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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Increasing forest cover slow down and 
decrease the number of sites reached by 
pest.

• Sites have indirect connections to other 
sites by several alternative paths.

• Spatial networks predicted the most 
susceptible sites in the landscape.

• Forest cover control pest spreading 
through the agroecosystem.

• Spatial networks are a powerful predic-
tive tool to manage the spread of pests.

A R T I C L E  I N F O

Keywords:
Agro-ecosystems
Ecosystem
Forest remnants
Forest restoration
Moths
Network theory
Restoration ecology
Services
Tropical region

A B S T R A C T

Landscape homogenization, caused by monocultures, can provide optimal conditions for the spread of crop pests. 
Increasing habitat heterogeneity and complexity within landscapes could slow pest spread. A next step in un-
derstanding the role of habitat heterogeneity in affecting pest spread is to understand how landscape features 
directly and indirectly affect spatial infestation patterns. We developed a spatial network approach to explore 
how landscape complexity, generated by forest patch cover, affects the pest spread in agricultural landscapes. As 
a studied system, we used information on the spatial distribution of traps and dispersal distance of the sugarcane 
borer Diatraea saccharalis (Lepidoptera: Crambidae) from a sugarcane agro-ecosystem in Brazil. Network analysis 
reveals that modeling pest spread was an outcome of both direct and indirect pathways connecting sugarcane 
fields. Therefore, using only information about the direct and indirect pathways of the spatial network and the 
initial focus of infestation, we were able to predict with nearly 80% accuracy the most susceptible sites to pest 
spread in the simulated landscape. By adjusting parameters such as pest mobility, and interaction with landscape 
features, our model can simulate different agricultural systems and pest behaviors, showing that forest cover can 
be used to control pest occurrence and that direct and indirect pathways in spatial networks can be used as a 
predictive tool to manage the pest spread in agricultural landscapes.
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Introduction

Landscape simplification is a hallmark of the Anthropocene 
(Albuquerque and Gonçalves-Souza, 2022). Croplands and pastures now 
cover nearly half of the Earth’s habitable surface, a scenario primarily 
driven by agricultural intensification and land conversion due to food 
demand (FAO and ITPS, 2015). Landscape degradation due to food 
production negatively affects 3.2 billion people worldwide and costing 
~10% of the global gross product in reduced biodiversity and ecosystem 
services (United Nations, 2020). Paradoxically, the ecosystem services 
that are lost due to intensive agriculture, such as pest control, could 
increase yields and/or decrease farming costs (Paredes et al., 2021; 
Tamburini et al., 2020). Indeed, crop damage by pests costs to farmers a 
large amount of resources (Paredes et al., 2021). For example, a mini-
mum of US$70 billion is spent on pest control per year globally 
(Bradshaw et al., 2016). To increase food production, farming practices 
worldwide have intensified the use of pesticides (Rey Benayas et al., 
2008). Thus, a strategy that combines conservation efforts with food 
security is a global priority (Leclère et al., 2020). In this sense, a range of 
natural pest control strategies exist, which focus on controlling pests 
using natural enemies and disrupting their dispersal across the land-
scape (Rusch et al., 2016).

Natural pest control improves in landscapes with greater habitat 
diversity and structural complexity (Paredes et al., 2021; Martin et al., 
2019; Dainese et al., 2019). Landscape complexity is enhanced in 
landscapes where crops are interspersed with habitat patches (Boetzl 
et al., 2020). These patches may support larger and more resilient 
populations of natural enemies (Dainese et al., 2019; Boetzl et al., 2020; 
Bianchi et al., 2006; Chaplin-Kramer et al., 2011; González et al., 2020) 
which foster the ecosystem service of natural pest control 
(Montoya-Pfeiffer et al., 2020; Morandin et al., 2016; Silva et al., 2015; 
Aristizábal and Metzger, 2019; Barral et al., 2015). For instance, in 
sugarcane fields, natural vegetation patches support interactions be-
tween pests and their natural enemies, reducing pest populations 
(Rivera-Pedroza et al., 2019; Santos et al., 2018). The abundance of 
predatory functional groups among ants and birds was found to be lower 
within sugarcane fields compared to vegetation patches (Rivera-Pedroza 
et al., 2019). This has significant implications for the provision of 
essential predation services targeting key pests in sugarcane crops, such 
as Diatraea spp. (Rivera-Pedroza et al., 2019) Moreover, coffee planta-
tions in landscapes with greater vegetation cover or closer to forest 
edges, are less likely to have coffee borer (Hypothenemus hampei) infes-
tation due to pest control by ants (Aristizábal and Metzger, 2019). In 
addition to the number of habitat patches and coverage, their spatial 
arrangement in the landscape is important for the levels of pest control 
(Aristizábal and Metzger, 2019).

By 2050 it is estimated that the range size of invasive terrestrial in-
vertebrates, including crop pests, will increase on average by 18% 
(Bellard et al., 2013). Thus, it is important to develop modeling ap-
proaches to understand, manage and prevent pest dispersal across 
landscapes. Modelling approaches for pests have focused on population 
dynamics, interactions with natural enemies, invasion risks, and envi-
ronmental drivers affecting pest dispersal (Tonnang et al., 2017). A 
challenge, however, is to develop approaches to predict how landscape 
features affect pest spread. This challenge is critical in regions domi-
nated by monocultures, as pest dispersal is rapid but may be affected by 
small changes in landscape complexity. Indeed, habitat patches poten-
tially disrupt the pest spread: (i) as a physical barrier preventing the 
dispersal of some pest species across the landscape; and (ii) as a reservoir 
of predators and parasitoids that can depress pest populations.

