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 A B S T R A C T

Length of Stay (LOS) serves as a critical metric for assessing the quality of care within trauma systems, 
reflecting a healthcare system’s efficacy in managing patient flow and resource allocation. However, evaluating 
the total patient LOS from a comprehensive trauma network perspective remains challenging. This study aims 
to identify key driving factors influencing LOS in the trauma network, using a dataset containing 26,238 
admissions to various institutions within the South Wales Major Trauma Network from January 2012 to August 
2021. Given that LOS distributions are typically right-skewed, this paper develops three models to understand 
their variation, including LASSO Regression, Random Forest, and Generalised Additive Model. Each model 
incorporates preprocessing strategies to address the right-skewed nature of LOS. Our analysis shows that the 
LASSO Regression model demonstrates superior performance compared to benchmarks. Significant predictors of 
LOS are identified, which include the frequency of surgeries (five and six times), patient age (over 75), specific 
ward types (Burns, Spinal injury unit, Gietaritic, neurosurgical rehabilitation, etc.) and their interactions with 
ward transfer times and transfer status. These insights are important for clinical stakeholders who manage 
the trauma systems and make various decisions, including bed allocation, staffing decisions, and discharge 
rehabilitation planning.
1. Introduction

Length of Stay (LOS) can serve as a proxy for resource allocation, 
the severity of patient conditions, and crowdedness. Unnecessary delays 
in LOS can negatively impact the clinical, financial, and operational 
aspects of health services (Rojas-García et al., 2018). The study of Al-
maghrabi et al. (2021) identifies in-hospital and intensive care unit 
(ICU) LOS as key features significantly impacting trauma outcomes. It 
demonstrates that incorporating these LOS metrics improves the accu-
racy and reliability of trauma outcome predictions, facilitating more 
informed clinical decision-making and resource management in trauma 
care. From a broader healthcare system perspective, the delivery of 
trauma care is structured through trauma networks, which are organ-
ised systems that integrate pre-hospital services, trauma centres, and 
rehabilitation facilities based on established protocols and pathways 
to deliver coordinated care for trauma patients. Therefore, under-
standing the factors that influence LOS throughout such integrated 
trauma networks is essential for optimising system-wide resource al-
location, improving patient outcomes across whole care pathways, and 
developing evidence-based network policies.

∗ Correspondence to: Data Lab for Social Good, Cardiff Business School, Cardiff University, Cardiff, UK.
E-mail address: rostami-tabarb@cardiff.ac.uk (B. Rostami-Tabar).

A number of studies have examined the impact of different predic-
tors on the LOS in trauma care, but the findings have been mixed. 
In general, the combination of patient demographics (age, gender, 
insurance status) and clinical variables (vital sign measurement, comor-
bidity) was widely considered for LOS statistical modelling. However, 
based on the response variables (ICU LOS, extended LOS) and the 
different types of research data, several surgical (type of surgery or 
infection) or hospital characteristics (type of admitted trauma facility, 
direct or indirect transfer) were also identified in the LOS prediction 
model (Belderrar & Hazzab, 2017; Chona et al., 2017). Moreover, sev-
eral additional factors, including trauma-related scores (Staziaki et al., 
2021) and trauma imaging parameters (Stewart et al., 2021), were also 
examined as significant predictors for predicting LOS. Although certain 
studies have examined LOS across a comprehensive trauma network 
level through descriptive analyses or systematic audits, they typically 
emphasise variations in LOS across different levels of trauma centres or 
compare LOS in hospitals within and outside trauma networks (Kuimi 
et al., 2015; Moore et al., 2014; Morgan et al., 2020). More extensive 
predictive modelling focuses on individual units, such as emergency de-
partments (ED) or ICU. As a result, there is a restricted comprehension 
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of the variables influencing LOS throughout the entire network, partic-
ularly as critically injured patients may necessitate multiple transfers 
and specialised resources that can extend hospitalisations.

Additionally, studies modelling LOS in trauma systems often rely on 
a single methodological approach, such as regression analysis. In this 
study, we aim to address these gaps in the literature. Our contributions 
are summarised as follows:

1. Using a comprehensive dataset from the South Wales Trauma 
Network (SWTN), including LOS and its 53 potential drivers 
across the entire trauma network, rather than focussing on single 
units such as the critical unit or emergency department as the 
current literature.

2. Developing a LASSO regression model to explain the variation 
in LOS and comparing its performance against two benchmarks: 
the generalised additive model (GAM) and random forest (RF).

3. Identifying and interpreting novel factors that contribute to vari-
ations in LOS within the trauma network, offering new insights 
that can inform both clinical practice and healthcare policy.

The remainder of this article is structured as follows. In Section 2, 
we provide a brief review of the literature and discuss its limitations to 
position our work. In Section 3, we describe the data set and visualise 
some key characteristics of the data. In Section 4 we present model 
development and discuss the evaluation performance. In Section 5, 
we first present evaluation metrics, followed by discussing the model 
diagnostic and the main drivers of LOS in the trauma system. In 
Section 6, we summarise our findings and present ideas for future 
research.

2. Literature review

To understand the drivers of LOS in trauma, various methodologies 
have been employed, including ordinary least squares (OLS) linear 
regression, generalised linear models (GLM), and machine learning 
(ML) approaches. The distribution of LOS in hospitalisations is widely 
known to be right-skewed, plurimodal, and inclusive of outliers (Faddy 
et al., 2009; Ickowicz & Sparks, 2017; Williford et al., 2020) and there 
has been an ongoing debate regarding the methodologies for modelling 
such data. Table  1 presents a comprehensive summary of prior studies 
focused on modelling LOS in trauma cases, alongside a comparison 
with the general modelling framework employed in this research. The 
subsequent section will elaborate on the detailed development of the 
modelling approach.

GLM is one of the most commonly applied families of models 
for skewed LOS data, as demonstrated by multiple studies (Chona 
et al., 2017; Kashkooe et al., 2020; Straney et al., 2010; Williford 
et al., 2020). Straney et al. (2010) used a Gamma mixed-effects re-
gression model to reveal significant variation in paediatric ICU LOS 
not accounted for by patient case-mix, suggesting inefficiencies in ICU 
processes. Chona et al. (2017) employed a negative binomial regression 
model to create a personalised LOS calculator for orthopaedic trauma 
patients, highlighting the impact of post-operative complications on 
LOS. Kashkooe et al. (2020) applied Poisson regression to identify 
factors such as age, gender, infection, and injury severity as significant 
predictors of prolonged LOS in trauma patients. Williford et al. (2020) 
used a Gamma mixture regression model to effectively manage the 
right-skewed distribution of LOS data, enhancing the predictive power 
for hospital inpatient stays.

Some studies have used OLS-type models, particularly multivariate 
linear regression with log transformation, to identify key predictors 
influencing LOS in various patient cohorts. Douleh et al. (2017) in-
vestigated the impact of postoperative cardiac complications on LOS 
in orthopaedic trauma patients, identifying significant predictors of 
prolonged hospital stays. Zhang et al. (2020) examined factors affecting 
LOS in patients with traumatic spinal cord injury, highlighting surgery, 
2 
urinary infections, and poorer functional status as key predictors. Ad-
ditionally, Moore et al. (2014) analysed trauma patient data across 
Canada, identifying predictors such as discharge destination, age, and 
injury severity. These studies focus on understanding and explaining 
the influence of specific factors on LOS, providing insights into the 
relationships between variables and demonstrating the utility of OLS-
type models in pinpointing critical predictors of LOS. However, Faddy 
et al. (2009) and Manning and Mullahy (2001) argue that using log-
arithmic transformations in OLS regression to model LOS is subject 
to certain limitations. Specifically, Faddy et al. (2009) argues that 
log-transformed LOS, focusing on geometric means, is challenged by 
retransformation complexities, particularly due to heteroscedasticity. 
Moreover, it is suggested that these retransformation issues are effec-
tively addressed, and performance is surpassed in other distributions, 
like log-normal and Weibull, by a Generalised Linear Model (GLM) with 
a gamma distribution and a log-link function.

