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A B S T R A C T

Ensuring the reliability of an electric power supply network (ESPN) requires accurate and rapid fault detection in 
distribution transformers. This paper presents a Finite Element Analysis (FEA) approach for non-contact mag
netic measurements to capture magnetic flux density (MFD) values during both short-circuit (SC) and open- 
circuit (OC) fault conditions. These MFD measurements are then classified using various machine learning al
gorithms, including decision tree (DT), gradient boosting (GB), random forest (RF), and artificial neural network 
(ANN). The RF model achieves the highest accuracies, with 99.74 % for SC faults and 93.02 % for OC faults, 
outperforming all other models. The ANN model shows accuracies of 98.71 % and 92.38 %, while the DT model 
achieves 92.85 % for SC faults and 88.75 % for OC faults, and the GB model records 95.63 % for SC faults and 
90.55 % for OC faults. Additionally, the DT model demonstrates fast prediction times of 0.0028 s for 7203 SC 
samples and 0.0019 s for 4802 OC samples. The novelty of this research lies in the use of FEA-based non-contact 
magnetic measurements to collect MFD values, which enhances safety and fault detection accuracy compared to 
traditional voltage and current signals. Unlike previous studies focused on overhead line protection, this method 
provides equipment-specific protection for transformers. Furthermore, integrating MFD data with machine 
learning models significantly improves fault classification speed and accuracy, providing a significant 
advancement in transformer fault detection.

1. Introduction

An EPSN consists of three different interconnecting sections: gener
ation, transmission, and distribution. These three interconnected sec
tions of EPSN constitute a considerable portion of a state’s economy. 
Thus, all the power system’s components must operate at their 
maximum efficiency and be protected from faults. EPSN is more sus
ceptible to faults due to its complex structure. These faults may lead to 
issues like damaging electrical devices, service disruption, and system 
instability which ultimately reduces system reliability (Singh et al., 
2015; Thomas et al., 2023).

Nowadays, uninterrupted power supply to the end customers is the 

first and foremost plan of distribution utilities. Unfortunately, more than 
80 % of the interruptions in the power supply occurred due to sym
metrical and unsymmetrical shunt faults in the distribution line (Gonen, 
2015). These distribution lines’ faults come into view for several rea
sons, including poor weather conditions, tree branches’ growth that 
interfere with power lines, resulting in the breaking of electric lines, and 
electric equipment failure (Bompard et al., 2013). Open-circuit (OC) 
faults in distribution networks can also result from physical damage to 
equipment, loose connections, environmental conditions, or corrosion. 
Unlike transmission lines, distribution networks faced challenges in 
fault diagnosis because of limited measurement options, dynamic to
pology, and numerous branches and tap loads (Choi et al., 2004).
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In the distribution structure, a significant part of the capital cost is 
spent on the distribution transformers (Dawood et al. 2023). It is a 
common electrical device used in the power system that undertakes the 
critical tasks of changing AC voltage. In (Ehsanifar, 2021), the paper 
discusses inter-turn faults in transformers because of short circuit cur
rents that can cause severe damage to the transformer if left undetected, 
using finite element analysis (FEA). When short-circuit faults occur, the 
transformer can undergo a strong electromagnetic force that can damage 
or deform its winding or insulation, leading to the transformer outage 
from the EPSN (Li et al., 2021). In (Jin, 2024), it is also discussed that SC 
faults lead to transformer winding failure. OC faults, on the other hand, 
result in high voltage that causes insulation breakdown, as shown in 
(48th North American Power Symposium, 2016). The intensity of OC 
faults, as discussed in (Alpsalaz and Mamiş, 2024), shows that insulation 
failure leads to winding arcs, which may result in SC faults, ultimately 
causing extreme damage to the transformer. Additionally, (2016 IEEE 
Power and Energy, 2016) highlights how OC faults can severely damage 
transformers, resulting in fires and posing serious safety risks. So, quick 
and automated fault detection and diagnosis are particularly important.

In practical situations, a relay and circuit breaker handle fault- 
related operations. However, the activation of the relay is a slow pro
cess, and this task can be speeded up using Machine Learning (ML). In 
the domain of EPSN, researchers have pointed their attention toward 
detecting and classifying faults using ML. The ML models were used in 
(Balan et al., 2023) and (Alenezi et al., 2024) for fault recognition in 
distribution transformers, relying on current and voltage signals to 
generate trip signals for relays and circuit breakers. In (He et al., 2023), 
the CNN model was utilized for transformer fault diagnosis using a 
dataset based on current signal samples. However, it did not consider all 
SC fault scenarios or analyze the model’s effectiveness in comparison to 
other ML algorithms. In (Venkata et al., 2022), a support vector machine 
(SVM) model was trained with 25,168 samples to classify symmetrical 
and unsymmetrical shunt faults on transmission lines. The RF classifier 
was used in (Fonseca et al., 2022) to classify transmission faults, and it 
outperformed the neural network in terms of time and accuracy, 
achieving 91.96 % compared to the ANN, which got 89.59 %. In (Zheng 
et al., 2022), an RF classifier was trained on 4200 samples collected 
during several faults in the industrial process, achieving an accuracy of 
93.14 %, which outperformed other algorithms used in this process, 
such as K-nearest neighbors (KNN), SVM, and ANN. Similarly, in (El 
Mrabet et al., 2022), the RF model outclassed other state-of-the-art 
models, including SVM, DT, KNN, and ANN, in fault detection and 
processing time. In (Ogar et al., 2022), a transmission line fault model 
was simulated in MATLAB, and the supervised ML model, such as the 
CatBoost boosting classifier, was used for fault classification, resulting in 
an accuracy of 99.54 %. The discrete wavelet transform (DWT) tech
nique was applied in (Gangwar and Shaik, Jul. 2023) to sample current 
signals. After that, the KNN method was adopted for precise fault 
detection and classification (FDC) in distribution networks. In (Moloi 
et al., 2022), the current signal was processed by using wavelet packet 
decomposition (WPD). Then, this processed dataset was applied to the 
SVM algorithm, which achieved an accuracy of 99.5 % for classifying ten 
types of faults.

For FDC, neural networks such as ANN in (Usman et al., 2020), a 
multi-layer perceptron (MLP) based on the Bayesian approach in 
(Ferreira et al., 2020), long short-term memory (LSTM) in (Rafique 
et al., 2021) and a capsule network with sparse filtering (CNSF) in 
(Fahim et al., 2021) were used for classifying transmission line faults. An 
extreme learning machine (ELM) model was utilized in (Goni, 2023) for 
the FDC in the transmission line by considering a total of ten types of 
faults and gaining an average accuracy of 99.18 %. The voltage and 
current samples dataset, based on the discrete Fourier transform (DFT), 
was used as input to the ANN algorithm for classifying ten types of faults 
in (Gutierrez-Rojas et al., 2022). In (Uddin, 2022), the voltage signal was 
sampled by applying DWT to provide accurate data features, and in 
(Mamuya et al., 2020), a similar strategy was utilized to obtain crucial 

features from three-phase current signals to train ANN, MLP, and ELM 
neural networks for FDC in distribution networks. In (Yuan and Jiao, 
2023), a hybrid convolutional neural network (CNN) and LSTM model 
were used to detect faulty feeders for just single-phase-to-ground faults 
on the distribution side.

