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A B S T R A C T

Background: The Coronary Artery Disease-Reporting and Data System (CAD-RADS) 2.0 offers standardized
guidelines for interpreting coronary artery disease in cardiac CT. Accurate and consistent CAD-RADS 2.0 scoring is
crucial for comprehensive disease characterization and clinical decision-making. This study investigates the
capability of large language models (LLMs) to autonomously generate CAD-RADS 2.0 scores from cardiac CT
reports.
Methods: A dataset of cardiac CT reports was created to evaluate the performance of several state-of-the-art LLMs
in generating CAD-RADS 2.0 scores via in-context learning. The tested models comprised GPT-3.5, GPT-4o,
Mistral 7b, Mixtral 8 � 7b, Llama3 8b, Llama3 8b with a 64k context length, and Llama3 70b. The generated
scores from each model were compared to the ground truth, which was provided by two board-certified
cardiothoracic radiologists in consensus based on the reports.
Results: The final set comprised 200 cardiac CT reports. GPT-4o and Llama3 70b achieved the highest accuracy in
generating full CAD-RADS 2.0 scores including all modifiers with a performance rate of 93 % and 92.5 %,
respectively, followed by Mixtral 8 � 7b with 78 %. In contrast, older LLMs, such as Mistral 7b and GPT-3.5
performed poorly (16 %) and Llama3 8b demonstrated intermediate results with an accuracy of 41.5 %.
Conclusion: LLMs enhanced with in-context learning are capable of autonomously generating CAD-RADS 2.0
scores for cardiac CT reports with excellent accuracy, potentially enhancing both the efficiency and consistency of
cardiac CT reporting. Open-source models not only deliver competitive accuracy but also present the benefit of
local hosting, mitigating concerns around data security.
1. Introduction

Coronary artery disease (CAD) constitutes a leading cause of
morbidity and mortality worldwide,1 underscoring the importance of
early diagnosis and precise characterization. Coronary CT angiography
(CCTA) is a crucial non-invasive imaging modality for assessing CAD and
is established as a first-line test in multiple international guidelines.2,3 To
ensure standardized reporting of CCTA findings, the Coronary Artery
Disease-Reporting and Data System (CAD-RADS) was developed in
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2016.4 It provides a structured framework for grading coronary artery
stenosis, thereby reducing interobserver variability, facilitating clinical
decision-making and communication.

In recent years, the understanding of CAD characterization has shifted
from merely measuring coronary stenosis to a broader focus on plaque
burden, plaque characteristics and high-risk features associated with
plaque rupture.5–7 Therefore, the CAD-RADS 2.0 was introduced,8 and
additionally incorporates plaque burden quantification and additional
patient management recommendations. For this, it includes metrics for
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overall plaque burden, and assessments of ischemia through techniques
such as fractional flow reserve derived from CT (FFR-CT) and CT
myocardial perfusion imaging. These additions allow for a more nuanced
evaluation of coronary lesions, improving the selection of patients for
preventive therapies, invasive procedures, and long-term management
strategies.9 However, due to these advancements, the complexity of
CAD-RADS 2.0 reports has increased hampering consistent and accurate
scoring.10 While CAD-RADS 2.0 scoring is straightforward for experi-
enced readers, its multilayered structure and additional modifiers may
introduce variability in complex cases. Ensuring consistency is essential,
as errors in scoring may lead to misjudgment of disease severity,
potentially impacting treatment decisions.10 With increasing volumes of
cardiac CT examinations,11 there is a growing need for tools that assist
radiologists in maintaining accuracy and consistency while reducing
variability in CAD-RADS 2.0 scoring.

Recent advancements in artificial intelligence (AI)-based natural
language processing might address this. Large language models (LLMs)
such as GPT and Llama have demonstrated notable capabilities in un-
derstanding and generating complex medical narratives.12–14 Recent
studies provide evidence for the potential to summarize clinical reports
and extract information from electronic health records.15

In contrast to these applications, the CAD-RADS 2.0 classification
system is highly complex and multilayered. Our study evaluated the
performance of state-of-the-art LLMs in generating CAD-RADS 2.0 scores
from cardiac CT reports. Both proprietary systems, such as GPT-4o, and
open-source models like Llama3, Mistral and Mixtral 8 � 7B were tested.
The latter might allow for locally hosted solutions to mitigate privacy and
data security concerns.

2. Methods

2.1. CCTA reports

To ensure data privacy and comply with cloud-based restrictions, a
synthetic dataset of cardiac CT reports was generated. These reports were
constructed based on CAD prevalence data from established liter-
ature,16–18 while strictly adhering to the reporting template used at our
institution, which aligns with international consensus guidelines (see
supplements of the CAD-RADS 2.0 guideline).8 Special care was taken to
ensure they mirrored real-world clinical documentation, incorporating
all relevant information for CAD-RADS classification while avoiding
interpretative CT report elements to enable an objective assessment by
LLMs.

