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Abstract

Critical infrastructure and Operational Technology (OT) are becoming more
exposed to cyber attacks due to the integration of OT networks to enterprise
networks especially in the case of Industrial Cyber-Physical Systems (ICPS).
These technologies that are a huge part of our daily lives usually operate by
having sensors and actuators constantly communicating through an industrial
network. To secure these industrial networks from cyber attacks, researchers
have utilised misuse detection and Anomaly Detection (AD) techniques to de-
tect potential attacks. Misuse detection methods are unable to detect zero-day
attacks while AD methods can, but with high false positive rates and high com-
putational overheads. In this paper, we present STADe, a novel Sliding Time-
window Anomaly Detection method that uses a sole feature of network packet
inter-arrival times to detect anomalous network communications. This work
aims to explore a mechanism for detecting breaks in periodicity to flag anoma-
lies. The method was validated using data from a real oil and gas wellhead
monitoring testbed containing field flooding, SYN flooding, and Man-in-the-
Middle (MITM) attacks - which are attacks that are popularly used to target
the availability and integrity of oil and gas critical infrastructure. The results
from STADe proved to be effective in detecting these attacks with zero false
positives and F1 scores of 0.97, 0.923, and 0.8 respectively. Further experiments
carried out to compare STADe with other unsupervised machine learning algo-
rithms – KNN, isolation forest, and Local Outlier Factor (LOF) – resulted in F1
scores of 0.55, 0.673, and 0.408 respectively. STADe outperformed them with
an F1 score of 0.933 using the same dataset.
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of1. Introduction

In modern times, our daily lives have become increasingly dependent on In-
dustrial Cyber-Physical Systems (ICPS). Whether it’s monitoring and control-
ling an efficient railway network, or controlling hazardous hydrocarbons being
transported within oil and gas pipelines, ICPS are managing to keep our envi-5

ronments safe and predictable. However, innovation through digitisation and
automation has exposed these systems to cyber threats [1]. This threat from
cyber-attacks has attracted increased interest from researchers in academia and
industry to determine the best ways to protect our critical infrastructure.

ICPS are typically composed of three control components (i) Programmable10

Logic Controllers (PLC), (ii) Supervisory Control and Data Acquisition (SCADA),
and (iii) Distributed Control Systems (DCS). However, one dominant compo-
nent throughout all industrial control systems is the communication network
which is responsible for connecting all equipment and devices by electrical in-
terfaces and communication protocols to ensure all systems communicate effi-15

ciently [2]. It is gradually becoming evident that securing industrial network
communications from cyber-attacks should be one of the key steps in ensuring
that critical infrastructure is protected.

Network traffic from industrial networks exhibits strong periodic patterns
[3]. This work is motivated by the observation that industrial control systems20

and PLC-based systems have a high degree of periodicity in behaviour when
used in a real-world context compared to other Information Technology (IT)-
based traffic. This is because, rather than traffic being generated mainly from
random user-generated workflows - as in the case of enterprise/IT networks -
industrial network traffic is primarily generated from the consistent polling of25

data between systems with the aim of monitoring and controlling the process.
This gives it a high repeatability resulting in a consistent pattern. This could
be likened to harmonious music, where each industrial network has its own tune
represented as a pattern. This pattern is a basic representation of the behaviour
of the industrial network under normal operations.30

Having such high periodicity has its advantages. One such advantage is that,
if properly represented and modeled, any slight deviation from the established
basic network pattern could be easily identified and flagged as anomalous be-
haviour. This regularity of patterns present in industrial control network traffic
makes anomaly detection very promising [4].35

Intrusion detection Systems (IDS) can be classified broadly into misuse de-
tection (signature/rule-based Intrusion Detection Systems) and anomaly de-
tection [5]. Historically, misuse IDS have proven to be effective in identifying
traditional (known) cyber attacks that indicate discriminate patterns [6, 7, 8, 9],
but in spite of this, these IDS are less effective at detecting zero-day attacks that40

utilise novel methods of exploiting vulnerabilities with persistence. This is an
advantage that anomaly detection methods have because they are more capa-
ble of detecting novel anomalous scenarios. However, despite this advantage,
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high computational overheads and high false-positive rates [10] - often leading45

to a high number of false alarms overwhelming security experts with alerts [11].
This is relevant, since the usefulness of intrusion detection systems is greatly
influenced by the false-positive rate [12].

With the increasing frequency of zero-day attacks being carried out on criti-
cal infrastructure [13], it has become evident that to improve widespread adop-50

tion, anomaly detection methods need to be improved upon to reduce the high
false-positive rates and computational complexities. This would potentially in-
crease the protection levels of critical infrastructure against cyber threats.

In this study, we present STADe - a Sliding Time-window Anomaly Detec-
tion method that uses a sliding window to characterise the periodicity of any55

given industrial network using the packet timings to create a mini-model of the
system which represents the normal operation pattern. This periodic pattern
allows the use of anomaly detection to determine where the periodicity is bro-
ken (e.g. injection of cyber-attacks). This work is focused on a computationally
efficient mechanism to identify this break in periodicity, which flags anoma-60

lies and detects cyber-attacks. Previous studies on industrial network anomaly
detection have mostly focused on inspecting individual packets through deep
packet inspection (DPI) or other custom modules which can be error-prone – as
evidenced by the high false positive rates experienced by these methods. The
advantage of using a time window, comprising multiple packets, is that it can65

adequately capture network behaviour over a specified period of time, and thus,
is more effective at labeling a particular series of packets as either normal or
anomalous with a much lower false positive rate when compared with trying to
label a specific individual packet.

The main contributions of this paper are:70

• A novel method of defining the periodicity of any given industrial net-
work by using the packet timings to create a mini-model of the system
representing the normal operation pattern.

• A mechanism to detect a break in periodicity, which is used to flag anoma-
lies by use of a sliding time window.75

• A method to visualise the periodicity of an industrial network using only
packet inter-arrival times represented as points in 3-dimensional space.

• Four labeled datasets collected from an oil and gas industrial testbed
containing field flooding attacks, SYN flooding attacks, and Man-in-the-
Middle (MITM) attacks.80

The remainder of this paper is structured as follows: Section 2 discusses the
related work in this research area. Section 3 describes the approach and STADe
methodology. In Section 4 description of the experiments carried out is given,
while Section 5 presents the results and discusses them in more detail. Section 6
compares STADe with other ML methods and the conclusion is in Section 7.85
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Despite the importance of critical infrastructure, and the increasing threats
to it from cyber attacks, only a few studies have investigated anomaly detection
methods specifically for industrial networks. Many current network anomaly
detection systems are based on supervised machine learning methods which are90

often expensive and difficult to obtain training data [5, 14], while unsupervised
machine learning anomaly detection methods are are not widely used in practice
because of high false positive rates that tend to overwhelm security analysts with
false alerts. To combat these problems, researchers have recently turned to
deep learning techniques, which have also increased computational overheads.95

Industrial control networks operate in resource-constrained environments and
require lightweight solutions. For these reasons, we have not considered machine
learning and deep learning-based anomaly detection methods.

In other recent anomaly detection approaches for industrial networks, such
as [15], the authors used a timing-based anomaly detection system that uses the100

statistical attributes of the communication patterns. Their proposed intrusion
detection system identifies unique sets of request-response events from request
types and requested addresses. Jiang et al. [16] also proposed a method to detect
network traffic anomalies by using a sliding window that uses Decomposable
Principal Component Analysis (DPCA) to handle network traffic signals. The105

DCPA handles the traffic of all original destination flows in a network while an
adaptive clique division enables it to dispose of the dynamic network traffic. The
method comprises utilising compressed features of the network traffic including
byte size to classify anomalous scenarios. Their work was evaluated using traffic
data from the Abilene network as ground traffic. By incorporating addresses110

into their learning modules, the models in [15] and [16] would struggle to detect
stealthier attacks like MITM which spoofs legitimate IP addresses morphed into
the data stream.

In [17], Tekeoglu et al. used network traffic features to capture the system-
specific anomalies. They did this by extracting a number of packet-based115

features from pcap files using 3-second time windows which included average
bytes in the window, average seconds between each consecutive packet in a win-
dow, and unique destination IP addresses in the window amongst others. This
method required constant iterations between network traffic features to deter-
mine the most appropriate metric which increases its computational overhead.120

The authors in [4] and [18] also tried to utilise the traffic periodicity in
industrial networks by using message repetition and timing information to au-
tomatically learn traffic models that capture periodic patterns. The authors
in [4] proposed a period analyser composed of three modules: (i) Multiplexer,
(ii) Tokeniser, and (iii) Learner which worked in a sequence comprising prepro-125

cessing the network traffic and separating it into different flows, transforming
each packet into a protocol-independent format called a token, and finally pro-
cessing each token to identify and characterise periodic activities called cycles.
Their method involves filtering and grouping packets based on server address,
IP protocol, server port, and client address. One key limitation of their study130
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ofTable 1: Summary of related work

Reference Timing-
based

Window-
based

Single
feature-
based

Zero False
Positives

[15]  
[16]   
[17]  
[4]  
[18]  

STADe     

is that the tokeniser and multiplexer modules need to be adapted in order to
accommodate new industrial protocols as it was designed for Modbus and MMS
protocols. The authors in [18] also relied on the stable and persistent control
flow communications in industrial networks to develop a fingerprinting method-
ology to capture normal behaviour characteristics. They extracted multiple135

features such as packet arrival order, packet size, direction, and inter-arrival
time to classify network behaviour. This requirement of using multiple features
from network traffic increases the computational head on the system.

In general, industrial network anomaly detection requires a lightweight solu-
tion because it operates in a resource-constrained environment. The more fea-140

tures the IDS model utilises in its detection engine, the higher the computational
overhead on the system. All of the approaches mentioned here utilise multiple
features from network traffic in order to train a learner module that would subse-
quently classify the packet as normal or otherwise. By using packet inter-arrival
times as the only feature, STADe offers a method that has less computational145

head that can operate in a resource-constrained environment. The timing fea-
ture also remains unchanged even after encryption. This gives STADe an advan-
tage as it can be deployed alongside other encryption-based security solutions
to improve protection. This is usually a pitfall for most anomaly detection en-
gines as they require visibility into the network data (e.g. source/destination150

addresses, source/destination ports, and data payloads). This is all summarised
in Table 1.

