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Abstract
Building management systems (BMSs) are increasingly integrating advanced machine 
learning (ML) and artificial intelligence (AI) capabilities to enhance operational efficiency 
and responsiveness. The transformation of BMSs involves a wide range of environmental, 
behavioural, economical and technical factors as well as optimum performance consider-
ations in order to reach energy efficiency and for long term sustainability. Existing BMSs 
can only provide local adaptability by creating and managing information for a built asset 
lacking the capability to learn and adapt based on performance objectives. This research 
provides a comprehensive review of ML techniques in BMSs, with particular emphasis 
and demonstration of fast machine learning (FastML) techniques in a real-case study ap-
plication. The study reviews optimization methods for ML algorithms, focusing on Long 
Short-Term Memory (LSTM) networks for energy consumption forecasting and exploring 
solutions that leverage hardware accelerators for low-latency and high-throughput process-
ing. The High-Level Synthesis for Machine Learning (HLS4ML) framework facilitates 
deployment of fast machine learning models with BMSs, achieving substantial gains in 
hardware efficiency and inference speed in resource-constrained environments. Findings 
reveal that HLS4ML-optimized models maintain accuracy while offering computational 
efficiency through techniques like pruning and quantization, supporting real-time BMS ap-
plications. This research significantly contributes to the development of intelligent BMSs 
by integrating ML algorithms with advanced hardware solutions, ultimately improving 
energy management, occupant comfort, and safety in modern buildings.

Keywords  Fast machine learning · Building management systems · Energy forecasting · 
High level specification languages · Building automation

Abbreviations
ANN	 �Artificial neural network
AI	 �Artificial intelligence
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BMS	 �Building management system
BEMS	 �Building energy management system
BAS	 �Building automation system
BIM	 �Building information modeling
CNN	 �Convolutional neural network
FL	 �Federated learning
HFL	 �Horizontal federated learning
VFL	 �Vertical federated learning
FDD	 �Fault detection and diagnosis
FPGA	 �Field-programmable gate array
HLS4ML	 �High-level synthesis for machine learning
HVAC	 �Heating, ventilation, and air conditioning
IoT	 �Internet of Things
LLM	 �Large language model
LSTM	 �Long short-term memory
ML	 �Machine learning
MPC	 �Model predictive control
PCA	 �Principal component analysis
RL	 �Reinforcement learning
RNN	 �Recurrent neural network
SSL	 �Semi-supervised learning
TL	 �Transfer learning
NILM	 �Non-intrusive load monitoring
LDA	 �Linear discriminant analysis
t-SNE	 �t-Stochastic neighborhood embedding
SOM	 �Self-organizing maps
GAs	 �Genetic algorithms
ICA	 �Independent component analysis
GMM	 �Gaussian mixture model
IAQ	 �Indoor air quality
MLP	 �Multilayer perceptron
NAS	 �Neural architecture search
LR	 �Logistic regression
SVR	 �Support vector regression
AR	 �Auto-regressive
RF	 �Random Forest
XGBoost	 �Extreme gradient boosting
AdaBoost	 �Adaptive boosting
ARMA	 �Auto-regressive moving average
RT	 �Real-time
DQN	 �Deep Q-network
DDQN	 �Double deep Q-Network
SARSA	 �State-Action-Reward-State-Action
AR	 �Auto-regressive
GA	 �Genetic algorithm
TLD	 �Transfer learning domain

1 3

  211   Page 2 of 48



Fast machine learning for building management systems

RCM	 �Resource consumption model
TL-CNN	 �Transfer learning convolutional neural network
TL-LSTM	 �Transfer learning long short-term memory
LNCS	 �Springer Lecture Notes in Computer Science
Q-Learning	 �Quality learning algorithm
DT-MPC	 �Decision tree model predictive control
SBNMF	 �Semi-binary nonnegative matrix factorization
SOM	 �Self-organizing maps

1  Introduction

ML for BMSs represents a transformative advancement in facility management, simplify-
ing the operation, maintenance, and optimization of building systems. Building Automation 
Systems (BASs) regulate critical infrastructure aspects such as heating, ventilation, and air 
conditioning (HVAC), lighting, and energy consumption in buildings (Abdullah et al. 2022). 
Recent advancements in sensing and Internet of Things (IoT) technologies have facilitated 
data-driven approaches in BMSs, significantly enhancing efficiency, cost-effectiveness, and 
occupant comfort (Finck et  al. 2018). To enhance responsiveness in dynamic built envi-
ronments, traditional ML techniques in BMSs must be complemented with software and 
hardware accelerators. Historically, BMSs relied on rule-based control methods, limiting 
their ability to adapt effectively to dynamic factors such as fluctuating energy tariffs and 
changing meteorological conditions (Finck et  al. 2018). The integration of sophisticated 
sensing technologies and IoT devices has ushered in a transformative era of data-driven 
building management, greatly improving both efficiency and occupant comfort (Abuimara 
et al. 2021). In contemporary settings, data-driven methodologies-especially those employ-
ing ML and artificial intelligence (AI)-are increasingly integrated into BMSs to bolster their 
functionality, efficiency, and responsiveness. AI-powered BMSs leverage advanced analyt-
ics, predictive modeling, and intelligent automation to optimize operations. By harnessing 
the extensive data generated by BMSs, these systems can uncover patterns, trends, and 
anomalies that traditional rule-based systems may overlook. This adaptive capacity allows 
BMSs to dynamically respond to fluctuating environmental conditions, optimize energy 
consumption, and enhance occupant safety. However, challenges persist in incorporating 
AI and ML into BMSs, including ensuring data quality, achieving rapid decision-making, 
and navigating implementation complexities (Puiu and Fortis 2024). Real-time decision-
making is critical, as traditional ML algorithms often exhibit slow response times (Duarte 
et al. 2022a). FastML, which refers to rapid machine learning techniques that enhance per-
formance, is becoming increasingly important in this context. Advancements in hardware, 
particularly in Field-Programmable Gate Arrays (FPGAs), are essential for addressing the 
need for rapid ML decision-making. To address these challenges, the primary objectives of 
this research are to (i) provide a comprehensive review of existing ML techniques within 
BMSs, focusing on a diverse range of algorithms and applications, and (ii) investigate the 
emergence and effectiveness of FastML techniques with hardware accelerators for energy 
management applications within BMSs, as demonstrated through a case study. This review 
aims to enable BMSs to swiftly adapt to changing environmental conditions, ensuring occu-
pant safety and comfort while optimizing energy usage. In the subsequent sections, we will 
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explore existing studies on ML-based BMSs, exploring the methodologies employed and 
specific techniques for optimizing LSTM models for energy management. The case study 
will highlight a comparative analysis of inference speeds across various LSTM models, 
providing insights into the practical applications of these techniques. This exploration ulti-
mately seeks to deliver a comprehensive understanding of current advancements and future 
directions in this rapidly evolving field, highlighting the implications for research and prac-
tice in BMS solutions.

1.1  Existing studies on ML-based BMSs

Numerous studies have explored the application of AI and ML in BMSs, with a focus on 
various aspects such as power consumption, anomaly detection, occupants’ satisfaction, and 
security. Table 1 provides an overview of the existing research in this field. One notable study 
by Mazhar et al. (2022) delves into the integration of 5G technology into smart building 
management systems (BMSs). The research emphasizes the need for sustainable solutions 
in the face of resource constraints and population growth. It advocates for the incorporation 
of intelligent systems within smart homes, leveraging IoT and cloud technologies to address 
challenges across different domains. The study highlights the importance of IoT-enabled 
energy-conserving buildings and calls for increased awareness and financial incentives, 
particularly in commercial settings. Additionally, it explores how 5 G can enhance service 
quality, network capacity, and AI integration in automated systems while addressing pri-
vacy concerns. The research provides valuable insights into advancing smart city evolution 
within the context of big data and 5 G advancements, considering challenges like building 

Table 1  Overview of studies on ML applications in BMSs
Authors Year Focus area Main findings Key contributions Challenges 

addressed
Mazhar 
et al.

2022 Integration of 5 G 
in smart building 
management

Need for sustainable 
solutions, 5 G’s potential 
in automation and pri-
vacy concerns

Incorporation of 
intelligent systems 
within smart homes, 
leveraging IoT and 
cloud technologies

Building 
penetration 
issues

Himeur 
et al.

2023 AI-big data analyt-
ics in BAMSs

Importance of machine 
learning, challenges in 
security and scalability

Supervised, unsuper-
vised, semi-super-
vised, reinforcement 
learning

Security, 
interoper-
ability, 
scalability

Digitemie 
and 
Ekemezie

2024 Building Energy 
Management Sys-
tems (BEMS)

BEMS’ role in energy 
efficiency, challenges, 
and future prospects

Utilization of sen-
sors, controllers, and 
networks

Costs, 
integration 
issues

Heidari 
et al.

2024 Integration of 
BIM and AI in 
construction

Potential revolution in 
construction, challenges 
in integration

Leveraging machine 
learning algorithms 
and smart devices

Data integra-
tion, software 
compatibility

Ngo et al. 2024 Cloud-based AI 
system for energy 
management

Effectiveness of the sys-
tem in energy monitor-
ing and prediction

Combination of cloud 
technology and AI 
algorithms

Long-term 
energy 
prediction

Chen et al. 2023 Interpretable ML 
techniques in 
building energy 
management

Challenges, future op-
portunities in interpre-
table ML

Ante-hoc, post-hoc 
approaches

Terminology 
confusion, 
limited 
techniques

This table summarizes key contributions, including authors, publication year, focus areas, main findings, 
and challenges
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penetration issues and existing structures. Another comprehensive study by Himeur et al. 
(2023) focuses on the application of AI-big data analytics in Building Automation and Man-
agement Systems (BAMSs). The study examines various functionalities, including energy 
prediction, fault detection, anomaly spotting, and indoor environment evaluation. Different 
AI models, such as supervised, unsupervised, semi-supervised, and reinforcement learn-
ing, were tested. The research highlights the significance of machine learning, IoT, and 
connectivity in shaping BAMSs. It acknowledges the effectiveness of supervised learning 
with labeled data and the promise shown by unsupervised learning despite lower efficiency. 
The study also emphasizes the need to address challenges such as security, interoperabil-
ity, and scalability. Furthermore, Building Energy Management Systems (BEMS) play a 
vital role in improving energy efficiency and sustainability in buildings. They oversee and 
regulate systems like HVAC and lighting using components such as sensors, controllers, 
and networks to collect data and optimize energy usage. Despite challenges like costs and 
integration, BEMS offer advantages such as lower energy consumption and enhanced com-
fort for occupants (Digitemie and Ekemezie 2024). Technological advancements like IoT 
and AI are addressing these challenges, making BEMS more accessible and efficient. The 
integration of AI and machine learning holds promise for further improving energy-saving 
capabilities and building performance. In summary, BEMS are crucial for achieving energy 
efficiency and sustainability goals, delivering significant savings and environmental ben-
efits (Digitemie and Ekemezie 2024). As illustrated in Fig. 1, various ML techniques and 
model optimizations are employed to achieve these enhancements. Nevertheless, despite the 
substantial advantages of incorporating AI and ML into BMSs, several challenges persist.

A systematic review conducted by Heidari et  al. (2024) explores the integration of 
Building Information Modeling (BIM) and Artificial Intelligence (AI) in the construc-
tion industry. This integration has the potential to revolutionize the sector by enhancing 
decision-making, optimizing processes, and increasing overall efficiency. By leveraging 
machine learning algorithms and smart devices, AI can enhance BIM’s capabilities, includ-

Fig. 1  Overview of ML techniques and optimization strategies. This diagram categorizes AI methods-
including supervised, unsupervised, and semi-supervised learning, deep learning, generative AI, and 
reinforcement learning alongside optimization strategies like model compression, highlighting their ap-
plications in BMS
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ing predicting building performance, identifying design issues, and optimizing construc-
tion processes. However, successful integration requires careful consideration of factors 
such as data integration and software compatibility. Further research is needed to address 
the interoperability and scalability challenges of integrating BIM and AI. Nonetheless, the 
potential benefits, including improved energy efficiency and accurate cost estimation, make 
this integration a promising direction for the future of construction. Additionally, a survey 
conducted by Ngo et al. (2024) introduces a cloud-based AI system for managing energy in 
buildings. This system combines cloud technology, AI algorithms, optimization methods, 
and web applications to collect, analyze, and visualize energy consumption data. It consists 
of three layers: the data layer for storing energy-related data, the AI-based analytics layer for 
processing and predicting energy usage, and the decision-support information layer for pre-
senting insights and interactive visualization. Practical case studies were conducted to test 
the system’s effectiveness in monitoring and predicting energy consumption while provid-
ing useful information for building managers and users. This study contributes to the knowl-
edge of energy efficiency in buildings and offers a valuable tool for implementing smart 
energy management systems. Future research can further explore long-term. Furthermore, 
Chen et al. (2023c) provide a comprehensive review of previous research on interpretable 
machine learning (ML) techniques in building energy management. The article categorizes 
the applications into ante-hoc and post-hoc approaches and highlights challenges such as 
terminology confusion and limited techniques. The article suggests future opportunities, 
including exploring interpretable ML for classification tasks and developing customized 
models for different users. Availability of open datasets and interpretable deep reinforce-
ment learning models are also proposed. Overall, these studies highlight the importance of 
AI, ML, and technological advancements like IoT and 5 G in the field of building manage-
ment systems. They provide insights into the potential applications, challenges, and future 
directions for creating more intelligent and efficient buildings.