Both voltage and current signals in (Balan et al., 2023; Alenezi et al., 
2024; He et al., 2023; Venkata et al., 2022; Fonseca et al., 2022; Zheng 
et al., 2022; El Mrabet et al., 2022; Ogar et al., 2022; Gangwar and 
Shaik, 2023; Moloi et al., 2022; Usman et al., 2020; Ferreira et al., 2020; 
Rafique et al., 2021; Fahim et al., 2021; Goni, 2023; Gutierrez-Rojas 
et al., 2022; Uddin, 2022; Mamuya et al., 2020; Yuan and Jiao, 2023) 
are utilized for FDC in the transmission and distribution network. For 
the attainment of voltage and current signals, a current transformer (CT) 
and a potential transformer (PT) are used at the electric power sub
station. During symmetrical and unsymmetrical faults, the operating 
capabilities of CT may be limited because of its core saturation. The 
physical interaction between the instrument transformer and the 
high-voltage line disregards safety protocols and regulations. To address 
these challenges and to increase the accuracy and precision of fault 
detection, non-contact magnetic field sensing offers a hopeful solution 
(Khadse et al., 2021). Furthermore, techniques like Fourier Transform or 
Wavelet Analysis are often needed to process voltage and current sig
nals, as seen in (Balan et al., 2023; Alenezi et al., 2024; He et al., 2023; 
Venkata et al., 2022; Fonseca et al., 2022; Zheng et al., 2022; El Mrabet 
et al., 2022; Ogar et al., 2022; Gangwar and Shaik, 2023; Moloi et al., 
2022; Usman et al., 2020; Ferreira et al., 2020; Rafique et al., 2021; 
Fahim et al., 2021; Goni, 2023; Gutierrez-Rojas et al., 2022; Uddin, 
2022; Mamuya et al., 2020; Yuan and Jiao, 2023). In contrast, magnetic 
field measurements can provide direct knowledge regarding fault loca
tion and type with minimal signal processing. Magnetic fields can also 
pass through insulating materials, enhancing the ability of magnetic 
field sensors to detect anomalies effectively. In (Chen, 2022), contactless 
magnetic sensors are utilized for current measurements instead of 
traditional current transformers, which provide accurate data for load 
monitoring and load imbalances but don’t consider how magnetic sen
sors would behave in faulty conditions. In (Kwasi Anane et al., 2021), 
fault analysis was conducted on the transmission line using MATLAB 
software, and magnetic sensors were used to differentiate only between 
fault and non-fault conditions. In (De Oliveira Neto et al., 2021), mag
netic sensors were used to consider different types of symmetrical and 
unsymmetrical faults, but they didn’t apply any ML model to classify 
these faults. In (Malik et al., 2020), contactless magnetic sensors were 
employed for unbalanced load detection, and the ANN algorithm was 
trained to differentiate between balanced and unbalanced loading. 
However, this study did not consider multiple FDC case scenarios. In 
(Khadse et al., 2021) a neural network was utilized to locate and classify 
faults on transmission lines by acquiring data from magnetic sensors 
mounted on the pole towers. However, this approach did not account for 
open-circuit (OC) fault conditions or the behavior of MFD across various 
machine learning algorithms.

2. Contribution of the paper

There is limited research on fault identification in complex and 
congested secondary distribution networks. Contemporary fault detec
tion methodologies mainly focus on transmission and primary distri
bution networks. Moreover, previous studies didn’t consider the impact 
of symmetrical and unsymmetrical faults on expensive equipment, such 
as transformers in the secondary distribution network. Most existing 
techniques rely on voltage and current signals, for which CT and PT are 
used. However, this method doesn’t provide reliable, accurate data and 
a safer environment for the workers. Furthermore, there is a need for 
intelligent methods, such as machine learning, to manage and classify 
SC and OC fault MFD data into their specific fault types. The contribu
tion of this article includes the following: 
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• FEA software ANSYS Maxwell was used for the 3-Dimensional (3D) 
design and modeling of the 630 kVA distribution transformer.

• Twin Builder, a software from ANSYS, was integrated with ANSYS 
Maxwell through co-simulation to provide the power supply system 
to the distribution transformer.

• Positioning of contactless magnetic measurements at locations 
around the main tank where the strength of the leakage MFD is most 
prominent and easily detectable to perform fault analysis.

• Simulating SC and OC faults on the secondary side of the distribution 
line and fetching the MFD measurements through contactless mag
netic measurements.

• Collected MFD measurement data was provided to various ML al
gorithms for performance evaluation related to fault classification 
tasks.

The rest of the article is organized as follows. Section 3 presents a 
review of Maxwell’s equations, 3D modeling of the distribution trans
former, SC and OC fault case scenarios, and ML algorithms. Section 4
describes the comparative analysis of the results obtained with magnetic 
measurements and ML algorithms. Section 5 concludes this article.

3. Methodologies

3.1. 3D distribution transformer modelling and simulation

The working principle of a transformer is based upon Faraday’s law, 
which states that if a conductor is positioned in a changing magnetic 
field, it results in an induced voltage in the conductor, which causes the 
current to flow. In a transformer, the electrical energy is transferred 
from its input winding to its output winding through a magnetic field. In 
an ideal transformer, when time-varying primary voltage is applied to 
the primary winding, it causes the current in the primary coil, which 
generates core flux, and this flux induces a secondary voltage across the 
secondary coil. However, practically not all flux links both coils, and it 
leaks through the surrounding air around the transformer. This type of 
flux is called leakage flux, and the MFD of leakage flux is utilized in this 
study to monitor the transformer during SC and OC faults.

3.1.1. Mathematical model
For complex engineering problems, the Finite Element Method 

(FEM) is used as a numerical method to figure out intricate engineering 
tasks (ÖZÜPAK, 2021). It divides the complex geometry into a small 
number of areas which functions as an efficient tool to solve 
MFD-related problems. In this study, FEA for 3D transformer design is 
carried out through the ANSYS Maxwell software. In the case of trans
formers, the MFD is determined by the currents flowing through the 
windings, the geometry of the core, and the magnetic properties of the 
materials. The relationship between the current and the magnetic field 
in transformers is governed by Ampere’s Law. The general mathematical 
expression for Ampere’s Law in integral and differential form is 
expressed in Eq.(1) and Eq.(2) as: 
∮

B→.d l
→

= μ0Ienc (1) 

∇× B→= μ0 J→ (2) 

In Eq.(1) and Eq.(2), B→ is the magnetic field density, Ienc is the 
enclosed current and J→ shows the current density per unit area. In FEA, 
Eq.(1) and Eq.(2) are discretized as shown in Eq.(3), and the geometry is 
divided into smaller elements to iteratively compute the magnetic field 
at each point based on these equations. 

B→normal =

∫

μ. J→normaldV (3) 

During faults, the current density in transformer winding regions 
increases severely. The resulting MFD at a faulted area can be expressed 
in Eq.(4) as: 

B→fault =

∫

μ. J→faultdV (4) 

where J→fault is calculated according to the Eq.(5): 

J→fault =
Ifault

A
(5) 

If the transformer faces a short circuit, the increase in J→fault leads to 

spikes in B→fault, especially in areas near the fault. These Eq.(3), Eq.(4) 
and Eq.(5) are implemented in the FEA-based transformer model to 
solve the simulations and provide MFD measurements during faulty 
current conditions.

3.1.2. ANSYS maxwell
ANSYS Maxwell is a high-performance user-interactive software that 

employs FEA to solve 3D electric and magnetic transient problems. 
Transient solver provides a better understanding of magnetic field 
behavior over time and how its behavior impacts the electrical circuits 
connected to them. The magnetic field formulation for transient prob
lems used by ANSYS Maxwell is based on Maxwell’s equations as stated 
above. These complicated mathematical problems are described by 
differential equations, and FEM is applied to solve these equations 
numerically. This technique breaks down complicated geometry into 
small parts known as finite elements. The basic unit of a finite element in 
Maxwell 3D is a tetrahedron and these units are combined to form a 
finite element mesh. The targeted field in each finite element is esti
mated by using a basic second-order quadratic polynomial Eq.(6). 

Hx(x, y, z) = a0 + a1x+ a2y+ a3z+ a4xy+ a5yz+ a6xz+ a7x2 + a8y2 + a9z2

(6) 

Eq.(6) shows how the magnetic field component (Hx) is estimated at 
a point (x, y, z) by using these coefficients (a0, a9). To create this poly
nomial, field quantities are calculated at 10 points in a 3D simulation. 
After the equilateral tetrahedra mesh is specified, the finite elements are 
arranged in a sparse matrix expressed in Eq.(7). 

[S][H] = [ J] (7) 

This sparse matrix is shown in Eq.(7) is then solved by applying the 
standard technique such as Sparse Gaussian Elimination.

Table 1 
Designed parameters of the 3D transformer.