In the next section, we describe the STADe approach and methodology in
detail, showing how it could be used to characterise and subsequently detect
industrial network traffic anomalies.155

3. STADe: Approach and Methodology

3.1. Measuring Periodicity

To identify breaks in periodicity in a given industrial network, we first have
to be able to measure network traffic periodicity. This involves the use of data in
the form of ordered observations with respect to time. To increase ease of com-160

putation, some features of the data may be neglected, and thus only analysing
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transmission) and no further details are stored, the event sequence is called a
point sequence [19]. Several studies, such as [20], have done this by capturing
number of packets per second as a feature, while others (e.g. [21]) used arrival165

time of packets as its core feature. This not only underscores the importance
that packet timing, observed as point sequences, has in defining the periodic
nature of industrial network traffic but also, shows its usefulness in getting
information from network traffic [22].

Hubballi et al. [23] posited that periodic communications exhibit very low170

variance and standard deviation considering their inter-time differences and de-
termined this low variance by taking the standard deviation of packet inter-
arrival times between network packets. We adapted this approach in our study
by calculating the standard deviation of packet inter-arrival times within a time
window of packets.175

Thus, the standard deviation of a window (SDw) gives the variance or level
of dispersion within that distribution. This is for any given window with each
element in the distribution (xi), sample mean (x̄), and window size (n).

SDw =

√∑
(xi − x̄)2

n− 1
(1)

3.2. Detecting Deviation from Periodicity

The advantage of being able to easily measure the periodicity of an industrial180

network is to gain the ability to detect a break or deviation from the periodic
pattern. To do this, the data feature collected (i.e. packet inter-arrival times)
can be segmented into time windows of the same size. These time windows can
then be compared to one another to determine their similarity (normal traffic)
or dissimilarity (anomaly). We later describe a metric - the diff score - which185

will compute if the data is anomalous or not. One way to do this is to select
a representative time window (baseline/sliding time window), which can then
be compared to all other windows using some distance function. The authors
in [24] did this by computing the average trend in a segment that minimises
the sum of distances to the other segments - in other words, computing the190

euclidean distances. In our study, we have adopted this approach to compute
the euclidean distance between the average trend of a time window distribution
and that of the sliding window under consideration.

This is achieved by computing the L2-norm as it is the estimate of location
that minimises the euclidean distance between two time windows. This is rep-195

resented as the diff centre (DCw) for a given window (i), window size (n), and
sliding window (j).

DCw(i, j) =
√

Σn
i=1(i− j)2 (2)

3.3. Visualising Periodic Behaviour

Recording the datastream from an industrial network as point events allows
us to represent the packet inter-arrival times visually as points in 3-dimensional200
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sify network traffic visually. In [22], bigrams of packets are visualised where
the coordinates are defined by the first packet’s size (X), the inter-arrival time
between the two packets (Y), and the second packet’s size (Z), while the coor-
dinates in [25] represent sequence number, frame length, and packet number to205

classify telecommunications traffic.
The STADe visualisation approach differs from previous studies because each

coordinate represents information from only the packet inter-arrival times be-
tween three consecutive packets. The advantage of using 3-dimensional spaces
over 2D is that just one coordinate can be used to display information of more210

packets (i.e. 3 packets) and would require less space to represent a network’s
basic pattern than a 2-dimensional space would.

The packet flow regularity in industrial networks is the characteristic that
enables a sliding window with a single feature of packet timings to represent the
basic normal pattern of operations in a given industrial system. This allows us215

to compute any significant deviations from the basic pattern represented in the
sliding window to detect anomalous scenarios within the network.

3.4. Methodology

Based on the described approach, the framework of the STADe methodology
(shown in Figure 1) is described as follows:220

1. Extract packet inter-arrival times δ from a Cyber-Physical System data
stream as a vector.

2. Divide the extracted δ into windows (W ) of same segment size, n, such
that δ = (W1, W2, ..., Wm) with elements ti ∈ W . A fixed segmentation
δ(n) of size n is a division of δ into m windows where each of the windows225

consists of n consecutive elements from δ.

3. Select baseline/sliding window containing normal traffic.

4. Calculate the standard deviation and diff centres for each window.

5. Compare the sliding window with other windows by computing the diff
score S. The diff score is a combination of the standard deviation and diff230

centres using a weight x ranging from 0 - 1. This essentially allows the
flexibility of assigning more weight (importance) to either the standard
deviation or diff centre (i.e. weight tends towards 0 or 1 respectively) or
assigning equal importance to both (i.e. weight = 0.5).

6. The diff scores of all window segment comparisons Sδ = (Sw1 , Sw2 , ..., Swn)235

is generated and stored as an array.

In the next section, a detailed description of the experiments carried out
to validate the STADe methodology is given with emphasis on the hyper-
parameters, dataset collection, and visualisation methods.

7
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CPS datastream

Time 

Windows, w

[w1, w2, ..., wn]

W1 W2, W3,..., Wn

{W}

[DCw]     [SDw]

[max, min]

Extract
delta time


Characterise
window behaviour


x = 1
x = 0

Diff weight, x

Generate diff scores, S

array:
{Sw1, Sw2, ..., Swn}

CPS = Cyber-Physcal System

DCw = Diff Centre
SDw = Window Standard Deviation
W1 = Sliding window


Figure 1: STADe methodology

4. Experiments240

4.1. Dataset collection

For these experiments, a total of four (4) datasets were collected from the
wellhead monitoring testbed described in [26] and labeled to enable proper eval-
uation of the performance of STADe on detection of each attack. All datasets
were designed to have a similar attack time pattern where the first 80% repre-245

sents normal traffic, an attack is executed in the next 10%, and the final 10%
of the network traffic is normal as illustrated in Figure 2. This helps us to have
a general idea of where our model should be detecting attacks and helps with
evaluating its performance.

The attacks considered for these experiments were derived from the most250

frequent attacks on oil and gas critical infrastructure targeting ”Availability”
and ”Integrity” [27]. For attacks targeting availability, field flooding attacks
and SYN flooding attacks were carried out while for attacks targeting integrity,
a Man-in-the-Middle (MITM) attack was executed. It is important to note that
a successful MITM attack could serve as an initial phase which makes a number255

of further attacks possible in a second phase. A list of these possible second
phase attacks are highlighted in Table 2. The summary of all the datasets is
also shown in Table 3

8
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1st phase Attack 2nd Phase Attack Impact

MITM

Data interception Attacker can eavesdrop on communica-
tion between HMI and PLC, capturing
sensitive commands and process state

Data tampering Attacker can modify data transmitted
to PLC, altering commands

Session hijacking Attacker can hijack an established ses-
sion between two parties and taking
control by impersonating one of the le-
gitimate parties

Credential theft Admin login credentials could be in-
tercepted, enabling lateral movement
within a network

Replay attacks Attacker can capture data packets and
replay them later, potentially sending
same commands but in the wrong con-
text

Malware delivery Attacker can utilise MITM position to
deliver malicious software into victim’s
network or devices

DNS spoofing Attacker can manipulate DNS re-
sponses, or intercept DNS queries
within the network,potentially redirect-
ing requests to malicious end points

Phishing After intercepting communication, the
attacker can launch further phishing
campaigns with targeted information.
An example could be to target remote
engineers accessing process systems

Table 3: Summary of datasets collected from testbed

Dataset Attack Attack
Type

Target Attack
Dura-
tion

Dataset
Dura-
tion

Total
No.
Pkts

Dataset 1
(normal
traffic)

N/A N/A N/A N/A 22.4
hours

3,409,005

Dataset 2 Field Flood-
ing

DoS Availability 1 hour 3.8
hours

472,887

Dataset 3 SYN Flood-
ing

DDoS Availability 13 secs 1.4
hours

230,409

Dataset 4 MITM See Ta-
ble 2

Integrity 5.5 mins 2.1
hours

319,906

9
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1st 80%

Next
10%

Normal traffic

Attack traffic

Last 

10%Normal Traffic

Entire pcap file


Figure 2: Dataset creation

4.2. Visualising entire datasets

The initial phase of the experiments entailed making 3D plots of the network260

packets under normal operations to visually investigate if there is a set pattern
that could represent network behaviour. To do this, normal traffic data was col-
lected from the testbed over a 22-hour period. The resulting dataset contained
3,409,005 packets. A second dataset was collected from the testbed comprising
just 3.8 hours of normal traffic + field flooding attack [26]. This second dataset265

contained 472,887 packets. Both plots are shown in Figure 3.

D
el

ta
 ti

m
e

Benign Network Packets
No. of Packets: 3,409,005
Duration: 22 hours

Delta time

Delta time

(a) 24-hour normal operations Network traffic -
Packet inter-arrival times

Field Flood Network Packets
No. of Packets: 472,887
Duration: 3.8 hours

D
el

ta
 ti

m
e

Delta time

Delta time

(b) 3.8-hour normal+field flooding attack Net-
work traffic - Packet inter-arrival times

Figure 3: 3D plots for Network traffic packet inter-arrival times
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lot of noise. This is the primary limitation of plotting an entire dataset on a
single plot because over 90% of the data points lie within the dense circled area.
As a result, the scale of the plot is larger than it needs to be to accommodate270

anomalous coordinates. It becomes evident that, to see deeper underlying pat-
terns that could potentially lie within the dense circled area, a smaller-scaled
plot representing a window (or subset) of network traffic would be more benefi-
cial. This confirms the advantage of using the STADe methodology described in
Section 3.4 to create a smaller sliding window, compare it with other windows275

and generate the diff scores between them.
Despite this limitation, the plot is still useful because when visually inspect-

ing Figures 3a and 3b, there are some obvious distortions in the network pattern
seen in 3b that were not evident in 3a. These differences could be as a result
of the field flooding attack but can not be confirmed visually. In this case, hav-280

ing a numerical score as a basis for comparison and evaluation would be more
beneficial. This numerical score is represented by the diff score described in the
STADe methodology.

4.3. Hyper-parameters:

The next phase of the experiments to be carried out is to generate diff scores285

for all 4 datasets with the following hyper-parameters:

• Window size, n: Industrial networks have communication cycles (i.e. query-
response-acknowledgement cycle). Each device is queried sequentially at
least once until all devices have responded. Then the communication
would loop and start all over. To determine an adequate window size, a290

significant amount of loops (repetitions) containing all normal operating
conditions should be captured within it. In this study, we investigated
window sizes containing 30, 60, 90, and 120 seconds of network communi-
cation. An optimal window size of 60 seconds (1 minute of network com-
munication) was determined empirically. This contained approximately295

2500 packets (100 repetitions) and more significantly, captured all com-
municating devices and their respective commands. While determining the
window size, it was observed that below 60 seconds, the window did not
capture enough information to characterize network behaviour, hence this
resulted in some normal operations being flagged as anomalous (i.e. more300

false positives). Similarly, above 60 seconds, the window size contained
more information than was necessary, which resulted in some anomalous
behaviours being classified as normal (i.e. more false negatives).