1.2  Objectives and scope

This paper aims to (i) provide a comprehensive review of existing machine learning (ML) 
techniques in BMSs (BMS) and (ii) investigate the emergence of FastML techniques for 
BMSs applications with a case study example. The review focuses on ML methods applied 
to various built asset types, including residential, commercial, and industrial buildings.

The section on “AI Applications in BMS” examines how advanced AI analytics enhance 
BMS functionality through:

FastML and optimization: The paper evaluates the effectiveness of various ML methods in 
optimization tasks, such as energy management, predictive maintenance, and resource 
allocation. It discusses how ML models leverage abundant building data to streamline 
operations and improve decision-making.

ML and AI in BMS applications: This review highlights state-of-the-art ML-powered 
BMS solutions and identifies promising research avenues, with a focus on areas like 
fault detection, occupant behavior analysis, and data contextualization to improve 
BMS performance. Optimization techniques, including pruning and quantization, are 
also analyzed, demonstrating the suitability of quantized models for computationally 
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efficient, real-time applications. This approach aims to enhance BMS functionality, effi-
ciency, and sustainability on both individual and city-wide scales.

Key research questions: This investigation addresses the following questions: 

1.	 How Fast Machine Learning can improve building management systems perfor-
mance, automation and efficiency with identification of gaps in research and devel-
opment to be addressed to advance ML-powered BMS solutions?

2.	 What are the key ML methods utilised for building performance management and 
optimization tasks, including energy management and predictive maintenance?

3.	 How to create, deploy and test a high language specification fast machine learning 
model using an energy forecasting application from a real building case study?

This paper is organized as follows: Sect. 1.3 describes the methodology, Sect. 2 explores 
applications of ML in BMS and optimization in BMS using ML with research gaps and 
best practices. Section 3 provides the evaluation of this work and Sect. 4 reports relevant 
discussions around the findings. Section 5 presents the conclusions of this research. Figure 2 
illustrates the integration of BMS and ML, providing a visual representation of the concepts 
discussed. Through this comprehensive overview, we explore how ML-driven BMS solu-
tions impact various BMS applications and suggest directions for further advancements.

1.3  Methodology

This review examines the available research on ML applications in BMS through a three-
stage methodology.

Stage 1: Planning
The first stage involved defining the review’s scope, research questions, and target data-

bases, which included Google Scholar, ACM Digital Library, IEEE Xplore Digital 
Library, and Springer Lecture Notes in Computer Science (LNCS). The review focused 
on studies published between 2016 and 2024 and was managed using EndNote refer-
ence software.

Fig. 2  Integration of BMS and ML. This diagram illustrates the key phases, including planning, installa-
tion, data collection, analysis, model building, evaluation, and deployment
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Stage 2: Searching and Filtering
In the second stage, a systematic search process was established. Key terms and interchange-

able terms were defined for use in the search, summarized in Table 2). Initial screening 
involved reviewing titles and abstracts. Inclusion criteria included English language, 
document type (full-text, conference/journal papers, or books), and publication year 
(2016–2024). After removing duplicates, the screened papers were reviewed in full. 
Studies that did not address ML techniques in BMS or failed to present primary research 
findings were excluded, resulting in 147 selected papers imported into EndNote.

Stage 3: Evaluation and Extraction
The final stage involved evaluating the quality and relevance of the selected articles. Papers 

were assessed based on three criteria: 

1.	 Clarity of methodology: Whether study methods were clearly described and 
understandable.

2.	 Provision of results: How well the studies presented outcomes and supporting 
data.

3.	 Relevance to research questions: How closely each study aligned with the 
review’s research questions.

After evaluation, important details were extracted, including: ML models used, Optimal 
models identified,Targeted BMS applications, Scale of BMS implementation (e.g., indi-
vidual buildings, entire cities).
This review, as shown in Fig. 3, encompasses a wide range of ML applications within BMS, 
examining each in terms of motivations, constraints, and methods. The findings contribute 
to understanding how ML enhances BMS operations by automating tasks, improving deci-
sion-making, and optimizing energy consumption and operational costs. Through analy-
ses of applications such as fault detection, predictive maintenance, energy forecasting, and 
anomaly detection, this paper provides insights into a more sustainable BMS framework. 
Furthermore, the inclusion of FastML techniques, such as model quantization and pruning, 
proves critical in enabling real-time applications essential for energy management and occu-
pant comfort. This discussion not only focuses on the present state of ML in BMS but also 
lays out a trajectory for future research and development in this rapidly evolving domain. 
The final sections discuss existing research gaps, especially concerning FastML’s scalabil-

Main terminology Search terminology
Building manage-
ment system

Building automation system, HVAC-based 
ML, building energy management system 
(BEMS), building information modeling (BIM)

Machine Learning 
Application

Predictive Maintenance, Fault Detection and 
Diagnosis (FDD), Energy Forecasting, Oc-
cupancy Detection and Prediction, Thermal 
Comfort Optimization, Load Shifting, Demand 
Response, Anomaly Detection, Reinforcement 
Learning for Controls

Fast Machine 
Learning

HLS4ML, QONNX

Optimization Model Quantization, Hyperparameter Optimi-
zation, Model Compilation, Parallel Process-
ing, Pruning Techniques

Table 2  Search terminology for 
BMS and ML

This table presents main terms 
alongside relevant search 
terminology
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ity and impact within smart city infrastructures, offering directions for ongoing research to 
enhance ML-BMS integration for sustainable urban development.

2  A review of machine learning techniques in BMS

The utilization of AI and ML technologies in Building Management Systems (BMSs) is 
increasingly prevalent, enhancing various aspects of building functionality, including opera-
tional efficiency, energy conservation, occupant well-being, and maintenance. This integra-
tion relies on data gathered from numerous sensors installed within buildings, enabling 
the system to make informed decisions and streamline control procedures.These studies 
highlight how ML models contribute to energy efficiency, predictive maintenance, HVAC 
optimization, fault detection, and occupancy-based control, demonstrating the transforma-
tive impact of AI-driven solutions in smart building. Common ML techniques employed in 
BMSs include fault detection, energy prediction and optimization, and advanced control 
strategies. In the following section, we will provide a comprehensive examination of these 
ML-based methods, outlining their objectives, functionalities, and practical applications. 
Table 3 summarizes recent studies that utilize various ML techniques in building energy 
management. This table provides insights into the applications, levels, ML tasks, and algo-
rithms used, demonstrating the breadth of research in this area.

Figure 4 illustrates the various applications of BMSs, showcasing how ML techniques 
can be integrated into energy management systems. This visual representation comple-
ments the discussions in this section, providing a clearer understanding of the different 
areas where ML can be applied effectively. ML-based techniques in BMS span a wide array 
of applications beyond those depicted, from real-time monitoring of air quality to predictive 
maintenance of essential systems, each adding to a building’s operational resilience and 
adaptability. Incorporating these ML-driven strategies within BMS frameworks not only 
enhances control over environmental variables but also facilitates deeper insights into sys-
tem performance and potential faults before they impact occupants or energy efficiency. The 
next section will delve into the specific techniques utilized in energy optimization, mainte-
nance prediction, and anomaly detection, providing a detailed overview of the algorithms 
and methods that are currently driving advancements in this field.

2.1  Deep learning

In recent years, deep learning techniques have been increasingly applied to predict and opti-
mize energy consumption in buildings. El-Maraghy et al. (2024) developed a CNN model 
for predicting energy consumption in mosque buildings, achieving a MAPE of 4.5%. This 

Fig. 3  Applications, motivations, constraints, and ML methods in BMSs that are considered in this review
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References Year Application Level ML task ML algorithms
Kim and Cho 2019 Energy consumption Building Regression CNN-LSTM
Somu et al. 2021 Energy consumption Building Regression kCNN-LSTM
El-Maraghy 
et al.

2024 Energy consumption Mosque Regression CNN

Zhang et al. 2024 Energy consumption City Regression CNN
Feng et al. 2024 HVAC fault 

diagnosis
HVAC Classification Attention-based 

Transfer Learning
Wu et al. 2024 HVAC fault 

diagnosis
HVAC Classification Composite Neu-

ral Network
Wu et al. 2024 Occupancy detection Building Classification CNN
Somu et al. 2021 Thermal comfort 

prediction
Building Regression TL CNN-LSTM

Karaiskos et al. 2024 Indoor air quality Building Regression LSTM-RNN
Wu et al. 2022 Predictive 

maintenance
Equipment Regression LSTM-RNN

Javed et al. 2016 Energy optimization HVAC Regression RNN
Tukymbekov 
et al.

2021 Street lighting 
control

Infrastructure Regression LSTM

Jeon and Kim 2021 Temperature set-
point optimization

HVAC Regression LSTM

Jang et al. 2022 Heating energy 
consumption

Building Regression LSTM

Karijadi and 
Chou

2022 Energy consumption Building Regression RF, LSTM

Durand et al. 2022 Appliance consump-
tion data analysis

Building Regression LSTM

Wang et al. 2020 Energy consumption 
prediction

Building Regression LSTM

Luo and 
Oyedele

2021 Energy consumption 
forecasting

Building Regression Adaptive LSTM 
optimized by GA

Hu et al. 2023 Predictive 
maintenance

Equipment Regression Parallel LSTM-
Autoencoder

Matsukawa 
et al.

2019 Maintenance opera-
tions prediction

Equipment Regression LSTM

Zhu et al. 2022 HVAC fault 
detection

HVAC Classification LSTM-SVDD

Patil et al. 2024 Energy performance 
forecasting

Building Regression ANN, RSM

Bhagwat et al. 2024 Fault detection Infrastructure Classification ANN
Ren et al. 2023 Energy efficiency 

optimization
Building Regression ANN

Olanrewaju and 
Tan

2022 Maintenance satis-
faction analysis

Building Regression ANN

Abdelaziz et al. 2023 Energy consumption 
forecasting

Building Clustering PCA, SOM, K-
means, GA

Arias-Requejo 
et al.

2023 HVAC control Building Clustering K-means, ICA

Ramírez-Sanz 
et al.