Moreover, several studies have employed machine learning tech-
niques to model LOS. Xu et al. (2022) used a two-stage hybrid
classification-regression model to model in-hospital LOS for 42,209 
elective surgeries. They compared various models, including linear 
regression, Random Forests, and multilayer perceptron, finding that 
predicting longer LOS was particularly challenging and necessitated 
a combination of classification for long/short LOS and regression for 
short LOS predictions. Similarly, Gibbs et al. (2021) applied machine 
learning models, including a nested mixed-effects model and stochastic 
gradient boosting, to model LOS in paediatric trauma patients. In an-
other study, Belderrar and Hazzab (2017) utilised hierarchical genetic 
algorithms and fuzzy radial basis function networks to predict the 
high LOS outliers in critical intensive care units. Additionally, Staziaki 
et al. (2021) developed artificial neural network (ANN) and support 
vector machine (SVM) models to model ICU admission and extended 
LOS after torso trauma. Moreover, He et al. (2021) employed a neural 
network-based multi-task learning model (ANNML) a model, which 
has shown promising results in predicting inpatient flow and LOS 
by simultaneously processing mixed types of prediction tasks. These 
studies highlight the potential of machine learning models to enhance 
LOS predictive accuracy and handle complex, nonlinear relationships in 
healthcare data. However, these models are generally less interpretable 
than OLS and GLM models.

The literature on LOS modelling in trauma often focuses on in-
dividual units such as the ED and ICU, rather than considering the 
entire trauma system. Therefore, it is essential to shed light on the 
drivers of LOS within the entire trauma network, as this is funda-
mental to understanding the overall system rather than just a single 
unit. Furthermore, although various publications have used regres-
sion and machine-learning approaches for length-of-stay prediction in 
different clinical settings, to our knowledge, few studies have simul-
taneously compared the three specific model ‘families’, (i) simple and 
interpretable linear regression with regularisation (e.g., LASSO), (ii) 
semi-parametric frameworks (e.g., GAM) to account for nonlinearity, 
and (iii) tree-based machine learning approaches (e.g., Random Forest) 
within the same comprehensive trauma network context. Additionally, 
there is a lack of transparency in the current literature regarding 
methodology and model design, which is a drawback for reproducibil-
ity. To address this, it is important to share data and code to enhance 
reproducibility. While we do not have permission to share the data, we 
provide the R code used in our analysis in the supplementary materials.

3. Data

3.1. Data source

This research was carried out within the South Wales Trauma 
Network (SWTN) in the UK. Access to the Trauma Audit and Research 
Network (TARN) dataset for patients admissions in South Wales was 
granted through the Secure Anonymised Information Linkage (SAIL) 



Z. Wang et al. Expert Systems With Applications 289 (2025) 127801 
Table 1
Comparative research of LOS forecasting models.
 Reference OLS GLM ML Applied model Dataset Outcome Type Study focus Model evaluation metrics  
 Belderrar and 
Hazzab (2017)

✓ The hierarchical genetic 
algorithm (HGA) and 
fuzzy radial basis 
function networks 
(FRBFN)

26,897 admissions from 
five different intensive 
care units

Regression Predictor 
identification 
for LOS

MAE, Mean Magnitude 
Relative Error (MMRE) 
and Prediction at level q 
(Pred(q))

 

 Chona et al. 
(2017)

✓ Negative binomial 
regression

49,778 orthopaedic 
trauma surgery between 
2006 and 2013 from the 
ACS-NSQIP

Regression Predictor 
identification 
for LOS

Beta coefficients and 
Incidence rate ratios 
(IRR)

 

 Douleh et al. 
(2017)

✓ Multiple linear regression 
without transformations

56,217 orthopaedic 
trauma patients from 
2006 to 2013 in the 
ACS-NSQIP database

Regression Predictor 
identification 
for LOS

Not specified  

 Faddy et al. 
(2009)

✓ Gamma distribution 
Model, Log-normal 
Distribution Model, 
Markov process model 
with six phases

1,901 patients from 2 
hospitals

Regression Model 
comparison 
studies for 
skewed LOS 
data

Log-likelihood values, 
residual quantile–quantile 
plots, BIC values, 
generalised Pearson 
statistics

 

 Gibbs et al. 
(2021)

✓ ✓ Nested mixed effects 
model; Stochastic 
gradient boosting model

81,929 paediatric 
patients from 27 
hospitals with a primary 
diagnosis of trauma

Classification LOS forecasting 
study

AUC, ROC, Sensitivity, 
PPV, NPV, F1 score, and 
NNE

 

 He et al. 
(2021)

✓ Artificial neural 
network-based multi-task 
learning model (ANNML)

3,500 patients admitted 
to a hospital in New 
York City in 2016

Regression LOS forecasting loss, MAE, and MSE  

 Kashkooe et al. 
(2020)

✓ Poisson regression 14,054 trauma patients Regression LOS forecasting 
study

Not specified  

 Manning and 
Mullahy (2001)

✓ ✓ OLS for log dependent 
variables with 
homoscedastic 
retransformation, 
Nonlinear least-squares 
(NLS) with log link, 
Poisson regression with 
log link, Gamma 
regression with log link

Not applicable 
(simulation-based 
analyses)

Regression Model 
comparison 
studies for 
skewed LOS 
data

Bias and precision  

 Moore et al. 
(2014)

✓ Multilevel linear 
regression with natural 
logarithm transformations

126,513 patients 
discharged alive from 
Canadian trauma centres 
between 1999 and 2010

Regression Predictor 
identification 
for LOS

R squares  

 Straney et al. 
(2010)

✓ Gamma distributed 
mixed-effects regression

47,068 admissions from 
ANZPIC Registry

Regression Model 
comparison 
studies for 
skewed LOS 
data

ROC, Lin’s concordance 
correlation coefficient 
and adjusted pseudo R 
square

 

 Staziaki et al. 
(2021)

✓ SVM, Artificial neural 
networks (ANN)

723 admissions with 
torso injuries to a Level 
1 trauma centre

Classification LOS forecasting 
study

AUC  

 Williford et al. 
(2020)

✓ Gamma mixture 
regression models

New York State Hospital 
inpatient discharges in 
2014

Regression LOS forecasting 
study

AIC  

 Xu et al. 
(2022)

✓ ✓ LASSO regression, RF and 
multilayer perceptron 
with data truncation

42,209 elective inpatient 
procedures

Regression LOS forecasting 
study

MSE, MAE and MRE  

 Zhang et al. 
(2019)

✓ Lognormal–exponential 
mixture model (LEMM); 
Lognormal–gamma 
mixture model (LGMM); 
Lognormal–lognormal 
mixture model (LLMM)

Not specified Regression Model 
comparison 
studies for 
skewed LOS 
data

Cramer–Von Mises 
goodness-of-fit test

 

 Zhang et al. 
(2020)

✓ Multivariable linear 
regression model with 
natural logarithm 
transformations

631 patients with 
traumatic spinal cord 
injury

Regression Predictor 
Identification 
for LOS

Not specified  

 Current paper ✓ ✓ ✓ LASSO regression, RF 
and GAM

26,238 admissions from 
TARN dataset

Regression Predictor 
identification 
for LOS

RMSE, MAE and R 
square
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Fig. 1. Work flow of data cleaning.
Table 2
General description of predictors.
 Predictor types Names  
 Clinical mtc, casemtc, mechanism, mechanism type, location, 

arrival mode, EMRTS, wented, tteam, msen, first doctor, 
nice, intubvent, caseintubvent, pre_intubvent, edintubvent, 
caseedintubvent, ttop, caseop, ttct, head, face, thorax, 
abdomen, spine, pelvis, limbs, other, most_severe, 
outreason, ISS, ps14, outtext, casedied, transfertype, txaloc, 
knownoutcome, caseknownoutcome, ed_gcs, ed_pulse, 
ed_resp_rate, ed_sbp, ct_scan, head_operation, head_ct_scan, 
have_operation, EAU, Orthopaedic, Major_trauma_ward, 
Medical_ward, Neurosurgical_rehabilitation, Surgical_ward, 
General_acute, Cardiothoracic, Spinal_injuries_unit, 
Geriatric, Plastic_surgery, Maxillofacial, CCU, 
General_paediatric, PACU, Burns, n_ward, rts, triss

 

 Demographical welsh incident, welsh resident, welsh hospital, countryid, 
age, gender

 

 Weekday arrival day of week, discharge day of week  

databank. A data-sharing agreement, essential for the entire research 
project, was established between TARN and SAIL, supported by an 
approval from the Confidentiality Advisory Group (CAG) committee of 
the health research authority in the UK. This agreement allows authors 
to access the dataset and also grants authorisation to publish results 
obtained from the pertinent dataset. The raw data accessible via SAIL 
includes 26,238 admissions to various institutions within the SWTN 
from January 2012 to August 2021. These institutions comprise a Major 
Trauma Centre, specialised acute hospitals with trauma units, a rural 
trauma facility, and a local emergency hospital. For each admission, 
137 distinct variables are recorded.