It is important to note that this approach may vary in larger and more
complex industrial environments.305

• Diff Score weight: The diff score weight, ranging from 0 - 1, is the impor-
tance given to measurements of diff centres and areas of coverage. A diff
weight of 0.5 was chosen to give equal importance to either parameter.

11
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old. To define a suitable threshold, diff scores need to be generated using310

normal traffic data. The aim is to capture all possible usual network
scenarios which include random packet retransmissions, legitimate con-
nection resets, etc. The maximum diff score generated from normal traffic
can be used as a valid threshold. The amount of normal traffic required
would vary depending on the size of the industrial network. In our case,315

we monitored normal network traffic (with no attacks) for 22 hours and
collected the data. Diff scores were generated for the whole dataset con-
taining normal traffic and the maximum diff score was selected as follows:

maxdiffscorenormaloperations = 0.00216024 = threshold

In this study, a static threshold is employed to ensure simplicity and focus
on validating the proof-of-concept. This allows for clear interpretation of320

results and reproducibility, which are critical for establishing the feasibility
of the proposed approach.

After defining the hyper-parameters, the first window (i.e. first 2,500 pack-
ets), which had already been pre-determined to be a normal traffic window, was
selected as the baseline window (i.e. sliding window). Recall that all subsequent325

windows will be compared with the baseline window, and a diff score generated
to measure the differences. Any diff score (difference) above our determined
threshold would be flagged as an anomaly. In our case, any window within the
first 80% (or last 10%) of the dataset could have been chosen as our baseline
window, however, we decided to use the first. This decision does not affect the330

results so the user can be flexible in their choice of a baseline/sliding window
as long as it is a normal traffic window.

4.4. Evaluation Metrics

To evaluate the performance of STADe on our labeled datasets, the following
metrics were chosen:335

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1Score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5)

FPR =
FP

FP + TN
(6)

FDR =
FP

FP + TP
(7)

12
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TP = True Positive
FP = False Positive
TN = True Negative340

FN = False Negative
FPR = False Positive Rate
FDR = False Discovery Rate

The false positive rate is the more commonly used metric in the literature.345

However, in practice, the false discovery rate is what operators are more con-
cerned with because it is more easily computed in operational environments.
The FPR can be misleading when the proportion of malicious instances is ex-
tremely low, as is the case in industrial network anomaly detection. For these
reasons, in addition to the FPR, we would also compute the false discovery rate.350

The results of the generated diff scores for our attack datasets will be dis-
cussed in the next section.

5. Results

Diff scores were generated for all three (3) attack datasets using the hyper-
parameters determined in Section 4. We discuss each attack separately in the355

following subsections.

5.1. Selection and visualisation of baseline window

The first step was to visualise our baseline window. This becomes our sliding
window and a sort of label for the dataset that would be compared with every
other window by generating a diff score. It can also serve as a basis for a visual360

comparison with any other window identified as having a diff score higher than
the set threshold. As an example, we compared this baseline window to another
normal traffic window and generated a diff score between them to establish
a correlation. Our baseline window indexes were 0 - 2,499 (i.e. first 2,500
packets) while the random window comparison indexes were x - (x + 2,499),365

where x = 6,000 (i.e. the 6,000th packet). This procedure was repeated for all
three datasets containing attacks and the results obtained are discussed in the
next subsections.

5.2. Diff Score generation for Dataset 2 (Field Flooding attack):

The baseline window and random window plots are shown in Figures 4a370

and 4b respectively while a diff score of 0.000698620 was generated from their
comparison. Visually inspecting both plots (i.e. Figures 4a and 4b), a similar
pattern can be observed, although, it is not conclusive. However, their similarity,
when evaluated mathematically using the diff score, was confirmed as the result
was significantly below the threshold of 0.00216024. This method confirms375
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the baseline window contains normal traffic.
Next, the diff scores were generated for the entire dataset, culminating in a

total of 185 windows (i.e. 185 diff scores). Using our pre-determined threshold,
16 windows with diff scores higher than the threshold were identified as shown380

in Figure 5. A summary of the anomalous windows and their diff scores is
represented in Table 4a.

(a) Dataset 2 baseline window - Packet inter-
arrival times

(b) Dataset 2 random window - Packet inter-
arrival times

(c) Field Flooding attack anomalous window 163
- Packet inter-arrival times

Figure 4: 3D plots for Dataset 2 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) Field flooding attack traffic

To confirm our findings visually, a plot of any of the anomalous windows (e.g.
window 163) was created (see Figure 4c) and it showed an obvious deviation
from the baseline window pattern seen in Figures 4a and 4b. Finally, to evaluate385

the detection of the field flooding attack using the diff score methodology, an
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Figure 5: Diff Scores for Dataset 2 - Field Flooding Attack

F1 score of 0.97 was obtained.

5.3. Diff Score generation for Dataset 3 (SYN Flooding attack):

The same methodology was applied to Dataset 3 with the SYN flooding
attack. The baseline window and random window plots are shown in Figures390

6a and 6b respectively while a diff score of 0.00069579 was generated from
their comparison. Again, with a visual inspection, a similarity of patterns is
observable but can only be confirmed using the diff score. The generated diff
score was also below the threshold of 0.00216024 which confirms that the
random window (i.e. packet index 6,000 - 7,499), when compared with the395

baseline window is normal traffic.
Diff scores were generated for the entire dataset, which resulted in 90 win-

dows/diff scores. Six windows were identified to have diff scores higher than the
set threshold and are summarised in Figure 7 and Table 4b.

Again, to confirm our findings visually, a plot of any of the anomalous win-400

dows (e.g. window 79) was created (see Figure 6c) and it showed a clear lack of
similarity from both Figures 6a and 6b which represent normal traffic patterns.
Finally, to evaluate the detection of the syn flooding attack using the diff score
methodology, an F1 score of 0.923 was obtained.

5.4. Diff Score generation for Dataset 4 (MITM attack):405

For the final dataset containing MITM attacks, the same methodology was
applied to select the baseline window and random window plots. A diff score of
0.00070328 was generated from their comparison. The window selected was
confirmed to be normal traffic as the diff score fell below the set threshold.
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Anomalous windows Diff Score
window 163 0.099775081
window 164 0.12644391
window 165 0.126265512
window 166 0.12266697
window 167 0.119892574
window 168 0.116689842
window 169 0.113587351
window 170 0.116997225
window 171 0.114008493
window 172 0.119197875
window 173 0.121269935
window 174 0.123674147
window 175 0.121695499
window 176 0.120863596
window 177 0.112604565
window 178 0.117216779

(a) Field Flooding attack

Threshold = 0.00216024
Anomalous windows Diff Score

window 79 0.029395
window 80 0.029166
window 81 0.029152
window 82 0.029189
window 83 0.029192
window 84 0.02324

(b) SYN Flooding attack

Threshold = 0.00216024
Anomalous windows Diff Score

window 119 0.002651
window 122 0.012518

(c) MITM attack

Table 4: Anomalous windows with diff scores higher than set threshold (a) Dataset 2, (b)
Dataset 3, (c) Dataset 4

In the same manner, diff scores were generated for the entire dataset, which410

resulted in 125 windows/diff scores. For the MITM dataset, because it is a
much stealthier attack, only two windows were identified to have diff scores
higher than the set threshold and are summarised in Figure 9 and Table 4c.

Finally, to confirm our findings visually, a plot of any of the anomalous
windows (e.g. window 119) Figure 8c) was observed to be distinctively different415

in the pattern when compared both Figures 8a and 8b which represent normal
traffic patterns. However, when evaluating the detection of the MITM attack
using the diff score methodology, an F1 score of 0.8 was obtained. The reason
for the lower F1 score when compared with the previous field flooding and SYN
flooding attacks is that the MITM is a stealthier attack that is mostly detected420

at two points: (a) when ARP poisoning begins, and (b) when the ARP table
is reverted to its original state. An interesting observation is that the ARP
poisoning (the start of the MITM attack) began in window 118, but the diff
score of that window is below the threshold. However, the diff score of the
following window 119 was above the threshold. This may be due to the fact425
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(a) Dataset 3 baseline window - Packet inter-
arrival times

(b) Dataset 3 random window - Packet inter-
arrival times

(c) SYN Flooding attack anomalous window 79 -
Packet inter-arrival times

Figure 6: 3D plots for Dataset 3 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) SYN flooding attack traffic

that the ARP poisoning packets occurred towards the tail end of window 118.
However, it is still very interesting that the STADe methodology was able to
observe a change in network traffic pattern in the next window 119. It did
correctly flag window 122 as anomalous, which is when the ARP table was
reverted to its original state, signifying the end of the MITM attack.430

5.5. Summary of results

In summary, STADe was able to detect all the attacks by generating diff
scores and having the right threshold setup for effective detection. The method
proved to be effective in detection with no false positives recorded for any of the
attacks. The field flooding attack had the highest F1 score of 0.97 and also had435
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Figure 7: Diff Scores for Dataset 3 - SYN Flooding Attack

the highest number of anomalous windows (16). This was because the impact of
the field flooding attack on the system lasted the longest. For the SYN flooding
attack, an F1 score of 0.923 was achieved over 6 anomalous windows. Finally,
for the MITM attack, the lowest F1 score of 0.8 was obtained. As explained
earlier, this could be attributed to the fact that because the ARP poisoning440

occurred at the end of the window, the distortion was not significant enough
for it to be detected as an anomaly, however, the detection occurred in the
next window. One of the most important metrics regarding anomaly detection
is the False Discovery Rate (FDR), which was zero for all attacks evaluated.
This means that the STADe methodology was able to effectively measure the445

periodicity of industrial network traffic and also, segment the traffic into equally
sized windows which were further compared with each other to detect deviations
from normal patterns – in essence, anomalies. The summary of the results is
highlighted in Table 5.

The selection of a window size of approximately 2,500 packets (representing450

about one minute of network traffic) means that this tool can potentially detect
anomalies within a minute of their occurrence.

