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Abstract

While traditional statistical methodologies focus on the average behaviour of a

system and quantifying deviations from it, practical concern often lies on the

extremal behaviour of a system. Understanding the statistics of extremes is

crucial for answering questions arising from practical applications, such as the

severity of floods or the extent of financial losses. Most real-world phenomena

involve multiple variables, which may exhibit interaction at extreme levels; this

motivates the study of multivariate extremes, the study of distributional tails of

multivariate random vectors when two or more variables in the vector can be

large together.

This thesis addresses two challenges in multivariate extreme value theory.

First, new (and highly non-trivial) stochastic orderings among multivariate

extreme value distributions are revealed. More precisely, we consider the multi-

variate stochastic orders of upper orthants, lower orthant and positive quadrant

dependence (PQD) among simple max-stable distributions and their exponent

measures. The main result shows that each of these orders holds for the max-

stable distribution if and only if it holds for the corresponding exponent measure.

Popular parametric models such as the Dirichlet and Hüsler-Reiß families are

shown to be ordered according to the aforementioned multivariate stochastic or-

derings.

Second, this thesis proposes a new method for estimating a sparse but accurate

representation of the spectral measure, which contains the information about the

dependence structure of multivariate extremes. In order to obtain such sparse

approximations, we introduce techniques from the kernel mean embedding of

measures to the context of spectral measure estimation in multivariate extremes.

A broad range of numerical experiments shows that this is a promising approach.
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Chapter 1

Introduction

Most methodologies that we encounter in statistics focus on the description of

average or typical behaviour of a system, to explain changes of typical behaviour

or to quantify a deviation from it. On the other hand, especially in view of

its impacts, practical concern often lies on the extremal behaviour of a system.

How often do we expect to encounter a flood of a certain severity? How large

do we expect a certain financial loss is going to be? Which kind of wind speeds

should skyscrapers be able to withstand during their design life and beyond?

Regulatory frameworks, e.g. in the financial, infrastructure or energy sectors often

demand answers to such questions. Due to the rare nature of extreme events, such

answers are usually based on limited data and require adequate extrapolation.

Understanding and interpreting the statistics of extremes is thus crucial for risk

assessment and management, so that they can inform mitigation and adaptation

strategies that can reduce extreme events’ societal, environmental or industrial

impacts and make infrastructure more resilient.

Almost all real-world phenomena involve multiple variables, which may ex-

hibit interaction at extreme levels. Weather phenomena affect an entire landscape

and are measured at multiple stations at a certain frequency in time and they have

complex interactions; financial assets exhibit co-movements, where sometimes the

interaction only becomes apparent at extreme levels, e.g. during financial crises;

train delays are linked through complex dependencies, including the underlying

rail system. Such phenomena motivate the study of multivariate extremes, i.e.

the study of extremal behaviour of more than one variable.

From a theoretical point of view, the information about the extremal depen-

dence between variables can be summarised by a number of different objects,

depending on the precise framework at hand. Two such objects are a simple

max-stable distribution (or, equivalently, extreme value copula) or the spectral

(or angular) measure of a regularly varying random vector, which are closely

linked via multivariate max-domain-of-attraction conditions, cf. Chapter 2 and

1



Section 2.3. Among the multiple challenges associated with the study of multi-

variate extremes, this thesis contributes to two research directions:

(I) the study of stochastic ordering among multivariate extreme value distri-

butions, which is based on Corradini and Strokorb (2024); this part is ad-

dressed in Chapters 2 (for background and preliminaries) and 3 (for results),

and

(II) obtaining sparse representations of extremal dependence in high-dimensional

multivariate extremes; this part is addressed in Chapters 2 and 4 (for back-

ground and preliminaries) and 5 (for results).

While we give further background, motivation and context for each of (I)

and (II) in Chapters 3 and 5, respectively, let us briefly summarise the main

contributions here.

As for (I), we consider the multivariate stochastic orders of upper orthants,

lower orthants and positive quadrant dependence (PQD) among simple max-

stable distributions (i.e. extreme value copulas) and their exponent measures.

Positive quadrant order is a concordance order, where the components of a ran-

dom vector tend to exhibit stronger positive association, with large and small

values more likely to occur jointly, than under independence. Previously, the ex-

tremes literature has been focusing on orderings with respect to lower orthants,

mostly, as it corresponds to the ordering of stable tail dependence functions,

cf. Section 2.1. Considering (non-trivial) stochastic orderings with respect to up-

per orthants among max-stable distributions is new to the best of our knowledge.

It corresponds to studying the stochastic ordering of the min-combinations that

arise from max-stable random vectors. Generally, relatively little is known about

the minima of max-stable random vectors. It is shown for each order that it

holds for the max-stable distribution if and only if it holds for the corresponding

exponent measure. The finding is in particular non-trivial for upper orthants

(and hence PQD order). We also demonstrate that from dimension d ≥ 3 these

three orders are not equivalent and a variety of phenomena can occur, as we il-

lustrate through popular parametric models such as the Dirichlet family and the

Hüsler-Reiß family. However, every max-stable distribution PQD-dominates the

corresponding independent model and is PQD-dominated by the fully dependent

model. For statistical inference, stochastic orderings are typically of concern for

distributionally robust inference, as discussed in Chapter 3.

On the other hand, regarding (II), this thesis explores how techniques from

the kernel mean embedding of measures literature can be utilised to obtain a

2



sparse approximation of the extremal dependence of a regularly varying random

vector. One of the main challenges in multivariate extremes is how to compress

dependence information without resorting to the full empirical spectral measure

or drawing on parametric models, which can be overly restrictive. We explore

the potential for such a kernel-mean-embedding-based approach in approximat-

ing the empirical spectral measure with few support points, leading to a sparser

approximation than the full empirical angular measure but maintaining a similar

accuracy in estimating the original spectral measure. To the best of our knowl-

edge, introducing reproducing kernel Hilbert space techniques to the study of

spectral measures has only been done in Avella-Medina et al. (2022) before, and

therein in an essentially different way. Our numerical experiments and results

show that this is a promising tool to estimate a sparse and accurate representa-

tion of the spectral measure in multivariate extremes.

The thesis is accordingly structured as follows.

In Chapter 2 we recall relevant background knowledge from the theory of

multivariate extremes. We highlight some important parametric families which

will become relevant for the study of stochastic orders in Chapter 3. We cover

the connections between multivariate extremes and regular variation, which is

the underlying framework for the kernel mean embedding, cf. Chapter 5.

In Chapter 3 we first give some background on multivariate stochastic order-

ings, before moving on to our theoretical results concerning stochastic orderings

in multivariate extremes. Besides exploring the connection between max-stable

distributions and their exponent measures, we study these orderings for the para-

metric families introduced in Chapter 2.

In Chapter 4, we recall definitions and facts about reproducing kernel Hilbert

spaces and explain their role in the kernel mean embedding of measures and the

definition of the maximum mean discrepancy (MMD), a convenient kernel-based

metric to compare the distance of measures. We then cover the sparsity-inducing

vertex exchange algorithm, which optimises a regularised version of the MMD,

and which gives rise to our new approach of summarising extremal dependence

information in Chapter 5.

Finally, in Chapter 5 we apply these ideas to the context of multivariate ex-

tremes. We explore the benefits of sparsifying empirical angular measures by

means of using the vertex exchange algorithm in order to solve a regularised min-

imisation problem that is based on the maximum mean discrepancy for measuring

distance between measures (as introduced in Chapter 4). In order to study such

an approach in an appropriate setting, we first introduce a convenient stochastic

3



model and show that it defines a rich class of multivariate regularly varying ran-

dom vectors. This stochastic model is convenient in that it is easy to simulate

from and provides us with situations where we know the true spectral measure;

moreover, it allows us to test our approach widely since one can retrieve any

spectral measure and control the amount of noise around the spectral measure.

Subsequently we carry out a broad numerical study based on such models, and

document and interpret their outcomes.

Some parts of this thesis are based on the joint publication “Corradini, M.

and Strokorb, K. (2024), ‘Stochastic ordering in multivariate extremes’, Extremes

pp. 1–40.” (Corradini and Strokorb, 2024). These are:

• Sections 2.1 and 2.2 of Chapter 2,

• Chapter 3,

• Appendices A and B.

The material presented in these appendices (Appendices A and B) has delib-

erately not been included in the main body of the thesis, as it is largely based

on original contributions of lead supervisor K. Strokorb. It is included here for

completeness, as Proposition A.0.9 is important to derive Theorem 3.2.1.

For the remaining material, the role of K. Strokorb was supervisory with the

research carried out and documented by M. Corradini. In particular, Chapter 3

contains complementary details to Corradini and Strokorb (2024).

4



Chapter 2

Multivariate extremes and
regular variation

This section is preparing the setting for the two main streams of research in

this thesis. Our main results on stochastic orderings, presented in Chapter 3,

concern stochastic orderings among max-stable distributions, or, as it turns out,

equivalently, orderings among their respective exponent measures. Therefore,

this chapter reviews some basic well-known results from the theory of multivari-

ate extremes. Secondly, we will take a closer look at three marginally closed

parametric families, the Dirichlet family, the Hüsler-Reiß family and the Cho-

quet (Tawn-Molchanov) family of max-stable distributions, each model offering

a different insight into phenomena of orderings among multivariate extremes.

Subsequently, we recall the connections between (multivariate) extremes and

regular variation, setting the scene for our underlying framework in Chapter 5,

when we study how to compress the information contained in an empirical angular

measure.

While most of this chapter brings together relevant background knowledge

from the literature, the representation of the Dirichlet model with a Gamma

generator seems to be new in this generality, cf. Remark 2.2.2.

2.1 Max-stable random vectors and their expo-

nent measures

In this section we recall some definitions and basic facts about representations for

max-stable distributions, cf. also Resnick (1987) or Beirlant et al. (2004). Opera-

tions and inequalities between vectors are meant componentwise. We abbreviate

0 = (0, 0, . . . , 0)⊤ ∈ Rd.

Definition 2.1.1. A random vector X = (X1, . . . , Xd)
⊤ ∈ Rd is called max-

stable if for all n ≥ 1 there exist suitable norming vectors an > 0 and bn ∈ Rd,

5



such that the distributional equality

max
j=1,...,n

(Xj)
d
= anX + bn (2.1)

holds, where X1, . . . ,Xn are i.i.d. copies of X.

According to the Fisher-Tippett theorem (Fisher and Tippett, 1928), each

marginal distribution Gi(x) = P(Xi ≤ x) is a univariate max-stable distribution,

that is, either degenerate to a point mass or a generalised extreme value (GEV)

distribution of the form

Gξ((x− µ)/σ) with Gξ(x) =

{
exp(−(1 + ξx)

−1/ξ
+ ) if ξ ̸= 0,

exp(−e−x) if ξ = 0,
(2.2)

where ξ ∈ R is a shape-parameter, while µ ∈ R and σ > 0 are the location

and scale parameters, respectively. We write GEV(µ, σ, ξ) for short. Please note

that the GEV parameters may differ for each marginal distribution and that the

marginal distribution already determines the normalizing vectors an and bn in

(2.1).

Definition 2.1.2. A max-stable random vector X = (X1, . . . , Xd)
⊤ is called

simple max-stable if it has standard unit Fréchet marginals, that is, P(Xi ≤ x) =

exp(−1/x), x > 0, for all i = 1, . . . , d.

The terminology simple max-stable has been used, for instance, in Molchanov

(2008) or Falk et al. (2004) in this way. Therefore, if X is simple max-stable,

then

max
j=1,...,n

(Xj)
d
= nX (2.3)

holds, where X1, . . . ,Xn are i.i.d. copies of X. Note that the converse is not

true, i.e. if (2.3) holds, it is only implied that X is max-stable and has marginal

distributions either degenerate to a point mass at zero or a scaled unit Fréchet

distribution of the form P(Xi ≤ x) = exp(−σi/x), x > 0, σi > 0, for all i =

1, . . . , d. If all marginal distributions are scaled unit Fréchet distributions (with

possibly different σi), X has been termed semi-simple max-stable in Molchanov

(2008).

Any max-stable random vector X with GEV margins Xi ∼ GEV(µi, σi, ξi)

can be transformed into a simple max-stable random vector X∗ and vice versa

via the componentwise order-preserving transformations

X∗
i = T (Xi;µi, σi, ξi) and Xi = T−1(X∗

i ;µi, σi, ξi), i = 1, . . . , d, (2.4)

6



where the transformations

T (x;µ, σ, ξ) =
(
1 + ξ

x− µ

σ

)1/ξ

and T−1(x∗;µ, σ, ξ) = σ
(x∗)ξ − 1

ξ
+ µ,

(with the usual interpretation of (1 + ξx)1/ξ as ex for ξ = 0) are order-preserving

on the support of GEV(µ, σ, ξ) and the standard unit Féchet law, respectively.