S.no Designed Parameters Values
1 Power Rating 630 kVA
2 Primary Voltage / Secondary Voltage 11 kV / 0.4 kV
3 Primary Current / Secondary Current 33.06 A / 909.35 A
4 Frequency 50 Hz
5 Number of turns in HV winding/ LV winding 1375 / 50
6 Phase Configuration 3-Phase (Delta / Star)
7 Core Material / Winding Material / Tank Material AK Steel / Copper / Steel 1008
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3.1.3. Distribution transformer model design
The real design parameters of the utility distribution transformer are 

utilized for designing the distribution transformer in ANSYS Maxwell. 
Integrating these real parameters into the FEA transformer model gua
rantees that the MFD simulation results during fault analysis closely 
align with the real behavior of the physical transformer. The designed 
parameters of the 3D distribution transformer are displayed in Table 1.

The distribution transformer model is designed with a core-type 
structure using AK steel for its efficient magnetic properties, and the 
core consists of 9 stages of stacked laminated steel. Copper is selected for 
winding due to its high conductivity and low resistive losses. These 
copper windings are connected in a delta-star configuration. The 
transformer consists of three sets of copper windings, each placed on 
separate legs of the core. The HV coil, used as the primary side, is placed 
above the LV coil, used as the secondary side. This configuration results 
in three terminals for both the primary and secondary sides. The 3D- 
designed model of the core and windings is shown in Fig. 1. The steel 
tank of the distribution transformer is designed based on the real pa
rameters as displayed in Fig. 2.

In ANSYS Maxwell, a feature exists to simplify a complex 3D model 
by dividing it into half if symmetry is present within it. This feature 
offers advantages, primarily a reduction in computational time and 
memory usage during simulation. Due to the symmetry of the trans
former model across the opposite faces, a half model of the transformer 
as shown in Fig. 3, was taken for FEA. This half-model strategy reduces 
the complexity of the transformer, and it also doesn’t impact the MFD 
measurement captured by magnetic measurement points.

The precise solution of the MFD measurement depends upon the 
mesh regions. The MFD measurement result becomes more precise by 
creating smaller and finer mesh elements as shown in Table 2, but it 
increases the simulation time. So, it’s better to maintain the balance 

Fig. 1. 3D-designed model of core and windings (inner view).

Fig. 2. Transformer steel tank (outer view).

Fig. 3. 3D model splitting and creation of mesh elements for MFD analysis.

Table 2 
3D transformer model mesh element numbers.

S.no Mesh Objects Number of tetrahedra elements

1 High Voltage Coil 2204
2 Low Voltage Coil 1963
3 Core 9633
4 Transformer Steel Tank 12373
5 Region Around Transformer 27459
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between mesh elements and simulation time. The mesh elements for this 
analysis are shown in Fig. 3. The meshing method “Length-based inside 
selection” is used to create a mesh within a 3D transformer model. The 
tetrahedrons are used as mesh or finite elements that are dimensioned 
based on length considerations.

The MFD changes its value rapidly over time and it becomes difficult 
to accurately predict the MFD measurement due to its dynamic 
behavior. To counter this issue, the magnetic transient solution type is 
utilized. In this study, the distribution transformer was simulated for 
3 seconds for each case, including normal conditions, 11 types of SC 
faults, and 7 types of OC faults. This resulted in a total simulation time of 

60 seconds covering all fault scenarios and the normal condition. The 
transient analysis solver parameters are illustrated in Table 3, and the 
complete design procedure of the 3D transformer model is depicted 
using the flowchart in Fig. 4.

3.1.4. Placement of magnetic field points
In this study, magnetic points are placed near the center of the 

transformer on each face side to detect MFD around the distribution 
transformer. Ansys Maxwell provides a magnetic field point strategy to 
measure the magnetic field at various positions. These points interact 
with the magnetic field, recording the behavior of MFD over time. Five 
magnetic points are positioned at the center of five different faces of the 
transformer (left, right, top, bottom, and back) where the magnetic field 
strength is stronger, as shown in Fig. 5, to measure the MFD measure
ments. The central position on each side is selected because the MFD is 
typically intense near the core and windings, which are centrally placed 
within the transformer, and the intensity decreases with distance from 
the windings. The data collected from these field points is then exported 
in CSV format. This report presents data on the density of magnetic flux 
passing through a specified point area in the magnetic field.

3.1.5. Model simulation
To perform SC and OC fault analysis, Twin Builder software is 

combined with ANSYS Maxwell software through co-simulation. The 
Twin Builder provides an external excitation circuit that is applied to the 
windings of the distribution transformer. The external excitation circuit, 
shown in Fig. 6, is connected in a delta-star connection. In Fig. 6, the 
choice of a thyristor rectifier with a parallel R-L load simulates condi
tions where both resistive and inductive components are present in the 
load. In this parallel configuration, the voltage across the inductor and 
resistor is the same, ensuring proper voltage across the load. Further
more, the current division between the resistive and inductive branches 
allows for efficient transformer operation by minimizing reactive power 
flow and improving the power factor. Moreover, the line reactance was 
excluded to simplify the circuit, as it primarily plays a significant role in 
long-distance transmission scenarios. In Fig. 7, the magnetic field vec
tors are shown, changing over time in response to the input provided to 
the distribution transformer. During various fault scenarios, the MFD 
changes rapidly, and these changes are effectively recorded by the non- 
contact magnetic points.

3.2. SC faults on 3-phase system

Most faults in a power system result in a SC condition. When such a 
situation occurs, a heavy current, known as the short-circuit current, 
passes through the electrical equipment, leading to considerable 
equipment damage and resulting in disruptions of services for con
sumers. These SC faults are classified as symmetrical and unsymmetrical 
faults.

An unsymmetrical fault, also called an unbalanced fault, is a fault 
that results in unbalanced fault currents with unequal phase displace
ment among the line currents. It interrupts the balanced nature of a 
three-phase system. These unsymmetrical faults include the Single Line 
to Ground (L-G), Line to Line (L-L), and Double Line to Ground (L-L-G). 
L-G fault occurs when one of the lines becomes shorted to the ground. L- 
L fault occurs when two lines are shorted together without including 
ground, and L-L-G fault occurs when two lines experience a short circuit 
with the ground. For these unsymmetrical faults, there are three possible 
fault case scenarios for each fault type.

A symmetrical fault, also called a balanced fault, is a fault that 
generates balanced fault currents with 120◦ phase displacement among 
the line currents. It disturbs all three lines of a three-phase system 
equally. These symmetrical faults include the Three Line (L-L-L) and 
Three Line to Ground (L-L-L-G). L-L-L fault occurs when all three lines 
come into direct contact without involving the ground, and L-L-L-G fault 
occurs when all three lines become shorted with the ground. For these 

Table 3 
Transient solver setup parameters.

S.no Parameters Value

1 Start time 0 s
2 Stop time 3 s
3 Step size 1 ms
4 Sample frequency 1 kHz
5 Total collected samples per case scenario 3001

Fig. 4. 3D Transformer design and magnetic analysis process using ANSYS 
Maxwell Simulation.
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Fig. 5. Magnetic points placement at positions (left, right, top, bottom and back) to collect MFD data.

Fig. 6. Delta-star connected external circuit in Twin builder.

Fig. 7. Vector representation of MFD around the 3D transformer steel tank.
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symmetrical faults, there is just one fault case scenario for each fault 
type. In this study, the no-fault (NF) case and all 11 fault case scenarios 
are considered to examine their impacts on the MFD measurements 
around the transformer steel tank. The percentage of fault occurrence 
chances and severity of each fault type can be seen in Table 4.

3.3. Train and test data of SC MFD measurements

For NF and SC case scenarios, the MFD measurements through 
contactless magnetic points located at five different positions around the 
steel tank provided the sample dataset. The resulting data was exported 
from ANSYS Maxwell software as CSV files. These files were then im
ported to the coding platform to apply ML algorithms for automated 
FDC. The entire dataset, comprising all case scenarios, was divided into 
training and testing sections. The training and testing datasets are 
different because of the random sampling technique used in the ML al
gorithm, as presented in Table 5. This technique avoids human bias 
towards any specific fault scenario. By randomly selecting the data, the 
algorithm ensures that the model does not overfit to any particular fault 
type. The 80 % training dataset is used to teach the model to learn 

dataset behavior, while the 20 % testing dataset is reserved for evalu
ating its performance on unseen data to ensure how efficiently it learns 
the dataset’s behavior. During training, the model learns the intricate 
MFD values and relationships within MFD data for each case scenario. 
The test dataset was used as a benchmark to assess the trained model’s 
performance in accurately recognizing the unseen MFD measurements.