With the results of the experiments showing the STADe methodology achiev-
ing zero false positives, it would be useful to analyse its effectiveness compared
to current, mostly ML-based techniques. Within this group of anomaly detec-455

tion methods (i.e. ML-based), unsupervised ML anomaly detection algorithms
are most closely related to our chosen scenario. This will be explored in the
next section.
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(a) Dataset 4 baseline window - Packet inter-
arrival times

(b) Dataset 4 random window - Packet inter-
arrival times

(c) MITM attack anomalous window 119 - Packet
inter-arrival times

Figure 8: 3D plots for Dataset 4 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) MITM attack traffic

6. Comparing STADe Performance with Unsupervised ML Methods

Although in Section 2 the limitations of unsupervised MLmethods in anomaly460

detection were articulated, it would still be useful to compare their performances
and analyse STADe with the state of the art as most anomaly detection solu-
tions employ ML methods. Amongst these, unsupervised ML anomaly detection
algorithms are most closely related and could be applicable to industrial and
operational scenarios (i.e. unlabelled data, resource-constrained environment).465

To achieve this, the same datasets would be utilised to keep the experiments as
similar as reasonably practicable.

A number of unsupervised ML algorithms have been proposed in the lit-
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Figure 9: Diff Scores for Dataset 4 - MITM Attack

erature for anomaly detection such as the graphical method, statistic method,
distance-based method, density-based method, and model-based method [28].470

Of these, the most frequently used are the distance-based method (e.g. K-
Nearest Neighbour, KNN), density-based method (e.g. Local Outlier Factor,
LOF), and the model-based method (e.g. isolation forest). This is mainly be-
cause of their ability to detect global and local (deeper lying) outliers especially
when mapping high-dimensional data onto a low-dimensional subspace (as in475

the case of KNN and LOF) and also explicitly isolating anomalies rather than
profiling normal instances (as in the case of isolation forest). As a result, these
models perform well with high dimensional data with a low memory require-
ment. For these reasons, KNN, LOF, and isolation forest algorithms will be
utilised in the experiments.480

6.1. Experiments

Dataset Collection: The same datasets used in the experiments in Sec-
tion 4 were also used in these experiments. The difference, however, was the
elimination of Dataset 1 which was only useful for the STADe methodology
to determine a suitable threshold. Also, datasets 2, 3, and 4 (containing field485

flooding, SYN flooding, and MITM attacks) were combined sequentially into a
single dataset. This was done to enable a more concise analysis of results con-
sidering that multiple algorithms are being investigated. The combined dataset
is summarised in Table 6. For effective comparison, the STADe methodology
was also used to detect anomalies in this combined dataset.490

Data Pre-Processing: All data pre-processing and feature selection meth-
ods used in this study were similar to those employed in [26] because the dataset
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Attack Total
Win-
dows

Anomalous
Win-
dows

Precision Recall F1
Score

FDR FPR

Field
Flood-
ing

185 16 1.0 0.94 0.97 0.0 0.0

SYN
Flood-
ing

90 6 1.0 0.86 0.923 0.0 0.0

MITM 125 2 1.0 0.67 0.8 0.0 0.0

Table 6: Summary of combined dataset

Attack Attack
type

Attack
Dura-
tion

Total Capture Duration No. of Pkts

Field
flooding

DoS 1 hr
7.3 hrs 1,023,202

SYN
flooding

DDoS 13 secs

MitM Spoofing 5.5 mins

was generated from the same testbed. This resulted in a dataset with 24 fea-
tures. One notable difference in the data pre-processing approach adopted in
this study is that there is no requirement for a train/test split. This is because495

anomaly detection works on the assumption that anomalous events are very
rare, which in turn, produces highly imbalanced training datasets. As a result,
the goal is to learn a valid model of the majority of data points (normal data)
[29] which helps it detect deviations from the norm.

Furthermore, dimensionality reduction was applied to the dataset for the500

KNN and LOC experiments. KNN and LOC perform optimally when high-
dimensional data is reduced and projected onto a lower-dimensional space.
Therefore, Principal Component Analysis (PCA) was applied to reduce the fea-
tures to a 2-dimensional array. This helps reduce the computational complex-
ity required for detection. PCA is the most common dimensionality reduction505

technique [30]. By identifying directions of the highest variance from higher-
dimensional data and projecting them onto a lower-dimensional subspace, when
used with an ML model, it is able to reduce the number of parameters fed into
the model without sacrificing important details in the data [31]. Default hy-
perparameters were retained in most cases except for the following empirically510

determined optimal choices:

• KNN: All default hyperparameter values
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FPR/FDR lower is better)

Algorithm Precision Recall F1-Score FPR FDR
KNN 0.999 0.379 0.55 5.08 e−6 0.00033
Isolation Forest 0.607 0.755 0.673 0.0196 0.3933
LOF 0.366 0.455 0.408 0.0317 0.6339
STADe 1.0 0.875 0.933 0.0 0.0

• Isolation Forest: n estimators=50, contamination=0.048

• LOF: contamination: 0.048

6.2. Results515

The results of the experiments showed that the isolation forest algorithm
had an F1 score of 0.673, with KNN and LOF having F1 scores of 0.55 and
0.455 respectively (Table 7). When compared on the same dataset, STADe
recorded a higher F1 score of 0.933. Also, observing the FPR scores, all 3 ML
algorithms recorded seemingly impressive numbers close to the zero FDR of520

STADe with KNN having the best score of 5.08 e−6 while isolation forest and
LOC scored 0.0196 and 0.0317 respectively. Such low FPR scores (i.e. below
0.04) could be misleading and would suggest that an anomaly detection model is
recording relatively low false positives. However, a closer look at the confusion
matrices in Figure 10 reveals otherwise. For example, the isolation forest and525

LOC algorithms recorded 19,396 and 31,137 false positives respectively (shown
in Figures 10b and 10c)in the period under consideration (7.3 hours) while
KNN recorded only 5 (Figure 10a) in the same period. The FDR metric reflects
this performance more accurately with scores of 0.00033, 0.3933, and 0.6339
for KNN, isolation forest, and LOC respectively. This means that 39.33% of530

anomalies detected by the isolation forest algorithm within a 7.3-hour period
were false while for LOC and KNN it was 63.39% and 0.03% respectively. In
reality, the FDR metric would be more beneficial than FPR in an operational
environment. This is because when processing tens of millions of network data
each day, even a modest false discovery rate can overwhelm a security analyst535

[32] - as can be seen with the high number of false positives recorded by the
isolation forest and LOC algorithms within a 7.3-hour operational period.

To summarise, the STADe methodology outperformed the KNN, isolation
forest, and LOF algorithms in detecting anomalies in the industrial network
dataset. However, with respect to FDR scores, the KNN algorithm performed540

closest to the STADe methodology. This may be because the KNN algorithm is
a distance-based algorithm that ranks each point based on the distance between
the point and the nearest point, and identifies the top-most points as anomalies.
This is similar to the STADe methodology as they both calculate Euclidean
distances between data points.545
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(a) KNN confusion matrix (b) Isolation forest confusion matrix

(c) LOF confusion matrix

Figure 10: Confusion matrices for KNN, isolation forest, and LOF

7. Conclusions

Anomaly detection in industrial networks has had a problem with high
false positive rates and high computational complexities which has hindered
its widespread use in practice. The novel STADe methodology introduced in
this paper represents an unsupervised time-window-based approach to anomaly550

detection in industrial control networks that results in zero false positives. This
work aimed to explore a mechanism for detecting breaks in periodicity to flag
anomalies. For this reason, a single feature of packet inter-arrival times was
recorded as point events. The aim was to characterise the periodicity of any
given industrial network using the packet timings to create a mini-model of the555

system representing the normal operation pattern. This mini-model is repre-
sented as the baseline window, which further acts as the sliding window that is
used to compare with the rest of the traffic windows.

The results from the experiments showed no false positives with F1 scores of
0.97, 0.923, and 0.8 recorded for the detection of field flooding, SYN flooding,560

and MITM attacks respectively. In order to assess the performance of STADe in
relation to other unsupervised machine learning algorithms, namely K-Nearest
Neighbors (KNN), Isolation Forest, and Local Outlier Factor (LOF), a series of
additional experiments were conducted. The results revealed F1 scores of 0.55,
0.673, and 0.408 for KNN, Isolation Forest, and LOF, respectively. Notably,565
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applied to the same dataset. This makes STADe very promising to explore
further.

Essentially, from the experiments, the STADe methodology was able to:

• measure the periodicity of a given industrial network in the form of a570

pattern,

• segment the network traffic into time windows which were further com-
pared with each other to detect deviations from the normal pattern estab-
lished in order to detect anomalies, and

• as an additional step, map this pattern onto a 3-dimensional space visually.575

The fact that it utilises a single feature of packet timings that is unaffected by
network encryption means it could potentially be integrated with other security
solutions simultaneously to improve the security posture of industrial networks.

One important application in the real world for STADe is its potential use-
fulness if used in conjunction with a human-in-the-loop to narrow down large580

volumes of data and enable quick identification of anomalous packets within a
time window and investigate further to determine the cause of the anomaly. For
our specific test case in this study, with a window size of approximately 2,500
packets, it essentially means that an attack can potentially be detected within
a minute of it occurring. This could also potentially put an end to scenarios585

where attacks are carried out undetected for several months.

7.1. Limitations and Future Directions:

One of the limitations of this work is that this methodology would be more
difficult to implement in an OT environment where there are intermittent control
commands that may be part of the overall modus operandi of the plant. In other590

words, an OT environment that exhibits less periodicity than the norm. This
may require a longer capture time to establish accurate baselines and thresholds
for effective detection.

Additionally, as mentioned earlier, this study employed a static threshold to
ensure simplicity and focus on validating the proof-of-concept. This approach595

provides a baseline for comparison, which can be essential for future studies
aiming to build upon this work. However, future enhancements to this method
could involve the use of a dynamic threshold that adapts to the statistical prop-
erties of the system’s normal operation data. One possible approach would be to
model the distribution of diff scores generated from normal traffic. For instance,600

if the data approximately follows a Gaussian (normal) distribution, the thresh-
old could be set at a specific number of standard deviations (e.g., 3σ) above the
mean, corresponding to a desired false-positive rate. This would dynamically
adjust the threshold to account for variations in the system’s statistical char-
acteristics, potentially improving the adaptability of the approach in dynamic605
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ture work, the static threshold used in this study effectively demonstrates the
concept’s viability and provides a strong foundation for further research.