In this sense a simple max-stable random vector can be interpreted as a cop-

ula of a general max-stable random vector with non-degenerate margins, which

encapsulates its dependence structure. We note that the term copula is often

reserved in the literature for the law of a random vector with uniform margins

on the interval [0, 1]. The extremes literature is dominated by a normalization to

standard Fréchet margins instead.

There are different ways to describe the distribution of such simple max-stable

random vectors. The following will be relevant for us. Note that such vectors take

values in the open upper orthant (0,∞)d almost surely. Here and hereinafter we

shall denote the i-th indicator vector by ei (all components of ei are zero except

for the i-th component, which takes the value one).

Theorem/Definition 2.1.3 (Representations of simple max-stable distribu-

tions, that is, max-stable distributions with standard unit Fréchet margins).

A random vector X = (X1, . . . , Xd)
⊤ with distribution function G(x) =

exp(−V (x)), x ∈ (0,∞]d, is simple max-stable if and only if the exponent func-

tion V can be represented in one of the following equivalent ways:

(i) Spectral representation (de Haan, 1984). There exists a finite mea-

sure space (Ω,A, ν) and a measurable function f : Ω → [0,∞)d such that∫
Ω
fi(ω) ν(dω) = 1 for i = 1, . . . , d, and

V (x1, . . . , xd) =

∫
Ω

max
i=1,...,d

fi(ω)

xi

ν(dω).

(ii) Exponent measure (Resnick, 1987). There exists a (−1)-homogeneous

measure Λ on [0,∞)d \ {0}, i.e. Λ(cA) = c−1Λ(A) for all c > 0 and A any

Borel subset of [0,∞)d \ {0}, such that

Λ
({

y ∈ [0,∞)d : yi > 1
})

= 1

for i = 1, . . . , d, and

V (x1, x2, . . . , xd) = Λ
({

y ∈ [0,∞)d : yi > xi for some i ∈ {1, . . . , d}
})

.

7



(iii) Stable tail dependence function (Ressel, 2013). There exists a 1-

homogeneous and max-completely alternating function ℓ : [0,∞)d → [0,∞),

such that ℓ(ei) = 1 for i = 1, . . . , d, and

V (x1, . . . , xd) = ℓ

(
1

x1

, . . . ,
1

xd

)
(cf. Appendix A for the notion of max-complete alternation).

In fact, the spectral representation can be seen as a polar decomposition

of the exponent measure Λ, cf. e.g. Resnick (1987) or Beirlant et al. (2004).

Importantly, it is not uniquely determined by the law of X. For instance, if

(Ω,A, ν, f) is a spectral representation for X, and c > 0, then (Ω,A, cν, c−1f)

is also a spectral representation for X. Uniqueness can however be achieved by

imposing further constraints on the tuple (Ω,A, cν, c−1f). Typical choices for the

measure space (Ω,A, ν) are outlined in Theorem 6.1.14 of de Haan and Ferreira

(2006) for dimension 2, and include (i) the unit interval with Lebesgue measure

or (ii) a sphere Ω = {ω ∈ [0,∞)d : ∥ω∥ = 1} with respect to some norm ∥·∥,
for instance the ℓp-norm

∥x∥p =
( ∑

i=1,...,d

|xi|p
)1/p

for some p ≥ 1. For (i) it is then the spectral map f which highlights the contri-

bution of each direction separately. For (ii) one usually considers the component

maps fi(ω) = ωi, so that all the dependence information is then given by the mea-

sure ν, then often termed angular measure. In general, the angular measure

will not be a probability measure. However, it can be rescaled to a probability

measure whilst the scaling constant is multiplied to the component maps. More

precisely, for a given spectral representation (Ω,A, ν, f) one may rescale ν to a

probability measure and absorb the rescaling constant into the spectral map f .

The resulting random vector Z = (Z1, . . . , Zd)
⊤ such that E(Zi) = 1, i = 1, . . . , d,

and

V (x1, . . . , xd) = E max
i=1,...,d

(
Zi

xi

)
,

has been termed generator of the simple max-stable random vector X, cf. Falk

(2019). In general, we have

max
i=1,...,d

(
1

xi

)
≤ V (x1, . . . , xd) ≤

1

x1

+ · · ·+ 1

xd

,

where the boundary cases represent full dependence (lower bound) and full inde-

pendence (upper bound), respectively.

A useful observation is the following; for a given vector x with values in Rd

and a subset A ⊂ {1, . . . , d}, let xA be the subvector with components in A.
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Lemma 2.1.4. Let Z be a generator for the max-stable law X, then ZA is a

generator for XA.

Proof. Let X be a d-variate simple max-stable random vector with generator Z

and stable tail dependence function ℓ. Then

ℓ(x1, . . . , xd) = E max
i=1,...,d

(
xiZi

)
, x ∈ [0,∞)d.

It follows that for a non-empty subset A ⊂ {1, . . . , d}

ℓA(xA) = Emax
i∈A

(
xiZi

)
, xA ∈ [0,∞)A

is the stable tail dependence function of XA, cf. e.g. the introduction of Ressel

(2022) or Section 7 (Projection) of Molchanov (2008). Hence ZA is a generator

for XA.

An important fact about the exponent measure which will be relevant in

Chapter 3 is the following: while the support of the exponent measure Λ is

contained in [0,∞)d \ {0}, its total mass is infinite.

The stable tail dependence function ℓ goes back to Huang (1992) and has also

been called D-norm (Falk et al., 2004) of X. The boundary cases for the stable

tail dependence function ℓ are given by

max
i=1,...,d

xi ≤ ℓ(x1, . . . , xd) ≤ x1 + · · ·+ xd, for x ∈ [0,∞)d.

Since ℓ is 1-homogeneous, it suffices to know its values on the unit simplex △d =

{x ∈ [0,∞)d : ∥x∥1 = 1}; note that △d is a special case of the sphere Ω defined

above, where the norm chosen is the ℓp-norm with p = 1; the restriction of ℓ to

△d is called Pickands dependence function

A(x1, . . . , xd) = ℓ(x1, . . . , xd), (x1, . . . , xd)
⊤ ∈ △d.

There exist further descriptors of the dependence structure, e.g. in terms of Point

processes or LePage representation, cf. e.g. Resnick (1987) or, in a very general

context, Davydov et al. (2008). Copulas of max-stable random vectors on stan-

dard uniform margins are called extreme value copulas (Gudendorf and Segers,

2010).

Let us close with a representation that allows for some interesting geometric

interpretations and has been instrumental in the derivation of Theorem 2.2.9,

which we will discuss below. Molchanov (2008) introduced a convex body K ⊂
[0,∞)d, which can be interpreted (up to rescaling) as selection expectation of

a random cross polytope associated with the (normalised) spectral measure ν.
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Molchanov (2008) shows that the stable tail dependence function is in fact the

support function of the convex body K, that is,

ℓ(x) = sup{⟨x,k⟩ : k ∈ K}, (2.5)

where sup denotes the supremum. The convex body K is called max-zonoid

(or dependency set) of X and it is uniquely determined by the law of X. In

fact

K =
{
k ∈ [0,∞)d : ⟨k,x⟩ ≤ ℓ(x) for all x ∈ [0,∞)d

}
. (2.6)

In general, it is difficult to translate one representation from Theorem 2.1.3

into another apart from the obvious relations

ℓ(x) = E max
i=1,...,d

(xiZi)

=

∫
Ω

max
i=1,...,d

xifi(ω) ν(dω) = Λ
({

y ∈ [0,∞)d : max
i=1,...,d

(xiyi) > 1
})

for x ≥ 0. For convenience, we have added material in Appendix B how to obtain

the boundary of a max-zonoid K from the stable tail dependence function ℓ in

the bivariate case, which will help to illustrate some of the results below.

2.2 Parametric models

Several parametric models for max-stable random vectors have been summarised

for instance in Beirlant et al. (2004). In what follows we draw our attention to two

of the most popular parametric models, the Dirichlet and Hüsler-Reiß families,

as well as the Choquet model (Tawn-Molchanov model), which will reveal some

interesting phenomena and (counter-)examples of stochastic ordering relations.

For the Dirichlet and Hüsler-Reiß families, we will show they are PQD-ordered

according to the natural order within their parameter spaces. The Choquet model

will be useful to construct some counterexamples which show that upper orthant

and lower orthant ordering among simple max-stable distributions are not equiv-

alent.

2.2.1 Dirichlet model

Coles and Tawn (1991) compute densities of angular measures of simple max-

stable random vectors constructed from non-negative functions on the unit sim-

plex △d. In particular, the following asymmetric Dirichlet model has been in-

troduced. We summarise some equivalent characterisations, each of which may

serve as a definition of the asymmetric Dirichlet model. This model has gained

popularity due to its flexibility and simple structure forming the basis of Dirichlet

mixture models (Boldi and Davison, 2007; Sabourin and Naveau, 2014).
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Theorem/Definition 2.2.1 (Multivariate max-stable Dirichlet distribution). A

random vector X = (X1, . . . , Xd)
⊤ is simple max-stable Dirichlet distributed with

parameter vector α = (α1, . . . , αd)
⊤ ∈ (0,∞)d, we write

X = (X1, . . . , Xd)
⊤ ∼ MaxDir(α1, . . . , αd) = MaxDir(α)

for short, if and only if one of the following equivalent conditions is satisfied:

(i) (Gamma generator) A generator of X is the random vector

α−1Γ = (Γ1/α1,Γ2/α2, . . . ,Γd/αd)
⊤,

where Γ = (Γ1, . . . ,Γd)
⊤ consists of independent Gamma distributed vari-

ables Γi ∼ Γ(αi), αi > 0, i = 1, . . . , d. Here, the Gamma distribution Γ(αi)

has the density

γαi
(x) =

xαi−1

Γ(αi)
exp

(
− x

)
.

(ii) (Dirichlet generator) A generator of X is the random vector

(α−1∥α∥1)D = (α1 + · · ·+ αd) · (D1/α1, D2/α2, . . . , Dd/αd)
⊤,

where D follows a Dirichlet distribution Dir(α1, . . . , αd) on the unit simplex

△d with density

d(ω1, . . . , ωd) = Γ(∥α∥1)
d∏

i=1

ωαi−1
i

Γ(αi)
, (ω1, . . . , ωd)

⊤ ∈ △d.

(iii) (Angular measure) The density of the angular measure of X on △d is

given by

h(ω1, . . . , ωd) =
Γ(∥α∥1 + 1)

∥αω∥1

d∏
i=1

ααi
i ωαi−1

i

Γ(αi)(∥αω∥1)αi
, (ω1, . . . , ωd)

⊤ ∈ △d.

(2.7)

Proof. The equivalence of (ii) and (iii) has been proved in Coles and Tawn (1991)

(page 382). The equivalence of (i) and (ii) follows similarly to Aulbach et al.

(2015) (3) from the fact that D is distributed like Γ/∥Γ∥1 and the independence

of Γ/∥Γ∥1 and ∥Γ∥1. More precisely, let ℓ1 and ℓ2 be the stable tail dependence

functions that arise from the generators (i) and (ii), respectively. Then ℓ1 and ℓ2

can be expressed as follows for any x ∈ [0,∞)d

ℓ1(x) = E max
i=1,...,d

xiΓi

αi

= E∥Γ∥1 · E max
i=1,...,d

xiΓi/∥Γ∥1
αi

,

ℓ2(x) = E max
i=1,...,d

xi∥α∥1Di

αi

= ∥α∥1 · E max
i=1,...,d

xiDi

αi

.

If suffices to note E∥Γ∥1 = ∥α∥1 in order to conclude ℓ1 = ℓ2.
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Remark 2.2.2. To the best of our knowledge the representation through the

Gamma generator, albeit inspired by Aulbach et al. (2015) from the fully sym-

metric case, where α1 = α2 = · · · = αd, is new in this generality, where all

parameters (or only some of them) αi, i = 1, . . . , d, may be mutually distinct.

An advantage of the representation with the Gamma generator is that it reveals

immediately the closure of the model with respect to taking marginal distribu-

tions, cf. Lemma 2.1.4, a result that has been previously obtained in Ballani and

Schlather (2011), but with a one-page proof and some intricate density calcula-

tions.

Lemma 2.2.3 (Closure of Dirichlet model under taking marginals). Let X =

(X1, . . . , Xd)
⊤ ∼ MaxDir(α1, . . . , αd) = MaxDir(α) and A ⊂ {1, . . . , d}, then

XA ∼ MaxDir(αA).