3.2. Data quality check and preprocessing

The quality of the raw data acquired was rigorously assessed based 
on the completeness, plausibility and conformance data quality frame 
work (Kahn et al., 2016) to ensure its suitability for analysis. The 
data cleaning process involved several key steps: formatting the data, 
imputing missing values, and correcting any implausible entries. The 
whole procedures are illustrated in Fig.  1, which visually represents 
the data preparation workflow.

Following data preprocessing, we had to remove 10,389 observa-
tions. Consequently, after the data quality check, the cleaned dataset 
contains 15,849 observations and 53 variables. The names and types 
of all predictors are catalogued in Table  2. For detailed descriptions 
of each predictor, please refer to Table  6 in Appendix  A. Further-
more, please refer to Table  5 in the appendix, which describes several 
common variables utilised in this paper and documented in previous 
literature reviews. Before using this data for modelling, we applied 
feature engineering to create new variables that could enhance the 
model’s performance in explaining the LOS. The feature engineering 
applied to this dataset is detailed in Section 4.1.
4 
3.3. Response variable

The target variable is the total LOS in the trauma network, which is 
defined as the duration from a patient’s arrival at a specific healthcare 
facility in the trauma network until their discharge, including a series 
of clinical events and multiple transfers or admissions in different 
hospitals (Fig.  3).

The LOS exhibits a rightward skewed distribution (Fig.  4) with a 
median of 10 (IQR, 5–18) and a mean of 15.26 ± 20.28 days.

3.4. Potential drivers of LOS

After preprocessing the dataset, our dataset comprises 6 demo-
graphic predictors, 65 clinical predictors, and 2 calendar variables. The 
demographic predictors provide insights into patient origin, detailing 
attributes such as age, gender, and the classification of postcodes 
for patients and incident locations within Wales. The clinical predic-
tors encompass a broad range of variables, including physiological 
measurements (e.g., GCS, respiratory rate, pulse, SBP) and injury-
related variables—such as mechanisms of injury and the Abbreviated 
Injury Scale (AIS) maximum severity for specific body regions, experi-
ences of specific clinical events (operations, CT scans, intubation), and 
admission details (types of wards and a total number of admissions).Ad-
ditionally, they encompass details of the initial clinical assessment, such 
as whether patients were treated by the Emergency Medical Retrieval 
and Transfer Service (EMRTS), the level of the first doctor, and the most 
senior doctor to see the patients, along with transfer status and types. 
The weekday variables document the arrival and discharge day of the 
week for the patients.

Prior to modelling, an initial visual analysis of all predictors is 
performed to understand the effect of predictors on LOS using data 
visualisation. Fig.  2 showcases a subset of these predictors, highlighting 
those with the potential to influence the LOS. The visualisation could 
also be useful in identifying the potential interaction effect of predictors 
to be used in the modelling.

4. Model development

In this study, we adopt three models—LASSO regression, GAM, 
and RF—that represent the OLS with regularisation, GLM-based, and 
ML families, respectively. These models were selected to achieve a 
balance between interpretability and predictive accuracy: LASSO per-
forms automatic feature selection to identify influential predictors, 
GAM maintains interpretability whilst accommodating non-linear rela-
tionships, and Random Forest captures complex interactions with min-
imal assumptions. Despite the fact that more advanced deep learning 
models (e.g., Gradient Boosting, Neural Networks) are also employed 
in LOS forecasting studies, these three models are more in line with 
our primary objective of identifying key predictors rather than solely 
forecasting LOS.

R (version 4.1.2) and RStudio were employed to analyse the dataset, 
and the‘tidymodels’ package was utilised for model building and perfor-
mance assessment, which facilitates a comprehensive and reproducible 
analysis framework. The general workflow of model development is 
shown in Fig.  5
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Fig. 2. Initial visualisation of LOS based on identified significant predictors.
Fig. 3. Trauma pathway illustration.
4.1. Feature engineering

To enhance the performance of our model, established trauma 
scoring systems were employed as key components of our feature en-
gineering strategy. Notably, the Trauma Injury Severity Score (TRISS) 
and the Revised Trauma Score (RTS) were integrated, as advocated 
by recent literature (Stewart et al., 2021). Following the calculation 
5 
of these scores, intermediate variables were removed to simplify the 
structure of the dataset, thus facilitating more efficient data processing 
and analysis.

Furthermore, our exploratory data visualisation analysis (Figs.  2(e)
and 2(f)) and clinical consultation revealed that patients requiring mul-
tiple ward admissions often accumulate a higher burden of care when 
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Fig. 4. Histogram of the LOS.

admitted to certain specialised wards (e.g., Burns, Spinal Injuries, Geri-
atric). These grouped summary statistics showed distinctively longer 
LOS in these specific patient subgroups, suggesting an interaction effect 
between the type of ward and the number of admissions. To explicitly 
capture this effect, we consolidated the original per-admission ward 
records (Ward1, Ward2, Ward3) into two new sets of variables. First, 
we created dummy variables for each specialised ward type (Burns, 
Geriatric, Spinal, etc.) to indicate whether a patient had ever been 
admitted there across any of their recorded admissions. Second, we 
defined a categorical variable for the total number of ward admissions 
(0, 1, 2, or 3+). We then combined these two sets of variables (ward-
type dummies and number of ward admissions) to create interaction 
terms (e.g. a patient with three or more admissions and has once stayed 
in the Burns ward). This step notes that the combined effect on LOS 
may exceed the sum of individual risk factors alone, especially in cases 
where repeated admissions and specialised ward requirements signal 
more complex care pathways

Additionally, the influence of the ‘weekend effect’ on the LOS was 
investigated by transforming the date of patient arrival into the corre-
sponding weekday. This conversion yielded a new categorical variable, 
enabling the exploration of temporal variations in patient flow and 
their impacts on LOS.

Finally, outliers in LOS were managed through a structured ap-
proach to retain clinically meaningful extremes while mitigating their 
statistical influence. Extreme LOS cases (LOS > 37.5 days), defined 
as values exceeding 1.5 × IQR above the third quartile, were flagged 
using a dummy variable (outlier_flag). This threshold aligned with 
standard boxplot rules and was validated through prior visualisation 
analysis of the same dataset (Wang et al., 2024), which revealed 
distinct patterns between typical LOS (≤ 37 days) and prolonged stays. 
Prolonged LOS may reflect severe comorbidities, complex care path-
ways, or administrative delays. The third quantile (Q3) and IQR were 
computed exclusively from the training set to prevent data leakage. 
The resulting dummy variable ‘outlier_flag’ was incorporated into all 
models, enabling explicit differentiation between normal and extreme 
cases.

After feature engineering, the final dataset used for modelling in-
cludes 74 columns (including LOS, and 73 other variables that could 
be used to describe the variation in LOS) and 15,849 observations, 
offering a comprehensive foundation for robust statistical analysis and 
modelling. 

4.2. LASSO regression model

LASSO regression represents an extension of Ordinary Least Squares 
Linear Regression (OLSLR), characterised by its implementation of 
6 
shrinkage. This method is distinguished by the imposition of a con-
straint or penalty on the sum of the absolute values of the regression 
coefficients. Recent studies have shown that it has been effectively 
applied in hospital settings to predict patients’ times for in-hospital 
stays. For example, Benevento et al. (2023) study applies LASSO re-
gression to predict waiting times in emergency departments, comparing 
its effectiveness with other machine learning models. Zhang et al. 
(2023) applied LASSO regression to develop a predictive model for the 
hospital LOS of patients infected with the SARS-CoV-2 Omicron variant, 
identifying key variables that influence it.

