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Summary 

The aim of this study is to explore the enhancement of methane production in the 

anaerobic digestion of wood waste by leveraging forest soil systems as a ‘pre’ treatment. A 

nature-based approach can provide valuable insights for managing forest residues and 

promoting resource recovery, making anaerobic digestion a viable wood waste management 

practice. 

Due to the recalcitrant lignocellulosic structure of wood waste, its use as a substrate for 

anaerobic digestion is not commonly pursued in mainstream research. Therefore, a detailed 

meta-analysis was conducted to compare the anaerobic digestion potential of wood waste with 

other organic wastes and to demonstrate the degree of enhancement in methane production 

from wood waste using various pretreatment technologies. Considering that anaerobic 

digestion parameters can significantly impact methane production, it is essential to optimize 

the conditions during the anaerobic fermentation process. To achieve this, machine learning 

techniques were employed to analyze and fine-tune the digestion parameters specifically for 

wood waste. In the case of current wood waste pretreatment technologies, most are limited to 

the laboratory level, often overlooking labour and capital costs, rendering them impractical for 

operational use. For this reason, naturally decayed wood samples from forests were collected 

for further tests, which were classified into one of five decay classes (numbered 1-5 with 

increasing decay) based on a range of characteristics. Additionally, the study examined the 

impact of forest environmental factors on the degradation of wood waste and subsequent 

methane production by placing two types of wood waste in two types of vegetation zones in 

the forest. 
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The following conclusions can be drawn. Firstly, pretreatment technologies 

significantly enhance methane production from wood waste, making it a viable raw material 

for anaerobic digestion. It has been observed that employing a combination of pretreatment 

techniques is more effective than using a single method. In addition, the random forest 

algorithm can reliably predict methane yield from anaerobic digestion of wood waste. Critical 

factors influencing methane production include wood particle size and the substrate-to-

inoculum ratio. Moreover, decayed wood samples showed a range of physicochemical 

properties conducive to anaerobic digestion, with decay class 3 showing the highest methane 

yield. Lastly, different forest environments affect the degradation of wood, although a specific 

treatment time is necessary to significantly impact its methane production.  
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Chapter 1 Introduction 

1.1 Background 

Wood plays a vital role for human beings as the most abundant source of biomass and 

renewable green material. In generally, almost 50% of a tree can be processed into the final 

product, whereas the rest is retained as wood waste (Turley et al., 2006). Wood waste, which 

includes leftovers from timber processing, discarded furniture, and construction debris, 

represents a significant portion of municipal and industrial waste streams (Souza et al., 2018). 

The overall amount of global wood waste is estimated to be 232.94 million m3 in 2020 (Gao 

et al., 2022). However, only a limited amount of wood waste has so far been available for 

recycling and reuse, and an economical method has not yet been developed to make full use 

of wood waste. Traditionally, much of this wood waste has been landfilled, incinerated, or 

left to decompose naturally, which can lead to substantial methane and carbon dioxide 

emissions, both potent greenhouse gases (Harmon et al., 2020; Muaaz-Us-Salam et al., 2020). 

Given the high calorific value of wood waste, the predominant disposal scenario is to 

generate thermal energy from combustion (Molenda et al., 2021), but direct combustion of 

wood waste to produce energy or electricity is not considered to be an efficient and 

environmentally friendly alternative anymore (González-García and Bacenetti, 2019; 

Vicente et al., 2020). Particularly in small boilers or combustion chambers without emission 

control systems, the emissions produced could cause a lot of energy waste and serious 

environmental pollution (Jaworek et al., 2021; Sharma and Dasappa, 2017). With advances 
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in technology and growing environmental awareness, the focus has shifted toward more 

sustainable methods of managing and utilizing this abundant resource. 

As governments and organizations worldwide set stringent carbon emission targets, 

sustainable technologies for generating renewable energy from wood waste are receiving 

increasing attention (Cesprini et al., 2020; Haryanto et al., 2021). Among the plethora of 

options, the utilization of wood waste through anaerobic digestion (AD) presents a 

particularly promising avenue. AD involves microbial decomposition of organic matter under 

anaerobic conditions to produce biogas, which primarily consists of methane and carbon 

dioxide and can be used as a renewable energy source (Archana et al., 2024). The process 

also produces digestate, a nutrient-rich substance that can be used as a biofertilizer, further 

contributing to the sustainability of this approach (O’Connor et al., 2022). Considering the 

huge amount of wood waste generated and its frequent mixing with other organic wastes that 

make it difficult to be recycled, the potential of AD to transform wood waste into energy is 

significant (Gao et al., 2024a). It offers a dual benefit of waste reduction and energy 

production. By converting wood waste into biogas, not only is the volume of waste 

significantly reduced, but the gas produced can be used to generate electricity or heat, or can 

be processed into renewable natural gas and other biofuels (Gao et al., 2022). This method 

provides a renewable, carbon-neutral energy source that can help meet emission targets while 

simultaneously addressing the issue of waste disposal. 

However, the high lignin content and recalcitrant crystalline cellulose structure of 

wood waste complicate the efficient and timely production of biogas, thereby limiting its 

application in AD (Li et al., 2019). To effectively utilise wood waste through AD, several 
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challenges must be addressed. Firstly, the pretreatment of wood waste to improve the biogas 

potential from AD process is necessary. Pretreatment processes such as mechanical, chemical, 

or biological techniques are required to increase the biodegradability of wood waste (Xu et 

al., 2019). Secondly, the composition of wood waste can vary greatly depending on its source 

and prior treatment, affecting its suitability for AD. In addition, the efficiency of wood waste 

AD depends on various factors including the microbial consortia involved, the process 

conditions such as pH, temperature, and retention time, and the design of the anaerobic 

digester (Chew et al., 2021; Meegoda et al., 2018). Optimizing these parameters is crucial 

for maximizing biogas yield and making the process economically viable. Although there are 

many pretreatment technologies available for AD of wood waste (Ali et al., 2021b; da Silva 

et al., 2019), they are developed on a laboratory scale ignoring environmental impacts and 

economic viability. The existing pretreatment approaches are often costly, energy intensive, 

and potentially environmentally hazardous, which frequently precludes their application in 

practice. 

Forests play an important role in the global carbon cycle, with plants like trees and 

bushes absorbing energy through photosynthesis and storing it as carbohydrates in their 

biomass, which is then partly released into the atmosphere with the decomposition of 

deadwood in the forest soil (Seibold et al., 2021). Forestry operations generate large amounts 

of wood wastes, including branches, treetops, and stumps, which are left in the forest soil and 

may increase fire risk if unmanaged (Lee and Han, 2017). Forest soil ecosystems have 

evolved to manage fallen timber and deadwood with efficient processes brought about by a 
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range of organisms including fungi, bacteria, and insects. Unless harvested for application, 

the fate of these forest residues is to be degraded into humus as part of the forest soil. During 

this degradation process, the texture of the wood will gradually become soft, as the rigid and 

recalcitrant lignocellulosic structure is slowly destroyed, with the wood finally being 

completely decomposed to release all the nutrients (Petritan et al., 2023; Shorohova et al., 

2021). The tough texture and recalcitrant lignocellulosic structure of wood waste limit its 

application in AD (Hashemi et al., 2022; Karami et al., 2022), though the degradation process 

tends to predispose wood waste for AD applications. Therefore, it is essential to explore the 

methane production potential of wood waste at different decay stages in the forest. 

Identifying the decay stage at which the wood waste can have the highest methane production 

allows for strategic collection of this material for AD application. This targeted collection 

optimizes the efficiency of methane production and enhances the economic viability of using 

wood waste as a raw material in AD applications. The study will also identify the key 

properties of wood waste that are beneficial for AD and provide guidance for enhancing the 

AD performance of wood waste. 

1.2 Scope and limitations 

This thesis evaluates the potential of using wood waste as a feedstock for AD and 

mainly investigates the use of forest soil ecosystems to naturally enhance methane yield from 

this waste. However, several limitations exist in this study. Firstly, the variability in wood 

waste composition, which depends on its source and prior treatment, may affect the 

generalizability of the findings. The research primarily considers laboratory-scale analyses, 
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which may not fully capture the complexities of large-scale industrial applications. 

Additionally, while the study investigates the potential of natural degradation processes in 

forest soils, the variability in soil ecosystems and climatic conditions could limit the 

applicability of the results across different geographic regions. The economic feasibility of 

scaling up the proposed methods, including the costs associated with pretreatment 

technologies and potential environmental impacts, are beyond the scope of this study. Future 

research should address these limitations by conducting pilot-scale trials and a more 

comprehensive economic and environmental analysis. 

1.3 Aims and research questions 

The overarching objective was to explore a viable approach for enhancing the AD 

performance of wood waste by leveraging a nature-based degradation processes in forest soil 

ecosystems. This research investigated the feasibility of using wood waste as a feedstock for 

AD and explored whether various pretreatment methods could boost methane production. 

Additionally, this work examined how forest soil ecosystems contribute to the degradation 

of wood waste, thereby impacting methane yield. Specifically, forest soil ecosystems have 

evolved to efficiently manage fallen timber and deadwood by breaking down the 

lignocellulosic structure, and may be feasible as a technology for improving the AD 

performance of wood waste. This study will explore in detail the influence of forest soil 

systems on the basic properties of wood waste and its corresponding biochemical methane 

production. 

The research questions of this research work are as follows: 
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RQ1 Can wood waste be used as a feedstock for AD?  

RQ2 To what extent can pretreatment methods improve the biochemical methane potential 

(BMP) of wood waste? 

RQ3 Can the forest soil ecosystem (nature-based system) be used as an approach for 

improving the AD performance of wood waste? 

RQ4 What factors in the forest determine the rate of wood decay and affect its BMP? 

1.4 Thesis organisation and structure 

• Chapter 1 highlights the problem that was investigated in this project, the overall aims, 

and the research questions. 

• Chapter 2 presents basic information on AD, reviews the types of lignocellulosic wastes 

that can be used in AD, and provides details on the major barriers to the application of 

wood waste as a feedstock for AD. In addition, it explores biological pretreatment 

technologies applicable to wood waste and identifies gaps between current pretreatment 

technologies and their practical applications. The main objectives of this thesis are further 

presented based on the existing gaps. 

• Chapter 3 addresses RQ 1 and RQ2, which explores the potential of wood waste as a 

substrate for AD through meta-analysis and investigates how various treatment 

technologies can increase methane production. Additionally, using machine learning 

techniques, it examines the impact of different AD parameters on methane yield from 

wood waste and constructs a model for predicting methane yield. 



 

7 

• Chapter 4 addresses RQ 3, which explores the feasibility of a natural-based system as a 

pretreatment approach for wood waste. 

• Chapter 5 addresses RQ 4, which examines the impact of the forest soil system on the 

degradation of wood waste and the subsequent methane production from wood waste. 

• Chapter 6 provides a summary of the findings of the thesis and discusses future work. 
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Chapter 2 Literature review 

2.1 Overview of anaerobic digestion 

Biogas production in 2018 was around 35 million tons of oil equivalent, only a 

fraction of the estimated overall potential (730 million tons of oil equivalent). It is estimated 

that the availability of sustainable feedstocks for producing biogas is set to grow by 40% over 

the period to 2040, which avoids around 1000 million tons of greenhouse gas emissions (IEA, 

2020). Based on studies, the primary sources of methane emissions in the United States in 

2015 were livestock operations, landfills, and wastewater treatment facilities. These sources 

accounted for about 45% of methane emissions (measured in carbon dioxide equivalent) 

(EPA, 2018). AD is an approach of recovering energy from waste that diverts organic waste 

from landfills, produces renewable energy, and reduces greenhouse gas emissions (Costa et 

al., 2015). The number of AD facilities in the United States will increase from 2000 to more 

than 11000 if the proper type of support can be provided (EPA, 2014). Although market 

conditions are increasingly favorable for AD, it still faces a variety of social and economic 

barriers that prevent it from reaching its full potential (Linville et al., 2015; Shen et al., 2015). 

2.1.1 Process mechanisms of anaerobic digestion 

The AD process happens through four sequential stages: hydrolysis, acidogenesis, 

acetogenesis and methanogenesis (Li et al., 2011). These steps are a synergistic process of 

diverse microbial groups, and microbial metabolic activities at different stages mutually 

affect each other, in close dependence on each other. In a batch reactor, all feedstocks are 
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loaded at the same time, and all four stages of the AD process take place consecutively in the 

same reactor. The digestate will be emptied at the end of the given retention period or after 

the cessation of biogas production (Meegoda et al., 2018). Figure 2-1 depicts a simplified 

flow of the four AD stages. 

 

Figure 2-1. Degradation pathways during anaerobic digestion of organic wastes, modified from 

reference (Cheng and Brewer, 2021). 

2.1.1.1 Hydrolysis 

AD systems commonly encounter organic biomass containing complex polymers that 

cannot be utilized by microorganisms without further decomposition through hydrolysis or 

pretreatment (Gujer and Zehnder, 1983). Therefore, the hydrolysis process aims to convert 

organic macromolecules into smaller components that can then be utilized by acidogenic 
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bacteria. During hydrolysis, hydrolyzing bacteria can secrete extracellular enzymes for 

converting carbohydrates, proteins, and lipids into sugars, amino acids, and long-chain fatty 

acids, respectively (Li et al., 2011). The hydrolysis products can diffuse across the cell 

membranes of acidogenic microbes after enzymatic cleavage (Lier et al., 2008). However, it 

is worth noting that some substrates (like lignin, hemicellulose, and cellulose) may be 

difficult to degrade and may be inaccessible to microbes because of the recalcitrant structure 

of lignocellulose. 

Hydrolysis is a rate limiting step in biogas production, although previous studies have 

also shown that the methanogenic stage may also be a rate determining step depending on 

the proportion of hydrolyzed and methanogenic microbes (Luo et al., 2012; Ma et al., 2013). 

Owing to the importance of hydrolysis in AD kinetics, a considerable amount of attention 

has been focused on how to accelerate the hydrolysis process. At present, various waste 

pretreatment protocols are being investigated and utilized to optimize the hydrolysis process, 

especially in AD systems which contain large quantities of lignocellulosic waste (Kumar and 

Sharma, 2017). In general, the optimum temperature for microbiological hydrolysis is 

between 30–50 ℃, and the optimum pH is between 5–7, but no evidence has been found to 

suggest that hydrolytic activity increases at pH values lower than 7 (Azman, 2016). 

2.1.1.2 Acidogenesis 

By taking up hydrolysis products through cell membranes, acidogenic microbes have 

the ability to produce volatile fatty acids and other products. In acidogenesis, the reduced 

monomers (amino acids, peptides, long-chain fatty acids, glycerides, and sugars) are further 

degraded by facultative aerobes to volatile fatty acids (53–58% acetic acid, 6–13% propionic 

acid and 30–35% butyric acid) and other minor products (alcohols, aldehydes, hydrogen, and 

carbon dioxide) (Ali et al., 2018; Angelidaki et al., 2011). The concentration of these 

intermediates produced during acidogenesis can be affected by the conditions of the AD 
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system. It has been reported that the concentration of volatile fatty acids fluctuated 

considerably in different pH conditions, and the results from different studies seem to be 

contradictory (Huang et al., 2015; Wu et al., 2010). 

It is generally recognized that acidogenesis is faster than all other stages of AD, and 

the regeneration time of acidogenic bacteria is less than 36 hours compared to the other stages 

(Deublein, 2010). It is noteworthy that the acidification of volatile fatty acids has been widely 

reported as a contributor to AD failure, although the production of volatile fatty acids 

provides an immediate precursor to the methanogenesis stage (Akuzawa et al., 2011). 

Degradation of amino acids to volatile fatty acids usually occurs in pairs via the Strickland 

reaction, and individual amino acids may also be degraded if hydrogenotrophic bacteria are 

present, but the latter process is slower than the Strickland reaction. An important product of 

amino acid catabolism is ammonia produced by deamination, which is known to be an 

inhibitor of AD at a sufficiently high concentration (Kovács et al., 2013; Park et al., 2014). 

2.1.1.3 Acetogenesis 

After the production of acetate, parts of the raw materials have been turned into 

suitable substrates for acetoclastic methanogenesis (Fournier and Gogarten, 2008). Yet, the 

high concentration of volatile fatty acids generated cannot yet be fully utilized by 

methanogenic microbes. During acetogenesis, syntrophic bacteria transform previous 

volatile fatty acids and alcohols into acetate, carbon dioxide, and hydrogen which are 

substrates for the production of methane (Angelidaki et al., 2011; Cheng and Brewer, 2021). 

Although the acetogenesis process produces hydrogen, excessive partial pressures are 

detrimental to methanogenic microorganisms (Dinopoulou et al., 1988). However, hydrogen 

can be rapidly consumed because of the presence of hydrogenotrophic methanogens, while 

maintaining the hydrogen partial pressure at a level favorable for acetic acid production by 

generating an exergonic reaction (Stams and Plugge, 2009). 
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In addition, lipids undergo a proprietary acetogenesis pathway through acidogenesis 

and β-oxidation, where acetate is produced from glycerol in the acidogenesis pathway and 

from low-carbon fatty acids in the β-oxidation pathway. In view of this, it is important that 

only low carbon fatty acids with even numbers of carbon atoms can be degraded to acetate. 

The low carbon fatty acids with odd numbers of carbon atoms will degrade first to propionate 

(Cirne et al., 2007). 

2.1.1.4 Methanogenesis 

The final step is methanogenesis, where methanogenic microorganisms convert 

acetate, carbon dioxide, and hydrogen to generate methane, mainly consisting of acetoclastic 

methanogenesis (60–70%) and hydrogenotrophic methanogenesis (about 30%) (Cheng and 

Brewer, 2021; Izumi et al., 2010). Methanogenesis in batch reactors typically stops after 

about a 40-day period of operation (Meegoda et al., 2018). Methanogenic microbes belong 

to anaerobic archaea which is extremely sensitive to oxygen. Research revealed that within 

ten hours of being exposed to oxygen, 99% of Methanococcus voltae and Methanococcus 

vannielli cells had perished (Kiener and Leisinger, 1983). Apart from their oxygen sensitivity, 

methanogenic bacteria feed on a limited range of substrates. Generally, two-thirds of methane 

production is attributed to acetoclastic methanogenesis from acetate, and the remaining one-

thirds of methane is generated from hydrogenotrophic methanogenesis. Besides of these 

principal routes, methanogenesis derived from methanol, methylamine, and formate has also 

been reported (Belay et al., 1986; Lovley and Klug, 1983). 

In terms of environmental requirements for methanogenesis, methanogenic microbes 

typically require a higher pH than earlier stages of AD, as well as a lower redox potential, 
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which has presented substantial problems in laboratory cultivation (Wolfe, 2011). In addition, 

methanogens tend to regenerate at a substantially slower rate than other bacteria in AD, 

ranging from 5 to 16 days (Deublein, 2010). Certainly, some methanogen strains have a faster 

growth rate. It has been reported that Methanococcus maripaludis can replicate twice in only 

two hours (Richards et al., 2016). Although methanogenic species may be the most sensitive 

microbial group in AD, recent studies have revealed that Methanosarcina spp. seems to be 

stronger and able to withstand high ammonia and pH shocks that would otherwise be harmful 

to other methanogenic microorganisms (De Vrieze et al., 2012). 

2.1.2 Major factors affecting biogas production 

The AD process is influenced by several key factors, including feedstock 

characteristics (Y. Chen et al., 2019; Taifouris and Martín, 2018), temperature (Krause et al., 

2018a; Wei et al., 2014), pH (Guilford et al., 2019), microbial community 

(Mirmohamadsadeghi et al., 2021), total solids (TS) content (Pearse et al., 2018), inhibitory 

compounds (Barik and Murugan, 2015), etc. In general, temperatures of 10–65 °C (Khalid et 

al., 2011), pH of 5.0–8.5 (5.5–7.0 for hydrolysis and acidogenesis, 6.8–8.5 for 

methanogenesis) (Khalid et al., 2011; Park et al., 2008), carbon to nitrogen ratio (C/N) of 20–

35 (Lee et al., 2009; Zhang et al., 2014) and TS content of 20–40% (Bouallagui et al., 2003) 

are the optimal ranges for methane yield. Temperature range can vary widely during AD, and 

it is divided into three categories according to the microbial activity, psychrophilic: 10–20 °C; 

mesophilic: 20–45 °C (usually 37 °C); and thermophilic: 50–65 °C (usually 55 °C) (Khalid 

et al., 2011; Yu and Fang, 2003). Compared to the effect of temperature, pH plays a more 
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important role in AD. The microbes involved in AD, especially methanogens, are sensitive 

to the acid concentration in the system. The growth of methanogens could be inhibited at 

lower pH conditions, and the optimal pH for methanogenesis has been found to be around 

7.2 (Huber et al., 1982). Improper C/N will result in the release of a large amount of ammonia 

nitrogen or the excessive accumulation of volatile fatty acids, which are inhibitors in AD 

process (Matheri et al., 2018). Therefore, an appropriate temperature, pH and C/N are needed 

for maintaining a stable environment in a long-term operation. 

While temperature, pH, and C/N can be adjusted by controlling the operating 

conditions, reactor configuration, and the concentrations of N-containing additives 

(Kondusamy and Kalamdhad, 2014; Romero-Güiza et al., 2016; Zhang et al., 2011), 

feedstock characteristics have specific impacts on methane production. Feedstock 

characteristics include chemical composition (Wang and Barlaz, 2016), volatile solid (VS) 

content (Wang et al., 2013), chemical oxygen demand (Muaaz-Us-Salam et al., 2020), 

morphology (particle size and porosity) (Krause et al., 2018a), and nutrient content (Oh et 

al., 2018). These characteristics relate to biodegradability of components, VS conversion rate, 

hydraulic retention time, and ultimately impact BMP (Cheng and Brewer, 2021). In 

lignocellulosic waste, cellulose and hemicellulose are the major contributors to methane 

formation. They are easily degraded because of their less complicated molecular structure 

(Kumar et al., 2018). However, the presence of lignin limits methane production by reducing 

the surface area that bacteria can access through a rigid lignin-cellulose-hemicellulose matrix 

or high cellulose crystallinity, thereby suppressing biodegradability of other components (X. 
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Liu et al., 2015; Roy et al., 2020). In addition, the decomposition of lignin produces inhibitors, 

such as phenolic aldehydes and acids, which may also inhibit the methanogenesis process 

(Chen et al., 2008). 

2.1.3 Feedstocks for anaerobic digestion 

A variety of plant and animal biomass can be used as bioenergy resources to produce 

biofuel through different treatment technologies. The biofuel production can be divided into 

four generations according to the biomass resources: i) First-generation biofuel is producing 

biofuels such as ethanol, propanol, and butanol through edible biomass fermentation, 

including sugar-based (sugarcane and sugar beets), starch-based (wheat, corn, and barley, 

etc.) feedstocks or any type of vegetable oil (oilseeds); ii) Second-generation biofuels 

primarily utilize non-edible lignocellulosic biomass, along with agricultural and forestry 

residues, as well as waste biomass. This generation technology produces biomethane from 

plant biomass after delignification, hydrolysis; iii) Third-generation biofuel is also known as 

“algae fuel” as algal oil is used as feedstock to produce biofuels like biodiesel, biobutanol, 

and biopropanol; iv) Fourth-generation biofuel requires an advanced method in 

biotechnology (metabolic engineering) for biofuel production. 

The feedstocks of first-generation biofuel have limited sustainability credentials, 

which could rise competition between food and biofuel production. As some of the inputs to 

food production, such as certain agricultural crops, labor, land, and other agricultural 

resources, are also involved in the production of first-generation biofuel. Hence the more 

input devoted to the production of the first-generation biofuel, the less will be available to 
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produce certain basic foodstuffs. Indeed, the nature of this competition includes aspects of 

both direct and indirect competition. The latter aspect covers indirect competition among 

natural and agricultural resources (such as land, other agricultural resources, and the use of 

machinery), as well as the use of labor and capital (Datta, 2022). Third-generation biofuel 

also faces significant challenges. Several researchers opine that algae biofuel is an 

impractical choice, as growing algae inside bioreactors greatly increases the energy inputs 

and the cost of production. In addition, the harvesting of algae and the separation of algal oils 

is a difficult and energy-intensive process, which makes such biofuel production limited and 

uneconomical (Gomiero, 2015). Bradley et al. (2023) conducted a life cycle assessment using 

actual data from an operational industrial facility combining the use of a photobioreactor and 

a fermenter system, and found that the environmental costs of constructing the infrastructure 

to grow and process the algae, and generating the electricity to power the operation, far 

outweighed the environmental costs saved by burning the microalgae biofuel. In the fourth-

generation biofuel, bioengineered plants or algae function as a carbon capture machine for 

the feedstock generation of biofuel (Moodley, 2021; Saha et al., 2019; Stiles et al., 2018). 

However, the main environmental concerns of uncontrolled development of transgenic plants 

relate to competition between introduced plants and native species, alteration of natural 

habitats, and horizontal gene transfer and toxicity (Hewett et al., 2016). It is also worth noting 

that cultivating a transgenic plant that can be stably applied in practical requires a significant 

investment in labor and funds. 
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Second-generation biofuel is derived from lignocellulosic wastes. Compared with 

food-based biofuels, second-generation biofuels use raw materials such as crop straw, rice 

husk, sugarcane bagasse, sawdust, and other organic wastes. Generally, they may also be 

referred to as “non-food biomass” and are considered an economical renewable energy source 

due to their abundance and absence of residual impurities including sulfur or metals (Beller 

et al., 2015; Havlík et al., 2011). Lignocellulosic biomass constitutes most of the easily 

accessible and available non-food materials in plants (Naik et al., 2010). With a sugar content 

of over 70%, lignocellulose is the most abundant biomass in the world and can be converted 

into biofuels through a variety of physicochemical, and biological processes (Peralta-Yahya 

et al., 2012). It has been reported that the total amount of lignocellulosic biomass available 

for human consumption ranges from 7 to 18 billion tons annually (Lin and Tanaka, 2006). 

The conversion of lignocellulosic wastes into bioenergy involves three core processes, 

including pretreatment, enzymatic hydrolysis, and microbial fermentation (Lin and Tanaka, 

2006). Nowadays, second-generation biofuels continue to be crucial to the development of 

sustainable energy strategies. 

Lignocellulosic wastes can be the ideal feedstocks for AD since they do not conflict 

with food production and do not require additional energy and cost to grow these biomasses. 

The most available lignocellulosic wastes are agricultural waste/by-product (crop stalks and 

straws), wood and branches in forests and industry and some organic fraction from municipal 

solid waste (wood, paper and paperboard) (Roy et al., 2020), which could emit greenhouse 

gas if being left on the field or transported to landfill (Covey and Megonigal, 2019; 
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Obulisamy et al., 2016). These kinds of resources are considered as a renewable, cost efficient 

and ecofriendly resource for biogas output, and thus creating a global priority. There have 

been numerous reports that municipal solid waste, wood waste or crop straw can be used to 

generate biogas (Suhartini et al., 2024; Jin et al., 2022; Olatunji et al., 2021; Rahimi et al., 

2020; Y. Chen et al., 2019). However, the main hurdles in utilizing lignocellulosic wastes lie 

in lignin barrier, accessible surface area for enzymatic hydrolysis, and cellulose crystallinity 

(Millati et al., 2020; Olatunji et al., 2021; Sun et al., 2021). Thus, efficient delignification 

and improved digestibility of cellulose and hemicellulose in lignocellulosic wastes is usually 

a crucial step of pretreatment. Up to now, scholars have developed a wide range of 

pretreatment technologies to improve the AD performance of lignocellulosic wastes. For 

example, Romero-Güiza et al. (2017) found that pretreatment of wheat straw with 4 % 

sodium hydroxide (g/g of TS) for 5 days at 37 ℃ increased the final methane yield from 78 

to 166 mL/g of VS), which was an increase of 112 % compared to the unpretreated biomass; 

According to Rouches et al. (2018), biogas production increased by 52% after microbial 

pretreatment of wheat straw with Polyporus brumalis BRFM985; Li et al. (2020) investigated 

the degradability and biogas production potential of microbial pretreated corn stover, and the 

results showed that microbial pretreatment accelerated the degradation rate of corn stover, 

improved the degradation efficiency of lignin, and increased methane production. In 

summary, methane production from lignocellulosic wastes through AD has a broad prospect, 

which not only can achieve resource recovery from wastes and reduce their negative impact 

on the environment, but also can help to reduce the dependence on traditional fossil fuels, cut 
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down on greenhouse gas emissions, and promote the development of renewable energy 

sources. 

2.1.4 Types of lignocellulosic wastes for biogas production 

Lignocellulosic wastes comprise dry plant materials and therefore cover a wide range 

of substances, including different grasses, plant stems, trees, and residues from modern 

sawmills and paper mills. It can be broadly classified into virgin biomass, energy crops and 

waste biomass. Nearly 200 billion tons of lignocellulosic wastes are generated globally every 

year (Zhang, 2008), mostly low value byproduct from various industrial sectors, human 

activities or the natural environment such as agriculture (e.g. crop straw and stalk), municipal 

waste (e.g. wood, paper and cardboard) and forestry (e.g. sawmills and paper mills discards, 

forest management waste). All of these lignocellulosic wastes have been recognized as 

valuable resources by the United States Department of Energy (Samuel et al., 2010). 

2.1.4.1 Municipal solid waste 

Municipal solid waste mainly consists of commercial wastes, residential wastes and 

yard wastes generated in municipal areas in either semisolid or solid form excluding 

agricultural wastes and industrial hazardous wastes but including treated biomedical wastes 

(Rao et al., 2017). The global level of municipal solid waste generation is estimated to 

increase to approximately 2.2 billion tons by 2025 (Hoornweg and Bhada-Tata, 2012). Low- 

and middle-income regions produce most municipal solid waste, accounting for up to 90.4% 

of the total (Hoornweg and Bhada-Tata, 2012). The yearly municipal solid waste generation 
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in America and China are highest in the world at 292.36 million tons (2.49  kg per capita per 

day) and 228.02 million tons (0.45  kg per capita per day), respectively (Figure 2-2a) (EPA, 

2017a; NBS, 2019). The disposal of municipal solid waste depends on national development 

levels. Landfilling and thermal treatment are valued in high income countries, while 

composting, and open dumping still account for a large proportion in low- and lower-middle 

income countries (Hoornweg and Bhada-Tata, 2012). Figure 2-2b shows the data from the 

Organisation for Economic Co-operation and Development (OECD) (2021), U.S. 