3.4. OC faults on 3-phase system

Open-circuit (OC) faults are common electrical issues that occur 
when there is an interruption in an electrical circuit, which impedes the 
flow of current. These faults can disrupt the normal operation of a three- 
phase system and can arise from various causes. In a three-phase system, 
OC faults can be categorized into three types: open one-phase, open two- 
phase, and open three-phase faults. An open one-phase fault occurs 
when one of the three phases becomes disconnected. An open two-phase 
fault happens when two of the three phases are interrupted. In an open 
three-phase fault, all three phases are disconnected, preventing any 
current flow.

3.4.1. Train and test data of OC MFD measurements
The entire dataset, comprising all OC case scenarios, was divided 

into training and testing sections. Here, 80 % of the MFD data was 
employed for training and 20 % for testing purposes as presented in 
Table 6.

3.5. ML approach for fault detection and classification

The standard procedure for any ML process is illustrated in Fig. 8, 
which begins with the data collection relevant to the task and pre- 
processing of data to enhance the data quality. Once the data is pre
pared, it is split into training and testing sections. The data allocated for 
training is then provided to the selected ML algorithm, permitting it to 
learn complex MFD measurements and relationships within data. 

Table 4 
Short circuit fault case scenarios with severity extent (Gururajapathy et al., 
2017).

S.no Fault 
Case

Fault 
Type

Fault 
Occurrence

Classification Severity 
extent

1 
2 
3

AG 
BG 
CG

L-G 70 % Unsymmetrical Moderate

4 
5 
6

AB 
BC 
AC

L-L 15 %

7 
8 
9

ABG 
BCG 
ACG

L-L-G 10 %

10 
11

ABC 
ABCG

L-L-L 
L-L-L-G

5 % Symmetrical Extreme

Table 5 
Training and testing sample datasets for SC case scenario.

Case Scenario Label Training Sample Counts Testing Sample Counts

Normal 0 2398 603
AG 1 2421 580
BG 2 2403 598
CG 3 2391 610
AB 4 2416 585
BC 5 2390 611
AC 6 2371 630
ABG 7 2406 595
BCG 8 2400 601
ACG 9 2389 612
ABC 10 2425 576
ABCG 11 2399 602
Total Sample Counts 28,809 7203

Table 6 
Training and testing sample datasets for OC case scenario.

Case Scenario Label Training Sample Counts Testing Sample Counts

Normal 0 2427 574
A_open 1 2420 581
B_open 2 2391 610
C_open 3 2378 623
AB_open 4 2388 613
BC_open 5 2413 588
AC_open 6 2399 602
ABC_open 7 2390 611
Total Sample Counts 19,206 4802

Fig. 8. Workflow of ML process utilized for the four algorithms in this study.
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Afterward, the algorithm’s performance is evaluated using separate 
testing data. If the ML algorithm satisfies the predetermined perfor
mance criteria, it can be implemented for the task and it signifies the 
ending of the process. Otherwise, the selected ML algorithm’s hyper
parameters are tuned until the targeted level of performance is achieved.

3.6. ML algorithms

In this section, a concise mathematical overview of the four algo
rithms implemented in this study is demonstrated. To improve the 
model’s performance based on the algorithm types, feature selection 
techniques like StandardScaler are used in tree models and ANN models 
to ensure all features contribute equally to the model. Furthermore, 
hyperparameter optimization is applied, such as adjusting learning 
rates, the number of layers, batch size in neural networks, and the 
number of trees and their maximum depth in tree-based models. These 
adjustments improve model accuracy, ensure faster convergence, and 
reduce training time. However, excessive tuning results in overfitting, 
causing the model to perform poorly on unseen datasets. Beyond a 
certain point, further tuning provides minimal improvements, making 
additional changes inefficient. Therefore, a balanced approach should 
be used. These four algorithms are chosen for their proven effectiveness 
in handling complex datasets and capturing non-linear relationships. 
The tree-based models offer clear views by breaking down the decision 
process into steps and demonstrating robustness against overfitting, 

while ANN provides powerful capabilities for detecting complex MFD 
values in dataset. This combination enables the effective evaluation of 
NF, SC, and OC fault detection and classification. The ML algorithms 
with their mathematical expressions are described below:

3.6.1. Decision tree algorithm
In this research, a DT Classifier, a supervised learning algorithm, was 

utilized to perform FDC. The algorithm works by iteratively splitting the 
data into subsets based on the feature values, constructing a tree-like 
model of decisions as shown in Fig. 9. The classifier was trained and 
tested using a labeled dataset containing 20 scenarios, collected from 
monitoring data of MFD around the transformer. A train-test split was 
performed, with 80 % of the data used for training and 20 % for testing, 
ensuring that the model could effectively extend its predictions to new, 
unseen data. The Decision Tree model was trained on this dataset, with 
the training time denoted as ttrain and the test time denoted as ttest , rep
resented in the Eqs.(8)and (9). 

ttrain = tend_train − tstart_train (8) 

ttest = tend_test − tstart_test (9) 

These time measurements are important for evaluating the efficiency 
of the classifier in fault detection scenarios, where quick decision- 
making is necessary. Additionally, the Decision Tree utilizes metrics 
like entropy and information gain to decide the best splits, assuring that 
the tree grows optimally by selecting the most informative features at 
each step. This process limits uncertainty and improves classification 
accuracy. 

Entropy(S) = −
∑c

i=1
pi log2(pi) (10) 

Fig. 9. Basic flowchart of the DT algorithm (Vidal et al., Oct. 2024).

Fig. 10. Basic flowchart of the GB algorithm (Nhat-Duc and Van-Duc, 2023).
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Fig. 11. Basic flowchart of the ANN algorithm (Hussain et al., 2023).

Table 7 
List of parameters designed for the ANN algorithm.

S.no Model Parameters Value

1 Architecture Feed-forward MLP
2 Number of 

Neurons
Input layer 5
1st Hidden layer 24
2nd Hidden 
layer

16

Output layer 12 for SC, 8 for OC
3 Total Weights 748
4 Batch Size 64
5 No. of epochs 100
6 Optimizer Adam
7 Activation function hidden layers Tanh
8 Activation function output layer SoftMax
9 Data normalization Feature Scaling
10 Loss Function Sparse Categorical Cross- 

Entropy

Fig. 12. Basic flowchart of the RF algorithm (Abbas, 2024).

Fig. 13. Core saturation under fault conditions.

Fig. 14. Eddy current loss under saturated core.
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Information Gain(S,A) = Entropy(S) −
∑

vinA

|Sv|

|S|
× Entropy(Sv) (11) 

In Eqs.(10), and (11), the term S represents the dataset, c represents 
the class labels and pi represents the proportion of samples in class i 
relative to the total number of samples in the dataset.

3.6.2. Gradient boosting algorithm
In this study, a GB Classifier was utilized, which uses an ensemble 

technique that builds models sequentially, where each new model at
tempts to correct the errors made by the previous ones as presented in 
Fig. 10. This approach not only increases predictive performance but 
also provides robustness against overfitting, particularly when dealing 
with complex MFD datasets. The process begins with the initialization of 
the model, where a base learner is constructed. In this case, the model 

was defined with 50 estimators, meaning that 50 weak learners were 
unified to form a strong predictive model. The optimization of a loss 
function in this study is represented in the Eq. (12), where L is the overall 
loss function, y is the true output, ̂y is the predicted output, and l is a loss 
function that calculates the error for observation. 

L(y, ŷ) =
∑n

i=1
l(yi, ŷi) (12) 

Once the training process was completed, the model’s predictions 
were evaluated using various performance metrics, including the 

Fig. 15. Hysteresis loss under saturated core.

Fig. 16. Magnetic field patterns under normal case.

Fig. 17. Magnetic field patterns under fault case.

Fig. 18. MFD measurement at the left-side magnetic point under no- 
fault scenarios.

Fig. 19. MFD measurement at the left-side magnetic point under ABCG SC 
fault scenario.