Here, we developed an approach integrating network science with 
mathematical modelling to understand how landscape complexity may 
affect the pest spread across intensively managed agricultural land-
scapes. We parameterized our analyses with data from a large-scale 
sugarcane agroecosystem in São Paulo State, Brazil. Brazil is the 
largest net exporter of cane sugar and sugarcane fields in Brazil cover 

approximately 9.1 million hectares (Companhia Nacional de Abasteci-
mento, 2016). The sugarcane landscape is a mosaic composed of 
intensively cultivated sugarcane stands interspersed with patches of 
native and restored vegetation. In these landscapes, sugarcane plants are 
attacked by the sugarcane borer moth Diatraea saccharalis (Botelho and 
Macedo, 2002; Dinardo-Miranda et al., 2012a; Myers, 1932a) – species 
used as a showcase of the study. In a sugarcane landscape, Diatraea spp. 
may avoid forest patches as a strategy to protect themselves from natural 
predators (e.g., ants and birds) (Rivera-Pedroza et al., 2019). To un-
derstand how landscape features (e.g., native and restored forest cover) 
can influence the pest spread we explored: (1) what is the role of forest 
patches in the structure of the spatial network through which pests 
spread; (2) how the spatial network structure affect the pest spread 
dynamics; and (3) can direct and indirect pathways among sites in the 
spatial network be used to predict the most vulnerable sites to pest 
spread in the landscape. We hypothesized that the distribution of forest 
patches alters the structure of the spatial network by introducing or 
removing nodes and edges that change the connectivity and pathways 
available for pest movement, potentially creating new pathways or 
barriers for pest spread. Moreover, modifications in the spatial network 
structure due to the distribution of forest patches will result in altered 
pest spread dynamics, specifically by either slowing down the rate of 
spread through increased vegetation or facilitating spread through 
newly created pathways. Finally, the analysis of direct and indirect 
pathways within the spatial network will allow for the identification of 
sites that are most vulnerable to pest spread, with sites exhibiting high 
connectivity in the spatial network being more susceptible to becoming 
infested.

Materials and methods

Study region

The study landscape is in an ecoregion in northeastern São Paulo 
State, Brazil (20◦46’S, 47◦34’W) situated between two vegetation do-
mains: Atlantic Forest and Cerrado (savanna) (Fig. 1). The region is 
considered one of the most threatened in Brazil, with high biodiversity 
and endemism but also widespread anthropogenic pressures (Ribeiro 
et al., 2009). Non-crop vegetation accounts for 15% of land cover, and is 
restricted to small fragments of secondary forest vegetation in different 
stages of succession, and wooded savanna (cerradão) (Kronka et al., 
2005). Some of these habitats have been actively restored, as defined by 
the Native Vegetation Protection Law, which have been planted by 
landowners (Rodrigues et al., 2011; Sparovek et al., 2012). Patches of 
natural vegetation are interspersed in a matrix dominated by sugarcane 
(>90%), but with some Eucalyptus spp. and Pinus spp. plantations, fruit 
crops (Citrus spp.) and pasture (SigRH, 2016).

Sugarcane borer (Diatraea saccharalis)

The sugarcane borer Diatraea saccharalis (Fabricius, 1794) is a spe-
cies of moth in the family Crambidae. The original plant hosts of the 
larvae are likely aquatic and semi-aquatic grasses (Myers, 1932a; Myers, 
1932b), yet it has since colonized maize and sugarcane (Francischini 
et al., 2019) and is now considered one of the most important pests in 
sugarcane crops (Botelho and Macedo, 2002; Dinardo-Miranda et al., 
2012a; Myers, 1932a). Damage is caused by its larvae in the internodes 
of the culms which may lead to plant death, reducing total productivity 
(Botelho and Macedo, 2002; Dinardo-Miranda et al., 2012a; 2014). 
According to several studies, 1% of borer infestation on sugarcane crops 
causes ~1.5% reduction in stalk production, ~0.5% reduction in sugar 
production, and ~0.3% reduction in alcohol production 
(Dinardo-Miranda et al., 2012b; Arrigoni, 2002).

The entire larval lifecycle of the moth occurs in sugarcane. Eggs are 
oviposited in the leaves and larvae hatch 4–9 days later. The larvae 
initially feed on the leaves for 7–15 days, after which they descend into 
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the stem. After 40 days in the stem the larvae pupate, and then 
approximately 10 days post-pupation adults emerge, surviving for 
approximately 3–8 days (Sandoval and Senô, 2010; Holloway et al., 
1928). The whole cycle takes 44–120 days and 4–5 generations are 
completed per year (Sandoval and Senô, 2010). As adults, females 
remain relatively stationary (Pérez, 1964) and attract males by releasing 
pheromones that are carried on the wind. As such, male moths of 
D. saccharalis generally disperse more frequently than females, reaching 
a maximum distance of 800 m in flight (Caixeta, 2010). The adults have 
nocturnal habit and, in general, remain in the same area in low popu-
lation size as long as there is no competition for food. However, greater 
dispersion occurs under food restrictions (Mendez et al., 1978).