To achieve this, cardiac CT reports were first extracted from retro-
spective cases, with all patient-identifiable information and impressions
removed, leaving only objective findings. Then these reports were altered
as follows: the synthetic reports were then semi-randomly generated by
combining predefined text blocks for different sections, ensuring natural
variability while preserving clinical consistency. If needed, stenosis
severity, Agatston scores, and plaque burden values were assigned within
clinically plausible ranges using a random generator. Each report un-
derwent rigorous manual review and refinement by a board-certified
radiologist (MTH) before the final CAD-RADS 2.0 classification was
assigned in consensus by two board-certified radiologists (MTH, MS).
This highly controlled approach was used to ensure that the dataset is not
only synthetic but robust, standardized, and clinically representative.
The methodology aligns with widely accepted practices in LLM research,
where synthetic text data is routinely used to comply with privacy reg-
ulations while maintaining realistic evaluation environments for AI-
driven applications in radiology.12,13,19–21

2.2. Sample size calculation

To ensure a robust statistical evaluation of the accuracy of LLMs in
classifying CAD-RADS 2.0 categories, a sample size calculation was
performed. The primary outcome of interest was the overall accuracy of
323
LLMs compared to the ground truth derived from cardiac CT reports, with
an accompanying 95% confidence interval (CI). The required sample size
(n) was calculated to ensure that the 95% CI had amargin of error of 5 %.
The estimated accuracy of the LLMs was assumed to be 90 %, based on
contemporary literature evaluating the performance of state-of-the-art
LLMs on structured classification tasks.22 Using this value, the sample
size was determined using the following equation for proportion
estimation:

n¼Z2 ⋅ ðestimated accuracyÞ ⋅ ð1� estimated accuracyÞ
ðmargin of errorÞ2

Substituting Z with 1.96 (for a 95 % CI range), the estimated accuracy
at 90 %, and the margin of error at 5 %, a minimum of 138 reports were
required. Using a more conservative assumption of 85 % accuracy, the
necessary sample size equals 196. Therefore, 200 cardiac CT reports were
used in this study.

2.3. CCTA interpretation according to CAD-RADS 2.0

As reference standard, the reports were classified according to the
CAD-RADS 2.0 system by two board-certified radiologists (MTH, MS),
with 6 and 9 years of experience in CCTA, respectively, in consensus. The
format for CAD-RADS 2.0 coding followed the similar sequence as pro-
posed in the guideline: CAD-RADS/N/P/HRP/I/S/G/E.23 The LLMs`
output was only considered correct if the complete CAD-RADS 2.0 code
was provided in the correct sequence, including all applicable modifiers.
This precision is critical, as further diagnostic testing, treatment recom-
mendations, and adherence to structured reporting standards, are guided
hereby.23

2.4. Prompt design, and task assignment

Precision prompts with in-context learning were employed to direct
LLMs in application of the CAD-RADS 2.0 system on CT reports (Prompts
provided in supplements). The provided context included information on
the facts, that CAD-RADS scores range from 0 (no plaque or stenosis) to 5
(total occlusion), based on the diameter stenosis. CAD-RADS 1 represents
minimal stenosis (1–24 %), CAD-RADS 2 indicates mild stenosis (25–49
%), and CAD-RADS 3 reflects moderate stenosis (50–69 %). CAD-RADS
4A represents severe stenosis (70–99 %) in one or two major vessels,
while CAD-RADS 4B indicates left main stenosis of �50 % or severe
three-vessel disease (�70 % stenosis in all three major coronary ar-
teries).23 The LLMs were also tasked with assessing overall coronary
plaque burden using either the Agatston Score or Segment Involvement
Score (SIS), as appropriate, and categorizing it into the distinct P category:
P1 (mild, Agatston 1–100, SIS �2), P2 (moderate, 101–300, SIS 3–4), P3
(severe, 301–999, SIS 5–7), and P4 (extensive, �1000, SIS �8).23 The
models also evaluated the lacking interpretability of the entire study
(CAD-RADS N) or part of a vessel (modifier N). In addition, the models
evaluated High-Risk Plaque (modifier HRP) features within a plaque,
requiring at least two of the following four components to be present: 1)
positive remodeling, 2) low attenuation plaque (<30 Hounsfield Units),
3) spotty calcifications, and 4) the napkin-ring sign.24,25 Furthermore,
LLMs screened for functional assessments, such as FFR-CT, using specific
thresholds: FFR-CT � 0.75 indicated significant ischemia (modifier Iþ),
values > 0.80 ruled out ischemia (I-), and values between 0.76 and 0.80
were classified as borderline or inconclusive (I�).23 For CT perfusion, Iþ
modifier is assigned for reversible ischemia (perfusion defects during
stress) and the I- modifier for the absence of ischemia or fixed myocardial
infarcts, particularly for stenoses between 50 and 90 %, with further
consideration for proximal lesions over 40% or high-risk plaque features.
The presence of stents or bypass grafts was flagged with S or G modifiers,
and cases involving non-atherosclerotic causes of CAD, or anatomical
variation of vessel origins, were marked as exceptions (E). GPT-3.5,
GPT-4o, Llama 3 8B, Llama 3 8B with a 64k context length, Llama 3
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70B, Mistral 7B, and Mixtral 8 � 7B were prompted similarly with
identical prompts. An overview is shown in (Fig. 1), while characteristics
of each used LLM is provided in Table 1.
2.5. Local LLM deployment

