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The physics of glass has been a significant topic of interest for decades. Dynamical facilitation
is widely believed to be an important characteristic of glassy dynamics, but the precise mecha-
nism is still under debate. We propose a lattice model of glass called the facilitated random walk
(FRW). Each particle performs continuous time random walk in the presence of its own random
local kinetic constraints. The particles do not interact energetically. Instead, they interact kineti-
cally with a hopping rate resampling rule under which motions of a particle can randomly perturb
the local kinetic constraints of other particles. This dynamic interaction is reversible, following a
rate restoration rule. A step-by-step reversal of the particle motions exactly restore the previous
constraints, modeling randomness quenched in the configuration space of glass. The model exhibits
stretched exponential relaxation and dynamical heterogeneity typical of glasses. Despite the lack
of explicit facilitation rule, the FRW shows facilitation behaviors closely analogous to those of the
kinetically constrained models (KCM). The FRW is a coarse-grained version of the distinguishable
particle lattice model (DPLM) and this exemplifies that compatible defect and atomistic models
can complement each other on the study of glass.

I. INTRODUCTION

The understanding of the dominant modes of relax-
ation dynamics in glassy materials have been debated ac-
tively for decades [1–6]. Molecular dynamics (MD) sim-
ulations are instrumental in their studies as they provide
complete information on the atomistic details of motions
[7, 8]. Besides more realistic all-atom simulations, simpli-
fied coarse-grained models are widely believed to capture
essential properties of glass. Nevertheless, due to the ex-
tremely slow dynamics of glasses, long-time relaxation
dynamics in MD simulations at deep supercooling rel-
evant to experimental conditions are still computation-
ally inaccessible, despite the availability of equilibrium
samples using advanced swap algorithms. The dominant
relaxation dynamics of glass can be hidden behind vi-
brational and other liquid-like collective motions which
diminish at deeper supercooling.

Lattice models play pivotal roles in many branches of
statistical physics [9, 10]. Many phenomena can be quali-
tatively reproduced and certain characteristic quantities,
such as scaling exponents, are in agreement with val-
ues from off-lattice simulations and experiments. Many
lattice models for glass are successful in reproducing key
features such as kinetic arrest and dynamical heterogene-
ity [11, 12]. There are however great challenges to justify
assumptions in most of these models. In addition, many
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glassy features may not be readily reproduced.

The n-spin facilitated model proposed by Fredrickson
and Andersen (FA) [13, 14] is one of the first kinetically
constrained models (KCM) [11]. It is a coarse-grained
defect model of glass. An up-spin represents a defect in
the form of a local region with low particle density. The
flipping of a spin can only be facilitated by the presence
of at least n neighboring up-spins. The dynamical facil-
itation picture pioneered by the FA and related models
[13–17] have been gaining further support very recently
[18, 19].

There have been proposal of new lattice models or vari-
ants attempting to better capture the essence of glass
[20–24]. In particular, the distinguishable particle lattice
model (DPLM) [20] of glass is defined by particle pair
interactions and void-induced dynamics. The DPLM is
an atomistic model in which each particle represents an
atom or a rigidly bounded group of atoms. Voids corre-
spond to missing particles and they are simplified repre-
sentations of quasivoids found in supercooled liquids [25].
The model demonstrates emergent facilitation behaviors
and has reproduced an extraordinarily wide range of ki-
netic and thermodynamic characteristics of glass [20, 26–
35].

In this paper, we propose a facilitated random walk
(FRW) model of glass. It is a coarse-grained and energet-
ically trivialized version of the DPLM. It is a defect model
with particles corresponding to voids in glass [25, 36, 37].
The FRW may open up a new class of KCM with ran-
dom constraints, which can be more readily justifiable
than the usual deterministic kinetic constraint rules [11].
We will explain emergent facilitation behaviors in which
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dynamics are dominated by coupled particle groups with
a group size depending on the constraint density. The
facilitated dynamics in such mobile groups is analogous
to and justifies the facilitation rule in the FA model.

The FRW model is a generalization of simpler ran-
dom walk models which will first be summarized. Ad-
ditional rules specific to FRW will be explained in the
next section. Only one-dimensional (1D) systems will
be discussed but generalization to higher dimensions is
straightforward.