In Brazil, generalist ant species contribute to the natural biological 
control of eggs and early larval stages of D. saccharalis (Rossi and Fowler, 
2004; Oliveira et al., 2012a). However, the active management mainly 
focuses on biological control involving the larvae of the exotic parasit-
oids Cotesia flavipes (Hymenoptera: Braconidae) (Botelho and Macedo, 
2002) or Trichogramma galloi Zucchi (Hymenoptera: Trichogrammati-
dae) (Consoli et al., 2010), combined with chemical control (Erler, 
2010), which incur significant cost to the sugarcane companies (Rossi 
and Fowler, 2004).

Trap data

We compiled an annual georeferenced dataset (2019–2020) of 
D. saccharalis presence/absence across the study region (1,089 sites 
approximately 680 m apart) from pheromone trap data collected by a 
sugarcane company located at the northeastern of São Paulo state, 
Brazil. Briefly, delta traps with three virgin female moths (from labo-
ratory breeding populations) were placed on the leaves of sugarcane 
plants to attract adult males of D. saccharalis which are then trapped on 
the sticky floor surface. Traps were removed after three days and the 
occurrence of D. saccharalis was recorded (Oliveira et al., 2012b). This 
monitoring was completed three times a year and is used to inform 
management of D. saccharalis (Trematerra, 2012). We used data on 
forest cover, georeferenced trap records of the pest D. saccharalis, and 
simulated forest management scenarios to generate spatial networks in 
which we model the pest spread.

Forest cover
Forest cover data for the study region was obtained from the Bra-

zilian Annual Land Use and Land Cover Mapping Project (Collection 5 of 
the MapBiomas project, http://mapbiomas.org). Data provided by 
MapBiomas are produced from the pixel-per-pixel classification of 

Fig. 1. Study region and the georeferenced points of pheromone traps used to monitor the population of Diatraea saccharalis (Crambidae) in sugarcane fields across 
northeastern São Paulo State (grey), Brazil.
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Landsat 8 satellite images (30 × 30 m resolution) from 2019. From the 
MapBiomas data for the study site, we extracted shape files with the 
category “forest” and reprojected the coordinates from Latitude- 
Longitude to UTM, datum SIRGAS 2000. For the study, forest includes 
remaining forests, second growth forests and restored forests. We 
calculated the percentage of forest cover (natural or restored forests) 
across the landscape as the ratio of the area of forest polygons to the total 
area of the study region. We used the percentage forest cover of our 
study landscape from MapBiomas (16.7%) as a basis to simulate 
different scenarios. We assumed that forested habitats represent barriers 
to pest dispersal because (1) of increased abundance and diversity of 
natural enemies as they provide more ecological niches (Rivera-Pedroza 
et al., 2019; Santos et al., 2018) and (2) can be avoided by pests as a 

defensive strategy against natural predators for different species of 
Diatraea, such as ants and birds (Rivera-Pedroza et al., 2019). We 
simulated forest patch management by altering forest cover in the 
landscape by either expanding or contracting existing forest patch cover 
(Fig. 2). We incrementally change the area of each forest polygon in all 
dimensions. To do so, we used the st_buffer function from the sf package 
(Pebesma and Bivand, 2023) to create buffers around each forest poly-
gon, generating new polygons that expanded each forest patch by a 
specified radius. We applied buffers that progressively expanded or 
contracted the forest patch polygons in 11 km increments, resulting in 
50 different forest cover scenarios. This increment of 11 km was chosen 
so that the scenarios varied from the baseline of 16.7% of forest cover 
(the empirical scenario) to a minimum of 2.59% of forest cover and to a 

Fig. 2. Scenarios illustrating the complexity of the landscape by varying the natural and restored forest cover, northeastern São Paulo state, Brazil ((a)- empirical 
landscape with 16,7% of forest cover, (b) – simulated deforestation with 6,3% of forest cover and (c) – simulated reforestation with 36,8% of forest cover). Forest 
cover is depicted in green and sample points (trap locations and nodes in the spatial network) in red. Forest cover data was provided by MapBiomas, Collection 5.
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maximum of 98.8%. (Fig. 2).

Spatial network approach

We build spatial networks based on landscape data using the 
following algorithm: (1) Each sample point (i.e., monitoring trap) is 
depicted as a node and we directly connected all nodes to one another 
across the landscape, as would be the case if there were no barriers to 
pest dispersal, i.e., a landscape with no natural or restored forest patches 
(Fig. 3a). (2) We assigned to each link a weight, dij. If there were no 
patches of natural or restored forests, dij is the Euclidean distance be-
tween two nodes The Euclidean distance was computed after rasterizing 
the shape files of the empirical landscape into a 500 × 500 grid. (3) If, 
however, there were patches of vegetation (natural and restored forests) 
between two nodes, we assumed they prevent direct dispersal. In this 
instance, we computed the shortest direct distance between the two 
nodes assuming movement around the habitat patch perimeter (Fig. 3b). 
To compute the distance between two nodes assuming movement 
around the habitat we first rasterized the shape files of the landscape 
into a 500 × 500 grid. Next, we built a transition matrix assuming that 
each point in the grid can access its 8 nearest neighbors. In this transition 
matrix the cost of moving from one point to the other corresponds to the 
physical distance between points. However, we set an infinite cost for 
any movement passing through a terrain contained within a polygon of 
natural or restored forest patch, turning these patches into impassable 
terrains. Finally, we used the function costDistance of the R package 
gdistance to compute the least-cost path between points whose co-
ordinates in the 500 × 500 grid matched the spatial location of the 
monitoring traps of the agricultural system. (4) If a node was completely 
surrounded by vegetation, then it is isolated from all other nodes in the 
network with the exception of those within the same vegetation 
boundaries (Fig. 3c). The spatial networks produced by this approach 
can then be used in subsequent modelling to understand how manage-
ment, restoration and conservation can influence the movement and 
pest spread across a landscape.