Environmental Protection Agency (EPA) (2017b) and Eurostat (2021), with different 

countries having very different combinations of waste disposal methods based on their own 

development and national conditions, however globally sanitary landfilling is currently the 

dominant municipal solid waste disposal method. 

 

Figure 2-2. The total generation amount (a) and disposal methods (b) of municipal solid waste in 

different countries (EPA, 2017b, 2017a; Eurostat, 2021; NBS, 2019; OECD, 2021). 

In most developing countries, municipal solid waste is not segregated at source and 

is transported into landfill in mixed conditions (Ferronato and Torretta, 2019). An average 

composition of municipal solid waste in different countries is presented in Table 2-1, showing 

a b
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that there exists a large percentage of lignocellulosic materials and suitable feedstocks for 

biogas, i.e., paper and paperboard, wood, and yard waste. Of these, wood, paper and 

paperboard wastes are likely to have more recycled value, since they can be reprocessed into 

particleboard or new cardboard (Besserer et al., 2021). However, a significant fraction of 

wood and paper wastes are nonrecyclable with chemical preservatives, binders or metal 

protectants (Dexter et al., 2019). The main destination of these lignocellulosic wastes is 

landfill, Table 2-2 shows lignocellulosic waste data from 1990 to 2018 in the USA (EPA, 

2017b). About 15.6 million tons of wood waste is produced each year, with 71.5% landfilled. 

An average of 74.2 million tons of paper and cardboard waste are produced each year, with 

36.9% landfilled.  
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Table 2-1. National average municipal solid waste composition. 

Country Organic (%) Paper (%) Plastic (%) Glass (%) Metal (%) Other (%) 

Global 46 17 10 5 4 18 

Low Income 62 6 9 3 3 17 

Lower Middle Income 55 10 13 4 3 15 

Upper Middle Income 50 15 12 4 4 15 

High Income 28 30 11 7 6 18 

China 59 8 10 3 1 19 

India 40 10 2 0.2 0 47.8 

U.S. 39.9 23.1 12.2 4.2 8.8 11.8 

Russia 40 19 14 12 4 11 

Brazil 51.4 13.1 13.5 2.4 2.9 16.7 

Indonesia 74 10 8 2 2 4 

Nigeria 68 10 7 4 3 8 

Pakistan 67 5 18 2 0 7 

U.K. 46 17 10 7 5 15 

Germany 14 34 22 12 5 12 

Netherlands 35 26 19 4 4 12 

Australia 47 23 4 7 5 13 

Mexico 51 15 6 6 3 18 

Portugal 34 21 11 7 4 23 

Italy 44.5 19.1 8.3 12.3 2 13.8 

Spain 44 18 13 9 4 12 

Japan 34 34 11.8 4.3 4.7 11.2 

Canada 47 15 13 2 3 20 

Note: Classification according to Hoornweg and Bhada-Tata (2012). Organic: food scraps, yard waste, wood, process 

residues; Paper: paper scraps, cardboard, newspapers, magazines, bags, boxes, wrapping paper, telephone books, shredded 

paper, paper beverage cups; Plastic: bottles, packaging, containers, bags, lids, cups; Glass: bottles, broken glassware, light 

bulbs, colored glass; Metal: cans, foil, tins, non-hazardous aerosol cans, appliances (white goods), railings, bicycles; Other: 

textiles, leather, rubber, multi-laminates, e-waste, appliances, ash, other inert materials. All data are adapted from OECD 

(2021), EPA (2017b), Statista (2021), Ding et al. (2021), Khan et al. (2022), Millati et al. (2019) and Alfaia et al. (2017).  
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Table 2-2. Data on lignocellulosic composition of United States municipal solid waste from 1960 to 

2018 (ten thousand tons). 

Types 
Management 

Pathway 
1960 1970 1980 1990 2000 2005 2010 2015 2017 2018 

Wood 

Generated 303 372 701 1221 1357 1479 1571 1630 1820 1809 

Recycled - - - 13 137 183 228 266 303 310 

Incinerate - 1 15 208 229 227 231 257 288 284 

Landfill 303 371 686 1000 991 1069 1112 1107 1229 1215 

Paper and 

paperboard 

Generated 2999 4431 5516 7273 8774 8484 7131 6805 6701 6739 

Recycled 508 677 1174 2023 3756 4196 4457 4532 4417 4597 

Incinerate - 15 86 893 973 780 474 445 449 420 

Landfill 2491 3739 4256 4357 4045 3508 2200 1828 1835 1722 

Note: - means no data. Data is adapted from United States EPA (2017b). 

Landfilling, if inappropriately performed or poorly operated, may contaminate the 

atmosphere with greenhouse gas emissions from the slow degradation of lignocellulosic 

waste. The presence of abundant lignin endows lignocellulosic waste with recalcitrance; it is 

difficult to break down through microbial action (Cragg et al., 2015). These poorly 

degradable fractions are typically associated with a long ‘tail’ of emissions and gradually 

accumulate in landfill. Furthermore, these slowly produced gases are insufficient to generate 

energy and difficult to capture, so the biogas (primarily methane and carbon dioxide) 

typically escapes into the atmosphere contributing to climate change (O’Dwyer et al., 2018).  

Accelerating the degradation of lignin and subsequent methanogenesis in 

lignocellulosic waste is required to help to confine methane production to a shorter period of 

higher concentration release, thus allowing more landfill biogas to be collected as energy and 
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preventing low emission of greenhouse gas in the long term. This can be addressed with 

biotechnological methods in two main ways – the application of extracellular enzymes 

(Schroyen et al., 2017, 2015; Ufarté et al., 2018) or enzyme-producing microorganisms 

(Dollhofer et al., 2018; Rahimi et al., 2020; Ranganathan et al., 2017; Sanitha et al., 2021). 

However, these previously mentioned studies have been carried out under laboratory level 

with highly controlled conditions or standardized materials, scaling-up these technologies to 

landfill conditions will be highly challenging and is yet to attract significant attention. 

2.1.4.2 Forest residue 

Forests are the largest terrestrial carbon sink and play a vital role in the global carbon 

cycle, where plants absorb energy through photosynthesis and store it in wood as carbon 

(Grassi et al., 2017; Hardersen and Zapponi, 2018). The current carbon stock in forests is 

estimated to be 861 billion tons, with the vast majority in soil (44%) and live biomass (42%) 

(Pan et al., 2011). There are two main types of wood, hardwood and softwood. Hardwoods 

arise from deciduous trees (e.g. oak, maple, birch) while coniferous trees (e.g. pine, spruce, 

juniper) produce softwoods. In 2020, global hardwood lumber production reached 2536.7 

million m3, mainly in Asia, Africa, the Americas and Europe (Table 2-3) (FAOSTAT, 2020). 

Global softwood production was 1375.25 million m3, mostly in Europe and the Americas.  
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Table 2-3. Quantity of hardwood and softwood production and residues in 2020. 

Types Production quantity (million m3)  aste quantity (million m3) Regions 

Hardwoods 995.08 102.24 Asia 

 760.64 1.56 Africa 

 515.78 23.49 Americas 

 58.77 0.59 Central America 

 134.05 5.25 Northern America 

 317.33 20.05 South America 

 231.87 17.57 Europe 

 33.34 0.99 Oceania 

 2536.7 151.05 World 

Softwoods 163.83 16.83 Asia 

 30.97 0.06 Africa 

 555.14 25.28 Americas 

 35.64 0.35 Central America 

 427.83 16.77 Northern America 

 91.17 5.76 South America 

 571.81 43.33 Europe 

 53.5 1.59 Oceania 

 1375.25 81.89 World 

Woody debris, comprising fallen dead trees and the remains of large branches on the 

forest ground, represents a large carbon pool with carbon stock ranging from 36 to 72 billion 

tons globally (Russell et al., 2015). Unless woody debris is harvested it will ultimately 

convert to lignoforms (humus forms formed by the degradation of deadwood) as a part of the 

soil (Tatti et al., 2018). In this process of woody debris being gradually decayed into 

lignoforms by decomposer communities, most of the carbon is returned to the atmosphere as 

methane and carbon dioxide (Covey and Megonigal, 2019). Since methane and carbon 

dioxide are both greenhouse gases of great concern for climate change (Saunois et al., 2020), 
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this natural process was only recently recognized as an important sources of greenhouse gas, 

with estimates of carbon flux at 8.6 billion tons annually, equivalent to approximately 90% 

of anthropogenic emissions (Le Quéré et al., 2013). 

Excepting dead wood produced by natural processes, human activities are the main 

source of woody debris. The harvesting of approximately 4.3 billion m3 of wood annually 

(FAO, 2020) is estimated to generate 232.94 million m3 of wood waste may be produced in 

the world every year, mainly in Asia and Europe (Table 2-3). Woody debris are generated 

during forestry operations (branches, treetop, leaves, stumps, low grade and decayed wood, 

slashings, sawdust) and wood processing (bark, sawdust, trimmings, planer shavings, core, 

screening fines), which also are classed as wood waste. These wood wastes are potential 

resources for bioenergy production that may have a significant impact on the profitability of 

the entire timber trade value chain, offsetting the negative impacts of forestry operations on 

ecosystem services and biodiversity (Ranius et al., 2018; Sántha and Bentsen, 2020). The 

added value of producing biofuel from these wood waste also comes from reducing fire risk, 

mitigating forest management costs, and eliminating additional emissions from degradation 

(Lee and Han, 2017; Nicholls et al., 2018). 

Direct large-scale combustion of wood waste to generate energy or electricity is no 

longer considered an efficient and environmentally appropriate option. Thus, attention must 

be paid to develop alternative options for renewable biofuel (Amirta et al., 2016). However, 

the refractory nature of wood waste and the immaturity of current AD technology at the 

application-level limit practical examples of biogas production from wood waste. The lignin 
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content in wood is quite high, 25–39% in softwood and 18–25% in hardwood respectively 

(Millati et al., 2019), which is not conducive to the degradation process of microorganisms 

or enzymes. To make fuller use of wood waste to generate more biogas, researchers screen 

for new high-efficiency lignin-degrading microorganisms (Akyol et al., 2019; Ali et al., 

2017), or use the addition of other nitrogen-rich wastes, such as food waste or animal manure, 

to create a favorable condition for fermentation (Oh et al., 2018).  

2.1.4.3 Crop straw 

Agriculture wastes mainly include crop residues and livestock excreta, among which 

crop straw is a potentially valuable lignocellulosic waste with huge yields. As a by-product 

of grain production, crop straw is inevitable and its corresponding relationship with grain 

output is shown in the Table 2-4 (Kim and Dale, 2004; Yan et al., 2021). Based on the Food 

and Agriculture Organization Corporate Statistical Database (FAOSTAT, 2022), the average 

annual crop straw production in the world from 2010 to 2022 can be calculated (Table 2-4). 

The amount of sugarcane bagasse ranked top in the world at 18575.1 million tons, followed 

by rice straw, corn straw, wheat straw and barley straw respectively, and the last are cotton 

and fiber crops. Asia is the region that produces the most food with East Asian countries like 

China and India major growers of crops (Nguyen and Nguyen, 2021). It is estimated that 

1000 million tons of crop straw are produced yearly in China (Zhao et al., 2017), while India 

produces a total of 500 million tons (Kapoor et al., 2020).  
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Table 2-4. Quantities of crop straw reportedly by region, average 2010–2020 (million tons). 

Types Ratio of Straw/Grain 
Crop production 

World Asia Americas Europe Africa Oceania 

Rice 1.6 734.8 661.7 36.9 4.2 31.4 0.6 

Barley 1.0 143.3 21.4 18.7 87.1 6.5 9.5 

Corn 0.5 1038.2 325.7 520.0 114.4 77.5 0.6 

Wheat 0.7 724.6 321.3 113.4 240.1 25.9 23.9 

Sorghum 1.3 60.7 9.0 22.1 1.1 27.0 1.6 

Oat 1.3 22.9 1.1 6.2 14.1 0.2 1.3 

Beans 0.7 22.0 20.1 0.3 0.9 0.7 0.044 

Tubers 2.0 6.8 3.7 0.9 0.1 1.7 0.4 

Cotton 0.3 24.9 16.3 5.9 0.3 1.6 0.7 

Fiber crops 0.4 0.6 0.4 0.1 0 0.048 0.0042 

Sugarcane 10.0 1857.5 729.5 1001.8 0.0057 93.2 33.0 

Crop straw has a low nutritional value and so only a limited amount has been 

traditionally used as livestock feed with the rest commonly burned in the field or sent to 

landfills (Gao et al., 2019). Open burning of crop straw not only produces particulate matter 

posing a serial health risk but also is a major cause of environmental pollution, including 

greenhouse gases and soil fertility destruction (Bhuvaneshwari et al., 2019; Sawlani et al., 

2019). Crop straw burning varies by different countries, depending on the type of crop straw 

and the pattern of its management. Chen et al. (2019) claimed that Chinese farmers burned 

approximately 25% of crop straw, while this ratio would rise to 50% in line with FAOSTAT 

(FAOSTAT, 2022). China, India, United States, Brazil, Russian Federation, Indonesia, 

Argentina, Nigeria, Ukraine, and Thailand are the top 10 countries in terms of quantity of 

burned crop straw (Table 2-5). The burning of crop straw leads to inefficient utilization of 

agricultural waste and an increase in air pollution, which has drawn attention in various parts 
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of the world to develop a proper plan for managing crop straw. Over the past few years, 

especially since 2015, different international agencies have proposed many avenues to utilize 

crop straw to minimize crop straw related issues (Sarkar et al., 2021). 

Table 2-5. Top 10 countries of crop straw burning in the world in 2019 (FAOSTAT, 2022). 

Countries 
Biomass burned 

(million tons) 
CH4 emission (kilotons) N2O emission (kilotons) 

China 68.2 184.2 4.8 

India 48.1 129.9 3.4 

USA 39.8 107.3 2.8 

Brazil 25.9 69.8 1.8 

Russian 13.6 36.8 1.0 

Indonesia 11.8 31.9 0.8 

Argentina 10.1 27.2 0.7 

Nigeria 9.8 26.6 0.7 

Ukraine 7.7 20.9 0.5 

Thailand 7.5 20.2 0.5 

A core sustainable development goal is the transition to a circular economy, which 

involves minimizing resource inputs and waste outputs within a closed-loop system 

pioneering wastes as secondary resources (Ghisellini et al., 2016; Kirchherr et al., 2017). Use 

of crop straw as material to generate biogas through AD is in line with achieving a circular 

economy. The biogas production rate of main crop straw residues is shown in Table 2-6 (Kim 

and Dale, 2004; Yan et al., 2021). As a clean renewable energy, biogas can alleviate energy 

shortages and minimize air pollution risk from the improper management of crop straw. 

There is little biogas production from agricultural waste currently, although the supply of raw 
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crop straw is plentiful. In India, only 2.07 billion m3 biogas are currently produced per year, 

though there is the potential for 29–48 billion m3 each year based on straw volume (Mittal et 

al., 2018). The biogas industry of China is considered to have great potential, owing to 

tremendous amount of crop straw. Nevertheless, the ratio of actual biogas production to total 

biogas potential is only 6.17% (Chang et al., 2014). The biogas potential of crop straw is still 

underexplored due to an imperfect supply chain and viable business models, lack of simple 

pre-treatment technologies, insufficient short-term returns, and shortage of advanced 

technology (Kapoor et al., 2020). Many small-scale biogas plants have been operating for 

decades, although large-scale technically advanced biogas plants are uncommon and a recent 

development (Igliński et al., 2020). The priority currently is to improve the biogas potential 

from crop straw, which could help to eliminate air pollution threats and develop clean energy. 

Table 2-6. Dry biomass ratio and biogas production rate of crop straw. 

Types of crop straw Dry matter (%) Carbohydrates (%) Biogas yield (m3/kg of dry biomass) 

Rice straw 88 49.33 0.43 

Barley straw 81 70.00 0.48 

Corn straw 78.5 58.29 0.46 

Wheat straw 90.1 54.00 0.45 

Sorghum straw 88 61.00 0.41 

Oat straw 89.1 59.10 0.40 

Beans straw 80 54.48 0.40 

Sugarcane bagasse 71 67.15 0.43 
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2.1.5 Anaerobic digestion performance of different lignocellulosic wastes 

The chemical composition of the feedstock and digestion parameters have a large 

impact on methane production. To explore the connection in detail, a mesophilic digestion 

(about 37 °C) with the following parameters fixed, initial pH of AD (about 7), AD time (30–

50 d), inoculum was selected, which were the commonly used conditions in AD of 

lignocellulosic waste. There is a highly positive correlation between methane and biogas 

yield (Figures 2-3a and 2-3b). Additionally, lignin content and lignin content to holocellulose 

content ratio show a moderate negative correlation with methane yield, revealing that the 

presence of lignin could limit AD of lignocellulosic wastes (Figure 2-3a). Among 

lignocellulosic wastes, crop straws and plant residue like peel and reed, have the highest 

methane yield of 161.2 and 191.8 mL/g VS, respectively. The methane yield of mixed wood 

wastes, yard wastes and leaves are 121.8 and 65.9 mL/g VS, respectively. However, co-

digestion could optimize the chemical composition of feedstock and C/N, finally improving 

methane yield (236.7 mL/g VS) (Figure 2-3c).
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Figure 2-3. (a) The correlation between parameters and product yield. (b) Curve fitting between 

methane and biogas yield. (c) Methane yield of different lignocellulose types (delete data containing 

pretreatment process). All figures are plotted from the data in Table A-1. Lignocellulosic waste types 

are distinguished by color. Black dashed lines represent the average value for each waste type. 

L/(C+H): lignin content/(cellulose content + hemicellulose content); LCH: lignocellulose content 

(%)=lignin content + cellulose content + hemicellulose content; VS: volatile solid; PS: particle size; 

I/S: inoculum to substrate; TMP: theoretical methane potential (mL/g VS) were calculated according 

to the lignocellulose content (Kim et al., 2015). 

At different C/N and inoculum to substrate ratio, the fitting curves of feedstock 

lignocellulose composition and methane production show that cellulose and hemicellulose 
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are positively correlated with methane production overall (Figure 2-4). Generally, lignin 

limits methane production; however, under certain conditions, the utilization of lignin in 

lignocellulosic wastes can be enhanced. For example, through the co-digestion with other 

nitrogen-rich wastes to achieve the best digestion C/N of materials. Under standard 

temperature and pressure conditions, the methane yield potential of lignin (727 mL/g VS) is 

much higher than that of cellulose (415 mL/g VS) and hemicellulose (424 mL/g VS) (Chen 

et al., 2014). At the recommended C/N (25–30), some studies used sodium hydroxide 

solution for pretreatment (Gao et al., 2022). Alkali pretreatment is considered as an effective 

method for maximizing degradation of complex materials, in breaking ester bonds between 

lignin and other compounds along with preventing hemicellulose fragmentation (Gunes et al., 

2019). The availability of lignin components was improved by alkali pretreatment, and thus 

the methane yield tended to increase with lignin content (Figure 2-4c), which is consistent 

with the results of previous research (Mu et al., 2020). Methane yield showed a negative 

correlation with lignin content, whatever the variation of inoculum to substrate ratio (Figure 

2-4f). Yin et al. (2000) reported lignin inhibits the utilization of substrate (acetate) by bacteria 

in AD sludge, leading to lower methane production, and this inhibition effect enhanced with 

the increase of lignin content. Moreover, this inhibition could not be compensated by adding 

more acetate in the early stage. In combination with microbiome studies in sludge, this 

situation may be due to the fact that the main microbial components in sludge do not have 

the ability to biodegrade lignin (Lu et al., 2020; Ozbayram et al., 2018), therefore the 

availability of substrate decreases as lignin content increases. 
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Figure 2-4. Curve fitting between methane yield and feedstock lignocellulose composition under 

different C/N and I/S. a and d: Cellulose content (%); b and e: Hemicellulose content (%); c and f: 

Lignin content (%). All figures are plotted from the data in Table A-1. C/N: carbon to nitrogen ratio; 

I/S: inoculum to substrate ratio. 

2.2 The generation of wood waste 

Globally, a large amount of wood waste is generated annually, which is not fully 

utilized due to the absence of a well-developed management system. It has been reported that 

Hong Kong generates about 1000 tons of wood waste per day (Hossain and Poon, 2018). A 

total of approximately 30 million tons of wood waste is created in Brazil every year, of which 

the wood industry accounts for 91% of the total, followed by the waste generated by urban 

environments and civil constructions, which account for 6% and 3%, respectively (Tuoto, 
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2009). The volume of wood waste in Europe in 2007 was estimated to be approximately 33 

million tons, with significant differences between countries: approximately 55 to 60 kg per 

person per year in Eastern and Southern countries, respectively, up to 75 kg per person per 

year for Western countries, and 110 kg per person per year in Northern countries (Mantau et 

al., 2010). The management of such a huge amount of wood waste has emerged as a serious 

problem in the world. Wood waste can be used as a raw material for the pulp industry, in 

panel production, as well as in the production of heat, electricity, and bioenergy through 

different process technologies. Overall, wood waste can be used in two main ways: material 

manufacturing and energy production (Faraca et al., 2019). The replacement of original raw 

materials by wood waste can reduce environmental impacts and extraction, transportation, 

and disposal (e.g., incineration or transportation to landfills) costs. Recycling the wood 

residues can reduce the environmental and social burden by decreasing the amount of 

material, money, and energy required in the production process compared to the direct use of 

raw wood materials (Kim and Song, 2014). Currently, the main reutilization of wood waste 

as a raw material is the particleboard industry. For example, Azambuja et al. (2018) reported 

the blending of construction and demolition wood waste into the internal layers of medium-

density particleboards. In Europe, particleboard consumption in 2019 was about 37 million 

m3 (Besserer et al., 2021). The percentage of recycled wood waste in particleboard can vary 

among countries or regions. This proportion is about 100% in Italy; about 50% in Belgium, 

UK, and Denmark; between 15 and 30% in Germany, France, and Spain; and 0% in 

Switzerland (Vis et al., 2016). In addition, medium-density particleboards have excellent 

compatibility and can contain up to 100% wood waste (Faraca et al., 2019). 
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According to the investigation, wood waste was treated in Europe in the following 

order: (1) disposal (landfill or incineration) accounted for 37%, (2) material recovery (mainly 

particleboard) accounted for 33%, and (3) energy recovery (thermal energy production or 

biofuel generation) accounted for 30%. In UK and the Eastern and Southern countries, wood 

waste is mostly landfilled and buried, while recycling is more dominant in the Northern and 

Western countries, mainly material recovery in Italy and France, and energy recovery in 

Germany, Finland, and Sweden (Mantau et al., 2010). Hossain and Poon (2018) 

comparatively evaluated wood waste management strategies and potential utilizations by a 

life cycle assessment approach and revealed that biofuel from wood waste for energy 

recovery had minimal environmental impacts compared to the production of particleboard 

and wood-cement composite. In energy recovery, the generation of energy (electricity) 

through incineration has been proven to have a high negative impact on the environment and 

has been gradually discouraged (Mayer et al., 2021; Sagastume Gutiérrez et al., 2020; Wang 

et al., 2012). Some scholars have suggested that AD may be very promising in the utilization 

of wood waste, since AD can convert waste into bioenergy, and the remaining digestate can 

be used as fertilizer after only simple composting (Kubiak et al., 2023). Liang et al. (2017) 

compared two scenarios of cellulosic ethanol and biomethane production from wood waste 

through a life cycle assessment, which showed that biomethane production from wood waste 

has relatively high net energy gain and low environmental impacts, including acidification, 

global warming, eutrophication, and photochemical ozone formation. 
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2.3 The recalcitrance of wood waste 

An extensive range of protein-rich or fat-rich wastes are the usual target for AD, 

however, less digestible lignocellulosic components are rarely exploited due to low energy 

extraction efficiency. Lignocellulosic biomass, especially wood waste, consists of mainly 

lignin, cellulose and hemicellulose, and the structure of these individual components and 

their combined form hinder their application in AD. Barriers arise from the interconnection 

between cellulose, hemicellulose, and lignin, forming a complex and undegradable 

lignocellulosic matrix (Zhang et al., 2019). 

Cellulose is an unbranched biopolymer of β-1,4 glucan, whereas hemicellulose is a 

heterogeneous polymer of various sugars. The glucose chains in cellulose do not exist 

independently and tend to produce three-dimensional microfibrils with a high degree of 

polymerization through Van der Waals interactions and hydrogen bonds (Himmel et al., 

2007). Each glucose unit is hydrogen-bonded with two intra-chains and two or three inter-

chains. These hydrogen bonds give cellulose crystallinity, which makes it structurally stable 

and tightly packed.  

The recalcitrance of lignin has been a major obstruction for the utilization of wood 

waste. Lignin requires high temperatures and high acidity to be dissolved and considered as 

the most stubborn component in lignocellulose (Grabber, 2005). It has been widely believed 

that the higher the lignin content, the more recalcitrant the biomass is. Lignin is structurally 

composed of three hydroxycinnamyl alcohol monomers, including coniferyl, p-coumaryl and 

sinapyl alcohol, with a variety of ethers and C-C bonds (Bugg et al., 2011). Once incorporated 
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into the lignin polymer, these substituents are distinguished by aromatic ring structures and 

called guaiacyl, p-hydroxyphenyl and syringyl substituents. Besides the content, variation in 

the quantity of these components has a significant impact on delignification chemistry and 

therefore on biomass decomposition. Guaiac lignin is reported to be more likely to C-C cross-

link at C-5 position, which cannot be hydrolyzed by acids or bases, leading to their ability to 

prevent fiber swelling and enzyme accessibility (Brandt et al., 2013). The lignin crust has 

been identified as a challenge in the hydrolysis of wood waste because it limits the accessible 

surface area of polysaccharide hydrolases to substrates. Lignin cross-links with cellulose and 

hemicellulose to forms a ‘glue-like’ structure (Figure 2-5), which effectively prevents 

microorganisms and enzymes from attacking easily degradable parts, thereby further limiting 

the biogas potential of wood waste (Pan et al., 2005). Lignin also is a source of compounds, 

vanillic acid and syringyl aldehyde, which could inhibit hydrolases and digestion organisms 

(Berlin et al., 2006). In summary, the recalcitrance of wood waste is influenced by several 

factors, i.e., lignin barrier, cellulose crystallinity, and accessible surface area.  
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Figure 2-5. (a) Spatial arrangement of lignin, cellulose, and hemicellulose in wood waste, modified 

from reference (Millati et al., 2020). (b) Different types of linkages within lignin molecule and 

between lignin and other components, modified from reference (Khan and Ahring, 2019; Sun et al., 

2022). 

2.3.1 Chemical composition of wood waste 

The main components of wood waste are composed primarily of lignin, cellulose, 

hemicellulose (Luostarinen and Hakkarainen, 2019). As shown in Table A-2, the lignin 

content of wood waste is typically between 20% and 30% and can be as high as about 35% 

in some wood types. The high lignin content of wood waste can also be observed by 

comparing it with other lignocellulosic wastes (Figure 2-6). The lignocellulose composition 

of wood or wood products, like oriented strand board, particleboard, plywood and medium 

density fiberboard, are similar, with a lignin content between 25% and 40% (average of about 

28.8%). In contrast, the cellulose content in paper and paperboard is up to 68.6%, and crop 

straw is high in hemicellulose with an average value of 27.6% (Figure 2-6). Both paper, 

paperboard and crop straw have relatively low levels of lignin (approximately 10%), and the 

lignin content varies widely among the different types of crop straw, ranging from a 

minimum content of 5.2% in maize straw to a maximum content of 26.7% of wheat straw. 
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Figure 2-6. The chemical composition of wood waste and other lignocellulosic wastes plotted from 

the data in Table A-2. a: Cellulose content (%); b: Hemicellulose content (%); c: Lignin content (%). 

Lignocellulosic waste types are distinguished by color. Black dashed lines represent the average value 

for each waste type. SW: softwood; HW: hardwood; OSB: oriented strand board; MDF: medium 

density fiberboard. 
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2.3.2 Linkages between lignin, cellulose, and hemicellulose 

Cellulose is a homogeneous long-chain polymer composed of repeating D-glucose 

units linked by β-1,4 glycosidic bonds. These glucose monomers are present in the pyranose 

of a cellulose chain with six-carbon rings, and two pyranoses being connected to each other 

by acetal linkages (Kalia et al., 2011). Hemicellulose is a heterogeneous polysaccharide 

composed of arabinose, xylose, glucose, galactose, mannose, and sugar acids. These 

monomers are bonded to each other through glycosidic and fructose ether linkages, forming 

a branched polymer structure (Roy et al., 2020; Saha, 2003). In the lignocellulose 

composition of wood waste, lignin occupies the free space between cellulose and 

hemicellulose and cross-links with cellulose and hemicellulose to form a rigid structure 

(Figure 2-5a). Lignin has a helical structure formed by the polymerization of three 

phenylpropane monomer units, which are connected by ether and carbon-carbon linkages 

(Fernández-Rodríguez et al., 2017; Gosselink et al., 2010). In addition, cellulose, 

hemicellulose, and lignin are interconnected to form numerous intrapolymer and 

interpolymer cross-linkages, mainly including hydrogen, ether, and ester linkages. Table 2-7 

lists the different intrapolymer and interpolymer linkages (Harmsen et al., 2010), Figure 2-

5b shows the linkages within lignin molecule and between lignin and other components.  
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Table 2-7. The cross-linkages among cellulose, hemicellulose, and lignin. 