Continuous-time random walk (CTRW): Con-
sider N particles on a one dimensional lattice with L sites
under periodic boundary conditions. No exclusion rule is
imposed such that any site i can contain ni = 0, 1, 2, . . .
particles. The particle density is ρ = N/L, which can be
varied from 0 to ∞.
For simple CTRW with no kinetic constraint, every

particle can hop to a given nearest neighboring (NN) site
with a rate w0. With two hopping pathways to the two
NN sites in 1D, the combined hopping rate of a particle
to an arbitrary NN site is thus 2w0.
CTRW with quenched constraints: We now im-

pose a distinct set of local kinetic constraints for each
particle by randomly blocking some of the hopping path-
ways. Specifically, particle k hops from site i to a NN
site j with a rate wijk, given by wijk = w0 with an un-
blocking probability q and wijk = 0 otherwise. We put
wijk = wjik in order to follow detailed balance. Other-
wise, each wijk is an independent and quenched random
variable sampled at the beginning of a simulation. For
q = 1, simple CTRW is restored. For q < 1, every parti-
cle is locally trapped within a finite well of its own. With
neither exclusion principle nor energetic interaction, par-
ticle motions are independent of each other and are triv-
ially solvable. As the randomness in the constraints is
quenched in the real space, the disorder in this model is,
however, not appropriate for glass.

The rest of the paper is organized as follows. In Sec. II,
we will generalize the simple models above to the FRW
model. Section III explains its exact equilibrium statis-
tics and the kinetic Monte Carlo simulation algorithm
used. In Sec. IV, we demonstrate standard glassy behav-
iors of FRW including stretched exponential relaxations.
Section V explains intuitively the emergent facilitation
mechanism and the resulting ergodic property. We then
conclude in Sec. VI with further discussions.

II. MODEL

The FRW model is a coarse-grained defect model of
glass, similar to the FA model [13]. Each site represents a
mesoscopic region with, for example, dozens of particles.
A particle in FRW physically represents a defect in the
form of a void [25]. Atoms or molecular units in the glass
are not explicitly simulated. All results are averaged over
at least two simulations.

Specifically, the model in 1D is constructed based on

FIG. 1. A schematic showing an example of system evolu-
tion in FRW for a lattice of L = 7 sites (grey squares) with
N = 5 particles (colored circles). An arrow, occurring with
an unblocking probability q = 0.5, indicates that the parti-
cle is able to hop at rate w0 in the corresponding direction.
Starting from the initial configuration (a), the hop of the yel-
low particle has led to a rate resampling of the right-hopping
rate of the green particle (b). In (c), the reversed hop of the
yellow particle has restored the previous right-hopping rate of
the green particle. In (a)-(c), note that all hops are reversible
due to detailed balance.

CTRW with random constraints in the absence of par-
ticle exclusion. Similar to the descriptions in Sec. I, we
consider a lattice size L, lattice constant a = 1, total
number of particles N , density ρ = N/L, and occupancy
ni = 0, 1, 2, . . . at site i. As before, the random con-
straints are such that the hopping rate wijk(t) of particle
k from site i to a NN site j depends on the unblocking
probability q and follows

wijk(t) =

{
w0 probability q

0 otherwise.
(1)

with w0 = 1 and they obey the detailed balance condition

wijk(t) = wjik(t). (2)

For the FRWmodel, we emphasize however that the hop-
ping rate wijk(t) is not quenched but can be reversibly re-
sampled, i.e. resampled or restored, repeatedly through-
out a simulation. The rules for this time dependence are
the defining characteristics of FRW and are defined as
follows:

(i) Rate resampling: If particle k hops from site i
to j, we will resample the hopping rate wijl(t) =
wjil(t) across bond ij for all other particles l ̸= k
using Eq. (1).

(ii) Rate restoration: After particle k has hopped
from site i to j, if it performs a reversed hop from j
to i, we will restore the previous values of wijl(t) =
wjil(t) across bond ij for all particles l ̸= k.
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Figure 1 shows an example of particle configuration and
evolution.