Spatial network construction and characterisation
We used the location data from D. saccharalis monitoring traps (see SI 

Traps dataset) to construct a weighted spatial network for each forest 
cover scenario. These networks represent the potential pathways of pest 
dispersal (see Spatial network approach). In the spatial network, each 
sampled point (trap location) is depicted as a node and two nodes are 
connected to each other by a link that describes the potential for 
dispersal of D. saccharalis between both points. Each forest cover sce-
nario resulted in a different spatial network configuration affecting pest 
spread.

To characterize the structure of spatial networks we used two 
network metrics (Costa et al., 2007) that are associated with how 
quickly a pest can disperse from a node to another: (1) weighted average 
shortest path length (in km) among nodes. Averaging all shortest paths 
among nodes allowed us to quantify how varying the complexity of the 
landscape affects the average distance that a pest needs to travel to reach 
other nodes in the landscape. We computed the weighted average 
shortest path length as the harmonic mean of the shortest paths in the 
spatial network (Costa et al., 2007): 

h =

[
1

N(N − 1)
∑N

i=1

∑N

j=1j∕=i

1
dij

]− 1

(1) 

N corresponds to the total number of nodes in the network and dij 

corresponds to the weighted shortest path between node i and j (i.e., the 
least-cost path between the two nodes in the landscape). In Eq. (1), h can 
also be interpreted as the inverse of the average communication effi-
ciency in a network (Latora and Marchiori, 2001). We then computed 
the number of components, in which a component is a network subset 
containing all nodes that are directly or indirectly connected to each 
other. These components emerge in our spatial networks when vegeta-
tion patches surround a subset of nodes such that they are connected to 
each other but isolated from all other nodes in the landscape.

The number of components in the spatial networks were identified 
with the ‘igraph’ package in R v 4.0.0 using the function components (R 
Development Core Team R, 2021).

Fig. 3. Conceptual diagram representing the spatial network in three hypothetical landscapes varying in complexity: (a) no-forest – network totally connected. A 
subset of all potential connections is represented, (b) existing forest cover – network connected but varying the original distance among nodes and (c) enhanced forest 
cover – network disconnected. In the diagram we assumed one starting node for moth spreading. The thickness of the path of moth spreading represents the effect of 
the distance among nodes.
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Modelling infestation dynamics
We used a discrete time, spatially explicit, stochastic model in 

conjunction with the simulated spatial networks to understand how 
landscape complexity affects the spread of D. saccharalis across the 
scenarios. Our model builds upon previous work of disease spread in 
networks that belong to the family of spatially explicit SI (susceptible- 
infected) models (Allen-Perkins and Estrada, 2019; Gómez et al., 2010). 
In the model, we assumed that each node i in the spatial networks is 
either in an infested (st

i = 1) or uninfested state (st
i = 0) and that the pest 

spread through the links among nodes. These links, therefore, create 
pathways through which pests can disperse to other nodes. We assumed 
that the probability of a pest to spread from a node j to a node i (pij) 
depends on the state of infestation of node j (sj) and two other 
components.

The first component (fij) is the probability that the pest follows a 
given path in the spatial network. Depending on the structure of the 
spatial network node i can be connected to few or many other j nodes. 
We assumed that the probability that the pest follows the path that 
connects nodes i and j is proportional to the total number of connections 
of i, as follows: 

fij =
aij

∑N
k=1,k∕=i aik

(2) 

where aij(aik) = 1 if nodes i and j(k) are connected in the spatial network 
and aij(aik) = 0 otherwise. This is equivalent to assuming that the pest 
uniformly spreads through each pathway in the network and that there 
is one contact attempt per unit time.

The second component is the probability that the pest actually rea-
ches node i from node j, rij. We assumed that this probability depends on 
the dispersal capabilities of the pest and decays with the geographical 
distance between nodes i and j: 

rij = e
− 1
β (dij) (3) 

where dij corresponds to the distance that separates nodes i and j in the 
landscape, and β is the distance that the pest can cover in the landscape 
so that if dij is very high compared to β, then the probability that the pest 
actually reaches node i is extremely low. In the model, we parameterized 
β with the maximum flight distance recorded for D. saccharalis (Urban 
and Keitt, 2001). Under these assumptions there are two ways that a pest 
can infest a node j from node i. First, if the distance between i and j is 
short enough relative to the dispersal ability of the pest (β), then the pest 
can infest node j without passing through any other intermediate nodes. 
Second, when two nodes are too distant from each other relative to the 
dispersal ability of the pest, it can only infest node i when it first infests 
the intermediate nodes between i and j.