LASSO regression is particularly useful for providing feature se-
lection automatically in datasets with a large number of features. 
Following the description of each predictor, the LASSO regression 
model is given by:

𝑌𝑡 = 𝛽0 +
65
∑

𝑗=1
𝛽𝐶𝑗 𝑋

𝐶
𝑡,𝑗

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Clinical predictors

+
2
∑

𝑗=1
𝛽𝑊65+𝑗𝑋

𝑊
𝑡,𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Weekday effect

+
6
∑

𝑗=1
𝛽𝐷67+𝑗𝑋

𝐷
𝑡,𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Demographic predictors

+
30
∑

𝑗=1
𝛽𝐼73+𝑗𝑋

𝐼
𝑡,𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Interaction terms

+𝜖𝑡 (1)

The objective function of LASSO regression can be expressed as the 
minimisation problem of the following form:

𝛽LASSO = argmin
𝛽

{ 𝑁
∑

𝑡=1

(

𝑌𝑡−

(

𝛽0 +
66
∑

𝑗=1
𝛽𝐶𝑗 𝑋

𝐶
𝑡,𝑗

+
2
∑

𝑗=1
𝛽𝑊66+𝑗𝑋

𝑊
𝑡,𝑗 +

6
∑

𝑗=1
𝛽𝐷68+𝑗𝑋

𝐷
𝑡,𝑗 +

30
∑

𝑗=1
𝛽𝐼74+𝑗𝑋

𝐼
𝑡,𝑗

))

2

+ 𝜆

( 65
∑

𝑗=1
|𝛽𝐶𝑗 | +

2
∑

𝑗=1
|𝛽𝑊65+𝑗 |

+
6
∑

𝑗=1
|𝛽𝐷67+𝑗 | +

30
∑

𝑗=1
|𝛽𝐼73+𝑗 |

)}

(2)

Where 𝛽𝐿𝐴𝑆𝑆𝑂 denotes the estimated coefficients obtained by the 
LASSO, 𝑋𝑡,𝑘 represents the predictor matrix, 𝑌𝑡 are the observed out-
comes, 𝑗, 𝑘, 𝑙, 𝑚 is the number of predictors, 𝑁 is the number of 
observations, and 𝜆 is the tuning parameter that controls the strength 
of the penalty applied to the size of the coefficients. The penalty term 
∑

𝑗,𝑘,𝑙,𝑚 |𝛽𝑗𝑘𝑙𝑚| imposes a constraint on the sum of the absolute values of 
the coefficients, effectively conducting variable selection by shrinking 
some coefficients to exactly zero. In this study,p = 73, 𝑁 = 15849.

Initially, the dataset was split into training (80%) and testing (20%) 
sets. Preprocessing involved log-transforming the response variable 
LOS, normalising numeric predictors, converting categorical variables 
into factors and dummy variables and consolidating rare factor levels. 
Besides that, interaction terms based on the different ward types and 
admission times were created. The final preprocessed dataset for LASSO 
modelling comprises 204 predictors, which include 194 categorical 
predictors and 10 numeric predictors.

To tune the penalty parameter (𝜆), a grid search over a logarithmic 
scale from [0.0001,10] with 100 levels was conducted. A 10-fold cross-
validation assessed model performance, with the optimal 𝜆 selected 
based on the lowest Root Mean Square Error (RMSE). After tuning, 
the 𝜆 value yielding the lowest RMSE was utilised to finalise and 
train the model on the entire training dataset, ensuring optimal pre-
dictive performance and reproducibility. The best-performing LASSO 
models were summarised in Table  3. Please refer to Fig.  8(a) in the 
appendix for further information on LASSO hyperparameter tunning. 
As shown, the RMSE reaches its minimum at a moderate level of 
regularisation, 𝜆 ≤ 0.001, signifying an optimal balance between bias 
and variance. Beyond this threshold, as the regularisation strength 
intensifies, the RMSE rises precipitously, indicative of excessive pe-
nalisation. This over-penalisation leads to a model that compromises 
predictive accuracy due to its oversimplified complexity.
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Fig. 5. Work flow of models development.
Table 3
Overview of model setup and configuration.
 Model Data manipulation for Input Outcome Parameter tuning Metrics for tuning 

parameters
 

 LASSO regression Normalised numeric 
predictors, Interaction 
effects, dummy variable 
creation based on all 
categorical variables,

Natural Log transformed LOS 𝜆 = 0.0016 RMSE  

 Random Forest Normalised numeric 
predictors, Interaction 
effects, dummy variables 
creation based on all 
categorical variables

LOS mtry = 24, min_n = 5 RMSE  

 GAM Normalised numeric 
predictors, Interaction 
effects, dummy variables 
creation based on all 
categorical variables

LOS (log link used with 
Gamma family)

Smoothing parameters 
optimised

Deviance explained  
4.3. Random forest

The RF algorithm, developed by Breiman (2001), effectively com-
bines multiple decision trees to enhance prediction accuracy for clas-

sification and regression tasks (Biau & Scornet, 2016). This method 

7 
bootstrapping to train trees on diverse data subsets and aggregates their 
predictions, achieving robust performance across high-dimensional set-
tings (Benevento et al., 2023; Genuer et al., 2010; Triana et al., 2021). 
Furthermore, RF provides more interpretable measures of variable 
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importance and fewer tuning parameters than other advanced machine-
learning techniques. This is consistent with our main objective of 
identifying the primary determinants of LOS. This balance of inter-
pretability and predictive accuracy makes RF an appropriate choice for 
the analysis of heterogeneous data across a multi-institutional trauma 
network.

Based on the frameworks described by Geetha et al. (2019) and Ben-
evento et al. (2023), the general RF regression algorithm is summarised 
in Algorithm 1

Algorithm 1 Random Forest Regression Algorithm
Require: 𝑁 (Number of bootstrap samples), 𝑀 (Total number of at-

tributes), 𝑚 (Sample size, number of attributes considered at each 
split), 𝑠 (Minimum node size), 𝐵 (Number of trees)

Ensure: Random Forest model 𝑅𝐹
1: for 𝑏 = 1 to 𝐵 do
2:  Draw a bootstrap sample 𝑍∗

𝑏  of size 𝑁 from the training data.
3:  Initialize tree 𝑇𝑏.
4:  while there are nodes that can be split and node size ≥ 𝑠 do
5:  for each node do
6:  Select 𝑚 attributes at random from the 𝑀 attributes.
7:  Identify the best-split point using the selected 𝑚 at-
tributes.

8:  Split the node into two daughter nodes based on the best 
split.

9:  end for
10:  end while
11:  Add tree 𝑇𝑏 to the forest.
12: end for
13: To predict at a new data point 𝑥, compute:

𝑓 (𝑥) = 1
𝐵

𝐵
∑

𝑏=1
𝑇𝑏(𝑥)

where 𝑇𝑏(𝑥) is the prediction of the 𝑏-th tree. return 𝑅𝐹  (ensemble 
of trees {𝑇𝑏}𝐵𝑏=1)

In our implementation, the preprocessed dataset used for RF mod-
elling retains the same configuration as that employed in the LASSO 
model, except for transforming the LOS. The final preprocessed dataset 
consistently comprises 194 categorical predictors and 10 numeric pre-
dictors. As for the tuning parameters, the total number of attributes 
(𝑀) was set to 73. Considering computational efficiency (Probst et al., 
2019), the number of trees (𝑇 ) was set to 500. A grid search, combined 
with 10-fold cross-validation as suggested by Ramadhan et al. (2017), 
was applied to identify the optimal combination of 𝑚 (the number of at-
tributes considered at each split) and 𝑠 (the minimum node size) based 
on minimised Root Mean Square Error (RMSE). Specifically, to balance 
the trade-off between tree diversity and predictive accuracy (Probst 
et al., 2019), the selection range for 𝑚 was set from 2 to approximately 
one-third of 𝑀 (25 out of 73), at 20 different levels. Similarly, in 
alignment with the tuning strategy proposed by Probst et al. (2019), 
which suggests that a higher node size (𝑠) reduces computational time 
without substantially affecting predictive accuracy in large datasets, 𝑠
was set from 5 to 50, at 20 different levels. Fig.  8(b) visualises the 
RMSE across varying levels of 𝑚 and 𝑠. The analysis depicted a steep 
decline in RMSE from 𝑚 = 2 to 𝑠 = 5, beyond which improvements 
plateaued. This trend persisted across multiple node sizes, indicating 
a diminishing return on increasing 𝑚 beyond the optimal point. The 
combination 𝑚 = 24 and 𝑠 = 5 emerged as the most optimal, aligning 
with the lowest observed RMSE, thereby informing the retraining of the 
model with these settings. The performances of the optimised RF model 
are detailed in Table  5.
8 
4.4. Generalised additive model

The GAM, from the family of GLM, incorporate non-linear associ-
ations between covariates and the response variable through smooth 
functions, enhancing model flexibility and adaptability to complex 
datasets (Baayen & Linke, 2020). Originally introduced by Hastie and 
Tibshirani (1986), GAMs allow for the use of various types of smoothers 
like splines or kernels to model non-linear relationships without assum-
ing any specific parametric form of the covariates. This adaptability 
makes GAMs particularly effective in fields such as clinical research 
and mortality modelling, where traditional linear models fail to capture 
the underlying complexities of data relationships (Austin, 2007; Barrio 
et al., 2013).