The resampling rule introduces a form of dynamical
interactions, in the absence of any energetic interaction.
It turns the FRW into a correlated-particle model and
enables rich dynamical behaviors. Physically, it models
the mechanism that the motion of particle k, representing
a defect, perturbs the local packing of the glass atoms at
the sites. This alters the energetically favorable local
hopping pathways of every other defect l, although the
effect is felt only when l arrives at the sites.

On the other hand, the rate restoration rule imple-
ments randomness quenched in the configuration space
but not in the real space. It physically represents that
when defect k reverses its previous hop, the local atomic
packing of the glass is reversed so that the previous local
energetically favorable pathways of every other defect l
are restored.

In general, the restoration rule can be applied to any
arbitrarily long sequence of hops. If the hops are reversed
step-by-step in the reversed order, the rates will be step-
by-step restored. Nevertheless, in a large system, groups
of particles that are well separated at all times should
not affect each other. More precisely, the restoration rule
applies to a whole correlated sequence of hops. It does
not require reversing any other uncorrelated hop at a
distance which has no impact on the rates of hops in the
sequence.

III. EQUILIBRIUM STATES AND SIMULATION
ALGORITHM

The FRW is a kinetic model with trivial energetics.
The detailed balance condition (Eq. (2)) implies that all
accessible states have identical occurrence probability in
an equilibrium ensemble, implying the same system en-
ergy at all states. Furthermore, the model is ergodic in
the large system size limit, as will be explained in Sec. V.
As a result, the equilibrium states of FRW is trivial and
can be described exactly as follows. At equilibrium, all
particle arrangements are possible and are equally likely.
To initialize an equilibrium system, we simply need to put
each particle randomly and independently on the lattice.

We perform FRW simulations using a rejection free
Monte Carlo algorithm. During a simulation, we con-
tinuously keep track of all unblocked hopping directions
with rate w0 of all particles. At every time step, we
randomly choose one of these hops with a uniform prob-
ability. To choose efficiently, we search a binary tree
which dynamically represents all available hops. Then,
the hop is performed and the simulation time advances
by (Mw0)

−1 where M is the total number of unblocked
hopping directions of all particles.

A potentially challenging part of the algorithm is re-
lated to the hopping rate restoration rule, which recalls
previous rates after an arbitrarily long hopping sequence
is step-by-step reversed. To enable such restoration,

one could employ a memory intensive algorithm that in-
volves saving the history of all previous states and hop-
ping rates into the computer memory. However, this
method requires a nontrivial data structure design and
prohibitively large amount of memory for long runs.
To solve this rate restoration problem, we have de-

veloped a reversible pseudo random number based algo-
rithm so that all required rates are calculated from ran-
dom number sequences. The random number generators
thus encode and effectively store all possible rates, only
the current system state needs to be directly stored in
the computer memory.
The idea of the rate restoration algorithm is as fol-

lows. The FRW system state is primarily characterized
by the positions ik of every particle k. For bookkeep-
ing purpose, we introduce fictitious internal states Ψk

and Φij of particle k and bond ij. These internal states
are represented by 64-bits random numbers so that no
two states will be accidentally equal in practical simula-
tions. A hop involves updating Ψk and Φij essentially to
the next numbers the pseudo random number sequences.
At a reversed hop, previous states are obtained by up-
dating to the previous numbers in the sequences, which
are readily calculable because we adopt reversible gener-
ators. The hopping rate wijk(t) is defined as a function
of the instantaneous states Ψk and Φij so that previous
rates can be readily restored once the previous states Ψk

and Φij are restored. Using this memory-less algorithm,
we are able to run the simulation for long time without
any memory concerns while maintaining exactly the rate
restoration property. This algorithm is explained in de-
tail in Appendix A and III.
We have extensively tested the reliability of our soft-

ware implementation of these algorithms. In particu-
lar, we have checked that the known equilibrium states
are arrived at and maintained throughout the kinetic
Monte Carlo simulations. Furthermore, a highly non-
trivial test is the quantitative verification of an exact
mobility threshold for two-particle systems, as will be
reported elsewhere.