Proof. Let X = (X1, . . . , Xd)
⊤ ∼ MaxDir(α1, . . . , αd). Then a generator for X

is the random vector

α−1Γ = (Γ1/α1,Γ2/α2, . . . ,Γd/αd)
⊤,

where Γ = (Γ1, . . . ,Γd)
⊤ consists of independent Gamma distributed variables

Γi ∼ Γ(αi), αi > 0, i = 1, . . . , d. By Lemma 2.1.4 the random vector α−1
A ΓA is a

generator for XA. Hence, XA ∼ MaxDir(αA).

The angular density representation (2.7) on the other hand is useful to see

that different parameter vectors α ̸= β lead in fact to different multivariate

distributions MaxDir(α) ̸= MaxDir(β) for d ≥ 2, so that (0,∞)d is indeed the

natural parameter space for this model.

2.2.2 Hüsler-Reiß model

The multivariate Hüsler-Reiß distribution (Hüsler and Reiß, 1989) forms the basis

of the popular Brown-Resnick process (Kabluchko et al., 2009) and has sparked

significant interest from the perspectives of spatial modelling (Davison et al.,

2019) and more recently in connection with graphical modelling of extremes (En-

gelke and Hitz, 2020). The natural parameter space for this model is the convex

cone of conditionally negative symmetric d × d-matrices, whose diagonal entries

are zero

Gd =

{
γ = (γij)i,j∈{1,...,d} ∈ Rd×d :

γij = γji, γii = 0 for all i, j ∈ {1, . . . , d},
v⊤γv ≤ 0 for all v ∈ Rd

such that v1 + · · ·+ vd = 0

}
.
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It is well-known, cf. e.g. Berg et al. (1984, Ch. 3), that for a given γ ∈ Gd, there

exists a zero mean Gaussian random vectorW = (W1, . . . ,Wd)
⊤ with incremental

variance

E(Wi −Wj)
2 = γij, i, j ∈ {1, . . . , d}, (2.8)

although its distribution is not uniquely specified by this condition. For instance,

select i ∈ {1, . . . , d}. Imposing additionally the linear constraint “Wi = 0 almost

surely” leads to W ∼ N (0,Σi) with

(Σi)jk =
1

2

(
γij + γik − γjk

)
, j, k ∈ {1, . . . , d},

which satisfies (2.8). By writing W = (W1, . . . ,Wd)
⊤ ∼ N (0,Σi) we mean

that W is Gaussian with zero mean, i.e. E(Wj) = 0 for all j = 1, . . . , d, and with

covariance matrixΣi, i.e. Cov(Wj,Wk) = E(WjWk) = (Σi)jk for j, k ∈ {1, . . . , d}.

Theorem/Definition 2.2.4 (Multivariate Hüsler-Reiss model, cf. Kabluchko

(2011) Theorem 1). Let γ ∈ Gd and let W be a zero mean Gaussian random

vector which satisfies (2.8). Consider the simple max-stable random vector X =

(X1, . . . , Xd)
⊤ defined by the generator Z = (Z1, . . . , Zd)

⊤ with

Zi = exp

(
Wi −

1

2
Var(Wi)

)
, i = 1, . . . , d.

Then the distribution of X depends only on γ and not on the specific choice of a

zero mean Gaussian distribution satisfying (2.8). We call X simple Hüsler-Reiß

distributed with parameter matrix γ and write for short

X = (X1, . . . , Xd)
⊤ ∼ HR(γ).

We also note that for γ1, γ2 ∈ Gd, the distributions HR(γ1) and HR(γ2)

coincide if and only if γ1 = γ2, so that Gd is indeed the natural parameter space

for these models. This follows directly from the observation that the multivariate

Hüsler-Reiß model is also closed under taking marginal distributions and the

equivalent statement for bivariate Hüsler-Reiß models, which can be seen for

instance from (B.3) below. Indeed, we also state the following lemma for clarity.

It follows directly from the generator representation of HR(γ) and Lemma 2.1.4.

Lemma 2.2.5 (Closure of Hüsler-Reiß model under taking marginals). Let X =

(X1, . . . , Xd)
⊤ ∼ HR(γ) and A ⊂ {1, . . . , d}, then XA ∼ HR(γA×A), where γA×A

is the restriction of γ to the components of A in both rows and columns.
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It is well-known that up to a change of location and scale parameters Hüsler-

Reiß distributions are the only possible limit laws of maxima of triangular arrays

of multivariate Gaussian distributions, a finding which can be traced back to

Hüsler and Reiß (1989) and Brown and Resnick (1977). The following version

will be convenient for us.

Theorem 2.2.6 (Triangular array convergence of maxima of Gaussian vec-

tors, cf. Kabluchko (2011) Theorem 2). Let un be a sequence such that√
2πune

u2
n/2/n → 1 as n → ∞. For each n ∈ N let Y

(n)
1 ,Y

(n)
2 , . . . ,Y

(n)
n be in-

dependent copies of a d-variate zero mean unit-variance Gaussian random vector

with correlation matrix (ρ
(n)
ij )i,j∈{1,...,d}. Suppose that for all i, j ∈ {1, . . . , d}

4 log(n)(1− ρ
(n)
ij ) → γij ∈ [0,∞)

as n → ∞. Then the matrix γ = (γij)i,j∈{1,...,d} is necessarily and element of

Gd. Let M (n) be the componentwise maximum of Y
(n)
1 ,Y

(n)
2 , . . . ,Y

(n)
n . Then

the componentwise rescaled vector un(M
(n)−un) converges in distribution to the

Hüsler-Reiß distribution HR(γ).

Remark 2.2.7. In the bivariate case we have γ12 = γ21 = γ ∈ [0,∞) and the

boundary case γ = 0 leads to a degenerate random vector with fully depen-

dent components, whereas γ ↑ ∞ leads to a random vector with independent

components. More generally, one might also admit the value ∞ for γij in the

multivariate case, as long as the resulting matrix γ is negative definite in the

extended sense, cf. Kabluchko (2011). This extension corresponds to a partition

of X into independent subvectors X =
⊔

A XA, where each XA is a Hüsler-Reiß

random vector in the usual sense. Here γij = ∞ precisely when i and j are in

different subsets of the partition. Theorem 2.2.6 extends to this situation as well.

In fact, is has been formulated in this generality in Kabluchko (2011).

Remark 2.2.8. In Theorem 2.2.6 it is important to consider the componentwise

maxima of the rows of a triangular array, where in the n-th row, the dependence

structure of the independent Gaussian random vectors Y
(n)
1 ,Y

(n)
2 , . . . ,Y

(n)
n is

allowed to change with n. Simply taking componentwise maxima of an i.i.d.

sequence of Gaussian random vectors with each correlation ρij < 1, would lead

instead to a distributional limit with independent components (Sibuya, 1960),

which is why the Gaussian random vector is also often referred to as an asymptotic

independent model. Therefore, we need to follow the route of triangular arrays as

in Hüsler and Reiß (1989) or Kabluchko (2011), for instance, where the correlation

is allowed to change with the row index n.
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2.2.3 Choquet model / Tawn-Molchanov model

A popular way to summarise extremal dependence information within a random

vector is by considering its extremal coefficients, which in the case of a simple

max-stable random vector X = (X1, X2, . . . , Xd)
⊤ may be expressed as

θ(A) = ℓ(eA), eA =
∑
i∈A

ei, A ⊂ {1, . . . , d}, A ̸= ∅,

or, equivalently,

θ(A) = Emax
i∈A

Zi =

∫
Ω

max
i∈A

fi(ω) ν(dω) = Λ
({

y ∈ [0,∞)d : max
i∈A

(yi) > 1
})

,

(2.9)

where ℓ is the stable tail dependence function, Z a generator, Λ the exponent

measure and (Ω,A, ν, f) a spectral representation for X. The coefficient θ(A)

takes values in [1, |A|]. Loosely speaking, it can be interpreted as the effective

number of independent variables among the collection (Xi)i∈A. We have θ({i}) =
1 for singletons {i} and naturally θ(∅) = 0.

The following result can be traced back to Schlather and Tawn (2002) and

Molchanov (2008). Accordingly, the associated max-stable model, which can be

parametrised by its extremal coefficients, has been introduced as Tawn-Molchanov

model in Strokorb and Schlather (2015). It is essentially an application of the the

Choquet theorem (see Molchanov (2017) Section 1.2 and Berg et al. (1984) The-

orem 6.6.19), which also holds for not necessarily finite capacities (see Schneider

and Weil (2008) Theorem 2.3.2). Therefore, it has been relabelled Choquet model

in Molchanov and Strokorb (2016), cf. Appendix A for background on complete

alternation. We write Pd for the power set of {1, . . . , d} henceforth.

Theorem 2.2.9. a) [Strokorb and Schlather (2015) Theorem 8 (a)] Let θ : Pd →
R. Then θ is the extremal coefficient function of a simple max-stable random

vector in (0,∞)d if and only if θ(∅) = 0, θ({i}) = 1 for all i = 1, . . . , d and θ

is union-completely alternating.

b) [Strokorb and Schlather (2015) Theorem 8 (b) and Molchanov and Strokorb

(2016) Theorem 3.7 and Prop. 5.3] Let θ : Pd → R be an extremal coefficient

function. Let

ℓ∗(x) =

∫ ∞

0

θ({i : xi ≥ t}) dt, x ∈ [0,∞)d (2.10)

be the Choquet integral with respect to θ. Then ℓ∗ is a valid stable tail depen-

dence function, which retrieves the given extremal coefficients ℓ∗(eA) = θ(A)

for all A ∈ Pd. Its max-zonoid is given by

K∗ =
{
k ∈ [0,∞)d : ⟨k, eA⟩ ≤ θ(A) for all A ∈ Pd

}
.
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c) [Strokorb and Schlather (2015) Theorem 32 and Corollary 33, Molchanov and

Strokorb (2016) Corollary 5.4] Let ℓ be any stable tail dependence function

with extremal coefficient function θ, that is, ℓ(eA) = θ(A) for all A ∈ Pd, and

let K be its corresponding max-zonoid. Then

ℓ(x) ≤ ℓ∗(x), x ≥ 0 and K ⊂ K∗,

where ℓ∗ is as in (2.10).

Example 2.2.10 (Choquet model in the bivariate case). Let ℓ be any bi-

variate stable tail dependence function with bivariate extremal coefficient θ =

ℓ(1, 1) ∈ [1, 2]. Then the associated Choquet model is given by the max-zonoid

K∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ θ} or the stable tail dependence function

ℓ∗(x1, x2) = max(x1 + (θ − 1)x2, (θ − 1)x1 + x2). Figure 2.1 displays a situation,

where the original ℓ stems from an asymmetric Dirichlet model, see (B.4) and

(B.5) in Appendix B for the expression of ℓ for this model. Figure 2.1 visually

shows that Theorem 2.2.9, part (c) is indeed satisfied, i.e. that ℓ(x) ≤ ℓ∗(x) for

x ≥ 0 and K ⊂ K∗.

Figure 2.1: Nested max-zonoids and Pickands dependence functions ranging from full
dependence (black), an asymmetric Dirichlet model with α = (30, 0.2) (dark grey),
its associated Choquet (Tawn-Molchanov) model (light grey) to the fully independent
model (white).

In geometric terms, for any given max-zonoid K ⊂ [0, 1]d the associated Cho-

quet max-zonoid K∗ ⊂ [0, 1]d is bounded by 2d − 1 hyperplanes, one for each

direction eA, which is the supporting hyperplane of the max-zonoid K in the

direction of eA.

The Choquet model is a spectrally discrete max-stable model, whose exponent

measure has its support contained in the rays through the vectors eA, A ⊂
{1, . . . , d}, A ̸= ∅. While its natural parameter space is the set of extremal

coefficients, we can also describe it via the mass that the model puts on those

rays. To this end, let τ : Pd \ {∅} → R be given as follows

τ(A) =
∑
I⊂A

(−1)|I|+1θ(I ∪ ({1, . . . , d} \ A)),
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where we assume a1, a2, . . . , an to be the distinct elements from A ⊂ {1, . . . , d}.
Then the spectral representation (Ω,A, ν∗, f) with

Ω = {ω ∈ [0,∞)2 : ∥ω∥∞ = 1}, fi(ω) = ωi, ν∗ =
∑

A∈Pd\{∅}

τ(A) δeA (2.11)

corresponds to the stable tail dependence function ℓ∗ from Theorem 2.2.9. In

terms of an underlying generator for which (2.9) holds true, we may express τ as

τ(A) = E
(
min
i∈A

Zi − max
i∈{1,...,d}\A

Zi

)
+
,

cf. Papastathopoulos and Strokorb (2016) Lemma 3. Moreover, we recover θ from

τ via

θ(A) =
∑

K :K∩A ̸=∅

τ(K),

which makes the analogy between extremal coefficient functions θ and capacity

functionals of random sets even more explicit.