Fig. 20. MFD measurement at the left-side magnetic point under ABC OC 
fault scenario.
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classification report and confusion matrix.

3.6.3. Artificial neural network
In this study, a feed-forward ANN model is utilized on MFD mea

surements for FDC in distribution transformers. The architecture is 
designed with multiple layers to handle intricate relationships within 
the dataset as displayed in Fig. 11. The network comprises of an input 
layer with 5 neurons linked to the features of the dataset, two hidden 
layers with 24 and 16 neurons, respectively, and an output layer with 12 

neurons for SC faults and 8 neurons for OC faults, representing a total of 
20 distinct fault categories including normal scenarios. The mathemat
ical operations for each layer are performed using weights and biases, 
and the overall network is optimized to minimize error through back
propagation. The activation function used for both hidden layers is the 
tanh function, mathematically represented in the Eq.(13): 

tanh(x) =
ex − e− x

ex + e− x (13) 

For the output layer, the SoftMax function is applied, converting raw 
prediction scores into probabilities for each fault class where zi repre
sents the input to the neuron and n is the total number of output neurons. 
The SoftMax function is shown in Eq.(14): 

SoftMax(zi) =
ezi

∑n
j=1ezj

(14) 

The ANN model was compiled using the Adam optimizer, an adap
tive learning rate optimization algorithm that enhances both conver
gence speed and model performance. The optimizer is mathematically 
represented in the Eqs.(15), (16), and (17), where β1 and β2 are decay 
rates, α is the learning rate, and θt shows the model parameters. 

mt = β1mt− 1 +(1 − β1)gt (15) 

vt = β2vt− 1 +(1 − β2)g2
t (16) 

Table 8 
Performance evaluation metrics with formula description.

S.no Metric Formula

1 False Positive Rates (FPR) FP
FP + TN

2 Recall or True Positive Rates (TPR) TP
TP + FN

3 Precision TP
TP + FP

4 F-Measure 2 × Precision × Recall
Precision + Recall

5 Accuracy TP + TN
TP + FN + TN + FP

Table 9 
Classification report of the DT algorithm for SC case.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 0.93 0.89 0.91 603 -
2 AG 0.78 0.78 0.78 580 -
3 BG 1.00 1.00 1.00 598 -
4 CG 0.99 0.99 0.99 610 -
5 AB 0.96 0.94 0.95 585 -
6 BC 0.92 0.92 0.92 611 -
7 AC 0.88 0.91 0.89 630 -
8 ABG 0.99 0.98 0.98 595 -
9 BCG 0.98 0.99 0.99 601 -
10 ACG 0.99 0.98 0.99 612 -
11 ABC 0.92 0.91 0.91 576 -
12 ABCG 0.81 0.85 0.83 602 -
13 - Average Total -
14 - 0.9291 0.9283 0.9283 7203 92.85

Fig. 21. CM of DT algorithm for SC case scenario.

Table 10 
Classification report of the DT algorithm for OC case.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 1.00 0.90 0.95 574 -
2 A_open 0.75 0.90 0.82 581 -
3 B_open 1.00 0.90 0.95 610 -
4 C_open 1.00 0.70 0.82 623 -
5 AB_open 1.00 0.90 0.94 613 -
6 BC_open 1.00 0.82 0.90 588 -
7 AC_open 0.66 1.00 0.80 602 -
8 ABC_open 0.91 1.00 0.95 611 -
9 - Average Total -
10 - 0.915 0.89 0.891 4802 88.75
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θt = θt− 1 − α mt
̅̅̅̅vt

√
+ ϵ

(17) 

L =
∑n

i=1
yilog(ŷi) (18) 

The model was trained over 100 epochs with a batch size of 64. The 
Sparse Categorical Cross-Entropy loss function was used shown in the 
Eq.(18), which is suitable for multi-class classification tasks. The spec
ifications of this MLP model are displayed in Table 7.

3.6.4. Random forest algorithm
In this research, the RF Classifier, a robust ensemble learning tech

nique, was utilized to address the classification challenges related to 
MFD datasets. This classifier functions by creating multiple decision 
trees during the training phase and integrating their outputs. The final 
prediction resulted from the majority vote of the individual trees, which 
improves predictive accuracy as shown in Fig. 12. The number of de
cision trees, denoted as nestimators, was set to 50 in this study, indicating 
that 50 individual trees would be used to form a comprehensive model. 

The classification output can be mathematically expressed as follows: 

ŷ = mode{h1(x), h2(x), …, hn(x) } (19) 

In Eq.(19) ŷ is the predicted label, hi(x) shows the output of the ith 

decision tree for input x, and n is the total number of trees in the forest. 
After training, the model’s performance was evaluated using evaluation 
metrics.

4. Results and discussions

4.1. Impact of SC faults on core in distribution transformers

SC faults are linked to core saturation in transformers because they 
cause sudden, high-magnitude currents that force the core to operate 
beyond its normal operating flux. When an SC fault occurs, the trans
former experiences a rapid surge of current, similar to inrush current but 
with even higher magnitudes. These high-magnitude currents force the 
core flux to rise severely, often beyond its operating limits, leading to 
deep core saturation, as shown in Fig. 13, which increases core losses, 
generates harmonics, and causes overheating, thereby degrading the 
transformer’s performance and lifespan. This saturation of the core in
creases core losses such as eddy current and hysteresis losses shown in 
Fig. 14, Fig. 15, as higher MFD causes excessive circulating currents in 
the core and more energy dissipation, reducing efficiency and increasing 
heat.

4.2. MFD pattern in normal and fault conditions

During both normal and fault conditions, complex and continuously 
changing magnetic patterns are captured through non-contact magnetic 
sensors in the form of MFD measurements. Under normal operating 
conditions, these magnetic patterns signify that the transformer core is 
operating efficiently with minimal losses as shown in Fig. 16. However, 
during fault scenarios, the patterns indicate a significant increase in core 
losses due to excessive heating as shown in Fig. 17. In visual represen
tations, blue magnetic pattern vectors indicate minimal heating, while 
red magnetic pattern vectors show severe heating. If fault conditions 
remain, the transformer’s efficiency deteriorates rapidly. To prevent 

Fig. 22. CM of DT algorithm for OC case scenario.

Table 11 
Classification report of the GB algorithm for each case scenario.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 0.93 0.93 0.93 603 -
2 AG 0.86 0.92 0.89 580 -
3 BG 1.00 0.99 1.00 598 -
4 CG 0.99 1.00 0.99 610 -
5 AB 0.97 0.99 0.98 585 -
6 BC 0.94 0.94 0.94 611 -
7 AC 0.94 0.93 0.94 630 -
8 ABG 1.00 0.98 0.99 595 -
9 BCG 1.00 0.99 1.00 601 -
10 ACG 0.99 1.00 0.99 612 -
11 ABC 0.97 0.90 0.93 576 -
12 ABCG 0.89 0.90 0.89 602 -
13 - Average Total -
14 - 0.9566 0.9558 0.9558 7203 95.63
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such degradation, an effective protection mechanism is necessary. In 
this study, non-contact magnetic sensors rapidly capture these magnetic 
patterns in the form of MFD values and provide them to ML algorithms, 
which rapidly classify different fault scenarios.

4.3. MFD measurement in normal and fault conditions

From the Eq.(4), it is evident that the MFD changes in response to 
fault current variations in the transformer. This section presents a 
comparative analysis of the left-side non-contact magnetic measure
ments, shown in Fig. 18, Fig. 19, and Fig. 20 to illustrate how MFD varies 
with changing fault currents. A similar behavior is observed in the other 
four sides of the non-contact magnetic measurement points, with slight 
variations in magnetic and current values. For simplicity, the compari
son includes the first 200 MFD measurement samples for no-fault, ABCG 
SC, and ABC OC fault scenarios. The MFD graph is sinusoidal due to the 
AC current flowing through the windings of the transformer, which 
causes the magnetic field to change its magnitude over time.