The general form of a GAM can be formally written as: 

𝑔(E(𝑌𝑖)) = 𝛽0 +
𝑝
∑

𝑗=1
𝑓𝑗 (𝑥𝑖𝑗 ) + 𝜖𝑖, (3)

where 𝑔 is a link function (which can be identical, logarithmic, or 
inverse), 𝑌𝑖 follows some exponential family distribution, 𝛽0 is the 
intercept, 𝑓𝑗 are unknown smooth functions of the covariates 𝑥𝑖𝑗 , and 
𝜖𝑖 is an i.i.d. random error.

The smooth function 𝑓 is composed of a sum of basis functions 𝑏
and their corresponding regression coefficients 𝛽, formally written as: 

𝑓 (𝑥) =
𝑞
∑

𝑖=1
𝑏𝑖(𝑥)𝛽𝑖, (4)

where 𝑞 is the basis dimension. Smooth functions are also called 
splines, which are real functions defined by polynomial functions (basis 
functions). The places where the polynomial pieces connect are called 
knots. In GAMs, penalised regression splines are used to regularise the 
smoothness of a spline.

Therefore, the model can be written in a linear way as: 
𝑔(E(𝑦)) = 𝐗𝛽 + 𝜖, (5)

where 𝐗 is a model matrix and 𝛽 is a vector of regression coefficients. 
The objective function to be minimised is: 

‖𝑦 − 𝐗𝛽‖2 + 𝜆∫

1

0
[𝑓 ′′(𝑥)]2𝑑𝑥, (6)

where 𝜆 is a smoothing parameter and the integral of squares of second 
derivatives can be written as: 

∫

1

0
[𝑓 ′′(𝑥)]2𝑑𝑥 = 𝛽⊤𝐒𝛽, (7)

where 𝐒 is a matrix of known coefficients. This implies that regression 
coefficients can be obtained by the equation: 
𝛽 = (𝐗⊤𝐗 + 𝜆𝐒)−1𝐗⊤𝑦, (8)

In this study, the GAM employs the same procedure for creating 
dummy variables as previously described. Following dataset prepro-
cessing, it is structured into three distinct parts. The non-parametric 
component employs smooth functions, specifically cubic splines, to 
model all numerical predictors, which include age, time to operation, 
total numbers of operations, time to CT scan, ISS, probability of sur-
vival, RTS, and TRISS. These predictors are chosen based on their 
significance and continuity, allowing for more flexible modelling of 
their effects on the LOS. The parametric component incorporates all 
162 categorical predictors after dummy variables creation, maintaining 
a clear distinction in how categorical and continuous data are handled 
within the model. The third component includes the same 32 interac-
tion terms used by both LASSO and Random Forest, ensuring that the 
most influential interactions are captured. A gamma family distribution 
is applied to the model to accommodate the skewed nature of the LOS, 
which typically involves right-skewed data. This choice enhances the 
robustness and accuracy of the estimates.
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Table 4
Comparison of model performance.
 Model 𝑅2 RMSE MAE  
 LASSO 0.5777 0.6160 0.4963 
 RF 0.5434 12.8064 6.5767 
 GAM 0.5085 14.0929 7.0447 

Following this structured approach, the GAM model is represented 
as:

𝜂 = 𝛽0 +
162
∑

𝑖=1
𝛽𝑖𝑥𝑖

⏟⏟⏟
parametric part

+
10
∑

𝑗=1
𝑠𝑗 (𝑧𝑗 )

⏟⏞⏞⏟⏞⏞⏟
non-parametric part with cubic splines

+
32
∑

𝑘=1
𝛾𝑘𝑤𝑘

⏟⏞⏟⏞⏟
interaction terms

(9)

where 𝜂 represents the linear predictor, 𝛽𝑖 are the coefficients for the 
parametric part, 𝑠𝑗 are the smooth functions with cubic splines for 
the non-parametric part, and 𝛾𝑘 are the coefficients for the interaction 
terms.

5. Results and discussion

5.1. Model performance

In this study, LOS is analysed as a continuous variable. The per-
formance of different models is quantitatively assessed using five prin-
cipal metrics employed in regression analysis: Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and R-squared (R2) (Tat-
achar, 2021).

It is pertinent to note that the ‘tidymodels’ package in R, which is 
employed for model fitting, uses a holdout set to measure performance, 
thus providing a valid estimate of R2 without the need for adjustment. 
Adjusted R2, which typically adjusts for the number of predictors in 
the model, is not utilised here since the evaluation uses an independent 
dataset, negating the necessity to account for model complexity through 
degrees of freedom. This approach ensures that the reported R2 is both 
unbiased and indicative of the model’s predictive power on unseen 
data.

The comparative analysis of LASSO, RF, and GAM demonstrated 
significant disparities in their ability to explain variations in LOS 
(Table  4). LASSO achieved the highest R2 (0.5777), demonstrating a 
better explanatory power for overall variance and relative performance 
against the naive baseline. Random Forest achieved a slightly lower 
R2 (0.5434), while GAM yielded the lowest R2 (0.5085). Due to the 
log transformation applied to LOS in LASSO, its RMSE (0.62) and MAE 
(0.50) are not directly comparable to untransformed models. Between 
RF and GAM, RF exhibited smaller absolute errors (RMSE: 12.81 vs. 
14.09; MAE: 6.58 vs. 7.04).

LASSO model efficiently penalises and excludes less contributory 
predictors, enhancing both the interpretability and efficiency of the 
process. The robust performance of the Lasso Regression could also be 
attributed to the nature of our dataset. The predominance of categorical 
predictors in the dataset plays to the strengths of Lasso Regression, 
which reduces overfitting by penalising less informative predictors.

Although RF achieved a relatively good explanatory power R2

among the three models, its residual variance suggest limitations in 
predicting extreme or atypical LOS cases. This discrepancy may be 
attributed to RF’s sensitivity to datasets dominated by high-cardinality 
categorical features, where sparse or rarely observed variable levels can 
bias splitting decisions during tree construction. Prior research indi-
cates that, under such high-cardinality conditions, tree-based methods 
may become biased in how they select splits (Boulesteix et al., 2012). 
9 
Moreover, without appropriate encoding or reduction of categorical 
information, Random Forest often struggles to parse these settings 
effectively (Johnson & Khoshgoftaar, 2022). Even advanced ensembles 
such as boosted decision trees may be adversely impacted by the 
high cardinality of sparse predictors, compromising both predictive 
accuracy and the reliability of variable importance measures (Hancock 
& Khoshgoftaar, 2021). Despite hyperparameter tuning, RF’s residual 
errors remained heteroscedastic, reflecting its difficulty in generalising 
to subgroups with prolonged LOS—a challenge exacerbated by the 
dataset’s sparsity and skewed distribution.

Our analysis revealed that LASSO eliminated coefficients for 14 
predictors, systematically suppressing noise from sparse or weakly 
associated variables. This feature selection enhanced interpretability 
and reduced overfitting risks, aligning with its design philosophy of 
parsimony in high-dimensional settings.

GAM underperformed both RF and LASSO. Although it is well-suited 
to capturing smooth, nonlinear effects in numeric variables, it could 
be less efficient in scenarios where most predictors are discrete. In 
our dataset, more than 90% of the variables were categorical with 
multiple levels. This large number of factors can lower the effectiveness 
of smooth functions, introduce sparse categories, and increase the risk 
of bias in estimated smooth terms.