However, there are two drawbacks with representing the Choquet model by

the collection of coefficients τ(A), A ⊂ {1, . . . , d}, A ̸= ∅. First, this represen-

tation is specific to the dimension, in which the model is considered, that is, we

cannot simply turn to a subset of these coefficients when considering marginal

distributions. Second, one may easily forget that one has in fact not 2d−1 degrees

of freedom among these coefficients, but 2d−1−d, since θ({i}) = 1 for singletons

{i}, which is only encoded through d linear constraints for τ as follows∑
K : i∈K

τ(K) = 1, i = 1, . . . , d. (2.12)

A third parametrisation of the Choquet model, which has received little

attention so far, but is very relevant for the ordering results in this article

(cf. Lemma 3.2.14) and does not have such drawbacks, is the following. Instead

of extremal coefficients, let us consider the following tail dependence coefficients

for A ⊂ {1, . . . , d}, A ̸= ∅:

χ(A) = Emin
i∈A

Zi =

∫
Ω

min
i∈A

fi(ω) ν(dω) = Λ
({

y ∈ [0,∞)d : min
i∈A

(yi) > 1
})

.

Then it is easily seen that

χ(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1θ(I) and θ(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1χ(I). (2.13)

In particular χ({i}) = θ({i}) = 1 for i = 1, . . . , d, and these operations show

explicitly, how θ and χ can be recovered from each other. While θ resembles a

capacity functional, χ can be seen as an analog of an inclusion functional, since

χ(A) =
∑

K :A⊂K

τ(K), (2.14)
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whereas

τ(A) =
∑

K :A⊂K

(−1)|K\A|χ(K).

To sum up, we may consider three different parametrizations for the Choquet

model:

(i) by the 2d − 1 extremal coefficients θ(A), A ∈ Pd, A ̸= ∅,

(ii) by the 2d − 1 tail dependence coefficients χ(A), A ∈ Pd, A ̸= ∅,

(iii) by the 2d − 1 mass coefficients τ(A), A ∈ Pd, A ̸= ∅.

For (i) and (ii) the constraint for standard unit Fréchet margins is encoded via

χ({i}) = θ({i}) = 1 for i = 1, . . . , d. For (iii) it amounts to the d conditions from

(2.12). Only (i) and (ii) do not depend on the dimension, in which the model is

considered.

2.3 Max-domain of attraction and regular vari-

ation

Here, we recall some of the most fundamental connections between (multivari-

ate) extreme value theory and regular variation. Standard textbook treatments

include for instance de Haan and Ferreira (2006) Appendix B or Embrechts et al.

(1997) Chapter 3, Beirlant et al. (2004) Chapter 2 for the univariate theory, or

Resnick (1987) Section 5, Resnick (2007) Chapter 6 or Kulik and Soulier (2020)

Chapter 2 for the multivatiate theory.

Definition 2.3.1. Let X be a random variable with distribution function F , let

X1, X2, . . . be independent copies of X, and bn ∈ R and an > 0 such that the law

of

maxi=1,...,n(Xi)− bn
an

(2.15)

converges in distribution to some non-degenerate limiting distribution G, then G

is called a (univariate) extreme value distribution and X (or its distribution F )

is said to be in the max-domain of attraction of G.

Remark 2.3.2. The distribution function of the law of (2.15) is given by x 7→
F n(anx + bn). That the law of (2.15) converges to a limit G is equivalent to

saying that limn→∞ F n(anx+ bn) = G(x) for all continuity points x of G.

Each (univariate) extreme value distribution is necessarily max-stable, and

by the Fisher-Tippett theorem (in Jenkinson-van-Mises form), it takes the form

of a GEV distribution, cf. (2.2). The extreme value index ξ therein is linked to

the tail behaviour of the distribution. The only possible limits are the following

three types:
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• For ξ > 0, we obtain the (heavy-tailed) Fréchet distribution

Φα(x) =

{
0 x ≤ 0

exp(−x−α) x > 0,

where α = 1/ξ > 0.

• For ξ = 0, we obtain the Gumbel distribution Λ(x) = exp(−e−x), x ∈ R.

• For ξ < 0, we obtain the (short-tailed) Weibull distribution

Ψα(x) =

{
exp(−(−x)α x ≤ 0

1 x > 0,

where α = −1/ξ > 0.

Alternatively, we may state the extremal types theorem as follows.

Theorem 2.3.3 (Extremal types theorem (Fisher-Tippett-Gnedenko-de Haan)).

Let F be a univariate distribution function and an > 0 and bn ∈ R be sequences

such that limn→∞ F n(anx + bn) = G(x) for a distribution function G and for all

continuity points x of G, then there exists a > 0 and b ∈ R, such that G(ax+ b)

is either a Fréchet distribution Φα for some α > 0, a Gumbel distribution Λ, or

a Weibull distribution Φα for some α > 0.

We shall focus on the heavy-tailed case in what follows, for which the domain-

of attraction condition links particularly well with the theory of regular variation.

Definition 2.3.4. A function f : R+ → R+ is regularly varying (at infinity) with

index α ∈ R, denoted by f ∈ RVα if for all x > 0,

lim
t→∞

f(tx)

f(t)
= xα.

In case α = 0 in this condition, the function f is said to be slowly varying.

It is easily seen that any function f ∈ RVα can be written as f(x) = xαℓ(x),

where ℓ is a slowly varying function.

Theorem 2.3.5. A distribution function F belongs to the maximum domain of

attraction of the Fréchet distribution Φα if and only if its tail function F = 1−F

satisfies F ∈ RV−α.
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If in Theorem 2.3.5, X is distributed according to F , and we set

a(u) = F−1

(
1− 1

u

)
= inf

{
t > 0 : P(X ≤ t) ≥ 1− 1

u

}
= inf

{
t > 0 : P(X > t) ≤ 1

u

}
= inf

{
t > 0 : F (t) ≤ 1

u

}
,

the regular variation condition F ∈ RV−α may also be reformulated as

lim
u→∞

uP(X > a(u)x) = lim
u→∞

P(X > a(u)x)

1/u

= lim
t→∞

P(X > tx)

P(X > t)
= lim

t→∞

F (tx)

F (t)
= x−α,

which is our basis for generalizing these univariate notions to the multivariate

situation. Note that in the second equality we use that t = a(u) → ∞ as u → ∞,

which holds since F in the Fréchet domain of attraction has upper endpoint ∞.

Multivariate regular variation There are multiple equivalent definitions of

multivariate regular variation. The following will be most useful for us in Chap-

ter 5 and takes into account already the polar decomposition of the limiting mea-

sure in the vague convergence stated below this definition. Although, in principle,

we might have chosen an arbitrary norm ∥·∥ for such a definition, it will be more

natural for us to work with the Euclidean norm abbreviated as ∥·∥ = ∥·∥2 here

and in Chapter 5.

Definition 2.3.6. A random vector X with values in Rd is (multivariate) regu-

larly varying if there exists a probability measure σ on the sphere Sd−1 = {x ∈
Rd : ∥x∥2 = 1} and a positive function a such that a(u) → ∞ for u → ∞, and

for any measureable B ⊂ Sd−1, for which σ(∂B) = 0, and r > 0,

uP
(

X

∥X∥
∈ B, ∥X∥ > ra(u)

)
−→ r−ασ(B) as u → ∞. (2.16)

In this case, we call α > 0 the index of regular variation and σ the (Euclidean)

(probability) spectral measure of the regularly varying random vector X, and a

an auxiliary function.

Given a probability measure σ on Sd−1 and α > 0, we may define a measure

Λα,σ on Rd \ {0} via

Λα,σ

({
x ∈ Rd \ {0} : ∥x∥ > r,

x

∥x∥
∈ B

})
= r−ασ(B).
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The convergence (2.16) is then equivalent to the vague#-convergence of

tP(a(t)−1X ∈ ·)

to Λα,σ in the sense of Kulik and Soulier (2020), Definition 2.1.1.

In fact, if the measure Λα,σ is supported only on the punctured upper orthant

[0,∞)d \{0}, or, equivalently the probability spectral measure is concentrated on

the upper orthant part of the sphere S(d−1)
+ = {u ∈ [0,∞)d : ∥u∥2 = 1}, then

the multivaraite regular variation property (2.16) is equivalent to X being in the

max-domain of attraction of an associated max-stable random vector as follows,

cf. Dombry and Ribatet (2015) Theorem 1 (and note that the norm therein may

be replaced by any other in the finite-dimensional setting).

Theorem 2.3.7. For each n ∈ N let X1, X2, . . . , Xn be independent copies of a

d-dimensional random vector X with positive components. Consider the following

two statements:

(i) X is regularly varying with index α and probability spectral measure σ and

auxiliary function a.

(ii) There exists a normalizing sequence ãn, such that, as n → ∞, the normal-

ized componentwise maximum

ã−1
n max

(
X1,X2, . . . ,Xn

)
converges to the max-stable random vector

Mα̃,σ̃ = max
i≥1

Γ
−1/α̃
i Yi,

where {(Γi,Yi)}i=1,2,... is a Poisson process on (0,∞)×S(d−1)
+ with intensity

measure the product of the Lebesgue measure and σ̃.

Then (i) implies (ii) with α̃ = α, σ̃ = σ and ãn = a(n). Conversely, (ii) implies

(i) with α = α̃, σ = σ̃ and the auxiliary function a may be chosen such that

ãn = a(n).

Due to the marginal standardisation to unit Frèchet margins, we have been

working only with α = 1 in Section 2.1 and spectral measures that are concen-

trated on different spheres (with respect to other norms). Dombry and Ribatet

(2015) have documented translation mechanisms of measure transforms. Up to a

marginal standardisation, the random vector Y in Theorem 2.3.7 can be seen as

a generator in the sense of Section 2.1.
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Chapter 3

Stochastic ordering among
multivariate extremes

Research on stochastic orderings and inequalities cover several decades, culmi-

nating among a vast literature for instance in the two monographs of Shaked

and Shanthikumar (2007) and Müller and Stoyan (2002), the latter with a view

towards applications and stochastic models, which appear in queuing theory,

survival analysis, statistical physics or portfolio optimisation. Li and Li (2013)

summarises developments of stochastic orders in reliability and risk management.

While the scientific activities in finance, insurance, welfare economics or manage-

ment science have been a driving force for many advances in the area, applications

of stochastic orders are numerous and not limited to these fields. Importantly,

such orderings will often play a role for robust inference, when only partial knowl-

edge about a highly complex stochastic model is available.

Within the Extremes literature, related notions of positive dependence are

well-known. It is a long-standing result that multivariate extreme value distri-

butions exhibit positive association (Marshall and Olkin, 1983). More gener-

ally, max-infinitely divisible distributions have this property as shown in Resnick

(1987), while Beirlant et al. (2004) summarise further implications in terms of

positive dependence notions. Recently, an extremal version of the popular mul-

tivariate totally positive of order 2 (MTP2) property (Karlin and Rinott (1980);

Fallat et al. (2017)) has been studied in the context of multivariate extreme value

distributions, especially Hüsler-Reiß distributions, and linked to graphical mod-

elling, sparsity and implicit regularisation in multivariate extreme value models

(Röttger et al., 2023). Without any hope of being exhaustive, further fundamen-

tal scientific activity of the last decade on comparing stochastic models with a

focus on multivariate extremes includes for instance an ordering of multivariate

risk models based on extreme portfolio losses (Mainik and Rüschendorf, 2012),

inequalities for mixtures on risk aggregation (Chen et al., 2022), a comparison

of dependence in multivariate extremes via tail orders (Li, 2013) or stochastic
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ordering for conditional extreme value modelling (Papastathopoulos and Tawn,

2015).

Yuen and Stoev (2014) use stochastic dominance results from Strokorb and

Schlather (2015) in order to derive bounds on the maximum portfolio loss and

extend their work in Yuen et al. (2020) to a distributionally robust inference for

extreme Value-at-Risk.