For local deployment of LLMs, we utilized LocalAI (https://local
ai.io), an open-source framework designed to run and serve models
efficiently on local infrastructure. LocalAI was configured to function as
an OpenAI-compatible API endpoint, allowing seamless integration with
our experimental pipeline. The models were manually installed from
repositories like Hugging Face (https://huggingface.co). The deployment
was performed on a workstation equipped with an NVIDIA RTX 6000
GPU, which provided the necessary computational power and substantial
VRAM required for efficient inference.

To optimize performance and reduce memory requirements, all
models were deployed in a quantized GGUF (GPTQ for GGML Unified
Format)version, which allows for reduced precision representations of
model weights. Quantization compresses model parameters—e.g., from
16-bit floating point (FP16) to lower-bit integer formats (such as 4-bit, 5-
bit, or 8-bit)—significantly reducing GPU memory requirements while
maintaining inference performance.

We evaluated several locally hostable models with varying compu-
tational requirements. Llama 3 70B (~48 GB GPU RAM, 4-bit quantiza-
tion, 4096 context window), Llama 3 8B (~6 GB GPU RAM, 5-bit
quantization, 4096 context window), Llama 3 8B (64k context) (~12
GB GPU RAM, 8-bit quantization, 65536 context window), Mistral 7B
Fig. 1. A dataset of 200 cardiac CT reports was created and used to assess the perform
7b, Llama 3 8b, Llama 3 8b with a 64k context length, and Llama 3 70b. The accura
compared to a ground truth established by two board-certified cardiothoracic radiol
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(~6 GB GPU RAM, 4-bit quantization, 8192 context window), and Mix-
tral 8 � 7B (~48 GB GPU RAM, 6-bit quantization, 32768 context win-
dow) were tested.
2.6. Statistics

Statistical analyses were performed using R (version 4.4.1). The
assumption of normal distribution was assessed with the Shapiro-Wilk
test. Quantitative variables were expressed as mean � standard devia-
tion (SD) for normally distributed data, and as median and interquartile
range (IQR) for non-normal distributions. Categorical variables were
presented as counts and percentages. We calculated Krippendorff's alpha
to assess the inter-rater reliability between each LLM and the ground
truth provided by two board-certified radiologists regarding the CAD-
RADS score and Plaque assessment. Given the structured nature of
CAD-RADS classification, it is essential to evaluate agreement across all
categories without merging, ensuring a detailed understanding of LLM
performance in distinguishing between fine-grained classifications.
Using bootstrap resampling with 1000 iterations, the 95 % confidence
interval ranges (CI) were reported. Additionally, Cohen's κwas calculated
for binary classifications of CAD-RADS scores, grouping values as 0 to 2
and, CAD-RAD 3 or greater, as a CAD-RADS score of 3 or greater would
typically prompt further patient evaluation. For multi-class tasks, true
and false positives were reported as proportions, while binary tasks used
2 � 2 tables to calculate sensitivity, specificity, precision, recall, and
subsequently F1 scores. A detailed description on these performances,
and their calculations is provided in the supplements. Classification
ance of seven Large Language Models: GPT-3.5, GPT-4o, Mistral 7b, Mixtral 8 �
cy of each model's generated CAD-RADS 2.0 score using in-context learning was
ogists.

https://localai.io
https://localai.io
https://huggingface.co


Table 1
Characteristics of each used LLM.