Cross-linkages Types of bonds Components 

Intrapolymer Ether Lignin, hemicellulose, cellulose 

 Ester Hemicellulose 

 Hydrogen Cellulose 

 Carbon to carbon Lignin 

Interpolymer Hydrogen Cellulose-hemicellulose 

 Ether Lignin-cellulose 

 Ester Lignin-hemicellulose 

2.3.3 Available pretreatments for wood waste 

Considering the recalcitrance of wood waste in AD, the process of biogas production 

from wood waste generally involves pretreatment. There are many pretreatment technologies 

for wood waste, which can be divided into physical pretreatment, chemical pretreatment, and 

biological pretreatment (Bhatia et al., 2017). The purpose of all pretreatment technologies is 

to disintegrate lignin, cellulose, and hemicellulose as completely as possible, producing 

smaller fragments that are easily accessible to enzymatic hydrolysis or other biorefining 

processes for higher yields of added-value products (Figure 2-7). In an AD plant, the cost of 

the pretreatment process typically exceeds 40% of budget (Sindhu et al., 2016). Although 

pretreatment technologies have been studied for many years and continuously improved, 

each method still suffers from obvious pitfalls in practice. For example, physical 

pretreatments such as grinding, steam explosion, ultrasound, microwave or thermal are 

energy-intensive and not cost efficient. Similarly, the application of chemicals like alkalis, 

acids or ionic liquids in pretreatment is faster but will generate wastewater and toxic 
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substances that require extra financial expenses for chemicals recycling. In contrast, the 

biological pretreatment, despite being a comparatively slower process, is a cost-effective 

technique that requires low energy input and is relatively free of hazardous chemicals 

(Sharma et al., 2019). However, the effect of biological pretreatment methods is currently 

not ideal due to limited technology. For example, the rapid and profitable production of 

cellulase has not yet been achieved. Nonetheless, scholars are increasingly interested in 

applying microorganisms or enzymes for pretreatment, with continuous attempts to screen 

suitable microbial communities with diverse enzymatic components and efficient hydrolysis 

activities. 

 

Figure 2-7. Pretreatment goals to overcome lignocellulose recalcitrant. 

2.4 Economic aspects of biogas yield from wood waste 

AD producing biogas is one promising option for wood waste management and 

valorization, as it contributes to the entire circular economy chain. It is a convenient and 

generally cost-effective technology that satisfies efficient disposal of waste and energy 

production, with possible resources recovery from digestion residues. Figure 2-8 shows the 
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pathways of biogas production from various wood wastes and its application. Part of the 

organic matter in industrial biogas plants remains in the solid phase of the digestate, which 

can be then separated and used as fertilizer (Monlau et al., 2015). Biogas generally refers to 

a gas mixture consisting mainly of methane (55–65%), carbon dioxide (30–35%) and other 

trace gases, like hydrogen sulfide (Noorollahi et al., 2015). Biogas from AD could be 

combusted directly for cooking or used for power generation, which emits less greenhouse 

gas than fossil fuels (Agostini et al., 2017). However, the presence of carbon dioxide in 

biogas limits its calorific value due to its incombustibility, thus limiting its applicability and 

transportability. In addition, trace amounts of hydrogen sulfide could corrode equipment such 

as generators and diesel engines. Therefore, biogas needs to be upgraded to be used as a 

vehicle fuel (Neshat et al., 2017), and the upgrading process generates a highly concentrated 

carbon dioxide stream leading to carbon dioxide capture costs as low as $20 per ton 

(Koornneef et al., 2013). Carbon prices strengthen the economic case for biogas consumption, 

facilitating AD of wood waste, and providing rural communities with an additional source of 

income. 
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Figure 2-8. Schematic diagram of biogas production pathways from different kinds of wood wastes. 

A total of 430 biogas plants worldwide were registered with the International Energy 

Agency (IEA) by the end of 2015. According to EPA statistics, biogas usage will reach 14 

EJ in 2050, which plays an important role in how the global energy sector can reach net-zero 

emissions by 2050. In addition, household and village digesters in rural areas will provide 

nearly 500 million households with renewable energy and clean cooking by 2030 (IEA, 2020). 

Biogas is a consolidated market with a positive outlook, and with global policies leaning 

toward sustainable new energy, investment in low-carbon gases such as biogas and 

biomethane will rise to 14 billion dollars by 2040 (IRENA, 2023). For import-dependent 

countries, investment in biomethane supplies can replace the need for fuel imports. For 

example, China and India both have extensive biomethane potential, a large portion of which 

can be obtained at relatively low cost (Kapoor et al., 2020; Zhao et al., 2017). If biomethane 
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replaces natural gas needs, the two countries would save tens of billions in import bills each 

year, which could help offset the cost of developing a domestic biomethane industry. 

Currently, about 30 million tons of oil equivalent of biomethane can be developed at a lower 

cost than natural gas. Methane contributes significantly to the greenhouse effect, and if 

policies recognize the value of avoiding methane emissions from the decomposition of 

feedstocks, larger biomethane production will be cost-competitive. 

In the economic chain of wood waste manipulation, many factors determine 

management costs, in which collection and transportation to processing facilities can be 

important factors. The mixture of different grades of wood waste and the irregular shape of 

the wood waste greatly increases the cost and difficulty of its management. Disposal cost for 

grade A wood waste is much lower than for other grades because there is less work involved 

in the recycling process. The statistical report of the company, Commercial Recycling (2021), 

showed that the disposal costs for wood waste in 2021 were: £80 per ton for grade A; £130 

per ton for mixed grades A, B and C; and £320 per ton for hazardous waste wood (plus £50 

for hazardous waste consignment notes). For forest residues, there is currently no price on 

the open market due to uncommon collection. Only an estimated price could be provided, 

ranging from £18 to £50 per oven dry tons (NNFCC, 2013). In general, the costs mainly 

depend on these criteria: transport distance, storage and drying, type and size of machinery 

used, steepness of the terrain, and labor costs (NNFCC, 2014). The collection and 

transportation of wood waste to the AD plant could be economically achieved by introducing 

appropriate mechanization hardware and practices, in the form of larger and more efficient 
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baling, handling, and transport equipment will result in lower costs. On the other hand, with 

industrialization and scale-up, AD plants could be set up at the source of wood waste (regions 

with high concentrations of forest residues) to significantly reduce transportation costs. 

Since wood waste occurs mostly in a mixture of different grades, a management 

approach that can handle these mixtures simultaneously becomes particularly important. 

Ghaly et al. (2011) found that composting was effective in reducing the contaminated 

biomass of creosote treated wood while generating valuable biofertilizer. Covino et al. (2016) 

showed that co-composting is a viable and extremely effective method of decontamination 

and detoxification for creosote treated wood, mainly due to implicated microorganisms 

belonging to Firmicutes (Bacilli), Actinobacteria, and Saccharomycetales. In addition, AD is 

more environmentally friendly compared to aerobic processes and also produces bioenergy 

(Murphy and Power, 2006). The application of wood for AD is not limited by its grade, which 

is helpful in the management of the current situation where multiple grades of wood waste 

are mixed and can result in significant savings in waste collection costs. For contaminated 

wood waste, many scholars have researched and developed relative pretreatment techniques 

to make it more applicable to AD. For example, Ali et al. (2021a) constructed a novel 

bacterial population SST-4, including Acinetobacter calcoaceticus, Shewanella putrefaciens, 

Bacillus cereus, and Novosphingobium taihuense, were able to degrade both lignocellulose 

and creosote phenolic compounds from the contaminated wood with a significant increase in 

methane production by 84%; Ali et al. (2020) screened two microbial consortia, CS-5 and 

BC-4, from decomposing wood chips and found that they could remove more than 69% and 
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77% of total chlorophenols from contaminated catalpa sawdust, respectively, and that the 

combination of both microbiota increased cumulative methane production by 64%. There are 

two main aspects that limit the utilization of wood waste for AD. The first is the low methane 

production from raw wood waste. As the analysis in section 2.1.5 showed wood waste has 

the lowest methane production potential among all lignocellulosic wastes, which resulted in 

the underappreciation of wood waste as a feedstock for AD. Up to now, a range of 

pretreatment technologies have been developed to enhance the AD potential of wood waste. 

Chemical pretreatment technologies including acids (Mirmohamadsadeghi et al., 2016), 

alkalis (Mohsenzadeh et al., 2012), and other chemical solutions (Hashemi et al., 2022), and 

physical pretreatment technologies including autoclave (Eom et al., 2019), hydrothermal 

(Charnnok et al., 2020), and ultrasonic (Karami et al., 2022) have been developed to increase 

methane production from wood waste by approximately 10% to 150%. Compared to physical 

and chemical pretreatments, biological pretreatment is a cost-effective technology that 

requires only low energy inputs (Sharma et al., 2019). For instance, Kavosh et al. (2022) 

mixed aerobic sludge and pinewood chips directly, utilizing a variety of bacteria in the sludge 

for pretreatment, which resulted in a 7.3-fold increase in methane production; The cumulative 

methane production of albizia chips increased 3.7-fold after pretreatment with Ceriporiopsis 

subvermispora at 28 °C for 7 days (Ge et al., 2015). The other limitation is the lack of 

economical pretreatment technologies that can be practically applied to AD plants. The cost 

of the pretreatment technology exceeds 40% of the total budget for the entire AD process 

(Sindhu et al., 2016). The existing pretreatment technologies available for wood waste are 

only at laboratory level and do not have the capacity for large-scale practical application. In 
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the case of biological pretreatment, when scaled up to factory scale, a huge number of 

enzymes and bacteria need to be used for pretreatment, and the labor and equipment costs 

required cannot be ignored. Yet, the scale of factory will bring economies of scale, which 

means better management and application of large equipment with competitive advantages 

and cost reductions (Bhatt and Tao, 2020). Through an economic evaluation of methane 

production from forest residue using different treatment technologies, Kabir et al. (2015) 

found that the capital investments to operate an AD plant that processes 20,000 tons of forest 

residue per year could be recovered within eight years. Overall, biogas from wood waste have 

great economic potential in promoting clean energy transition and achieving sustainable 

development goals, if suitable pretreatment methods are found. 

2.5 Forest soil ecosystem as a pretreatment approach 

Forests play an important role in the global carbon cycle, with plants like trees and 

bushes absorbing energy through photosynthesis and storing it as carbon in wood, which is 

then partly released into the atmosphere with the decomposition of deadwood in the forest 

soil (Seibold et al., 2021). Trees continue to serve an important ecological function in the 

forest after their death, with the decomposition of their debris allowing nutrients stored in 

dead tissue to be utilized by other organisms. Wood waste, including forest residues and 

deadwoods, can have multiple negative impacts on forest ecosystems, threatening the health 

and stability of the environment. On the one hand, these wood waste can act as fuel for 

wildfires, increasing the probability of forest wildfires, thereby causing significant damage 

to ecosystems, and potentially threatening the lives of humans and wildlife (Page-Dumroese 
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et al., 2017). The changes in vegetation structure and fuel load composition in forests are 

closely related to fire hazards, with the accumulation of wood waste exacerbating the 

frequency and severity of forest fires, leading to an expected increase in fire risk (Pinto et al., 

2022). On the other hand, the decomposition of organic matter in these wood waste releases 

greenhouse gases, which have a negative impact on climate change (Harmon et al., 2020; 

Lenhart et al., 2012; Osone et al., 2016). The death of trees in forests leads to the formation 

of coarse woody debris, which can be a source of carbon dioxide flux to the atmosphere in 

addition to methane efflux (Mukhortova et al., 2021). Warner et al. (2017) found that the 

carbon dioxide release rate was about 4.23 µmol m-2 s-1 with the degradation of coarse woody 

debris in an upland temperate forest, with large variations depending on the decay status of 

wood. Covey et al. (2016) revealed that the methane abundance in deadwood was 

significantly higher than the methane concentration in the atmosphere, approximately 24 

times the ambient concentration. Kipping et al. (2022) investigated the greenhouse gas 

emissions from 793 deadwood blocks of 13 different tree species and found that the average 

emissions of carbon dioxide and methane from deadwood in forests were about 7500 and 7.2 

nmol g-1 d-1, respectively. 

Many scholars have proposed collecting these wood materials and transporting them 

to biomass power plant for bioenergy generation (Chitawo et al., 2018; Gustavsson et al., 

2015; Sahoo et al., 2019; Tian et al., 2023). The study showed that the cost of wood waste 

recovery operation from the forest was approximately $30 per dry ton, excluding the cost of 

transporting the material to the bioenergy facilities (collection to trucks only). Combined 
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with transport costs, the total cost of harvesting and transporting this biomass will exceed the 

local market value of biomass (i.e., up to $50 per dry ton) (Bisson et al., 2016). Therefore, 

these wood waste, consisting of treetops, branches, worthless round logs, stumps, coarse 

wood debris form deadwood, are typically eliminated by slash pile burns to decrease the risk 

of wildfires and to clear growing space for tree regeneration (Creech et al., 2012). However, 

high fuel loads from burning can lead to localized changes in both abiotic and biotic site 

conditions, and intense heat over long durations results in the death of soil biota and soil seed 

banks (Korb et al., 2004). Additionally, the burning can have a significant adverse impact on 

air quality. 

A processing technology that fully harnesses the value of these wood waste aligns 

with the principles of sustainable development and enhances the overall environmental 

benefits. The wood waste in the forest will be gradually degraded, eventually releasing all 

the nutrients to become part of the soil (Petritan et al., 2023). During this natural degradation 

process, the stubborn lignocellulosic structure of the wood waste is broken down, making it 

an increasingly suitable raw material for AD. This process, occurring without the need for 

additional intervention, allows for the effective use of decayed wood waste as AD feedstock. 

By strategically collecting wood waste at its optimal stage of decay, the efficiency of methane 

production can be maximized, enhancing the overall performance of bioenergy production. 

Additionally, this approach supports sustainable forest management by reducing the potential 

fire risk associated with unmanaged wood waste and contributing to the nutrient cycle in 

forest ecosystems. Leveraging the natural decay process of wood waste for AD feedstock 
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aligns with sustainable development goals, improves the effectiveness of bioenergy 

production from high calorific value wood waste, and promotes better forest management 

practices. This integrated approach can play a significant role in advancing renewable energy 

technologies and supporting environmental sustainability. 

2.6 Summary and research gaps identified 

This chapter systematically discusses the potential of AD in wood waste management, 

including the generation and quantity of wood waste, the AD performance of wood waste, 

and the available biological pretreatment technologies to enhance methane production from 

wood waste. Based on the above literature review, the major research gaps can be 

summarized as follows: 

• The enormous stock of lignocellulosic wastes are ideal AD feedstocks, as they do not 

conflict with food production and these biomasses do not require additional 

cultivation energy and costs. Among them, wood waste generates less methane from 

AD because of its high lignin content. Although scholars have developed many 

pretreatment technologies that can enhance methane production from wood waste, 

landfilling and incineration are still very common treatments for wood waste, while 

AD is often ignored. No systematic evaluation of the practicality of wood waste as an 

AD feedstock has been found in the literatures, as well as a lack of exploration into 

the degree of enhancement of methane production from wood waste by different 

pretreatment technologies. 
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• Despite numerous publications on AD of wood waste, encompassing various types 

and characteristics of wood waste as well as different AD conditions, a predictive 

model for final methane production from wood waste based on these parameters has 

not been developed. Accurate predictions help to adjust process conditions to 

maximize biomass resource utilization and reduce waste during energy production. 

In practical AD plants, the ability to predict methane production while simultaneously 

investigating the impact of digestion conditions can optimize the AD process and 

enhance bioenergy production. 

• Pretreatment plays a critical role in AD of wood waste to facilitate the breakdown of 

lignocellulosic components and enhance methane production. However, the existing 

pretreatment approaches for wood waste are considered economically prohibitive. To 

address this challenge, exploring natural pretreatment systems outlined in section 2.6 

becomes a promising avenue. By utilizing the inherent capabilities of natural 

environments (e.g., enzymatic degradation or the activities of xylophagous animals 

and microbial), these systems have the potential to significantly reduce the economic 

burden associated with pretreatment while maintaining or even increasing the 

efficiency of methane production. The forests constitute the largest natural system 

and contain substantial quantities of wood waste resulting from logging operations or 

tree mortality, and these forest residues are degraded to lignoforms on forest soils 

through a complex series of processes. Given that the recalcitrant structure of wood 

waste is disrupted during this process, it is significant to understand the dynamics of 

this process and its impact on methane production. 
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• While the utilization of forest soil systems as an approach for enhancing methane 

production from wood waste holds promise, understanding the mechanisms 

underlying wood waste decay and its subsequent impact on methane production is 

paramount to maximizing the effectiveness of this approach. Despite recognition of 

the potential of forest soil system, a comprehensive understanding of the processes 

governing wood waste decay and its influence on methane production has yet to be 

developed. Numerous aspects warrant further investigation, including changes in the 

properties of wood waste during decay in forest soil and the subsequent implications 

of these alterations on methane production. In addition, environmental conditions in 

forests vary greatly, which can also affect wood degradation. It is important to explore 

the factors that play a major role in wood degradation. 

Addressing these knowledge gaps is essential for unlocking the full potential of 

forest-based improvement strategies and advancing the sustainable utilization of wood waste 

for bioenergy production. 
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Chapter 3 The potential of wood waste in anaerobic 

digestion 

3.1 Introduction 

To date, no systematic analysis has been published to discover the potential of wood 

waste as feedstocks in AD. Meta-analysis, a scientific statistical method, is ideally suited for 

bridging the gap between traditional literature review and quantitative analysis (Terrer et al., 

2021). By analyzing a large amount of data, more dependable conclusions can be drawn 

(Maaz et al., 2021). Thus, systematic employment of meta-analysis allows for the acquisition 

of reliable conclusions. Ma et al. (2020) compared methane yields among mono-digestion 

and co-digestion by meta-analysis and determined that relevant factors, including co-

substrate type, C/N, substrate pH, organic loading rate, and hydraulic retention time, 

contributed to methane yields; Zhou et al. (2021) obtained a preliminary and more complete 

anaerobic co-digestion execution strategy in terms of co-substrate selection, mixing ratio, 

and synergistic evaluation through meta-analysis. The overall effect of digestion conditions 

and the basic properties of substrates on methane production is considered to be substantial, 

but there have not yet been systematic studies to optimize the operations associated with AD 

of wood waste. 

Furthermore, machine learning (ML) has gained increased interest in the broad field 

of environmental science and engineering, and offers the capacity to solve complex 

relationships and regression tasks by processing and learning from large and 

multidimensional data (Zhong et al., 2021). Several ML models have been developed to 
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monitor and classify pollutants in environments, which can automatically count and identify 

pollutants from pictures (Lorenzo-Navarro et al., 2021; Yurtsever and Yurtsever, 2019). 

Moreover, ML models have been widely applied to waste-to-energy systems in recent years, 

including AD (Yildirim and Ozkaya, 2023; Zhang et al., 2023b), pyrolysis (Zhu et al., 2019a), 

hydrothermal carbonization (Li et al., 2021b), and gasification (Elmaz et al., 2020; Li et al., 

2021a). For example, Yildirim and Ozkaya (2023) used five ML algorithms to predict the 

biogas production based on operational parameters collected from a real-scale AD plant and 

found that the random forest (RF) model had the highest prediction accuracy; Zhang et al. 

(2023a) revealed the function of biochar in AD by tree-based machine learning; Wang et al. 

(2020) applied several machine learning algorithms to the regression and classification 

models of AD performance, identifying the decisive operational parameters of AD and 

predicting methane production from these parameters. However, an exhaustive literature 

review revealed that most of the ML work has focused on biogas prediction from the AD 

systems with different operational conditions, and no studies have been conducted to address 

the effects of wood waste as a substrate on biogas production. Therefore, the effects of wood 

waste as a substrate should be analyzed along with the operational parameters of the AD 

system, so that a comprehensive consideration of the influencing factors can provide a 

foundation for the improvement of biogas production in different AD plants. Additionally, 

the ever-increasing number of publications related to various wood wastes with different AD 

systems can contribute to the development of ML models to explain the complex effects of 

wood wastes on biogas production based on the physicochemical properties of wood wastes 

and the AD operational parameters (Chen et al., 2021; Wei et al., 2019). There is therefore 
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the potential that a refined ML model can be used to calibrate system parameters to optimize 

biogas output. 

This chapter employs a hierarchical meta-analysis approach to analyse BMP of wood 

waste, including the comparison between BMP of wood waste and other organic wastes and 

the enhancement of different pretreatment techniques on BMP of wood waste. Then, the 

effects of different parameters in AD of wood waste were determined through diverse ML 

algorithms. This chapter covers RQ 1 and RQ2 with the following chief goals (i) investigate 

the BMP of wood waste and other organic wastes; (ii) identify the pretreatment techniques 

that significantly improve BMP of wood waste; (iii) confirm the main factors affecting 

methane production and optimization of AD conditions; (iv) predict methane production 

from substrate physicochemical characteristics and AD conditions for industrial applications. 

3.2 Materials and methods 

3.2.1 Literature search and data selection 

The literature search was conducted according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Zorzela et al., 2016), in the 

databases Web of Science and PubMed that combined keywords related to AD with 

keywords related to wood waste (cutoff date 07 December 2022). The following search terms 

were employed: (anaerobic *digestion OR biogas OR biomethane) and (lignocellulos* OR 

wood* OR forest* OR sawdust*), and searches in Web of Science were limited to the topic 

[title/abstract/keywords] and in PubMed to [title/abstract]. A total of 4441 articles (excluding 
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duplicates) were initially obtained, then the title and abstract were examined and finally the 

full manuscripts (Figure A-1). Publications included in this meta-analysis were considered to 

meet the following criteria: (1) investigated wood wastes as feedstocks for AD; (2) studies 

with “treatment” group and “control” group, where other experimental conditions were 

identical; (3) included methane production in a standard format (mL/g of VS or mL/g of TS); 

and (4) measurable data were presented for the determination of mean value and uncertainty 

of methane production, as standard deviation (SD) or standard error (SE). Subsequently, 42 

publications (Table A-3) were retained in the meta-analysis containing 259 groups of datasets 

on different pretreatment methods for wood waste, 22 groups of datasets on anaerobic co-

digestion of wood waste, and 488 groups of datasets on comparing wood waste with other 

organic wastes in AD (Table A-4). 

Moreover, publications included in the machine learning analysis were considered if 

they met the following criteria: (1) investigated wood wastes as the feedstocks for AD; (2) 

included methane production in a standard format (L kg−1 of VS); (3) presented measurable 

data for the determination of mean value and uncertainty of BMP, as SD or SE; (4) detailed 

lignocellulosic component of wood wastes; and (5) presented details on inoculum, volume, 

temperature and the ratio of inoculum to substrate in AD. To form a qualified dataset, nine 

input variables including wood types, inoculum types, volume (ml), temperature (℃), 

particle size (mm), ratio of inoculum to substrate (based on VS), cellulose content (%), 

hemicellulose content (%), lignin content (%), and digestion time (d) were chosen, in which 

wood types and inoculum types were represented as categorical objects. The accumulated 
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methane production (L kg−1 of VS) during AD was selected as the output variable. To avoid 

bias introduced by imputation, publications lacking any of the above information were not 

considered. Under these criteria, 1179 groups of datasets were collected from 19 publications 

for the machine learning analysis (Table A-5). The values of numerical objects were extracted 

manually using the WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/, Version 4.6). 

3.2.2 Meta-analysis 

Three essential results for the methane production were extracted from the screened 

papers: the mean (M), SD, and the number of replicates (n). If SD was not presented directly 

in the paper, the SE was used to calculate it according to Equation (3-1): 

 𝑆𝐷 = 𝑆𝐸 × √𝑛 (3-1) 

A natural log-transformed response ratio (ln RR) is used as a metric to estimate the 

magnitude of the treatment effect, the log response ratio and its variance are calculated as 

Equations (3-2 to 3-4): 

 ln RR = ln (𝑋𝑇/𝑋𝐶) = ln𝑋𝑇 − ln𝑋𝐶 (3-2) 

 𝑉ln RR = 𝑆𝑃
2(

1

𝑛𝑇𝑋𝑇
2 +

1

𝑛𝐶𝑋𝐶
2) (3-3) 

 𝑆𝑃 = √
(𝑛𝑇 − 1)𝑆𝑇

2 + (𝑛𝐶 − 1)𝑆𝐶
2

𝑛𝑇 + 𝑛𝐶 − 2
 (3-4) 

where 𝑋𝑖 , 𝑆𝑖 , and 𝑛𝑖  denote the mean, standard deviation, and number of replicates, 

respectively. The subindices T and C refer to treatment and control variables, respectively; 
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𝑆𝑃 is the pooled standard deviation and X includes varieties of different indicators that affect 

methane production. 

A subgroup meta-analysis was conducted to compare the BMP of wood waste with 

other organic wastes and to explore the impact of different pretreatment methods on BMP of 

wood waste. The types of wood waste were classified into hardwood and softwood; the 

pretreatment methods included biological techniques, chemical techniques, physical 

techniques, anaerobic co-digestion techniques, and combination of multiple methods; other 

organic wastes included crop straw, municipal solid waste, wild plant, and yard waste. Meta-

analysis was conducted using the “metafor” package and “forestplot” package, implemented 

in R version 4.1.3 (https://www.r-project.org/). This chapter used and modified the codes 

from Zhang et al. (2020), and detailed description of the codes are available in the repository: 

https://github.com/pablogalaviz/Micro-Plastics-Meta-Analysis.git. 

3.2.3 Implementation of machine learning models 

Three types of supervised ML models, namely support vector regression (SVR) 

(Wang et al., 2023), RF (Long et al., 2021; Pei et al., 2022), and artificial neural networks 

(ANN) (Alejo et al., 2018), were selected to simulate the complex effects of AD parameters 

on BMP of wood waste, as all three have been found to be accurate in predicting methane 

production (Andrade Cruz et al., 2022). Before applying the collected data to these ML 

models, the data needs to be preprocessed. Since this experimentally based dataset had no 

missing or erroneous values, the numerical data was standardized from the beginning without 

taking any steps to improve the data quality. Standardization of the dataset is a key 
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requirement for ML models to eliminate the potential for errors during the training process 

caused by differences in the scale of the input features (Zhu et al., 2021). Subsequently, the 

two individual categorical input variables, wood types and inoculum types, were given 

numerical attributes through the single encoder. This encoder can convert the value of each 

category into separate columns and assign the value of 0 or 1 to each column, and this process 

enables the application of categorized data as unordered numerical values to ML algorithms. 

Since machine learning models can only process real number inputs, data transformation is 

necessary (Hancock and Khoshgoftaar, 2020). In this study, the StandardScaler function from 

the scikit-learn library was used to standardize the data. Before building each ML model, the 

dataset was randomly split into a training dataset (80%) and a test dataset (20%). Figure A-2 

shows the flowchart of the proposed framework. 

3.2.3.1 Random Forest 

RF is a supervised learning model that aggregates multiple decision trees generated 

from bagging of the training dataset to obtain predictions (Leng et al., 2022). Compared to a 

single decision tree, it offers improved accuracy and robustness. As shown in Figure A-3, the 

RF schematic diagram illustrates that the RF model produces results from multiple decision 

trees that are independent of each other. The dataset samples are initially divided into 

multiple groups to create sub-datasets. Multiple decision trees are trained on each assigned 

sub-dataset separately and grown as much as possible according to the bootstrap replication 

of the training data. The output of each leaf node is the average of all the labelled values in 

the node (Zhu et al., 2019b). Therefore, for regression problems, RF takes the average of 
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predictions from each decision tree as the final integrated prediction result. For the prediction 

of the ith sample, the prediction result of RF can be expressed as Equation (3-5): 

 𝑌𝑖 =  
1

𝑁
 ×  ∑ 𝑓

𝑗
(𝑋𝑖)

𝑁

𝑗=1

 (3-5) 

where 𝑌𝑖 is the predicted value of the ith sample, N is the number of the decision trees, 𝑓𝑗(𝑋𝑖) 

is the predicted value of the jth tree for the input feature 𝑋𝑖. 

To achieve optimal performance in the RF model, it is essential to tune key 

hyperparameters such as the number of decision trees (n_estimators) and the depth of each 

tree (max_depth). While increasing n_estimators and max_depth generally improves model 

performance by enhancing its ability to learn from the training data, it also introduces the risk 

of overfitting and demands more computational resources. Specifically, the number of trees 

(n_estimators) was tested across the values 100, 150, 200, 300, and 500, with a final value of 

150 selected. For max_depth, values from 10 to 20 were tested, and 13 was chosen. 

Additionally, other hyperparameters such as min_impurity_decrease, min_samples_leaf, 

min_samples_split, and random_state were also optimized. The tuned values are as follows: 

min_impurity_decrease was set to 0, min_samples_leaf to 1, min_samples_split to 2, and 

random_state to 1 (Table A-6). 

3.2.3.2 Support Vector Regression 

SVR is a supervised ML algorithm that is an extension of support vector machines 

used for regression problems. It uses kernel functions projecting the input data and features 

to construct an optimal hyperplane in a high-dimensional hyperspace. The aim of mapping a 
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hyperplane is predicting the targets with the minimal empirical risk, and the data located on 

the boundary or closest to the hyperplane are called support vectors (Were et al., 2015). When 

training the SVR model, it calculates the prediction error of each example, represented as the 

loss function 𝐿𝜀  (Equation (3-6)). This is one of the key mechanisms of the ML, and by 

minimising the loss function, the model learns more accurate mapping relationships. Thus, 

for a training set containing 𝑁  samples, the empirical risk 𝑅𝑒𝑚𝑝  (Equation (3-7)) is the 

average or sum of the 𝐿𝜀 over the training dataset. Therefore, by minimizing the empirical 

risk 𝑅𝑒𝑚𝑝 , the optimal estimation function, which represents the hyperplane in the SVR 

hyperspace, will be determined as follows: 

 𝐿𝜀 =  {
0                              𝑖𝑓 |𝑦

𝑖
− 𝑓(𝑥𝑖)| ≤  𝜀

|𝑦
𝑖

− 𝑓(𝑥𝑖)| −  𝜀                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3-6) 

 𝑅𝑒𝑚𝑝 =  
1

𝑁
 ∑ 𝐿𝜀 (𝑦

𝑖
− 𝑓(𝑥𝑖))

𝑁

𝑖=1

 (3-7) 

where 𝑦𝑖 is the actual value of the ith sample and 𝑓(𝑥𝑖) is the predicted value from the SVR. 

𝜀 is a constant parameter defined as the epsilon-insensitive tube (default = 0.1), which limits 

the acceptable range of the error between the predicted target and the real target value.  

 𝑓(𝑥) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏

𝑁

𝑖=1
 (3-8) 

where 𝛼 refers to the Lagrange multiplier for determining the weight of each data point in 

the model. 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function and the 𝑏 is a constant parameter. 