In this chapter we go back to some fundamental questions concerning stochas-

tic orderings among multivariate extreme value distributions. We focus on the

order of positive quadrant dependence (PQD order, also termed concordance or-

der), which is defined via orthant orders. Formally, a random vector X is said to

be smaller than a random vector Y in the positive quadrant order if F (x) ≤ G(x)

and F̄ (x) ≤ Ḡ(x) for all x, where F and G are the distribution functions and F̄

and Ḡ the survival functions of the random vectors X and Y , respectively. The

relation to orthant orders is given in Definition 3.1.1. Answers are given to the

following questions.

• What is the relation between orders among max-stable distributions and

corresponding orders among their exponent measures? (Theorem 3.2.1 and

Corollary 3.2.2)

• Can we find characterisations in terms of other typical dependency descrip-

tors (stable tail dependence function, generators, max-zonoids)? (Theo-

rem 3.2.1)

• What is the role of fully independent and fully dependent model in this

framework? (Corollary 3.2.3)

• What is the role of Choquet/Tawn-Molchanov models in this framework?

(Corollary 3.2.4 and Lemma 3.2.14)

For lower orthants, the answers are readily deduced from standard knowledge

in Extremes. It is dealing with the upper orthants that makes this work inter-

esting. The key element in the proof of our most fundamental characterisation

result, Theorem 3.2.1, is based on Proposition A.0.9 below, which may be of

independent interest. Stochastic orders are typically considered for probability

distributions only. In order to make sense of the first question, we introduce cor-

responding orders for exponent measures, which turn out natural in this context,

cf. Definition 3.1.2.

Second, we draw our attention to two popular parametric families of multi-

variate extreme value distributions that are closed under taking marginal distri-

butions.
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α = 1.5 α = 3 α = 12

α = (1.5, 1.5, 1.5) α = (1.5, 3, 12) α = (1.5, 12, 96)

Figure 3.1: Angular densities (heat maps) of the symmetric max-stable Dirichlet model
(top) and of the asymmetric max-stable Dirichlet model (bottom), cf. (2.7) for an
expression of the density. Larger values are represented by brighter colours. The
corresponding max-stable distributions are stochastically ordered in the PQD sense,
increasing from left to right (Theorem 3.2.5). The black, blue and red boxes encode
the matching with Figures 3.5 and 3.6.

• Can we find order relations among the Dirichlet and Hüsler-Reiß parametric

models? (Theorem 3.2.5 and Theorem 3.2.9)

The answers are affirmative. For the Hüsler-Reiß model the result may be even

strengthened for the supermodular order, which is otherwise beyond the scope of

this work. To give an impression of the result for the Dirichlet family, Figure 3.1

depicts six angular densities of the trivariate max-stable Dirichlet model. Aulbach

et al. (2015) showed already that the symmetric models associated with the top

row densities are decreasing in the lower orthant sense. Our new result covers

the asymmetric case depicted in the bottom row; we show that the associated

multivariate extreme value distributions are decreasing in the (even stronger)

PQD-sense (with a more streamlined proof).

Accordingly, this chapter is structured as follows. In Section 3.1 we review

the relevant multivariate stochastic orderings together with important closure

properties. This section contains also our (arguably natural) definition for corre-

sponding order notions for exponent measures. All main results are then given in

Section 3.2. Auxiliary results are postponed Appendix A. Appendix B contains

background material how we obtained the illustrations (max-zonoid envelopes

for bivariate Hüsler-Reiß and Dirichlet families) depicted in Figures 2.1, 3.3, 3.4

and 3.7.
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3.1 Prerequisites from stochastic orderings

A wealth of stochastic orderings and associated inequalities have been summarised

in Müller and Stoyan (2002) and Shaked and Shanthikumar (2007), the most

fundamental order being the usual stochastic order

F ≤st G

between two univariate distributions F and G, which is defined as F (x) ≥ G(x)

for all x ∈ R. This means that draws from F are less likely to attain large values

than draws from G.

For multivariate distributions definitions of orderings are less straightforward

and there are many more notions of stochastic orderings. We will focus on upper

orthants, lower orthants and the PQD order here. A subset U ⊂ Rd is called an

upper orthant if it is of the form

U = Ua = {x ∈ Rd : x1 > a1, . . . , xd > ad}

for some a ∈ Rd. Similarly, a subset L ⊂ Rd is called a lower orthant if it is of

the form

L = La = {x ∈ Rd : x1 ≤ a1, . . . , xd ≤ ad}

for some a ∈ Rd.

Definition 3.1.1 (Multivariate orders LO, UO, PQD, Shaked and Shanthikumar

(2007), Sections 6.G and 9.A, Müller and Stoyan (2002), Sections 3.3. and 3.8).

Let X,Y ∈ Rd be two random vectors.

• X is said to be smaller than Y in the upper orthant order,

denoted X ≤uo Y ,

if P(X ∈ U) ≤ P(Y ∈ U) for all upper orthants U ⊂ Rd.

• X is said to be smaller than Y in the lower orthant order,

denoted X ≤lo Y ,

if P(X ∈ L) ≥ P(Y ∈ L) for all lower orthants L ⊂ Rd.

• X is said to be smaller than Y in the positive quadrant order ,

denoted X ≤PQD Y ,

if we have the relations X ≤uo Y and X ≥lo Y .
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Note that the PQD order (also termed concordance order) is a dependence

order. If X ≤PQD Y holds, it implies that X and Y have identical univariate

marginals. Several equivalent characterizations of these orders are summarised in

the respective sections of Müller and Stoyan (2002) and Shaked and Shanthikumar

(2007). In relation to portfolio properties, it is interesting to note that for non-

negative random vectors X,Y ∈ [0,∞)d

X ≤uo Y ⇐⇒ min
i=1,...,d

(aiXi) ≤st min
i=1,...,d

(aiYi) for all a ∈ (0,∞)d; (3.1)

X ≤lo Y ⇐⇒ max
i=1,...,d

(aiXi) ≤st max
i=1,...,d

(aiYi) for all a ∈ (0,∞)d. (3.2)

In addition, if X,Y ∈ [0,∞)d and X ≤lo Y , then

E g

( d∑
i=1

aiXi

)
≤ E g

( d∑
i=1

aiYi

)
,

for all a ∈ [0,∞)d and all Bernstein functions g, provided that the expectation

exists, cf. Shaked and Shanthikumar (2007) 6.G.14 and 5.A.4 for this fact and

Appendix A for a definition of Bernstein functions. In particular, such functions

are non-negative, monotonously increasing and concave and therefore form a

natural class of utility functions, see e.g. Brockett and Golden (1987) and Caballé

and Pomansky (1996). Important examples of Bernstein functions include the

identity function, g(x) = log(1 + x) or g(x) = (1 + x)α − 1 for α ∈ (0, 1).

The multivariate orders from Definition 3.1.1 have several useful closure

properties. We refer to Müller and Stoyan (2002) Theorem 3.3.19 and The-

orem 3.8.7 for a systematic collection, including

• independent or identical concatenation,

• marginalisation,

• distributional convergence,

• applying increasing transformations to the components,

• taking mixtures.

In what follows, we will need a corresponding notion of multivariate orders not

only for probability measures on Rd, but also for exponent measures as introduced

in Section 2.1. While the support of an exponent measure Λ is contained in

[0,∞)d \ {0}, its total mass is infinite. We only know for sure that Λ(B) is finite

for Borel sets B ⊂ Rd bounded away from the origin in the sense that there exists

ε > 0, such that B ∩ Lεe = ∅ (recall Lεe = {x ∈ Rd : x1 ≤ ε, . . . , xd ≤ ε}).
This means that we need to assume a different view on lower orthants and work

with their complements instead, a subtlety, which did not matter previously when
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defining such notions for probability measures only. The following notion seems

natural in view of Definition 3.1.1 and the results of Section 3.2. Figure 3.2

illustrates the restriction to fewer admissible test sets for these orders for exponent

measures.

x1

x2

a

x1

x2

c

a

b
x1

x2

ε
ε

Figure 3.2: Illustration of test sets for multivariate orders for exponent measures
in dimension d = 2, cf. Definition 3.1.2. Left: Λ is locally finite on the (closed)
grey area for all ε > 0, its total (infinite) mass is contained in the union of such
sets; middle: admissible complement of a lower orthant R2 \ La (blue area) for
testing lower orthant order for Λ; right: admissible upper orthants Ua, Ub, Uc

(three red areas) for testing upper orthant order for Λ.

Definition 3.1.2 (Multivariate orders for exponent measures). Let Λ, Λ̃ be two

infinite measures on Rd with mass contained in [0,∞)d \ {0} and taking finite

values on Borel sets bounded away from the origin.

• Λ is said to be smaller than Λ̃ in the upper orthant order, denoted Λ ≤uo Λ̃,

if Λ(U) ≤ Λ̃(U) for each upper orthant U ⊂ Rd that is bounded away from

the origin.

• Λ is said to be smaller than Λ̃ in the lower orthant order, denoted Λ ≤lo Λ̃,

if Λ(Rd \ L) ≤ Λ̃(Rd \ L) for all lower orthants L ⊂ Rd such that Rd \ L is

bounded away from the origin.

• Λ is said to be smaller than Λ̃ in the positive quadrant order, denoted

Λ ≤PQD Λ̃,

if we have the relations Λ ≤uo Λ̃ and Λ ≥lo Λ̃.

Remark 3.1.3. Exponent measures Λ and Λ̃ are Radon measures on [0,∞]d \ {0}
(the one-point uncompactification of [0,∞]d). Any Borel set B ⊂ [0,∞]d \ {0}
bounded away from the origin is relatively compact in this space, hence Λ(B)

and Λ̃(B), including Λ(U), Λ̃(U), Λ(Rd \L) and Λ̃(Rd \L) as above, are all finite.
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3.2 Main results

First we present some fundamental characterisations of LO, UO and PQD order

among simple max-stable distributions and their exponent measures, then we

study these orders among the introduced parametric families. While we focus on

simple max-stable distributions in what follows, we would like to stress that apply-

ing componentwise identical isotonic transformations to random vectors preserves

orthant and concordance orders; in this sense the following properties can be seen

as statements about the respective copulas. In particular, among max-stable ran-

dom vectors, it suffices to establish these orders among simple max-stable random

vectors and they translate immediately to all counterparts with different marginal

distributions, cf. (2.4).

3.2.1 Fundamental results

We start by assembling the most fundamental relations for multivariate orders

among simple max-stable random vectors. While the statements about lower

orthant orders are almost immediate from existing theory and definitions, the

relations for upper orthants are a bit more intricate and non-standard in the

area. In particular, showing that “Λ ≤uo Λ̃ implies G ≤uo G̃” turns out to be

non-trivial. The key ingredient in the proof of the following theorem is Proposi-

tion A.0.9 for part b).

Theorem 3.2.1 (Orthant orders characterisations). Let G and G̃ be d-variate

simple max-stable distributions with exponent measures Λ and Λ̃, generators Z

and Z̃, stable tail dependence functions ℓ and ℓ̃ and max-zonoids K and K̃,

respectively.

a) The following statements are equivalent.

(i) G ≤lo G̃;

(ii) Λ ≤lo Λ̃;

(iii) E(maxi=1,...,d(aiZi)) ≤ E(maxi=1,...,d(aiZ̃i)) for all a ∈ (0,∞)d;

(iv) ℓ ≤ ℓ̃;

(v) K ⊂ K̃.

b) The following statements are equivalent.

(i) G ≤uo G̃;

(ii) Λ ≤uo Λ̃;

(iii) E(mini∈A(aiZi)) ≤ E(mini∈A(aiZ̃i)) for all a ∈ (0,∞)d and A ⊂
{1, . . . , d}, A ̸= ∅.
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c) If d = 2, the following statements are equivalent.

(i) G ≤PQD G̃;

(ii) G ≤uo G̃;

(iii) G ≥lo G̃.

Proof. In what follows, let X ∼ G and X̃ ∼ G̃.

a) Because of (3.2), it suffices to compare G(x) and G̃(x) for x ∈ (0,∞)d

only. The same is true for ℓ and ℓ̃ as they are continuous on [0,∞)d. At the same

time the test sets for the relation Λ ≤lo Λ̃ in Definition 3.1.2 are precisely of the

form Rd \ Lx, where x ∈ (0,∞)d. So the equivalence of (i), (ii), (iii) and (iv)

follows directly from the relations

G(x) = P(X ∈ Lx) = exp(−Λ([0,∞]d \ Lx)) = exp(−Λ(Rd \ Lx))

with

Λ(Rd \ Lx) = ℓ(1/x1, . . . , 1/xd) = E(max(Z1/x1, . . . , Zd/xd)),

and the respective tilde-counterparts. Likewise, the equivalence of (iv) and (v) is

immediate from (2.6) and (2.5).

b) We start by showing the equivalence between (ii) and (iii). The test sets

for the relation Λ ≤uo Λ̃ in Definition 3.1.2 are precisely the upper orthants Ux,

where at least one component of x is larger than zero. Let a ∈ (0,∞)d and

A ⊂ {1, . . . , d}, A ̸= ∅. Define x ∈ Rd by setting xi = 1/ai if i ∈ A and xi = −1

else. Then Ux is an admissible test set and

Λ(Ux) = Λ

({
y ∈ [0,∞)d \ {0} : min

i∈A
(aiyi) > 1

})
= E

(
min
i∈A

(aiZi)
)
. (3.3)

Likewise, Λ̃(Ux) = E(mini∈A(aiZ̃i)) and we may deduce the implication (ii)⇒(iii).