2023 Fault detection Equipment Classification SSL

Liu and Gou 2024 Indoor thermal 
comfort control

HVAC RL RL

Fährmann et al. 2022 Anomaly detection Building Detection DDQN

Table 3  Summary of recent studies utilizing ML techniques in building energy management
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performance is 12% better than an ANN model’s MAPE of 5.36% for residential build-
ings, and it also outperforms other models such as Random Forest (MAPE of 6.023%) and 
ANN (MAPE of 6%). While CNN models demonstrate strong predictive capability, their 
performance can be influenced by the complexity of the dataset and model scalability. To 
enhance predictive accuracy, Kim and Cho (2019) introduced a CNN-LSTM-based model 
for predicting residential energy consumption that integrates spatial and temporal depen-
dencies. While CNN-LSTM achieves a lower MSE of 0.3738-showing a 49.8% improve-

References Year Application Level ML task ML algorithms
Ding et al. 2022 Multi-zone HVAC 

control
Building Deep RL Deep RL

Fu et al. 2018 Energy consumption Building RL SARSA
Alfaverh et al. 2020 Peak energy demand 

management
Infrastructure RL, Fuzzy 

Reasoning
RL, Fuzzy 
Reasoning

Geng et al. 2022 Indoor air quality 
monitoring

Building Clustering Clustering

Oliosi et al. 2023 Anomaly detection Building Detection PCA, Spectral 
Clustering

Wen et al. 2023 Fault detection Equipment Detection PCA
Chen et al. 2023 Temperature and oc-

cupancy detection
Building Classification SSL

Parhizkar et al. 2021 Energy consumption 
prediction

Building Clustering PCA

Fan et al. 2024 HVAC fault 
detection

HVAC Classification Active Learning, 
SSL

Nguyen et al. 2021 Real-time energy 
monitoring

Building Clustering Clustering, 
Regression

Pekşen et al. 2024 Predictive 
maintenance

Equipment Classification SSL

Ahn and Park 2020 HVAC system 
efficiency

HVAC DQN Deep Q-Network

Xu et al. 2021 Fault detection HVAC RL RL
Wei et al. 2020 Energy management Building Actor-critic RL Actor-Critic RL
Jendoubi and 
Bouffard

2023 Energy management Building Optimization HRL

Qin et al. 2022 Energy optimization Building Hybrid RL-GA RL, Genetic 
Algorithm

Ji et al. 2019 Energy management Building RL Real-time RL
Quang and 
Phuong

2024 Energy optimization Residential 
HVAC

Deep RL Deep RL

Zhang et al. 2022 Energy management Multiple 
buildings

MARL Multi-agent RL

Han et al. 2021 Occupant comfort Building RL RL
Brandi et al. 2020 Indoor temperature 

and energy usage
Building RL RL

Masdoua et al. 2023 Fault-tolerant 
control

HVAC RL RL

Fang et al. 2023 Lighting control Building RL RL
Shen et al. 2022 Energy control 

systems
Building RL Multi-agent deep 

RL

(continued)  Table 3 
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ment over Attention LSTM (0.6984)-it tends to be more effective for aggregated time-series 
data rather than minute-level fluctuations. CNN-LSTM underperforms compared to LSTM 
and Linear Regression, with approximately 50% lower metrics in minutely data. Nonethe-
less, it significantly outperforms LSTM, GRU, Bi-LSTM, and Attention LSTM. Further 
refinements were introduced by Somu et al. (2021), who proposed the kCNN-LSTM model, 
incorporating k-means clustering to refine input data segmentation. The kCNN-LSTM 
achieves a MAPE of 0.1670, performing well in weekday and weekend energy forecasting 
by leveraging structured patterns within the dataset. However, the absence of key contextual 
factors like occupancy data highlights the ongoing challenge of capturing the full complex-
ity of building environments. To improve the learning of complex temporal dependencies, 
Wu and Wu (2024) introduced the CNN-BiLSTM-SA model, which combines bidirectional 
LSTM layers with self-attention mechanisms. This model reduces RMSE by 82.70% com-
pared to BiLSTM and 43.24% compared to BiLSTM-SA. Additionally, it achieves the high-
est R2 value among CNN, LSTM, and CNN-LSTM models, demonstrating its effectiveness 
in accurately predicting household electricity consumption. Its ability to capture both past 
and future dependencies, along with attention-based feature selection, enhances its predic-
tive performance in dynamic energy consumption scenarios. Although this approach show-

Fig. 4  Illustration of various applications of BMS utilizing ML techniques. This figure highlights key 
areas such as energy management and predictive maintenance, demonstrating how ML enhances opera-
tional efficiency and occupant comfort
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cased promising results, its dependence on small datasets and simulated environments-as 
also observed in studies such as El-Maraghy et al. (2024) and Zhang et al. (2024c)-raises 
concerns about scalability and real-world applicability. To overcome these limitations, 
researchers have explored hybrid frameworks that integrate clustering and transfer learning 
strategies.

LSTM networks, in particular, have shown considerable promise in capturing temporal 
trends critical to energy systems management. Enhanced interpretability, achieved through 
techniques like layer-wise relevance propagation in LSTM models (Wu et al. 2022), has 
provided new insights into predictive maintenance strategies. Moreover, the integration of 
random neural networks in cloud-enabled smart controllers (Javed et al. 2016) has yielded 
substantial energy savings of 27.12% compared to traditional rule-based systems. A variety 
of studies (Tukymbekov et al. 2021; Jeon and Kim 2021; Jang et al. 2022; Karijadi and Chou 
2022; Durand et al. 2022; Wang et al. 2020; Luo and Oyedele 2021; Hu et al. 2023; Matsu-
kawa et al. 2019; Zhu et al. 2022) further attest to the versatility of LSTM networks-from 
optimizing street lighting based on weather forecasts to real-time HVAC fault detection and 
indoor air quality prediction-demonstrating both their potential and the necessity for fur-
ther refinement. For HVAC systems, attention-based transfer learning methods (Feng et al. 
2024) and composite neural network approaches (Wu et al. 2024a) have been deployed to 
address sensor fault diagnosis and data imbalance, respectively. These methodologies high-
light the critical role of deep learning in fault detection and diagnosis within BMSs. Beyond 
LSTM networks, artificial neural networks (ANNs) have also been extensively employed 
for energy management tasks. Simulation-based ANN frameworks (Roodkoly et al. 2024) 
and models integrating ANN with Response Surface Methodology (Patil et al. 2024) have 
proven effective in forecasting energy metrics and optimizing building performance. Fur-
thermore, ANN-driven fault detection systems (Bhagwat et al. 2024) and intelligent control 
frameworks for public buildings (Ren et al. 2023) illustrate the capacity of these networks to 
enhance operational efficiency and occupant comfort, even in contexts demanding post-pan-
demic adjustments (Olanrewaju and Tan 2022). Collectively, these studies reveal a dynamic 
landscape in which deep learning methods are continuously evolving to address the mul-
tifaceted challenges of building energy management. Although each approach-whether 
CNN-based, LSTM-centric, or ANN-driven-offers unique advantages, common challenges 
persist. These include the need for larger, more diverse real-world datasets, improved model 
interpretability, and the integration of multi-modal sensor data. Future research should aim 
to develop hybrid models that strike a balance between predictive accuracy and practical 
applicability, ultimately bridging the gap between simulation and real-world deployment. 
Cordeiro-Costas et al. (2024) propose a hybrid methodology combining LSTM and Multi-
layer Perceptron (MLP) models, optimized with the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II). This method uses Global Forecast System (GFS) data to predict energy 
consumption and optimize distributed energy sources like photovoltaic (PV) systems. By 
balancing energy costs and efficiency, NSGA-II identifies optimal solutions along the Pareto 
front. Implemented at the Industrial Engineering School of the Universidade de Vigo, Spain, 
this approach effectively enhances hyperparameter tuning and energy balance, showcasing 
the potential of integrating machine learning with optimization for better energy manage-
ment in buildings.

As illustrated in Fig. 5, various machine learning approaches, including LSTMs, ANNs, 
and CNNs, play distinct yet interrelated roles in building energy management. These meth-
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ods are applied across domains such as energy efficiency, HVAC optimization, occupancy 
detection, and predictive maintenance, underscoring their versatility in creating adaptive 
and efficient building environments. This integration of advanced ML algorithms in BMSs 
not only streamlines operations but also fosters sustainability by optimizing resource use 
and enhancing occupant comfort. The diversity of approaches highlighted in recent studies 
demonstrates the adaptability and potential for future innovations within smart building 
systems, setting the stage for increasingly resilient, responsive, and sustainable building 
management solutions.

2.2  Supervised learning

Supervised learning is a cornerstone methodology in analyzing annotated energy datasets, 
demonstrating robust performance across various applications in BMSs. However, the reli-
ance on labeled data presents significant challenges for real-world deployment. Obtaining 

Fig. 5  Sankey diagram illustrating the applications of ML and deep learning in BMS. This figure high-
lights how various ML techniques are integrated across different domains, including buildings, cities, and 
infrastructure
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high-quality labeled datasets is not only time-consuming but also costly, which can hin-
der the scalability of supervised learning techniques in practical energy applications. This 
limitation is particularly pronounced in sectors where data labeling is scarce or expensive, 
potentially stifling innovation and efficiency improvements in energy management.

Classification models: Classification models are traditional yet powerful tools for tasks 
such as energy prediction, indoor activity monitoring, and fault detection. Key algorithms, 
including Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Decision 
Trees (DT), have shown varying degrees of effectiveness. For instance, Zhang et al. (2022b) 
achieved an impressive accuracy rate of 99.98% using a hybrid PSO-SVM algorithm 
for energy balancing in green buildings. Such results not only highlight the potential for 
enhanced energy efficiency but also suggest a model that can be scaled for broader applica-
tions in similar contexts. However, these models have inherent limitations. SVMs, while 
effective, struggle with non-linear problems unless kernel methods are applied, which adds 
complexity to their implementation. KNN’s performance is heavily dependent on the choice 
of "K," and the algorithm can become computationally expensive with large datasets. More-
over, Decision Trees can overfit on small datasets, leading to poor generalization-an issue 
that can significantly impact predictive maintenance strategies in operational settings.

Regression models: Regression models, focusing on identifying relationships between 
variables, play a critical role in energy forecasting and anomaly detection. Common meth-
ods, including Support Vector Regression (SVR) and Random Forest (RF), have been 
widely adopted. Notably, Moulla et al. (2024) utilized a diverse dataset to predict hourly 
energy consumption, achieving high accuracy with RF and DT models. Their findings offer 
valuable insights that can inform energy management policies and practices, particularly in 
regions grappling with load-shedding crises. These widely adopted machine learning mod-
els exhibit ease of implementation and interpretability. However, the assumption of linearity 
between variables may not always hold true in complex real-world scenarios. Addressing 
these challenges through advanced hybrid models could enhance predictive accuracy and 
operational efficiency in BMS.

2.3  Unsupervised learning

Unsupervised learning techniques have proven versatile and effective in BMSs, signifi-
cantly enhancing energy efficiency, reducing costs, and improving system robustness. 
These methods allow for the exploration of data without the constraints of labeled datasets, 
making them particularly valuable in dynamic environments where data is abundant but 
unannotated.

Clustering: Clustering algorithms are employed to categorize and forecast energy 
usage patterns, thereby improving energy management in buildings. Abdelaziz et al. (2023, 
2024) developed a comprehensive framework using Principal Component Analysis (PCA) 
for dimensionality reduction, Self-Organizing Maps (SOM) for pattern identification, and 
K-means clustering combined with a Genetic Algorithm (GA) to optimize energy consump-
tion clusters. This innovative methodology not only improved energy demand forecasting 
but also enhanced load management strategies, effectively reducing energy wastage and 
operational costs. Similarly, Arias-Requejo et  al. (2023) applied K-means clustering and 
Independent Component Analysis (ICA) for energy consumption forecasting in smart build-
ings, focusing on HVAC controls and energy-saving strategies. They emphasized the criti-

1 3

Page 15 of 48    211 



M. Mshragi, I. Petri

cal importance of data preprocessing and feature extraction to handle correlations among 
variables, which can significantly impact forecasting accuracy. Raja and Saraswathi (2023) 
introduced an IoT system leveraging hierarchical clustering and Gaussian Mixture Mod-
els (GMM) to classify energy use behaviors and model occupancy patterns, demonstrating 
high accuracy and minimizing overall power consumption. Additionally, Tian et al. (2024) 
utilized association rule mining alongside clustering and rule-based methods to optimize 
energy consumption and enhance fault detection in HVAC systems. Their unsupervised 
data mining-based framework resulted in a 6.9% energy savings, underscoring the practi-
cal benefits of applying clustering techniques in real-world settings. Furthermore, Wang 
et  al. (2022a) and Etezadifar et  al. (2023) investigated clustering approaches for event-
based non-intrusive load monitoring (NILM) and appliance identification, demonstrating 
significant contributions to energy performance evaluation and ranking in workplaces. Liu 
et al. (2018) focused on energy efficiency assessment in industrial buildings, while Gunay 
and Shi (2020) applied clustering to detect operational anomalies in building automation 
systems. The exploration of indoor air quality (IAQ) monitoring, as examined by Sha et al. 
(2023) and Geng et al. (2022), further establishes the broad applicability of clustering tech-
niques in optimizing building performance.