Model Manufacturer Open-Source GPU Size (GB) Context Window Brief Description

GPT-4o OpenAI No N/A 32k Advanced language model by OpenAI, known for high performance
across various tasks

GPT-3.5-Turbo OpenAI No N/A 16k Efficient and cost-effective model by OpenAI, widely used for various
applications

Llama 3.1 70B 4Q Meta Yes ~24 4096 Large quantized version of Meta's Llama 3.1, offering high performance
with reduced precision

Llama 3.1 8B 6Q Meta Yes ~24 4096 Smaller quantized version of Llama 3.1, balancing performance and
resource requirements

Llama 3.1 6Q (64k context) Meta Yes ~24 65536 Extended context version of Llama 3.1, allowing for processing of longer
sequences

Mistral 7B Mistral.ai Yes ~24 8192 Efficient open-source model, suitable for various NLP tasks
Mixtral 8 � 7B Mistral.ai Yes ~48 32768 Sparse Mixture of Experts model, offering high performance across

multiple benchmarks

Abbreviations: GPU, Graphics Processing Unit; GB, Gigabyte; NLP, Natural Language Processing; 4Q, 6Q, Quantized versions with different bit precision; B, Billion
(parameter count in models); k, Thousand (context window size).
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performance of the LLMs was measured using the F1 score for binary
tasks, and the proportion of correct interpretations, scaled from 0 to 1, for
multi-class categories.

3. Results

3.1. Characteristics

In the final set of 200 cases, the Agatston score ranged from 0 to 6024,
with a median score of 63 [IQR 16–151]. A total of 112 cases (56 %) had a
CAD-RADSscoreof 2 or lower, indicatingminimal tomild stenosis,whereas
10 cases (5%) had total occlusion (CAD-RADS5). Further details, including
plaque burden, ischemia, and other modifiers, are displayed in Table 2.

3.2. Performance of LLMs in evaluating CCTA reports

3.2.1. CAD-RADS score
For CAD-RADS score classification, GPT-4o and Llama 3 70B achieved

the highest performance, correctly classifying 198 out of 200 cases (99
Table 2
Characteristics of the cases described in synthetic reports.

Characteristics CCTA Reports (n¼200)

CAD RADS
0 49 (24.5 %)
1 34 (17.0 %)
2 29 (14.5 %)
3 26 (13.0 %)
4A 32 (16.0 %)
4B 15 (7.5 %)
5 10 (5.0 %)
N 5 (2.5 %)

Coronary artery calcification
Agatston Scorea 63 [16–151]
Agatston Score, range 0–6024

Plaque
Absence of calcification or plaque 38 (19.0 %)
P1 (mid) 97 (48.5 %)
P2 (moderate) 35 (17.5 %)
P3 (severe) 19 (9.5 %)
P4 (extensive) 11 (5.5 %)

High-Risk-Plaques (HRP) 24 (12 %)
I – Modifier
I þ 13 (6.5 %)
I þ/� 4 (2.0 %)
I – 13 (6.5 %)

Stent (S–modifier) 6 (3.0 %)
Bypass-graft (G–modifier) 5 (2.5 %)
Exception (E–modifier) 7 (3.5 %)

Abbreviations: CAD-RADS, Coronary Artery Disease Reporting and Data System,
P, Plaques; I, Ischemia.

a Data is presented with median and interquartile range in square brackets.
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%). Llama 3 8B closely followed, with 196 correct classifications (98 %),
while GPT-3.5 and Mixtral 8 � 7B each correctly classified 194 cases (97
%). Mistral 7B performed slightly inferior, correctly classifying 191 cases
(95.5 %). The lowest performance was observed with Llama 3 8B with a
64k context length, which correctly classified 177 cases (88.5 %). Fig. 2
provides the distribution of CAD-RADS categories among distinct LLMs,
while Table 3 displays the counts in comparison to the ground truth. A
confusion matrix on the performance of each LLM and detailed contin-
gencies, including the performances of precision, recall and F1-Scores,
including their respected 95 % CI ranges regarding the CAD-RADS clas-
sification are reported in the Supplements.

3.2.2. Plaque burden
For assignment of coronary plaque, GPT-4o and Llama 3 70B achieved

the highest accuracy, correctly classifying 198 out of 200 cases (99 %),
respectively. Mixtral 8 � 7B closely followed with 196 correct classifi-
cations (98 %). Llama 3 8B correctly classified 98 cases (49 %) and Llama
3 8B with a 64k context length only 46 cases (23 %). GPT-3.5 and Mistral
7B showed poor performance with only 37 (18.5 %) and 38 (19 %)
correct classifications, respectively. Details are displayed in Table 4,
while Fig. 3 provides the distribution of P-categories across LLMs. Inter-
rater reliability between each LLM and the ground truth, assessed by
Krippendorff's alpha and Cohen's kappa for CAD-RADS, as well as plaque
quantification assessment, is summarized in Table 5. A confusion matrix
on the performance of each LLM and detailed contingencies, and per-
formances of precision, recall and F1-Scores, including their respected
95 % CI ranges regarding the plaque burden classification are reported in
the Supplements.
Fig. 2. Stacked bar chart comparing CAD-RADS 2.0 scores by different large
language models (GPT-3.5, GPT-4o, Llama 3 variants, and Mixtral 8 � 7B)
against the reference standard.