Combining the two components we have the probability that node i is 
infested by a giving node j from one time step to the other: 

pt
ij =

aij
∑N

k=1,k∕=i aik
e
− 1
β (dij)st

j (4) 

where st
j = 1 if node j is infested at time t and st

j = 0 otherwise. Under 
these assumptions, node i is infested by at least one other node j in the 
spatial network from one time step to another with total probability: 

P
(
St+1

i = 1
⃒
⃒St

i = 0
)
= 1 −

∏N

j=1,j∕=i
(1 − pt

ij) (5) 

where N is the total number of nodes in the spatial network and 
∏N

j=1,j∕=i 
(

1 − pt
ij

)
is the probability of node i not being infected by any other node 

j at time t. Each time step, therefore, corresponds to an event of infes-
tation in which any uninfested node can become infested with proba-
bility given by Eq. (5).

We ran 2,000 numerical simulations of the model for each scenario of 

forest cover (total of 104 simulations) in the Julia programming lan-
guage v 1.5.3 (Bezanson et al., 2017). Each simulation began with one 
random node being assigned as the initial focus of infestation (Electronic 
Supplementary Material, Fig. S1); however, we also tested the robust-
ness of this assumption through a set of simulations in which there were 
multiple foci of infestation (Electronic Supplementary Material, Fig. S2). 
Then, we iterated the model for 30,000-time steps. Each time step cor-
responds to an event of infestation, i.e., an event in which adult male 
moths disperse across the landscape. During each simulation we recor-
ded the time step at which each node was infested and at the end of the 
simulation we recorded the proportion of infested nodes. Since in our 
model nodes are not able to get uninfected, all nodes that can be reached 
by at least one pathway from the initial focus of infestation eventually 
get infected given enough time steps. The number of time steps used was 
enough for approximately 50% of the nodes to get infected in the null 
scenario, in which there is no forest cover. Thus, we used this number of 
time steps as a benchmark to understand how increasing forest cover 
could slow down the spread of the pest or prevent nodes from being 
reached from the initial focus of infestation.

Predicting infestation trajectories
In networks, the direct pathways of one node can cascade to other 

nodes via indirect pathways. For instance, in our model node j can 
directly infest node i which, in turn, can infest another node k. These 
cascades across indirect pathways are a ubiquitous feature of networks 
that shape several ecological processes, from coevolution to extinction 
cascades (Guimarães et al., 2017; Pires et al., 2020). Thus, we tested 
whether direct and indirect pathways among nodes in each spatial 
network can be used to predict the trajectory of the infestation in our 
numerical simulations.

First, we computed a matrix of direct pathways (P) whose elements 
(pij) represent the probability that a given node i is directly infected by 
node j (Eq. (5)). From this matrix we extracted the weight of the direct 
pathways of the node initially assigned as the focus of infestation, k, in 
each simulation to each node i in the network, pik (herein referred as Pin

i ). 
Then, we used the P-matrix to compute a matrix of both, direct and 
indirect pathway, T-matrix. In this matrix the entry Tij contain infor-
mation about the pathways of a given node j to another node i not only 
directly, but also indirectly through all other intermediate nodes. The T- 
matrix can be obtained by the powers of matrix P. For instance, if pij

(2) is 
an element of matrix P², pij

(2) represents the pathways connecting the 
node j to node i through pathways of length 2, e.g., through an inter-
mediate node. The sum of the powers of matrix P, representing all 
possible pathways of all lengths l, 

∑∞
l=1 Pl, converges to a matrix T =

(I − P)− 1, in which I is the identity matrix (Guimarães et al., 2017; Katz, 
1953) describing the sum of direct and indirect pathways that each node 
has on each other. From the T-matrices calculated for each simulation 
we extracted the total direct and indirect pathways that the initial focus 
of infestation k exerted in each node i in the network, Tik (herein referred 
as Tin

i ).
Next, we used Random Forests to evaluate the efficacy of direct (Pin

i ) 
and indirect (Tin

i ) effects in predicting the time step at which a given 
node was infested in our numerical simulations (details in Box 1).

This approach allowed us to test and measure the variation in the 
efficacy of models fitted to a wide range of initial simulation conditions. 
Of all the possible initial conditions (i.e., patch as initial focus of infes-
tation), our approach covered at least 97% of all possibilities (sample 
coverage of at least 1061 of 1089 points as initial focus in each scenario 
of forest cover). We evaluated the efficacy of the predictions of each 
model through the coefficient of determination (R2) between model 
predictions and the actual values of the response variable in the test 
data. To determine the importance of each predictor variable to the 
efficacy of model predictions, we used the percentage increase in mean 
square error when the model is trained with a randomly permuted 
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version of the predictor variable (Cutler et al., 2007). The models were 
fitted in R v 4.0.0 (R Development Core Team R, 2021) with the ‘ran-
domForest’ package using the function randomForest() and for all pa-
rameters was used the default, except for ntree = 500 (Breiman et al., 
2018).

Results

Average shortest path length and the number of components in the 
spatial network increased with forest cover (Fig. 4). Our analysis 
revealed that as the percentage of forest cover on the landscape 
increased, the values of the metrics we measured did not increase line-
arly. Instead, the metric values exhibited an exponential relationship. 
This means that small increases in forest cover at higher percentages 

resulted in disproportionately large increases in the values of spatial 
network metrics, highlighting the exponential nature of the relationship. 
This suggests that high levels of forest cover have a greater impact on 
spatial network metrics, more so than lower levels of forest cover. For 
instance, increasing the percentage forest cover from the 16.7% to a 
scenario with 25.8% resulted in an increase in the average shortest path 
length from 14.31 to 14.72 km. In contrast, when percentage forest 
cover increases from a scenario with 25.8 to 49.5%, and from 49.5 to 
77.11%, the average shortest distance increases from 14.72 to 16.40 km 
and from 16.40 to 24.04 km, respectively (Fig. 4a). Similarly, the 
number of components in the spatial network of the agro-ecosystem 
increases from a single connected component at 16.7% forest cover to 
2 different components at 25.8% of forest cover. However, the number 
of components increases from 2 to 10 and from 10 to 81 when land cover 

Box 1
Random forests: description and analysis procedure.