Dimensionality reduction: Dimensionality reduction techniques are crucial for sim-
plifying complex datasets, enhancing the efficiency of anomaly detection, and improving 
energy management systems. Abdelaziz et al. (2023, 2024) used PCA for dimensionality 
reduction, which contributed significantly to their framework for optimizing energy con-
sumption clusters. By reducing the feature space, PCA aids in identifying key variables that 
drive energy usage, streamlining subsequent modeling efforts. Oliosi et al. (2023) imple-
mented PCA and spectral clustering to reduce the dimensionality of complex sensor data, 
improving the efficiency of anomaly detection and maintenance. Wen et al. (2023) applied 
PCA for early fault detection and classification, while Parhizkar et al. (2021) and Baird et al. 
(2017) demonstrated its utility in energy consumption prediction and occupancy detection, 
respectively. Khan et al. (2020) applied the t-Stochastic Neighborhood Embedding (t-SNE) 
algorithm to eliminate redundant features, thus preventing large coefficients and improv-
ing model performance. In a novel approach, Miyasawa et al. (2019) introduced an energy 
breakdown technique using smart meter data and semi-binary nonnegative matrix factor-
ization (SBNMF) to estimate individual appliance power consumption without additional 
sensors. To enhance SBNMF accuracy, the authors proposed three model assumptions and 
developed appliance-level classifiers using random forest, incorporating auxiliary informa-
tion like user feedback to improve performance. Song et al. (2022) compared six machine 
learning algorithms and found Linear Discriminant Analysis (LDA) to be more accurate 
for thermal comfort evaluation, and Lee et al. (2020) used LDA for building flow detec-
tion, highlighting its broad applicability in BMSs. These studies collectively underscore the 
importance of unsupervised learning techniques in enhancing the efficiency and effective-
ness of BMSs, particularly through clustering and dimensionality reduction methodologies.

2.4  Semi-supervised learning

Semi-supervised learning (SSL) is a crucial methodology in the development of BMSs, par-
ticularly in scenarios where obtaining comprehensive labeled datasets is difficult or expen-
sive. By leveraging both annotated and unannotated data, SSL techniques can significantly 
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improve model performance and predictive accuracy, addressing some of the limitations 
inherent in fully supervised methods. SSL has diverse applications within BMS, particu-
larly in automated fault detection and diagnosis (AFDD) for HVAC systems. Dey et  al. 
(2018) underscore its utility in managing unstructured and unlabeled HVAC sensor data, 
enhancing system reliability and reducing the operational costs associated with data pre-
processing. In building energy modeling (BEM), Naganathan et  al. (2016) explored the 
use of clustering algorithms and semi-supervised machine learning to optimize energy effi-
ciency by analyzing real-time data from substations and buildings. This approach not only 
identifies factors contributing to energy losses but also aids utility providers in effective 
energy supply–demand management. Akbar et  al. (2024) introduced an innovative SSL-
based deep learning framework for non-intrusive load monitoring (NILM) in smart grids, 
disaggregating aggregate energy consumption data into individual appliance-level insights. 
This methodology enhances energy optimization and cost reduction, demonstrating supe-
rior accuracy compared to traditional methods. The integration of active learning with SSL 
further enhances data-driven HVAC fault diagnosis, reducing labeling costs and improving 
system reliability, as noted by Fan et al. (2024). This combined approach effectively identi-
fies valuable data for fault detection, supporting practical applications in real-world settings. 
Additionally, Ramírez-Sanz et al. (2023) provide a comprehensive review of SSL applica-
tions in industrial fault detection and diagnosis, highlighting its effectiveness in handling 
limited labeled data and improving model accuracy across various industrial environments. 
SSL’s versatility in BMS extends to energy consumption forecasting, predictive mainte-
nance, IoT integration, and renewable energy utilization. For instance, Chen et al. (2023b) 
exemplify its use in accurate indoor temperature prediction and occupancy detection by 
leveraging both labeled and unlabeled sensor data. Hybrid SSL models that combine clus-
tering and regression approaches have demonstrated promise in real-time energy monitor-
ing and predictive maintenance within BMS, thereby enhancing operational efficiency and 
prediction accuracy, as shown by Nguyen et al. (2021) and Pekşen et al. (2024). Despite its 
advantages, SSL can exhibit instability in results and lower performance compared to fully 
supervised learning when labeled data is insufficient, as highlighted by Wang et al. (2022b). 
Nevertheless, SSL’s ability to effectively utilize both labeled and unlabeled data positions 
it as a valuable tool for addressing data scarcity challenges and enhancing overall BMS 
performance.

2.5  Reinforcement learning

Reinforcement learning (RL) has shown significant promise in optimizing various aspects 
of BMSs, including HVAC control, maintenance, fault detection, energy prediction, and 
consumption. A study by Ahn and Park (2020) explored the use of Deep Q-Networks (DQN) 
to enhance HVAC system efficiency and occupant comfort. This approach illustrates how 
RL can dynamically adjust system parameters to achieve optimal performance. Similarly, 
Liu and Gou (2024) introduced an RL model that improved indoor thermal comfort by 24% 
and reduced air conditioning usage by 24.7% compared to baseline models. These results 
not only highlight the effectiveness of RL in energy savings but also demonstrate its poten-
tial impact on occupant satisfaction. Fährmann et  al. (2022) employed deep Q-learning 
(DDQN) for anomaly detection in smart buildings, showcasing RL’s adaptability in identi-
fying and responding to unusual behaviors in energy consumption. In the realm of energy-
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efficient control, Xu et al. (2021) applied RL to fault detection and diagnostics in HVAC 
systems, ensuring efficient operation. Ding et al. (2022) proposed a deep RL-based method 
for controlling thermal comfort in multi-zone residential HVAC systems. Fu et al. (2018) 
utilized SARSA to predict and minimize energy consumption in commercial buildings. Wei 
et al. (2020) implemented actor-critic methods for smart building energy management, dem-
onstrating improved efficiency. The versatility of RL is further exemplified by Jendoubi and 
Bouffard (2023), who applied hierarchical RL for managing complex building energy tasks, 
enhancing system responsiveness. Qin et al. (2022) combined genetic algorithms with RL 
for enhanced energy optimization, while Ji et al. (2019) explored real-time RL for energy 
management in smart buildings. Moreover, Quang and Phuong (2024) developed a deep RL 
algorithm to optimize energy consumption in residential HVAC systems while maintaining 
occupant comfort. Zhang et al. (2022a) employed multi-agent RL for coordinated energy 
management across multiple buildings, and Alfaverh et  al. (2020) applied RL and fuzzy 
reasoning to manage and reduce energy demand during peak periods. Han et al. (2021) bal-
anced occupant comfort using RL, and Brandi et al. (2020) enhanced indoor temperature 
and energy usage with RL. Masdoua et al. (2023) developed fault-tolerant HVAC control 
strategies with RL, while Fang et al. (2023) optimized lighting control systems using RL 
for energy savings. In a significant advancement, Shen et  al. (2022) introduced a multi-
agent deep RL optimization framework for building energy systems incorporating renew-
able energy, utilizing a dueling double deep Q-network for single-agent optimization and a 
value-decomposition network for multi-agent cooperation. These studies collectively high-
light the vast potential of reinforcement learning to enhance efficiency, reduce costs, and 
improve occupant comfort in BMSs.

2.6  Generative-AI, federated learning, and transfer learning

The rapid evolution of AI, exemplified by advanced language models like ChatGPT, holds 
significant promise for specialized engineering tasks, particularly in physics-based build-
ing energy modeling (BEM) (Zhang et al. 2024a). These models simplify data analysis and 
generate simulation inputs, demonstrating their utility in enhancing modeling processes. 
However, their effectiveness depends on selecting appropriate techniques, such as prompt 
engineering or integration within multi-agent systems. Despite challenges like computa-
tional demands and self-consistency issues, advancements are expanding the use of lan-
guage models across various sectors (Alqahtani et al. 2023). In the context of Federated 
Learning (FL), a decentralized approach allows models to be trained across multiple devices 
while preserving data privacy (Li et al. 2021). FL encompasses horizontal federated learn-
ing (HFL), which aggregates models from devices with similar features but different sam-
ples, and vertical federated learning (VFL), which integrates diverse feature sets from the 
same samples. Applications in smart buildings demonstrate FL’s effectiveness in anomaly 
detection and thermal comfort management, showcasing its potential to enhance operational 
efficiency and user satisfaction (Sater and Hamza 2021; Khalil et al. 2021). HFL and VFL 
enhance model accuracy and efficiency while addressing privacy concerns (Wang and et al. 
2023; Liu et al. 2024). Transfer Learning (TL) enables the reuse of models trained on one 
task for related tasks, particularly when data is scarce. TL methods include pre-training 
on large datasets followed by fine-tuning on smaller, task-specific datasets. Applications 
range from intelligent fault diagnosis to energy demand forecasting, showcasing significant 
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improvements in accuracy and performance, thus facilitating more informed decision-mak-
ing in energy management (Chen et al. 2023a; Coraci et al. 2023). In summary, the inte-
gration of generative AI, FL, and TL presents unprecedented opportunities for enhancing 
knowledge management, decision-making, and innovation in engineering and construction, 
leading to more efficient, safe, and sustainable practices.

2.7  Fast machine learning in building management systems

ML has become essential across numerous industries, including healthcare, finance, and 
autonomous vehicles. As the complexity of these applications increases, there is a growing 
demand for faster and more efficient ML techniques, collectively referred to as FastML. 
FastML addresses this need by accelerating various stages of the ML pipeline, from data 
preprocessing to model training and inference. This approach is particularly vital for sce-
narios requiring real-time or near-real-time decision-making, such as scientific research, 
BMSs, and autonomous vehicles (Duarte et al. 2022b). By reducing the time and compu-
tational resources needed for model training, FastML facilitates quicker innovation cycles 
and deployment of ML solutions. It aims to overcome challenges inherent in traditional 
ML approaches, including rising computational requirements for training and inference, 
the need for low latency in certain applications, concerns about energy consumption, and 
the difficulty of scaling traditional ML methods to handle large-scale datasets and complex 
models (L’heureux et al. 2017). Key techniques in FastML include leveraging specialized 
hardware, optimizing models through pruning and quantization, developing efficient neural 
network architectures, utilizing distributed computing frameworks, and improving algo-
rithms. These techniques enable a range of applications, from real-time computer vision and 
natural language processing to personalized recommendations and rapid decision-making 
in financial services and healthcare. FastML refers to techniques designed to accelerate the 
machine learning pipeline, which includes data preprocessing, model training, and inference 
(Deiana et al. 2022b). These techniques utilize specialized hardware (e.g., FPGAs, ASICs, 
or GPUs), optimized algorithms, and advanced strategies to facilitate real-time or near-real-
time decision-making. In the context of BMSs, "fast" typically denotes systems capable 
of processing sensor data and generating control decisions within milliseconds, allowing 
for rapid responses to dynamic environmental changes. FastML is particularly beneficial 
in BMS for tasks such as fault detection, energy efficiency optimization, and predictive 
maintenance, where low latency and high computational efficiency are essential. However, 
achieving "fast" performance often necessitates careful resource management, especially 
when deploying complex algorithms like Nonlinear Model Predictive Control (NNMPC) 
on hardware platforms such as FPGAs. In the study by Fan et  al. (2022), the FastML 
framework was developed to address predictive uncertainty, model drift, and unexpected 
conditions using Bayesian neural networks (BayesCNNs). These networks provide proba-
bilistic predictions and quantify uncertainty by estimating prediction distributions, enabling 
nuanced outcomes. Techniques like Monte Carlo dropout enhance uncertainty assessment, 
making FastML valuable in dynamic environments such as severe weather, building renova-
tions, or COVID-19 lockdowns (Melosik et al. 2022). The framework incorporates adap-
tive decision-making, adjusting predictions and confidence intervals during uncertainty, and 
employs continuous learning to address model drift. Key strategies include Bayesian infer-
ence, adaptive learning, and probabilistic output handling for risk-aware decisions. FastML 
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achieves remarkable performance, including up to 92x higher energy efficiency than CPUs, 
76x higher than GPUs, 99.39% accuracy, and 9-30x higher throughput than existing accel-
erators, making it a reliable tool for mission-critical tasks like energy management, fault 
detection, and predictive maintenance. A cutting-edge framework designed to facilitate the 
deployment of machine learning models on hardware accelerators, particularly Field-Pro-
grammable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs), is 
High-Level Synthesis for Machine Learning (HLS4ML). Unlike traditional software-based 
implementations, HLS4ML utilizes high-level synthesis (HLS) tools to convert high-level 
model descriptions into hardware logic, enabling efficient and real-time inference on these 
platforms. The HLS4ML toolchain transforms these optimized ML models into hardware 
specifications suitable for implementation on FPGAs and ASICs. This framework not only 
enhances the performance of machine learning applications but also significantly reduces 
the time required for deployment. By utilizing hardware accelerators, HLS4ML addresses 
the need for low-latency inference, making it particularly advantageous for applications 
that demand rapid decision-making. The integration of hardware and software through 
HLS4ML paves the way for more efficient and scalable machine learning solutions across 
various industries, particularly through its incorporation of several core features that are 
critical for optimizing ML models for hardware deployment:

	● Quantization: Fixed-point quantization reduces model complexity and resource usage 
by implementing activation functions and mathematical operations using fixed-point 
arithmetic, thereby enhancing computational efficiency.