In the training process, models often perform well on the training dataset but tend to 

perform poorly when exposed to new, unseen data. Cross-validation is a widely used 

technique in ML to enhance model generalization by splitting the training dataset into 
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different datasets. Moreover, it allows the limited available data to be reused, improving the 

accuracy of the model (Benfenati et al., 2007). In this study, five-fold cross-validation was 

applied for SVR with the following five steps: Step 1: The training dataset is randomly 

divided into 5 subsets using non-repetitive sampling; Step 2: 4 of the 5 subsets are used for 

model training, and the remaining subset is used for testing; Step 3: This process is repeated 

5 times, ensuring each subset is used as a test set once; Step 4: The evaluation metrics for 

each of the 5 models are recorded; Step 5: The average error across the five test results is 

calculated as the cross-validation error. Importantly, each step, including model and feature 

selection, is performed independently within a single fold. A more detailed explanation of 

five-fold cross-validation can be found in Cui et al. (2024). 

3.2.3.3 Artificial Neural Network (ANN) 

ANNs, which are recognized as an effective ML model, usually consist of a large 

number of densely connected processing core nodes (called neurons), and these neurons are 

frequently grouped into several layers (Chandrasekaran et al., 2021). ANNs must be 

composed of at least three layers: an input layer transferring data to a hidden layer(s) but not 

performing any computation; one or more hidden layers processing the data and forwarding 

the results to an output layer; and an output layer presenting the final result of all the data to 

an external user (Guo and Uhrig, 1992). Weighted connections connect each neuron in a layer 

to each neuron in the layer above it. Multilayer feedforward perceptron is another name for 

this type of ANN structure (Göktepe et al., 2005). Determining the number of hidden layers 

is a key challenge when developing an ANN as it relies on the complexity of the pattern 
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recognition task. ANNs that include one or two hidden layers are commonly used to solve a 

variety of problems (Sonmez et al., 2006). Moreover, the number of neurons in the hidden 

layer is another important factor when developing an ANN model, and the number of neurons 

is determined by the complexity of the input-output link. When this relationship becomes 

more complex, more hidden neurons should be employed. However, scholars have argued 

that excessive usage of hidden neurons is believed to lead to overfitting (Heaton, 2017), 

which in turn affects the predictive ability of the ANN model, and consequently the 

generalization ability. In practice, the quantity of hidden layers and the number of neurons in 

the hidden layers are determined by the collected dataset and its features (Cui et al., 2024). 

The training of a multi-layer feed-forward perceptron can be regarded as an 

unconstrained optimal problem with an overall error function that decreases as a function of 

the synaptic weighting of the network. The synaptic weight values of the multi-layer feed-

forward perceptron are iteratively changed in order to produce the desired behavior using a 

training dataset consisting of input-output vectors. This process is generally performed in two 

steps using a backpropagation learning algorithm. In the first stage, data is transferred to the 

ANN through the input layer to generate the output. In the second phase, the difference 

between the target and generated values is transmitted from the output layer to the previous 

layers, and the weights of the connections are varied to minimize the transmission error. At 

the end of the training phase, the proper learned weights of each neuron are stored in the 

memory of the ANN. A separate unused dataset is provided to the ANN, which uses the 
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stored learned weights to make predictions during testing. Finally, the expected and predicted 

values are compared (Erzin et al., 2008). 

3.2.3.4 Model accuracy evaluation metrics 

Once these models are built, their generalization performance on the testing dataset 

is evaluated using three metrics: the root mean square error (RMSE), mean absolute error 

(MAE), and the coefficient of determination (R2). The RMSE and MAE is a measure of the 

prediction error of the model and how well the model fits the observations, Equations (3-9 

and 3-10). Therefore, the smaller the RMSE and MAE, the better the model performs. R2 

(Equation (3-11)) is a statistic that measures the superiority of the model over a simple 

average model (Y=X) and shows how well the model explains the variance of the predicted 

values. The R2 ranges from 0 to 1, and the closer to 1, the better the model performs. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ ( 𝑦𝑖 −  𝑦𝑖̂)2

𝑛

𝑖=1
 (3-9) 

 𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1
 (3-10) 

 𝑅2 =  1 −
∑ ( 𝑦

𝑖
−  𝑦

𝑖̂
)

2𝑛
𝑖=1

∑ ( 𝑦
𝑖

−  𝑦̅)2𝑛
𝑖=1

 (3-11) 

where 𝑦𝑖 is the real target value of the ith sample, 𝑦𝑖̂ is the predicted target value, and 𝑦̅ is the 

average of the actual value of the target in all samples (n). 



 

67 

3.3 Results and discussion 

3.3.1 Overview of anaerobic digestion on wood waste 

Initially, 42 research articles were identified from the literature search results which 

experimentally investigated BMP of wood waste. The number of publications referencing 

AD has increased annually, with significant growth since 2006. Although AD has received 

increasing interest, there are few publications exploring AD of wood waste, with the number 

basically stable at four per year since the first publication in 2010 (Figure 3-1a). The search 

results about AD were divided into two categories. The first is ethanol fermentation, where 

the main feedstocks investigated are crop straws (agricultural wastes); the other part is where 

the main feedstocks are manure, food waste, and sludge (Figure 3-1b). Whilst AD requires 

microorganisms to metabolise organic matter into useful products the complex structure of 

lignocellulosic wastes contains bonds and functional groups that make their degradation very 

difficult (Gao et al., 2022). In contrast, the organic matters of manure, food waste, and sludge 

are more amenable to AD as subsequently have become a greater focus of research 

(Bhatnagar et al., 2022; Deena et al., 2022). 
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Figure 3-1. General trends in experimental research about the anaerobic digestion of wood waste. (a) 

Number of publications before 07 December 2022 that experimentally examined the anaerobic 

digestion of wood waste. (b) Keywords co-occurrence analysis, plotted by VOSviewer 1.6.18 

software. (c) Respective proportion of research content (n = 769), including pretreatment techniques 

(n = 281) and the type of other organic waste (n = 488). MSW: Municipal solid waste. 

From the selected 42 studies, a total of 769 datasets were identified and were 

classified by comparing different pretreatment methods and different organic wastes. Figure 

3-1c shows the respective proportion of each research content, where other organic wastes 
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include wild plant (42.73%), crop straw (24.45%), yard waste (19.38%), and municipal solid 

waste (13.44%). 22 groups of datasets concerned the anaerobic co-digestion of wood waste 

with other wastes, such as manure, food waste, crop straw, showing that anaerobic co-

digestion can increase BMP by 199.23% (Table A-4). Furthermore, the maximum increase 

occurred when woodchips and food waste were anaerobic co-digested in a 1:1 weight ratio 

(Oh et al., 2018). Figure 3-2 shows wood waste had the lowest BMP compared to other 

organic wastes, which could be explained by the high lignin content in the wood waste (Gao 

et al., 2022). Yard waste consisted mainly of leaves, grass clippings, flowers, twigs, and 

branches, and twigs and branches account for a large part (Gunaseelan, 2016). Therefore, the 

BMP of yard waste was close to wood waste. Moreover, BMP also differed considerably 

between softwoods and hardwoods, with hardwoods being more productive. In the 

subsequent meta-analysis, hardwoods and softwoods are considered separately. 

 

Figure 3-2. The cumulative methane production of wood waste and other organic wastes. WW: wood 

waste; CS: crop straw; WP: wild plant; YW: yard waste; MSW: municipal solid waste. 
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3.3.2 Biochemical methane potential comparison for organic wastes 

For studies considering AD of different organic wastes, the feedstocks involved 

mainly lignocellulosic wastes, which were classified according to source and variety as wood 

waste, crop straw, wild plant, yard waste, and the organic fraction of municipal solid waste 

(Table A-4). Of these, the first four (wood waste, crop straw, wild plant, and yard waste) are 

all considered lignocellulosic wastes, while municipal solid waste are highly 

nonhomogeneous mixture generated from residential, commercial, and industrial sectors 

(Adhikari et al., 2018). Wild plant refers to the natural herbaceous phytomass that grows in 

the wild without any human intervention (Triolo et al., 2012). These wastes could partly 

overlap because of their complexity, for example, municipal solid waste consists of yard 

trimmings (garden cuttings), which is also divided into yard waste (Funk et al., 2020; 

Gunaseelan, 2016). In Figure 3-3, the response ratio of other organic wastes compared to 

wood waste is presented. Summarizing across the organic waste types, wood waste had the 

lowest BMP. In particular, crop straw BMP was 132% higher than wood waste, wild plant 

BMP was 181% higher, yard waste BMP was 89% higher, and municipal solid waste BMP 

was 134% higher. The summary effect size for other organic wastes in comparison to wood 

waste was 2.22 [95% CI: 1.82, 2.72] (p < 0.001). This means that on average the BMP of 

other organic wastes was 122% higher than that of wood waste. These results were primarily 

due to the chemical composition of the organic wastes. The cellulose, hemicellulose, and 

lignin content of crop straw was 40.67%, 16.87% and 21.76% respectively, in addition to 

3.12% water soluble carbohydrate and 4.65% crude protein (X. Wang et al., 2020); The 
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chemical composition of wild plant in terms of cellulose, hemicellulose and lignin was 

45.37%, 34.33% and 15.11% respectively (Triolo et al., 2012); The cellulose, hemicellulose, 

and lignin content of yard waste was 39.65%, 29.35% and 23.91% respectively (Panigrahi 

and Dubey, 2019); In municipal solid waste, kitchen waste contained 6–16% degradable 

holocellulose, 31–41% sugars, 17–22% protein, and 14–25% fat, and the degradable paper 

had 72–94% degradable holocellulose (Zhang et al., 2022). However, wood waste consisted 

of 31.07% cellulose, 17.12% hemicellulose, and a high lignin content (28.82%) (Gao et al., 

2022). Lignin is the major component of the recalcitrant fraction of lignocellulosic waste and 

an important factor limiting their BMP (Gonzalez-Estrella et al., 2017; Khan and Ahring, 

2019). The overall improvement in BMP of hardwood waste was 83% compared to softwood 

waste with summary effect size of 1.83 [0.96, 3.49] (p = 0.0669) (Figure 3-3). Furthermore, 

a similar trend was observed when other wastes were compared to hardwood and softwood 

respectively. This could be explained by the high content of polysaccharides in hardwood 

and the lower lignin content (Wang and Barlaz, 2016). On the other hand, the hardwood xylan 

had a higher degree of deacetylation, making them more susceptible to degradation (Ekstrand 

et al., 2020). 
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Figure 3-3. The response ratio of methane production from other organic wastes compared to wood 

waste. The blue square symbols show mean effect size with error bars representing 95% confidence 

interval, and the red diamond represents the summary effect. A ratio   1 indicates that the methane 

production from the treatment is higher than that from the control group, and specifically, a response 

ratio of 2.22 indicates that the treatment group produces 122% higher methane compared to the 

control group. n refers to sample size, and p means the p-value of the Q test with p <0.05 indicating 

a significant difference. HW: hardwood; SW: softwood; CS: crop straw; WP: wild plant; YW: yard 

waste; MSW: municipal solid waste. 

To investigate the impact pretreatment has on BMP, the dataset was divided into two 

parts, with and without pretreatment, for analysis. In the absence of pretreatment for 

substrates, the overall BMP of other organic wastes was 146% higher than wood waste with 
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summary effect size of 2.46 [1.89, 3.19] (p < 0.001). However, this gap was reduced to 99% 

with summary effect size of 1.99 [1.59, 2.48] (p < 0.001) under the application of 

pretreatment techniques (Figure 3-4). The results showed that wood waste specifically had 

better pretreatment potential — pretreatment increased its BMP by a greater amount — than 

for other organic wastes. Pretreatment techniques can change the chemical structure of lignin, 

making it more accessible to microorganisms, which greatly increased the BMP of wood 

waste (Yoo et al., 2020). Additionally, the BMP of municipal solid waste fluctuated 

considerably (Figures 3-4c and 3-4d), as the composition of municipal solid waste varied 

significantly among different geographical areas. For example, the municipal solid waste 

investigated by Krause et al. (2018b) consisted of mainly paper and paperboard, yet Pastor-

Poquet et al. (2019) focused on municipal solid waste consisting of household waste, 

restaurant waste, and spent coffee.  
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Figure 3-4. The cumulative methane production of different organic wastes (a) without pretreatment 

and (c) with pretreatment techniques. The response ratio of methane production from other organic 

wastes compared to wood waste (b) without pretreatment and (d) with pretreatment techniques. WW: 

wood waste; CS: crop straw; WP: wild plant; YW: yard waste; MSW: municipal solid waste. For (b) 

and (d), the plot shows the mean effect size (black squares and blue diamond) with error bars 

representing 95% confidence interval. A ratio   1 indicates that the methane production from other 

wastes is higher than wood waste, and specifically, a response ratio of 2.22 indicates that other wastes 

produce 122% higher methane compared to wood waste. n refers to sample size and p means the p-

value of the Q test, with (*) p<0.05; (**) p<0.01; (***) p<0.001. 

3.3.3 Impact of pretreatment techniques for wood waste 

A number of studies have shown that pretreatment techniques can enhance BMP of 

lignocellulosic wastes by increasing the surface area of feedstock (size reduction and the 

wetting of biomass) and biomass decrystallization, resulting in an increase in the accessibility 
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and biodegradability of microorganisms to the organic matter (Ali et al., 2021a; Basak et al., 

2022; Raut et al., 2021). However, it is still not fully clear to what extent pretreatment 

techniques contribute to the BMP of wood waste and how to choose the optimal pretreatment 

technique for different sources and components of wood waste. The cumulative methane 

production of wood waste after different pretreatment techniques is shown in Figure 3-5. 

According to the meta-analysis depicted in Figure 3-6, the employment of pretreatment 

strategies significantly improved the BMP of wood waste by 113% (n=250), with an overall 

effect size of 2.13 [1.68, 2.70] (p < 0.001). Furthermore, the combination of multiple 

pretreatment techniques was more effective than a single approach, except for the 

combination of biological and chemical strategies (86%, n=39) which was slightly less 

effective than physical strategy (99%, n=43). Many studies have demonstrated that a 

combination of two pretreatments, like biological with chemical or physical strategies, was 

more useful compared to a strategy alone (Ponnusamy et al., 2019). An appropriate combined 

strategy would not only improve the decomposition of lignocellulosic feedstocks, but also 

optimize the utilization of their constituent components, all while keeping operating costs 

relatively low and optimising the product quality (De Bhowmick et al., 2018). The synergistic 

impact of combining physical pretreatment with either chemical or biological pretreatments 

was observed to markedly enhance the BMP, with effect size of 4.76 [1.98, 11.44] (p < 0.001) 

or 4.67 [2.10, 10.39] (p < 0.001) respectively (Figure 3-6). These findings imply that physical 

pretreatment plays a pivotal role in facilitating successful AD of wood waste, underscoring 

the necessity of employing multiple pretreatment strategies to maximize the BMP of woody 

biomass. The summary effect size of hardwood and softwood were 1.85 [1.49, 2.29] 
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(p < 0.001) and 2.55 [1.60, 4.04] (p < 0.001), and akin to the outcomes on all wood waste, 

physical pretreatment and multiple pretreatment strategies were exceedingly advantageous 

in advancing the BMP (Figure 3-7). It is noted that in some specific cases combine 

pretreatment did not result in higher BMP values in comparison to single pretreatment. 

 

Figure 3-5. Influence of different pretreatment techniques on cumulative methane production of wood 

waste. Bio: biological pretreatment; Phy: physical pretreatment; Che: chemical pretreatment; B+C: 

biological + chemical pretreatments; B+P: biological + physical pretreatments; C+P: chemical + 

physical pretreatments; UnT: without pretreatment. 
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Figure 3-6. The effects of different pretreatment techniques on methane production from wood waste. 

For the purposes of comparison, shredding of raw materials is excluded from the scope of 

pretreatment. The blue square symbols show mean effect size with error bars representing 95% 

confidence interval, and the red diamond represents the summary effect. A ratio   1 indicates that the 

methane production from the treatment is higher than that from the control group, and specifically, a 

response ratio of 2.13 indicates that the treatment group produces 113% higher methane compared to 

the control group. n refers to sample size, and p means the p-value of the Q test with p <0.05 indicating 

a significant difference. MC: microbial consortium; AAS: aqueous ammonia soaking; NMMO: N-

methylmorpholine-N-oxide; CA: chemical antidote.  
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Figure 3-7. The effects of different pretreatment techniques on methane production of (a) hardwood 

waste and (b) softwood waste. B: biological; C: chemical; P: physical; B+C: biological + chemical; 

B+P: biological + physical; C+P: chemical + physical. The plot shows the mean value (black squares 

and blue diamond) with error bars representing 95% confidence interval. A ratio   1 indicates that the 

methane production from the treatment is higher than that from the control group. 

The largest increase in the methane yield for wood waste was observed after the 

combination of biological and physical pretreatments (Table 3-1). Hydrothermal treatment 

together with cellulolytic enzyme was the method with highest increased BMP (3074.2%) 

when compared to untreated wood waste (Matsakas et al., 2015). The process of 

hydrothermal treatment has been shown to be an effective means of augmenting the solubility 

of biomass, thereby creating a more conducive environment for enzymatic activity 

(Posmanik et al., 2017). Additionally, an important factor contributing to the significant 

improvements in BMP observed in these studies was the markedly low levels of methane 

production from untreated wood, close to 5 ml/g of VS (Matsakas et al., 2015). Despite the 

considerable gains in BMP that can be achieved with these pretreatment strategies, it is 

imperative that a thorough investigation is carried out into the energy consumption and 

materials associated with these techniques, in order to surpass the cost-benefit threshold in 
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practical applications. Physical techniques tend to be energy intensive, whereas chemical 

techniques could result in the production of environmentally hazardous substances, and have 

their own environmental footprints (Sharma et al., 2019). By contrast, biological techniques, 

while being a comparatively slower process, are typically economical approaches that require 

minimal energy input and are largely devoid of hazardous chemicals (Gao et al., 2022). 

Indeed, among individual pretreatment techniques, biological pretreatment exhibited the 

most substantial increase in BMP relative to physical and chemical pretreatment, registering 

an impressive 713% growth (Table 3-1). Yet, when it comes to wood waste, the research on 

biological pretreatment and the identification of microbial consortium involved in wood 

degradation is still in its infancy. 

Table 3-1. Growth rate of the pretreatment techniques for wood waste under specific pretreatment 

configuration. 

Pretreatment 

Average growth rate in methane 

production (L/kg of VS) 
Maximum growth rate in methane production 

X̅Control X̅Treated 
X̅Increase 

(%) 
Specific pretreatment configuration 

Maximum 

growth 

rate (%) 

Biological      

Enzyme 56.1 66.2 51.7 (n=9) 
30 FPU/g cellulolytic enzyme at 50 °C 

for 12 h (Matsakas et al., 2015) 
185.4 

Fungal 108.0 178.0 
178.7 

(n=12) 

Ceriporiopsis subvermispora at 28 °C 

for 7 days (Ge et al., 2015) 
265.5 

MC 44.7 81.1 286.7 (n=3) 

Aerobic sludge pretreatment at 37 °C 

and 90 rpm for 10 d (Karami et al., 

2022) 

713.0 

Chemical      

Acid 26.4 27.6 6.5 (n=6) 
85% phosphoric acid at 60 °C for 45 

min (Mirmohamadsadeghi et al., 2016) 
39.8 
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Alkali 80.5 153.1 
101.9 

(n=36) 

NaOH at -15 °C for 16 h 

(Mohsenzadeh et al., 2012) 
556.8 

AAS 30.8 76.9 150.5 (n=3) 
AAS at 22 °C for 3 d (Antonopoulou et 

al., 2015) 
176.9 

Iron-based 237.5 297.9 27.3 (n=13) 
0.5 mM Fe(II) and H₂O₂ (Hashemi et 

al., 2022) 
49.0 

NMMO 45.2 85.8 90.1 (n=20) 
75% NMMO for 15 h (Kabir et al., 

2013) 
298.2 

Organosolv 54.9 78.4 65.6 (n=18) 
Ethanol extractives (Tajmirriahi et al., 

2021) 
319.6 

Physical      

Autoclave 79.4 104.0 90.6 (n=15) 
Steam explosion at 20 bar for 10 min 

(Eom et al., 2019) 
669.7 

Hydrothermal 42.7 109.8 36.3 (n=17) 
Hydrothermal at 170–210 °C for 30 

min (Charnnok et al., 2020) 
258.4 

Ultrasound 118.8 117.6 12.0 (n=3) 
Ultrasonic at 40 KHz and 40 °C for 30 

min (Karami et al., 2022) 
35.7 

Biological + Chemical      

Fungal + Iron-based 190.7 279.3 54.8 (n=16) 

Pleurotus ostreatus at room 

temperature for six weeks + Fe(III) and 

H₂O₂ (Hashemi et al., 2022) 

136.8 

Enzyme + Iron-based 190.7 326.1 88.2 (n=12) 
0.5 mM Fe(II) and H₂O₂ + Enzyme at 

50 °C for 96 h (Hashemi et al., 2022) 
155.1 

Fungal + Alkali 95.4 139.6 46.4 (n=8) 

Abortiporus biennis at 27 °C for 30 d + 

NaOH at 80 °C for 24 h 

(Alexandropoulou et al., 2017) 

115.0 

MC + Alkali 13.6 46.0 237.3 (n=2) 
NaOH at room temperature for 10 min 

+ MC (Karami et al., 2022) 
245.2 

Biological + Physical      

Enzyme + Autoclave 10.9 56.5 418.5 (n=6) 
Steam explosion at 16 bar for 10 min + 

30 FPU/g enzyme (Eom et al., 2019) 
491.4 

Enzyme + 

Hydrothermal 
8.2 167.9 

2069.5 

(n=8) 

Hydrothermal at 210–215 °C for 5 min 

+ 30 FPU/g cellulolytic enzyme at 

50 °C for 12 h (Matsakas et al., 2015) 

3074.2 

Fungal + Autoclave 106.8 159.8 68.0 (n=12) 

Steam explosion at 210 °C for 10 min 

+ 2% Caldicellulosiruptor bescii 

culture (v/v) (Mulat et al., 2018) 

143.2 
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Fungal + Hydrothermal 28.9 51.8 79.3 (n=2) 
Hydrolysis + Petronet alfa 

(Baghbanzadeh et al., 2021) 
88.6 

MC + Hydrothermal 9.6 40.3 319.9 (n=2) 
Liquid hot water + MC (Karami et al., 

2022) 
320.9 

Physical + Chemical      

CA + Hydrothermal 10.6 108.5 972.5 (n=4) 

Hydrothermal at 210–215 °C for 5 min 

+ Sodium dithionite as a chemical 

antidote (Matsakas et al., 2015) 

1677.1 

Iron-based + 

Ultrasound  
341.3 310.3 3.0 (n=5) 

0.001 M Fe(III) + 0.001 M H₂O₂ + 2 h 

ultrasonication duration (Lamb et al., 

2019) 

4.9 

Organosolv + 

Hydrothermal 
57.2 159.6 194.1 (n=4) 

Ethanol organosolv + Hydrothermal at 

170–210 °C for 30 min (Charnnok et 

al., 2020) 

376.3 

 

MC: Microbial consortium; AAS: Aqueous ammonia soaking; NMMO: N-methylmorpholine-N-oxide; CA: Chemical 

antidote. 

3.3.4 Methane yield predicted by machine learning models 

3.3.4.1 Description of the collected datasets 

The characteristics of all the variables used for ML are shown in Table A-5, while the 

data distribution is shown in Table A-7. For pretreated wood materials, the properties of 

materials after pretreatment were provided for analysis. The inoculum could be divided into 

sewage sludge and effluent from anaerobic digestion of manure, both of which were common 

types of high-nitrogen inocula (high nitrogen) to balance the typically high C/N of feedstock 

and enhance the digestion performance (Karrabi et al., 2023); Wood types were divided into 

hardwood and softwood according to the previous meta-analysis results. Although the data 

collected primarily employed the mesophilic conditions (30–40 ℃), the reaction progressed 

more rapidly under thermophilic conditions, resulting in higher biogas production rates 

(Bowen et al., 2013). The AD of wood waste lacked data on thermophilic conditions. 
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Meanwhile, the data on digestion volumes was also incomplete, as the volumes in the dataset 

were obtained from lab-scale. 

To further reveal insights into the collected datasets, linear correlations between 

pairwise variables were analysed using Pearson correlation coefficient. As shown in Figure 

3-8, there was a weak positive correlation between inoculum types and lignin content with 

methane production. Many parameters, like temperature and I/S ratio, did not present a linear 

correlation with methane production, while these parameters have been proved to influence 

the methane production of AD (Nie et al., 2021; Yao et al., 2013). Therefore, further internal 

relationships between these variables should be discovered based on big data and non-linear 

methods. 

 

Figure 3-8. Pearson correlation between pairwise variables. WT: wood types; IT: inoculum types; V: 

volume (mL); Tem: temperature (℃); PS: particle size (mm); I/S: ratio of inoculum to substrate 

(based on VS); C: cellulose content (%); H: hemicellulose content (%); L: lignin content (%); T: 

digestion time (d); CH4: methane production (L/kg of VS). (*) p<0.05; (**) p<0.01; (***) p<0.001. 

*** *** *** *** ** *** *** ***

*** *** *** *** *** *** *** *** ***

*** ** *** *** *** *** *** ***

*** * ***

*** *** *** *** ***

*** *** *** *** ***

*** *** *

*** *** ***

*** ***

***

WT

IT

V

TEM

PS

I/S

C

H

L

T

CH4

0.0327

-0.291 0.449

0.191 -0.282 -0.215

0.397 0.600 -0.0949 0.0143

0.00628 -0.577 -0.254 4.07E-4 -0.387

0.567 -0.339 -0.334 0.117 0.0515 0.358

-0.0755 0.553 0.318 -0.0746 0.219 -0.677 -0.448

0.114 0.552 0.114 0.182 0.520 -0.474 -0.284 0.301

0.109 0.384 0.101 -0.0214 0.249 -0.345 -0.0709 0.338 0.321

0.137 0.337 0.180 0.00453 0.558 -0.273 -0.00112 0.130 0.328 0.569 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



 

83 

3.3.4.2 Methane production predicted by machine learning algorithms 

The collected data (except for the methane production data) were processed as input 

variables for the ML models and the methane production values were considered as output 

variables. After the parameter optimization process (Figure 3-9 and Figure 3-10; Table A-6 

and Table 3-2), all three models showed good fitting results, where RF (R2=0.9643, 

RMSE=15.52) was followed by ANN (R2=0.9640, RMSE=16.30) and SVR (R2=0.9451, 

RMSE=20.92) (Table 3-3 and Figures 3-11a to 3-11c). This could be explained by the 

selection of major parameters affecting the methane yield from AD and by a greater number 

of data compared to the publications (Wang et al., 2023; Xu et al., 2022; Zhang et al., 2023a). 

To visualize better the results, regression error characteristic (REC) curves were used to 

estimate the error in an absolute deviation form of all ML models (Figure 3-11d). The REC 

curve represents the cumulative distribution function of the error, with a smaller area over 

the curve denoting greater accuracy. As shown in Figure 3-11d, RF had the highest prediction 

accuracy among the three ML algorithms. RF is an ensemble learning method that constructs 

a multitude of decision trees and combines their outputs to improve the accuracy and stability 

of predictions (Bagherzadeh et al., 2021; Zhou et al., 2019). Meanwhile, RF shows superior 

performance on high-dimensional, large, and noisy data, while avoiding overfitting problems 

(You et al., 2017). Long et al. (2021) used six ML algorithms to predict methane yield by 

combining genomic data with corresponding operational parameters and found that RF 

achieved the most accurate predictions both when using only operating parameters as input 

variables and when combining these parameters with genomic data. RF exhibited advantages 
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of high generalizability and swift convergence when applied to AD data, which aligns with 

the results of this chapter. In general, the optimal RF model can reliably and precisely forecast 

and guide practical AD experiments. 

 

Figure 3-9. Performance of the artificial neural networks (ANN) model with different number of 

nodes in the hidden layer. 
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Figure 3-10. Cross validation-based Grid search of the support vector regression (SVR) model. 
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Figure 3-11. Performance of the testing datasets of (a) support vector regression (SVR), (b) random 

forest (RF), and (c) artificial neural networks (ANN). (d) The regression error characteristic curves 

of three machine learning models. 

Table 3-2. Selection of kernel function in the support vector regression (SVR) model. 

Kernel function 

Statistical parameters 

R2 RMSE MAE 

Linear SVR 0.711 47.710 35.986 

Poly SVR 0.840 35.570 23.963 

RBF SVR 0.880 30.711 20.940 

Sigmoid SVR -116.450 962.421 516.736 
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Table 3-3. Performance of machine learning models on predicting methane production. 

ML models R2 RMSE MAE STDEV 

SVR 0.9451 20.9235 12.7287 86.6033 

RF 0.9643 15.5247 6.9357 80.4058 

ANN 0.9640 16.3031 9.9939 85.4359 

SVR: support vector regression; RF: random forest; ANN: artificial neural network; RMSE: root mean square error; 

MAE: mean absolute error; STDEV: standard deviation. 

To weigh the impact of various factors on methane production, RF was employed to 

assess feature importance and the results are illustrated in Figure 3-12. The two most 

important factors were digestion time (40.5%) and particle size (25.8%). Firstly, the digestion 

time exhibits a close association with methane production. Specifically, as time elapses, the 

availability of organic matter to microorganisms in an AD system increases, thereby leading 

to an escalation in cumulative methane production. In batch reactors, the optimal digestion 

duration is about 30 days (Dai et al., 2019). Secondly, particle size plays an important role in 

AD by affecting the surface area of substrate. Dai et al. (2019) confirmed this view and 

illustrated that the reduction in particle size had a facilitative effect on methane production. 

For lignocellulose composition, the lignin content of the substrate had a more significant 

effect on AD compared to cellulose and hemicellulose (Figure 3-12). This was consistent 

with the established situation where lignin was the main obstacle to breakdown of 

lignocellulosic wastes (Khan and Ahring, 2019). It is worth noting that the temperature did 

not have an important effect, which could be explained by the data collected in this chapter 

mostly adopting similar temperatures (30–40 ℃). Therefore, thermophilic conditions could 

be future studies for the AD of wood waste. Overall, the outputs of the RF model could 
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identify important factors influencing the AD system. Moreover, as the dataset is expanded 

and additional variables are incorporated, the outcomes have the potential to become even 

more representative. 