Conversely, assume (iii) and note that the same argument implies Λ(Ux) ≤ Λ̃(Ux)

for any x, which has at least one positive component, whilst all other components

of x are negative. What remains to be seen is the same relation for upper orthants

Ux, for which at least one component of x is positive, but where among the non-

positive components, there may be zeroes. Let x ∈ Rd be such a vector. For

n ∈ N let xn ∈ Rd be an identical vector, but with zero entries replaced by

1/n. Then Λ(Uxn) ≤ Λ̃(Uxn) for all n ∈ N by the previous argument, whilst

Uxn ↑ Ux, such that Λ(Uxn) → Λ(Ux) and Λ̃(Uxn) → Λ̃(Ux) as n → ∞. This

shows (iii)⇒(ii).

Next, we establish (i)⇒(iii). Assume (i). Since the order UO is closed

under marginalisation, it suffices to consider A = {1, . . . , d} in (iii), see also

Lemma 2.1.4. Set xi = 1/ai, i = 1, . . . , d, such that (3.3) holds (as well as the
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tilde-version) and note that the closure of Ux in [0,∞]d\{0} is a continuity set for

each of the (−1)-homogeneous measures Λ and Λ̃. Hence, since each max-stable

vector satisfies its own Domain-of-attraction conditions (cf. e.g. Resnick (1987)

Section 5.4.2), we have

Λ(Ux) = lim
n→∞

nP(X ∈ nUx) = lim
n→∞

nP(X ∈ Unx)

and the analog for Λ̃ and X̃. The implication (i)⇒(iii) follows.

Lastly, let us establish (iii)⇒(i). Suppose (iii) holds. We abbreviate χ(a)(A) =

E(mini∈A(aiZi)) and analogously χ̃(a)(A) = E(mini∈A(aiZ̃i)), such that (iii) trans-

lates into

χ(a)(A) ≤ χ̃(a)(A)

for all a ∈ (0,∞)d and A ⊂ {1, . . . , d}, A ̸= ∅. With θ(a)(A) = E(maxi∈A(aiZi))

we find that

χ(a)(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1θ(a)(I) and θ(a)(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1χ(a)(I)

(similarly to (2.13) and analogously for the tilde-version), where θ(a) can be in-

terpreted as directional extremal coefficient function. It is easily seen that θ(a)

with θ(a)(∅) = 0 is union-completely alternating, cf. Lemma A.0.3.

Because of (3.1), in order to arrive at (i), it suffices to establish

P
(

min
i=1,...,d

(aiXi) > 1
)
≤ P

(
min

i=1,...,d
(aiX̃i) > 1

)
for all a ∈ (0,∞)d. The left-hand side can be rewritten as

P
(

min
i=1,...,d

(aiXi) > 1
)
= 1−

∑
I⊂{1,...,d}, I ̸=∅

(−1)|I|+1P
(
max
i∈I

(aiXi) ≤ 1
)

= 1−
∑

I⊂{1,...,d}, I ̸=∅

(−1)|I|+1 exp
(
− ℓ(aI)

)
= −

∑
I=∅

(−1)|I|+1 exp
(
− ℓ(aI)

)
︸ ︷︷ ︸

=−1

−
∑

I⊂{1,...,d}, I ̸=∅

(−1)|I|+1 exp
(
− ℓ(aI)

)
.

Hence, in the notation of Lemma A.0.3 we obtain

P
(

min
i=1,...,d

(aiXi) > 1
)
= −

∑
I⊂{1,...,d}

(−1)|I|+1 exp
(
− ℓ(aI)

)
= −

∑
I⊂{1,...,d}

(−1)|I|+1 exp
(
− θ(a)(I)

)
=

∑
I⊂{1,...,d}

(−1)|I|+1

︸ ︷︷ ︸
=0

−
∑

I⊂{1,...,d}

(−1)|I|+1 exp
(
− θ(a)(I)

)
.
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With g(x) = 1− exp(−x), this gives

P
(

min
i=1,...,d

(aiXi) > 1
)
=

∑
I⊂{1,...,d}

(−1)|I|+1 · 1−
∑

I⊂{1,...,d}

(−1)|I|+1 exp
(
− θ(a)(I)

)
=

∑
I⊂{1,...,d}

(−1)|I|+1
[
1− exp

(
− θ(a)(I)

)]
=

∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ(a)(I)

)
Analogously,

P
(

min
i=1,...,d

(aiX̃i) > 1
)
=

∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ̃(a)(I)

)
The assertion follows then directly from Proposition A.0.9, since g is a Bernstein

function.

c) The statement follows from the relation

E(min(a1Z1, a2Z2)) + E(max(a1Z1, a2Z2))

= E(a1Z1 + a2Z2) = a1E(Z1) + a2E(Z2) = a1 + a2,

and likewise

E(min(a1Z̃1, a2Z̃2)) + E(max(a1Z̃1, a2Z̃2)) = a1 + a2,

hence both sides are equal to a1 + a2. So we have

E(min(a1Z1, a2Z2)) ≤ E(min(a1Z̃1, a2Z̃2))

if and only if

E(max(a1Z1, a2Z2)) ≥ E(max(a1Z̃1, a2Z̃2)).

The result then follows from part a) and b).

The assumption d = 2 is important in part c); these equivalences are no

longer true in higher dimensions, cf. Example 3.2.15 below. Theorem 3.2.1 implies

further that the orthant ordering of two generatorsZ and Z̃ implies the respective

ordering of the corresponding distributions G and G̃ and exponent measures Λ

and Λ̃. However, the converse is false and most generators will not satisfy orthant

orderings, even when the corresponding distributions do. An interesting case

for this phenomenon is the Hüsler-Reiß family, cf. Example 3.2.13 below. The

following corollary is another immediate consequence of Theorem 3.2.1.

Corollary 3.2.2 (PQD/concordance order characterisation). Let G and G̃ be

d-variate simple max-stable distributions with exponent measures Λ and Λ̃, then

G ≤PQD G̃ ⇐⇒ Λ ≤PQD Λ̃.
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It is well-known that for any stable tail dependence function ℓ of a simple

max-stable random vector

ℓdep(x) = ∥x∥∞ ≤ ℓ(x) ≤ ∥x∥1 = ℓindep(x), x ≥ 0, (3.4)

where ℓdep represents the degenerate max-stable random vector, whose compo-

nents are fully dependent, and ℓindep corresponds to the max-stable random vector

with completely independent components. From the perspective of stochastic or-

derings this means that every max-stable random vector is dominated by the fully

independent model, while it dominates the fully dependent model with respect

to the lower orthant order. It seems less well-known that the converse ordering

holds true for upper orthants, so that we arrive at the following corollary.

Corollary 3.2.3 (PQD/concordance for independent and fully dependent

model). Let Gindep, Gdep and G be d-dimensional simple max-stable distributions,

where Gindep represents the model with fully independent components, and Gdep

represents the model with fully dependent components. Then

Gindep ≤PQD G ≤PQD Gdep.

Proof. In view of (3.4) and Theorem 3.2.1 b), if suffices to investigate the upper

and lower bounds of E(mini∈A(aiZi)) for a ∈ (0,∞)d and A ⊂ {1, . . . , d}, A ̸= ∅,
where Z is a generator for G. We have

E
(
min
i∈A

(aiZi)
)
≤ min

i∈A
(E(aiZi)) = min

i∈A
(ai)

and

E
(
min
i∈A

(aiZi)
)
≥

{
aj if A = {j},
0 else,

and the upper and lower bounds are attained by generators of the fully dependent

model (Z being almost surely e = (1, 1, . . . , 1)⊤) and the independent model

(Z being uniformly distributed among the set {de1, de2, . . . , ded}), respectively,
which implies the assertion.

Similarly Theorem 2.2.9 can be strengthened as follows. Whilst previously

only the lower orthant order was known, we have in fact PQD/concordance or-

dering.

Corollary 3.2.4 (PQD/concordance for the associated Choquet model). Let

X be a simple max-stable random vector with extremal coefficients (θ(A)), A ⊂
{1, . . . , d}, A ̸= ∅ and X∗ the Choquet (Tawn-Molchanov) random vector with

identical extremal coefficients. Then

X∗ ≤PQD X.
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Proof. The lower orthant order X∗ ≥lo X is known from Theorem 2.2.9. Let

Z and Z∗ be generators of the respective models. Since they share identical

extremal coefficients, they also share identical tail dependence coefficients χ(A) =

E(mini∈A Zi) = E(mini∈A Z∗
i ), A ⊂ {1, . . . , d}, A ̸= ∅, which can be retrieved from

θ via (2.13). In general, we have for A ⊂ {1, . . . , d}, A ̸= ∅, a ∈ (0,∞)d

E
(
min
i∈A

(aiZi)
)
≥ min

i∈A
(ai)E

(
min
i∈A

(Zi)
)
= min

i∈A
(ai) · χ(A).

The Choquet model attains the lower bound, since with (2.11) and (2.14)

E
(
min
i∈A

(aiZ
∗
i )
)
=

∑
L⊂{1,...,d},L̸={∅}

τ(L)min
i∈A

(ai(eL)i)

=
∑

L⊂{1,...,d},A⊂L

τ(L)min
i∈A

(ai) = min
i∈A

(ai) · χ(A).

So by Theorem 3.2.1 we also have X∗ ≤uo X, hence the assertion.

3.2.2 Parametric models

In general, parametric families of multivariate distributions do not necessarily

exhibit stochastic orderings. One of the few more interesting known examples

among multivariate max-stable distributions is the Dirichlet family, for which it

has been shown that it is ordered in the symmetric case (Aulbach et al., 2015,

Proposition 4.4), that is, for α ≤ β we have

MaxDir((α, α, . . . , α)) ≥lo MaxDir((β, β, . . . , β)). (3.5)

Figure 3.3 illustrates (3.5) in the bivariate situation and shows a bivariate example

that these distributions are otherwise not necessarily ordered in the asymmetric

case.

Here, we extend (3.5) in several ways: (i) going beyond the symmetric situa-

tion considering the fully asymmetric model, (ii) considering PQD/concordance

order, (iii) shortening the proof by exploiting a connection to the theory of ma-

jorisation. Figure 3.4 provides an illustration of the stochastic ordering for the

asymmetric Dirichlet family in the bivariate case. In Figure 3.1 we see how the

mass of the angular measure of the symmetric and asymmetric Dirichlet model

is more concentrated from left plot to right plot. This also corresponds to their

stochastic ordering, with the right one being the most dominant model in terms

of PQD order.

Theorem 3.2.5 (PQD/concordance order of Dirichlet family). Consider the

max-stable Dirichlet family from Theorem/Definition 2.2.1. If αi ≤ βi, i =

1, . . . , d, then

MaxDir(α1, α2, . . . , αd) ≤PQD MaxDir(β1, β2, . . . , βd).
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Figure 3.3: Top: Nested max-zonoids (left) and ordered (hypographs of) Pickands
dependence functions (right) from the fully symmetric Dirichlet family for α ∈
{0.0625, 0.25, 1, 4}. Smaller values of α correspond to larger sets and larger Pickands
dependence functions and are closer to the independence model represented by the box
[0, 1]2 or the constant function, which is identically 1. The fully dependent model is rep-
resented in black. Bottom: Non-nested max-zonoids and non-ordered Pickands depen-
dence function from the asymmetric Dirichlet family for (α1, α2) ∈ {(0.15, 12), (4, 0.2)}.

In order to prove Theorem 3.2.5 we will use a simple inequality that follows

from the theory of majorisation (Marshall et al., 2011).

Proposition 3.2.6 (Marshall and Proschan (1965) Corollary 3, Marshall et al.

(2011) Proposition B.2.b.). Let g : R → R be continuous and convex and let

X1, X2, . . . be a sequence of independent and identically distributed random vari-

ables, then

E g

( n∑
i=1

Xi

n

)
is nonincreasing in n = 1, 2, . . . , i.e. for natural numbers 1 ≤ k < n,

E g

( k∑
i=1

Xi

k

)
≥ E g

( n∑
i=1

Xi

n

)
.