	● Framework support: HLS4ML integrates with several prominent machine learning 
frameworks, including (Q)Keras, PyTorch, and QONNX, allowing users to convert 
models into an internal representation (HLSModel) for further optimization and hard-
ware synthesis.

	● Optimization: The framework performs optimization passes to merge compatible lay-
ers, reducing latency and improving hardware resource utilization. Collaboration with 
the FINN team on QONNX enhances support for quantized neural network models, 
ensuring smooth interoperability with various back-end tools.

Originally developed for high-energy physics applications, HLS4ML has since expanded 
to meet the demands of fields requiring low-latency, high-throughput, and energy-efficient 
inference. It primarily supports Vivado HLS for Xilinx FPGAs but also offers back-ends for 
Intel HLS and experimental support for Vitis HLS. A key enabler of FastML is the use of 
specialized hardware components such as GPUs and FPGA. For critical BMS applications 
like fault detection and energy management, FPGAs have demonstrated superior perfor-
mance compared to GPUs. Recent benchmarks indicate that FPGAs can reach speeds that 
are up to 36 times faster and provide energy efficiency improvements of up to 21 times, all 
while ensuring an optimal balance between latency and throughput (Guo 2024). This makes 
FPGAs particularly suitable for real-time applications in dynamic building environments. 
To further enhance performance, FastML employs various optimization techniques. One 
such technique is feature selection, which reduces the number of input types and focuses 
on essential data, streamlining the preprocessing stage and improving efficiency without 
compromising prediction accuracy (Zhang et al. 2024b). Another important approach is data 
reduction, which involves utilizing fewer meteorological data types or other input variables, 
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significantly reducing computational overhead while maintaining model performance. 
Additionally, model quantization plays a critical role by reducing the precision of model 
parameters, enabling faster inference and lower energy consumption. This is particularly 
beneficial in resource-constrained environments where hardware limitations necessitate 
lightweight models (Rutishauser 2024). Despite its advantages, FastML faces challenges 
in BMS applications. For instance, while techniques like quantization and data reduction 
enhance efficiency, they may also introduce trade-offs in model accuracy or robustness. 
Additionally, the deployment of FastML models on hardware like FPGAs often requires 
specialized tools and expertise, which can hinder developer productivity and slow down 
implementation. As noted by Wang et al. (2019), the complexity of hardware programming 
presents a significant barrier. Furthermore, while FPGAs offer computational acceleration 
through reconfigurability, the time required for reconfiguration can be a significant draw-
back. To address these challenges, this paper utilizes HLS4ML, a tool designed to convert 
machine learning models into hardware designs (FastML Team 2024). HLS4ML strikes 
a balance between hardware efficiency-ensuring optimal performance on devices like 
FPGAs-and developer productivity-simplifying the process of creating and deploying AI 
applications. By reducing the time required for FPGA deployment, HLS4ML enables faster 
and more accessible implementation of FastML solutions in BMS. This approach not only 
enhances the performance of critical applications like fault detection and energy manage-
ment but also supports the broader adoption of FastML in building management. FastML 
is revolutionizing building management by leveraging advanced algorithms to analyze 
real-time data from IoT devices. This approach facilitates proactive adjustments in opera-
tions, enhancing energy efficiency and supporting sustainability initiatives. Barbaresi et al. 
(2022) demonstrate the effectiveness of various machine learning models, particularly tree-
based methods, in predicting building energy requirements and improving design strategies. 
Seyedzadeh et al. (2019) stress the need for model fine-tuning to achieve precise heating 
and cooling load predictions, which are crucial for optimizing energy consumption. Beyond 
energy prediction, FastML contributes to the development of advanced energy materials, 
as highlighted by Farhadi et al. (2023), promoting further improvements in energy perfor-
mance. Deiana et al. (2022a) discuss the integration of machine learning into scientific pro-
cesses, offering valuable insights for BMSs. Aarrestad et al. (2021) explore the deployment 
of low-latency neural networks on field-programmable gate arrays (FPGAs) for real-time 
data processing in building management, while Ngadiuba et al. (2020) focus on optimizing 
resource use within machine learning applications, enhancing BMS efficiency. Additionally, 
the review by Seyedzadeh et al. (2018) outlines various machine learning methodologies 
that enhance building energy performance, laying the groundwork for adaptive operational 
frameworks in smart buildings. Dey et al. (2020) proposed a machine learning-based multi-
level framework designed to enhance functionality and enable quick fault detection in smart 
buildings. However, this approach is computationally expensive due to a lack of model 
optimization, particularly when applied to large-scale buildings or in real-time scenarios. 
The high computational demands pose significant challenges, especially for older BMSs 
with limited processing power, which may hinder the feasibility of real-time fault detection 
and response. To address these issues and accelerate machine learning while reducing com-
plexity, optimization techniques such as quantization are essential. This optimization would 
facilitate deployment on resource-constrained devices by leveraging FPGA acceleration. To 
further tackle these challenges, Agouzoul et al. (2022) developed an efficient energy man-
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agement system that utilizes a Model Predictive Control (MPC)-based ANN implemented 
on FPGA technology. Their simulation-based approach enhances real-time processing capa-
bilities by enabling the parallel execution of control algorithms. This innovation not only 
improves energy consumption optimization but also reduces computational overhead and 
increases processing speed. However, it introduces programming complexities, as imple-
menting such systems requires specialized skills in hardware description languages (HDL) 
like VHDL and Verilog, along with meticulous resource management. Deploying intricate 
algorithms such as NNMPC on an FPGA necessitates careful planning of resources, includ-
ing logic elements and memory blocks, to ensure efficient hardware utilization and optimal 
performance. Additionally, Sen et al. (2023) proposed a fast, machine learning-based pre-
dictive control approach for energy management systems (EMS). Their study emphasizes 
the importance of real-time data for effective implementation while also acknowledging 
the potential risks associated with the reprogrammability of FPGA systems.In summary, 
FastML significantly enhances the capabilities of BMS in areas such as predictive mainte-
nance, occupancy detection, and energy forecasting, all of which are crucial for developing 
smart, sustainable buildings. However, to fully realize the potential of FastML, challenges 
related to data quality and model interpretability must be addressed. Future research should 
explore the integration of FastML with smart grid technologies to enable dynamic responses 
to fluctuations in energy supply and demand. Collaborative efforts among experts in engi-
neering, data science, and environmental science will be vital in overcoming the complex 
challenges faced in modern building management.

3  Evaluation and results

In this section we present how FastML and HLS4ML can be applied in an building man-
agement energy forecasting application. This section uses data and models form a real case 
study (Queen’s Building) and provides the following contributions (i) a forecasting capa-
bility to prediction energy consumption in an educational building context and (ii) a fast 
machine learning capability using high level specification ML that demonstrates the use of 
FastML for BMSs.

3.1  Experimental testbed and pilot

The evaluation part describes an energy consumption prediction for optimizing energy in 
buildings. The Queen Building, depicted in Fig. 6, serves as a case study for this analysis, 
showcasing its architectural layout. The objectives of this evaluation are to (i) develop a 
forecasting model using traditional machine learning techniques and (ii) transform the ML 
models using HLS4ML to demonstrate effectiveness in energy forecasting and energy man-
agement based on real data and models from a case study example. LSTM models, a type of 
Recurrent Neural Network (RNN), were selected for their proven effectiveness in capturing 
long-range dependencies in sequential data, which is critical for accurately modelling time-
series patterns in energy consumption. Energy usage in buildings often exhibits temporal 
trends, such as daily or weekly cycles, and LSTMs are particularly well-suited for captur-
ing these dynamics. Additionally, their compatibility with the HLS4ML framework, which 
enables efficient deployment on resource-constrained hardware, was a key factor in our 
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model selection. While alternative architectures, such as Transformers and Graph Neural 
Networks (GNNs), show promise, their computational demands and limited support within 
HLS4ML rendered them less practical for our current work. However, the computational 
intensity of LSTMs poses challenges for deployment in resource-constrained environments, 
such as edge devices. This study investigates four optimization strategies for LSTM models 
aimed at enhancing energy consumption forecasting: standard LSTM, pruned LSTM, quan-
tized LSTM, and a hardware-accelerated model using HLS4ML. We focus on pruning and 
quantization techniques that improve model efficiency by reducing computational complex-
ity while maintaining accuracy. The models are evaluated based on three criteria: accuracy, 
inference speed, and practical feasibility for real-time applications. Although both pruning 
and quantization effectively reduce model complexity and enhance inference speed, they 
may slightly compromise accuracy. In contrast, hardware acceleration through HLS4ML 
can provide substantial performance improvements, though careful integration is necessary 
to meet hardware constraints. The experimental setup utilized a system running Ubuntu 
18.04.2 LTS on an x86 64 architecture, powered by a 13th Gen Intel(R) Core(TM) i7-1355U 
processor with 12 logical CPUs across 6 cores and hyper-threading. This configuration, fea-
turing a base clock speed of approximately 2.6 GHz and 7.6 GB of RAM, supports efficient 
multi-tasking and high-speed connectivity via a 10 Gbit/s network interface. Key software 
tools used in this study include Pandas, NumPy, Seaborn, TensorFlow Model Optimization, 
HLS4ML, and Vivado for high-level synthesis.

Understanding the architectural layout of the Queen Building is crucial, as it impacts 
energy consumption patterns. The diverse spaces within the building, including offices, 
laboratories, and common areas, present unique challenges for energy forecasting and opti-
mization. This study aims to leverage advanced machine learning techniques to provide 
insights that can inform energy management strategies, ultimately leading to more sustain-
able practices in building operations.

Fig. 6  Architectural layout of the Queen’s Building, the primary case study for evaluating energy con-
sumption prediction models. This figure illustrates the framework for preparing the LSTM model, includ-
ing data extraction, validation, and the training process on an HLS-based FPGA
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3.1.1  Dataset

This project investigates the potential of creating an LSTM model to predict energy con-
sumption using a dataset sourced from the Queen Building. The data is formatted as a 
CSV file and contains 1,044 observations across 21 variables, with no missing or duplicate 
entries. Load volume statistics reveal a minimum of 7.78 MWh, a maximum of 29.0 MWh, 
and an average load volume of approximately 16.46 MWh. Key variables include energy 
usage data for multiple buildings, such as Queens East, Queens North, and others, along 
with total energy metrics. One critical aspect to consider is that the dataset may contain 
gaps in timestamps, and zero values do not always indicate no energy consumption; they 
can represent instances where the meter failed to report. Additionally, to accurately calculate 
total energy usage for the Trevithick building, adjustments must be made by subtracting 
excluded energy metrics. These considerations highlight the importance of preprocessing 
and refining the dataset to ensure accurate predictions. Overall, this project seeks to lever-
age this detailed dataset to enhance energy consumption forecasting and improve the model 
using various methods, including HLS4ML. In this context, FastML offers several advan-
tages. First, it allows for seamless compatibility with various BMS architectures, enabling 
efficient data exchange and control across different platforms. By processing and analyzing 
large datasets in real time, FastML enhances decision-making, optimizing energy use and 
occupant comfort regardless of the building type. Furthermore, FastML provides scalable 
machine learning models that can be tailored to specific building needs, offering customized 
solutions that improve overall operational efficiency. Moreover, FastML leverages machine 
learning algorithms that can quickly learn and adjust to diverse regional climates, construc-
tion practices, occupant cultural preferences, and economic conditions. For instance, its 
ability to process large datasets enables it to identify patterns and optimize performance 
based on specific local factors, such as temperature variations, building materials, and user 
behaviors. To illustrate, energy consumption patterns in tropical climates differ significantly 
from those in temperate or arid regions, while cultural norms around comfort and energy use 
can influence system design and adoption. This flexibility ensures that energy management 
strategies are tailored to meet the unique needs of different regions, enhancing efficiency 
and occupant satisfaction while promoting sustainable energy use across various contexts. 
Finally, the use of standardized APIs further simplifies integration, ensuring that diverse 
systems can communicate effectively while maintaining data integrity and security. These 
capabilities ultimately lead to enhanced sustainability and performance across a portfolio 
of buildings.

