAV control zone. To foster the creation of sophisticated
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agents, the composition of each security zone will be variable, with 1-6 servers and 3-10 user
hosts, each equipped with 1 to 5 services, ensuring a dynamic and unpredictable environment. The
network is defended by five network defenders (MARL): two per deployed network across security
zones, one for the entire Headquarters, and none for the Contractor network, which remains
undefended. The red team starts with access to the Contractor network, seeking to expand its reach.
Red agents can multiply each turn either through opened phishing emails by the Green team or
compromised service interactions, with a limit of one Red agent per zone capable of existing on
multiple hosts. Although the blue team can eliminate Red’s presence in a network, the red team
retains a permanent foothold in the Contractor Network.

Yawning Titan [29] is a highly abstracted graph-based gym for training blue agents. The action
spaces for both the blue and red agents do not map to realistic ones expected for cyber defence. In-
stead, it appears that the gym has been created to efficiently test and validate approaches/algorithms.
The graph-based design also suggests it’s true purpose is to explore computationally expensive
approaches involving generalisation A.1.2 as networks can be defined as functions where the YAML
file determines the behaviours and spaces. Table 6 has been used to summarise all open-source
ACO gyms that can be experimented with.

Researchers from the KTH Royal Institute of Technology and DARPA have jointly developed
an open-source platform named The Cyber Security Learning Environment (CSLE), as described
in [97]. This framework features network simulation capabilities that facilitate the generation of
Markov Decision Processes (MDPs) and enable the rapid learning of security strategies through the
training of DRL algorithms for autonomous blue team operations. These strategies can be assessed
within an emulated system that offers a realistic setting for evaluation without disrupting the
workflow of the targeted system. CSLE includes comprehensive documentation for implementing
autonomous blue team strategies within both simulated and emulated environments, enhancing its
effectiveness for scalability and realism respectively.
Researchers from QinetiQ released PrimAITE 16 17, which is an environment that provides the

ability to model a customised networked system, while replicating real-world networked system
intricacies (e.g., representation of connections, IP addresses, ports, OS’s and services) in a way
done by a static CybORG environment. The gym environment, made through OpenAI gym, is
specifically incorporated to allow DRL functionalities as Autonomous Blue Teaming agents.

6.2.2 Closed-source Gyms. The rest of the ACO Gyms have been analysed in Table 7 through the
ACND Requirements shown in Table 3. While the ACO Gyms highlighted are not open-source,
they can provide important insights within the ACND community, particularly for researchers
who can take inspiration when designing or making modifications to the existing ACO gyms. For
example, no open-source ACO Gyms currently available have recognised the need of incorporating
algorithmic cyber-attacks (G.6.2) within the action space of autonomous red agents. In addition,
many closed-source gyms mention the need to scale the size of the network without configuration
issues (G.1.4), an area which only one open-source gym implements and emphasises on. This feature
within ACO Gyms incorporates enhanced realism within networked systems as networks and hosts
in a corporate environment are non-stationary. Lastly, closed-source environments like [79] have
provided more comprehensive cyber-attacks using the MITRE ATT&CK framework for autonomous
red agents, allowing more open-source gyms to implement the features within their environments.
Overall, similar to open-source gyms, closed-source gyms also provide us with key developments
and research areas within ACND and can be utilised to further enhance ACO Gyms in the future.

16https://github.com/Autonomous-Resilient-Cyber-Defence/PrimAITE
17https://www.qinetiq.com/en/news/qinetiq-releases-primaite-software-to-support-evolution-of-cyber-defence-agents
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Autonomous Cyber Operations Gym (Open-source)

Requirement CBS GIG GTD OIR CybORG NaSim YT CSLE PrimAITE

G.1.1 + + +

G.1.2 + + + +

G.1.3 + +

G.1.4 + + + +

G.2.1 + + + + +

G.2.2 + + + + + + + +

G.4.1 +

G.5.1 + + + + + + + + +

G.5.2 + + + + + + + +

G.6.1 + + +

G.6.2
Table 6. ACO Gyms (Open-source)

Specifically, their novel implementations could be treated as an open problem for future ACO Gym
creators, leading to incremental progress towards the realism of ACO Gyms.