Finally, during this study, there was a lack of diversity in datasets with
different industrial protocols. The protocol used in all datasets used was Mod-610

busTCP. Future work will focus on optimising the selection of window size and
threshold hyper-parameters as they are the most sensitive to changes in the re-
sults. More industrial network pcaps utilising other widely used protocols (e.g.
EthernetIP, DNP3, Common Industrial Protocol, OPC UA/DA) will also be
explored to evaluate the effectiveness of the STADe methodology.615
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Abstract

Critical infrastructure and Operational Technology (OT) are becoming more
exposed to cyber attacks due to the integration of OT networks to enterprise
networks especially in the case of Industrial Cyber-Physical Systems (ICPS).
These technologies that are a huge part of our daily lives usually operate by
having sensors and actuators constantly communicating through an industrial
network. To secure these industrial networks from cyber attacks, researchers
have utilised misuse detection and Anomaly Detection (AD) techniques to de-
tect potential attacks. Misuse detection methods are unable to detect zero-day
attacks while AD methods can, but with high false positive rates and high com-
putational overheads. In this paper, we present STADe, a novel Sliding Time-
window Anomaly Detection method that uses a sole feature of network packet
inter-arrival times to detect anomalous network communications. This work
aims to explore a mechanism for detecting breaks in periodicity to flag anoma-
lies. The method was validated using data from a real oil and gas wellhead
monitoring testbed containing field flooding, SYN flooding, and Man-in-the-
Middle (MITM) attacks - which are attacks that are popularly used to target
the availability and integrity of oil and gas critical infrastructure. The results
from STADe proved to be effective in detecting these attacks with zero false
positives and F1 scores of 0.97, 0.923, and 0.8 respectively. Further experiments
carried out to compare STADe with other unsupervised machine learning algo-
rithms – KNN, isolation forest, and Local Outlier Factor (LOF) – resulted in F1
scores of 0.55, 0.673, and 0.408 respectively. STADe outperformed them with
an F1 score of 0.933 using the same dataset.
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In modern times, our daily lives have become increasingly dependent on In-
dustrial Cyber-Physical Systems (ICPS). Whether it’s monitoring and control-
ling an efficient railway network, or controlling hazardous hydrocarbons being
transported within oil and gas pipelines, ICPS are managing to keep our envi-5

ronments safe and predictable. However, innovation through digitisation and
automation has exposed these systems to cyber threats [1]. This threat from
cyber-attacks has attracted increased interest from researchers in academia and
industry to determine the best ways to protect our critical infrastructure.

ICPS are typically composed of three control components (i) Programmable10

Logic Controllers (PLC), (ii) Supervisory Control and Data Acquisition (SCADA),
and (iii) Distributed Control Systems (DCS). However, one dominant compo-
nent throughout all industrial control systems is the communication network
which is responsible for connecting all equipment and devices by electrical in-
terfaces and communication protocols to ensure all systems communicate effi-15

ciently [2]. It is gradually becoming evident that securing industrial network
communications from cyber-attacks should be one of the key steps in ensuring
that critical infrastructure is protected.

Network traffic from industrial networks exhibits strong periodic patterns
[3]. This work is motivated by the observation that industrial control systems20

and PLC-based systems have a high degree of periodicity in behaviour when
used in a real-world context compared to other Information Technology (IT)-
based traffic. This is because, rather than traffic being generated mainly from
random user-generated workflows - as in the case of enterprise/IT networks -
industrial network traffic is primarily generated from the consistent polling of25

data between systems with the aim of monitoring and controlling the process.
This gives it a high repeatability resulting in a consistent pattern. This could
be likened to harmonious music, where each industrial network has its own tune
represented as a pattern. This pattern is a basic representation of the behaviour
of the industrial network under normal operations.30

Having such high periodicity has its advantages. One such advantage is that,
if properly represented and modeled, any slight deviation from the established
basic network pattern could be easily identified and flagged as anomalous be-
haviour. This regularity of patterns present in industrial control network traffic
makes anomaly detection very promising [4].35

Intrusion detection Systems (IDS) can be classified broadly into misuse de-
tection (signature/rule-based Intrusion Detection Systems) and anomaly de-
tection [5]. Historically, misuse IDS have proven to be effective in identifying
traditional (known) cyber attacks that indicate discriminate patterns [6, 7, 8, 9],
but in spite of this, these IDS are less effective at detecting zero-day attacks that40

utilise novel methods of exploiting vulnerabilities with persistence. This is an
advantage that anomaly detection methods have because they are more capa-
ble of detecting novel anomalous scenarios. However, despite this advantage,
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high computational overheads and high false-positive rates [10] - often leading45

to a high number of false alarms overwhelming security experts with alerts [11].
This is relevant, since the usefulness of intrusion detection systems is greatly
influenced by the false-positive rate [12].

With the increasing frequency of zero-day attacks being carried out on criti-
cal infrastructure [13], it has become evident that to improve widespread adop-50

tion, anomaly detection methods need to be improved upon to reduce the high
false-positive rates and computational complexities. This would potentially in-
crease the protection levels of critical infrastructure against cyber threats.

In this study, we present STADe - a Sliding Time-window Anomaly Detec-
tion method that uses a sliding window to characterise the periodicity of any55

given industrial network using the packet timings to create a mini-model of the
system which represents the normal operation pattern. This periodic pattern
allows the use of anomaly detection to determine where the periodicity is bro-
ken (e.g. injection of cyber-attacks). This work is focused on a computationally
efficient mechanism to identify this break in periodicity, which flags anoma-60

lies and detects cyber-attacks. Previous studies on industrial network anomaly
detection have mostly focused on inspecting individual packets through deep
packet inspection (DPI) or other custom modules which can be error-prone – as
evidenced by the high false positive rates experienced by these methods. The
advantage of using a time window, comprising multiple packets, is that it can65

adequately capture network behaviour over a specified period of time, and thus,
is more effective at labeling a particular series of packets as either normal or
anomalous with a much lower false positive rate when compared with trying to
label a specific individual packet.

The main contributions of this paper are:70

• A novel method of defining the periodicity of any given industrial net-
work by using the packet timings to create a mini-model of the system
representing the normal operation pattern.

• A mechanism to detect a break in periodicity, which is used to flag anoma-
lies by use of a sliding time window.75

• A method to visualise the periodicity of an industrial network using only
packet inter-arrival times represented as points in 3-dimensional space.

• Four labeled datasets collected from an oil and gas industrial testbed
containing field flooding attacks, SYN flooding attacks, and Man-in-the-
Middle (MITM) attacks.80

The remainder of this paper is structured as follows: Section 2 discusses the
related work in this research area. Section 3 describes the approach and STADe
methodology. In Section 4 description of the experiments carried out is given,
while Section 5 presents the results and discusses them in more detail. Section 6
compares STADe with other ML methods and the conclusion is in Section 7.85
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Despite the importance of critical infrastructure, and the increasing threats
to it from cyber attacks, only a few studies have investigated anomaly detection
methods specifically for industrial networks. Many current network anomaly
detection systems are based on supervised machine learning methods which are90

often expensive and difficult to obtain training data [5, 14], while unsupervised
machine learning anomaly detection methods are are not widely used in practice
because of high false positive rates that tend to overwhelm security analysts with
false alerts. To combat these problems, researchers have recently turned to
deep learning techniques, which have also increased computational overheads.95

Industrial control networks operate in resource-constrained environments and
require lightweight solutions. For these reasons, we have not considered machine
learning and deep learning-based anomaly detection methods.

In other recent anomaly detection approaches for industrial networks, such
as [15], the authors used a timing-based anomaly detection system that uses the100

statistical attributes of the communication patterns. Their proposed intrusion
detection system identifies unique sets of request-response events from request
types and requested addresses. Jiang et al. [16] also proposed a method to detect
network traffic anomalies by using a sliding window that uses Decomposable
Principal Component Analysis (DPCA) to handle network traffic signals. The105

DCPA handles the traffic of all original destination flows in a network while an
adaptive clique division enables it to dispose of the dynamic network traffic. The
method comprises utilising compressed features of the network traffic including
byte size to classify anomalous scenarios. Their work was evaluated using traffic
data from the Abilene network as ground traffic. By incorporating addresses110

into their learning modules, the models in [15] and [16] would struggle to detect
stealthier attacks like MITM which spoofs legitimate IP addresses morphed into
the data stream.

In [17], Tekeoglu et al. used network traffic features to capture the system-
specific anomalies. They did this by extracting a number of packet-based115

features from pcap files using 3-second time windows which included average
bytes in the window, average seconds between each consecutive packet in a win-
dow, and unique destination IP addresses in the window amongst others. This
method required constant iterations between network traffic features to deter-
mine the most appropriate metric which increases its computational overhead.120

The authors in [4] and [18] also tried to utilise the traffic periodicity in
industrial networks by using message repetition and timing information to au-
tomatically learn traffic models that capture periodic patterns. The authors
in [4] proposed a period analyser composed of three modules: (i) Multiplexer,
(ii) Tokeniser, and (iii) Learner which worked in a sequence comprising prepro-125

cessing the network traffic and separating it into different flows, transforming
each packet into a protocol-independent format called a token, and finally pro-
cessing each token to identify and characterise periodic activities called cycles.
Their method involves filtering and grouping packets based on server address,
IP protocol, server port, and client address. One key limitation of their study130
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ofTable 1: Summary of related work

Reference Timing-
based

Window-
based

Single
feature-
based

Zero False
Positives

[15]  
[16]   
[17]  
[4]  
[18]  

STADe     

is that the tokeniser and multiplexer modules need to be adapted in order to
accommodate new industrial protocols as it was designed for Modbus and MMS
protocols. The authors in [18] also relied on the stable and persistent control
flow communications in industrial networks to develop a fingerprinting method-
ology to capture normal behaviour characteristics. They extracted multiple135

features such as packet arrival order, packet size, direction, and inter-arrival
time to classify network behaviour. This requirement of using multiple features
from network traffic increases the computational head on the system.

In general, industrial network anomaly detection requires a lightweight solu-
tion because it operates in a resource-constrained environment. The more fea-140

tures the IDS model utilises in its detection engine, the higher the computational
overhead on the system. All of the approaches mentioned here utilise multiple
features from network traffic in order to train a learner module that would subse-
quently classify the packet as normal or otherwise. By using packet inter-arrival
times as the only feature, STADe offers a method that has less computational145

head that can operate in a resource-constrained environment. The timing fea-
ture also remains unchanged even after encryption. This gives STADe an advan-
tage as it can be deployed alongside other encryption-based security solutions
to improve protection. This is usually a pitfall for most anomaly detection en-
gines as they require visibility into the network data (e.g. source/destination150

addresses, source/destination ports, and data payloads). This is all summarised
in Table 1.