Table 3a
Comparison of Stenosis Severity assignment into CAD-RADS by Large Language Models.

CAD-RADS Ground Truth GPT 3.5 GPT 4o Llama 3 8b Llama 3 8b 64k Llama 3 70b Mistral 7b Mixtral-8x7B

0 50 52 49 51 52 49 52 51
1 32 35 33 34 26 34 34 34
2 31 29 29 29 21 29 28 28
3 27 24 27 26 43 26 27 27
4A 30 32 32 33 34 33 33 33
4B 15 15 14 16 16 16 15 15
5 10 9 10 10 8 10 11 11
N 5 4 6 1 0 3 0 1
Correctly Classified N/A 194/200 (97 %) 198/200 (99 %) 196/200 (98 %) 177/200 (88.5 %) 198/200 (99 %) 191/200 (95.5 %) 194/200 (97 %)

Number of cases classified by various large language models and their variants into CAD-RADS categories. Each cell shows the count of cases assigned to the respective
category, which ranges from 0 (no stenosis), to 5 (total coronary occlusion).
Abbreviations: CAD-RADS, Coronary Artery Disease Reporting and Data System; N, non-diagnostic; N/A, not applicable.

Table 3b
F1-Scores by Large Language Models in CAD-RADS classification.

CAD-RADS GPT–3.5 GPT–4o Llama 3 8b Llama 3 8b 64k Llama 3 70b Mistral 7b Mixtral
8 � 7B

0 0.97 [0.932, 1.0] 0.99 [0.965, 1.0] 0.98 [0.949, 1.0] 0.97 [0.928, 1.0] 1.0 [1.0, 1.0] 0.97 [0.928, 1.0] 0.98 [0.949, 1.0]
1 0.986 [0.951, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 0.867 [0.757, 0.947] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
2 0.966 [0.909, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 0.84 [0.718, 0.933] 1.0 [1.0, 1.0] 0.982 [0.939, 1.0] 0.982 [0.941, 1.0]
3 0.96 [0.894, 1.0] 0.981 [0.935, 1.0] 1.0 [1.0, 1.0] 0.754 [0.625, 0.857] 1.0 [1.0, 1.0] 0.943 [0.864, 1.0] 0.981 [0.938, 1.0]
4A 1.0 [1.0, 1.0] 0.985 [0.949, 1.0] 0.985 [0.941, 1.0] 0.97 [0.92, 1.0] 0.985 [0.952, 1.0] 0.985 [0.949, 1.0] 0.985 [0.945, 1.0]
4B 0.933 [0.8, 1.0] 0.966 [0.865, 1.0] 0.968 [0.88, 1.0] 0.968 [0.897, 1.0] 0.968 [0.882, 1.0] 0.867 [0.71, 0.973] 0.933 [0.812, 1.0]
5 0.947 [0.8, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 0.889 [0.667, 1.0] 1.0 [1.0, 1.0] 0.952 [0.8, 1.0] 0.952 [0.833, 1.0]
N 0.889 [0.4, 1.0] 1.0 [1.0, 1.0] 0.333 [0.0, 0.8] 0.0 [0.0, 0.0] 0.75 [0.0, 1.0] 0.0 [0.0, 0.0] 0.333 [0.0, 0.8]

Note.–Data in square brackets represent the 95 % confidence interval range.

Table 4a
Comparison of Plaque Burden assignment into P-modifiers by Large Language Models.

P Modifier Ground Truth GPT 3.5 GPT 4o Llama 3 8b Llama 3 8b 64k Llama 3 70b Mistral 7b Mixtral-8x7B

P0 38 200 38 139 191 38 199 41
P1 97 0 97 43 6 97 0 96
P2 35 0 35 15 3 35 1 34
P3 19 0 19 3 0 19 0 18
P4 11 0 11 0 0 11 0 11
Correctly Classified N/A 38/200 (19 %) 198/200 (99 %) 98/200 (49 %) 46/200 (23 %) 198/200 (99 %) 38/200 (19 %) 196/200 (98 %)

Number of cases classified by various large language models and their variants into P-modifiers according to CAD-RADS 2.0. Each cell shows the count of cases assigned
to the respective P-modifier category, which ranges from 0 (no plaques) to P4 (extensive plaque burden).
Abbreviations: N/A, not applicable.

Table 4b
F1-Scores by Large Language Models in Plaque-burden classification.