6.3 Combined Analysis of all ACO Gyms
As shown in Table 6, most authors have recognised the requirement of the seamless addition
and removal of nodes and components (G.1.1). Authors also meet the requirement of the adding
autonomous agents (G.1.2) that are able to generalise their decisions along with understanding the
structural changes within the ACO Gyms (A.1.1 and A.1.2 respectively). Moreover, all publications
have also understood the requirement of AI-based sequential decision-making autonomous red and
blue agents (A.2.1 and A.2.2 respectively), and have structured the ACO Gym as an MDP in order
to facilitate such agents. However, while such ACO Gyms are highly scalable (G.1.4) and allow the
development of relevant autonomous agents, the environments utilised in all implementations are
simulations of real networked systems, highlighting the lack of open-source emulated/real-world
ACO Gyms (G.1.3). This results in the lack of "real-world" experience of autonomous agents, which
will essential for utilisation within current networked systems.

While the rest of the analysis apply to those of autonomous agents, the design of the current
state of the ACO Gyms could be used to assess the quality of autonomous agents that could be
designed within the ACO Gyms. Overall, only one ACO Gym (CybORG Cage Challenge 3 [52, 121])
has recognised the need for autonomous multi-agent algorithms (A.4.1) as autonomous blue team
solutions. Along with Cage Challenge 3, Malialis et al. [85] and Eghtesad et al.’s [37] publications
(specifically focusing on using DRL for defending against DDoS attacks) environments could be
a potential inspiration for structuring the ACO Gyms to facilitate multi-agent autonomous red
and blue teaming collaboration (G.4.1). Very few ACO Gyms facilitate adversarial training (G.6.1
and A.6.1), which could potentially be utilised to strengthen the autonomous blue agent against a
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Autonomous Cyber Operations Gym (Closed-source)

Requirement [44] [88] [43] [16] [110] [111] [79] [90] [38] [2]

G.1.1 + + + + + +

G.1.2 + + + + + + +

G.1.3 + + + + + + +

G.1.4 + + + + + +

G.2.1 + + + + + +

G.2.2 + + +

G.4.1

G.5.1

G.5.2 +

G.6.1 + + +

G.6.2 +
Table 7. ACO Gyms (Closed-source)

variety of cyber-attacks (A.6.2). No ACO Gyms currently open-source have recognised the need of
incorporating algorithmic cyber-attacks (A.6.3) within the action space of autonomous red agents
against autonomous blue agents. Inspiration can be taken from a closed-source ACO Gym [90] to
incorporate algorithmic attacks such as evasion and poisoning of autonomous agents such as DRL
algorithms.

6.4 Other Deployed Approaches
Several studies have focused on employing datasets and environments to enhance the detection and
analysis of attacks. These environment-centric publications have been distinguished in this section
from previous discussions, as they do not engage the use of wrappers for sequential decision-making
algorithm frameworks, such as deep reinforcement learning (DRL). Such frameworks are crucial
for autonomously addressing malicious alterations within the environment.

Researchers and engineers at Splunk create an open-source tool named Attack Range 18, designed
for developing and testing the effectiveness of detection systems by simulating attacks in both
cloud and local testbed environments. The detection development platform solves three challenges
within the detection engineering domain, these include:

• The user being able to build a small lab infrastructure replicating a production environment
• Utilising attack simulation from different engines to generate highly realistic attack data
• Streamlined integration into Continuous Integration/Continuous Delivery pipeline to auto-
mate the detection rule testing process

The work therefore, allows the possibility to scale an implementation of a plethora of cyber attacks
within the MITRE ATT&CK framework, and test the effectiveness of various detection methods.
However, given the lack of autonomous response and sequential decision-making algorithmic
18https://github.com/splunk/attack_range
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frameworks implemented within this environment, the work lies outside the scope of ACND
research.
Landauer et al. [76, 77] developed simulations of user attack scenarios and shared multiple

labelled datasets to assess and compare the efficacy of Intrusion Detection Systems (IDSs) based
on their detection accuracy. Moreover, the simulation includes a transformation engine that can
automatically generate testbeds with capabilities for parallel operations. The creation of these
testbeds involves a level of abstraction, enhancing reproducibility, flexibility, and usability. The
datasets within these testbeds are structured to analyse multi-step attacks on a host, with each
step of the attack being logged and labelled. Landauer et al. [75] have further enhanced the realism
of their work by creating the Kyoushi Environment, a testbed that emulates a small enterprise
network. This environment utilises complex state machines to mimic typical user activities and to
introduce additional multi-step attacks. The data is automatically generated and labelled according
to the configuration of the testbed. The Kyoushi Environment is publicly accessible 19. Although this
testbed is one of the most effective setups for intrusion analysis, it currently lacks an autonomous
response framework to counter multi-step attacks, thus relying heavily on numerous human
operators to mitigate malicious threats within the network. Consequently, it remains outside the
scope of ACND research. To date, no efforts have been made in this work to include wrappers or
interfaces for integration with existing sequential decision-making frameworks such as DRL.