Corollary 3.2.7. Let g : R → R be continuous and convex and, let Z(α) ∼ Γ(α)

follow a univariate Gamma distribution with shape parameter α > 0 and unit

scale, then

E g

(
Z(α)

α

)
is nonincreasing in α ∈ (0,∞).
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Proof. We consider first the case that α = (k/n) · β for some natural numbers

1 ≤ k < n. Then consider independent and identically distributed random

variables Γ1,Γ2, . . . following a Γ(β/n) distribution. Then also Xi = (n/β)Γi,

i = 1, 2, . . . , are independent and identically distributed. Then Proposition 3.2.6

gives

E g

(∑k
i=1 Γi

α

)
= E g

(
n

β
·

k∑
i=1

Γi

k

)
= E g

( k∑
i=1

Xi

k

)
≥ E g

( n∑
i=1

Xi

n

)
= E g

(
n

β
·

n∑
i=1

Γi

n

)
= E g

(∑n
i=1 Γi

β

)
.

By the convolution stability of the Gamma distribution

k∑
i=1

Γi ∼ Γ(α) and
n∑

i=1

Γi ∼ Γ(β).

Note that the argument above holds for fixed k and n, and no limiting considera-

tions were needed so far. But we may conclude that the assertion holds for α and

β that differ by a rational multiplier k/n, where k and n may be arbitrary natural

numbers subject to 1 ≤ k < n. If we only know α < β, consider a decreasing

sequence βn ↓ β, such that α and βn differ by a rational multiplier. This gives

Eg(Z(α)/α) ≥ lim sup
n→∞

Eg(Z(βn)/βn)

by the above argument. On the other hand, Fatou’s lemma gives

Eg(Z(β)/β) ≤ lim inf
n→∞

Eg(Z(βn)/βn).

This finishes the proof.

Proof of Theorem 3.2.5. If α = β, the statement is clear. Else, because the

parameter space of the Dirichlet model is (0,∞)d, we can find a chain of parameter

vectors α = α(0) ≤ α(1) ≤ · · · ≤ α(m) = β, such that for each i = 0, . . . ,m − 1,

the vectors α(i) and α(i+1) differ only by one component. Hence it suffices to

consider the case, where α and β differ only in one component. Without loss of

generality, let this be the first component.

Let Z be a Gamma generator for MaxDir(α) and Z̃ be a Gamma generator for

for MaxDir(β) in the sense of Theorem/Definition 2.2.1. Then we may assume

that Zi = Z̃i for i = 2, . . . , d, whereas α1Z1 ∼ Γ(α1) and β1Z̃1 ∼ Γ(β1) are

independent from (Z2, . . . , Zd)
⊤, and α1 < β1 by assumption. We will need to

show (cf. Theorem 3.2.1) that for fixed a ∈ (0,∞)d and A ⊂ {1, . . . , d}, A ̸= ∅

Emin
i∈A

(
aiZi

)
≤ Emin

i∈A

(
aiZ̃i

)
and E max

i=1,...,d

(
aiZi

)
≥ E max

i=1,...,d

(
aiZ̃i

)
.
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Due to the setting above, it suffices to consider only subsets A with 1 ∈ A, and

due to the marginal standardisation E(Z1) = 1, it suffices to restrict our attention

to A \ {1} ≠ ∅. Setting VA = mini∈A\{1} (aiZi) and W = maxi=2,...,d (aiZi) this

means the assertion will follow from

Emin
(
a1Z1, VA

)
≤ Emin

(
a1Z̃1, VA

)
and Emax

(
a1Z1,W

)
≥ Emax

(
a1Z̃1,W

)
.

Indeed, this is implied by Corollary 3.2.7, when considering the continuous convex

functions gc(x) = −min(a1x, c) or gc(x) = max(a1x, c) for a constant c ∈ R.

Figure 3.4: Nested max-zonoids and ordered Pickands dependence func-
tions of the asymmetric max-stable Dirichlet family for (α1, α2) ∈
{(0.25, 0.25), (1, 0.25), (1, 1), (1, 4), (4, 4)}. Componentwise smaller values of (α1, α2)
correspond to larger sets and larger Pickands dependence functions and are closer to
the independence model.

Example 3.2.8. In order to draw attention to some further consequences of

Theorem 3.2.5, let X ∼ MaxDir(α) and Y ∼ MaxDir(β) where αi ≤ βi, i =

1, . . . , d, so that X ≤PQD Y , hence X ≤uo Y and X ≥lo Y , which implies

min
i=1,...,d

(aiXi) ≤st min
i=1,...,d

(aiYi) for all a ∈ (0,∞]d.

max
i=1,...,d

(aiXi) ≥st max
i=1,...,d

(aiYi) for all a ∈ [0,∞)d,

cf. (3.1), (3.2) and Lemma 2.2.3. Exemplarily, we consider a range of trivariate

symmetric and asymmetric max-stable Dirichlet distributions MaxDir(α1, α2, α3)

with parameters (α1, α2, α3) given in Figure 3.1. The colouring is chosen such that

red models PQD-dominate blue models, which PQD-dominate black models.

In addition, we consider the portfolio with equal weights (1, 1, 1) and the re-

sulting min-projections min(X1, X2, X3) and max-projections max(X1, X2, X3),

where (X1, X2, X3) ∼ MaxDir(α1, α2, α3). Figures 3.5 and 3.6 display their dis-

tribution functions on the Gumbel scale. As commonly of interest for extreme

value distributions, instead of the quantile function Q, we show the equivalent

return level plot, which displays the return levels Q(1−p) for the return period of
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1/p observations. The plots of these functions are based on empirical estimates

from one million simulated observations from the respective models, and their

orderings are as expected from the theory, i.e. quantile functions increase as the

dominance of the model grows, while distribution functions decrease.

Distribution functions Return levels
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Figure 3.5: Distribution functions (left) and return levels (right) for return pe-
riods 10 to 100 (on logarithmic scale) of min(X1, X2, X3), where (X1, X2, X3) ∼
MaxDir(α1, α2, α3) on standard Gumbel scale with α = (α1, α2, α3) as chosen in Fig-
ure 3.1. Top: symmetric case; bottom: asymmetric case. Black, blue and red colouring
encodes the matching with Figure 3.1. The grey areas represent the range between the
fully dependent (dashed line) and fully independent (dotted line) cases.

Another prominent family of multivariate max-stable distributions that turns

out to be stochastically ordered in the PQD/concordance order is the Hüsler-

Reiß family. It can be shown using the limit result from Theorem 2.2.6 together

with Slepian’s normal comparison lemma and some closure properties of the

PQD/concordance order. Figure 3.7 provides an illustration in terms of nested

max-zonoids and ordered Pickands dependence functions in the bivariate case.

However, while these models are ordered, we would like to point out that none of

the typically chosen families of log-Gaussian generators satisfy any of the orthant

orders, cf. Example 3.2.13.

Theorem 3.2.9 (PQD/concordance order of Hüsler-Reiß family). Consider the

max-stable Hüsler-Reiß family from Theorem/Definition 2.2.4. If γi,j ≤ γ̃i,j for

all i, j ∈ {1, . . . , d}, then
HR(γ) ≥PQD HR(γ̃).
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Figure 3.6: Distribution functions (left) and return levels (right) for return pe-
riods 10 to 100 (on logarithmic scale) of max(X1, X2, X3), where (X1, X2, X3) ∼
MaxDir(α1, α2, α3) on standard Gumbel scale with α = (α1, α2, α3) as chosen in Fig-
ure 3.1. Top: symmetric case; bottom: asymmetric case. Black, blue and red colouring
encodes the matching with Figure 3.1. The grey areas represent the range between the
fully dependent (dashed line) and fully independent (dotted line) cases.

Remark 3.2.10. With almost identical proof, we may even deduce

HR(γ) ≥sm HR(γ̃),

where ≥sm denotes the supermodular order, cf. Müller and Stoyan (2002) Sec-

tion 3.9 or Shaked and Shanthikumar (2007) Section 9.A.4. We have therefore

included the respective arguments in the proof, too, although considering the

supermodular order is otherwise beyond the scope of this work.

Proof. Set

ρ
(n)
ij = exp(−γij/(4 log(n)) and ρ̃

(n)
ij = exp(−γ̃ij/(4 log(n))

for i, j ∈ {1, . . . , d}, n ∈ N, so that γ, γ̃ ∈ Gd ensures that the resulting ma-

trices are correlation matrices, cf. e.g. Berg et al. (1984) Theorem 3.2.2. By

construction, ρ
(n)
ij ≥ ρ̃

(n)
ij for all i, j, n. And so the normal comparison lemma

(Slepian, 1962), cf. also Tong (1980) Section 2.1. or Müller and Stoyan (2002)

Example 3.8.6, implies that Y ≥PQD Ỹ if Y and Ỹ are zero mean unit-variance

Gaussian random vectors with correlations ρ and ρ̃, respectively. In fact, even
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Y ≥sm Ỹ holds for the supermodular order (Müller and Stoyan, 2002, Theorem

3.13.5).

Consider the triangular arrays with independent Y
(n)
i ∼ Y , i = 1, . . . , n and

Ỹ
(n)
i ∼ Ỹ , i = 1, . . . , n. Since t(1 − exp(−a/t)) → a as t → ∞, Theorem 2.2.6

gives that

un(M
(n) − un) = un ·

(
max

i=1,...,n
(Y

(n)
i )1 − un, . . . , max

i=1,...,n
(Y

(n)
i )d − un

)⊤

converges in distribution to HR(γ) and the corresponding tilde-version, while

the closure under independent conjunction (Shaked and Shanthikumar (2007)

Theorem 9.A.5) together with Shaked and Shanthikumar (2007) Theorem 9.A.4

implies un(M
(n) − un) ≥PQD un(M̃

(n) − un) for all n ∈ N. In fact, even

un(M
(n)−un) ≥sm un(M̃

(n)−un) for all n ∈ N as the supermodular order is also

closed under independent conjuction (Müller and Stoyan, 2002, Theorem 3.9.14)

and note Shaked and Shanthikumar (2007) Theorem 9.A.12. The assertion fol-

lows now from the closure of the PQD-order under distributional limits (Shaked

and Shanthikumar (2007) Theorem 9.A.5). We even have HR(γ) ≥sm HR(γ̃),

as the supermodular order satisfies the same closure property with respect to

distributional limits (Müller and Stoyan, 2002, Theorem 3.9.12).

Figure 3.7: Nested max-zonoids and ordered Pickands dependence functions from the
bivariate Hüsler-Reiß family for

√
γ ∈ {0.5, 1, 2, 4}. Larger values of γ correspond to

larger sets and larger Pickands dependence functions and are closer to the independence
model.

Remark 3.2.11. Theorem 3.2.9 includes the assumption that both parameter ma-

trices γ and γ̃ constitute a valid set of parameters for the Hüsler-Reiß model, i.e.

they need to be elements of Gd. In dimensions d ≥ 3 it is possible that increasing

(or decreasing) any of the parameters of a given valid γ will result in a set of

parameters that is not valid for the Hüsler-Reiß model.

Remark 3.2.12. Since the orthant orders are closed under independent conjunc-

tion, Theorem 3.2.9 extends to the generalised Hüsler-Reiß model, where we can
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allow some parameter values of γ to assume the value ∞, as long as γ remains

negative definite in the extended sense (see Remark 2.2.7).

Example 3.2.13 (Ordering of G/G̃ does not imply generator ordering for Z/Z̃

– the case of Hüsler-Reiß log-Gaussian generators). Consider the non-degenarate

bivariate Hüsler-Reiß model with γ12 = γ21 = γ ∈ (0,∞) and let addition-

ally a ∈ [0, 1]. Then the zero mean bivariate Gaussian model (W1,W2)
⊤ with

E(W1) = γa2, E(W2) = γ(1 − a)2, Cov(W1,W2) = 0.5γ · (a2 + (1 − a)2 − 1) sat-

isfies E(W1 −W2)
2 = γ, hence leads to a generator for the bivariate Hüsler-Reiß

distribution in the sense of Theorem/Definition 2.2.4. WLOG a ∈ (0, 1] (other-

wise consider 1−a instead of a). Then log(Z1) follows a non-degenerate univariate

Gaussian distribution with mean −0.5γa2 and variance γa2. The family of such

distributions is not ordered in γ > 0 (cf. e.g. Shaked and Shanthikumar (2007)

Example 1.A.26 or Müller and Stoyan (2002) Theorem 3.3.13). Hence, the bivari-

ate family (log(Z1), log(Z2))
⊤ can also not be ordered according to orthant order,

nor can any multivariate family, for which this constitutes a marginal family. Ac-

cordingly, the corresponding log-Gaussian generators Z of the Hüsler-Reiß model

will not be ordered, even when the resulting max-stable model and exponent

measures are ordered as seen in Theorem 3.2.9.