Random Forests are ensemble machine learning algorithms that use bootstrap aggregations of decision trees (Cutler et al., 2007). The algorithm 
constructs and averages the models of N decision trees which are grown by resampling the data with replacement. Random forests are unaffected 
by the scale and distributions of both response and predictor variables, and have been used as a reliable predictive tool for answering ecological 
questions (Cutler et al., 2007). To fit the Random Forest model, we performed four main steps: (1) We randomly selected 50 simulations from the 
2,000 simulations ran for each forest cover scenario (see Numerical simulations). (2) We merged the results of these 50 simulations into a single 
dataset containing simulations in which each of the 1089 points were infested at a different time and there was a different initial focus of 
infestation. (3) We randomly split this dataset into a training (70% of the dataset) and a test set (the remaining 30% of the dataset). Using the 
training data, we fitted a Random Forest model with 500 decision trees in which we used the time at which point i was infested as response 
variable and Pin

i , Tin
i , and the ID of the initial focus of infestation as predictors. (4) We repeated this procedure 100 times for the results of each 

different scenario of forest cover (total of 5000 Random Forest models).

Fig. 4. Forest cover in the landscape affects (a) the average shortest path distance among points (in km2); (b) the number of isolated components in agro-ecosystems 
spatial networks; (c) the mean time of infestation and (d) the proportion of infested nodes. The dashed line indicates the empirical scenario with 16.70% of per-
centage of vegetation cover. In (b)–(c) points correspond to the average values of the 2000 simulations ran for each scenario.
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increases from 25.8 to 49.5% and from 49.5 to 77.11%, respectively 
(Fig. 4b). Therefore, increasing the percentage forest cover can sub-
stantially increase the distances that pests need to cover to disperse to 
other points and the number of locations that pests cannot reach in agro- 
ecosystems, as illustrated by breaking the landscape in two components 
at 25.8% of cover.

Through numerical simulations of a stochastic model of pest infes-
tation we found that increasing the percentage forest cover of the 
landscape slowed down the spread of pests and decreased the number of 
nodes in the agro-ecosystem reached by the pest infestation (Fig. 4). This 
effect is weaker in increasing the mean time at which nodes were 
infested (Fig. 4c) and stronger in decreasing the proportion of infested 
nodes at the end of simulations (Fig. 4d). For instance, almost doubling 
the percentage land cover, from 16.70 to 34.43%, meant that the mean 
time of infestation weakly increased from 23970 ± 6 (mean ± SE) time 
steps to 26619 ± 5, whereas the proportion of infested nodes decreased 
by 40%, from 0.40 ± 0.01 to 0.24 ± 0.01. Similarly, almost doubling the 
forest cover again from 34.43 to 67.26% increases the mean time of 
infestation to 28995 ± 3, whereas decreases the proportion of infested 
nodes to 0.06 ± 0.01. Therefore, when the percentage of forest cover in 
the landscape increases, pest infestations slow down and reach a smaller 
number of nodes. Further analysis showed that the standard deviation of 
the times of infestation also increased with forest cover (Electronic 
Supplementary Material, Fig. S3). Such effect occurs because an 
increased forest cover prevents multiple nodes from becoming infected 
at short time intervals. These results hold even if we vary the dispersal 
capabilities of the pest and the permeability of natural and restored 
forests (Electronic Supplementary Material, Figs. S4, S5).

Random forests models predicted the trajectory of the infestation 
with up to 86.61% precision (Fig. 5a). Predictions were more precise 
when forest cover was less than 25% (78.67 ± 2.50% of model preci-
sion), while the least precise predictions occurred when forest cover was 
in between 50 and 75% (67.17 ± 3.82% of model precision). On average 
across all scenarios, direct and indirect pathways from the initial focus of 
infestation in the spatial network predicted the time of infestation of 
nodes with 75.85 ± 6.61% accuracy (mean ± SD). Thus, our approach 
predicts the trajectory of the infestation with high precision, even using 

a minimal set of variables (i.e., direct pathways, indirect pathways, and 
initial focus of infestation). However, from our predictor variables, Tin

i 
(total direct and indirect pathways to node i) disproportionally 
contributed to these levels of model accuracy. Random forest models 
fitted with randomly permuted versions of Tin

i resulted in a higher in-
crease in mean square error when compared to Pin

i and the ID of the 
initial focus of infestation. Such comparisons were made to random 
permutations of each of the variables. Across all scenarios, randomly 
permuted versions of Tin

i increased the model mean square error by 
amounts more than 5 times higher than Pin

i and the ID of the initial focus 
of infestation (Fig. 5b; 4.79 ± 2.15% increase in mean square error for 
Tin

i compared to 0.93 ± 0.27% and 0.91 ± 0.26 for Pin
i and the ID of the 

initial focus of infestation, respectively). Indirect pathways were thus 
more important than the direct pathways and the initial focus of the 
infestation. That means that pathways not interacting directly can 
strongly influence the trajectory of pest infestations in our system. 
Therefore, by considering both direct and indirect pathways through the 
spatial networks, our model can predict with an accuracy of nearly 80% 
the most susceptible points to pest infestations.