Chadha et al. [22] developed CyberVAN, a high-fidelity cyber environment specifically designed
to counter evolving cyber threats. This tool is widely utilised by cybersecurity professionals for the
effective evaluation and validation of cybersecurity technologies. CyberVAN offers a highly realistic
representation of network environments, closely approximating the deployment of actual networks.
It supports scalability, efficiently managing tens of thousands of varied cyber components such as
hosts, routers, switches, firewalls, and communication infrastructures includingWi-Fi, LTE / 5G, and
satellite networks. Additionally, CyberVAN is user-friendly, featuring advanced functionalities for
the creation, implementation, and preservation of cyber scenarios used in experiments, operational
planning, validation, and training. Despite its realism, CyberVAN relies on human analysts for
threat mitigation and lacks the integration of sequential decision-making algorithms, thus not
aligning with the scope of ACND.
As observed above, several projects explore the application of real-world approaches in cy-

bersecurity research by developing flexible and abstract testbeds capable of adapting to various
network environments. However, the current deployed state-of-the-art does not yet include the
integration of sequential decision-making algorithms capable of quickly and universally detecting
and mitigating multi-step attacks. Despite this, the methodologies used in developing real-world
detection systems can inform the deployment of Autonomous Blue and Red Teaming algorithms
within realistic networked systems, especially since their development is currently confined to
simulation and emulation environments.

7 ACND Algorithms within open-source ACO Gyms
Out of the open-source ACO Gyms mentioned in the previous section, several autonomous decision-
making algorithms have been utilised for training and testing as autonomous agents. The ACO Gym
creators and autonomous blue and red team agent developers have recognised the need for DRL-
based solutions within the domain due to their nature of sequential response. While many of the
requirements are met through the use of DRL-based solutions, this section suggests several gaps that
still exist within the design of the autonomous agents through currently published implementations.
Such gaps will require being met before the algorithms can be deployed into real-world networked

19https://github.com/ait-aecid/kyoushi-environment
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systems for cybersecurity. Out of the current ACO Gyms, only two open-source ACO Gyms have
been utilised in the publications of autonomous red and blue agents. In addition, many algorithms
have been developed and are released open-source to promote research and development within the
domain. CybORG [121] released four challenges with simulated networked systems with varying
ACO Gym complexity in terms of the actions and observation spaces. The challenges focus on
the development of autonomous blue agents, while the development of autonomous red agents
(comprising of two different types of cyber-attacks) is also possible. NaSim [114] authors made
their code open-source for the development of autonomous red agents and a few publications and
implementations have utilised the simulated networks for the development of such agents.

7.1 Autonomous Blue Team Solutions
Of the two ACO Gyms discussed, CybORG has published results for its challenges [1], ranking
the RL-based algorithms used in Cage Challenge 1 [20] and Cage Challenge 2 [51], with results
from Cage Challenge 3 forthcoming [52]. These rankings are based on performance metrics defined
by the organisers. A variety of teams employed different approaches and implemented diverse
strategies through their autonomous agents. This article selects the highest-performing methods
from these challenges and assesses them against the ACND requirements presented in Table 3.