P
Modifier

GPT–3.5 GPT–4o Llama 3 8b Q6 Llama 3 8b 64k Llama 3 70b Mistral 7b Mixtral

P0 0.314 [0.239, 0.389] 1.0 [1.0, 1.0] 0.423 [0.321, 0.511] 0.326 [0.249, 0.41] 1.0 [1.0, 1.0] 0.315 [0.233, 0.389] 0.961 [0.909, 1.0]
P1 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.614 [0.516, 0.707] 0.117 [0.025, 0.198] 1.0 [1.0, 1.0] 0.0 [0.0, 0.0] 0.995 [0.984, 1.0]
P2 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.6 [0.418, 0.746] 0.158 [0.0, 0.303] 1.0 [1.0, 1.0] 0.056 [0.0, 0.167] 0.986 [0.951, 1.0]
P3 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.273 [0.0, 0.519] 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.0 [0.0, 0.0] 0.973 [0.895, 1.0]
P4 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 1.0 [1.0, 1.0] 0.0 [0.0, 0.0] 1.0 [1.0, 1.0]

Note.–Data in square brackets represent the 95 % confidence interval range.
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3.2.3. Other modifiers (HRP, I, S, G and E)
For HRP identification, GPT-4o correctly classified 23 out of 23 cases

(100 %), while Llama 3 70B attributed correct scores to 21 out of 23 cases
(92.3 %). In contrast, Mistral 7B, Mistral 8 � 7B, and Llama 3 8B failed to
identify any HRP cases (0 %). For the I-modifier, GPT-4o achieved the
highestperformancewith17 truepositivesand0 falsenegatives,whileGPT-
3.5 had7 truepositives and9 false negatives. Llama370B identified15 true
326
positiveswith1 false negative. For bypass graft (G-modifier) detection, GPT-
3.5, GPT-4o, and Mistral 7B correctly identified all 5 cases (100 %), while
Mistral 8 � 7B identified 2 out of 5 cases (40 %). In terms of stent identi-
fication (S-modifier), GPT-3.5, GPT-4o, and Llama 3 70B correctly identified
6 out of 6 cases (100%), whereas Mixtral 8� 7B identified 2 out of 6 cases
(33.3 %). Notably, GPT-3.5 falsely assigned 23 cases as having stents.
Further details on model performance are shown in Table 6.



Fig. 3. Stacked bar chart comparing P-modifier assignments by different large
language models (GPT-3.5, GPT-4o, Llama 3 variants, and Mixtral 8 � 7B). Note
how GPT-3.5, Llama 3 8b, and Mistral 7b, wrongfully assumed no calcifications
or plaque for most cases.
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3.2.4. Accuracy for comprehensive CAD RADS 2.0 scoring including all
modifiers

GPT-4o achieved the highest accuracy by correctly attributing the
whole CAD-RADS 2.0 sequence in 186 out of 200 cases (93.0 %), closely
followed by Llama 3 70B that correctly classified 185 out of 200 cases
(92.5 %). Mixtral 8 � 7B demonstrated intermediate performance,
correctly classifying 156 out of 200 cases (78.0 %). GPT-3.5, Llama 3 8B,
Table 5
Inter-rater reliability for CAD-RADS and Plaque evaluation across large language mo

GPT 3.5 GPT
4o

Llama 3 8b Ll

CAD RADS score
Krippendorff's α 0.96 (0.93, 0.99) 0.98 (0.95, 1.00) 0.95 (0.88, 1.00) 0.
Cohen's κa 0.96 (0.92, 0.99) 0.99 (0.97, 1.00) 0.98 (0.95, 0.99) 0.
Plaque
Krippendorff's α �0.64 (�0.70, �0.57) 1.00 �0.09 (�0.24, 0.08) �
Cohen's κa 0.00 (�0.14, 0.14) 1.00 (1.00, 1.00) 0.18 (0.05, 0.32) 0.

Note.––Data in parenthesis represent the 95 % confidence interval range.
a The κ value for CAD-RADS was calculated for scores 0–2 versus �3, and for plaq

Table 6
Performance of Modifier assignment by Large Language Models.

Modifier Diagnostic Metric GPT
3.5

GPT
4o

Llama 3 8b

N True Positive Rates 5/13 (33.3 %) 13/13 (100 %) 1/13 (7.7 %
False
Positives (n)

2 1 0

HRP True Positive Rates 10/23 (43.5 %) 23/23 (100 %) 0/23 (0.0 %
False
Positives (n)

2 9 0

I þ or I � True Positive Rates 7/17 (41.2 %) 17/17 (100 %) 8/17 (47.1
False
Positives (n)

0 1 0

I- True Positive Rates 3/13 (23.1 %) 13/13 (100 %) 5/13 (38.5
False
Positives (n)

0 0 0

G True Positive Rates 5/5 (100 %) 5/5 (100 %) 0/5 (0.0 %
False
Positives (n)