IV. GLASSY CHARACTERISTICS

We now explain FRW simulation results, demonstrat-
ing typical glassy characteristics.
Dynamical facilitation: Position-time graphs in

Fig. 2 illustrate particle motions in equilibrium FRW sys-
tems for an unblocking probability q = 0.5 under differ-
ent particle density ρ. In Fig. 2(a) with a low density
ρ = 0.05, particles are mostly isolated and they are all
permanently trapped within small traps. Coupled pairs
of particles have movements confined to slightly wider
traps. We will explain in Sec. V that such permanently
trapping is only a finite size effect.
In Fig. 2(b) where the density is doubled to ρ = 0.1, a

mobile group, usually consisting of 3 particles, traverses
over much of the system and can indeed travel unbound-
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FIG. 2. Position-time graphs of particles for lattice size L =
400, unblocking probability q = 0.5 and density ρ = 0.05 (a),
0.1 (b) and 0.15 (c). Mobile groups in (b) and (c) each consist
of 3 particles most of the time. The lack of any mobile group
in (a) is only a finite size effect.

edly at long time. As the mobile group moves, it picks up,
drops off or exchanges particles while keeping at least 3
particles at all times. When not part of the mobile group,
particles are generally trapped at their respective loca-
tions. Importantly, the drastically higher mobility ob-
served when particles are coupled together demonstrates
an emergent facilitation phenomenon which will be intu-

FIG. 3. Position-time graphs of particles for lattice size L =
200, unblocking probability q = 0.7 (a), 0.5 (b) and 0.35 (c).
To reveal relatively isolated mobile groups, we take density
ρ = 0.03 (a), 0.1 (b) and 0.2 (c). Each mobile group usually
consists of 2, 3, and 4 particles in (a), (b) and (c) respectively.

itively explained in Sec. V.

Figure 2(c) corresponding to an even higher density
ρ = 0.15 shows more abundant mobile groups. Each
group also contains at least 3 particles. Group sizes fluc-
tuate due the close proximity to many other mobile or
trapped particles.

The dominant size of mobile groups in FRW decreases
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FIG. 4. Particle MSD against time t in log-log scales for
various unblocking probability q and density ρ = 0.8.

with the unblocking probability q. To show this, we have
selected values of q where the typical mobile group sizes
are 2, 3 and 4 as plotted in Fig. 3(a), (b) and (c) re-
spectively. A different ρ is used in each case to give only
one or two mobile groups for clarity. This dependence is
explained in Sec. V.

Plateaus in Mean Square Displacement: We
calculate the particle mean square displacement (MSD)
defined as

MSD =
〈
|xk(t)− xk(0)|2

〉
(3)

where xk(t) denotes the position of particle k at time t.
Figure 4 shows the MSD against time for different q and
ρ = 0.8. At long time, the slopes of the lines in the log-
log plot is close to unity, indicating the diffusive regime.
Subdiffusive plateaus, characteristic of glass, appear at
intermediate time at low q. They indicate temporary
trapping of particles either isolated or in small immobile
groups as described above. At long time, most momen-
tarily trapped particles have been repeatedly picked up
and displaced by the larger mobile groups, resulting at
the diffusive regime. We observe that plateaus are more
pronounced at small q. This reveals stronger particle
trapping and more glassy at small q. More extensive re-
sults also show that a smaller ρ also increases the glassi-
ness.

Self-intermediate scattering function: We
have measured the self-intermediate scattering function
(SISF) defined as

Fs(k, t) =
〈
eik·(xk(t)−xk(0))

〉
(4)

for k = (2π/λ) with λ = 10 [20]. Results are shown
in Fig. 5(a) for different q and ρ = 0.8. As expected
of glassy systems, our data is well approximated by the
Kohlrausch-Williams-Watts (KWW) stretched exponen-
tial function A exp[−(t/τ)β ], where the amplitude A ≃ 1,
τ is the structural relaxation time and β is the stretching

FIG. 5. (a) Self-intermediate scattering function Fs against
time t (symbols) in linear-log scales for various unblocking
probabilities q with density ρ = 0.8. (b) Same data as in (a)
plotted as −log(Fs) versus t in log-log scale. (a)-(b) Data is
fitted to the Kohlrausch-Williams-Watts (KWW) stretched
exponential function for Fs < 0.9 (lines). Data for q = 0.2 is
not fitted as a full relaxation is not reached.