The following section provides a comprehensive analysis of residual 
diagnostics, clarifying these trade-offs.

5.2. Model diagnosis

In light of the model performance comparison, we conduct resid-
ual diagnostics for LASSO, RF, and GAM to evaluate model fit and 
robustness, with particular attention to outlier handling.

According to the residual diagnosis of the LASSO regression model, 
The QQ plot (Fig.  6(a)) shows close alignment with the diagonal 
for most residuals, suggesting reasonable adherence to normality as-
sumptions in typical cases. Minor deviations in both tails, especially 
a concentration of upper-tail outliers, could indicate difficulties in 
predicting extreme LOS values, likely attributable to LASSO’s squared-
error loss function emphasising central tendency rather than outlier 
resilience. The residual histogram (Fig.  6(b)) supports this interpre-
tation: while near-symmetrical and centred on zero, its mild right 
skew reflects occasional overprediction of prolonged LOS cases. This 
pattern underscores LASSO’s suitability for inferential tasks, where 
interpretability and stability for typical observations outweigh absolute 
precision at extremes.

Meanwhile, the RF residual diagnosis demonstrates a different pat-
tern. As shown in Fig.  6(a), the QQ plot indicates that RF residuals 
deviate significantly from the diagonal, suggesting heavier tails and 
outliers at both extremes. Although the histogram of residuals (Fig. 
6(d)) is centred near zero, it exhibits a pronounced right tail, indicating 
occasional large positive errors. These findings reflect the model perfor-
mance results: while RF can capture complex patterns and attain strong 
explanatory power (i.e., high R square), it also shows higher variance 
in its predictions, particularly for extreme LOS values.

Similarly, the GAM residual analysis demonstrates substantial de-
partures from normality in both tails of the QQ plot (Fig.  6(e)), sug-
gesting it tends to under or over-predict the most extreme cases. The 
residual histogram (Fig.  6(f)) further displays a skew towards posi-
tive residuals, implying the model systematically overestimates LOS in 
certain instances. This result aligns with GAM’s comparatively lower 
performance in explaining variance.

In summary, the LASSO regression model demonstrates the most sta-
ble residual behaviour, exhibiting fewer outliers and reduced skewness 
compared to RF and GAM. This stability is especially beneficial for clin-
ical applications where easily interpretable predictions are essential. 
Thus, the LASSO model is identified as our recommended method for 
modelling LOS based on the current research dataset. Although RF and 
GAM can identify complex, nonlinear patterns, they may require extra 
optimisation strategies to achieve greater consistency and accuracy, 
mainly when predicting extreme LOS values.
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Fig. 6. Residual diagnostics of LASSO regression, RF, and GAM.
5.3. Variable importance

Given the superior performance compared to two other models, we 
examine variable importance of LASSO model for further interpretation 
of LOS. Out of 204 variables in the preprocessed dataset, the model se-
lected 197 for analysis. Notably, the LASSO regression model excluded 
multiple subgroups of feature from the final analysis. Specifically, these 
discarded categories included patients from Wales, incidents occurring 
on roads or at others’ homes, patients who were intubated or ventilated 
for the entirety of their hospital stay, those who underwent exactly one 
operation, and an interaction term capturing patients who experienced 
more than three ward admissions and were admitted to a general acute 
ward.

In terms of interpreting the LOS, This study identified some impor-
tant variables that contribute to the LOS. Several variables previously 
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identified as potential determinants of LOS in the data visualisation 
were further validated through feature selection for the LASSO model.

The feature selection process highlights the model’s sensitivity to 
specific variables that significantly impact LOS. Fig.  7 illustrates the top 
30 predictors in terms of relative importance as selected by the LASSO 
regression model. The colour coding differentiates the direction of the 
relationship between each predictor and the outcome, where teal bars 
indicate a positive association (POS) and red bars denote a negative 
association (NEG) with the target variable. These predictors are ranked 
from the most to the least influential based on the absolute values of 
their importance scores.

It can be seen that certain predictors have a substantial influence 
on the model’s estimation of LOS. In particular, the outlier flag demon-
strates the most significant positive impact among all variables, high-
lighting that extremely long stays represent a distinct subgroup with 
unique determinants. This underscores the importance of identifying 
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Fig. 7. Variable importance graph based on LASSO regression model: horizontal bars represent selected predictors, with the length corresponding to the magnitude of each variable’s 
importance.
outlier cases to prevent diluting general trends and better manage the 
distinct clinical and logistical complexities associated with prolonged 
hospital stays.

Furthermore, admissions to specific ward types have been iden-
tified as significant explanatory variables for LOS, with wards such 
as geriatric, spinal injury unit, medical wards, neurosurgical reha-
bilitation, orthopaedic ward, burns ward, general paediatric ward, 
cardiothoracic ward, plastic surgery ward and surgical wards showing 
pronounced importance in descending order of their scores. Specifi-
cally, as discussed by Tal (2021), elderly patients in geriatric wards 
often experience longer hospital stays due to complex health condi-
tions, including congestive heart failure, hypoalbuminemia, urinary 
tract infections, pneumonia, and malignancies. The need for polyphar-
macy, non-independent functional status, frailty, and tube feeding also 
lead to extended hospital stays. Additionally, the research outlined 
by Hussain and Dunn (2013) underscores the multifaceted nature of 
burn care and identifies key predictors influencing the LOS for pa-
tients with burn injuries. Full-thickness burns and inhalation injuries 
notably increase LOS due to the intensive monitoring required and 
the treatment of complications such as respiratory issues, infections, 
and cardiovascular problems. Surgical interventions, including escharo-
tomies and skin grafting, address immediate health concerns but also 
necessitate prolonged recovery and monitoring, further contributing to 
extended intensive care and comprehensive rehabilitation for severe 
burns (Hussain & Dunn, 2013). This comprehensive management of 
complex cases highlights why these factors are critical in predicting 
extended hospital stays. Collectively, the complex and diverse care 
required in these specialised wards effectively explains the significant 
influence of ward type on LOS.

Fig.  3 also highlights key interaction effects between ward type and 
number of admissions, offering additional insight into how different 
combinations influence LOS. For example, patients who have been 
hospitalised twice and admitted to burns or general paediatric wards 
negatively impact LOS, suggesting that multiple admissions in these 
particular wards may be associated with more streamlined or less 
resource-intensive stays. Similarly, patients experiencing three or more 
admissions in the burns, orthopaedic, plastic surgery, or maxillofacial 
11 
wards exhibit shorter predicted LOS than one might expect from the 
primary effects alone. These patterns underscore that the interaction of 
repeated admissions and specific ward settings can substantially shift 
LOS outcomes, either by expediting specific procedures and discharges 
or through more efficient, protocol-driven care.

As for the demographic factors, age notably impacts LOS. Specif-
ically, patients older than 75 years are consistently identified as key 
predictors of longer LOS. This association underscores the significant 
influence of advanced age on hospitalisation duration, as corroborated 
by several studies (Brotemarkle et al., 2015; Chona et al., 2017; Moore 
et al., 2014; Tal, 2021). These findings across diverse healthcare set-
tings highlight age as a robust predictor of LOS, suggesting that the 
complexities and heightened care requirements associated with older 
populations contribute to their extended stays in hospitals. Further 
research indicates that elderly patients often have slower recovery rates 
and are more susceptible to hospital-associated complications such as 
falls, infections, and medication side effects, which can all extend 
hospital stays. Additionally, the need for comprehensive discharge 
planning and coordination with long-term care facilities or home care 
services further complicates and lengthens the discharge process for 
older adults.

In terms of injury-related predictors, although not among the top 
30 predictors in the updated ranking, severe spinal injuries with a 
maximum Abbreviated Injury Scale (MAIS) severity score of 4 or 
5—consistently show a strong positive impact on LOS, as evidenced 
by importance scores of 0.3034 and 0.3182 respectively. Specifically, 
MAIS scores greater than 4 indicate severe injuries that require ex-
tensive medical interventions, including complex surgical procedures 
and comprehensive post-operative care, all of which contribute to 
prolonged hospitalisation periods. This observation aligns with findings 
from Moore et al. (2014), who identified a clear association between 
higher MAIS and increased LOS; specifically, patients with an MAIS of 
5 or 6 had an average increase in LOS of 4.9 days compared to those 
with a MAIS of 1 or 2. Furthermore, the significant impact of spinal 
injuries on LOS is underscored by Mahmoud et al. (2017), who reported 
that the average LOS for patients with traumatic spinal cord injuries in 
rehabilitation settings was 84 ± 60 days, with a median of 70 days 
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Fig. 8. Tuning parameter process for LASSO regression and RF.
-

and a range from 4 to 419 days. These findings collectively highlight 
the substantial effect of severe spinal injuries on LOS, emphasising the 
complex care needs associated with higher MAIS scores.