3.1.2  Data preprocessing

To prepare the energy consumption data for modeling, several preprocessing steps were 
carefully designed to address common data quality issues, handle missing values, and engi-
neer useful features to improve model accuracy:

	● Handling missing data: The dataset contained instances where energy values were 
recorded as zero, indicative of meter failures rather than actual consumption. Interpret-
ing these zeros as legitimate data could lead to misleading conclusions. To address this, 
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all zero values in the energy consumption columns were replaced with NaN values. A 
forward-filling technique was then applied to fill these gaps, ensuring data continuity by 
using the last valid observation to maintain the integrity of the time series.

	● Resampling: The original dataset lacked a consistent time interval due to gaps in me-
ter reporting or irregular data logging. To standardize the dataset, it was resampled to 
15-minute intervals, calculating the mean of all values within each interval. Remaining 
gaps were again forward-filled to produce a complete and uniform time series.

	● Feature engineering: Several temporal features were extracted, including month, year, 
week number, and day of the week, to capture seasonal consumption patterns. A new 
feature, "season," categorized the data into Spring, Summer, Autumn, or Winter to help 
the model capture broader consumption trends influenced by weather or time of year. 
Additionally, lag features representing energy consumption from the past seven days 
were introduced, enabling the model to utilize historical behavior in predictions.

	● Special case of Trevithick Data: The energy consumption data for the Trevithick build-
ing required adjustment, as the reported values included data from another building, in-
flating the figures. To obtain the actual energy consumption for Trevithick, values in the 
’Trev’ column were adjusted by subtracting the corresponding values in the ’Trev_Ex-
clude’ column, ensuring accurate data specific to the building’s consumption.

	● Incorporating Domain-Specific Insights: The preprocessing steps were informed by 
a deep understanding of energy consumption dynamics. Recognizing that zero values 
often stemmed from meter failures allowed for more accurate data handling. Extract-
ing seasonal features accounted for predictable variations in energy usage, while lag 
features utilized the temporal dependencies inherent in energy consumption patterns. 
Adjusting the pilot data demonstrated awareness of the complexities involved in accu-
rately reporting energy usage across multiple buildings.

	● Scaling: After preprocessing, the dataset was normalized using the Min-Max scaling 
method, which transformed values to a range between 0 and 1. This normalization en-
sured that all features contributed equally during model training, preventing features 
with larger ranges from dominating the outcomes.

The scaling process involved several steps:

	● Initialization: The MinMaxScaler was applied to normalize the feature set.
	● Fitting the Scaler: The scaler was fitted to compute the minimum and maximum values 
for each feature.

	● Transforming the Data: The data was normalized using the formula: 

	
X ′ = X − Xmin

Xmax − Xmin

	● Reshaping for LSTM: The scaled data were reshaped to meet the input requirements 
of LSTM models, which typically expect three-dimensional input in the format of (sam-
ples, time steps, features).
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3.1.3  Outlier handling in data preprocessing

The analysis of the “Actual Trev Energy Usage” data revealed significant outliers, particu-
larly energy consumption levels exceeding 100 megawatts (MW). These extreme values 
could distort model performance and were identified for removal.

The identification and removal of outliers were conducted as follows:

	● Identification of Outliers: The Interquartile Range (IQR) method was employed to 
detect outliers. Here, the first quartile (Q1) and the third quartile (Q3) were calculated, 
yielding the IQR as IQR = Q3 − Q1. Outliers were defined as values falling below 
Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR.

	● Filtering the Dataset: The dataset was filtered to retain only data points within accept-
able limits, including a check to ensure that maximum values across relevant energy 
columns did not exceed the threshold of 100 MW. This process involved removing 
missing values and ensuring that Actual Trev values remained positive.

	● Resulting Dataset: The removal of outliers resulted in a dataset that more accurately 
represents typical energy consumption patterns, thus reducing potential skew in analy-
ses and visualizations.

3.1.4  Data visualization

Data visualizations were created to reveal patterns in energy consumption, facilitating a 
deeper understanding of underlying trends and variances.

	● Seasonality: Bar plots were employed to illustrate variations in energy consumption 
across different seasons. As shown in Fig.  7, energy consumption peaks during the 
spring months, followed closely by winter, likely due to increased heating demands 
associated with colder temperatures in winter and heightened activity in spring. This 
seasonal analysis provides critical insights for forecasting energy needs and optimizing 
resource allocation throughout the year.

	● Monthly Energy Usage: Box plots displayed the distribution of energy consumption 
for each month, highlighting significant spikes in energy usage during colder months. 
Figure 8 reinforces the seasonal trends previously identified, showcasing the variability 
across months.

	● Energy Consumption Distribution: The distribution of ’Actual_Trev’ values was ana-
lyzed, revealing a peak at 15.62 MW, indicating a common consumption level. This 
analysis confirms the effectiveness of the preprocessing steps and provides insight into 
energy consumption patterns. Figure 9 illustrates the distribution and density of energy 
consumption, indicating that the highest density occurs at 15.62 MW, with values rang-
ing from approximately 7.81 MW to 17.22 MW.

3.1.5  Train, validation, and test dataset

To effectively evaluate the LSTM model, the dataset was divided into three distinct subsets:

	● Training Set: This subset was utilized to train the LSTM model on historical energy 
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consumption data, enabling the model to learn inherent patterns and relationships.
	● Validation Set: The validation set served to fine-tune hyperparameters and monitor 
model performance during training. This step is critical for preventing overfitting, en-
suring a balance between fitting the training data and generalizing to new, unseen data.

	● Test Set: This subset was reserved for the final evaluation of the model’s performance. 
Using a separate test set allows for an assessment of the model’s generalization ability 
on data it has not encountered during training or validation.

Fig. 8  Monthly energy usage distribution. The box plot illustrates the range of energy consumption for 
each month, highlighting significant spikes during colder months

 

Fig. 7  Average energy consumption by season. The bar plot highlights the significant increase in energy 
usage during spring, followed by winter, indicating a strong correlation between seasonal changes and 
energy demand
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These strategic splits were instrumental in confirming the model’s capability to generalize 
effectively to future energy consumption data, rather than merely memorizing the training 
dataset.

3.1.6  LSTM mechanism

The underlying mechanism of the LSTM includes equations that govern the flow of infor-
mation through its gates:

	 ft = σ(Wf · [ht−1, xt] + bf ) (Forget Gate) � (1)

	 it = σ(Wi · [ht−1, xt] + bi) (Input Gate) � (2)

	 ot = σ(Wo · [ht−1, xt] + bo) (Output Gate) � (3)

These gates work together to capture long-term dependencies in time series data, making the 
LSTM model particularly effective for prediction tasks.

3.1.7  Model structure

The architecture of the LSTM model comprised three primary components:

	● LSTM Layer: The core of the model consisted of a single LSTM layer with 50 units. 
This layer was essential for capturing temporal patterns in the energy consumption data, 
enabling the model to learn from both short- and long-term dependencies.

	● Dropout Layer: A dropout layer with a 20% dropout rate was integrated to mitigate 
the risk of overfitting. By randomly dropping a fraction of the units during training, the 

Fig. 9  Energy consumption distribution and density. This figure illustrates the distribution of energy con-
sumption values for the ’Trevithick’ building, with the highest density observed at 15.62 MW
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model was encouraged to learn more robust features, thereby improving its generaliza-
tion ability.

	● Dense Layer: The final layer was a fully connected Dense layer that produced the 
output for energy consumption prediction. This layer enabled the model to synthesize 
learned information from previous layers into a single prediction.

This model structure effectively addressed the complexities of time series forecasting in 
energy consumption, balancing model complexity with generalization capabilities.

3.1.8  Model performance

The performance of the LSTM model in predicting daily energy consumption is illustrated 
through two key graphical representations. Figure 10 compares actual energy consump-
tion (in blue) with the LSTM model’s predictions (in orange) over time. This visual rep-
resentation underscores the model’s ability to closely follow actual consumption trends, 
demonstrating an accuracy of 95.87% on the validation set. Such proximity indicates effec-
tive learning and generalization, which are essential for reliable forecasting. Additionally, 
Fig. 11 depicts the training and validation loss over the epochs. The training loss shows a 
consistent decline, while the validation loss decreases with some fluctuations. This trend 
suggests that the model is effectively minimizing error without significant overfitting, as 
both losses stabilize towards the end of training.

These results underscore the robustness of the LSTM model’s predictive capabilities 
and its effectiveness in capturing underlying patterns in energy consumption data. The high 
accuracy achieved indicates that the model can be reliably used for forecasting purposes in 
energy management applications. Moreover, the observed loss trends suggest that further 
tuning and optimization could enhance performance, especially in real-time applications. 
Continued evaluation and refinement of the model will be essential to maintain its accuracy 
and adaptability to changing energy consumption behaviors in diverse environments.

Fig. 10  LSTM baseline model predictions vs. actual energy consumption. This figure displays the base-
line model’s performance, with the blue line for actual values and the orange line for predictions over time
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3.1.9  Future predictions for energy consumption

To forecast energy consumption for the next 60 days using the trained LSTM model, we 
implemented the create_future_data function. This function generates predictions 
by following a systematic approach: 

1.	 Input Preparation: The last data point from the scaled dataset is reshaped to conform 
to the model’s input requirements, ensuring it has the shape (1, timesteps, features).

2.	 Iterative Prediction: A loop runs for the specified number of days (60 in this case). For 
each iteration:

	● The model predicts the next energy consumption value based on the current data.
	● The predicted value is appended to a list for future analysis.
	● The input data is updated by discarding the oldest timestep and adding the newly 
predicted value, maintaining the required input shape.

3.	 Inverse Transformation: Once all predictions are generated, the values are trans-
formed back to their original scale using the inverse of the scaling applied during 
training.

The predicted energy consumption values show an initial increase, peaking around Day 10, 
followed by a decline toward Day 20. After this, values fluctuate with an upward trend by 
Day 60. This cyclical pattern in energy demand can significantly aid in resource planning 
and management decisions.

Fig. 11  LSTM model training and validation loss. This figure illustrates the training and validation loss 
over epochs, highlighting the model’s learning progress and stability

 

1 3

  211   Page 30 of 48



Fast machine learning for building management systems

3.2  LSTM models optimization for energy consumption

This study evaluates three LSTM model variations: Standard LSTM, Pruned LSTM, and 
Quantized LSTM, focusing on their accuracy and inference speed. The Standard LSTM 
model achieved an accuracy of 92.43%, serving as a baseline. After pruning, accuracy 
increased slightly to 92.97%, attributed to the regularization effect that reduces overfitting. 
In contrast, the Quantized LSTM model exhibited a decrease in accuracy to 90.25%, due 
to the introduction of quantization noise from lowering weight precision. Nonetheless, this 
model remains viable where efficiency is prioritized. Figure 12 shows the model predic-
tions compared to actual daily energy consumption, illustrating the performance differences 
among the models.

The model predictions reveal that the Standard LSTM closely aligns with actual con-
sumption, demonstrating its high accuracy. The Pruned LSTM maintains a similar trend, 
indicating effective learning despite reduced complexity. Although the Quantized LSTM 
shows a decline in accuracy, it still captures essential consumption patterns, highlighting 
its efficiency in resource-constrained scenarios. In addition to accuracy, inference speed 
was analyzed to assess practicality for real-time applications. The Standard LSTM had an 
inference time of 0.994 s per sample, which is impractical for edge devices. After pruning, 
this time decreased to 0.566 s, a 43% reduction due to reduced model complexity. As shown 
in Fig. 13, quantization provided the most significant improvement, achieving an inference 
time of only 0.095  s per sample, reflecting a 90% speedup by utilizing lower-precision 
arithmetic.