exponent. Fig. 5(b) displays a log-log plot of −log(Fs)
against t. The approximately linear regions at large t
demonstrate the applicability of the KWW form.
Using fitted values of the KWW form in Fig. 5(a), we

plot β against q in Fig. 6. We observe that β decreases
from 0.86 to 0.37 as q decreases from 0.8 to 0.3. This
range coincides well with typical values of glass.
Diffusion coefficient: We measure the MSD for var-

ious unblocking probability q and density ρ, and calculate
the particle diffusion coefficient as

D =
1

2d
lim
t→∞

MSD

t
. (5)

We use the data regime where the slope in the log-log
plot of MSD versus time is larger than 0.96, which we
deem sufficiently close to 1. Fig. 7(a) shows D against q
in a semi-log plot with different ρ. As q is expected to
increase with temperature, we also plot D against 1/q as
shown in Fig. 7(b). The near linear relation resembles an
Arrhenius dependence of D on q.
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FIG. 6. Stretching exponent β against q from KWW fits of
the SISF in Fig. 5(a).

V. FACILITATION MECHANISM AND
ERGODICITY

Isolated particles are often trapped as show in Fig. 2(a)
for example. The maximum distance an isolated particle
can travel from its initial position in either direction is
bounded and follows a discrete exponential distribution
with a mean

strap =
1

1− q
− 1. (6)

Including the initial site and noting the two possible di-
rections of travel, the average trap size Wtrap of an iso-
lated particle is

Wtrap =
2

1− q
− 1 (7)

which is finite for any q < 1.
Therefore, isolated particles are either completely im-

mobile or could only repetitively move within the trap.
These motions are responsible for an initial rise in the
MSD when they start to explore their traps. However,
trap boundaries begin to limit their motions at longer
time. This causes particles to hop repetitively within the
trap, resulting in the MSD plateaus as shown in Fig. 4
for small q, corresponding to narrow traps.
In contrast, particles that are close to each other form

mobile groups. For example, a mobile group consisting
of 2 particles emerges at q = 0.7 as shown Fig. 3(a). At
this value of q, all isolated particles are trapped, while
coupled pairs are mostly mobile. The higher mobility of
pairs compared to isolated particles clearly demonstrates
facilitation in FRW.

The facilitation mechanism can be intuitively under-
stood as follows. Assume that particle k is bounded at
time t1 by a barrier bond ij at an average distance strap,
i.e. wijk(t1) = 0. The rate is quenched only until it is
resampled by having the barrier broken. This is done by

(a)

(b)

FIG. 7. (a) Diffusion coefficient D against unblocking proba-
bility q (a) and 1/q (b) in semi-log scales for various density
ρ.

having another particle l hop across the bond ij at time
t2 > t1, which triggers a resampling with an unblocking
probability q. If this results at wijk(t2) = w0, the barrier
is lifted and particle k is untrapped. Conversely, particle
k can also untrap particle l. In general, if the individual
traps of particles k and l overlap spatially, the pair may
be able to continuously untrap each other, resulting at a
mobile pair as observed in Fig. 3(a).

As q decreases, particle pairs become trapped perma-
nently due to the more abundant constraints as observed
in Fig. 3(b), although the trap size of a pair is in general
wider than that of a single particle. Nevertheless, adding
a third particle enhances untrapping and hence facilita-
tion, resulting in a mobile triplets. Mobile triplets thus
dominate motions as observed in Fig. 3(b). Similarly, as
seen in Fig. 3(c), at an even smaller q, even triplets are
immobile but there are mobile groups each of 4 coupled
particles.

For any unblocking probability q, our results support
that there is a dominant mobile group size of m∗ cou-
pled particles. Smaller groups are immobile while larger
groups are less abundant and play a lesser role in the
dynamics. As q decreases so that constraints are more
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numerous,m∗ increases because stronger facilitation with
more frequent rate resampling is needed for mobility.
There is an associated sequence of mobility transitions
as larger and large groups become immobile. A quanti-
tative study of these mobility transitions will be reported
elsewhere.

Mobile groups, once exist in a FRW system, survive
permanently. They may merge and split as observed in
Figs. 2 and 3 but do not vanish completely. This is be-
cause if such a system could turn into a trapped state,
a trapped state can also evolve into a mobile one by the
time reversal symmetry guaranteed by the detailed bal-
ance conditions. This contradicts the assumption of a
trapped state and hence cannot happen.