In the next section, we describe the STADe approach and methodology in
detail, showing how it could be used to characterise and subsequently detect
industrial network traffic anomalies.155

3. STADe: Approach and Methodology

3.1. Measuring Periodicity

To identify breaks in periodicity in a given industrial network, we first have
to be able to measure network traffic periodicity. This involves the use of data in
the form of ordered observations with respect to time. To increase ease of com-160

putation, some features of the data may be neglected, and thus only analysing
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transmission) and no further details are stored, the event sequence is called a
point sequence [19]. Several studies, such as [20], have done this by capturing
number of packets per second as a feature, while others (e.g. [21]) used arrival165

time of packets as its core feature. This not only underscores the importance
that packet timing, observed as point sequences, has in defining the periodic
nature of industrial network traffic but also, shows its usefulness in getting
information from network traffic [22].

Hubballi et al. [23] posited that periodic communications exhibit very low170

variance and standard deviation considering their inter-time differences and de-
termined this low variance by taking the standard deviation of packet inter-
arrival times between network packets. We adapted this approach in our study
by calculating the standard deviation of packet inter-arrival times within a time
window of packets.175

Thus, the standard deviation of a window (SDw) gives the variance or level
of dispersion within that distribution. This is for any given window with each
element in the distribution (xi), sample mean (x̄), and window size (n).

SDw =

√∑
(xi − x̄)2

n− 1
(1)

3.2. Detecting Deviation from Periodicity

The advantage of being able to easily measure the periodicity of an industrial180

network is to gain the ability to detect a break or deviation from the periodic
pattern. To do this, the data feature collected (i.e. packet inter-arrival times)
can be segmented into time windows of the same size. These time windows can
then be compared to one another to determine their similarity (normal traffic)
or dissimilarity (anomaly). We later describe a metric - the diff score - which185

will compute if the data is anomalous or not. One way to do this is to select
a representative time window (baseline/sliding time window), which can then
be compared to all other windows using some distance function. The authors
in [24] did this by computing the average trend in a segment that minimises
the sum of distances to the other segments - in other words, computing the190

euclidean distances. In our study, we have adopted this approach to compute
the euclidean distance between the average trend of a time window distribution
and that of the sliding window under consideration.

This is achieved by computing the L2-norm as it is the estimate of location
that minimises the euclidean distance between two time windows. This is rep-195

resented as the diff centre (DCw) for a given window (i), window size (n), and
sliding window (j).

DCw(i, j) =
√

Σn
i=1(i− j)2 (2)

3.3. Visualising Periodic Behaviour

Recording the datastream from an industrial network as point events allows
us to represent the packet inter-arrival times visually as points in 3-dimensional200
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sify network traffic visually. In [22], bigrams of packets are visualised where
the coordinates are defined by the first packet’s size (X), the inter-arrival time
between the two packets (Y), and the second packet’s size (Z), while the coor-
dinates in [25] represent sequence number, frame length, and packet number to205

classify telecommunications traffic.
The STADe visualisation approach differs from previous studies because each

coordinate represents information from only the packet inter-arrival times be-
tween three consecutive packets. The advantage of using 3-dimensional spaces
over 2D is that just one coordinate can be used to display information of more210

packets (i.e. 3 packets) and would require less space to represent a network’s
basic pattern than a 2-dimensional space would.

The packet flow regularity in industrial networks is the characteristic that
enables a sliding window with a single feature of packet timings to represent the
basic normal pattern of operations in a given industrial system. This allows us215

to compute any significant deviations from the basic pattern represented in the
sliding window to detect anomalous scenarios within the network.

3.4. Methodology

Based on the described approach, the framework of the STADe methodology
(shown in Figure 1) is described as follows:220

1. Extract packet inter-arrival times δ from a Cyber-Physical System data
stream as a vector.

2. Divide the extracted δ into windows (W ) of same segment size, n, such
that δ = (W1, W2, ..., Wm) with elements ti ∈ W . A fixed segmentation
δ(n) of size n is a division of δ into m windows where each of the windows225

consists of n consecutive elements from δ.

3. Select baseline/sliding window containing normal traffic.

4. Calculate the standard deviation and diff centres for each window.

5. Compare the sliding window with other windows by computing the diff
score S. The diff score is a combination of the standard deviation and diff230

centres using a weight x ranging from 0 - 1. This essentially allows the
flexibility of assigning more weight (importance) to either the standard
deviation or diff centre (i.e. weight tends towards 0 or 1 respectively) or
assigning equal importance to both (i.e. weight = 0.5).

6. The diff scores of all window segment comparisons Sδ = (Sw1 , Sw2 , ..., Swn)235

is generated and stored as an array.

In the next section, a detailed description of the experiments carried out
to validate the STADe methodology is given with emphasis on the hyper-
parameters, dataset collection, and visualisation methods.

7
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DCw = Diff Centre
SDw = Window Standard Deviation
W1 = Sliding window


Figure 1: STADe methodology

4. Experiments240

4.1. Dataset collection

For these experiments, a total of four (4) datasets were collected from the
wellhead monitoring testbed described in [26] and labeled to enable proper eval-
uation of the performance of STADe on detection of each attack. All datasets
were designed to have a similar attack time pattern where the first 80% repre-245

sents normal traffic, an attack is executed in the next 10%, and the final 10%
of the network traffic is normal as illustrated in Figure 2. This helps us to have
a general idea of where our model should be detecting attacks and helps with
evaluating its performance.

The attacks considered for these experiments were derived from the most250

frequent attacks on oil and gas critical infrastructure targeting ”Availability”
and ”Integrity” [27]. For attacks targeting availability, field flooding attacks
and SYN flooding attacks were carried out while for attacks targeting integrity,
a Man-in-the-Middle (MITM) attack was executed. It is important to note that
a successful MITM attack could serve as an initial phase which makes a number255

of further attacks possible in a second phase. A list of these possible second
phase attacks are highlighted in Table 2. The summary of all the datasets is
also shown in Table 3

8
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1st phase Attack 2nd Phase Attack Impact

MITM

Data interception Attacker can eavesdrop on communica-
tion between HMI and PLC, capturing
sensitive commands and process state

Data tampering Attacker can modify data transmitted
to PLC, altering commands

Session hijacking Attacker can hijack an established ses-
sion between two parties and taking
control by impersonating one of the le-
gitimate parties

Credential theft Admin login credentials could be in-
tercepted, enabling lateral movement
within a network

Replay attacks Attacker can capture data packets and
replay them later, potentially sending
same commands but in the wrong con-
text

Malware delivery Attacker can utilise MITM position to
deliver malicious software into victim’s
network or devices

DNS spoofing Attacker can manipulate DNS re-
sponses, or intercept DNS queries
within the network,potentially redirect-
ing requests to malicious end points

Phishing After intercepting communication, the
attacker can launch further phishing
campaigns with targeted information.
An example could be to target remote
engineers accessing process systems

Table 3: Summary of datasets collected from testbed

Dataset Attack Attack
Type

Target Attack
Dura-
tion

Dataset
Dura-
tion

Total
No.
Pkts

Dataset 1
(normal
traffic)

N/A N/A N/A N/A 22.4
hours

3,409,005

Dataset 2 Field Flood-
ing

DoS Availability 1 hour 3.8
hours

472,887

Dataset 3 SYN Flood-
ing

DDoS Availability 13 secs 1.4
hours

230,409

Dataset 4 MITM See Ta-
ble 2

Integrity 5.5 mins 2.1
hours

319,906

9
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Next
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Normal traffic

Attack traffic

Last 

10%Normal Traffic

Entire pcap file


Figure 2: Dataset creation

4.2. Visualising entire datasets

The initial phase of the experiments entailed making 3D plots of the network260

packets under normal operations to visually investigate if there is a set pattern
that could represent network behaviour. To do this, normal traffic data was col-
lected from the testbed over a 22-hour period. The resulting dataset contained
3,409,005 packets. A second dataset was collected from the testbed comprising
just 3.8 hours of normal traffic + field flooding attack [26]. This second dataset265

contained 472,887 packets. Both plots are shown in Figure 3.
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Benign Network Packets
No. of Packets: 3,409,005
Duration: 22 hours

Delta time

Delta time

(a) 24-hour normal operations Network traffic -
Packet inter-arrival times

Field Flood Network Packets
No. of Packets: 472,887
Duration: 3.8 hours

D
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ta
 ti

m
e

Delta time

Delta time

(b) 3.8-hour normal+field flooding attack Net-
work traffic - Packet inter-arrival times

Figure 3: 3D plots for Network traffic packet inter-arrival times
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lot of noise. This is the primary limitation of plotting an entire dataset on a
single plot because over 90% of the data points lie within the dense circled area.
As a result, the scale of the plot is larger than it needs to be to accommodate270

anomalous coordinates. It becomes evident that, to see deeper underlying pat-
terns that could potentially lie within the dense circled area, a smaller-scaled
plot representing a window (or subset) of network traffic would be more benefi-
cial. This confirms the advantage of using the STADe methodology described in
Section 3.4 to create a smaller sliding window, compare it with other windows275

and generate the diff scores between them.
Despite this limitation, the plot is still useful because when visually inspect-

ing Figures 3a and 3b, there are some obvious distortions in the network pattern
seen in 3b that were not evident in 3a. These differences could be as a result
of the field flooding attack but can not be confirmed visually. In this case, hav-280

ing a numerical score as a basis for comparison and evaluation would be more
beneficial. This numerical score is represented by the diff score described in the
STADe methodology.

4.3. Hyper-parameters:

The next phase of the experiments to be carried out is to generate diff scores285

for all 4 datasets with the following hyper-parameters:

• Window size, n: Industrial networks have communication cycles (i.e. query-
response-acknowledgement cycle). Each device is queried sequentially at
least once until all devices have responded. Then the communication
would loop and start all over. To determine an adequate window size, a290

significant amount of loops (repetitions) containing all normal operating
conditions should be captured within it. In this study, we investigated
window sizes containing 30, 60, 90, and 120 seconds of network communi-
cation. An optimal window size of 60 seconds (1 minute of network com-
munication) was determined empirically. This contained approximately295

2500 packets (100 repetitions) and more significantly, captured all com-
municating devices and their respective commands. While determining the
window size, it was observed that below 60 seconds, the window did not
capture enough information to characterize network behaviour, hence this
resulted in some normal operations being flagged as anomalous (i.e. more300

false positives). Similarly, above 60 seconds, the window size contained
more information than was necessary, which resulted in some anomalous
behaviours being classified as normal (i.e. more false negatives).