 

Figure 3-12. Feature importance of each variable based on random forest. WT: wood types; IT: 

inoculum types; V: volume (mL); Tem: temperature (℃); PS: particle size (mm); I/S: ratio of 

inoculum to substrate (based on VS); C: cellulose content (%); H: hemicellulose content (%); L: lignin 

content (%); T: digestion time (d). 
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AD systems was collected for meta-analysis, and the involved mutual variables were selected 

for ML, with the aim of providing a systematic insight into the potential for methane 

production from AD of wood waste. The meta-analysis showed that wood waste had a lower 

BMP than other organic wastes but had good pretreatment potential, while all three types of 

ML models accurately predicted methane production using the digestion parameters after a 

certain period of training. The existing limitations and future perspectives are summarized as 

follows. 

The results of this chapter have several limitations due to the quality and quantity of 

data collected from publications. Firstly, very few studies have evaluated methane production 

from the AD of wood waste. In addition, most of these data were obtained from laboratory 

experiments, where feedstocks consisting of a single wood material were added to the AD in 

the experimental design. For example, the volume of AD system in several studies was as 

low as 60 mL (Eom et al., 2019), which is far less than the practical situation. The temperature 

collected in the dataset was only mesophilic, with thermophilic conditions often present in 

AD plants not fully represented. Therefore, some uncertainty exists when extrapolating the 

results of this chapter to practical AD of wood waste. Secondly, since the vast majority of 

studies were on a laboratory scale, the pretreatment techniques did not take into account the 

energy and material consumption and economics of practical applications. In contrast to 

chemical and physical pretreatment approaches, biological approaches can be more eco-

friendly technique with low capital and operating costs (De Bhowmick et al., 2018). 

Unfortunately, there is a lack of biological approaches, especially natural biodelignification 
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systems, that are as rapid and effective as physical and chemical approaches. Thirdly, for 

machine learning, the data distribution of some features was inconsistent owing to a variety 

of variations in experimental goals, methodologies, and conditions. Many publications 

cannot provide the data on the ten variables (wood types, inoculum types, volume (mL), 

temperature (℃), particle size (mm), ratio of inoculum to substrate (based on VS), cellulose 

content (%), hemicellulose content (%), lignin content (%), digestion time (d)) selected to 

form the ML dataset. In addition, the elemental composition of feedstock, generally missing 

in the publications, is also an important parameter for predicting methane production (Wang 

et al., 2023; Zhang et al., 2023a). These situations limited the scale of the dataset available 

in this chapter. 

The optimization of AD is a complex issue that depends on multiple factors and 

cannot be directly and accurately measured (Gao et al., 2024b). To reduce the complexity of 

the experiments, a single wood type was commonly used. Therefore, due to the limited 

number of publications and data that can be extracted, it is difficult to systematically evaluate 

the effect of mixed wood types on AD and the performance of anaerobic co-digestion 

between wood waste and other organic wastes. In addition, current studies are focused on 

exploring the improvement of methane production from wood waste by different 

pretreatment technologies, while few studies have reported the impact of pretreatment on the 

microbial composition. Among other lignocellulosic wastes, pretreatment techniques have 

been demonstrated to alter the microbial composition, especially functional microbes, that 

plays an important role in AD processes (Ge et al., 2022; Kang et al., 2021; Raut et al., 2021). 
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Therefore, future research should focus on the construction of a comprehensive database that 

includes studies with microbiome data under uniform experimental conditions and similar 

experimental methodologies. 

3.4 Conclusions 

This chapter addressed RQ1 and RQ2. Specifically, the meta-analysis results showed 

a 122% lower BMP for wood waste compared to other organic wastes, but this gap could be 

mitigated to 99% when pretreatment techniques were considered. Further analysis on 

different pretreatment techniques showed that the employment of pretreatment methods 

significantly improved the BMP of wood waste by 113% and the combination of multiple 

pretreatment techniques was more effective than a single approach. This result proves that 

wood waste can be used as a substrate for AD, but it requires the assistance of pretreatment 

techniques. Moreover, three ML algorithms were applied to predict methane production 

based on ten selected variables involved in the literature. The optimal algorithm was RF with 

the R2=0.9643 and the RMSE value of 15.52 L/kg of VS in the testing dataset. Feature 

importance analysis revealed that digestion time and particle size presented the highest 

importance. This model will help optimize the parameters in wood waste AD and enhance 

methane production.  
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Chapter 4 A nature-based approach to enhance the 

anaerobic digestion application of wood waste 

4.1 Introduction 

In forest ecosystems, dead trees play a crucial ecological role by decomposing and 

releasing stored nutrients (Seibold et al., 2021). The decomposition process, involving fungi, 

bacteria, and arthropods, spans several years and creates a complex community (Tarasov et 

al., 2018; Yoon et al., 2023). Due to the complexity of the natural wood degradation process 

in forest ecosystems, it is difficult to simulate and apply this system as a pretreatment method 

for woody biomass under experimental conditions. Notably, large quantities of forest 

residues are generated during timber harvesting and from forest maintenance treatments such 

as cleaning and thinning (Pergola et al., 2022). It is estimated that there are approximately 

230,000 hectares of plantation forests in Queensland, with up to 600,000 tons of forest 

residues generated by logging annually (Garvie et al., 2021). Kurvits et al. (2020) 

investigated the quantity of logging residues at four forest sites in Southeast Estonia from 

2013 to 2014 and found that forest residues reached up to a dry weight of 29 tons per hectare. 

These forest residues are gradually degraded into humus, becoming part of the forest soil. 

Throughout this process, the tough lignocellulose structure of the wood is slowly breaks 

down (texture gradually softens) until the wood is fully decomposed, releasing all its nutrients 

(Petritan et al., 2023; Shorohova et al., 2021). Interestingly, the increased accessibility and 

biodegradability of the lignocellulosic structure tends to make wood waste more suitable for 

AD (Hashemi et al., 2021). In addition, the softened texture of the material allows them to 



 

93 

be shredded more easily, which can also save the energy required to pre-process the material 

prior to AD (Naimi et al., 2013). 

This chapter responds to RQ 3. It is hypothesized that exposing woody wastes to 

forest ecosystems for a period of time is sufficient to enhance its digestibility as part of a 

pretreatment process prior to AD. In addition, the collection and valorization of such residues 

can help to mitigate forest management costs, reducing fire risk and additional emissions 

from degradation (Lee and Han, 2017; Molenda et al., 2021; Nicholls et al., 2018). The 

objectives of this study were to determine the differences in physicochemical composition 

and the methane production potential between wood samples at different stages of decay 

from forest environments. Identifying the decay stage at which the wood waste can have the 

highest methane production allows for strategic collection of this material, enhancing the 

economic viability of using wood waste as a raw material in AD applications. 

4.2 Materials and methods 

4.2.1 Experimental materials 

The wood samples were collected from two sites, with Site 1 being an unmanaged 

seminatural forest in Cardiff, UK (51°31'4"N, 3°14'46"W) and Site 2 being a large managed 

forest in Cardiff, UK (51°32'25"N, 3°14'58"W). At each site, at least 15 dead fallen logs were 

sampled, each of which was allocated to a particular decay class (DC), determined based on 

visual and mechanical inspections (Table 4-1), with DC1 showing minimal signs of decay 

and DC5 showing highly advanced levels of decay (Tatti et al., 2018). Considering the 
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external appearance and the species of the surrounding trees, the wood samples from Site 1 

were probably hardwood silver birch (Betula pendula), expressed here as Birch. The 

sampling location at Site 2 consists primarily of European ash (Fraxinus excelsior), 

expressed in this paper as Ash, confirmed from site records and by examining the surrounding 

tree morphology. Site records were obtained from DataMapWales 

(https://datamap.gov.wales/maps/new#/) using the "NRW Woodland sub-compartment data" 

layer on May 31, 2023. Wood samples were dried and then shredded using a Fritsch 55743 

rotary knife mill with a 2 mm screen and finally stored at 4 ℃ until further analysis. 

Table 4-1. The five-decay class system used for the description of woody debris, modified from 

Tatti et al. (2018). 

Characteristics 

Decay class 

DC1 DC2 DC3 DC4 DC5 

Bark 
bark normally 

intact 
loose bark 

usually without 

bark 
absent absent 

Texture intact 
intact to 

partly soft 

wood of outer 

layers of stem 

fairly soft, core 

still hard 

small soft 

portions of the 

log easily 

discernible 

soft and powdery 

(very few portions 

of the log remain 

coherent) 

Knife test 

knife blade 

penetrates a few 

millimeters 

knife blade 

penetrates 

max 2 cm 

knife blade 

penetrates 2-5 cm 

knife blade 

penetrates all the 

way 

breaks up easily by 

hand 

Color of wood original color original color 
original color to 

faded 

light brown to 

reddish brown or 

yellowish 

faded to light 

yellow or grey, or 

red brown to dark 

brown 

4.2.2 Experimental procedure 

The AD experimental apparatus, consisting of multiple 1L bioreactors in a 

temperature-controlled water bath with gas collection facility, was supplied by Anaero 

Technology UK, described in more detail by Muaaz-Us-Salam et al. (2020). Sewage sludge 

https://datamap.gov.wales/maps/new#/
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digestate from an AD reactor was used as an anaerobic inoculum. Prior to AD testing, the 

sludge was incubated at 35 ℃ for 3 days and shaken manually twice a day to ensure 

homogenization. For every experiment, fresh sludge was sampled from the same AD reactor. 

Each bioreactor was filled with 700 mL of inoculum with a headspace volume of 300 mL. 

Then a certain mass of wood samples at different DC was added, the blank group did not 

have any wood sample added (only 700 mL inoculum). The weight of wood samples in each 

reactor was calculated to ensure the ratio of decaying wood samples to inoculum was 1:4 

based on VS levels. All bioreactors were incubated at 35 ℃ for 35 days with continuous 

stirring at 45 rpm. Liquid samples (5 mL) were taken during the AD process using sterile 

pipettes and transferred to 15 mL sterile containers for the measurement of some parameters 

during the AD process. Biogas produced from each reactor was collected during the 

experiment in 5 L Tedlar gas bags and analyzed for methane content (see section 4.2.3.4). 

The AD experiments were performed in triplicate for each wood sample and in duplicate for 

the blank group (only inoculum). 

Since the hardness of the wood samples varies among different decay classes, which 

resulted in their different particle sizes after grinding process. To further investigate the effect 

of particle size on the performance of AD, the AD experiments were conducted with the same 

particle size birch samples. In combination with the results of AD and particle size analyses 

of all birch samples, DC1 and DC3 samples were selected to be analyzed at 0.5–1 mm. The 

detailed AD process was the same as the process described above. 
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4.2.3 Analytical methods 

4.2.3.1 Specific energy consumption for grinding 

The effect of DC on specific energy consumption (SEC) during shredding 

(comminution) was determined. A Fritsch 55743 rotary knife mill was used, equipped with 

a 2 mm screen and a 2100 W motor. For all samples, a pre-weighed 50 grams wood block 

(dry matter) was placed in the rotary knife mill for 60 seconds, and then the wood collected 

in the tray was weighed. The SEC was calculated according to Equation (4-1) as presented 

in previous literature (Miao et al., 2011; Moiceanu et al., 2019). 

 SEC =
𝑃 × 𝑇

𝑚
 (4-1) 

where SEC is total specific energy consumption for grinding a unit of dry matter (MJ/kg of 

dry matter); P is the power (kW) of the milling machine while grinding wood samples; T is 

the total time (h) of grinding operations; m is dry matter mass (kg) of wood samples collected 

in the tray. 

4.2.3.2 Analysis of particle size distribution 

Particle size distribution was measured using sieving methods. Specifically, wood 

samples were put into a Fritsch 55743 rotary knife mill equipped with a 2 mm screen and 

operated for 1 min. The collected sample was passed through a tower of differently sized 

sieves. The sieve stack contained stainless steel sieves (diameter 200 mm) with mesh sizes 

of 2000, 1000, 500, 250, 125, and 75 μm. The sieving steps were performed on a vibratory 

shaker (Matest A060-01) for 30 min to ensure adequate separation of the samples. Samples 



 

97 

were finally sieved into seven fractions (<75, 75–125, 125–250, 250–500, 500–1000, 1000–

2000, and >2000 µm), and the proportion of samples in each particle size class was calculated 

based on the weight. 

The mean weight diameter (MWD) and fractal dimension (FD) can be applied to 

further characterize the particle size of the sample (Rabot et al., 2018; Zhang et al., 2021). 

MWD is the sum of the weighted mean diameters of all size classes, whilst FD is a 

comprehensive indicator of sample composition and textural homogeneity. The MWD of 

dry-sieved samples was calculated using Equation (4-2): 

 MWD = ∑
𝑟𝑖 + 𝑟𝑖+1

2

𝑛

𝑖=1
× 𝑚𝑖 (4-2) 

where ri is the aperture of the ith sieve, mi is the proportion of sample weight remaining on 

the ith sieve, and n is the number of sieves. The FD was calculated using Equation (4-3): 

 
𝑀(𝑟 < 𝑅𝑖)

𝑀𝑟
=(

𝑅𝑖

𝑅𝑚𝑎𝑥
)3−𝐹𝐷 (4-3) 

where M(r <Ri) is the cumulative sample mass with a radius smaller than Ri, Mr is the total 

sample mass with a radius smaller than Rmax, Ri is the radius of each dimensional fraction, 

Rmax is the maximum radius, and FD is the fractal dimension of the sample. 

4.2.3.3 Physicochemical features of solid samples 

TS and VS of the wood samples were measured following the Standard Methods 2540 

protocol (Rice et al., 2017). The ultimate analysis (carbon, hydrogen, nitrogen, and oxygen 

content) was measured using an elemental analyzer (Flash Smart, Thermo Fisher Scientific 
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Co., USA). The cellulose, hemicellulose, and lignin contents were determined by 

thermogravimetric analysis (Díez et al., 2020; Rego et al., 2019), and the detailed approach 

is shown in the section 4.2.3.6. The total organic carbon (TOC) of wood samples were 

measured with a TOC-VCPH (Shimadzu, Kyoto, Japan) following the manufacturer's 

instructions. The potassium hydrogen phthalate was used as a standard for measuring the 

total carbon content, and sodium hydrogen carbonate and sodium carbonate (anhydrous) 

were used as a standard for measuring the inorganic carbon content. The calibration curves 

of the total carbon and inorganic carbon content are shown in Figure A-4. Wood bulk density 

for different DC samples was measured using the water displacement method, following 

Edelmann et al. (2023). Dried wood pieces, approximately 3 cm in length and width and 5 

cm in height, were weighed using an analytical balance. To prevent water absorption, the 

surface of each sample was coated with a thin layer of paraffin. The paraffin-coated samples 

were then fully submerged in a graduated cylinder containing water, and the volume 

displacement was recorded. The difference in water volume before and after submersion 

represented the wood block's volume, which was then used to calculate its bulk density. The 

analysis of water extractable organic carbon (WEOC) was modified from Mo et al., (2022). 

Specifically, a total of 5 g of shredded wood was added to 30 mL of Milli-Q water and shaken 

at 200 rpm for 2 h at room temperature. The supernatant was subsequently filtered through 

sterile 0.45 μm filters and stored in the dark at 4 °C prior to further analyses. Finally, the 

WEOC concentrations were measured by a TOC-VCPH (Shimadzu, Kyoto, Japan) following 

the manufacturer's instructions. 
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The crystallinities of all decaying wood samples were measured using a X'Pert3 MRD 

XL Materials Research X-ray Diffraction System (Malvern Panalytical, Malvern, UK) 

equipped with CuKα radiation. Scans were obtained from 2θ = 10–40° with step size of 

0.02 at 0.6 s per step. The cellulose crystallinity index (CrI) of the samples can be calculated 

according to Equation (4-4): 

 CrI =
𝐼002 − 𝐼𝑎𝑚

𝐼002
× 100 (4-4) 

where I002 is intensity of diffraction from 002 plane at 2θ = 22° and Iam is the intensity of 

background measured at 2θ = 18° (Kumar et al., 2019; Xiaoying Liu et al., 2015). 

4.2.3.4 Physicochemical features of liquid and gas samples 

TS and VS of the inoculum were measured following the standard methods (Rice et 

al., 2017). The inoculum was dried and subjected to ultimate analysis with an elemental 

analyzer (Flash Smart, Thermo Fisher Scientific Co., USA). The pH and oxidation reduction 

potential (ORP) of inoculum and liquids samples collected during AD experiments were 

measured by a freshly calibrated pH probe (Mettler-Toledo, Switzerland) and a freshly 

calibrated ORP probe with an Ag/AgCl electrode (Mettler-Toledo, Switzerland). All 5 mL 

liquid samples obtained during AD experiments were filtered through sterile 0.45 μm filters. 

Subsequently, a 2 mL filtered sample was added to 18 mL Milli-Q water (10 times dilution) 

and mixed thoroughly for TOC measurement. 

The biogas production in each bioreactor was determined by gas flow meters 

incorporated within the AD apparatus combined with data logging equipment, and the 
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methane content of the biogas was determined using a portable biogas analyzer (RASI 700 

BIO, Eurotron Instruments UK ltd, Germany). The instrument was calibrated using a series 

of standard gases with concentration gradients (labeled methane concentration) prior to 

testing the methane content in the samples. The calibration curve is shown in Figure A-5. 

4.2.3.5 Calculation and prediction of methane production 

The theoretical methane production (TMP) of wood samples was calculated from the 

elemental composition (expressed in molar fractions) using the Buswell formulae (Lübken et 

al., 2010), Equations (4-5) and (4-6): 
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 TMP = 22.4 × (
𝑛

2
+

𝑎

8
−

𝑏

4
−

3𝑐

8
) /(12𝑛 + 𝑎 + 16𝑏 + 14𝑐) (4-6) 

The anaerobic biodegradability (BD) of wood samples was calculated according to 

Equation (4-7): 

 BD (%) = Experimental methane production (EMP)/TMP × 100 (4-7) 

The experimental biogas production was fitted using a modified Gompertz kinetic 

model, which is one of the most commonly employed models in the literature for fitting 

biogas production (Isha et al., 2021). The final biogas production was calculated based on 

the best-fit Gompertz model and then multiplied by the methane content to obtain the 

predicted methane production (PMP). The kinetic model is shown in Equation (4-8): 
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 M = 𝑃𝑏 × 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝑅𝑚 × e

𝑃𝑏

(𝜆 − 𝑡) + 1]} (4-8) 

where M is the biogas production (mL/g of VS) relative to the time t (d); Pb is the maximum 

biogas potential of the substrate (mL/g of VS); Rm is the maximum biogas production rate 

(mL/g of VS.d), λ is the lag phase time taken for biogas production (1/d), e is Euler’s number 

which is taken here as 2.7183. 

Furthermore, there was no well-developed model available to predict the methane 

production from AD of wood waste. Chapter 3 generated a machine learning model (RF) 

with good predictive performance, which was applied in this chapter to predict methane 

production from all decayed wood samples. 

4.2.3.6 Thermogravimetric analysis for the wood samples 

Preparation of Materials 

Each wood sample was crushed in a mill by a high-speed pulverizer and passed 

through a sieve with an aperture of 90 µm. The wood samples were then placed in a 100 ℃ 

blast oven for 2 hours to eliminate moisture. The fraction of extractives in the dried biomass 

was determined by using a Dionex® Accelerated Solvent Extractor (ASE100) with 95% 

ethanol as extraction solvent. 

This sample size was used to minimize the heat transfer resistance and mass transfer 

diffusion effects. The heat transfer effect in the thermogravimetric analysis (TGA) was 

discussed by comparing the derivative thermal gravimetry test (DTG) curves of different 
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sample masses under the same experimental conditions. The DTG curve did not change when 

the sample mass was reduced from 8.0 mg to 6.0 and 4.0 mg, indicating that a sample mass 

of 8.0 mg was sufficient to eliminate the mass transfer limitation. The maximum Biot number 

(Bi) of a single wood sample particle could be calculated as Equation (4-9): 

 Bi =
ℎ𝑑

𝜆
=

10 𝑊
(𝑚2𝐾)⁄ ∗ 90 · 10−6 𝑚

0.04 𝑊
(𝑚𝐾)⁄

= 0.0225 < 0.1 (4-9) 

where h is the convective heat transfer coefficient, and the convective heat transfer coefficient 

of natural convection ranges from 1 to 10 W/(m2K); d is the diameter of the wood sample 

particle, 90 µm; λ is the thermal conductivity of the wood sample, which varies from 0.04 to 

0.4 W/(mK) based on wood type, density, and moisture content. Therefore, the maximum 

value of the calculated Bi for the wood sample particles was less than 0.1, indicating that the 

internal temperature of the particles is uniform and closely follows the temperature rise set 

by the instrument. This results in minimal temperature gradients within the particles during 

pyrolysis, reducing the influence of heat and mass transfer factors in the experiments. 

Pyrolysis Test Conditions 

TGA was performed using a Mettler Toledo analyzer (TGA/SDTA 851e). The 

pyrolysis was carried out under a nitrogen atmosphere with a flow rate of 50 mL/min. The 

heating rate was 10 ℃/min. The heating temperature started at 30 ℃ to a final temperature 

of 1000 ℃ and maintained at 1000 ℃ for 1 h. The sample weight was 8.0 mg. To reduce 

temperature-related errors, the equipment used was calibrated across the entire temperature 
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range. In addition, the actual sample temperature was used directly to solve the kinetic 

equations and to calculate the actual sample heating rate. 

Gauss Peak Fitting 

The thermochemical decomposition of biomass can be represented by three main 

kinetics corresponding to the degradation of hemicellulose, cellulose, and lignin, respectively. 

In addition, water is present as a fourth non-structural component in moist biomass samples. 

For the estimation of the lignocellulosic content, the DTG experimental curve was treated 

with deconvolution using the symmetric Gaussian type curves (Castells et al., 2021; Mu et 

al., 2022; Rego et al., 2019). Moreover, there might be more than one curve required to fit 

each fraction because of the complexity of the components, and Table A-8 shows the 

minimum number of pseudo-components to quantify each fraction (Díez et al., 2020). 

The multiple peak fit tool in Origin 2021 was used to separate the four components’ 

reaction rate curves from the total DTG curve. The pyrolysis peak temperatures of the four 

components were set to be consistent with the literatures (Díez et al., 2020; Mu et al., 2022). 

The correlation coefficients R2 of the relevant results are generally larger than 0.95, 

indicating that the fitting results are accurate and credible. Finally, the lignin content of wood 

samples was measured based on Muaaz-Us-Salam et al. (2020) and this was used to validate 

the calculated resulted by TGA curves. Specifically, 0.25 g of dried wood sample was 

weighed into a 25 ml conical flask, added to 3.75 ml of a 95% sulfuric acid solution, and 

shaken for 2 hours at room temperature. Then, 140 ml of deionized water was added to the 

obtained solution and the mixture was refluxed in a round-bottomed flask for 4 hours. The 
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residue was collected on Whatman® quantitative filter paper No. 42 (2.5 μm) and washed 

three times with deionized water. The residue (insoluble lignin) was dried at 110°C for 1 h 

and its weight was measured on an analytical balance, from which the percentage lignin was 

calculated. 

4.2.4 Statistical analysis 

All experiments were conducted with three technical replicates, unless otherwise 

specified. In this paper, statistical analyses were done using Origin 2021. All values are 

presented as the mean ± s.d., unless otherwise specified. Statistical significance was assessed 

using the two-tailed Student’s t-test or One-way ANOVA test with significance at a p value 

of 0.05. Moreover, The Pearson correlation coefficients (r) between the variables were also 

calculated. The strength of the correlation was described by the absolute value of r (0.00–

0.19 very weak; 0.20–0.39 weak; 0.40–0.59 moderate; 0.60–0.79 strong; 0.80–1.0 very 

strong). 

4.3 Results and discussion 

4.3.1 Energy consumption and particle size analysis 

Generally, mechanical pretreatment is considered as the most important and 

promising preliminary step for handling and converting biomass into bioenergy before 

proceeding to the next process (Kamarludin et al., 2014). Without a sufficiently small particle 

size or large relative surface area, the organic matter in the substrate cannot be utilized by 

microorganisms to produce biogas during AD. For example, 2 cm wood cubes in digested 
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sewage sludge produced approximately the same amount of biogas as blanks with only sludge 

(Gao et al., 2023; Muaaz-Us-Salam et al., 2020). As shown in Figure 4-1, the SEC gradually 

decreased as DC increased. Figure 4-1a shows that the SEC of Birch decreased from 10.56 

to 2.92 MJ/kg of dry matter for DC1 to DC5, while Ash correspondingly dropped from 9.44 

to 2.60 MJ/kg of dry matter (Figure 4-1b). In addition, the decrease rate of SEC for both 

wood samples gradually became slower with increased DC, showing no statistical difference 

between wood samples from DC3 to DC5. These results imply that the higher the DC, the 

more energy can be saved in reducing the particle size of these wood samples for utilization 

in AD. It is worth noting that the criteria for these DC include their hardness, with DC5 being 

extremely soft due to its woody structure has been essentially destroyed (Tatti et al., 2018). 

During the sampling, it was found that DC4 and DC5 can be broken even with slight force 

by hand. Therefore, wood samples with high DC may not require physical pre-processing. 

 

Figure 4-1. Specific energy consumption (SEC) for grinding wood samples from five decay classes, 

(a) Birch; (b) Ash. Different lowercase letters above each column indicate significant differences 

(columns with different letters are statistically significantly different from one another). 
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Reducing the particle size of substrates is a competitive option for increasing methane 

production from AD as it releases more organic matter and cell compounds, and directly 

increases the microbially accessible surface area, thus improving biodegradability (Dai et al., 

2019). After grinding the samples, the particle size distribution was analyzed (Table 4-2). 

The samples of DC1 and DC2 had the highest proportion in the 1–2 mm particle size class, 

and the proportion decreased as the particle size class increased. The proportion of the fine 

particle size class gradually increased from DC1 to DC5, with the proportion of 0.5–1 mm 

particle size class being the largest in DC4 and DC5. In addition, the MWD analysis also 

showed the particle size of wood samples reduced gradually from DC1 to DC5. Specifically, 

the MWD of Birch decreased from 0.93 to 0.57 mm for DC1 to DC5, while Ash 

correspondingly dropped from 1.10 to 0.78 mm (Table 4-2). Reduced particle size can 

significantly facilitate hydrolysis and acidification processes, resulting in increased volatile 

fatty acid content and VS degradation (Luo et al., 2021). Liu et al. (2017) reported the effects 

of particle size of two forest residues on methane production through AD batch experiments, 

and the results showed that methane yield improved when the substrate particle size was 

reduced from 4 mm to 1 mm. A similar pattern has been demonstrated in other lignocellulosic 

wastes, such as rice straw, where methane production improved with a decrease in substrate 

particle size (Dai et al., 2019; Ji et al., 2022). 
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Table 4-2. The particle size distribution, MWD, and FD of wood samples after grinding by the knife mill. 

 ood type Decay class 

Proportion of wood mass in particle size class (%) 

M D (mm) FD 

>2 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm 0.125–0.25 mm 
0.075–0.125 

mm 
<0.075mm 

Birch 

DC1 2.12 ± 0.35 41.95 ± 5.60 30.31 ± 0.36 14.71 ± 2.91 6.82 ± 1.31 2.27 ± 0.59 1.83 ± 0.78 0.93 ± 0.07 1.85 ± 0.13 

DC2 0.31 ± 0.01 29.70 ± 0.89 26.80 ± 3.09 23.32 ± 3.81 9.59 ± 1.54 5.86 ± 0.66 4.42 ± 0.57 0.76 ± 0.00 2.15 ± 0.01 

DC3 0 21.27 ± 1.73 23.94 ± 3.02 19.32 ± 0.18 22.69 ± 1.92 7.92 ± 3.12 4.85 ± 3.73 0.62 ± 0.05 2.22 ± 0.19 

DC4 0 23.52 ± 0.64 27.72 ± 0.53 18.20 ± 2.83 15.89 ± 2.70 9.49 ± 1.27 5.18 ± 0.02 0.67 ± 0.02 2.26 ± 0.02 

DC5 0 16.75 ± 1.03 24.89 ± 4.54 23.66 ± 6.02 17.78 ± 1.57 9.92 ± 0.04 7.01 ± 1.08 0.57 ± 0.03 2.34 ± 0.03 

Ash 

DC1 1.51 ± 0.14 56.41 ± 2.55 28.49 ± 1.82 8.03 ± 0.53 3.48 ± 0.26 1.32 ± 0.10 0.76 ± 0.11 1.10 ± 0.03 1.57 ± 0.03 

DC2 0.75 ± 0.12 52.80 ± 0.45 29.39 ± 0.01 9.78 ± 0.28 4.12 ± 0.22 1.72 ± 0.02 1.45 ± 0.10 1.06 ± 0.01 1.74 ± 0.02 

DC3 0.14 ± 0.04 36.21 ± 0.97 29.62 ± 2.07 19.81 ± 1.02 9.78 ± 0.33 2.64 ± 0.02 1.80 ± 0.18 0.86 ± 0.00 1.90 ± 0.02 

DC4 0 32.78 ± 6.26 37.83 ± 0.58 17.31 ± 3.93 7.16 ± 1.21 3.09 ± 0.24 1.84 ± 0.78 0.86 ± 0.10 1.88 ± 0.14 

DC5 0 29.68 ± 2.63 31.63 ± 1.96 19.88 ± 0.38 10.69 ± 2.56 5.27 ± 0.21 2.86 ± 0.48 0.78 ± 0.04 2.06 ± 0.02 

MWD: mean weight diameter (mm), FD: fractal dimension. 
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Fractal theory has been applied to quantitatively assess the basic morphology of the 

substrate, which is a potential indicator reflecting the AD efficiency (Wang et al., 2016). In this 

chapter, the FD of different DC samples were statistically different (p<0.05) after grinding 

under the same conditions. As shown in Table 4-2, the FD average of both wood samples at 

DC1 was significantly lower than DC5 (p<0.05), while there were no significant differences in 

FD values between DC3, DC4 and DC5 (p>0.05). As the FD increases, the complexity of 

particle morphology grows, accompanied by an increase in surface area (Dai et al., 2019). This 

enhanced surface area facilitates greater interaction between particles and the surrounding 

medium, thereby accelerating particle diffusion. This effect is particularly pronounced for 

smaller particles or when the spacing between particles is relatively large, as the increased 

surface area further boosts diffusion efficiency (Lai et al., 2021). Therefore, the DC5 samples 

may have enhanced mobility in the AD system compared to the DC1 samples, which facilitates 

its full utilization by microbes. Moreover, the wood samples after DC3 showed no significant 

difference, suggesting that this class (DC3) may achieve optimal conditions for sample 

crushing. 