Ergodicity of large FRW systems is assumed when
deriving equilibrium statistics in Sec. III and this will
now be justified self-consistently. We have explained
in Sec. III that particles are randomly distributed with
uniform probability at equilibrium, assuming ergodicity.
Due to the random distribution, for any q > 0 and ρ > 0,
a few sites with m∗ particles must exist initially in a suf-
ficiently large system, where m∗ is the dominant mobile
group size. These groups are mostly mobile and thus
some of them must be able to traverse over the whole
lattice at long time, untrapping, exchanging with and
displacing all particles repeatedly. This justifies the er-
godicity assumption.

VI. DISCUSSIONS

Emergent facilitation: Neither the facilitation pro-
cess nor the dominant mobile group size in FRW is im-
posed directly by any rule in the model definition. The
motions of particle l can facilitate the motions of particle
k by breaking barriers as explained in Sec. V. However,
it can equally likely inhibit the motions by installing new
barriers. Importantly, as all hops are reversible, inhibi-
tions are only temporary and particles can wait until new
barriers are reversed before advancing again. They im-
pose no new permanent confinements and thus only a mi-
nor slowdown. In contrast, facilitation successively opens
up newer configurations, resulting in mobility. Therefore,
facilitation is the emergent predominant impact of rate
resampling, rather than inhibition.

The FRWmodel is energetically trivial, like most KCM
[11]. However, we are not claiming that energetic inter-
actions are unimportant in glass. Kinetic constraints,
i.e. wijk = 0, occurring with probability 1− q according
to Eq. (1) model energetically unfavorable particle hops.
The FRW assumes that once all significant energy barri-
ers with wijk = 0 are identified, the constrained dynam-
ics along the energy valleys can essentially be considered,
as a first approximation, a flat potential energy land-
scape (PEL). This is sufficient for reproducing kinetic
slowdown in glass. However, thermodynamic quantities
such as heat capacity cannot be studied in the current
energetically trivial form of the FRW model, a situation

similar to that of typical KCMs [38, 39].

Relation to the DPLM: The DPLM is a particle
model of glass with void-induced dynamics [20]. Atoms
are explicitly simulated, while voids are modeled effec-
tively by empty sites. Interesting physics of glass can
be reproduced at low temperatures and low densities of
voids [26–35]. It can thus be conceptually simpler and
computationally faster if we simulate only the voids ex-
plicitly in an effective medium of particles. This has mo-
tivated us to define the FRW as a defect model in which
particles corresponds to voids in the DPLM while atoms
are not simulated explicitly. In the DPLM with energetic
particle pair interactions, the motion of a void alters the
local particle pairings and hence the PEL experienced by
other voids. This is modeled in the FRW by the hop-
ping rate resampling rule. On the other hand, the rate
restoration rule in the FRW models the recovery of the
system energy in the DPLM when particle configurations
are reversed. These mechanisms in the DPLM have been
motivated in turn by the string interaction and repetition
phenomena observed in our MD simulations [40].

As a coarse-grained version of the DPLM, the FRW
can be simulated much more efficiently. In particular,
it can be simulated very efficiently in 1D, which is not
naturally possible for the DPLM because void-induced
motions do not swap particles in 1D. Dynamics demon-
strated by the FRW in general are qualitatively similar
to those of the DPLM. In particular, the FRW exhibits a
diffusion coefficient power law fully consistent with that
in the DPLM [31], which will be explained elsewhere.
Nevertheless, the present FRW does not incorporate any
particle interaction energy, which dominates the thermo-
dynamics of the DPLM. Hence, glassy phenomena repro-
ducible by the DPLM such as heat capacity overshoot [29]
and two-level system based heat capacity at low tempera-
ture [30] cannot be directly studied by this version of the
FRW. Nevertheless, generalization of the FRW to include
an internal energy field to thermodynamic properties is
straightforward and will be studied in the future.