It is important to note that this approach may vary in larger and more
complex industrial environments.305

• Diff Score weight: The diff score weight, ranging from 0 - 1, is the impor-
tance given to measurements of diff centres and areas of coverage. A diff
weight of 0.5 was chosen to give equal importance to either parameter.

11
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old. To define a suitable threshold, diff scores need to be generated using310

normal traffic data. The aim is to capture all possible usual network
scenarios which include random packet retransmissions, legitimate con-
nection resets, etc. The maximum diff score generated from normal traffic
can be used as a valid threshold. The amount of normal traffic required
would vary depending on the size of the industrial network. In our case,315

we monitored normal network traffic (with no attacks) for 22 hours and
collected the data. Diff scores were generated for the whole dataset con-
taining normal traffic and the maximum diff score was selected as follows:

maxdiffscorenormaloperations = 0.00216024 = threshold

In this study, a static threshold is employed to ensure simplicity and focus
on validating the proof-of-concept. This allows for clear interpretation of320

results and reproducibility, which are critical for establishing the feasibility
of the proposed approach.

After defining the hyper-parameters, the first window (i.e. first 2,500 pack-
ets), which had already been pre-determined to be a normal traffic window, was
selected as the baseline window (i.e. sliding window). Recall that all subsequent325

windows will be compared with the baseline window, and a diff score generated
to measure the differences. Any diff score (difference) above our determined
threshold would be flagged as an anomaly. In our case, any window within the
first 80% (or last 10%) of the dataset could have been chosen as our baseline
window, however, we decided to use the first. This decision does not affect the330

results so the user can be flexible in their choice of a baseline/sliding window
as long as it is a normal traffic window.

4.4. Evaluation Metrics

To evaluate the performance of STADe on our labeled datasets, the following
metrics were chosen:335

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1Score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5)

FPR =
FP

FP + TN
(6)

FDR =
FP

FP + TP
(7)

12
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TP = True Positive
FP = False Positive
TN = True Negative340

FN = False Negative
FPR = False Positive Rate
FDR = False Discovery Rate

The false positive rate is the more commonly used metric in the literature.345

However, in practice, the false discovery rate is what operators are more con-
cerned with because it is more easily computed in operational environments.
The FPR can be misleading when the proportion of malicious instances is ex-
tremely low, as is the case in industrial network anomaly detection. For these
reasons, in addition to the FPR, we would also compute the false discovery rate.350

The results of the generated diff scores for our attack datasets will be dis-
cussed in the next section.

5. Results

Diff scores were generated for all three (3) attack datasets using the hyper-
parameters determined in Section 4. We discuss each attack separately in the355

following subsections.

5.1. Selection and visualisation of baseline window

The first step was to visualise our baseline window. This becomes our sliding
window and a sort of label for the dataset that would be compared with every
other window by generating a diff score. It can also serve as a basis for a visual360

comparison with any other window identified as having a diff score higher than
the set threshold. As an example, we compared this baseline window to another
normal traffic window and generated a diff score between them to establish
a correlation. Our baseline window indexes were 0 - 2,499 (i.e. first 2,500
packets) while the random window comparison indexes were x - (x + 2,499),365

where x = 6,000 (i.e. the 6,000th packet). This procedure was repeated for all
three datasets containing attacks and the results obtained are discussed in the
next subsections.

5.2. Diff Score generation for Dataset 2 (Field Flooding attack):

The baseline window and random window plots are shown in Figures 4a370

and 4b respectively while a diff score of 0.000698620 was generated from their
comparison. Visually inspecting both plots (i.e. Figures 4a and 4b), a similar
pattern can be observed, although, it is not conclusive. However, their similarity,
when evaluated mathematically using the diff score, was confirmed as the result
was significantly below the threshold of 0.00216024. This method confirms375
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the baseline window contains normal traffic.
Next, the diff scores were generated for the entire dataset, culminating in a

total of 185 windows (i.e. 185 diff scores). Using our pre-determined threshold,
16 windows with diff scores higher than the threshold were identified as shown380

in Figure 5. A summary of the anomalous windows and their diff scores is
represented in Table 4a.

(a) Dataset 2 baseline window - Packet inter-
arrival times

(b) Dataset 2 random window - Packet inter-
arrival times

(c) Field Flooding attack anomalous window 163
- Packet inter-arrival times

Figure 4: 3D plots for Dataset 2 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) Field flooding attack traffic

To confirm our findings visually, a plot of any of the anomalous windows (e.g.
window 163) was created (see Figure 4c) and it showed an obvious deviation
from the baseline window pattern seen in Figures 4a and 4b. Finally, to evaluate385

the detection of the field flooding attack using the diff score methodology, an
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Figure 5: Diff Scores for Dataset 2 - Field Flooding Attack

F1 score of 0.97 was obtained.

5.3. Diff Score generation for Dataset 3 (SYN Flooding attack):

The same methodology was applied to Dataset 3 with the SYN flooding
attack. The baseline window and random window plots are shown in Figures390

6a and 6b respectively while a diff score of 0.00069579 was generated from
their comparison. Again, with a visual inspection, a similarity of patterns is
observable but can only be confirmed using the diff score. The generated diff
score was also below the threshold of 0.00216024 which confirms that the
random window (i.e. packet index 6,000 - 7,499), when compared with the395

baseline window is normal traffic.
Diff scores were generated for the entire dataset, which resulted in 90 win-

dows/diff scores. Six windows were identified to have diff scores higher than the
set threshold and are summarised in Figure 7 and Table 4b.

Again, to confirm our findings visually, a plot of any of the anomalous win-400

dows (e.g. window 79) was created (see Figure 6c) and it showed a clear lack of
similarity from both Figures 6a and 6b which represent normal traffic patterns.
Finally, to evaluate the detection of the syn flooding attack using the diff score
methodology, an F1 score of 0.923 was obtained.

5.4. Diff Score generation for Dataset 4 (MITM attack):405

For the final dataset containing MITM attacks, the same methodology was
applied to select the baseline window and random window plots. A diff score of
0.00070328 was generated from their comparison. The window selected was
confirmed to be normal traffic as the diff score fell below the set threshold.
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Anomalous windows Diff Score
window 163 0.099775081
window 164 0.12644391
window 165 0.126265512
window 166 0.12266697
window 167 0.119892574
window 168 0.116689842
window 169 0.113587351
window 170 0.116997225
window 171 0.114008493
window 172 0.119197875
window 173 0.121269935
window 174 0.123674147
window 175 0.121695499
window 176 0.120863596
window 177 0.112604565
window 178 0.117216779

(a) Field Flooding attack

Threshold = 0.00216024
Anomalous windows Diff Score

window 79 0.029395
window 80 0.029166
window 81 0.029152
window 82 0.029189
window 83 0.029192
window 84 0.02324

(b) SYN Flooding attack

Threshold = 0.00216024
Anomalous windows Diff Score

window 119 0.002651
window 122 0.012518

(c) MITM attack

Table 4: Anomalous windows with diff scores higher than set threshold (a) Dataset 2, (b)
Dataset 3, (c) Dataset 4

In the same manner, diff scores were generated for the entire dataset, which410

resulted in 125 windows/diff scores. For the MITM dataset, because it is a
much stealthier attack, only two windows were identified to have diff scores
higher than the set threshold and are summarised in Figure 9 and Table 4c.

Finally, to confirm our findings visually, a plot of any of the anomalous
windows (e.g. window 119) Figure 8c) was observed to be distinctively different415

in the pattern when compared both Figures 8a and 8b which represent normal
traffic patterns. However, when evaluating the detection of the MITM attack
using the diff score methodology, an F1 score of 0.8 was obtained. The reason
for the lower F1 score when compared with the previous field flooding and SYN
flooding attacks is that the MITM is a stealthier attack that is mostly detected420

at two points: (a) when ARP poisoning begins, and (b) when the ARP table
is reverted to its original state. An interesting observation is that the ARP
poisoning (the start of the MITM attack) began in window 118, but the diff
score of that window is below the threshold. However, the diff score of the
following window 119 was above the threshold. This may be due to the fact425
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(a) Dataset 3 baseline window - Packet inter-
arrival times

(b) Dataset 3 random window - Packet inter-
arrival times

(c) SYN Flooding attack anomalous window 79 -
Packet inter-arrival times

Figure 6: 3D plots for Dataset 3 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) SYN flooding attack traffic

that the ARP poisoning packets occurred towards the tail end of window 118.
However, it is still very interesting that the STADe methodology was able to
observe a change in network traffic pattern in the next window 119. It did
correctly flag window 122 as anomalous, which is when the ARP table was
reverted to its original state, signifying the end of the MITM attack.430

5.5. Summary of results

In summary, STADe was able to detect all the attacks by generating diff
scores and having the right threshold setup for effective detection. The method
proved to be effective in detection with no false positives recorded for any of the
attacks. The field flooding attack had the highest F1 score of 0.97 and also had435
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Figure 7: Diff Scores for Dataset 3 - SYN Flooding Attack

the highest number of anomalous windows (16). This was because the impact of
the field flooding attack on the system lasted the longest. For the SYN flooding
attack, an F1 score of 0.923 was achieved over 6 anomalous windows. Finally,
for the MITM attack, the lowest F1 score of 0.8 was obtained. As explained
earlier, this could be attributed to the fact that because the ARP poisoning440

occurred at the end of the window, the distortion was not significant enough
for it to be detected as an anomaly, however, the detection occurred in the
next window. One of the most important metrics regarding anomaly detection
is the False Discovery Rate (FDR), which was zero for all attacks evaluated.
This means that the STADe methodology was able to effectively measure the445

periodicity of industrial network traffic and also, segment the traffic into equally
sized windows which were further compared with each other to detect deviations
from normal patterns – in essence, anomalies. The summary of the results is
highlighted in Table 5.

The selection of a window size of approximately 2,500 packets (representing450

about one minute of network traffic) means that this tool can potentially detect
anomalies within a minute of their occurrence.