4.3.2 Physicochemical features analysis of decaying wood samples 

The possibility of using these wood samples as a suitable substrate for AD was 

primarily verified through various tests, prior to conducting the biomethane potential 

experiments. As shown in Table 4-3, TS content decreased with DC, while the VS content did 

not change much. Samples with a high DC have a looser texture, which allows them to easily 

retain more water. Compared to Ash, in general Birch had a smaller TS content and a much 

larger drop from DC1 (59.47%) to DC5 (18.39%). For lignocellulosic biomass, the nitrogen 

content is a key factor limiting their AD performance (Song et al., 2024). A low level of 

nitrogen can lead to nitrogen limitation, which prevents the microorganisms from fully utilizing 
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the carbon source, thus reducing the production of methane (Piątek et al., 2016). The total 

carbon in all five DC were nearly the same, but the nitrogen content was higher in the high DC 

samples. Therefore, the C/N of DC5 was much lower than that of DC1. It has been reported 

that the optimal C/N for maximal methane production is between 20 and 30 (Kumar et al., 

2021). Although the C/N of DC5 samples was also higher than the optimal value, it is easier to 

achieve the superior system by mixing them with sludge (low C/N). During AD, TOC can be 

biodegraded in hydrolysis, acidification and methanation steps to produce biogas (Provenzano 

et al., 2014). Furthermore, WEOC is a critical contributor in these processes, as microbial 

metabolism occurs in the water-soluble phase (Xing et al., 2012). Therefore, the significantly 

higher TOC (Figure 4-2a and 4-2b) and WEOC (Figure 4-2c and 4-2d) in high DC samples 

indicate a better potential for methane production from AD. It is noteworthy that the WEOC 

did not consistently increase with decay level, showing a tendency of first increasing and then 

decreasing. The DC3 samples of Birch had the highest WEOC (Figure 4-2c), and the DC4 

samples of Ash had the highest WEOC (Figure 4-2d). This might be due to the release of 

organic matter from the forest residues in the presence of insects and microorganisms, leading 

to an increase in WEOC content at the beginning of decay process. When it reaches the final 

stages of decomposition, there is no more available organic matter to be released, and the 

previously released organic matter is utilized by other organisms or enters the soil, leading to 

a decrease in the WEOC content. 
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Table 4-3. Properties of decaying wood samples and inoculum. 

Properties 

Birch Ash 

Inoculum 

DC1 DC2 DC3 DC4 DC5 DC1 DC2 DC3 DC4 DC5 

pH value ND ND ND ND ND ND ND ND ND ND 8.41 ± 0.36 

Total solid (%) 59.47 ± 15.12 34.90 ± 3.81 26.30 ± 6.44 22.36 ± 10.16 18.39 ± 6.80 90.73 ± 1.79 87.81 ± 0.03 81.39 ± 5.70 80.84 ± 9.06 77.19 ± 6.35 8.14 ± 0.05 

Volatile solid (%) 99.31 ± 0.60 99.08 ± 0.61 96.95 ± 0.40 97.28 ± 1.52 96.61 ± 0.73 98.05 ± 0.80 98.77 ± 0.11 98.31 ± 0.79 95.74 ± 2.96 97.25 ± 0.08 69.09 ± 0.11 

Ultimate analysis            

Carbon (%) 47.16 ± 0.29 48.46 ± 0.87 47.56 ± 1.00 47.62 ± 1.45 50.55 ± 0.77 47.60 ± 0.40 47.19 ± 0.12 47.96 ± 0.04 48.41 ± 0.38 47.59 ± 0.40 31.80 ± 0.83 

Nitrogen (%) 0.33 ± 0.04 0.84 ± 0.18 0.77 ± 0.19 1.18 ± 0.24 1.19 ± 0.10 0.13 ± 0.00 0.20 ± 0.10 1.40 ± 0.28 1.90 ± 0.08 1.77 ± 0.35 5.40 ± 0.08 

Hydrogen (%) 5.76 ± 0.15 5.52 ± 0.16 5.53 ± 0.20 5.54 ± 0.22 5.45 ± 0.16 5.47 ± 0.14 5.62 ± 0.07 5.67 ± 0.06 5.77 ± 0.05 5.73 ± 0.01 5.07 ± 0.25 

Oxygen (%) 44.76 ± 0.71 43.49 ± 1.06 44.04 ± 0.77 43.96 ± 1.27 41.26 ± 0.18 46.82 ± 0.52 46.98 ± 0.14 44.97 ± 0.19 43.92 ± 0.41 44.92 ± 0.63 36.20 ± 0.08 

C/N ratio 146.73 ± 17.62 60.43 ± 12.92 65.82 ± 16.24 42.47 ± 10.46 42.92 ± 3.93 465.76 ± 104.05 302.11 ± 146.92 35.80 ± 7.32 25.49 ± 0.86 27.84 ± 4.91 5.89 ± 0.07 

Biochemical analysis            

Extraction (%) 7.18 ± 0.59 5.06 ± 0.59 4.24 ± 0.75 3.94 ± 0.13 3.67 ± 1.31 8.47 ± 0.97 8.14 ± 0.45 6.77 ± 0.12 6.78 ± 0.65 3.90 ± 0.19 ND 

Hemicelluloses (%) 23.37 ± 0.61 19.07 ± 1.04 22.41 ± 2.28 22.37 ± 0.60 17.94 ± 0.42 22.46 ± 2.19 22.01 ± 0.48 20.44 ± 0.05 22.45 ± 1.19 27.25 ± 0.72 ND 

Cellulose (%) 34.29 ± 2.38 28.51 ± 1.09 27.09 ± 1.02 24.83 ± 1.50 16.24 ± 1.33 38.64 ± 1.17 34.15 ± 0.75 31.03 ± 1.38 28.35 ± 0.77 19.26 ± 0.72 ND 

Lignin (%) 23.67 ± 2.07 34.85 ± 2.30 35.78 ± 2.70 35.63 ± 0.48 49.17 ± 1.90 26.88 ± 0.47 31.19 ± 1.04 38.33 ± 1.19 38.86 ± 0.35 44.61 ± 1.26 ND 

ND: not determined. The % content of total solid was calculated based on wet mass; others were based on dry mass.
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Figure 4-2. Different categories of organic carbon from five decay classes wood samples. The total 

organic carbon (TOC) content of (a) Birch and (b) Ash, and water extractable organic carbon (WEOC) 

of (c) Birch and (d) Ash. Different lowercase letters above columns indicate a difference at a 0.05 level. 

The lignocellulose composition is an important factor that affects the AD performance 

of forest residues. Figure 4-3 and Figure 4-4 show the thermogravimetric experimental data 

and derivative thermogravimetric curves fitting results using the Gaussian model, and the 

calculated lignocellulose composition of all wood samples are provided in Table 4-3. In both 

types of wood samples, the cellulose content decreased with DC, in contrast with a gradually 

increased lignin content. The hemicellulose content did not vary much among the five DC 

samples, and two types of wood samples showed different tendencies. With an increase in DC, 

Birch presented an overall decrease, while Ash first decreased and then increased. The 

significantly increased lignin content of higher DC may be due to the reduction of other 
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component as decay occurred. However, the decay has permitted biological access to, and 

degradation of, cellulose and hemicellulose, suggesting that a certain amount of decay and 

breakdown may be advantageous as a pretreatment method for AD. Similar effects have been 

observed in other studies, such as the application of chemicals (Mohsenzadeh et al., 2012; 

Salehian et al., 2013), hydrothermal (Karami et al., 2022) and steam explosion (Eom et al., 

2019; Mulat et al., 2018) leading to a reduction in the cellulose content and an increase in the 

lignin content of wood waste. 

 

Figure 4-3. (a) TGA curves comparison of Birch samples from five decay classes. The gauss peak fitted 

experimental DTG curves, (b) DC1; (c) DC2; (d) DC3; (e) DC4; (f) DC5. 
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Figure 4-4. (a) TGA curves comparison of Ash wood samples from five decay classes. The gauss peak 

fitted experimental DTG curves, (b) DC1; (c) DC2; (d) DC3; (e) DC4; (f) DC5. 
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Due to the presence of crystalline cellulose in biomass samples, the 2θ value of X-ray 

diffraction shows a sharp peak between 18° and 22° (Awoyale and Lokhat, 2021). Cellulose 

crystallinity reflects the proportion of cellulose crystalline regions, and the CrI of the substrate 

determines its biodegradability during AD. The CrI of Birch DC1 samples was 35.43%, close 

to the value of raw pine wood; and the CrI of Ash DC1 samples (41.61%) was close to that of 

untreated acacias (Darmawan et al., 2016). It indicated that the degradation of DC1 samples 

was quite small, and its CR nearly approached that of fresh wood. The CrI of DC5 samples 

was much lower than that of DC1 samples, with a value of 16.47% in Birch (Figure 4-5a) and 

26.43% in Ash (Figure 4-5b). As mentioned above, this may be due to the different composition 

in different DC samples. The content of soluble matter and amorphous cellulose in 

lignocellulosic biomass is higher than that of crystalline cellulose, which can result in a lower 

CrI (D’ Silva et al., 2022). The hydrolysis of amorphous cellulose by cellulase was found to be 

about 30 times faster than that of crystalline cellulose (Zhu et al., 2011). The low CrI value in 

DC5 samples meant that their cellulose crystalline region was destroyed, leaving more 

cellulose (amorphous cellulose) available for microbial hydrolysis. Moreover, it was found that 

corn straw pretreatment with hydrogen-nanobubble water (He et al., 2022) or a pure bacteria 

system (Xu et al., 2018) also reduced the CrI of substrate and enhanced the methane production 

from AD of corn straw. Therefore, the forest soil system could degrade the cellulose 

crystallinity, allowing the forest residues to decompose more easily by AD. 
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Figure 4-5. The Crystallinity Index (CrI) of (a) Birch and (b) Ash. Different lowercase letters above 

columns indicate a difference at a 0.05 level. 

4.3.3 Effect of five decay classes on anaerobic digestion performance 

The patterns of daily biogas yield were shown in Figure 4-6a and 4-6b. As higher DC 
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Figure 4-6. Effect of different decay classes of wood samples on the biogas yield. Daily biogas yield of 

(a) Birch and (b) Ash, and net cumulative biogas yield of (c) Birch and (d) Ash. 
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Figure 4-7. The biogas production of Birch DC1 and DC3 with 0.5–1 mm particle size, (a) daily biogas 

production and (b) cumulative biogas production. 

As shown in Figure 4-6c and 4-6d, the net cumulative biogas yield varied significantly 

among different DC samples. These curves showed a rapid increase in biogas within the first 

10 days, reaching about 50% of the total output. The final biogas yield increased from DC1 to 

DC3 (Birch) and DC3/4 (Ash) before decreasing at higher DC. For Birch, the biogas yield of 

DC3 samples was 3.52 times higher than that of DC1 samples, but this value narrowed down 

to 2.14 at the same particle size (Figure 4-7). This result suggested that decayed wood, besides 
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increasing biogas production by being more prone to small particle sizes, had physicochemical 

properties that were more favourable for microbial utilization in AD system. Figure 4-8 

illustrates the effect of DC on pH, ORP and TOC during AD. The initial phase of AD, which 

mainly involves the process of substrate hydrolysis and acidification, leads to a continuous 

accumulation of volatile fatty acids (He et al., 2022). The results showed that the pH decreased 

continuously after the AD started and reached the lowest value on the 5th day. The redox 

potential of the AD system can affect the microbial growth activities, and low redox potential 

means more strict anaerobic conditions and stronger reduction (Xu et al., 2014). Methane 

production requires the consumption of reducible substances. The breakdown of organic matter 

caused an initial increase in TOC content of the liquid phase, which then declined as 

methanogens utilized these materials to produce methane. The Pearson correlation analyses 

also revealed that these parameters were correlated with biogas yields (Figure 4-9). 

 

Figure 4-8. Effect of different decay classes samples on the parameters during AD, (a–c) Birch; (e–f) 

Ash. CK: blank group (only inoculum). ORP: oxidation reduction potential; TOC: total organic carbon. 
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Figure 4-9. The correlation plot shows the Pearson product-moment correlation of all parameters and 

the biogas production for the relative days, (a) Birch; (b) Ash. ORP: oxidation reduction potential; TOC: 

total organic carbon. ** means p<0.01; *** means p<0.001. 

Although the biogas production differed considerably between different DC, the 

methane content of these biogas did not vary greatly, with an overall value of around 60% 

(Figure 4-10). According to the final measurements, the highest values of net methane yield 

were found in the DC3 or DC4 samples after 35 d, with 134.76 and 142.51 mL/g VS for the 

Birch DC3 and Ash DC4 samples, respectively. The theoretical methane production, calculated 

by the elemental composition using the Buswell formula, did not differ significantly between 

different DC (Table 4-4). Therefore, the biodegradability index corresponded to the total biogas 

yield results, with DC3 samples being the highest and DC1 samples the lowest. The 

degradation of wood in the forest did not significantly change its elemental (carbon, hydrogen, 

oxygen, and nitrogen) composition (Table 4-3). 
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Figure 4-10. The methane content and net methane yield of (a) Birch and (b) Ash wood samples for 

five decay classes.  
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Table 4-4. Experimental and calculated results of the wood samples for methane production. 

 ood 

type 

Decay 

class 

EMP (ml/g of 

VS) 

Fitted results Predicted results 
TMP (ml/g of 

VS) 

BD 

(%) Gompertz 

model 

Error 

(%) 

ML 

model 

Error 

(%) 

Birch 

DC1 36.54 36.30 0.66 58.67 60.56 451.68 8.09 

DC2 77.50 76.12 1.78 75.18 2.99 456.42 16.98 

DC3 134.76 127.7 5.24 108.87 19.21 447.66 30.10 

DC4 105.28 103.55 1.64 81.56 22.53 445.53 23.63 

DC5 73.01 71.6 1.93 78.58 7.63 476.70 15.31 

Ash 

DC1 94.05 84.19 10.48 86.27 8.27 432.83 21.73 

DC2 106.04 89.27 15.81 72.70 31.44 432.27 24.53 

DC3 142.35 131.94 7.31 96.20 32.42 440.57 32.31 

DC4 142.51 126.35 11.34 108.63 23.77 448.12 31.80 

DC5 89.23 80.63 9.64 77.63 13.00 435.25 20.50 

EMP: Experimental methane production; PMP: Predicted methane production; TMP: Theoretical methane production; BD: 

Biodegradability index; ML model: machine learning model (random forest). 

Prior to performing AD, it is desirable to determine the optimal parameters for 

maximum methane yield from woody waste. To the best of our knowledge, an approach that 

can predict methane yield from woody waste while addressing the issues involved in 

identifying the optimal digestion conditions and feedstock properties to maximize methane 

yield has not yet been developed. As shown in Table 4-4, the random forest model predicted 

biogas production well with an error rate of around 25%. The machine learning model (random 

forest) prediction accuracies of some samples were close to the results of the Gompertz fitting 

(Table 4-5), indicating that the machine learning model is instructive in practical AD with 

woody waste. It is worth noting that the predictions for the Birch DC1 samples were less 

accurate. This may be because the previously established database for creating machine 

learning models was not comprehensive and lacked data on this part of relatively low methane 

production (Gao et al., 2024a). Therefore, more experiments on AD of woody biomass are 

needed in the future in order to expand the database for improving the model. 
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Table 4-5. Kinetic parameters estimated for the Modified Gompertz model. 

Pb is the maximum biogas potential of the substrate (mL/g VS); Rm is the maximum specific biogas production rate (mL/g 

VS.d); λ is the lag phase time taken for biogas production (in days); T50 is the half-life and is defined as the time taken (days) 

to produce 50% of the biogas production; T90 is defined as the time taken (days) to produce 90% of the biogas production. R2 

is the correlation coefficient, and a good fitting to the data is indicated by high R2 values (above 0.95). 

4.3.5 Applications and Future considerations 

The present study introduces a novel nature-based approach to enhance suitability of 

wood waste, particularly forest residues, for AD, providing a sustainable solution to two key 

issues that have hampered the practical application of wood waste AD. Firstly, the low methane 

production from wood has been overcome with an average increase of 160% in methane yield 

after this nature-based approach (DC3 compared to DC1). This is comparable to other, more 

intensive, pretreatment technologies such as combined hydrothermal/enzymatic treatment (168% 

improvement) (Matsakas et al., 2015), aqueous ammonia soaking (151% improvement) 

(Antonopoulou et al., 2015), or combined ethanol organosolve/hydrothermal treatment (194% 

improvement) (Charnnok et al., 2020). Secondly, the lack of economical pretreatment 

technologies further hindered the practical utilization of wood waste AD. The proposed method 

leverages natural systems without requiring significant additional economic inputs, with the 

 ood type Decay class 
Pb  

(mL/g VS) 

Rm  

(mL/g VS.d) 
λ (1/d) T50 (d) T90 (d) R2 

Birch 

DC1 99.56 2.06 6.54 20.5 31.9 0.992 

DC2 124.97 5.81 -0.51 10.0 23.2 0.993 

DC3 197.66 9.02 -1.77 8.9 22.5 0.973 

DC4 173.93 5.60 -1.07 12.5 27.3 0.986 

DC5 126.06 4.11 0.39 13.9 28.2 0.987 

Ash 

DC1 133.71 8.98 -0.67 6.8 17.0 0.973 

DC2 144.25 7.58 -1.57 7.9 20.3 0.951 

DC3 202.60 9.78 -2.28 7.9 21.2 0.951 

DC4 192.64 11.80 -0.84 7.3 18.3 0.968 

DC5 125.89 7.92 -0.48 7.5 18.2 0.980 
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potential to be highly cost-effective as a result. By harnessing the inherent capabilities of 

natural forest processes, this nature-based approach offers a practical and scalable solution for 

enhancing the efficiency of AD operations for wood waste. 

The economic viability of AD with wood waste has been thoroughly described in the 

literature. Teghammar et al. (2014) conducted an economic assessment of biogas production 

from forest residues with pretreatment enhancement, showing that an AD plant processing 

50000 tons dry weight of forest residues per year is economically viable. The techno-economic 

assessment showed that methanol pretreatment was more financially acceptable than acetic 

acid and ethanol, and the capital investment for operating an AD plant treating 20,000 tons of 

forest residues per year could be recouped within eight years (Kabir et al., 2015). Moreover, 

AD was shown to be an environmentally friendly method of recovering energy from wood 

waste compared to other management processes through life cycle assessment analysis (Liang 

et al., 2017; da Costa et al., 2020; Nogueira et al., 2021). To further explore the differences 

between all DC samples and find the best DC for application in AD, a net profit analysis was 

conducted (Figure 4-11). Considering that the AD process was the same for all DC samples, 

the net energy output could be calculated from the electricity input of grinding the samples and 

the methane production. According to Wu et al. (2016), the calorific value of methane is 11.06 

kWh/m3. As shown in Fig. 6, DC3 had the highest net energy output, while DC4 also exhibited 

a high net energy output, indicating both have the potential to be used in AD plants. It is worth 

noting that does not consider the effect of subsidies or economies of scale. For fire protection 

reasons and energy considerations, the forest residues should not be retained in the forest. 

Unfortunately, the direct recycling of these forest residues also may result in the removal of 

minerals that would otherwise fertilize the soil and promote the future growth of trees (Grodsky 

et al., 2018). These results may provide guidance on specific collection times for forest residues 

in practice. This study proposes to collect DC3 samples, which satisfies the requirement of 
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releasing minerals from the wood waste to maintain the forest ecology while keeping the 

highest methane yield. 

 

Figure 4-11. The net profit analysis of anaerobic digestion for processing 1 kg of samples from five 

decay classes. (a) The average electricity consumption for grinding and methane production from wood 

samples; (b) The net energy output, calorific value of methane production minus electricity 

consumption. 
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To better utilize this nature-based approach, more detailed experiments and analyses 

are still needed to bridge the following issues. Firstly, more wood samples of various species 

are needed to verify the generalizability of this approach, as well as to investigate the duration 

for forest residues to reach DC3 in different forest environments to facilitate the collection of 

samples. Secondly, there is a loss of mass in the degradation process of forest residues (Oberle 

et al., 2020; Seibold et al., 2021), so it is important to explore how mass loss varies with DC. 

As shown in Figure 4-12, the bulk density of wood samples decreased with increasing DC, 

indicating a loss in wood mass during this degradation process. If the reduction in the volume 

of the wood block during decay is ignored, the total methane production at each stage can be 

estimated using the wood's bulk density and methane yield per unit weight. Based on this 

calculation, the final DC3 stage sample produced 117% of the methane generated at the DC1 

stage. Thirdly, anaerobic co-digestion of wood waste with other organic wastes can balance the 

C/N of the substrate and enhance methane production (Li et al., 2019; Oh et al., 2018). 

Additionally, the combination of other pretreatment technologies can improve substrate 

availability to microorganisms in AD (Wang et al., 2024; Zhang et al., 2017). Therefore, 

anaerobic co-digestion of different DC wood waste and other organic wastes and the possibility 

of combining this nature-based approach with other pretreatments need to be explored for 

maximizing energy recovery from wood wastes. 
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Figure 4-12. The bulk density of (a) Birch and (b) Ash wood samples for five decay classes. 

4.4 Conclusion 

This chapter addressed RQ3 by investigating a novel nature-based approach to promote 

AD application of wood waste. Based on the experimental results, the following conclusions 
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1) The texture of the forest residues was softened by processing with this nature-based 

approach, making them easier to be shredded. The SEC results showed that the energy 

required to grind the same dry weight of wood sample decreased with increasing DC. A 

subsequent particle size analysis showed that wood samples with higher DC had smaller 

average particle sizes after grinding. 

2) High DC wood samples had higher WEOC, lower cellulose crystallinity, and a more 

suitable C/N for AD. Although the lignin content was relatively higher in high DC wood 

samples, the recalcitrance of their lignocellulosic structure was disrupted. These changes 

are expected to lead to enhanced methane production because of a breakdown of the 

lignocellulosic structure, increasing access to microorganisms involved in AD. 

3) A preliminary test of this nature-based approach by AD experiments showed that wood 

samples from DC 1 had the lowest methane yield, while DC 3 samples had the highest, 

with a notable 160% increase compared to DC 1. In addition, the net profit analysis 

indicated that wood samples from DC 3 to DC 5 had a net energy output when applied in 

AD, with the net energy output being relatively high in DC 3 and DC 4. Therefore, these 

results imply that DC3 might be the optimal level of decay for forest residues collection. 

This chapter is the first to introduce the concept of a nature-based approach to enhance 

the AD performance of wood waste, and to explore it in detail experimentally. This approach, 

when combined with a strategic collection method, can significantly improve the overall 

profitability and sustainability of bioenergy production from wood waste. Furthermore, the 

feasibility of more forest ecosystems in boosting the AD application of forest residues should 

be further explored, as this can broaden the applications of this novel nature-based approach. 
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Chapter 5 Impact of the nature-based approach on wood 

waste degradation and the biochemical methane potential 

5.1 Introduction 

The content of chapter four demonstrated that the decayed wood waste from forest can 

be effectively utilized as raw material for AD, which can generate significant amounts of 

methane without the need for any pretreatment. This new approach will help improve the 

management of wood waste and prevent the wastage of biomass energy. However, despite the 

potential benefits of utilizing wood waste from forest as feedstock in AD, it remains unclear 

how various forest conditions affect wood decay and the biochemical methane potential of 

wood waste. The variation in decay rates of forest wood waste reflects a combination of 

intrinsic and extrinsic driving factors (Zanne et al., 2015). Tree species with higher density and 

less nutrient content tend to decompose more slowly, while wider trunks are more resistant to 

decay (Hu et al., 2018). The decay rate of wood waste in forests is also influenced by 

surrounding environmental characteristics, such as higher soil nutrient availability, temperature, 

and moisture, which often accelerate decay processes (Fravolini et al., 2016; Gora et al., 2018). 

Even more important is the activity of decomposing organisms, including fungi, bacteria and 

animals, which directly influence the decay rate by interacting with the continuously changing 

substrate, the external environment and each other (Fukasawa, 2021; Oberle et al., 2020; 

Ulyshen, 2016). During the process of wood waste degradation in forests, there was a slight 

increase in nitrogen content, while the content of carbon and hydrogen remained relatively 

constant (Shorohova et al., 2021; Wojciech et al., 2019), which is the same as the findings in 

chapter 4. In addition, decayed wood waste has a range of properties that are favorable for 

utilization by microbes in the AD process, including a destroyed lignocellulosic structure and 
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a high WEOC content. Although the decayed wood waste has been shown to increase methane 

production and DC3 has the highest methane yield, there is also a loss of mass and a decrease 

in organic matter content during the degradation of wood waste in forests, which is not 

conducive to its utilization as a feedstock for AD. Fraver et al. (2013) found that wood waste 

in the forest was slowly losing mass as it degraded, and the rate of reduction varied for different 

types of wood. Generally, wood blocks from diffuse porous angiosperms decompose faster 

than those from annular porous angiosperms and gymnosperms (Edelmann et al., 2023). 

Moreover, the loss of mass over time varies for the same wood species in different 

environments. Through field experiments on wood decomposition at 55 forest sites across 6 

continents, Seibold et al. (2021) found that the deadwood decomposition rates increased with 

rising temperature, while high precipitation levels promoted the decomposition of deadwood 

in forests. It is critical to understand the impact of these factors on the decomposition of wood 

waste for optimizing the utilization of wood waste and maximizing bioenergy production. 

This chapter aims to fill this gap by examining the effects of forests on wood 

degradation and subsequent methane production. By conducting field experiments and 

analyzing data from various forest environments and wood waste characteristics, this chapter 

aims to (a) elucidate the effects of different forest environments, primarily vegetation 

conditions, on wood waste degradation, (b) understand the changes of basic physicochemical 

properties of wood waste in forests over time and to further explore the relationship between 

these properties and methane yield, (c) determine the optimal timing of wood waste collection 

in different forest environments for guiding effective wood waste management practices to 

maximize benefits. Understanding these dynamics will inform the development of sustainable 

management practices for wood waste in forests, with potential implications for bioenergy 

production and climate change mitigation efforts. 
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5.2 Materials and methods 

5.2.1 Experimental materials 

The types of wood can be classified into hardwood and softwood. The microstructure 

of softwoods is relatively homogeneous and dominated by a structure known as the tracheid 

(Capuani et al., 2020). Hardwoods, unlike softwoods, have more complex anatomical 

characteristics and greater structural variation (Stagno et al., 2021). In this chapter, two types 

of wood which were common in UK forests, European ash (Fraxinus excelsior) and Japanese 

larch (Larix kaempferi), were chosen for the test. Of these, European ash (expressed as Ash) is 

a hardwood and Japanese larch (expressed as Larch) is a softwood. The wood samples were 

taken from live trees as part of forestry management and cut into uniform cubes (approximately 

15 cm long, 10 cm wide, and 5 cm high) using a table saw upon arrival at the laboratory. Since 

bark only accounts for 10-25% dry weight of the trunk portion of a tree (Chang et al., 2020), 

and to ensure consistency of samples for accurate experiments, the bark was not considered in 

this chapter. 

5.2.2 Site description and sample placement 

After obtaining approval from Natural Resources Wales, two locations in the forest 

(51°32'25"N, 3°14'58"W) were selected for experimentation, as illustrated in Figure 5-1. Trees 

grown at site A are Ash (hardwood area), and trees grown at site B are Larch (softwood area). 

The two selected locations are both situated far from paths to prevent potential damage to the 

samples or the surrounding environment by forest walkers. In addition, climate conditions at 

the experimental sites were obtained from a website (https://www.climate.top/united-

kingdom/cardiff/). 
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Figure 5-1. Satellite aerial view of the forest where the wood samples were placed. The red arrow 

indicates the sampling locations, site A (51°32'48.2" N, 3°14'17.7" W) and site B (51°32'38.8" N, 

3°14'31.3" W). Image from World Map, Satellite (https://satellites.pro/). 

Both experimental sites contained hardwoods and softwoods to investigate the effects 

of different vegetative environments on the degradation of different species of wood. As shown 

in Figure 5-2, the wood samples were directly laid flat on the soil surface, with softwood and 

hardwood samples alternately arranged. Each group consisted of six wood samples, and a total 

of four groups were placed. After placing the wood samples, a mesh cover was utilized to 

safeguard them against potential damage by large animals (e.g., squirrels and pet dogs), and 

secured in place with tent pegs, as shown in Figure 5-3. The purpose of the small holes was to 

ensure that insects and small animals had access to the wood samples. During the sample 

placement at the forest, approximately 0.5 kg of surface soil samples (depth less than 10 cm) 

were excavated from each experimental site, and four soil samples were randomly taken at 

each experimental site. Soil surface temperatures and soil temperatures at a depth of 10 cm 

were measured respectively at the experimental sites using a portable digital thermometer. 

0.1 mi

Site A

Site B
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Figure 5-2. Pictures of wood samples placed in the forest. Softwood samples and hardwood samples 

were placed alternately at the same experimental site. (a–b) Hardwood area and (c–d) softwood area. 

 

Figure 5-3. The final picture of the experimental site. 

5.2.3 Sample recovery and preparation 

Sampling was conducted every 6 months in the forest over the period February 2023 to 

February 2024, with 6 hardwood samples and 6 softwood samples collected at each sampling 

site. As a result, the 6-month samples were taken in August 2023, while the 12-month samples 

c d

a b
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were collected in February 2024. Four soil samples were randomly excavated using the same 

method as used during sample placement. Meanwhile, Soil surface temperatures and soil 

temperatures at a depth of 10 cm were measured using a portable digital thermometer. All 

samples were wrapped in plastic bags to minimize moisture changes and transported to the 

laboratory. 

For the collected wood samples, the soil and plant humus contaminated on the surface 

were removed to ensure homogeneity of the sample, and then the sample was photographed. It 

was also visually inspected for signs of decay, such as pitted corners, split edges, or surface 

pits. The wood samples were weighed, then placed in an oven at 105 °C for 2 days to dry. After 

drying, the samples were weighed again to calculate the moisture content. Considering the 

different environments of the wood portions in contact with soil and air, the dried wood was 

divided into three parts using a table saw into three parts as shown in Figure 5-4, including the 

air-oriented portion (part A), the unexposed portion (part B), and the portion in contact with 

soil (part C). Finally, all wood samples were shredded using a knife mill equipped with a 2mm 

screen and then stored at 4°C prior to further analysis. 