This comparison highlights the substantial speed improvements achieved through prun-
ing and quantization. The Quantized LSTM’s remarkable reduction in inference time dem-
onstrates its suitability for real-time applications, particularly in low-power environments, 
making it a strong candidate for energy management systems. Weight distribution analysis 
further elucidates the models’ characteristics. The Standard LSTM exhibited a wide spread 
of weight values, indicating diverse learned relationships, whereas pruning resulted in many 
weights being reduced to zero, concentrating remaining weights around small magnitudes. 

Fig. 12  Models predictions vs. actual daily energy consumption. This figure compares predictions from 
three LSTM variations: Standard, Pruned, and Quantized LSTMs
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This sparsity, illustrated in Fig. 14, allows the pruned model to maintain accuracy through 
effective regularization. In contrast, the Quantized LSTM demonstrated a more uniform 
weight distribution due to reduced bit precision, which, while improving efficiency, contrib-
uted to the observed accuracy drop.

The weight distribution analysis shows that the Pruned LSTM effectively eliminates 
many weights, allowing the model to concentrate on significant features, thus enhancing 
generalization. Conversely, the Quantized LSTM’s uniform distribution reflects the trade-
offs involved in reducing precision for efficiency. When comparing the models, each opti-
mization technique has distinct advantages. The Standard LSTM offers high accuracy but is 
less viable for real-time applications due to its computational cost. Pruning strikes a balance 
by slightly improving accuracy while significantly reducing inference time, making it suit-
able for environments with limited resources. Conversely, the Quantized LSTM excels in 
inference speed, suitable for deployment in low-power scenarios, despite a modest accuracy 
reduction.

3.3  NAS and edge deployment of optimized LSTM models

The NAS LSTM model significantly outperforms the Standard LSTM in prediction accu-
racy, achieving a Mean Squared Error (MSE) of 0.00018 compared to 0.00305, and an R2 
value of 0.9960 versus 0.9589 (Table 4). This improvement stems from the NAS process’s 
rigorous search for optimal hyperparameters and architectures, though it increases training 
time (139.49 s vs. 4.83 s). Despite this trade-off, the NAS LSTM exhibits slightly faster 
inference (0.0676 s vs. 0.0714 s) and is marginally larger (0.31 MB vs. 0.28 MB), which 
may impact deployment on resource-constrained devices. To deploy the NAS LSTM on 
FPGAs, quantization is required, potentially reducing accuracy-a key consideration when 
balancing performance and hardware constraints.

Fig. 13  This figure compares the inference speeds of Standard, Pruned, and Quantized LSTMs. Quantiza-
tion delivers the best performance at 0.095 s per sample, allowing efficient deployment on edge devices

 

1 3

  211   Page 32 of 48



Fast machine learning for building management systems

Cloud-based solutions, while effective for large-scale data management, introduce chal-
lenges such as latency, cybersecurity risks, and high data transfer costs (Yanamala 2024). 
To address these limitations, we evaluated optimized LSTM models on edge hardware plat-
forms, including FPGAs and GPUs. Figure 15 shows that the Pynq Z1 FPGA achieves a 
superior inference speed of 0.002574 s, compared to the Intel(R) Xeon(R) W7-3445 CPU at 
0.289659 s and the NVIDIA GeForce RTX 4070 Ti GPU at 0.127011 s, making it ideal for 
real-time applications like adaptive HVAC control and fault detection.

Quantization further enhances edge compatibility by reducing the Baseline Model’s 
inference size from 70.55 to 27.69 KB and weight size from 13.50 to 1.19 KB (Fig. 16)

The proposed FastML model has generated a low inference time (0.002574  s) which 
makes it ideal for edge deployment, where minimizing latency is critical, such as in dynami-
cally adjusting HVAC systems based on occupancy patterns. The model size of the proposed 
quantized model (27.69 KB inference size, 1.19 KB weight size) further supports edge 
deployment feasibility. Overall, FastML has advanced compatibility with edge or fog envi-
ronments allowing for localized data processing closer to data capture or actuation points. 

Metric Standard LSTM NAS LSTM
Mean squared error (MSE) 0.00305 0.00018
R-squared (R2) 0.9589 0.9960
Training time (s) 4.83 139.49
Inference time (s) 0.0714 0.0676
Model size (MB) 0.28 0.31

Table 4  Comparison of standard 
LSTM and NAS LSTM perfor-
mance metrics

 

Fig. 14  Weight distribution before and after pruning. The Standard LSTM shows a wide weight spread, 
while pruning concentrates weights around small magnitudes for sparsity
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This deployment enhances data locality, as analytics and decision-making occur on-site, 
reducing latency with the ability to provide near real-time signals to changing conditions 
in BMSs. By minimizing data transmission to the cloud, FastML alleviates bandwidth con-
straints, making efficient use of network resources and reducing operational costs. Further-
more, processing data at the edge mitigates cybersecurity risks, as sensitive information can 
be analyzed locally without being transmitted over networks. This in-site analysis enhances 
data privacy and security, ensuring compliance with regulations while maintaining the 
integrity of occupant data.

Fig. 16  Comparison of model sizes between Baseline and Quantized Models, focusing on inference disk 
storage and weight size

 

Fig. 15  Inference speed comparison of optimized LSTM models across hardware platforms. FPGA ac-
celeration provides a significant advantage in real-time applications
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3.4  Transformation to HLS4ML

In this experiment, we implemented and compared a machine learning model using two 
approaches: a traditional Keras implementation and a hardware-optimized version using 
HLS4ML. The goal was to evaluate the performance of the HLS4ML model, which was 
derived from the predictions generated by the LSTM model, in terms of accuracy and 
resource efficiency compared to the baseline Keras model. The Keras model achieved an 
accuracy of 95.01%, while the HLS4ML model attained 92.35%, reflecting a slight drop of 
2.66%. This decrease in accuracy is attributed to the fixed-point quantization employed by 
HLS4ML, as opposed to the floating-point precision used in Keras. Fixed-point arithme-
tic introduces quantization error, leading to a marginal reduction in accuracy but allowing 
for significantly more efficient computations on hardware platforms. The model architec-
ture used for this comparison consists of three dense layers. The input layer receives a 
20-dimensional input vector, followed by fully connected dense layers that progressively 
reduce the dimensionality to a single output representing the model’s prediction. Both the 
Keras and HLS4ML implementations employed this architecture to ensure a fair compari-
son. The HLS4ML model was configured with specific parameters: the precision was set 
to ap_fixed<16, 6>, with 16 bits total and 6 bits allocated for the integer part. The reuse 
factor, determining the level of resource reuse in the hardware, was set to 1, minimizing 
latency by performing computations in parallel at the cost of increased resource usage. The 
optimization strategy focused on reducing latency during inference, while the BRAM fac-
tor, specifying the available block RAM resources, was set to 1,000,000,000. Trace output 
was disabled to minimize runtime overhead. Each layer’s weights, biases, and outputs were 
quantized using the same fixed-point precision, ensuring consistent numerical representa-
tion throughout the model.The results of the predictions made by both models are shown in 
Fig. 17. The graph indicates that while the Keras model consistently performs at a higher 
accuracy, the HLS4ML model still delivers competitive results. This performance trade-off 
highlights the effectiveness of using hardware optimization for deployment in environments 
where computational resources are limited.

Fig. 17  Comparison of HLS4ML and Keras model predictions. This figure shows the accuracy of both 
models, with HLS4ML reflecting a 2.66% drop compared to the Keras model
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The slight reduction in accuracy can be considered an acceptable compromise for the 
gains in resource efficiency and computational speed offered by the HLS4ML model. These 
findings suggest that for applications where latency and resource utilization are critical, 
the HLS4ML framework presents a viable solution despite the marginal loss in predic-
tive performance. Future work could explore advanced quantization techniques or model 
architectures to further bridge the accuracy gap while maintaining the benefits of hardware 
acceleration.

3.4.1  HLS4ML model configuration

The HLS4ML model was configured with a 16-bit fixed-point precision (ap_fixed < 16,6 >

), allocating 6 bits for the integer part. The reuse factor was set to 1, thereby minimizing 
latency by allowing parallel computations, although this increased resource usage. The opti-
mization of the model focused on reducing latency during inference, with a Block RAM 
(BRAM) factor of 1,000,000,000. Additionally, trace output was disabled to decrease run-
time overhead. All layers utilized the same fixed-point precision to ensure consistent numer-
ical representation.

The structure of the HLS4ML model, as illustrated in Fig. 18, showcases the overall 
architecture and highlights the parallel processing capabilities that contribute to its per-
formance efficiency. This configuration is crucial for achieving optimal inference times, 
especially in applications requiring rapid decision-making.

3.4.2  Weight profiling

Weight profiling was conducted both before and after optimization to analyze the distribu-
tion and sparsity of the model’s weights. Initially, the weight distribution was broad, with 
minimal sparsity, as depicted in Fig. 19.

After the HLS4ML optimization, the weight distribution became more concentrated, 
with non-essential weights pruned to zero, thereby enhancing sparsity. This increased spar-
sity not only reduced model complexity but also improved hardware efficiency, as shown 
in Fig. 20.

The comparison of weight distributions before and after optimization underscores the 
effectiveness of the pruning technique, highlighting significant improvements in both model 
performance and resource utilization.

3.4.3  Model architecture visualization

The model topology was visualized to illustrate the data flow through the network, showcas-
ing how each layer transforms the input features into the final prediction. Below is a sum-
mary of the key layers in the model (Table 5):

This visualization emphasizes the flow of information and the consistent use of fixed-
point precision throughout the model, ensuring that the architecture is both efficient and 
effective for deployment.
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4  Discussion

This study explores enhancing BMSs using FastML techniques. Our findings indicate that 
FastML can significantly improve BMS performance, automation, and efficiency through 
pruned and quantized models. The Pruned LSTM model achieved a 43% increase in infer-
ence speed with an accuracy of 92.97%, making it suitable for resource-constrained envi-
ronments like IoT devices. The Quantized LSTM resulted in a 90% reduction in inference 
time, crucial for real-time energy management, with only a minor compromise in accuracy. 
We primarily utilized LSTM models for energy consumption forecasting, evaluating three 
optimized variations: Standard, Pruned, and Quantized. These models effectively capture 
temporal dependencies in energy data, with the pruned and quantized versions tailored for 
resource-efficient applications. The integration of the HLS4ML framework enabled hard-
ware acceleration on platforms like FPGAs, significantly boosting inference speed for 

Fig. 18  HLS4ML model summary. This figure details the model’s architecture, including the input layer, 
hidden layers, and output layer for energy prediction. It also indicates the precision used throughout the 
model
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energy forecasting tasks. Our research involved the creation, deployment, and testing of 
FastML models in a real-world case study at the Queen’s Building. This process included 
optimizing LSTM models and transforming them into hardware-accelerated versions via 
HLS4ML, improving inference speed while maintaining acceptable accuracy. Although the 
fixed-point quantization method resulted in a slight accuracy drop (92.35%), it significantly 
enhanced computational efficiency, making the models suitable for real-time energy man-
agement. Testing confirmed their effectiveness in handling real-world energy consumption 
data. While the focus of this study has been on technical advancements, broader factors such 

Fig. 20  Weight profiling after optimization

 

Fig. 19  Weight profiling before optimization
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as regulatory constraints, building codes, and evolving energy standards are critical for real-
world adoption. For instance, compliance with mandates like LEED for energy efficiency or 
GDPR for data protection could influence the feasibility and scalability of these solutions, 
while regulatory incentives may enhance their adoption. FastML enables a rapid model 
development and deployment while ensuring compliance with regulatory constraints and 
evolving energy standards. FastML facilitates swift machine learning model training and 
optimization, allowing for quick adaptation to new building codes and energy regulations. 
Meanwhile, HLS4ML converts high-level machine learning models into hardware-efficient 
implementations, ensuring real-time performance and reliability, crucial for meeting strin-
gent safety and performance standards. To address non-stationary environments, our model 
incorporates strategies to enhance model adaptability. Temporal features like season, month, 
and lagged energy consumption capture gradual changes in climate and usage patterns. 
Additionally, the model can be periodically retrained with updated data to adapt to evolving 
load profiles or energy policies. FastML models can adapt to dynamic building conditions 
such as load profiles, occupant requirements or external policies by leveraging real-time 
data assimilation and adaptive learning algorithms. The HLS4ML facilitates rapid process-
ing at the edge, enabling immediate adjustments with continuous learning capabilities to 
support inference based on the incoming data, allowing it to recalibrate control strategies 
when user parameters such as occupancy or comfort change. Furthermore, many machine 
learning models, including FastML, rely on high-quality datasets. The lack of sufficiently 
large and diverse datasets for training and validation is a concern, particularly when energy 
consumption data is not reported. This data gap can hinder model accuracy and reliability, 
emphasizing the need for improved data collection and preprocessing techniques. Looking 
ahead, enhancing the real-time adaptability of FastML models to changing building condi-
tions, such as occupancy levels and weather changes, will be crucial for optimizing energy 
management. Seamless integration of FastML solutions with existing BMS infrastructure is 
also essential, highlighting the need for standardized protocols to facilitate integration with-
out complete system overhauls. Prioritizing user-friendly interfaces and decision support 
tools for building operators and occupants will enhance engagement and effectiveness in 
energy management. Robustness against anomalies in data, such as sensor malfunctions or 
unexpected environmental changes, is critical for model reliability. Further research could 