0 0 0

S True Positive counts 6/6 (100 %) 6/6 (100 %) 0/6 (0.0 %
False
Positives (n)

23 0 0

E True Positive Rates 5/7 (71.4 %) 7/7 (100 %) 1/7 (14.3 %
False
Positives (n)

11 2 0

Abbreviations: N, non-diagnostic; HPR, High-Risk Plaque; I, Ischemia – with Iþ and I-
bypass graft; S, stent; E, exception.
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and Llama 3 8B with 64k context length each correctly classified only 32
out of 200 cases (16.0 %). A summary of the performance in each distinct
aspect of the CAD-RASD 2.0 classification is visualized in the radar plots
(Fig. 4).

4. Discussion

Our study aimed to evaluate the capability of state-of-the-art LLMs
with in-context learning to autonomously generate CAD-RADS 2.0 scores
from cardiac CT reports. The main findings of our study are as follows: i)
all LLMs performed reasonably well in categorizing stenosis according to
CAD-RADS categories, ii) for assignment of plaque burden and other
modifiers, such as stent assessment, a substantial difference was present,
and iii) upon assessing all modifiers and thus complete CAD-RADS 2.0
score, which would guide clinical decision making, only GPT-4o and
Llama 3 70B demonstrated excellent overall accuracy, achieving 93 %
and 92.5 %, respectively.

A recent study by Monroe et al. evaluated 30 cardiac imaging-related
questions across three separate chat sessions, with GPT-3.5 providing 61
% correct answers and GPT-4 75 %. However, misleading answers were
observed in 39 % of GPT-3.5's responses and 29 % of GPT-4's.26 On the
one hand, the increase of chatbot performance by inclusion of specialized
knowledge is known and significantly improved imaging recommenda-
tions of pretrained LLM.20 On the other hand, we observed substantially
better performance for the more recent LLMs. The progress form GPT-3.5
to GPT-4o in radiological tasks is well documented, with improved per-
formances in zero-shot extraction of oncological information from
dels.

ama 3 8b 64k Llama 3 70b Mistral
7b

Mixtral
8 � 7B

90 (0.81, 0.97) 1.00 (0.99, 1.00) 0.91 (0.83, 0.99) 0.97 (0.92, 1.00)
81 (0.73, 0.89) 1.00 0.96 (0.92, 0.99) 0.99 (0.97, 1.00)

0.53 (�0.62, �0.44) 1.00 �0.62 (�0.69, �0.54) 0.96 (0.90, 1.00)
02 (-0.12, 0.16) 1.00 (1.00, 1.00) 0.00 (-0.14, 0.14) 0.95 (0.91, 0.99)

ue as absence versus P1–P4.

Llama 3 8b 64K Llama 3 70b Mistral 7b Mixtral
8 � 7B

) 0/13 (0 %) 12/13 (92.3 %) 1/13 (7.7 %) 12/13 (92.3 %)
0 1 0 0

) 2/23 (8.7 %) 21/13 (92.3 %) 0/23 (0.0 %) 0/23 (0.0 %)
0 7 0 0

%) 1/17 (5.9 %) 15/17 (88.2 %) 12/17 (70.6 %) 15/17 (88.2 %)
0 1 2 0

%) 0/13 (0 %) 13/13 (100 %) 2/13 (15.4 %) 5/13 (38.5 %)
0 0 0 0

) 0/5 (0.0 %) 0/5 (0.0 %) 5/5 (100 %) 2/5 (40.0 %)
0 0 0 0

) 0/6 (0.0 %) 6/6 (100 %) 0/6 (100 %) 2/6 (33.3 %)
0 0 0 1

) 0/7 (0 %) 7/7 (100 %) 0/7 (0 %) 7/7 (100 %)
0 1 0 1

indicating presence, or absence of ischemia, respectively. Iþ/�, inconclusive; G,



Fig. 4. Radar Plot displaying the diagnostic performance of each large language model (LLM) in analyzing cardiac CT reports according to the updated CAD-RADS 2.0
classification. Each distinct category is displayed, as well as the entire scoring with correct sequence. A) displays all tested LLMs, B) displays the radar plot of GPT-3.5,
GPT-4o (Open.AI), C) of Llama 3 8b, Llama 3 8b with a 64k context length, and Llama 3 70b (Meta), and D) of Mistral 7b, Mixtral 8 � 7b (mistral.ai).
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clinical progress notes27 simplifying and translating radiology reports,28

or even in various radiological board-certification examinations.29,30 In a
comparison of commercial and open-source LLMs for labeling chest
radiograph reports, GPT-4o achieved slightly higher F1 scores than
open-source models few-shot prompting narrowed the performance gap,
with the ensemble model matching GPT-4o on the institutional dataset.31

These results are confirmatory to our study, as we observe only slight
differences, when few-shot prompting is performed.