With the results of the experiments showing the STADe methodology achiev-
ing zero false positives, it would be useful to analyse its effectiveness compared
to current, mostly ML-based techniques. Within this group of anomaly detec-455

tion methods (i.e. ML-based), unsupervised ML anomaly detection algorithms
are most closely related to our chosen scenario. This will be explored in the
next section.
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(a) Dataset 4 baseline window - Packet inter-
arrival times

(b) Dataset 4 random window - Packet inter-
arrival times

(c) MITM attack anomalous window 119 - Packet
inter-arrival times

Figure 8: 3D plots for Dataset 4 windows showing (a) Baseline normal traffic, (b) normal
traffic, (c) MITM attack traffic

6. Comparing STADe Performance with Unsupervised ML Methods

Although in Section 2 the limitations of unsupervised MLmethods in anomaly460

detection were articulated, it would still be useful to compare their performances
and analyse STADe with the state of the art as most anomaly detection solu-
tions employ ML methods. Amongst these, unsupervised ML anomaly detection
algorithms are most closely related and could be applicable to industrial and
operational scenarios (i.e. unlabelled data, resource-constrained environment).465

To achieve this, the same datasets would be utilised to keep the experiments as
similar as reasonably practicable.

A number of unsupervised ML algorithms have been proposed in the lit-
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Figure 9: Diff Scores for Dataset 4 - MITM Attack

erature for anomaly detection such as the graphical method, statistic method,
distance-based method, density-based method, and model-based method [28].470

Of these, the most frequently used are the distance-based method (e.g. K-
Nearest Neighbour, KNN), density-based method (e.g. Local Outlier Factor,
LOF), and the model-based method (e.g. isolation forest). This is mainly be-
cause of their ability to detect global and local (deeper lying) outliers especially
when mapping high-dimensional data onto a low-dimensional subspace (as in475

the case of KNN and LOF) and also explicitly isolating anomalies rather than
profiling normal instances (as in the case of isolation forest). As a result, these
models perform well with high dimensional data with a low memory require-
ment. For these reasons, KNN, LOF, and isolation forest algorithms will be
utilised in the experiments.480

6.1. Experiments

Dataset Collection: The same datasets used in the experiments in Sec-
tion 4 were also used in these experiments. The difference, however, was the
elimination of Dataset 1 which was only useful for the STADe methodology
to determine a suitable threshold. Also, datasets 2, 3, and 4 (containing field485

flooding, SYN flooding, and MITM attacks) were combined sequentially into a
single dataset. This was done to enable a more concise analysis of results con-
sidering that multiple algorithms are being investigated. The combined dataset
is summarised in Table 6. For effective comparison, the STADe methodology
was also used to detect anomalies in this combined dataset.490

Data Pre-Processing: All data pre-processing and feature selection meth-
ods used in this study were similar to those employed in [26] because the dataset
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Attack Total
Win-
dows

Anomalous
Win-
dows

Precision Recall F1
Score

FDR FPR

Field
Flood-
ing

185 16 1.0 0.94 0.97 0.0 0.0

SYN
Flood-
ing

90 6 1.0 0.86 0.923 0.0 0.0

MITM 125 2 1.0 0.67 0.8 0.0 0.0

Table 6: Summary of combined dataset

Attack Attack
type

Attack
Dura-
tion

Total Capture Duration No. of Pkts

Field
flooding

DoS 1 hr
7.3 hrs 1,023,202

SYN
flooding

DDoS 13 secs

MitM Spoofing 5.5 mins

was generated from the same testbed. This resulted in a dataset with 24 fea-
tures. One notable difference in the data pre-processing approach adopted in
this study is that there is no requirement for a train/test split. This is because495

anomaly detection works on the assumption that anomalous events are very
rare, which in turn, produces highly imbalanced training datasets. As a result,
the goal is to learn a valid model of the majority of data points (normal data)
[29] which helps it detect deviations from the norm.

Furthermore, dimensionality reduction was applied to the dataset for the500

KNN and LOC experiments. KNN and LOC perform optimally when high-
dimensional data is reduced and projected onto a lower-dimensional space.
Therefore, Principal Component Analysis (PCA) was applied to reduce the fea-
tures to a 2-dimensional array. This helps reduce the computational complex-
ity required for detection. PCA is the most common dimensionality reduction505

technique [30]. By identifying directions of the highest variance from higher-
dimensional data and projecting them onto a lower-dimensional subspace, when
used with an ML model, it is able to reduce the number of parameters fed into
the model without sacrificing important details in the data [31]. Default hy-
perparameters were retained in most cases except for the following empirically510

determined optimal choices:

• KNN: All default hyperparameter values
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FPR/FDR lower is better)

Algorithm Precision Recall F1-Score FPR FDR
KNN 0.999 0.379 0.55 5.08 e−6 0.00033
Isolation Forest 0.607 0.755 0.673 0.0196 0.3933
LOF 0.366 0.455 0.408 0.0317 0.6339
STADe 1.0 0.875 0.933 0.0 0.0

• Isolation Forest: n estimators=50, contamination=0.048

• LOF: contamination: 0.048

6.2. Results515

The results of the experiments showed that the isolation forest algorithm
had an F1 score of 0.673, with KNN and LOF having F1 scores of 0.55 and
0.455 respectively (Table 7). When compared on the same dataset, STADe
recorded a higher F1 score of 0.933. Also, observing the FPR scores, all 3 ML
algorithms recorded seemingly impressive numbers close to the zero FDR of520

STADe with KNN having the best score of 5.08 e−6 while isolation forest and
LOC scored 0.0196 and 0.0317 respectively. Such low FPR scores (i.e. below
0.04) could be misleading and would suggest that an anomaly detection model is
recording relatively low false positives. However, a closer look at the confusion
matrices in Figure 10 reveals otherwise. For example, the isolation forest and525

LOC algorithms recorded 19,396 and 31,137 false positives respectively (shown
in Figures 10b and 10c)in the period under consideration (7.3 hours) while
KNN recorded only 5 (Figure 10a) in the same period. The FDR metric reflects
this performance more accurately with scores of 0.00033, 0.3933, and 0.6339
for KNN, isolation forest, and LOC respectively. This means that 39.33% of530

anomalies detected by the isolation forest algorithm within a 7.3-hour period
were false while for LOC and KNN it was 63.39% and 0.03% respectively. In
reality, the FDR metric would be more beneficial than FPR in an operational
environment. This is because when processing tens of millions of network data
each day, even a modest false discovery rate can overwhelm a security analyst535

[32] - as can be seen with the high number of false positives recorded by the
isolation forest and LOC algorithms within a 7.3-hour operational period.

To summarise, the STADe methodology outperformed the KNN, isolation
forest, and LOF algorithms in detecting anomalies in the industrial network
dataset. However, with respect to FDR scores, the KNN algorithm performed540

closest to the STADe methodology. This may be because the KNN algorithm is
a distance-based algorithm that ranks each point based on the distance between
the point and the nearest point, and identifies the top-most points as anomalies.
This is similar to the STADe methodology as they both calculate Euclidean
distances between data points.545
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(a) KNN confusion matrix (b) Isolation forest confusion matrix

(c) LOF confusion matrix

Figure 10: Confusion matrices for KNN, isolation forest, and LOF

7. Conclusions

Anomaly detection in industrial networks has had a problem with high
false positive rates and high computational complexities which has hindered
its widespread use in practice. The novel STADe methodology introduced in
this paper represents an unsupervised time-window-based approach to anomaly550

detection in industrial control networks that results in zero false positives. This
work aimed to explore a mechanism for detecting breaks in periodicity to flag
anomalies. For this reason, a single feature of packet inter-arrival times was
recorded as point events. The aim was to characterise the periodicity of any
given industrial network using the packet timings to create a mini-model of the555

system representing the normal operation pattern. This mini-model is repre-
sented as the baseline window, which further acts as the sliding window that is
used to compare with the rest of the traffic windows.

The results from the experiments showed no false positives with F1 scores of
0.97, 0.923, and 0.8 recorded for the detection of field flooding, SYN flooding,560

and MITM attacks respectively. In order to assess the performance of STADe in
relation to other unsupervised machine learning algorithms, namely K-Nearest
Neighbors (KNN), Isolation Forest, and Local Outlier Factor (LOF), a series of
additional experiments were conducted. The results revealed F1 scores of 0.55,
0.673, and 0.408 for KNN, Isolation Forest, and LOF, respectively. Notably,565
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applied to the same dataset. This makes STADe very promising to explore
further.

Essentially, from the experiments, the STADe methodology was able to:

• measure the periodicity of a given industrial network in the form of a570

pattern,

• segment the network traffic into time windows which were further com-
pared with each other to detect deviations from the normal pattern estab-
lished in order to detect anomalies, and

• as an additional step, map this pattern onto a 3-dimensional space visually.575

The fact that it utilises a single feature of packet timings that is unaffected by
network encryption means it could potentially be integrated with other security
solutions simultaneously to improve the security posture of industrial networks.

One important application in the real world for STADe is its potential use-
fulness if used in conjunction with a human-in-the-loop to narrow down large580

volumes of data and enable quick identification of anomalous packets within a
time window and investigate further to determine the cause of the anomaly. For
our specific test case in this study, with a window size of approximately 2,500
packets, it essentially means that an attack can potentially be detected within
a minute of it occurring. This could also potentially put an end to scenarios585

where attacks are carried out undetected for several months.

7.1. Limitations and Future Directions:

One of the limitations of this work is that this methodology would be more
difficult to implement in an OT environment where there are intermittent control
commands that may be part of the overall modus operandi of the plant. In other590

words, an OT environment that exhibits less periodicity than the norm. This
may require a longer capture time to establish accurate baselines and thresholds
for effective detection.

Additionally, as mentioned earlier, this study employed a static threshold to
ensure simplicity and focus on validating the proof-of-concept. This approach595

provides a baseline for comparison, which can be essential for future studies
aiming to build upon this work. However, future enhancements to this method
could involve the use of a dynamic threshold that adapts to the statistical prop-
erties of the system’s normal operation data. One possible approach would be to
model the distribution of diff scores generated from normal traffic. For instance,600

if the data approximately follows a Gaussian (normal) distribution, the thresh-
old could be set at a specific number of standard deviations (e.g., 3σ) above the
mean, corresponding to a desired false-positive rate. This would dynamically
adjust the threshold to account for variations in the system’s statistical char-
acteristics, potentially improving the adaptability of the approach in dynamic605
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ture work, the static threshold used in this study effectively demonstrates the
concept’s viability and provides a strong foundation for further research.

Finally, during this study, there was a lack of diversity in datasets with
different industrial protocols. The protocol used in all datasets used was Mod-610

busTCP. Future work will focus on optimising the selection of window size and
threshold hyper-parameters as they are the most sensitive to changes in the re-
sults. More industrial network pcaps utilising other widely used protocols (e.g.
EthernetIP, DNP3, Common Industrial Protocol, OPC UA/DA) will also be
explored to evaluate the effectiveness of the STADe methodology.615
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