Layer name Layer type Precision Trace Input 
shape

input_7 InputLayer ap_fixed 
<16,6>

False [(None, 
20)]

dense_35 Dense ap_fixed 
<16,6>

False [(None, 
20)]

dense_35_relu ReLU ap_fixed 
<16,6>

False [(None, 
64)]

dense_36 Dense ap_fixed 
<16,6>

False [(None, 
64)]

dense_36_relu ReLU ap_fixed 
<16,6>

False [(None, 
32)]

dense_37 Dense ap_fixed 
<16,6>

False [(None, 
32)]

dense_37_linear Linear ap_fixed 
<16,6>

False [(None, 1)]

Table 5  Overview of key model 
layers and precision settings

This table includes each layer’s 
name, type, precision format, 
tracing status, and input shape
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explore anomaly detection mechanisms to strengthen this aspect. As BMS increasingly inte-
grate machine learning, evaluating the environmental impact of deploying these technolo-
gies-particularly regarding energy consumption and resource usage-should also be a focus.

In summary, refining these models through techniques such as layer fusion and advanced 
pruning strategies will be vital for enhancing scalability and integration with smart grid 
technologies. Addressing these challenges is crucial for maximizing the practical impact 
of FastML solutions in improving energy efficiency and operational performance in BMS.

5  Final remarks and future roadmap

This research showcases the application of HLS4ML-based FastML techniques in BMSs 
through a case study at the Queen’s Building, utilizing FPGA hardware enabled by HLS4ML. 
It simplifies the deployment of machine learning models, making them more accessible to 
operators and reducing setup time. Optimization methods like pruning and quantization 
enhance real-time energy management on resource-constrained devices, while FastML 
excels in speed and efficiency, making it suitable for rapid scenarios like fault detection. 
Furthermore, FastML effectively handles predictive uncertainty, model drift, and unex-
pected conditions based on a robust adaptive learning capability and hardware-efficient 
implementations. The advantage of HLS4ML facilitates quick inference at the edge, allow-
ing for immediate adjustments to control strategies in response to unforeseen events like 
lockdowns or severe weather. The system can incorporate feedback loops that monitor per-
formance metrics, enabling it to detect model drift and recalibrate accordingly. The dataset 
utilized for this study is sourced from Queen’s Building, an educational facility located in 
South Wales. To address challenges such as data gaps, sensor faults, and irregular mainte-
nance logs, FastML provides key mechanisms to address data gaps and privacy by employ-
ing advanced data imputation techniques to handle sensor faults and gaps in data collection, 
ensuring that analyses remain robust and reliable even in the presence of incomplete infor-
mation. Moreover, FastML can detect and compensate for irregular maintenance logs, 
enhancing the accuracy of predictive models and operational insights. Regarding privacy, 
FastML integrates privacy-preserving methods, such as data anonymization and encryption, 
to protect sensitive information while still enabling effective data analysis by using feder-
ated learning approaches, allowing models to be trained on decentralized data sources with-
out compromising individual privacy. FastML is specifically designed to accelerate and 
optimize processes for speed and efficiency, making it particularly well-suited for scenarios 
requiring rapid response and decision-making, such as fault detection. In this study, FastML 
was effectively applied to energy forecasting in BMSs, demonstrating its real-time capabili-
ties, effective speed, resource efficiency, and strong predictive performance. The hardware 
integration with hls4ml can enable efficient inference at the edge to capture timely alerts and 
data-driven adjustments for critical assets. Beyond fault detection, FastML can be integrated 
with multi-objective optimization techniques, particularly GAs, to balance competing 
objectives within BMS applications. Such integration can minimize energy consumption 
while maintaining occupant comfort and operational efficiency. GAs provide a robust 
framework for identifying Pareto-optimal solutions, enabling informed decision-making 
that reconciles these competing demands. FastML has the ability to effectively address the 
trade-offs between energy savings, occupant comfort, and real-time responsiveness in build-
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ing operations through advanced ML and hardware optimization techniques. FastML uti-
lizes data-driven insights and predictive analytics to analyze occupancy patterns and energy 
usage, enabling proactive adjustments in HVAC systems that enhance comfort while mini-
mizing energy consumption. Simultaneously, HLS4ML translates these machines learning 
models into efficient hardware implementations, ensuring rapid decision-making and real-
time responsiveness. By enabling multi-objective optimization and incorporating occupant 
preferences, these tools create a dynamic feedback loop that balances the need for energy 
efficiency with the imperative of occupant comfort, ultimately leading to smarter and more 
sustainable building management practices. Furthermore, FastML provides significant 
advantages for user-centric solution in buildings by integrating with multi-objective optimi-
zation techniques such as GAs and MPC. This integration enables the formulation of adap-
tive control policies that effectively balance multiple objectives, including energy efficiency, 
occupant comfort, and operational costs. By leveraging real-time data on human behaviour 
and preferences, FastML can inform these optimization processes, ensuring that control 
strategies are responsive to occupant needs with feedback integration for continuous refine-
ment of policies based on user input, enhancing overall satisfaction. Policy constraints, such 
as regulatory requirements and sustainability goals, can be also seamlessly integrated as 
constraints into the optimization framework, ensuring that BMS operations remain compli-
ant while maximizing performance. By integrating with advanced algorithms such as GAs, 
neural networks and reinforcement learning, FastML can capture the complex interdepen-
dencies between environmental controls and occupant actions. For instance, it can analyze 
historical data to identify patterns in how occupancy influences HVAC load and lighting 
requirements, while simultaneously considering security protocols that might alter access 
and energy usage. Incorporating real-time data from sensors and IoT devices enables the 
system to dynamically adjust to changing conditions, such as varying occupancy levels or 
external weather factors. FastML can learn from occupant behavior and preferences, opti-
mizing energy efficiency and comfort while maintaining security. Scalability is another key 
strength of FastML, allowing deployment at district or city-wide levels. The framework 
enables efficient and distributed model deployment alongside data aggregation capabilities. 
HLS4ML facilitates the conversion of ML models into hardware-efficient implementations, 
enabling real-time processing at the network edge for each building. This localized deploy-
ment minimizes latency and bandwidth requirements while allowing buildings to operate 
autonomously based on real-time data. Aggregating data from these distributed models into 
a central system allows for comprehensive analytics, facilitating city-wide insights and 
trend identification. Coordinated demand response strategies can leverage aggregated data 
to balance loads across buildings, further enhancing overall energy efficiency. FastML also 
supports communication between remote building systems for synchronized interventions, 
aligning energy use with city-wide sustainability goals and fostering a more resilient urban 
environment. Additionally, FastML leverages techniques such as feature fusion and deep 
learning architectures, which can synthesize information from various data sources to 
enhance predictive accuracy and decision-making capabilities. HLS4ML optimizes these 
models for hardware efficiency, enabling real-time processing at the edge. This combination 
allows BMS to dynamically adapt to varying conditions, providing a holistic view of build-
ing performance and facilitating informed responses to maintain occupant comfort and 
energy efficiency. Future work should develop advanced methodologies for time-series 
alignment, robust imputation techniques for missing data, and blockchain-based frame-
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works to ensure data integrity and traceability. Enhancing data reliability in this manner will 
strengthen the robustness of FastML models, improving their effectiveness in real-world 
deployments. Finally, the lifecycle costs of adapting FastML for BMSs include expenses for 
model development, deployment, maintenance, retraining, and hardware upgrades. Mainte-
nance costs involve regular calibration and upkeep of sensors and monitoring devices. The 
ongoing power consumption of FPGA hardware is an important factor, although it is likely 
to be lower than that of traditional systems due to the energy efficiency of FPGAs. Periodic 
updates to machine learning models and HLS4ML software will incur costs. Retraining and 
upgrade expenses will be incurred when building conditions or requirements change and 
resources will be needed for retraining models. There may also be hardware upgrades neces-
sary to support more complex models or to handle increased data volumes as the system 
expands to cover more areas or functions. The HLS4ML framework provides configurable 
parameters that allow users to adjust the balance between latency, throughput, power con-
sumption, and resource usage, hence, reducing costs while ensuring optimal performance 
for their specific applications.

6  Conclusion

The application of ML within BMSs has significantly improved energy efficiency and occu-
pant comfort. However, conventional ML techniques often fall short in meeting the stringent 
timing and resource constraints required in BMS applications. FastML emerges as a pivotal 
approach, enhancing the performance of ML models in resource-constrained environments 
by accelerating inference and optimizing resource usage. This study presents a compre-
hensive review of ML and AI applications for BMSs, complemented by a case study using 
the LSTM model for energy forecasting in an educational building. By employing FastML 
techniques, the standard LSTM model was adapted for enhanced generalization, accuracy, 
and inference speed-qualities essential for real-time, performance-sensitive applications. 
Specifically, the pruned LSTM model achieved an accuracy of 92.97%, indicating effective 
regularization that mitigates overfitting. In comparison, the quantized LSTM, with a slightly 
lower accuracy of 90.25%, demonstrated notable improvements in inference speed, making 
it ideal for deployment in real-time, resource-limited environments. This trade-off analysis 
between accuracy and speed provides valuable insights for practical FastML deployment. 
Additionally, this paper proposes the use of HLS4ML, a high-level synthesis framework, 
as an efficient solution for implementing ML models on hardware platforms. While the 
HLS4ML model achieved comparable accuracy (92.97%) to its Keras counterpart, it offered 
substantial gains in hardware efficiency, particularly when deployed on FPGA and ASIC 
platforms. By utilizing fixed-point arithmetic, HLS4ML enables low-latency, high-through-
put inference, which is well-suited for real-time BMS applications. A key consideration is 
the lifecycle management of FastML models. Specifically, FastML can be validated, main-
tained, and updated long-term through hardware-accelerated solutions and pruned or quan-
tized models by implementing a robust framework that emphasizes interoperability and 
adaptability. Continuous validation is facilitated through real-time performance monitoring 
and feedback loops that assess model accuracy against established benchmarks, enabling 
prompt detection of performance drifts. Moreover, the retraining process can be automated 
and scheduled, ensuring model relevance with minimal manual intervention. Additionally, 
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to facilitate integration with legacy systems and proprietary BMSs, FastML and HLS4ML 
employ standardized APIs and middleware solutions, allowing seamless data exchange and 
control commands. Furthermore, FastML ensures continuous refinement and adaptation, 
mitigating model obsolescence and preserving long-term value through several mecha-
nisms. For instance, it supports incremental learning, enabling models to update with new 
data without complete retraining, thus maintaining relevance as building conditions evolve. 
Similarly, the modular architecture of HLS4ML allows for easy integration of new hardware 
and algorithm updates, accommodating advancements in technology and utility policies. 
Continuous performance monitoring further enables real-time assessment and proactive 
adjustments based on feedback and changing conditions within the building ecosystem. 
Finally, dynamic retraining capabilities ensure models are regularly updated with new data, 
while configurable parameters in HLS4ML permit customization for specific requirements, 
such as energy consumption patterns. Looking ahead, future research may explore advanced 
optimization techniques, including layer fusion, enhanced pruning strategies, and refined 
quantization methods, to minimize accuracy loss while maximizing hardware efficiency. 
With these advancements, HLS4ML has the potential to become a cornerstone framework 
for deploying machine learning models in resource-constrained BMS environments, sig-
nificantly advancing the field of energy management and control in real-world applications
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