Another advantage of the highly simplified FRW is the
possibility of an analytic description. We have reported a
local random configuration tree theory of glass which has
been tested on the DPLM [41, 42]. The theory in fact has
been motivated by analyzing the FRW. Essential assump-
tions in the theory such as a tree topology of the con-
figuration space and a bimodal distribution of hopping
rates are exact in the FRW by construction, while they
hold approximately for the DPLM. In addition, string-
like motions are assumed to strongly perturb the local
energy landscape, resulting at resampling of the rates of
all other strings in a local region. The best fit to DPLM
simulation data is obtained at a width

√
V =

√
12 ≃ 3.5

of these local regions [40]. We thus suggest that a site
in the FRW corresponds to a region of 3.5d atoms wide,
where d is the dimension of the space. We will apply the
theory to describe the FRW quantitatively in the future
for further testing and improvement of the theory.

Relation to other lattice models of glass: The
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FRW and hence also the DPLM most closely resembles
the FA model. In the n-spin facilitation variant of the FA
model, one assumes a facilitation rule that n neighboring
spins must be present before they are allowed to flip [13].
This is analogous to the FRW that m∗ particles must be
nearby to each other to form a mobile group. A major
challenge of the KCM including the FA model is to justify
the origin of the facilitation rule. We suggest that by
noting n = m∗, the FRW provides such a justification.

Furthermore, most KCM including the FA model are
highly coarse-grained defect models. From the rela-
tion between FRW and DPLM, it should be interesting
to search for analogous atomistic variants of individual
KCM for possible further progress.

The many interesting lattice models of glass [11, 13, 20,
21, 23, 24] should not only be applied to illustrate one
or two facets of glassy properties, but ideally should be
compatible with most, if not all, of the non-vibrational
properties of glass. Further tests against a diverse range
of glassy phenomena are urgently needed. To this end,
the extensively tested DPLM [26–35] has proved to be
a promising model. As the FRW may inherit many of
these properties from the DPLM, its study should be of
good interest for understanding glass.

In conclusion, we have proposed the FRW as a sim-
ple KCM with random constraints. It shows emergent
facilitation behaviors on the motions of neighboring par-
ticles. Dynamics is then dominated by mobile groups of
size dependent on the assumed constraint density, analo-
gous to facilitation rules in the seminal FA model of glass.
The FRW is a defect model and is a coarsened version
of the atomistic DPLM. We believe that the study of
compatible models at different coarse-graining levels al-
lows improved understanding of their applicability and
limitation for the study of glass.
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Appendix A: System history encoded in fictitious
states

The instantaneous state of a FRW system is specified
by the set {ik} of positions of all particles k. Never-
theless, due to the quenched randomness, a system sim-
ulated up to time t can only be fully characterized by
its complete history, i.e. full sets of positions {ik(t)} and
hopping rates {wijk(t)} for the whole duration from time
0 to t. Only then, hopping rate restoration can be possi-
ble. While a direct software implementation is possible,
the data structures and the data retrieval algorithms are
complex. The memory consumption is also huge.

Instead, we take the system history into account eas-
ily by effectively encoding it into expanded instantaneous

system states. In this section, we introduce the general
mathematical requirements involved. In the next section,
our particular implementation will be explained. To sim-
plify the notation, we omit writing the t dependence of
the variables explicitly in the following.
For any particle k, we introduce a fictitious particle

internal state Ψk. The bond between any NN sites i and j
also admits a fictitious internal state Φij following Φij =
Φji. The expanded instantaneous state of the system is
thus specified by the sets {ik}, {Ψk} and {Φij}. The
hopping rate wijk is deterministically calculated from

wijk = w(Ψk,Φij) (A1)

where the function w must be chosen to provide the re-
quired statistics followed by wijk.
After a hop of particle k from site i to site j, states are

updated according to

Ψ′
k = F (ξij ,Ψk,Φij)

Φ′
ij = G(ξij ,Ψk,Φij)

(A2)

where

ξij =

{
1 for site j on the right of site i,

−1 otherwise.
(A3)

The functions F and G must satisfy two conditions.
First, to satisfy detailed balance, the new states must
satisfy

w(Ψk,Φij) = w(Ψ′
k,Φ

′
ij). (A4)

Second, a reversed hop of particle k from j to i at the
new states Ψ′

k and Φ′
ij must restore the original states,

Ψk = F (ξji,Ψ
′
k,Φ

′
ij)

Φij = G(ξji,Ψ
′
k,Φ

′
ij).