Additionally, transfer status significantly impacts variations in LOS, 
as illustrated in Fig.  3. Specifically, the reason for transfer out is 
repatriation and reverse transfers are associated with longer LOS, while 
scenarios without transfers generally result in shorter LOS. This finding 
aligns with the observations of Moore et al. (2014), who noted that 
in a Canadian trauma registry, patients who were transferred had an 
average of 2.7 fewer days of hospital stay compared to those who were 
directly transported. The need for transfers often indicates requirements 
for specialised medical treatment, higher levels of care, repatriation 
or capacity constraints, as highlighted in Spering et al. (2023), which 
inherently prolong LOS. Conversely, patients treated within a single 
facility without the need for transfer usually experience more direct 
12 
and efficient care pathways, contributing to reduced hospitalisation du-
rations. Moreover, patients admitted to MTCs throughout their hospital 
journey typically encounter longer LOS, which reflects the severity of 
their injuries. MTCs are designed to provide specialised care for patients 
with severe injuries, often defined as an injury severity score (ISS) 
greater than 15 (Davenport et al., 2010). As geographic and logistic 
conditions allow, patients requiring MTC care, including those necessi-
tating secondary transfers, are directed to these facilities (Wohlgemut 
et al., 2018). Thus, treatment at MTCs, due to the association with 
severe injuries and potentially complex transfers, also leads to extended 
durations of hospital stay.

Furthermore, our analysis indicates that the variable ‘caseKnownOut
come’ (Is the outcome known from all hospital stays?) is significantly 
associated with the LOS in the trauma network. This association is 
evident in the boxplot and further supported by LASSO regression 



Z. Wang et al. Expert Systems With Applications 289 (2025) 127801 
Table 5
Predictors both appeared in LR and TARN data set.
 Common predictors Reference Similar terms used in LR  
 Age Douleh et al. (2017), Gibbs et al. (2021), Brotemarkle et al. 

(2015), Belderrar and Hazzab (2017), Zhang et al. (2020), 
Moore et al. (2014), Staziaki et al. (2021), Morshed et al. 
(2015), Chona et al. (2017)

Age  

 Gender Douleh et al. (2017), Gibbs et al. (2021), Brotemarkle et al. 
(2015), Belderrar and Hazzab (2017), Zhang et al. (2020), 
Moore et al. (2014), Staziaki et al. (2021), Morshed et al. 
(2015), Chona et al. (2017)

Sex  

 Head, face, thorax, limb, 
abdomen, Spine, pelvis, 
most severe

Gibbs et al. (2021), Chona et al. (2017), Zhang et al. (2020), 
Moore et al. (2014)

Anatomic region of injury, 
Trauma/injuries and related conditions, 
Level of injury, Body region of the most 
severe injury

 

 CT scan (0,1) Belderrar and Hazzab (2017) has Chart event  
 CaseOP Op (has or not 
have Operation)

Belderrar and Hazzab (2017), Stewart et al. (2021), Moore 
et al. (2014)

has Lab event, has Surgery (OR)  

 mech Zhang et al. (2020), Staziaki et al. (2021), Moore et al. (2014) Cause of injury, Trauma mechanism, 
mechanism

 

 ISS Stewart et al. (2021), Belderrar and Hazzab (2017), Moore 
et al. (2014)

Calculation of TRISS, Vital signs, clinical 
scores, ed_GCS, ed_Resp rate, ed_SBP

 

 Ward1/2/3 Stewart et al. (2021) Floor (medical or surgical ward)  
 caseloscc/loscc Stewart et al. (2021), Moore et al. (2014) Admission to ICU, ICU (yes or no)  
 mtc Morshed et al. (2015), Moore et al. (2014) Treated at level-1 trauma centre, Level of 

index trauma centre
 

 welsh hospital Morshed et al. (2015) Hospitals from Northeast region  
 transfer type/out reason Moore et al. (2014) Transfer  
models, which identify ‘caseKnownOutcome’ as a key predictor of LOS. 
According to the Trauma Audit & Research Network Procedures man-
ual (The Trauma Audit & Research Network, 2023), ‘outcome’ refers 
to encompasses a patient’s health status at discharge time or death, 
including pre-existing conditions, complications during care, outcomes 
at both discharge and after 30 days, dates and times of discharge or 
death, days intubated, and details of readmission—all of which are 
predominantly captured in the SWTN dataset. One possible explanation 
for this finding is that patients with more severe conditions often 
require extended hospital stays, resulting in more comprehensive doc-
umentation of outcomes. Additionally, longer hospitalisations allow for 
more detailed record-keeping, ensuring that outcomes are thoroughly 
recorded. Conversely, patients with shorter stays may not survive the 
early stages of hospitalisation, leading to incomplete records on physio-
logical measurements, admissions, and discharge status. Consequently, 
the completeness and availability of outcome data are closely linked to 
the duration of a patient’s stay.

5.4. Limitations

Several limitations need to be noted regarding the present study. 
Firstly, the current LOS models predominantly depend on clinical and 
demographic variables without considering socio-economic factors. Ev-
idence suggests that socio-economic factors—including insurance type, 
family support, pre-injury functional status, and the capacity of re-
habilitation resources—have been successfully incorporated into LOS 
modelling and demonstrated to significantly influence LOS (Gokhale 
et al., 2023; Jerath et al., 2020; Perelman & Closon, 2011). However, 
due to their unavailability in the current research dataset, this study 
was unable to explore these factors. Further refinement of the model 
could expand the model input, such as incorporating socio-economic, 
comorbidity and capacity variables. This could provide a more com-
prehensive LOS modelling framework while offering deeper insights 
into factors contributing to prolonged stays and optimising discharge 
planning decisions.

Secondly, although the current model framework utilised in this 
study (LASSO regression, RF, and GAM) mainly emphasises inter-
pretability for identifying key LOS predictors, it may have limitations 
13 
in predictive accuracy. Alternative machine learning and deep learning 
techniques could potentially capture more complex and nonlinear 
patterns in LOS variation. Future research could explore the integration 
of other advanced models such as ANN, XGBoost or gradient boosting, 
especially when more comprehensive datasets become available.

Thirdly, the generalisability of our findings is limited, as our anal-
ysis relies solely on the SWTN trauma registry dataset. Although our 
models and predictor selection were tailored for this particular con-
text, their applicability to other trauma networks may be limited by 
regional differences in healthcare policies, patient management pro-
tocols, and data collection methods. Future research could validate 
these analytical methods across various trauma networks in different 
geographical and administrative contexts to address this limitation. The 
cross-network validation would evaluate the robustness and adaptabil-
ity of our models while revealing universal determinants of LOS that 
remain consistent across different healthcare systems. 

6. Conclusions

The application of statistical and machine learning models to iden-
tify driving factors for interpreting LOS in extensive trauma datasets 
holds promise for enhancing trauma quality assessments and optimising 
resource utilisation across trauma systems. This study aims to identify 
key driving factors capable of signalling medical staff about a potential 
prolonged LOS. Such insights have profound implications for managing 
trauma system demand, bed allocation, staffing decisions, and planning 
for discharge rehabilitation for individual patients.

This study paves the way for further significant research that can 
enhance the management of trauma networks. Future studies should 
aim to incorporate these social determinants or capacity variables to 
provide a more comprehensive interpretation of LOS. Furthermore, 
while the current study focuses on understanding the drivers of LOS, 
future work could develop probabilistic models to forecast LOS. This 
would require a different approach. Future research could focus on (i) 
developing probabilistic forecasts of LOS, (ii) predicting time to dis-
charge with dynamic feature updates, and (iii) predicting LOS category 
as short, medium, and long stays.
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Table 6
Detail description of variables.