Discussion

Combining spatial network approaches, mathematical and statistical 
modelling and species observation data provides an opportunity to un-
derstand ecological processes at the landscape scale. Here, we showed 
the utility of a spatial network approach with empirical data from a 
sugarcane agro-ecosystem and explored how pest dispersal across an 
agro-ecosystem can be influenced by landscape complexity. We found 
that the cover of natural and restored forests can reduce the spread of 
pests across simulated landscapes. Although vegetation is identified as a 
fundamental element of the landscape related to the pest control in agro- 
ecosystems (Morandin et al., 2016; Aristizábal and Metzger, 2019; 
Barral et al., 2015), the effects of forest cover have seldom been 
explicitly linked to the pattern of pest infestation.

In this study, increasing the cover of natural and restored forests in 
simulations of pest spreading led to increases in the mean time of 

Fig. 5. Direct and indirect effects predict the trajectory of pest infestations in agro-ecosystems. (a) Coefficient of determination between Random forests predictions 
and actual values of the time step at which points were infested. The different categories in the x-axis include the scenarios within the intervals of forest covers 
depicted in these categories. (b) Increase in model mean square error when fit with a randomly permuted version of the corresponding predictor variable. Points 
represents the results of 100 Random forests fit for random subsets of 50 simulations of pest infestation for each scenario of forest cover in the landscape (total of 
5000 Random forests models).
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infestation and decreases in the proportion of infested nodes, even 
simulating different permeabilities of forests in the landscape (Elec-
tronic Supplementary Material, Fig. S3). These findings show that var-
iations on forest cover can be spatially important for pest dynamics. 
Several studies have previously shown that simplified landscapes (i.e., 
monocultures) allow specialist pest species to freely disperse, whereas 
landscapes composed by mosaics of natural and semi-natural habitats 
amid the crop (i.e., complex landscape) hamper population growth and 
spread (Paredes et al., 2021; Medeiros et al., 2019). Complexity in 
agro-ecosystems more generally is associated with higher densities of 
natural enemies and lower pest density (Paredes et al., 2021; Martin 
et al., 2019; Aristizábal and Metzger, 2019; Breiman et al., 2018; 
Medeiros et al., 2019; Andow, 1983; Meehan et al., 2011). For example, 
ant species colonizing forests are recognized as important natural en-
emies of pests in sugarcane crops contributing to population control 
(Santos et al., 2018). Studies have empirically shown that 30–40% of the 
forest cover should be preserved or restored in the landscape to maintain 
forest-dwelling populations of natural enemies (e.g., birds, frogs, 
mammals and ants) (Andren, 1994; Arroyo-Rodríguez et al., 2020; 
Banks-Leite et al., 2021) and a balance between the delivery of goods 
and services to humans and the protection of biodiversity and wildlife 
(Arroyo-Rodríguez et al., 2020). Nevertheless, the current levels of 
restoration of natural and semi-natural habitats may not be enough for 
the enhancement and persistence of biodiversity and generation of 
ecosystem services beneficial for agriculture (Boscolo and Metzger, 
2011; Rother et al., 2018). Our models suggest that further increasing 
forest coverage is required to effectively arrest the spread of pests. For 
example, increasing current forest coverage by at least 9% can signifi-
cantly increase the distances that pests need to travel to disperse to other 
points in the agroecosystem, which could help reduce the pest spread. 
While active forest restoration has already been implemented in the 
landscape we studied (Rother et al., 2019), our findings indicate that 
additional forest restoration could help avoid the high levels of pest 
infestation and crop loss observed in more simplified landscapes. This 
would also potentially reduce the economic cost of pest control (Meehan 
et al., 2011). More research is however necessary to validate these 
findings and to explore the integration of natural enemies’ habitats into 
pest management strategies.

We also found that the effect of forest cover increases in slowing 
down the spread of pests can be viewed as changes in the spatial network 
in the agro-ecosystem in which a pest is spreading. In diversified land-
scapes, the distance among suitable crop stands and the number of 
habitat boundaries between them is high relative to simplified land-
scapes. As such, complex agro-ecosystems represent a challenge for pests 
to locate host plants and survive (Bonte et al., 2012). Some studies argue 
that diversification in agricultural landscapes can mitigate the loss of 
biodiversity, promote ecosystem services and reduce the costs of pest 
control (Paredes et al., 2021; Tamburini et al., 2020). For instance, 
forests embedded in the agro-ecosystems can increase landscape 
permeability and offer complementary resources to forest-dependent 
species, which in turn can provide ecosystem services to agriculture 
(e.g., pest control and pollination) (Grass et al., 2019; Mendenhall et al., 
2016). It remains, however, a challenge to find the optimal level of forest 
cover that balances ecological and economical values to design more 
biodiversity-friendly landscapes (i.e., landscapes containing stepping 
stones, isolated trees, strips, or even hedgerows) (Barbosa et al., 2017).