From Cage Challenge 1, Team Mindrake [40] won the challenge and produced a Hierarchical RL
algorithm that included proximal policy optimisation [112] with curiosity. The hierarchical [57]
component of the algorithm is utilised through a controller to take relevant action according to the
type of adversary that is deployed against the autonomous agent (B_line and Meander APT agent).
Models are pre-trained against both adversaries separately from the training phase and are then
tested by the same adversaries at random episodes. The curiosity component allows exploration
within the environment in the training phase via intrinsic reward [102], improving the reward
achieved by nearly double. While the autonomous agent was victorious within the challenge, it
does not meet the requirements A.1.3, A.2.4, A.3.1, A.4.1, A.6.3 and A.6.4. This is primarily due
to the availability of the actions that could be taken amidst the two adversaries, along with the
variety of attacks that could be conducted by the adversaries. Additionally, the environment [20]
cannot facilitate A.4.1. Similarly, the other three submissions also met the same requirements as the
winners of the challenge. From Cage Challenge 2, the team from Cardiff University (with GitHub
code 20) won the challenge and also produced a Hierarchical PPO similar to Team Mindrake in
Cage Challenge 1. However, the team utilised the availability of deception within the 2nd challenge
through the selection of decoys (when required within the scenario) in a greedy manner. Using
the ACND Requirements, the autonomous agent was not able to meet the requirements A.1.3,
A.2.4, A.3.1, A.4.1 and A.6.3, but met the requirement of using deception due to its availability
within Cage Challenge 2. Bates et al. [10] utilise Cage Challenge 2 to study the effectiveness of
reward shaping and intrinsic agent curiousity on the performance of their autonomous blue agent.
While the autonomous agent met the same requirements as the implementation above, the authors
managed to improve sample efficiency, which is an area critical within ACND when applied to
emulated domains. From Cage Challenge 3, Hicks et al. [58] won the challenge by utilising a MARL
PPO with curriculum learning [11] to efficiently manage large action spaces, meeting the key
requirement of multi-agent collaboration (A.4.1).
As shown in the first two challenges, variations of hierarchical PPO agents have shown most

optimal performance (also suggested and algorithmically proven in [135]) as compared to other
approaches. While the autonomous agents are able to generalise the moves of the two adversaries,
the environment in which they were trained on did not comprise of many different types of cyber

20https://github.com/john-cardiff/-cyborg-cage-2
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and algorithmic attacks (A.6.2, A.6.3) for the autonomous agents to generalise a greater pool of
algorithmic attacks. To meet these requirements within this ACO Gym, future implementations
could modify the ACO Gym to increase their cyber and algorithmic attack capabilities to assess the
quality of generalisation of the autonomous agents against a greater pool of attacks. In contrast,
no autonomous agent implementations in both challenges provided any form of explainability
(A.2.4) regarding their incoming actions that they will take. The third Cage Challenge aimed at
resolving the requirement of MARL agents (A.4.1), leading to several implementations submitted
to this challenge using the algorithm to deal with the challenge of large action spaces. However,
the environment (and hence, the agents) lacks the adversarial training of a variety of cyber and
algorithmic attacks (A.6.2, A.6.3).

7.2 Autonomous Red Team Solutions
Unfortunately, unlike for the Autonomous Blue Team Solutions, no public challenges have been pro-
posed. As a result, research has been conducted in different gyms and under varying configurations.
Therefore public comparable benchmarks are lacking.

Autonomous Red Teaming Solutions, as shown in Table 8 have so far largely been performed
through Reinforcement Learning inACOgym environments such as CyBORG [121], NetworkAttack
Simulator [114] and CyberBattleSim [125], or in emulators or custom representations of IT networks.
This intuitively makes sense as the problem is perfectly modelled for a Reinforcement Learning
game (exploring a POMDP). Similarly to Autonomous Blue Teaming solutions, the Proximal Policy
Optimisation algorithm has shown to be the most successful approach.
One example worth noting, involves research conducted in the CyBORG gym by [121] which

presents the only known example of transferring a simulated red agents into an emulation. Re-
searcher implemented DQN agents in the CyBORG simulator. They then validated the autonomous
agents in the CyBORG emulator (G.1.3). Most of the autonomous agents successfully transferred to
the emulator. Those which didn’t likely failed due to over fitting to the observation in the simulator
(moving from a discrete to continuous timed observations).
Another example from the Nasim gym, presents the first example of scaling generalisation (G.1.1)
was conducted by [122]. They implemented Deep RL agents trained in small scenarios and validated
on larger ones at testing time. Their research suggested that the Proximal Policy Optimisation
algorithm seemed to generalise slightly better than other algorithms.