 

Figure 5-4. The wood samples will be divided into three parts for further testing. 
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5.2.4 Anaerobic digestion experimental for wood samples 

AD process for wood chips was the same as in section 4.2.2. 700 mL of inoculum was 

added to the bioreactor, followed by the introduction of wood samples to achieve a substrate 

to inoculum VS ratio of 1:4. The total reaction volume in the bioreactor was 700 mL, with 300 

mL of headspace. Due to testing revealing no significant differences in properties among the 

A, B, and C parts of the wood samples, separate AD experiments were not conducted on these 

three parts. Instead, the A, B, and C parts were added to the bioreactor according to their mass 

ratios in the original wood blocks. All bioreactors were incubated at 35 °C for 25 days, and the 

methane content in the collected biogas was subsequently measured. 

5.2.5 Analytical methods 

5.2.5.1 Soil samples 

For soil samples, pH measurements were carried out immediately after transportation 

to the laboratory, with the method modified from Spohn and Stendahl (2024). Specifically, 10 

g of wet soil was weighed into a 50 ml plastic bottle, then 25 mL of deionised water was added, 

and the pH was measured using a freshly calibrated pH probe (Mettler-Toledo, Switzerland). 

The moisture content of the soil was measured based on the following procedure: 5 g of wet 

soil was taken and placed in an oven at 105 °C overnight, and the dry weight of the soil was 

weighed. The moisture content was calculated as the difference between the initial wet weight 

and the final dry weight, expressed as a percentage of the wet weight. The preparation of liquid 

samples for measuring WEOC and element content in soil was consistent. A total of 5 g of wet 

soil was added to 30 mL of Milli-Q water and shaken at 200 rpm for 2 h at room temperature. 

The supernatant was subsequently filtered through sterile 0.45 μm filters and stored in the dark 

at 4 °C prior to further analyses. The WEOC concentrations were measured by a TOC-VCPH 
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(Shimadzu, Kyoto, Japan) following the manufacturer's instructions. Elemental analyses (Fe, 

Mg, K, Ca, Mn, Na, Al, Ni, Zn, Cu, Co, and Mo) were carried out using an inductively coupled 

plasma optical emission spectroscopy (Perkin Elmer Optima 2100). 

Soil microbial activity was assessed through the measurement of dehydrogenase 

enzyme content (Harbottle and Al-Tabbaa, 2008). 2,3,5-Triphenyltetrazolium chloride (TTC) 

served as an artificial electron acceptor, which was reduced to produce 2,3,5-

triphenyltetrazolium formazan (TTF, a water insoluble red dye) in the presence of 

dehydrogenase. One gram of wet soil was placed in a 2 ml centrifuge tube and mixed with 1.4 

ml of 0.75% TTC (Merk, UK) solution containing 50 mM Trizma hydrochloride (Merk, UK). 

The obtained slurry was vortexed and incubated for 24 hours at 32 °C. Subsequently, the slurry 

was stored at -20 °C for at least 1 hour to minimize subsequent biological activity. Following 

this, the slurry was centrifuged at 13000 g for 4 minutes, and the aqueous supernatant was 

carefully removed. The resulting precipitated sample was extracted repeatedly with ethanol 

until no pink or red colour was visible. The total extract was then quantified by weight, and its 

concentration was determined using a UV/Vis spectrophotometer at 485 nm. Finally, the total 

amount of TTF can be calculated. To control for soil colour interference, a blank test was 

carried out using Trizma hydrochloride solution without TTC. The standard curves for different 

concentrations of TTF (VWR, UK) in ethanol are shown in Figure A-6 and were used for 

calibration. 

5.2.5.2 Wood samples 

The VS content of the wood samples was determined as follows: 2 g of dried wood 

samples were placed in a crucible and heated at 550 °C for at least 6 hours. The weight of the 

ash was measured after it cooled down to room temperature. The VS content was calculated as 

the difference between the initial weight and the weight of the ash. The element content (C, H, 
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N, and O) was measured using an elemental analyzer (Flash Smart, Thermo Fisher Scientific 

Co., USA). The cellulose, hemicellulose, and lignin content of wood samples were measured 

as in section 4.2.3.3. Moreover, the detailed measurement methods for WEOC and crystallinity 

index were the same as described in section 4.2.3.3. 

5.2.6 Statistical analysis 

All experiments were conducted with three technical replicates, unless otherwise 

specified. Statistical analyses were done using Origin 2021 software. All values are presented 

as the mean ± s.d., unless otherwise specified. Statistical significance was assessed using the 

two-tailed Student’s t-test or One-way ANOVA test with a p value of 0.05. 

5.3 Results and discussion 

5.3.1 Environmental conditions and basic properties of soil samples 

The climate conditions at the experimental site are shown in Table 5-1. The average 

temperature was the highest in July (16.0 °C) and was the lowest in February (4.2 °C). The 

average precipitation fluctuated slightly throughout the year, ranging from 57–100 mm, and 

the annual precipitation was 961 mm. The relative humidity varied with the seasons and was 

generally low in spring and summer (around 75%) and high in autumn and winter (above 85%). 

It has been found that temperature, precipitation, and humidity in the forest can affect wood 

decomposition rate (Hu et al., 2018). It was reported that the decomposition rate of wood waste 

was higher under warmer forest conditions than in cooler forests (Błońska et al., 

2019).Specifically, the decomposition rate of wood waste in forests increased with temperature, 

and the precipitation also had an effect on it (Seibold et al., 2021). The temperature at the site 

was low, so the decomposition rate of wood samples will be very slow. A higher humidity can 



 

137 

stimulate microbial activity, but excessive humidity will lead to anaerobic conditions in the 

forest soil that reduce the rate of decomposition (Błońska and Lasota, 2017). 

Table 5-1. Weather condition of experimental sites. 

The soil surface temperature, soil temperature at 10 cm, and pH in the two test sites 

were not generally different (Table 5-2). Although the temperature was not optimal for 

microbial activity during the degradation of wood samples, the soil pH was close to neutral, 

which is a favorable condition for decomposition process (Horodecki and Jagodziński, 2019). 

Soil moisture in hardwood area was slightly higher than in softwood areas in 0 month and 6 

months stages, while there was no difference between the two areas in 12 months stage. Soil 

moisture affected the activity of wood-degrading fungi in the soil, with increased moisture in 

the soil leading to increased fungal abundance and extracellular enzyme activity (A’Bear et al., 

2014). In the process of deadwood decomposition, oxidative depolymerization of 

macromolecules, such as lignin, into relatively small soluble compounds that can be absorbed 

Month 

Average 

maximum 

temperature 

(℃) 

Average 

minimum 

temperature 

(℃) 

Average 

temperature 

(℃) 

Average 

precipitation 

(mm) 

Relative 

humidity 

(%) 

Average 

sunlight 

hours/Day 

January 6.9 2.0 4.4 91 89 1h 44' 

February 6.9 1.6 4.2 67 87 2h 41' 

March 9.2 2.7 5.9 76 82 3h 58' 

April 11.9 4.2 8.0 57 74 5h 38' 

May 15.1 7.1 11.1 64 74 6h 21' 

June 18.1 10.1 14.1 66 73 6h 54' 

July 20.0 12.0 16.0 74 76 6h 09' 

August 19.8 12.1 15.9 80 78 6h 01' 

September 17.5 10.5 14.0 92 81 4h 40' 

October 14.1 8.1 11.1 96 85 3h 21' 

November 10.1 4.5 7.3 100 88 1h 56' 

December 8.0 2.8 5.4 98 89 1h 30' 

Annual 13.1 6.5 9.7 961 81.3 4h 15' 
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and utilized by microorganisms is often the limiting step in rate (Freschet et al., 2013). This 

process involves a variety of extracellular enzymes that catalyze oxidation reactions and has 

been shown to be influenced by the elemental composition of the soil (Jones et al., 2020). In 

this chapter, soil samples at softwood area were consistently higher in manganese than 

hardwood area, while the iron content was also higher in softwood area at 0 month and 6 

months stage. Many studies have revealed a positive correlation between manganese 

concentrations and deadwood decomposition across a wide range of forest ecosystems (Berg 

et al., 2015; Trum et al., 2015). In addition, iron was also involved in these redox reactions, 

accelerating the decomposition of deadwood (Jones et al., 2020). Therefore, the softwood areas 

of this chapter were more favourable for wood decomposition in terms of soil properties.  
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Table 5-2. Basic properties of soil samples at the experimental sites. 

Parameters 

0 month  6 months  12 months  

Hardwood area Softwood area Hardwood area Softwood area Hardwood area Softwood area 

Soil surface 

temperature (℃) 
12.50 ± 0.14 12.57 ± 0.12 16.70 ± 0.16 16.53 ± 0.21 4.03 ± 0.26 4.47 ± 0.21 

Soil temperature at 

10 cm (℃) 
9.00 ± 0.08 9.60 ± 0.16 15.33 ± 0.25 15.50 ± 0.08 6.53 ± 0.12 4.97 ± 0.17 

Moisture (%) 45.30 ± 1.21 38.75 ± 0.83 34.67 ± 0.59 29.51 ± 1.76 29.79 ± 3.10 30.02 ± 0.42 

pH 6.96 ± 0.02 6.58 ± 0.11 6.78 ± 0.22 6.73 ± 0.19 7.33 ± 0.02 7.43 ± 0.03 

Elements 

(mg/kg) 
      

Fe 4.44 ± 0.12 7.78 ± 1.34 8.13 ± 1.70 19.73 ± 1.94 15.21 ± 1.81 11.91 ± 1.72 

Mg 3.21 ± 0.34 5.72 ± 1.13 4.22 ± 0.03 7.17 ± 0.40 3.83 ± 0.44 3.88 ± 0.26 

K 22.43 ± 6.42 19.90 ± 1.26 4.19 ± 0.33 14.31 ± 1.45 18.63 ± 1.49 20.46 ± 1.64 

Ca 12.16 ± 5.37 9.40 ± 2.13 9.16 ± 0.56 15.95 ± 1.10 21.82 ± 2.19 23.18 ± 2.40 

Mn 0.06 ± 0.02 0.27 ± 0.10 0.41 ± 0.12 0.83 ± 0.10 0.23 ± 0.01 0.31 ± 0.03 

Na 13.87 ± 3.09 7.72 ± 1.59 6.10 ± 0.38 2.88 ± 0.17 81.07 ± 0.12 79.71 ± 1.17 

Al 2.11 ± 0.13 3.25 ± 0.36 7.20 ± 2.83 8.86 ± 0.89 10.77 ± 1.43 4.16 ± 0.60 

Ni 
ND (Not 

detectable) 
ND ND ND ND ND 

Zn ND ND ND ND ND ND 

Cu ND ND ND ND ND ND 

Co ND ND ND ND ND ND 

Mo ND ND ND ND ND ND 

The temporal variation of WEOC concentrations in soil samples is shown in Figure 5-

5. Soil WEOC concentrations at both experimental sites were highest at the 6 months stage, 

which corresponded to the summer season. Similar results have been reported that WEOC 

levels in soils reached peaks in the summer and autumn seasons (J. Zhang et al., 2020). The 

variation of WEOC concentrations over time is related to soil temperature, moisture, and 

vegetation (Embacher et al., 2007). Soil temperature is considered to be one of the major factors 

influencing WEOC, and both are generally positively correlated (J. Zhang et al., 2020). In this 

chapter, the impact of vegetation on soil WEOC was probably slight. The hardwood area had 
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the highest WEOC content at 0 month stage, and softwood area had the highest WEOC content 

at 6 months stage, while there was no difference in WEOC between both areas at the 12 months 

stage. Figure 5-6 presents the soil dehydrogenase activity in soil samples from the two 

experimental sites at different sampling stages. On the one hand, soil samples collected after 6 

months had the highest dehydrogenase activity, which was consistent with the finding that the 

microbial activity in soil has a positive correlation with temperature (Kim et al., 2022). On the 

other hand, the dehydrogenase activity in softwood area was higher than that in hardwood area 

at all three sampling stages, suggesting higher microbial activity in the softwood area. In 

general, the softwood area was more favorable for wood decomposition in terms of soil 

microbial activity. 

 

Figure 5-5. Water extractable organic carbon (WEOC) of soil samples at two experimental sites. HW: 

hardwood area; SW: softwood area. Different lowercase letters above columns indicate a difference at 

a 0.05 level. 
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Figure 5-6. Dehydrogenase activity of soil samples at two experimental sites, measured by production 

and recovery of 2,3,5-triphenyltetrazolium formazan (TTF). HW: hardwood area; SW: softwood area. 

Different lowercase letters above columns indicate a difference at a 0.05 level. 

5.3.2 Physicochemical features analysis of wood samples 

Table 5-3 shows the basic properties of the raw material of wood samples. There was 

no significant difference in these parameters between the two types of wood. It was found that 

the decomposition process of wood waste in the forest is mainly determined by the wood 

properties, especially the nitrogen content and the diameter of the wood (Hu et al., 2018). The 

rate of degradation of wood waste is inversely proportional to its carbon content and directly 

proportional to the nitrogen content (Kahl et al., 2017). Compared to other wood species, the 

wood samples in this study had a relatively moderate carbon content and a relatively high 

nitrogen content, implying that they might have a comparatively rapid rate of decomposition 

(Martin et al., 2014; Martin and Thomas, 2011). Figure 5-7 shows the thermogravimetric 

experimental data and derivative thermogravimetric curves fitting results, and the calculated 

lignocellulose composition are provided in Table 5-3. Although there was no significant 
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difference in the carbon and nitrogen content of two wood types, the Ash samples had a higher 

cellulose content and lower lignin content. The result indicated that Ash had higher AD 

potential as lignin is the main component limiting the biogas production of lignocellulosic 

wastes (Gao et al., 2022). However, in contrast to the results of the lignocellulose composition 

analysis, the WEOC content of Larch was significantly higher than that of Ash (Figure 5-8). 

This indicated that there was more organic matter in Larch that was released in the AD system, 

which can then be utilized by a range of related microbes to produce more biogas. There was 

no significant difference in crystallinity index between the raw samples of Ash and Larch 

(Figure 5-8). 

 

Figure 5-7. TGA curves and the gauss peak fitted experimental DTG curves of (a and b) Ash and (c and 

d) Larch samples. 
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Table 5-3. Basic properties of the raw wood samples. 

Parameters Ash Larch 

Total solid (%) 70.25 ± 0.39 60.80 ± 1.52 

Volatile solid (%) 99.25 ± 0.29 99.73 ± 0.35 

Ultimate analysis   

Nitrogen (%) 0.34 ± 0.03 0.33 ± 0.03 

Carbon (%) 45.94 ± 0.19 46.60 ± 0.91 

Hydrogen (%) 5.87 ± 0.10 5.98 ± 0.08 

Oxygen (%) 47.85 ± 0.06 47.09 ± 0.98 

C/N 136.21 ± 13.29 143.81 ± 9.37 

Biochemical analysis   

Extraction (%) 8.11 ± 0.10 5.39 ± 0.22 

Hemicelluloses (%) 25.00 ± 0.31 27.88 ± 0.25 

Cellulose (%) 40.92 ± 0.73 33.08 ± 1.04 

Lignin (%) 25.88 ± 0.52 30.82 ± 0.19 

Note: The % content of total solid was calculated based on wet mass; others were based on dry mass. 

 

Figure 5-8. Water extractable organic carbon (WEOC) and Crystallinity Index (CrI) of raw wood 

samples. * indicates a difference at a 0.05 level, NS means not significant. 
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after 12 months (Figure 5-9). However, there were no obvious pits caused by insect feeding on 

the wood samples were observed, and no visible softening in the texture of the samples due to 

degradation occurred. This might be explained by the short test period which was not enough 

for microorganisms and insects to fully degrade the samples. Generally, the decomposition of 

deadwood in the forest is a long-term process spanning several years or even many decades 

involving a variety of invertebrates and microorganisms that form a complex community 

(Hardersen and Zapponi, 2018). In addition, the volatile solid content and elemental 

composition of wood samples also did not change significantly compared to the initial samples 

after 6 and 12 months of experimental periods in the forest (Table 5-4). The mass loss of the 

samples is shown in Table 5-5, with an increase in mass of about 2.9% after 6 months and 4.6% 

after 12 months. This can be explained by the fact that the contaminants on the sample, such 

as soil or mycelium, are difficult to remove completely by brushing, resulting in an increase in 

weight. 
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Figure 5-9. Images of the wood samples. All samples show the side in contact with the ground.  
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Table 5-4. Basic properties of the 6 months and 12 months stages wood samples. 

Samples 
Total solid 

(%) 

Volatile solid 

(%) 
Nitrogen (%) Carbon (%) Hydrogen (%) Oxygen (%) C/N 

6-A-H-a 71.75 ± 1.50 99.32 ± 0.20 0.33 ± 0.02 47.17 ± 0.26 5.90 ± 0.05 46.59 ± 0.28 143.52 ± 9.47 

6-A-H-b 71.75 ± 1.50 99.57 ± 0.22 0.38 ± 0.02 46.52 ± 0.10 5.71 ± 0.05 47.39 ± 0.17 124.25 ± 4.69 

6-A-H-c 71.75 ± 1.50 99.70 ± 0.05 0.36 ± 0.04 46.84 ± 0.13 5.85 ± 0.04 46.96 ± 0.20 133.21 ± 12.78 

6-A-S-a 69.38 ± 3.38 99.52 ± 0.05 0.33 ± 0.03 47.23 ± 0.09 5.87 ± 0.04 46.57 ± 0.08 144.29 ± 12.83 

6-A-S-b 69.38 ± 3.38 99.52 ± 0.05 0.34 ± 0.03 47.44 ± 0.11 5.86 ± 0.01 46.37 ± 0.12 142.37 ± 10.30 

6-A-S-c 69.38 ± 3.38 99.57 ± 0.05 0.38 ± 0.02 47.31 ± 0.47 5.94 ± 0.01 46.37 ± 0.46 126.41 ± 6.30 

6-L-H-a 73.90 ± 1.30 99.48 ± 0.12 0.39 ± 0.02 46.90 ± 0.04 5.97 ± 0.14 46.75 ± 0.19 122.00 ± 4.66 

6-L-H-b 73.90 ± 1.30 99.40 ± 0.06 0.35 ± 0.02 46.62 ± 0.09 6.07 ± 0.14 46.96 ± 0.22 135.39 ± 6.16 

6-L-H-c 73.90 ± 1.30 99.63 ± 0.17 0.40 ± 0.04 46.70 ± 0.17 6.11 ± 0.00 46.79 ± 0.21 117.88 ± 11.37 

6-L-S-a 79.79 ± 2.07 99.77 ± 0.11 0.37 ± 0.04 46.95 ± 0.01 6.20 ± 0.01 46.49 ± 0.03 129.82 ± 12.49 

6-L-S-b 79.79 ± 2.07 99.65 ± 0.04 0.38 ± 0.07 47.67 ± 0.35 6.00 ± 0.08 45.95 ± 0.36 131.21 ± 23.67 

6-L-S-c 79.79 ± 2.07 99.51 ± 0.09 0.38 ± 0.02 46.71 ± 0.12 5.96 ± 0.17 46.96 ± 0.30 124.74 ± 4.68 

12-A-H-a 58.27 ± 1.02 99.48 ± 0.05 0.32 ± 0.02 46.71 ± 0.35 6.02 ± 0.01 46.96 ± 0.37 148.57 ± 5.97 

12-A-H-b 58.27 ± 1.02 99.28 ± 0.29 0.32 ± 0.01 46.32 ± 0.14 5.85 ± 0.06 47.51 ± 0.21 147.07 ± 1.89 

12-A-H-c 58.27 ± 1.02 99.57 ± 0.09 0.34 ± 0.03 46.74 ± 0.09 6.01 ± 0.06 46.92 ± 0.00 140.31 ± 10.73 

12-A-S-a 59.91 ± 3.24 99.52 ± 0.03 0.35 ± 0.02 46.72 ± 0.05 5.94 ± 0.04 46.99 ± 0.10 133.90 ± 7.52 

12-A-S-b 59.91 ± 3.24 99.40 ± 0.23 0.35 ± 0.00 47.01 ± 0.12 5.97 ± 0.04 46.68 ± 0.17 136.28 ± 1.62 

12-A-S-c 59.91 ± 3.24 99.54 ± 0.09 0.39 ± 0.06 47.52 ± 0.09 5.97 ± 0.01 46.13 ± 0.02 126.02 ± 18.23 

12-L-H-a 57.13 ± 1.67 99.58 ± 0.31 0.41 ± 0.02 47.13 ± 0.09 6.04 ± 0.03 46.42 ± 0.08 116.53 ± 4.10 

12-L-H-b 57.13 ± 1.67 99.71 ± 0.03 0.38 ± 0.02 47.30 ± 0.06 5.94 ± 0.06 46.39 ± 0.13 126.32 ± 4.91 

12-L-H-c 57.13 ± 1.67 99.61 ± 0.33 0.35 ± 0.02 47.56 ± 0.02 6.10 ± 0.06 45.98 ± 0.06 136.34 ± 7.84 

12-L-S-a 57.11 ± 2.23 99.54 ± 0.16 0.33 ± 0.01 47.39 ± 0.45 6.05 ± 0.03 46.23 ± 0.41 145.88 ± 3.61 

12-L-S-b 57.11 ± 2.23 99.55 ± 0.41 0.32 ± 0.03 47.92 ± 0.01 6.01 ± 0.00 45.75 ± 0.02 151.07 ± 14.20 

12-L-S-c 57.11 ± 2.23 99.56 ± 0.09 0.34 ± 0.03 47.93 ± 0.01 6.14 ± 0.03 45.59 ± 0.05 142.08 ± 12.58 

For sample name, 6 and 12 refer to the stage of sample collection; A and L refer to Ash and Larch; H and S refer to hardwood 

area and softwood area; and a, b, and c refer to parts A, B, and C of the sample, respectively. For example, 6-A-H-a is part A 

of Ash wood placed in hardwood area for 6 months, and 12-L-S-c is part C of Larch wood placed in softwood area for 12 

months. The % content of total solid was calculated based on wet mass; others were based on dry mass. 
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Table 5-5. The weight loss of wood samples after 6 months and 12 months experiments. 

Sample weight loss (%) 6 months 12 months 

A-H -2.59 ± 0.80 -5.12 ± 1.53 

A-S -3.06 ± 1.13 -5.20 ± 1.64 

L-H -3.67 ± 0.86 -4.33 ± 1.49 

L-S -2.46 ± 0.93 -3.91 ± 1.28 

Note: The weight loss of samples was calculated based on dry mass. In the sample name, A and L refer to Ash and Larch; H 

and S refer to hardwood area and softwood area, respectively. For example, A-H is Ash wood placed in hardwood area, and 

L-S is Larch wood placed in softwood area. 

The amount of WEOC in the wood samples after being placed for different time periods 

is shown in Figure 5-10. The WEOC content in Larch was still significantly higher than that in 

Ash after 6 months and 12 months periods. This was consistent with the initial WEOC levels 

in both wood types, but the WEOC content decreased compared to the initial wood samples. 

After 6 months of experiment, there was no significant difference in the WEOC content 

between the A, B, and C parts of the same sample. In addition, samples from the two 

experimental sites (hardwood areas and softwood areas) showed no significant differences. 

However, the differences in WEOC content between the samples were revealed after the 12 

months experiment. Firstly, the WEOC content in the three parts of Larch showed significant 

differences, with the levels ranging from A to B to C. Secondly, Ash and Larch samples placed 

in the hardwood area had less WEOC content than those placed in the softwood area. Since the 

WEOC concentration in the soil was significantly lower than that in the wood samples, the 

wood samples slowly decreased in WEOC content to soil as they degraded in the forest, and 

the decrease rate was different in different vegetation environments. In addition, the WEOC in 

the samples may show a trend of gradual decrease to the soil from the bottom to the top, i.e., 

the fastest loss of WEOC is in the part in contact with the soil.  
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Figure 5-10. Water extractable organic carbon (WEOC) of wood samples at two experimental sites, (a) 

collected after 6 months and (b) collected after 12 months. Different lowercase letters above columns 

indicate a difference at a 0.05 level, NS means not significant. 

5.3.3 Anaerobic digestion performance of wood samples 

To further explore biochemical methane potential of wood samples placed in the forest 

for different durations, the AD experiments were carried out. Figure 5-11 shows the AD results 

of two types of wood raw materials, indicating that the biogas production of Ash was 

a

b
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significantly higher than that of Larch. Lignocellulosic composition analysis showed that Ash 

had lower lignin content and higher cellulose content compared to Larch (Table 5-3), which 

could be the main factor contributing to the higher biogas yield of Ash. Generally, hardwoods 

have higher polysaccharide content and lower lignin content compared to softwoods, along 

with higher degrees of deacetylation in hardwood xylan (Ekstrand et al., 2020; Wang and 

Barlaz, 2016). These properties enhance the availability of Ash (hardwood) to functional 

microorganisms during AD. Gao et al. (2024a) compared the AD performance of hardwood 

and softwood wastes by meta-analysis and found that the methane production of hardwood 

waste was 83% higher than that of softwood waste. Although the high WEOC content of Larch 

is more favorable to AD (Figure 5-8a), it is not sufficient to change the effect of the properties 

of wood raw materials. 
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Figure 5-11. Biogas production from raw wood samples. (a) Daily biogas yield and (b) cumulative 

biogas yield. 

Figures 5-12 and 5-13 present the AD results of wood samples which were placed in 

the forest for 6 and 12 months, respectively. Since the basic properties of the three parts (Part 

A, B, and C) of the samples were not significantly different, they were not tested separately. 

The results showed that there were no significant differences in biogas production between the 

wood samples placed in the two vegetation environments, but biogas production in Ash was 

still significantly higher than in Larch. In addition, the methane content of all wood samples 
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did not differ significantly and basically ranged from 60% to 65%, with an average value of 

62.2%. The final methane yields for all samples are shown in Figure 5-14. 

 

Figure 5-12. Biogas production from wood samples that were placed in the forest for 6 months. (a) 

Daily biogas yield and (b) cumulative biogas yield. H and S refer to hardwood area and softwood area; 

A and L refer to Ash and Larch, respectively. For example, H-A is Ash wood placed in hardwood area, 

and S-L is Larch wood placed in softwood area. 
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Figure 5-13. Biogas production from wood samples that were placed in the forest for 12 months. (a) 

Daily biogas yield and (b) cumulative biogas yield. H and S refer to hardwood area and softwood area; 

A and L refer to Ash and Larch, respectively. For example, H-A is Ash wood placed in hardwood area, 

and S-L is Larch wood placed in softwood area. 

0 5 10 15 20 25

0

4

8

12

16

N
et

 d
ai

ly
 b

io
g
as

 p
ro

d
u
ct

io
n
 (

m
L

/g
 o

f 
V

S
)

 H-A  S-A

 H-L  S-L

a

0 5 10 15 20 25

0

40

80

120

N
et

 c
u
m

u
la

ti
v
e 

b
io

g
as

 p
ro

d
u
ct

io
n
 (

m
L

/g
 o

f 
V

S
)

Time (d)

 H-A  S-A

 H-L  S-L

b



 

153 

 

Figure 5-14. The net methane production of all wood samples. 

5.4 Conclusions 

This chapter aims to address RQ 4. The physicochemical properties of soils in different 

vegetation environments varied greatly, with the most noticeable differences being in the 

elemental content of the soil and soil microbial activity. Different forest environments affected 
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although these differences were not statistically significant. This chapter demonstrated that 
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Chapter 6 Overarching discussion, conclusions and future 

work 

6.1 Discussion 

This study offers promising insights into the potential of using DC3 wood samples for 

AD to enhance methane production. However, several limitations must be acknowledged, and 

further research is essential to refine the process and address key challenges. One key limitation 

identified in Chapter 5 is that a one-year period of monitoring in the forest was insufficient to 

observe a significant effect of wood samples on methane production. To improve the 

understanding of this process, future research should focus on determining the optimal time 

required for wood blocks to reach the decay stage (DC3) under different forest conditions. 

Gaining a clearer understanding of these timeframes will enable better management of wood 

degradation for AD, allowing for more efficient methane production. 

Nonetheless, practical challenges arise when attempting to track and collect wood 

samples over time. The decomposition rates of wood blocks vary considerably even within the 

same forest, making it difficult to standardize sampling protocols. In addition, large-scale 

removal of decaying wood presents potential ecological risks, such as the reduction of soil 

organic matter, which could disrupt nutrient cycles and hinder tree growth. These concerns 

underscore the importance of considering the broader environmental implications of wood 

removal. 

To mitigate these risks while optimizing the efficiency of AD, a selective harvesting 

strategy may be necessary. Targeting areas with abundant fallen wood could help minimize 

ecological disruption and reduce the potential negative impacts of large-scale wood removal. 
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Future studies should focus on refining collection techniques, optimizing the degradation 

timeline, and evaluating the ecological consequences of removing decaying wood from forest 

ecosystems. Achieving a sustainable approach to wood waste management for AD will require 

careful coordination between bioenergy production efforts and forest conservation priorities, 

ensuring that both environmental integrity and energy goals are achieved in a balanced manner. 

In summary, while this study contributes valuable insights into wood decay for AD, 

addressing the identified limitations through further research will be crucial for optimizing the 

process and ensuring its sustainability. 