(A5)

Then, Eq. (A1) implies the restoration of also the pre-
vious rate wijk. More generally, it is easy to see that a
previous hopping rate can be restored even after an arbi-
trary sequence of related hops have occurred and reversed
by applying Eqs. (A2) and (A5) recursively. Unrelated
hops occurring at a distance, which do not affect these
local states under consideration, naturally play no role in
the reversal.

As rate restoration is possible by straightforward calcu-
lations based on the instantaneous system state, memo-
rization of previous rates and the system history is not re-
quired. The dynamics of FRW with the expanded states
is thus reduced to simple Markovian processes for which
standard kinetic Monte Carlo approaches apply.

Appendix B: Rate restoration by reversible random
numbers

We now explain our particular implementation of the
expanded FRW states and their dynamics. To enable ex-
act restoration of hopping rates, we adopt integer rather
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than float-point mathematics. As pseudo random rates
with controllable statistics are required, we take note
of the approach of congruential random number gener-
ators and consider only integers 0, 1, . . . ,M−1 following
modulo-M arithmetics, i.e. i ≡ (i mod M). A natural
choice is M = 232, leading to 32-bits unsigned integer
data type intrinsically available in most computers. This
M is also sufficiently large to enable excellent pseudo
random number properties.

Our algorithm requires non-trivial matrix inversions,
implying that the states Ψk and Φij cannot be sim-
ple integers. Instead, the next simplest choice is two-
component matrices, i.e.

Ψk =

(
ψ
(1)
k

ψ
(2)
k

)
, Φij =

(
ϕ
(1)
ij

ϕ
(2)
ij

)
(B1)

where the elements ψ
(1)
k , ψ

(2)
k , ϕ

(1)
ij and ϕ

(2)
ij are 32-bits

unsigned integers. Each Ψk or Φij is thus a 64-bit state.
Equation (A2), concerning a hop of particle k from site

i to site j, is implemented as

Ψ′
k = [Uξij (ΨT

kΦij)]
TΨk

Φ′
ij = U−ξij (ΨT

kΦij)Φij

(B2)

where the superscript T denotes transpose. A simple
choice of U(n) we have taken is

U(n) =

(
n+ 1 n
1 1

)
(B3)

with an inverse

U−1(n) =

(
1 −n
−1 n+ 1

)
. (B4)

Modulo-M unsigned integer arithmetic is assumed in
Eqs. (B2)-(B4) so that −1 ≡ M− 1. The equations con-
stitute congruential random number generators so that

the elements ψ
(1)
k , ψ

(2)
k , ϕ

(1)
ij and ϕ

(2)
ij generated by it-

erating Eq. (B2) in FRW simulations follow a uniform
distribution in 0, 1, . . . ,M − 1. This uniform distribu-
tion is readily verified in our simulations.

Equation (B2) implicitly defines our choices of the
functions F and G. For any hop, the states Ψk and Φij

are updated via U(n) and U−1(n) or U−1(n) and U(n)
respectively, so that the product ΨT

kΦij is invariant after
a hop, i.e.

Ψ′
k
T
Φ′

ij = ΨT
kΦij . (B5)

Similarly, forward and backward hops involve U(n)
and U−1(n) with the same n which cancel out each
other upon multiplication. Hence, states reversal, i.e.
Eq. (A5), is properly followed.

We define the rate function w in Eq. (A1) as

w(Ψk,Φij) = w0f(Ψ
T
kΦij). (B6)

where

f(n) = θ(q − S(n)/M) (B7)

with θ being the Heaviside step function and S(n) to be
explained below. As ΨT

kΦij is invariant during the hop
(see Eq. (B5)), the detailed balance condition (A4) is
satisfied.

The function S(n) can be the identity function, but
we take a bitwise rotation operation by 16 bits, so as
to enhance randomization. Then, analogous to con-
gruential generators, ΨT

kΦij and hence S(ΨT
kΦij) are

also uniform random numbers in 0, 1, . . . ,M− 1 so that
S(ΨT

kΦij)/M is a uniform random number in [0, 1).
Therefore, S(ΨT

kΦij) > q occur with a probability q, im-
plying that wijk follows the required statistics according
to Eqs. (A1), (B6), and (B7).
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