However, it remains an open-question if such algorithms are the most appropriate, indeed there
appears to be a lack of research on casual approaches in Autonomous Red Teaming Solutions, even
though these have recently been shown to be promising for the Blue Teaming side [6].
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Autonomous Red Team

Papers [127] [121] [93] [122]

A.1.1

A.1.2

A.1.3 +

A.2.1 + + + +

A.2.2 + + + +

A.2.3 + + + +

A.2.4

A.3.1

A.3.2

A.4.1

A.6.1

A.6.2

A.6.3

A.6.4

Gym CyBORG CyBORG Nasim Nasim
Table 8. Autonomous Red Team solutions within open-source Gyms

8 Discussion
Themain purpose of this paper is to identify an imminent research area, ACND, within cybersecurity
in order to mitigate cyber-attacks in the future. Autonomous response to cyber-attacks will need to
be addressed through the research and development of autonomous red and blue teaming agents
that are sequential in the nature of their decision making. The development of such algorithms could
be accelerated through a parallel research and development within the area of ACO Gyms. While
recent advancements have developed the research area in particular directions, more challenges
have been identified using the ACND Requirements (on existing literature) in this paper for the
future development within the mentioned areas. Over 50 publications were analysed and compared
through the ACND Requirements in Table 3. While the development of ACO Gyms and autonomous
red and blue agent comprise of separate research and development strategies, the progress of one
area is heavily dependent on the other, justifying the reasoning of having common research
challenges. Since more challenges may exist in the specific requirement addressed, it is encouraged
for researchers to build on this document to further address and develop areas within ACND that
could further catalyse its development into industrial use.
The direct association of ACND Requirements in Table 3 with the publications identified as part of
ACND has highlighted evident open problems and their corresponding challenges that must be
addressed for the further development of ACND systems prior to their integration into real-world
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applications. This section answers the fourth research question and delineates the identified areas
for further research and development, connecting them to the specific requirements outlined in the
ACND Requirements.

8.1 AI-based Attack Robustification of Autonomous Blue Agents (A.6.3, G.6.1, A.6.1,
G.6.2)

This area focuses on enhancing the robustness of DRL algorithms against poisoning and evasion
attacks, which target the algorithmic functions of autonomous agents. Such attacks could originate
from an insider adversary or a supply chain cyber-attack that alters the training code. To date,
there has been scant research on these types of attacks targeting DRL algorithms. Nonetheless,
it is clear that future cyber-attackers will likely exploit these methods through DRL and neural
network-based research in various domains [8, 9, 24, 31, 70, 116, 143]. Although a few defences
have managed to cleanse such poisoned models successfully [14, 53], they are prone to being
bypassed by more sophisticated poisoning techniques [9]. Thus, the overarching challenges for
this open problem include defending against algorithmic poisoning and evasion attacks in baseline
AI environments, as well as the implementation and defence against these attacks within an ACO
Gym, which would involve more advanced and context-specific AI attacks. If this open problem
remains unaddressed, future networked systems may be at risk of algorithmic attacks that could
seize control of autonomous blue agents and eventually, the entire network.

8.2 Continual evolution of action space for the Autonomous Red Agents (A.3.1, G.6.1,
A.6.1, A.6.2, A.6.3)

Autonomous red agents action spaces are constantly evolving. Indeed, new services are often
added which may have vulnerabilities tied to them. In addition, “every year new exploits are found
for software and so in order to be useful Autonomous penetration testing agents will need to be
able to handle a large growing database of exploits.” [113]. Overall, this open problem aims to
develop autonomous red teaming agents and ACO Gyms that can continuously add new types of
cyber-attacks autonomously. While this open problem is reliant on other open problems 8.1 and 8.6,
the development and addition of cyber-attacks autonomous red agents based within a continual
learning setting are yet to be explored. The development of such system when utilising the current
ACO Gyms requires the challenge of utilising different DRL algorithms that can continually add
new sequential actions, while the challenge within ACO Gyms would be to convert the discrete
configuration used in most gyms, into a continuous environment. Failure to implement on these
challenges will keep the autonomous blue agent outdated from latest cyber and algorithmic attacks.

8.3 Explainable RL (A.2.4)
Explainable RL is more complicated than XAI, in fact “explainability for an RL agent, while clearly
a subset of XAI and with similarities to IML (Interpretable ML), has distinct characteristics that
requires its explicit separation from current XAI and IML research” [32]. Indeed, the first difficulty
for XRL is due to the long-time horizons which determine the decisions/actions to take. The
second one relates to the models not being built off labelled training data (which would simplify
explainability). Therefore, this open problem currently relies on the development of AI research
advancements, which can then permeate into the ACND domain. The challenge here involves the
development of explainable and interpretable DRL algorithms within baseline AI environments,
and then transferring their operations into ACO Gyms. Further inspiration could be taken from
relevant survey papers and implementations [5, 49, 81, 82, 87, 89, 100, 104, 105, 117, 126]. Failure
to address this challenge will lead to the autonomous blue agent not being certified by industrial
employees within networked systems since the trust towards the agent will be low [82].
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8.4 Multi-agent RL (G.4.1)
Another research area within autonomous blue teaming for ACND is the utilisation of multi-agent
RL algorithms. This will be particularly more beneficial within enterprise networks environments
which are highly complex. While [121] authors have proposed the implementation of multi-agent
RL within their third and fourth Cage Challenge 21 22, more research areas could emerge with
increased research within this domain. Using single autonomous blue teaming agents will be useful,
however, mistakes made by the agent within non-work hours will not be addressed unless there is
another agent that evaluates the first agent and alerts it if a wrong decision is made.