6.2 Conclusions 

The overarching objective of this thesis was to explore an economically viable approach 

for enhancing the AD performance of wood waste by leveraging a nature-based degradation 

processes of forest soil ecosystems. This work aimed to investigate whether wood waste could 

be effectively used as a feedstock for AD, examine the potential improvements in methane 

yield through various pretreatment methods, and evaluate the influence of forest soil 

ecosystems on wood waste degradation and subsequent methane production. The 

aforementioned pertains to the four research questions addressed in this thesis. RQ1 and RQ2, 

covered in Chapter 3, demonstrated that wood waste can be utilized as a feedstock in AD with 

the support of pretreatment technologies. However, the current pretreatment technologies are 

not economically efficient and not practicable, prompting the exploration of RQ3 (Chapter 4) 

and RQ4 (Chapter 5). The findings in Chapter 4 and Chapter 5 indicated that the forest soil 

ecosystem enhanced the methane production from wood waste, which combined with strategic 

collection can be applied in practice as a pretreatment technology for wood waste. 
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Wood waste, primarily composed of lignocellulosic biomass, presents a challenging 

substrate for AD due to its complex structure and high lignin content. The meta-analysis 

conducted in Chapter 3 revealed that the BMP of wood waste is significantly lower—122% 

lower—than that of other organic wastes. This substantial gap underscores the inherent 

recalcitrance of wood waste, which poses a significant barrier to its efficient utilization in AD 

processes. However, the study also demonstrated that pretreatment techniques could mitigate 

this gap, reducing it to 99%. This finding supports the hypothesis that wood waste, albeit 

challenging, can be a viable feedstock for AD when subjected to appropriate pretreatment 

methods. Chapter 3 further delved into various pretreatment methods to enhance the BMP of 

wood waste. The analysis showed that pretreatment significantly improved BMP by 113%, 

with the combination of multiple pretreatment techniques proving more effective than single 

approaches. Furthermore, Chapter 3 compared the accuracy of three ML algorithms in 

predicting methane production from wood waste, concluding that the RF model outperformed 

the others. This predictive model holds significant value for optimizing AD parameters and 

enhancing methane production efficiency from wood waste. 

Chapter 4 introduced a novel nature-based approach utilizing forest soil ecosystems to 

enhance wood waste degradation for AD. Experimental results confirmed the efficacy of this 

approach. Wood samples treated with this system exhibited improvements across several 

physicochemical parameters conducive to AD, such as reduced cellulose crystallinity, 

increased WEOC, and a more suitable C/N. In AD tests, DC1 samples yielded the lowest 

methane production, while DC3 samples achieved the highest, with a remarkable 160% 

increase compared to DC1 samples. Furthermore, DC3 exhibited the highest net energy output, 

suggesting that DC3 could be the optimal stage for collection and utilization in AD. 
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Chapter 5 investigated how various forest soil environments influence the decay 

process of wood waste and subsequent methane production. This chapter revealed significant 

differences in the physicochemical properties of soils from different vegetation types, 

especially in elemental content and microbial activity. These differences affected the 

degradation of wood waste and its performance in AD. Although forest soil ecosystems can 

enhance methane production, a sufficiently long treatment period is required for optimal results. 

6.3 Suggestions for future work 

Based on the findings derived from this thesis above, several avenues for future 

research can enhance the understanding and application of wood waste in AD processes: 

• Given the promising results observed in chapter 4, it is crucial to explore the 

performance of this nature-based approach involving forest soil ecosystems on wider 

area to determine the generalisability of the technique. Studies should focus on different 

forest environmental conditions and various wood waste types, as the degradation 

processes are influenced by the wood species and the specific forest environment. Such 

research would provide valuable insights into the efficiency of this nature-based 

approach and provide guidance on its application. For example, the selective and 

appropriate placement of more wood waste in the forest areas with fast degradation rates, 

as well as the additional application of wood waste that is easily degradable. 

• One key area for future research is the investigation of the long-term effects of this 

nature-based approach on the quality of wood waste. As the wood waste degrades in the 

forest, its mass will decrease, reducing the raw material available for AD. This change 

in mass needs to be considered to maximize the overall benefits. Moreover, 

understanding the changes in the wood waste mass at different decay classes and its 

BMP can offer significant opportunities for optimizing collection strategies. 
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• Exploring the microbial dynamics involved in wood waste degradation within forest soil 

ecosystems is an intriguing area for future research. Key microorganisms involved in 

these processes can be identified by comparing the common characteristics in forest 

areas where wood waste degradation occurs at a rapid rate. These microbes will be 

further isolated and investigated for their pretreatment effect on wood waste. 

• It is crucial to explore the economic viability of this nature-based approach in practical 

applications at an industrial scale through a comprehensive economic analysis. This 

analysis would delve into the entire process of collecting wood from forests and utilizing 

it in AD, assessing factors such as initial collection costs, transportation expenses, 

processing costs, and potential revenue streams from methane production and by-

products. Such an investigation is essential to determine the feasibility and profitability 

of utilizing wood waste degraded by forest soil systems as a raw material for AD. 

• To demonstrate that the collection of wood waste from forests for AD is the optimal 

disposal method, a detailed life-cycle assessment can be conducted. This assessment 

would compare its environmental impacts with alternative utilization options, such as 

direct retention in forests or collection for incineration. By evaluating factors across the 

entire life cycle, including carbon emissions, energy consumption, and ecosystem 

impacts, such a study would provide comprehensive insights into the environmental 

sustainability of AD compared to other disposal methods. This information is crucial for 

making informed decisions regarding the management of wood waste to minimize 

environmental footprint while maximizing resource efficiency. 

• Finally, addressing the economic viability of pretreatment technologies remains critical 

to advancing AD of wood waste. Future research should prioritise the development of 

cost-effective pretreatment methods to increase the BMP of wood waste while 

minimising operating costs. This includes exploring novel pretreatment technologies or 
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combinations thereof tailored specifically for woody biomass. Research efforts could 

focus on integrating the nature-based approach proposed in this thesis with other 

advanced technologies to enhance the efficiency of biomass conversion processes.  
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Appendix 

Appendix figures 

1. Figure A.1. The preferred reporting items for systematic reviews and meta-analyses 

flowchart of the publications screening process. 

2. Figure A-2. Flowchart of the machine learning framework to determine the effect of wood 

waste on anaerobic digestion. RF: Random Forest; SVR: Support Vector Regression; ANN: 

Artificial Neural Network. 

3. Figure A-3. Mechanism Map of the Machine Learning Random Forest (RF) model used in 

chapter 3. 

4. Figure A-4. The calibration curves used for testing organic carbon content in samples. (a) 

Total carbon content; (b) Inorganic carbon content. 

5. Figure A-5. The calibration curve used for testing methane content in biogas. 

6. Figure A-6. The calibration curve used for testing microbial enzyme activity in soil samples. 
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Figure A.1. The preferred reporting items for systematic reviews and meta-analyses flowchart of the 

publications screening process.
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Figure A-2. Flowchart of the machine learning framework to determine the effect of wood waste on 

anaerobic digestion. RF: random forest; SVR: support vector regression; ANN: artificial neural network.  
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Figure A-3. Mechanism Map of the Machine Learning Random Forest (RF) model used in chapter 3.  
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Figure A-4. The calibration curves used for testing organic carbon content in samples. (a) Total carbon 

content; (b) Inorganic carbon content. 

  

0 100 200 300 400 500
0

20

40

60

80

100

0 150 300 450 600
0

20

40

60

80

100

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
L

)

Mean area

y=0.209*x-0.136

R2=0.9998

a

b

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
L

)

Mean area

y=0.181*x-0.314

R2=0.9999



 

165 

 

Figure A-5. The calibration curve used for testing methane content in biogas. 
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Figure A-6. The calibration curve used for testing microbial enzyme activity in soil samples. 
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Appendix tables 

1. Table A-1. Anaerobic digestion feedstock type, composition, operational parameters, 

and product yield. 

2. Table A-2. Chemical composition of various lignocellulosic wastes. 

3. Table A-3. List of 44 publications which contributed to the methane production dataset 

used in the meta-analysis and machine learning analysis. 

4. Table A-4. List of 769 data used for the meta-analysis. 

5. Table A-5. List of 1179 data used for the machine learning analysis. 

6. Table A-6. Hyperparameter selection of the random forest (RF) model. 

7. Table A-7. Distribution of the 1179 datapoints used for machine learning. 

8. Table A-8. Minimum number of pseudo-components for each fraction. 
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Table A-1. Anaerobic digestion feedstock type, composition, operational parameters, and product yield. 

Feedstock C H L 
L/(C

+H) 

LC

H 
VS PS C/N I/S T 

Time 

(day) 
TMP 

Biogas yield 

(mL/g VS) 

CH4 yield 

(mL/g VS) 
Reference 

Rice Straw (dried at 

40 ℃+anaerobic granular 

sludge) 

34.3 24.2 11.2 0.19 69.7 86.3 0.11 19.4 1 37 40 

326.4 222 117.9 
(Gu et al., 

2014) 

Rice Straw (dried at 

40 ℃+paper mill sludge) 
34.3 24.2 11.2 0.19 69.7 86.3 0.11 24.5 1 37 40 326.4 64.1 8.5 

(Gu et al., 

2014) 

Rice Straw (dried at 

40 ℃+municipal sludge) 
34.3 24.2 11.2 0.19 69.7 86.3 0.11 22.1 1 37 40 326.4 37.6 5.1 

(Gu et al., 

2014) 

……                

……                

Wheat Straw (2% H2O2 

(0 ℃, 60 min)) 
38.4 20.8 6.8 0.11 66 N.A. 

20-

30 
84.9 N.A. 37 35 297 N.A. 108.5 

(Song and 

Zhang, 

2015) 

Wheat Straw (3% H2O2 

(0 ℃, 60 min)) 
34.3 16.1 6.0 0.12 56.4 N.A. 

20-

30 
78.7 N.A. 37 35 254.2 N.A. 128.4 

(Song and 

Zhang, 

2015) 

Wheat Straw (4% H2O2 

(0 ℃, 60 min)) 
33.9 16.8 5.7 0.11 56.4 N.A. 

20-

30 
80.8 N.A. 37 35 253.4 N.A. 118.7 

(Song and 

Zhang, 

2015) 

C: Cellulose content (%); H: Hemicellulose content (%); L: Lignin content (%); L/(C+H): Lignin content/(Cellulose content+Hemicellulose content); LCH: Lignocellulose content 

(%)=Lignin content+Cellulose content+Hemicellulose content; VS: Volatile solids; PS: Particle size (mm); I/S: inoculum (sludge) to substrate; T: Temperature (℃); TMP: theoretical methane 

potential (mL/g VS) were calculated according to the lignocellulose content (Chen et al., 2014). The detailed data are available in the article (Gao et al., 2022). 



 

169 

Table A-2. Chemical composition of various lignocellulosic wastes. 

Categories 
Substrate 

types 

Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 

Volatile 

solids 

(%) 

Organic 

carbon 

(%) 

Reference 

 ood SW-pine 37.3 19.6 30.9 99.4 44.9 
(Wang et al., 

2013) 

 SW-spruce 42.0 20.3 27.4 98.5 44.7 
(Wang et al., 

2013) 

 
SW-radiata 

pine 
41.1 20.1 27.1 99.2 44.1 

(Wang et al., 

2011) 

 
SW-loblolly 

pine 
31.8 18 35.8 98.8 48.2 

(Wang and 

Barlaz, 

2016) 

 SW-white pine 27.8 16.9 42.4 99 51 

(Wang and 

Barlaz, 

2016) 

 
SW-pine 

(bark) 
25.4 14.7 27.6 96.7 none 

(Valentín et 

al., 2010) 

 
SW-spruce 

(bark) 
19 11 22.6 96.1 none 

(Millati et 

al., 2019) 

 
HW-

eucalyptus 
40.0 11.0 32.0 99.9 44.5 

(Wang et al., 

2011) 

 
HW-willow 

oak 
26.2 17.6 30.2 96.4 43.7 

(Wang and 

Barlaz, 

2016) 

 HW-white oak 36.7 19.2 24.7 99.2 44.4 
(Wang et al., 

2013) 

 HW-red oak 40.5 19.6 23.5 99.6 44.6 
(Wang et al., 

2013) 

 
HW-birch 

(bark) 
10.7 11.2 27.9 97.1 none 

(Miranda et 

al., 2013) 

 
HW-aspen 

(bark) 
25.4 23.4 22.6 99.6 none 

(Millati et 

al., 2019) 

Board OSB-HW 41.6 16.8 22.7 99.1 44.2 
(Wang et al., 

2013) 

 OSB-HW 42.1 16.8 22.5 99 45.6 
(Wang et al., 

2011) 

 OSB-SW 37.6 17.9 33.6 98.9 43.9 
(Wang et al., 

2011) 

 Plywood 40.7 17.6 29.5 97.5 44.7 
(Wang et al., 

2013) 

 Plywood 38.8 17 31.4 96.4 46.9 
(Wang et al., 

2011) 

 Particleboard 37.7 19 30.2 99.1 43.1 
(Wang et al., 

2013) 
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Categories 
Substrate 

types 

Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 

Volatile 

solids 

(%) 

Organic 

carbon 

(%) 

Reference 

 Particleboard 37.3 16.3 28.2 98.9 45.1 
(Wang et al., 

2011) 

 MDF 39 18.4 31.8 99.5 43.6 
(Wang et al., 

2013) 

 MDF 34.8 15.2 29.5 98.6 43.9 
(Wang et al., 

2011) 

Paper and 

paperboard 
Newspaper 74.3 8.5 8.6 none none 

(Bayard et 

al., 2016) 

 Office paper 77.0 2.4 2.6 none none 
(Bayard et 

al., 2016) 

 
Magazine 

paper 
86.6 1.1 10.0 none none 

(Bayard et 

al., 2016) 

 Newsprint 54.7 17.5 16.1 91 35.7 
(Wang et al., 

2013) 

 Copy paper 72.4 14.2 0.6 88.1 39.1 
(Wang et al., 

2013) 

 
Corrugated 

container 
61.8 14.6 15.4 96.9 50.8 

(Wang et al., 

2013) 

 Cardboards 53.5 11.6 17.0 none none 
(Bayard et 

al., 2016) 

Crop straw Rice Straw 36.7 28.3 13.1 81.5 40.1 
(Mustafa et 

al., 2017) 

 
Sugarcane 

bagasse 
29.7 18.3 15.3 96.8 34.7 

(Liu et al., 

2017) 

 Corn stover 20.4 31.8 20 87.6 38.9 
(Li et al., 

2016) 

 Corn stalk 43 35 7.3 93.8 46.5 
(Meng et al., 

2016) 

 Corn cob 26.6 24.5 10.9 88.81 47.9 
(Ali et al., 

2018) 

 Wheat straw 34.7 29.2 6.3 95.3 50.3 
(Ali et al., 

2018) 

 Wheat bran 7.3 21.4 3.5 95.4 43.9 
(Corneli et 

al., 2016) 

 Barley straw 35.4 28.7 13.1 95.5 none 
(Liu et al., 

2017) 

 Maize straw 30.7 31.2 5.2 91 47.2 
(Ali et al., 

2018) 

Note: softwood (SW); hardwood (HW); oriented strand board (OSB); medium density fiberboard (MDF). 
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Table A-3. List of 44 publications which contributed to the methane production dataset used in the meta-analysis and machine learning analysis. 

Article 

number 
Article Title Article Content Year Publication Journal DOI 

1 
Alkaline pretreatment of spruce and birch to improve 

bioethanol and biogas production 

Papers had data on different 

pretreatment methods for 

wood waste 

2010 BioResources 10.15376/biores.5.2.928-938 

2 

Alkali pretreatment of softwood spruce and hardwood birch by 

NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and 

NaOH/PEG to improve ethanol and biogas production 

Papers had data on different 

pretreatment methods for 

wood waste 

2012 

Journal of Chemical 

Technology and 

Biotechnology 

10.1002/jctb.3695 

3 
Anaerobic digestion of poplar processing residues for methane 

production after alkaline treatment 

Papers had data on different 

pretreatment methods for 

wood waste 

2013 Bioresource Technology 10.1016/j.biortech.2012.12.160 

4 
Effect of the N-Methylmorpholine-N-Oxide (NMMO) 

Pretreatment on Anaerobic Digestion of Forest Residues 

Papers had data on different 

pretreatment methods for 

wood waste 

2013 BioResources 10.15376/biores.8.4.5409-5423 

5 
Improvement of biogas production from pine wood by alkali 

pretreatment 

Papers had data on different 

pretreatment methods for 

wood waste 

2013 Fuel 10.1016/j.fuel.2012.12.092 

6 
Biogas Production from N-Methylmorpholine-N-oxide 

(NMMO) Pretreated Forest Residues 

Papers had data on different 

pretreatment methods for 

wood waste 

2014 
Applied Biochemistry and 

Biotechnology 
10.1007/s12010-014-0747-z 

7 
Fungal Pretreatment of Albizia Chips for Enhanced Biogas 

Production by Solid-State Anaerobic Digestion 

Papers had data on different 

pretreatment methods for 

wood waste 

2015 Energy & Fuels 10.1021/ef501922t 

8 
Sequential parametric optimization of methane production 

from different sources of forest raw material 

Papers had data on different 

pretreatment methods for 

wood waste 

2015 Frontiers in Microbiology 10.3389/fmicb.2015.01163 

9 
Potential methane production of spent sawdust used in the 

cultivation of Gymnopilus pampeanus 

Papers had data on different 

pretreatment methods for 

wood waste 

2016 
Journal of Environmental 

Chemical Engineering 
10.1016/j.jece.2016.10.009 

10 
Effective bio-pretreatment of sawdust waste with a novel 

microbial consortium for enhanced biomethanation 

Papers had data on different 

pretreatment methods for 

wood waste 

2017 Bioresource Technology 10.1016/j.biortech.2017.03.187 
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11 
Fungal pretreatment of willow sawdust and its combination 

with alkaline treatment for enhancing biogas production 

Papers had data on different 

pretreatment methods for 

wood waste 

2017 
Journal of Environmental 

Management 
10.1016/j.jenvman.2016.04.006 

12 

Fungal Pretreatment of Willow Sawdust with Abortiporus 

biennis for Anaerobic Digestion: Impact of an External 

Nitrogen Source 

Papers had data on different 

pretreatment methods for 

wood waste 

2017 Sustainability 10.3390/su9010130 

13 

Enhancing methane production from lignocellulosic biomass 

by combined steam-explosion pretreatment and 

bioaugmentation with cellulolytic bacterium 

Caldicellulosiruptor bescii 

Papers had data on different 

pretreatment methods for 

wood waste 

2018 Biotechnology for Biofuels 10.1186/s13068-018-1025-z 

14 
Effect of power ultrasound and Fenton reagents on the 

biomethane potential from steam-exploded birchwood 

Papers had data on different 

pretreatment methods for 

wood waste 

2019 Ultrasonics Sonochemistry 10.1016/j.ultsonch.2019.104675 

15 

Enhanced digestion of bio-pretreated sawdust using a novel 

bacterial consortium: Microbial community structure and 

methane-producing pathways 

Papers had data on different 

pretreatment methods for 

wood waste 

2019 Fuel 10.1016/j.fuel.2019.06.012 

16 
Enhanced enzymatic hydrolysis and methane production from 

rubber wood waste using steam explosion 

Papers had data on different 

pretreatment methods for 

wood waste 

2019 
Journal of Environmental 

Management 
10.1016/j.jenvman.2019.01.041 

17 
Integrated process for the production of fermentable sugar and 

methane from rubber wood 

Papers had data on different 

pretreatment methods for 

wood waste 

2020 Bioresource Technology 10.1016/j.biortech.2020.122785 

18 
Conversion of rubber wood waste to methane by ethanol 

organosolv pretreatment 

Papers had data on different 

pretreatment methods for 

wood waste 

2021 
Biomass Conversion and 

Biorefinery 
10.1007/s13399-020-00710-4 

19 Effects of pinewood extractives on bioconversion of pinewood 

Papers had data on different 

pretreatment methods for 

wood waste 

2021 Fuel 10.1016/j.fuel.2020.119302 

20 
Enhancing hydrolysis and bio-methane generation of extruded 

lignocellulosic wood waste using microbial pre-treatment 

Papers had data on different 

pretreatment methods for 

wood waste 

2021 Renewable Energy 10.1016/j.renene.2021.01.131 

21 

Mesophilic aerobic digestion: An efficient and inexpensive 

biological pretreatment to improve biogas production from 

highly-recalcitrant pinewood 

Papers had data on different 

pretreatment methods for 

wood waste 

2022 Energy 10.1016/j.energy.2021.122361 

22 
Stimulating biogas production from steam-exploded birch 

wood using Fenton reaction and fungal pretreatment 

Papers had data on different 

pretreatment methods for 

wood waste 

2022 Bioresource Technology 10.1016/j.biortech.2022.128190 
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23 
Integration of Shiitake cultivation and solid-state anaerobic 

digestion for utilization of woody biomass 

Papers had data on different 

pretreatment methods for 

wood waste 

2015 Bioresource Technology 10.1016/j.biortech.2015.01.102 

24 
Biogas production from food waste via anaerobic digestion 

with wood chips 

Papers had data on different 

pretreatment methods for 

wood waste 

2018 Energy & Environment 10.1177/0958305x18777234 

25 

Biochemical methane potential and anaerobic biodegradability 

of non-herbaceous and herbaceous phytomass in biogas 

production 

Papers had data on 

anaerobic digestion of wood 

waste and other wastes 

2012 Bioresource Technology 10.1016/j.biortech.2012.08.079 

26 
Comparison of solid-state to liquid anaerobic digestion of 

lignocellulosic feedstocks for biogas production 

Papers had data on 

anaerobic digestion of wood 

waste and other wastes 

2012 Bioresource Technology 10.1016/j.biortech.2012.08.051 

27 

Evaluation of the correlations between biodegradability of 

lignocellulosic feedstocks in anaerobic digestion process and 

their biochemical characteristics 

Papers had data on 

anaerobic digestion of wood 

waste and other wastes 

2015 Biomass & Bioenergy 10.1016/j.biombioe.2015.06.021 

28 
Effects of temperature and particle size on the biochemical 

methane potential of municipal solid waste components 

Papers had data on 

anaerobic digestion of wood 

waste and other wastes 

2018 Waste Management 10.1016/j.wasman.2017.11.015 

29 

High-solids anaerobic digestion requires a trade-off between 

total solids, inoculum-to-substrate ratio and ammonia 

inhibition 

Papers had data on 

anaerobic digestion of wood 

waste and other wastes 

2019 

International Journal of 

Environmental Science and 

Technology 

10.1007/s13762-019-02264-z 

30 
Alkali Pretreatment for Improvement of Biogas and Ethanol 

Production from Different Waste Parts of Pine Tree 

Papers had data of both 

types described above 
2013 

Industrial & Engineering 

Chemistry Research 
10.1021/ie302805c 

31 
Ionic liquid pretreatment to enhance the anaerobic digestion of 

lignocellulosic biomass 

Papers had data of both 

types described above 
2013 Bioresource Technology 10.1016/j.biortech.2013.10.026 

32 

Biogas production from lignocelluloses by N-

methylmorpholine-N-oxide (NMMO) pretreatment: Effects of 

recovery and reuse of NMMO 

Papers had data of both 

types described above 
2014 Bioresource Technology 10.1016/j.biortech.2014.03.107 

33 
Enhanced Solid-State Biogas Production from Lignocellulosic 

Biomass by Organosolv Pretreatment 

Papers had data of both 

types described above 
2014 

Biomed Research 

International 
10.1155/2014/350414 

34 
Effect of Feedstock Components on Thermophilic Solid-State 

Anaerobic Digestion of Yard Trimmings 

Papers had data of both 

types described above 
2015 Energy & Fuels 10.1021/acs.energyfuels.5b00301 
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35 

The Effect of Aqueous Ammonia Soaking Pretreatment on 

Methane Generation Using Different Lignocellulosic 

Biomasses 

Papers had data of both 

types described above 
2015 

Waste and Biomass 

Valorization 
10.1007/s12649-015-9352-9 

36 
Improvement of Solid-State Biogas Production from Wood by 

Concentrated Phosphoric Acid Pretreatment 

Papers had data of both 

types described above 
2016 BioResources 10.15376/biores.11.2.3230-3243 

37 
Anaerobic digestion of lignocellulosic biomasses pretreated 

with Ceriporiopsis subvermispora 

Papers had data of both 

types described above 
2017 

Journal of Environmental 

Management 
10.1016/j.jenvman.2017.01.075 

38 

Assessment of hydrothermal pretreatment of various 

lignocellulosic biomass with CO2 catalyst for enhanced 

methane and hydrogen production 

Papers had data of both 

types described above 
2017 Water Research 10.1016/j.watres.2017.04.068 

39 

Evaluation on the Methane Production Potential of Wood 

Waste Pretreated with NaOH and Co-Digested with Pig 

Manure 

Papers had data of both 

types described above 
2019 Catalysts 10.3390/catal9060539 

40 

Application of enzymatic and bacterial biodelignification 

systems for enhanced breakdown of model lignocellulosic 

wastes 

Papers had data of both 

types described above 
2020 

Science of the Total 

Environment 
10.1016/j.scitotenv.2020.138741 

41 

Does Acid Addition Improve Liquid Hot Water Pretreatment 

of Lignocellulosic Biomass towards Biohydrogen and Biogas 

Production? 

Papers had data of both 

types described above 
2020 Sustainability 10.3390/su12218935 

42 
Biorefining for olive wastes management and efficient 

bioenergy production 

Papers had data of both 

types described above 
2021 

Energy Conversion and 

Management 
10.1016/j.enconman.2021.114467 

43 
Biorefinery potential of Eucalyptus grandis to produce 

phenolic compounds and biogas 

Papers no control group, 

only used for machine 

learning 

2020 
Canadian Journal of Forest 

Research 
10.1139/cjfr-2020-0201 

44 

Evaluating the Influence of Temperature and Flow Rate on 

Biogas Production from Wood Waste via a Packed-Bed 

Bioreactor 

Papers no control group, 

only used for machine 

learning 

2021 
Arabian Journal for Science 

and Engineering 
10.1007/s13369-020-04900-0 
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Table A-4. List of 769 data used for the meta-analysis. 

Article 

number 
Wood type Group Category Description of pretreatment 

CKme

an 
CKsd CKn Tmean Tsd Tn 

27 
Corylus 

avellana 

Compared with 

hardwood 

Crop straw 

(Barley straw) 
Untreated 97 2 3 278 2 3 

27 
Robinia 

pseudo-acacia 

Compared with 

hardwood 

Crop straw 

(Barley straw) 
Untreated 151 2 3 278 2 3 

37 Hazel 
Compared with 

hardwood 

Crop straw 

(Barley straw) 
Untreated 99.72 2.16 3 273.91 6.83 3 

37 Hazel 
Compared with 

hardwood 

Crop straw 

(Barley straw) 
Autoclaved (121 ℃ 30 min) 113.5 2.15 3 253.04 10.26 3 

37 Hazel 
Compared with 

hardwood 

Crop straw 

(Barley straw) 
Autoclaved + Water 103.58 4.31 3 252.17 13.68 3 

……           

……           

34 Woodchips Co-digestion Maple leaves 
Wood chips:Maple leaves=74:26 

based on TS 
48.6 2.94 3 58.2 4.5 3 

34 Woodchips Co-digestion Maple leaves 
Wood chips:Maple leaves=49:51 

based on TS 
48.6 2.94 3 71.1 4.33 3 

39 
Hardwood 

(Eucalyptus) 
Co-digestion Pig manure 

Pig manure:Wood chip=02:01 based 

on VS 
175.81 17.11 3 234.88 20.2 3 

39 
Hardwood 

(Eucalyptus) 
Co-digestion Pig manure 

Pig manure:Wood chip=02:01 based 

on VS 
243.53 29.23 3 309.06 10.05 3 

The detailed data are available in the article (Gao et al., 2024a). 



 

176 

Table A-5. List of 1179 data used for the machine learning analysis. 

Article 

number 

Wood 

types 

Inoculum 

types 

Volume 

(mL) 

Temper

ature 

(℃) 

Particle 

size 

(mm) 

Ratio of inoculum 

to substrate (based 

on VS) 

Cellulose 

content 

(%) 

Hemicellulo

se content 

(%) 

Lignin 

content 

(%) 

Digestio

n time 

(d) 

Methane 

production 

(L/kg of VS) 

3 hardwood 

Effluent from 

anaerobic 

digestion of 

manure 

2000 35 12 0.028 47.7 25.6 23.6 2 12.06 

3 hardwood 

Effluent from 

anaerobic 

digestion of 

manure 

2000 35 12 0.028 47.7 25.6 23.6 4 18.76 

3 hardwood 

Effluent from 

anaerobic 

digestion of 

manure 

2000 35 12 0.028 47.7 25.6 23.6 6 27.32 

3 hardwood 

Effluent from 

anaerobic 

digestion of 

manure 

2000 35 12 0.028 47.7 25.6 23.6 8 34.02 

3 hardwood 

Effluent from 

anaerobic 

digestion of 

manure 

2000 35 12 0.028 47.7 25.6 23.6 10 39.3 

……            

……            

44 hardwood sewage sludge 20000 40 1 0.5 57.79 12.8 25.28 10 157.39 

44 hardwood sewage sludge 20000 40 1 0.5 57.79 12.8 25.28 15 346.36 

44 hardwood sewage sludge 20000 40 1 0.5 57.79 12.8 25.28 20 494.76 

44 hardwood sewage sludge 20000 40 1 0.5 57.79 12.8 25.28 25 587.93 

44 hardwood sewage sludge 20000 40 1 0.5 57.79 12.8 25.28 30 603.09 

The detailed data are available in the article (Gao et al., 2024a). 
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Table A-6. Hyperparameter selection of the random forest (RF) model. 

Hyperparameters Range Tuned values of RF 

n_estimators (100,150,200,300,500) 150 

max_depth [10,20] 13 

min_impurity_decrease (0,0.001,0.01,0.1,0.2) 0 

min_samples_leaf (1,2,5,8,10) 1 

min_samples_split (2,5,8,10) 2 

random state [1,100] 1 
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Table A-7. Distribution of the 1179 datapoints used for machine learning. 

Features Unit Abbreviation Data range Mean SD 

1 Wood types - WT 0 or 1 0.89 0.31 

2 Inoculum types - IT 0 or 1 0.59 0.49 

3 Volume mL V 60–20000 1526.57 1878.04 

4 Temperature ℃ TEM 30–62 35.31 3.97 

5 Particle size Mm PS 0.4–30.0 8.79 6.16 

6 Ratio of inoculum to substrate based on VS I/S 0.01–8.63 1.15 1.54 

7 Cellulose content % C 19.5–68.1 43.58 9.17 

8 Hemicellulose content % H 1.8–36.7 17.32 8.52 

9 Lignin content % L 8.1–47.3 27.34 10.05 

10 Digestion time d T 1–70 26.95 19.27 

11 Methane production L/kg of VS CH4 0.06–603.09 91.22 83.07 
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Table A-8. Minimum number of pseudo-components for each fraction. 

Component Temperature range (°C) Number of pseudo-components 

Water 25–150 1 

Hemicellulose 200–350 2 

Cellulose 250–400 1 

Lignin 150–1000 3 
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