In Fig. 18, the MFD behavior is normal during no-fault conditions. 
However, under the ABCG SC fault condition in Fig. 19, it rises to a 
significantly higher value, while under the ABC OC fault condition in 
Fig. 20, it peaks at a comparatively lower value than in the SC fault 
scenario. These results indicate that, under SC conditions, the MFD can 
reach higher values, causing more severe damage to the transformer 

compared to an OC fault. To mitigate such risks, a fast protection 
mechanism is important to protect the transformer from high MFD peaks 
by swiftly sending a trip signal to the circuit breaker. ML application 
offers an effective, automated solution for FDC, using non-contact 
magnetic MFD measurements to immediately detect faulty conditions 
and protect the transformer from damage.

4.4. Performance evaluation metrics

In the domain of ML, performance evaluation metrics perform a key 
function in figuring out the efficiency of the algorithms. The algorithms 
previously mentioned, such as DT, GB, ANN, and RF, are initially trained 
with the provided training data. After this, these algorithms are assessed 
on the test data, and the effectiveness of these algorithms is examined 
through performance evaluation metrics, as illustrated in Table 8. From 
Table 8, it’s evident that true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) terms played an important role in 
building the performance evaluation report for algorithms. TP repre
sents actual positive samples correctly predicted by the model as posi
tive, and TN indicates where actual negative samples are rightly 
predicted as negative. FP represents actual negative samples incorrectly 
predicted as positive, and FN indicates where positive samples are 
mistakenly classified as negatives.

Precision, Recall, and F1 score use these positive and negative 
samples to measure a model’s accuracy when making predictions. Pre
cision focuses on the accuracy of positive sample predictions, while 
recall emphasizes the model’s capability to capture actual positive 
samples. Accuracy is the important metric which is the ratio of correctly 
predicted samples to the total number of samples. For a better under
standing of the error a model commits and the distribution of these er
rors across different classes, the confusion matrix (CM) has emerged as 
an important tool. It is a n × n matrix also called an error matrix where n 
represents the number of classes. The x-axis of this CM shows the pre
dicted labels whereas the y-axis represents the actual labels. The diag
onal of this CM indicates the correctly predicted samples and the off- 
diagonal represents the misclassified predicted samples. This helps in 
evaluating a model’s performance and locating areas for improvement 
in classification problems. The last factor considered for assessing the 
performance of the above-discussed algorithms is the processing time 

Fig. 23. CM of GB algorithm for SC case scenario.

Table 12 
Classification report of the GB algorithm for OC case scenario.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 1.00 1.00 1.00 574 -
2 A_open 0.79 0.83 0.81 581 -
3 B_open 0.79 0.62 0.70 610 -
4 C_open 1.00 0.91 0.95 623 -
5 AB_open 0.84 0.90 0.87 613 -
6 BC_open 1.00 1.00 1.00 588 -
7 AC_open 1.00 1.00 1.00 602 -
8 ABC_open 0.83 1.00 0.91 611 -
9 - Average Total -
10 - 0.906 0.907 0.905 4802 90.55
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taken during training and testing while executing all algorithms on the 
same platform. After that, these times are compared to draw compari
sons among the algorithms. The acquired results for each algorithm are 
shown below:

4.4.1. Evaluation of DT model performance for SC case
After implementing the DT model on the MFD dataset, the achieved 

results are summarized in Table 9 which includes performance evalua
tion metrics for each case scenario. The classification report highlights 
that the DT algorithm experiences more challenges when predicting 
cases such as NF, AG, AC, and ABCG. In the case of AG, the precision 
shows that this model’s predictions were true positive 78 % of the time, 
while the remaining 22 % were false positives. For ABCG, the recall 
indicates that the model correctly identified 85 % of the actual positive 
samples and spotted false negatives 15 % of the time. Moreover, the 
algorithm achieved an accuracy score of 92.85 % which signifies the 
overall performance of the DT algorithm is below average.

The CM presented in Fig. 21, clearly indicates that the DT algorithm 
struggles while differentiating the AG case from the ABCG case as it 
predicted 67 times the AG samples as ABCG and 66 times the ABCG 

samples predicted as AG samples. In total, the AG was misclassified 128 
times and the ABCG was misclassified 89 times which indicates poor 
performance. Similarly, 30 NF case samples are incorrectly predicted as 
AC samples by the DT algorithm.

4.4.2. Evaluation of DT model performance for OC case
The classification report in Table 10 highlights that the DT algorithm 

experiences more challenges when predicting cases such as A_open, 
C_open, AC_open, and ABC_open. In the case of A_open, the precision 
shows that this model’s predictions were true positive 75 % of the time, 
while the remaining 25 % were false positives. For BC_open, the recall 
indicates that the model correctly identified 82 % of the actual positive 
samples and spotted false negatives 18 % of the time. Moreover, the 
algorithm achieved an accuracy score of 88.75 %.

The CM presented in Fig. 22, clearly indicates that the DT algorithm 
struggles while differentiating the A_open case from the AC_open case as 
it predicted 60 times the A_open samples as AC_open. Similarly, 65 
BC_open case samples are incorrectly predicted as AC_open samples by 
the DT algorithm.

4.4.3. Evaluation of GB model performance for SC case
The classification report displayed in Table 11, clearly indicates that 

the GB model faced challenges when predicting these cases such as NF, 
AG, and ABCG but it performs much better than the DT algorithm. 
Significantly, the algorithm obtained high accuracy in predicting cases 
like BG, BCG, and ACG. In the case of BG, the precision highlights that 
the model’s predictions were 100 % true positive, while in the AG case, 
the model’s precision predictions were only 86 % true positive. For BG, 
the recall indicates that the algorithm identified only 1 % of false neg
atives, whereas, for AG, the false negatives were 7 % of the time. 
Furthermore, the accuracy score of the GB algorithm is 96.63 %, sup
pressing the accuracy of the DT algorithm by 3.78 %.

The GB model’s CM is displayed in Fig. 23. The CM indicates that the 
ABCG case was mixed up with the AG case because the classifier pre
dicted the ABCG samples as AG samples 43 times and the AG samples as 
ABCG samples 23 times. Notably, the ACG case was predicted 611 times 
accurately, with just 1 sample predicted as BC among the total 612 MFD 
test samples allocated for this case. Moreover, a comparison between the 
GB and DT algorithms displays that the AG case faced only 49 

Fig. 24. CM of GB algorithm for OC case scenario.

Table 13 
Classification report of the ANN algorithm for each case scenario.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 0.97 0.96 0.97 603 -
2 AG 0.96 0.99 0.97 580 -
3 BG 1.00 1.00 1.00 598 -
4 CG 1.00 1.00 1.00 610 -
5 AB 1.00 0.98 0.99 585 -
6 BC 0.97 0.97 0.97 611 -
7 AC 1.00 0.98 0.99 630 -
8 ABG 1.00 1.00 1.00 595 -
9 BCG 1.00 1.00 1.00 601 -
10 ACG 1.00 1.00 1.00 612 -
11 ABC 0.98 0.99 0.99 576 -
12 ABCG 0.97 0.97 0.97 602 -
13 - Average Total -
14 - 0.9875 0.9866 0.9875 7203 98.71
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misclassifications with GB as compared to the 128 misclassifications 
witnessed in the DT algorithm.

4.4.4. Evaluation of GB model performance for OC case
The classification report displayed in Table 12, clearly indicates that 

the GB model faced challenges when predicting these cases such as 
A_open, B_open, and AB_open. In the case of BC_open, precision high
lights that the model’s predictions were 100 % true positive, while in the 
A_open case, the model’s precision predictions were only 79 % true 
positive. Furthermore, the accuracy score of the GB algorithm is 
90.55 %, suppressing the accuracy of the DT algorithm by 1.8 %.

The GB model’s CM is displayed in Fig. 24. The CM indicates that the 
A_open case was mixed up with the B_open case because the classifier 
predicted the A_open samples as B_open samples 100 times. Notably, the 
BC_open case was predicted 587 times accurately, with just 1 sample 
predicted as ABC_open among the total 588 MFD test samples allocated 
for this case.