8.5 Robustification of Deception Techniques in Autonomous Blue Agents (A.6.4)
It is highly important to highlight the necessity for research areas which utilise deception tech-
nology for ACND purposes. Their inclusion within ACO Gyms will allow the introduction more
complex and proactive defensive deception techniques in order to study their effects in misdirecting
and disrupting adversaries along the cyber kill chain. This is an open problem since existing litera-
ture rarely considers the complexity of this challenge, underlining the infancy of deception as a tool
for ACND. Research that falls into this category [47, 131, 132] typically prioritise the use of honey-x
methods [103] or ‘lures’ to analyse adversary behaviours through intelligent deployment strategies.
This research challenge could make use of a useful framework for the challenge to encourage diver-
sity within deceptive assets is the MITRE ENGAGE matrix, which identifies numerous deception
techniques that can be leveraged at different areas of ACND to optimise adversary engagement
23. Failure to address this challenge deflects from the key purpose of deception as adversaries can
weaponise on the homogeneity of decoys and thus magnify the asymmetry that is ever-present
between blue and red agents 5.

8.6 Realism of ACO Gyms (G.1.3, A.3.1, A.3.2, G.1.4, G.1.1, G.1.2)
Another open research area within the ACO gyms is the lack of realism of most of the environments
that currently exist. Ametric to classify the quality of the training-testing (or continual learning [58])
strategy as a research area is particularly important. Additionally, researchers generally would
require building simulated environments and then transfer the learned policies to the real world (Sim-
to-Real Transfer), this is often done in the case of robotics as pointed out by [141]. Environments
such as CyBORG [121] attempt to address this challenge by supporting both simulation and
emulation, however, both implementations comprise of areas which do not represent real networked
systems (i.e., latency delays in simulation and network scalability in emulation). In addition, IT
and OT networks, unlike traditional RL tasks, are continual and ever-changing environments
which contrasts with most RL tasks. Moreover, networks and hosts in a corporate environment are
non-stationary, whereas video games in which RL have been used would not expect an agent to
perform well on an entirely new map [13, 64, 129]. Lastly, it should be noted that some networked
systems like enterprise networks are multi-party network, which have a hierarchy of access
levels depending on the user, future ACO Gyms should focus on designing such systems which
incorporate this. The challenge here looks at developing new ACO Gyms to aid continual learning,
an everchanging configuration and incorporating access restriction while training the DRL agents
to maintain generalisability [101]. Such issues must be addressed, else the agent will not recognise
the environment when implemented within real-world networked systems, leading to unwarranted
actions being taken.

21https://github.com/cage-challenge/cage-challenge-3
22https://github.com/cage-challenge/cage-challenge-4
23https://engage.mitre.org/
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8.7 Realism of Deception Techniques (A.6.4)
Deception fidelity is often overlooked and introduced as a part of a constraint or assumption
in current literature. As virtualisation of physical assets becomes more commonplace in context
of network emulation, the implementation of Deception-based Cyber Defence (DCD) platforms
must have the capability to model and simulate physical processes to maintain system fidelity and
not alert attackers of its use. However, it is difficult to strike a balance between system fidelity
and a sizable attack surface, particularly when considering the complexity and scale of some
networked systems such as corporate networked system and OT environments, where researchers
must find methods to emulate devices in convincing ways without replicating the network in its
entirety. This open problem requires new methods for creating decoy profiles for assets which
embody the attributes of the network component. To solve this challenge, researchers can also
look to deceptive techniques which already consider or enhance the fidelity of integrated-lures.
‘Honeyshills’ [59] are an example as they use real components or systems and configure them to
communicate with decoys to further give the impression of realism. These encourage suggestions
for scaling deception methods within simulation-based networks and ultimately the move towards
the emulated domain. Failure to address these challenges may result in the exposure of deception to
the attacker, nullifying the precedence of deception over an attacker’s inadvertence to its use. Such
a contradiction cancels-out the symmetric advantage that’s provided by correctly implementing
deception technology.