By understanding the direct and indirect paths connecting nodes we 
show that it is possible to predict the trajectory of pest infestation across 
spatial networks connecting the landscape. Our spatial network 
approach can: (i) contribute to the understanding of the spread of pests 
and the potential effects of landscape simplification (e.g., low forest 
cover and connectivity) on the patterns of pest infestations; and (ii) be 
used to predict the locations in the landscape that are most susceptible 
or at risk from pest infestation. Identifying and monitoring the sites that 
are likely to be infested could provide an early warning of pest occur-
rence. Furthermore, early protective measures in these same sites would 

minimize the spread of the pest (Pires et al., 2017). Finally, this 
framework could be extended to quantify other aspects of the spatial 
network that would be pivotal to pest spreading, such as connections 
between otherwise isolated sections of the network.

In the context of integrated pest management, the approach intro-
duced here is particularly attractive as it requires only information on 
the distance among points and the dispersal capabilities of organisms. 
Despite its limitations, which include oversimplification of biological 
factors, data dependency, scale sensitivity, and challenges in capturing 
the dynamic and heterogeneous nature of agricultural systems, we 
envision that these methods can be further developed. This development 
aims to enhance our understanding of the spread of various crop pests in 
diverse landscape contexts worldwide. Moreover, it seeks to explore 
how ecosystem services, facilitated by a variety of species interactions 
within ecological networks, can be effectively leveraged (Miller et al., 
2021). In a practical view, forest cover (whatever the mechanism by 
which it impedes dispersal) can effectively be used to control pest 
occurrence in the network, providing a real tool that managers can use. 
By enhancing biodiversity, creating barriers to pest movement, sup-
porting natural predators, and increasing ecosystem resilience, habitat 
restoration in agroecosystems provides a multifaceted approach to 
managing pests sustainably. As climate change continues to alter pest 
dynamics, the importance of healthy, restored ecosystems cannot be 
overstated. Given the demand for food production and the need to 
conserve ecosystems, such an approach has the potential tool to: (i) find 
a balance among yield productivity, cost of pest control, forest conser-
vation and ecosystem services provision in agro-ecosystems; (ii) provide 
scientific evidence to guide conservation and restoration plans; and (iii) 
contribute to public policy discussions in the field of sustainable 
agriculture.
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biológico no Brasil: parasitóides e predadores. Manole, São Paulo, pp. 409–425.

Bradshaw, C.J.A., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., Barbet- 
Massin, M., Salles, J.M., Simard, F., Courchamp, F., 2016. Massive yet grossly 
underestimated global costs of invasive insects. Nat. Commun. 7, 12986. https://doi. 
org/10.1038/ncomms12986.

Breiman, L., Cutler, A., Liaw, A., Wiener, M., 2018. Breiman and cutler’s random forests 
for classification and regression. Package ‘randomForest’ 29.

Caixeta, D.F., 2010. Dispersão de Machos de Diatraea saccharalis (Fabricius) 
(Leipdoptera: Crambidae) Em Cana-de-Açúcar.

Chaplin-Kramer, R., O’Rourke, M.E., Blitzer, E.J., Kremen, C., 2011. A meta-analysis of 
crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 
922–932. https://doi.org/10.1111/j.1461-0248.2011.01642.x.

Companhia Nacional de Abastecimento, 2016. Cana-de- Açúcar.
Consoli, F.L., Parra, J.R., Zucchi, R.A., 2010. In: Consoli, F.L., Parra, J.R., Zucchi, R.A. 

(Eds.), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. Springer 
Science & Business Media.

Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V., 2007. Characterization of 
complex networks: a survey of measurements. Adv. Phys. 56, 167–242. https://doi. 
org/10.1080/00018730601170527.

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 
2007. Random forests for classification in ecology. Ecology 88, 2783–2792. https:// 
doi.org/10.1890/07-0539.1.

Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., 
Carvalheiro, L.G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L.A., et al., 2019. 
A global synthesis reveals biodiversity-mediated benefits for crop production. 
Science Advances 5, eaax0121. https://doi.org/10.1126/sciadv.aax0121.

Dinardo-Miranda, L.L., dos Anjos, I.A., da Costa, V.P., Fracasso, J.V., 2012a. Resistance 
of sugarcane cultivars to Diatraea saccharalis. Pesqui. Agropecu. Bras. 47, 1–7. 
https://doi.org/10.1590/S0100-204X2012000100001.

Dinardo-Miranda, L.L., Fracasso, J.V., dos Anjos, I.A., Garcia, J., da Costa, V.P., 2012b. 
Influência Da Infestação de Diatraea saccharalis (Fabr.) Sobre Parâmetros 
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Europe PMC Funders Group, Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., 
Bakkenes, M., Courchamp, F., 2013. Will climate change promote future invasions? 
Glob. Change Biol. 19, 3740–3748. https://doi.org/10.1111/gcb.12344.Will.

FAO and ITPS, 2015. Status of the World’S Soil Resources (SWSR) – Main Report. Food 
and Agriculture Organization of the United Nations and Intergovernmental 
Technical Panel on Soils. Rome, Italy. 

Francischini, F.J.B., Cordeiro, E.M.G., Campos, J.B.de, Alves-Pereira, A., Viana, J.P.G., 
Wu, X., Wei, W., Brown, P., Joyce, A., Murua, G., et al., 2019. Diatraea saccharalis 
history of colonization in the Americas. The case for human-mediated dispersal. 
PLoS One 14 (7), e0220031. https://doi.org/10.1371/journal.pone.0220031.
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