4.4.5. Evaluation of ANN model performance
The performance evaluation report of the ANN is presented in 

Table 13 where it is evident that this classifier performs efficiently in 
predicting all NF and SC fault case scenarios. The precision, recall, and 
F1 scores for specific case scenarios like BG, CG, ABG, BCG, and ACG 
present an outstanding accuracy of 100 % in predicting true positive 

samples. The previous algorithms faced difficulty in case scenarios such 
as NF, AG, AC, and ABCG but the ANN algorithm also exhibits high ef
ficiency in these cases. The average of all metric measurements is almost 
equal to 0.987 demonstrating the algorithm’s capability to predict 
maximum true positive rates and minimum false positives and false 
negatives. The algorithm’s accuracy score is 98.71 % which also en
dorses the robust performance of the ANN.

The CM is shown in Fig. 25. The CM indicates that ANN predicted 
case scenarios like BG, CG, ABG, and ACG without any misclassification. 
However, the NF case scenario was mixed up with AG, as NF samples 
were incorrectly predicted as AG 19 times. In the complete NF case, 
accurate predictions occurred 581 times, with 22 test samples mis
classified out of a total of 603 MFD test samples. By considering all case 
scenarios together, the analysis reveals that 7110 MFD test samples were 
predicted accurately from a complete pool of 7203 MFD test samples.

4.4.6. Evaluation of ANN model performance for OC case
The performance evaluation report of the ANN is presented in 

Table 14, where it is evident that it performed efficiently in NF, B_open, 
C_open and AC_open case scenarios. The precision score for specific case 
scenarios like NF, B_open, C_open, BC_open, AC_open and ABC_open 
present an outstanding accuracy of 100 % in predicting true positive 
samples. The algorithm’s accuracy score is 92.38 % which also high
lights the robust performance of the ANN.

The CM is shown in Fig. 26. The CM indicates that ANN predicted 
case scenarios like NF and A_open without any misclassification. How
ever, the A_open case scenario was mixed up with all the remaining case 
scenarios. By considering all case scenarios together, the analysis reveals 
that 4501 MFD test samples were predicted accurately from a complete 
pool of 4802 MFD test samples.

4.4.7. Evaluation of RF model performance
The results achieved by the RF model are displayed in Table 15, 

consisting of performance evaluation metrics. The classification report 
highlights that the RF algorithm performed efficiently for all case sce
narios in predicting true positive samples. For NF and SC fault case 
scenarios, except for AG, the precision indicates that the algorithm 
predicted 100 % true positive samples and 0 % false positives. The recall 
metric displays that the algorithm predicted 1 % false negatives for three 

Fig. 25. CM of ANN algorithm for SC case scenario.

Table 14 
Classification report of the ANN algorithm for OC case scenario.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 1.00 1.00 1.00 574 -
2 A_open 0.61 1.00 0.76 581 -
3 B_open 1.00 0.90 0.95 610 -
4 C_open 1.00 0.91 0.95 623 -
5 AB_open 1.00 0.90 0.95 613 -
6 BC_open 1.00 0.89 0.94 588 -
7 AC_open 1.00 0.91 0.95 602 -
8 ABC_open 1.00 0.89 0.94 611 -
9 - Average Total -
10 - 0.951 0.925 0.93 4802 92.38
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cases AG, ABC, and ABCG, while it showed 0 % for the remaining fault 
cases. The average of these metrics is nearly equal to 100 % which in
dicates the enhanced performance of the RF algorithm. Furthermore, the 
algorithm’s accuracy score is 99.74 % which outperformed all the pre
ceding algorithms like DT, GB, and ANN.

The CM is presented in Fig. 27. The detailed view of the CM explains 
the efficient performance of the RF algorithm in accurately classifying 
the MFD test samples for each case scenario. Unlike previous algorithms, 
the RF algorithm handled misclassification challenges efficiently in 
cases like NF, AG, AC, and ABCG. Notably, the highest prediction errors 
occurred in ABCG, with only 5 out of the total 602 MFD test samples 
being misclassified. In case scenarios like BG, CG, AB, ABG, and ACG, the 
RF algorithm predicted all the MFD test samples accurately without any 
error. By considering all the case scenarios together, the analysis un
covers that out of a total of 7203 MFD test samples, the algorithm 
accurately predicted 7184 MFD test samples. It means only 19 samples 
were misclassified by the algorithm, which outclassed all the previously 
implemented algorithms in this study.

4.4.8. Evaluation of RF model performance for OC case
The classification report in Table 16 highlights that the RF algorithm 

performed efficiently for all case scenarios in predicting true positive 
samples. For NF, AB_open, AC_open, and ABC_open, the precision, recall, 
and F1-score are 100 % which means the RF model predicted 100 % true 
positive samples in these cases. Furthermore, the algorithm’s accuracy 
score is 93.02 % which outperformed all the preceding algorithms like 
DT, GB, and ANN.

The detailed view of the CM in Fig. 28 explains the efficient per
formance of the RF algorithm in accurately classifying the MFD test 
samples for each case scenario. By considering all the case scenarios 
together, the analysis uncovers that out of a total of 4802 MFD test 
samples, the algorithm accurately predicted 4467 MFD test samples. It 
means only 335 samples were misclassified by the algorithm.

4.5. Comparative analysis

For comparative analysis, the accuracy results obtained from all the 
above-applied algorithms are displayed in Fig. 29 and Fig. 30. From this 
analysis, it’s evident that the RF classifier outclassed all the other al
gorithms, mainly due to its use of Bootstrap Aggregating (bagging), an 
ensemble learning technique where multiple decision trees are com
bined to create a robust and highly accurate model. This technique en
sures that the model is less prone to overfitting compared to individual 
decision trees. With a single decision tree, there is a higher chance of 
overfitting and misclassification, especially when handling complex 
data like MFD samples. However, using multiple trees in RF allows each 
tree to learn different aspects of the data, effectively minimizing over
fitting. In our study, 50 trees were used, improving RF’s ability to 
combine predictions from multiple trees. As a result, the RF classifier 
effectively handled the MFD data samples and learned intricate re
lationships within the data. Following this, the accuracy score of the 
ANN is slightly lower than the RF, but it performed well in detecting and 
classifying the faults. The ANN algorithm misclassified a few case sce
narios by mixing up their MFD data samples. The GB algorithm is known 
for its robustness that sequentially creates weak learners, but its over
fitting nature crafted complications for the GB classifier in understand
ing complex MFD data samples. Consequently, this led to low accuracy 
for the FDC task. Moreover, the least performer is the DT algorithm in 

Fig. 26. CM of ANN algorithm for OC case scenario.

Table 15 
Classification report of the RF algorithm for each case scenario.

S.no Case 
Scenario

Precision Recall F1- 
score

Count Accuracy 
(%)

1 NF 1.00 1.00 1.00 603 -
2 AG 0.98 0.99 0.99 580 -
3 BG 1.00 1.00 1.00 598 -
4 CG 1.00 1.00 1.00 610 -
5 AB 1.00 1.00 1.00 585 -
6 BC 1.00 1.00 1.00 611 -
7 AC 1.00 1.00 1.00 630 -
8 ABG 1.00 1.00 1.00 595 -
9 BCG 1.00 1.00 1.00 601 -
10 ACG 1.00 1.00 1.00 612 -
11 ABC 1.00 0.99 1.00 576 -
12 ABCG 1.00 0.99 0.99 602 -
13 - Average Total -
14 - 0.9983 0.9975 0.9983 7203 99.74
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classifying the fault case scenarios accurately.
Apart from the accuracy score, the processing time of each ML al

gorithm provides intensive knowledge about the model’s performance. 
The training time and testing time of DT, GB, ANN, and RF are presented 
in Table 17. The DT and RF algorithms have the shortest training and 
testing times when learning the MFD data and predicting fault case 
scenarios. The simplicity of the DT, which consists of a single tree 
structure, leads to faster processing time. In contrast, the RF algorithm 
simultaneously builds multiple decision trees and aggregates their pre
dictions, making it slightly slower than DT but faster than ANN and GB. 
The GB algorithm takes more time to learn the MFD data due to its 
sequential nature, but it predicts unseen case scenarios swiftly. The 
training time of ANN is higher compared to the others due to its back
propagation process, which adjusts parameters to minimize error. 
However, it takes less time to predict fault case scenarios as it doesn’t 
involve the backpropagation process.