We noted a markedly worse performance in assessment of P-modi-
fiers, especially for older LLMs. We attribute that to the fact that these
models with fixed information base possess an inherent inability to
incorporate recent research results, their inability to check for errors and
lack of design for specialized medical reasoning.32 On the other hand, the
partly vague nature of the CAD-RADS 2.0 guidelines with regard to
plaque quantification must be acknowledged, as here multiple possibil-
ities, such as a visual grading, semiquantitative approaches (SIS score)
and quantitative approaches involving the Agatston-Score are simulta-
neously proposed, and the most severe one should be reported.23 Here,
standardizing plaque quantification and reporting, with focusing on
plaque composition and integrating the SIS in a cardiac CT report would
be most favorable and necessary.33 This is crucial for facilitating
large-scale, structured reporting initiatives.34 With further refinement,
reporting standards and proposed by radiological guidelines could also
be tested for their applicability and potential for successful integration
into large scale structured reporting based on the performance of
task-specific LLMs.
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A major concern regarding the incorporation of LLMs into medical
decision making is their lack of trustworthiness, and aptitude to produce
vague or conjectural answers, commonly referred as ‘hallucinating’.35,36

This was particularly evident in our study with GPT-3.5, which incor-
rectly assumed the presence of stents (S-modifier) in 23 cases. In contrast,
more recent LLMs exhibited this behavior only to a minor extent. This is
confirmatory to a recent study analyzing simple CAD RADS 1.0 scores in
100 reports, where GPT-3.5 through hallucination even suggested
CAD-RADS 6 categories.37

While GPT.4o overall performed best, its cloud-based processing
hampers the integration into current clinical workflows due to data pri-
vacy concerns.35 The transmission of sensitive patient data with com-
mercial companies and upload of data to external servers, poses a
significant data security issue.38 In contrast, locally hosted models (such
as Llama 3 70B), which performed competitively well, allow for a more
secure solution by keeping data within on-premises servers within
enclosed institutional infrastructure. In general, open-source models,
which can be deployed locally or within private cloud environments,
reduce reliance on external servers, thus minimizing data exposure and
third-party involvement. However, local deployment requires robust
cybersecurity measures, as hospital and lab infrastructures may still be
vulnerable to attacks.39 Conversely, proprietary cloud-based models
often incorporate strong security frameworks, with some vendors offer-
ing HIPAA-compliant solutions. Recent advancements have introduced
frameworks like LocalAI (https://localai.io) and Ollama (https://o
llama.com), which enable institutions to deploy LLMs on-premises,

https://localai.io
https://ollama.com
https://ollama.com


P.G. Arnold et al. Journal of Cardiovascular Computed Tomography 19 (2025) 322–330
preserving data privacy while maintaining processing efficiency. LocalAI
functions as an OpenAI-compatible endpoint, allowing for seamless
integration of Hugging Face-hosted models (https://huggingface.co),
while Ollama provides a user-friendly deployment interface suited for
both research and clinical applications. However, efficient infer-
ence—especially for large models—requires high-performance GPUs
with substantial VRAM, highlighting the trade-off between computa-
tional demand and data security. These considerations are critical for
translating LLMs into real-world clinical workflows, where balancing
accuracy, security, and infrastructure feasibility will dictate their prac-
tical utility in radiological structured reporting tasks, such as automated
CAD-RADS 2.0 classification.

Our study has some limitations: Firstly, to ensure data privacy and
avoid ethical concerns, this study was conducted using synthetically
generated cardiac CT reports. Further research is needed to validate LLM
performance in reports from clinical routine. Furthermore, the reports
were written in German language and as some LLMs are primarily trained
for English language, it cannot be entirely excluded that our observed
performances represent an underestimation.40 This study focused on LLM
accuracy for CAD-RADS 2.0 and did not assess potential time savings.
Evaluating these aspects requires a dedicated study comparing LLM vs.
expert classifications in real-world settings. Lastly, while our study fo-
cuses on CCTA reports and CAD-RADS 2.0, the generalizability of these
models to other radiological structured reporting systems, such as
Lung-RADS or Breast Imaging-RADS, remains unclear.

5. Conclusion

To conclude, in-context learning-enabled LLMs, such as GPT-4o and
Llama 3 70B, accurately generate CAD-RADS 2.0 scores from cardiac CT
reports, potentially enhancing reporting consistency and efficiency.
Open-source models offer a secure alternative to cloud-based solutions,
addressing data privacy concerns while maintaining high performance.
Future validation on a diverse set of real-world data is essential for
clinical integration.
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