 Predictor Characteristics Descriptions Levels  
 welsh incident Categorical Incident within Welsh postcodes 

areas
(1 = Yes, 0 = No)  

 welsh resident Categorical Patient’s postcode classified as 
Welsh

(1 = Yes, 0 = No)  

 welsh hospital Categorical Welsh hospital (1 = Yes, 0 = No)  
 countryid Categorical Country (1 = England, 2 = Wales)  
 mtc Categorical The first admitted hospital is an 

MTC
(1 = Yes, 0 = No)  

 casemtc Categorical The patient was treated at an 
MTC during its journey in 
hospitals

(1 = Yes, 0 = No)  

 mech Categorical Mechanism of injury Vehicle incident/collision, Fall less than 2 m, Blow(s) 
without weapon, Fall more than 2 m, Crush, Stabbing, 
Other, Shooting, Blow(s) with weapon, Burn, and Blast.

 

 mechtype Categorical Injury type Blunt, Penetrating  
 location Categorical Location of incident Road, Home, Public area, Other, Other Home (not 

patient’s), Mountain, Industrial, Segregated cycle route, 
Farm, Pavement/Footpath/Walkway, Institution, Air, 
Water, Rail track, Office.

 

 arvmode Categorical Arrival mode Ambulance, Helicopter, Car/personal vehicle, Not 
applicable, Other, With police, Walking, Ambulance and 
helicopter, Public transport, Ambulance car.

 

 emrts Categorical Whether it was treated by 
EMRT or not

(1 = Yes, 0 = No)  

 age Categorical Age group of the patient at the 
moment of the incident

16–44, 65–74, 55–64, 75 and over, 45–54, Under 16.  

 gender Categorical Gender Male, Female  
 wented Categorical Whether the patient was 

assessed in ED (yes/no)
(1 = Yes, 0 = No)  

 tteam Categorical Trauma team on ED (1 = Yes, 0 = No)  
 msen Categorical Most senior doctor at ED Consultant, FY/ST 1-2, ST 3+, ST year unknown, 

Associate Specialist, Other
 

 fstdoc Categorical First doctor to see the patient Consultant, FY/ST 1-2, ST 3+, ST year unknown, 
Associate Specialist, Other

 

 nice Categorical Whether the patient fulfils the 
NICE head injury criteria

(1 = Yes, 0 = No)  

 intubvent Categorical Intubated/ventilated? (1 = Yes, 0 = No)  
 caseintubvent Categorical Intubated/ventilated during all 

stays in hospital?
(1 = Yes, 0 = No)  

 pre_intubvent Categorical Intubated/ventilated 
pre-hospital?

(1 = Yes, 0 = No)  

 edintubvent Categorical Intubated/ventilated at ED? (1 = Yes, 0 = No)  
 caseedintubvent Categorical Intubated/ventilated at ED, in 

any stay?
(1 = Yes, 0 = No)  

 ttop Numeric Hours to first operation (from 
arrival to hospital)

 

 caseop Numeric Total number of operations (all 
hospital stays)

 

 ttct Numeric Hours to first CT scan (from 
arrival to hospital)

 

 head Categorical AIS maximum severity in Head Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 (continued on next page)
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Table 6 (continued).
 face Categorical AIS maximum severity in Face Ordinal variable ranging from 0 to 6, where: 0: No 

injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 thorax Categorical AIS maximum severity in 
Thorax

Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 abdomen Categorical AIS maximum severity in 
Abdomen

Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 spine Categorical AIS maximum severity in Spine Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 pelvis Categorical AIS maximum severity in Pelvis Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 limbs Categorical AIS maximum severity in Limbs Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 other Categorical AIS maximum severity 
external/neck

Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 most_severe Categorical Most severely injured body 
region

Ordinal variable ranging from 0 to 6, where: 0: No 
injury dected in this area 1: Minor injuries; superficial 
wounds. 2: Moderate injuries; minor surgery may be 
required. 3: Serious injuries; potential for permanent 
disability, surgery likely. 4: Severe injuries; probable 
permanent disability, life-threatening. 5: Critical 
injuries; survival uncertain, critical outcomes. 6: 
Virtually unsurvivable; survival improbable.

 

 outreason Categorical Reason for transfer out no transfer, further specialist care, network protocol, 
repatriation/reverse transfer, not known, no PCCU bed, 
and no Critical Care bed

 

 iss Numeric ISS  
 ps14 Numeric Probability of survival  
 outtext Categorical Status on discharge alive, Dead  
 (continued on next page)
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Table 6 (continued).
 casedied Categorical Did the patient died at 30 

days(analysed by case)?
(1 = died, 0 = alive)  

 transfertype Categorical Type of transfer Ordinal variable ranging from 1 to 6 (1 = No transfer, 2 
= Transfer in, 3 = Transfer out, 4 = Transfer in & out, 
5 = Transfer out failed, 6 = Transfer in & out failed)

 

 txaloc Categorical if given tranexamic acid Pre-hospital, ED, no test  
 knownoutcome Categorical Is the outcome known, from 

this hospital stay?
(1 = Yes, 0 = No)  

 caseknownoutcome Categorical Is the outcome known, from all 
hospital stays?

(1 = Yes, 0 = No)  

 ed_gcs Numeric Earliest GCS at ED  
 ed_pulse Numeric Earliest pulse rate at ED  
 ed_resp_rate Numeric Earliest respiratory rate at ED  
 ed_sbp Numeric Earliest Systolic Blood Pressure 

at ED
 

 ct_scan Categorical Had a CT scan? (1 = Yes, 0 = No)  
 head_operation Categorical Had a head operation? (1 = Yes, 0 = No)  
 head_ct_scan Categorical Had a head ct scan? (1 = Yes, 0 = No)  
 have_operation Categorical Had an operation (1 = Yes, 0 = No)  
 rts Numeric Revised trauma score  
 triss Numeric Trauma Score and Injury 

Severity Score
 

 arrival_day_of_weeks Categorical arrival day of weeks Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday, Sunday

 

 dis-
charge_day_of_weeks

Categorical discharge day of weeks Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday, Sunday

 

 EAU Categorical Had been admitted to 
Emergency Admissions Unit

(1 = Yes, 0 = No)  

 Orthopaedic Categorical Had been admitted to 
Orthopaedic (include paediatric) 
ward

(1 = Yes, 1 = No)  

 Major_trauma_ward Categorical Had been admitted to Major 
Trauma ward

(1 = Yes, 2 = No)  

 Medical_ward Categorical Had been admitted to 
Medical(include palliative care) 
ward

(1 = Yes, 3 = No)  

 Neurosurgical 
rehabilitation

Categorical Had been admitted to 
Neurosurgical rehabilitation 
ward

(1 = Yes, 4 = No)  

 Surgical_ward Categorical Had been admitted to Surgical 
(include paediatric) ward

(1 = Yes, 5 = No)  

 General_acute Categorical Had been admitted to General 
acute (include paediatric) ward

(1 = Yes, 6 = No)  

 Cardiothoracic Categorical Had been admitted to 
Cardiothoracic ward

(1 = Yes, 7 = No)  

 Spinal_injuries_unit Categorical Had been admitted to Spinal 
injuries unit

(1 = Yes, 8 = No)  

 Geriatric Categorical Had been admitted to Getiratic 
ward

(1 = Yes, 9 = No)  

 Plastic_surgery Categorical Had been admitted to Plastic 
surgery ward

(1 = Yes, 10 = No)  

 Maxillofacial Categorical Had been admitted to 
Maxillofacial ward

(1 = Yes, 11 = No)  

 CCU Categorical Had been admitted to Coronary 
Care Unit

(1 = Yes, 12 = No)  

 General_paediatric Categorical Had been admitted to General 
paediatric Ward

(1 = Yes, 13 = No)  

 PACU Categorical Had been admitted to 
Post-anaesthesia care unit

(1 = Yes, 14 = No)  

 Burns Categorical Had been admitted to Burns 
ward

(1 = Yes, 15 = No)  

 n_ward Categorical Total Ward Admissions per 
Patient

1,2,3  
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Appendix A. Tuning parameters

In Appendix  A, the process of tuning parameters for the LASSO re-
gression (Fig.  8(a)) and Random forest models (Fig.  8(b)) are provided.

Appendix B. Predictors

In Appendix  B, the common predictors utilised in the current paper 
and previous literature review (Table  5) and explanation of all features 
(Table  6) are detailed.
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