Based on this analysis, we can conclude that a balance should be 
taken into consideration between accuracy score and processing time 
when selecting the appropriate ML model for a specific task. The RF 
algorithm stands out as the first choice for fault detection and classifi
cation tasks, having achieved a higher accuracy score of 99.74 % and 
93.02 % for both fault cases while maintaining a balanced training and 
testing time. As discussed above, a major portion of the country’s 
economy is allocated to the EPSN. Hence, it’s important to protect the 

power equipment which can be achieved if the classifiers accurately 
predict the fault nature. For this reason, the ANN algorithm emerges as 
the second choice with an accuracy score of 98.71 % and 92.38 % for 
both fault cases, mainly due to its ability to handle complicated real- 
world scenarios efficiently, a factor that both GB and DT models lack.

5. Conclusion

This paper aims to enhance the safety and reliability of the EPSN by 
introducing an automatic FDC approach using the ML algorithms for the 
secondary distribution system, focusing on 18 different fault types. This 
research uses non-contact magnetic measurements to monitor the MFD 
behavior around the distribution transformer. An FEA-based electro
magnetic analysis of a 630 KVA was conducted, where five magnetic 
points were placed to gather data on the MFD behavior around the steel 
tank of the secondary distribution transformer during SC and OC fault 
conditions. A dataset consisting of 28,809 MFD SC samples and 19,206 
MFD OC samples is used as input for the training of four ML algorithms 
to assess the performance of each algorithm in handling these complex 
MFD measurements. The RF algorithm showed the best performance 
among these four algorithms with 99.74 % and 93.02 % accuracy in 
correctly detecting and classifying fault scenarios followed by ANN at 
98.71 % and 92.38 %, GB at 95.63 % and 90.55 %, and DT at 92.85 % 
and 88.75 %. This research highlights the advantages of using MFD 
measurements collected through non-contact magnetic points, which 
increase safety and fault detection accuracy compared to traditional CT 
and PT. The core saturation of CT also limits its accuracy, whereas the 
non-contact nature of these magnetic measurements eliminates the need 
for physical contact with potentially hazardous equipment, thus 
reducing risks. Additionally, the ML models efficiently processed these 
intricate MFD measurements, providing an effective solution for FDC to 
protect the transformer during fault times. Future work will focus on 
addressing noise interference and transient effects, which were not 
considered in this study.
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ÖZÜPAK, Y., Jan. 2021. Performing structural design and modeling of transformers using 
ANSYS-Maxwell. Brill. Eng. 2 (2), 38–42. https://doi.org/10.36937/ 
ben.2021.002.005.

Rafique, F., Fu, L., Mai, R., Oct. 2021. End to end machine learning for fault detection 
and classification in power transmission lines. Electr. Power Syst. Res. 199. https:// 
doi.org/10.1016/j.epsr.2021.107430.

Singh, M.R., Chopra, T., Scholar, M.Tech, 2015. Fault classification in electric power 
transmission lines using support vector machine. Int. J. Innov. Res. Sci. Technol. | 1. 
〈www.ijirst.org〉 ([Online]. Available). 

Thomas, J.B., Chaudhari, S.G., Shihabudheen, K.V., Verma, N.K., 2023. CNN-based 
transformer model for fault detection in power system networks. IEEE Trans. 
Instrum. Meas. 72. https://doi.org/10.1109/TIM.2023.3238059.

Uddin, M.S., et al., Nov. 2022. On the protection of power system: transmission line fault 
analysis based on an optimal machine learning approach. Energy Rep. 8, 
10168–10182. https://doi.org/10.1016/j.egyr.2022.07.163.

Usman, M.U., Ospina, J., Faruque, Md.O., Jan. 2020. Fault classification and location 
identification in a smart DN using ANN and AMI with real-time data. J. Eng. 2020 
(1), 19–28. https://doi.org/10.1049/joe.2019.0896.

Venkata, P., Pandya, V., Vala, K., Sant, A.V., Dec. 2022. Support vector machine for fast 
fault detection and classification in modern power systems using quarter cycle data. 
Energy Rep. 8, 92–98. https://doi.org/10.1016/j.egyr.2022.10.279.

Vidal, J., Jha, S., Liang, Z., Delgado, E., Deneke, B.S., Shasha, D., Oct. 2024. Dynamic 
decision trees. Knowledge 4 (4), 506–542. https://doi.org/10.3390/ 
knowledge4040027.

Yuan, J., Jiao, Z., May 2023. Faulty feeder detection for single phase-to-ground faults in 
distribution networks based on patch-to-patch CNN and feeder-to-feeder LSTM. Int. 
J. Electr. Power Energy Syst. 147. https://doi.org/10.1016/j.ijepes.2022.108909.

Zheng, J., Liu, Y., Ge, Z., Jun. 2022. Dynamic ensemble selection based improved 
random forests for fault classification in industrial processes. IFAC J. Syst. Control 
20, 100189. https://doi.org/10.1016/j.ifacsc.2022.100189.

S. Rao et al.                                                                                                                                                                                                                                      Energy Reports 13 (2025) 3469–3488 

3488 

https://doi.org/10.3390/su151411144
https://doi.org/10.1016/j.epsr.2024.110216
https://doi.org/10.1016/j.epsr.2024.110216
https://doi.org/10.1080/15567036.2021.1948637
https://doi.org/10.1080/15567036.2021.1948637
https://doi.org/10.1016/j.ijepes.2021.107233
https://doi.org/10.1016/j.ijepes.2021.107233
https://doi.org/10.1109/TASC.2021.3107799
https://doi.org/10.1109/TASC.2021.3107799
https://doi.org/10.1109/TIM.2020.2983339
https://doi.org/10.1109/TIM.2020.2983339
https://doi.org/10.3390/app10144965
https://doi.org/10.3390/app122311903
https://doi.org/10.3390/app122311903
https://doi.org/10.1016/j.autcon.2023.104767
https://doi.org/10.1016/j.autcon.2023.104767
https://doi.org/10.3390/signals3030027
https://doi.org/10.3390/signals3030027
https://doi.org/10.36937/ben.2021.002.005
https://doi.org/10.36937/ben.2021.002.005
https://doi.org/10.1016/j.epsr.2021.107430
https://doi.org/10.1016/j.epsr.2021.107430
http://www.ijirst.org
https://doi.org/10.1109/TIM.2023.3238059
https://doi.org/10.1016/j.egyr.2022.07.163
https://doi.org/10.1049/joe.2019.0896
https://doi.org/10.1016/j.egyr.2022.10.279
https://doi.org/10.3390/knowledge4040027
https://doi.org/10.3390/knowledge4040027
https://doi.org/10.1016/j.ijepes.2022.108909
https://doi.org/10.1016/j.ifacsc.2022.100189

	Enhancing fault detection and classification in distribution transformers using non-contact magnetic measurements: A compar ...
	1 Introduction
	2 Contribution of the paper
	3 Methodologies
	3.1 3D distribution transformer modelling and simulation
	3.1.1 Mathematical model
	3.1.2 ANSYS maxwell
	3.1.3 Distribution transformer model design
	3.1.4 Placement of magnetic field points
	3.1.5 Model simulation

	3.2 SC faults on 3-phase system
	3.3 Train and test data of SC MFD measurements
	3.4 OC faults on 3-phase system
	3.4.1 Train and test data of OC MFD measurements

	3.5 ML approach for fault detection and classification
	3.6 ML algorithms
	3.6.1 Decision tree algorithm
	3.6.2 Gradient boosting algorithm
	3.6.3 Artificial neural network
	3.6.4 Random forest algorithm


	4 Results and discussions
	4.1 Impact of SC faults on core in distribution transformers
	4.2 MFD pattern in normal and fault conditions
	4.3 MFD measurement in normal and fault conditions
	4.4 Performance evaluation metrics
	4.4.1 Evaluation of DT model performance for SC case
	4.4.2 Evaluation of DT model performance for OC case
	4.4.3 Evaluation of GB model performance for SC case
	4.4.4 Evaluation of GB model performance for OC case
	4.4.5 Evaluation of ANN model performance
	4.4.6 Evaluation of ANN model performance for OC case
	4.4.7 Evaluation of RF model performance
	4.4.8 Evaluation of RF model performance for OC case

	4.5 Comparative analysis

	5 Conclusion
	Authors role and contributions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