8.8 Impact of Incorrect Action (G.6.1, G.1.3) [41]
The issue of incorrect actions also leads to a wide open research gap within the ACND literature for
autonomous decision-making agents. The impact of such actions could lead of a plethora of issues
within a corporate organisation. Examples range from minor actions such as blocking benign user
hosts from joining the network to major actions such as the deletion of mission-critical documents
conducted due to a lack of data diversity within the data used for training the autonomous blue
agents. Therefore, research challenges include appropriate evaluation and metrics for the maximal
reduction of "damage control" done by the agent. Additionally, explainable approaches [60, 89, 117]
must be prioritised for superior forensic evaluation of the autonomous agents. Not addressing this
area will result in the autonomous blue team agent potentially eliminating important processes
within the network, which could lead to high monetary losses.

8.9 Action and Observation Spaces (G.2.1 ,G.2.2, A.2.3)
Existing research in ACND significantly reduces the action and observation spaces by abstracting
the action spaces to a point where they may no longer be usable in the “real world”. Indeed, in a
cybersecurity setting where agents may be deployed on thousands of hosts (in a single corporate
network), each with huge action sets (kill any process, move/quarantine any file, change any
firewall setting etc.) and essentially a continuous observation space, it would be challenging to
sufficiently explore the space in training. This challenge applies to autonomous red agents also as
“applying conventional DRL to automate penetration testing would be difficult and unstable as the
action space can explode to thousands even for relatively small scenarios” where “each action in
autonomous penetration testing can have very different effects such as attacking hosts in different
subnets or different method of exploits” [127].

8.10 Development of new ACO Gyms (G)
In the current landscape of ACND, the availability of open-source ACO (Autonomous Cyber Opera-
tions) Gyms for researchers to test their autonomous blue and red team agents is markedly limited.
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This scarcity presents an open problem, urging more collaboration among AI and Cybersecurity
professionals to propel advancements in ACND by developing new ACO Gyms. The challenges as-
sociated with this open problem involve gaining proficiency with the OpenAI Gym framework and
leveraging the foundational code present in existing ACO Gyms as a basis for further development.
Additionally, researchers are encouraged to utilise the Table 3 and the open problems above for
constructing the networked system and incorporating the suggested research enhancements for
the ACO Gym outlined in both the table and the open problems. Inspiration could also be taken
from the existing OpenAI benchmark games and custom Gyms used for different applications.
Researchers can also make use of the Kyoushi Environment and incorporate host-based datasets
for every machine as a way to improve realism of ACO Gym development.

9 Conclusion
This article advances the understanding of Autonomous Cyber Network Defence (ACND) by eluci-
dating its terminology through research articles, government strategic reports, and cybersecurity
training organizations. This clarification of terms facilitated the identification of specific ACND
sub-areas, namely, Autonomous (Blue and Red) Agents and Autonomous Cyber Operations (ACO)
Gyms, thus guiding the creation of ACND Requirements, a set of criteria used to evaluate the
relevant literature. Through an extensive literature review on autonomous blue and red teaming
algorithms within ACO Gyms it was revealed that Deep Reinforcement Learning (DRL) so far has
outperformed Game Theoretic and conventional Machine Learning approaches. DRL’s advantage
lies in its ability to handle sequential decision-making for achieving short-term and long-term
objectives. Moreover, an in-depth assessment of both open and closed-source gyms, along with
their implementations of autonomous teaming, was conducted. These evaluations, guided by the
ACND Requirements, pinpointed areas ripe for further research.

To leverage DRL’s capabilities in practical cybersecurity applications, further advancements
are necessary in autonomous agent technologies and ACO Gym environments. Our findings have
pinpointed specific challenges and gaps in the current field, including improving the robustness of
defences against autonomous blue agents, enhancing the realism of ACO Gyms, minimising the
repercussions of erroneous actions, and refining ACOGym designs. Additionally, critical issues with
DRL defenders need addressing, such as safeguarding against adversarial policies targeting blue
agents, enhancing the explainability of blue agents, and refining multi-agent systems. Tackling these
unresolved problems is vital for the progression of autonomous agents from controlled simulations
to real-world networked environments, ultimately steering future research and development efforts
in ACND.
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