While Dirichlet and Hüsler-Reiß families are ordered in the PQD/concordance

sense according to the natural ordering of their parameter spaces, we would like

to provide some examples that show that UO and LO ordering among simple

max-stable distributions are in fact not equivalent.

To this end, we revisit the Choquet max-stable model from Section 2.2.3.

We write ChoquetEC(θ) for the simple max-stable Choquet distribution if it is

parameterised by its extremal coefficients θ(A), A ⊂ {1, . . . , d}, A ̸= ∅ and

ChoquetTD(χ) if it is parameterised by its tail dependence coefficients χ(A), A ⊂
{1, . . . , d}, A ̸= ∅.

Lemma 3.2.14 (LO and UO order of Choquet family/Tawn-Molchanov model).

Consider the family of max-stable Choquet models from Section 2.2.3. Then the

LO order is characterised by the ordering of extremal coefficients, we have

θ ≤ θ̃ ⇐⇒ ChoquetEC(θ) ≤lo ChoquetEC(θ̃);

and the UO order is characterised by the ordering of tail dependence coefficients,

that is

χ ≤ χ̃ ⇐⇒ ChoquetTD(χ) ≤uo ChoquetTD(χ̃).
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Proof. The LO part is immediate from θ ≤ θ̃ implying the inclusion of associated

max-zonoids K∗ ⊂ K̃∗ or Choquet integrals ℓ∗ ≤ ℓ̃∗ (cf. Theorem 2.2.9) and then

follows directly from Theorem 3.2.1 part a). For the UO part, note from the

Proof of Corollary 3.2.4 that for A ⊂ {1, . . . , d}, A ̸= ∅, a ∈ (0,∞)d

E
(
min
i∈A

(aiZ
∗
i )
)
= min

i∈A
(ai) · χ(A) and E

(
min
i∈A

(aiZ̃
∗
i )
)
= min

i∈A
(ai) · χ̃(A)

if Z and Z̃ are generators of the respective models, hence the assertion with

Theorem 3.2.1 part b).

As we know already from Theorem 3.2.1 part c), in dimension d = 2, it is

easily seen that χ ≤ χ̃ is equivalent to θ ≥ θ̃, alternatively recall θ12 + χ12 = 2.

Starting from dimension d = 3, this is no longer the case and one can easily

construct examples, where only LO or UO ordering holds.

Example 3.2.15. Table 3.1 lists valid parameter sets for four different trivariate

Choquet/Tawn-Molchanov models. Among these, we can easily read off that

• B ≤uo D, but there is no order between B and D according to lower

orthants;

• C ≤lo B, but there is no order between B and C according to upper

orthants.

Of course, it is still possible that Choquet models are ordered according to PQD

order, e.g.

• A ≤PQD B.

It is also possible to have both LO and UO order in the same direction, e.g.

• A ≤uo C and A ≤lo C.

However, note that such an order can only arise if the bivariate marginal distri-

butions all agree.
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Table 3.1: Valid parameter sets of four trivariate Choquet/Tawn-Molchanov mod-
els A,B,C,D, cf. Section 2.2.3. The models are exchangeable so that parameters
τA, χA, θA depend on sets A only through their cardinality. Since χ1 = θ1 = 1
these parameters need not be listed. We have the relations τ1 + 2τ12 + τ123 = 1,
χ123 = τ123, χ12 = χ123 + τ12, θ12 = 1 + τ1 + τ12 and θ123 = θ12 + τ1.

τ1 τ12 τ123 χ12 χ123 θ12 θ123
A 0.3 0.2 0.3 0.5 0.3 1.5 1.8
B 0.1 0.3 0.3 0.6 0.3 1.4 1.5
C 0.4 0.1 0.4 0.5 0.4 1.5 1.9
D 0.3 0.0 0.7 0.7 0.7 1.3 1.6
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Chapter 4

Kernel embedding of measures

We start by recalling basic definitions and facts on reproducing kernel Hilbert

spaces in Section 4.1, before explaining their role in the kernel mean embedding

of measures in Section 4.2. This will allow us to define the maximum mean dis-

crepancy (MMD), a computationally convenient surrogate for the Wasserstein

distance to compare measures (on the sphere) in what follows. In particular, as

we seek a sparse representation of the empirical spectral measure in the frame-

work of regular variation later on (Chapter 5), we shall consider a regularised

minimisation problem in terms of the MMD (4.3), for which fast solvers such as

the vertex exchange algorithm (Section 4.3) exist.

4.1 Background on reproducing kernel Hilbert

spaces

Let us recall some fundamental definitions and facts related to (reproducing Ker-

nel) Hilbert spaces, mainly to fix notation. Many ideas go back as far as Aronszajn

(1950); over the last decades a vast amount of textbook references have emerged,

including Berlinet and Thomas-Agnan (2004), Paulsen and Raghupathi (2016)

and Saitoh and Sawano (2016).

Definition 4.1.1. Let V be a vector space over R. A map ⟨·, ·⟩ : V × V → R
is called an inner product if it satisfies the following conditions for all vectors

x,y, z ∈ V and all scalars a, b ∈ R:

(a) ⟨x,y⟩ = ⟨y,x⟩;

(b) ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩;

(c) ⟨x,x⟩ ≥ 0, with equality if and only if x = 0.

A vector space V over R together with an inner product ⟨·, ·⟩ is called an inner

product space.
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If (V, ⟨·, ·⟩) is an inner product space, and we set

∥x∥ =
√
⟨x,x⟩, x ∈ V,

then ∥·∥ is a norm. An inner product space is called a Hilbert space if it is

complete with respect to its induced norm.

In what follows, we will consider Hilbert spaces (H, ⟨·, ·⟩H), where H is a set

of functions on a compact set X ⊂ Rd for some d ∈ N and simply abbreviate

(H, ⟨·, ·⟩H) by H for notational convenience. If H is such a Hilbert space, we shall

denote the evaluation functional for evaluation at x ∈ X by

Fx : H → R, Fx[f ] = f(x).

Definition 4.1.2. A Hilbert space of functions H is called a reproducing kernel

Hilbert space (RKHS) if for every x ∈ X , the evaluation functional Fx is bounded,

i.e. for every x ∈ X there exists some C > 0 such that

|Fx[f ]| = |f(x)| ≤ C∥f∥H for all f ∈ H.

The evaluation functional F (x) is in the dual space of H, hence by the Riesz

representation theorem there exists a function kx ∈ H such that

Fx[f ] = f(x) = ⟨f, kx⟩H;

this is called the reproducing property.

Definition 4.1.3. The function k : X × X → R defined by k(x,y) = ⟨ky, kx⟩H
for all x,y ∈ X is called the reproducing kernel of the RKHS H.

An important property of the reproducing kernel k associated to a RKHS H
is that it is a positive semi-definite function, as we will see in Lemma 4.1.5.

Definition 4.1.4. A function k : X ×X → R is symmetric positive semi-definite

if

n∑
i=1

n∑
j=1

aiajk(xi,xj) ≥ 0, (4.1)

for any n ∈ N, a1, . . . , an ∈ R and x1, . . . ,xn ∈ X . The function k is called

symmetric positive definite if equality in (4.1) implies a1 = a2 = · · · = an = 0

whenever the points x1, . . . ,xn are distinct.

Lemma 4.1.5. The reproducing kernel k of a RKHS H is a positive semi-definite

function.
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Proof. Using the definition of the reproducing kernel k of a RKHS H, we have

n∑
i=1

n∑
j=1

aiajk(xi,xj) =
n∑

i=1

n∑
j=1

aiaj⟨kxj
, kxi

⟩H

=

〈 n∑
j=1

ajkxj
,

n∑
j=1

ajkxj
,

〉
H

=

∥∥∥∥ n∑
j=1

ajkxj

∥∥∥∥2

H
≥ 0.

If the points x1, . . . ,xn are distinct, equality holds only if a1 = a2 = · · · = an = 0.

Hence, the reproducing kernel k is positive semi-definite.

It is well-known that each positive semi-definite function gives rise to a repro-

ducing kernel Hilbert space, which is unique up to isomorphisms between Hilbert

spaces.

Theorem 4.1.6. (Moore-Aronszajn Theorem) Let k : X×X → R be a symmetric

positive semi-definite function. There exists a unique reproducing kernel Hilbert

space H with reproducing kernel k.

Examples of positive definite kernels A plethora of kernel functions on

Rd are widely known and intensively studied, cf. e.g. Buhmann (2000), Genton

(2002) or Wendland (2005), for instance. One of the most common kernels used

in machine learning, when the domain X = Rd, is the Gaussian kernel

k(x,y) = exp

(
− ∥x− y∥2

2σ2

)
, x,y ∈ Rd,

with bandwidth parameter σ > 0, For this thesis, it is kernel functions on the unit

sphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1} in Rd that are most relevant, cf. Chapter 5.

Table 4.1 gives the analytic expression and parameter ranges for several such

kernels. All of the kernel functions in Table 4.1 are isotropic on the sphere Sd−1,

that is, they can be expressed as functions of the great circle distance

θ(x,y) = arccos(⟨x,y⟩), x,y ∈ Sd−1 ⊂ Rd,

where ⟨·, ·⟩ denotes the inner product on Rd. In principle, it is possible that such

a function is positive definite only up to a certain dimension d ∈ N, cf. Gneiting

(2013) for several examples. The ones listed in Table 4.1 are valid positive definite

kernels on the sphere Sd−1 in any dimension d ∈ N, cf. Gneiting (2013).
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Table 4.1: Kernel functions on Sd−1 in terms of the great circle distance θ ∈ [0, π].
Here, b is a scale parameter, τ is a shape parameter and α and ν are smoothness
parameters. The parameter ranges ensure in each case that they are valid kernel
functions in any dimension d ∈ N.

Family Expression Parameter ranges

Powered exponential exp(−
(
θ
b

)α
) b > 0, α ∈ (0, 1]

Matérn 2ν−1

Γ(ν)

(
θ
b

)ν
Kν

(
θ
b

)
b > 0, ν ∈ (0, 1/2]

Generalised Cauchy
(
1 +

(
θ
b

)α)−τ/α
b > 0, τ > 0, α ∈ (0, 1]

Dagum 1−
((

θ
b

)τ
/
(
1 +

(
θ
b

)τ)α/τ
b > 0, τ ∈ (0, 1], α ∈ (0, τ)

4.2 Kernel mean embedding of measures

Consider a reproducing kernel Hilbert space H with kernel k : X × X → H; by

definition k(x,y) = ⟨ky, kx⟩H. We can then view the evaluation of the kernel

as an inner product in H induced by the map ky : X → H, y 7→ ky. The

map ky is called the canonical feature map. Classical kernel methods use this

property to formulate algorithms that require calculating an inner product in H
by evaluating the kernel function instead. This is called the kernel trick and is

often computationally cheaper than calculating the mapping of the points into H
explicitly. The embedding of X into the RKHS H can be seen more generally as

the embedding of the Dirac measure

δy =

{
0, y /∈ A

1, y ∈ A

where A is a measurable subset of X . This can then be further generalised

using the kernel mean embedding, where a signed finite measure is mapped to an

element of a reproducing kernel Hilbert space (RKHS). For a general review, see

Muandet et al. (2017); other related references are Sriperumbudur et al. (2011),

Simon-Gabriel and Schölkopf (2018) and Simon-Gabriel et al. (2023).

Definition 4.2.1. Let M be the space of signed finite measures on a measurable

space X and let |µ| be the total variation measure of µ. The kernel mean embed-

ding of a measure µ into a RKHS H with reproducing kernel k is defined as the

map K : Mk → H,

K(µ) =

∫
X
kx dµ(x), (4.2)

where Mk = {µ ∈ M :
∫
X

√
k(x,x) d|µ|(x) < ∞} and the integral should be

interpreted as a Bochner integral.
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Definition 4.2.2. A kernel function k is called characteristic if the map K :

Mk → H, µ 7→ K(µ) is injective.

The kernel mean embedding can be used to define a metric, called the maxi-

mum mean discrepancy, as follows.

Definition 4.2.3. The maximum mean discrepancy of two measures µ and ν

from Mk is given by

MMD[H, µ, ν] = sup
∥f∥H≤1

{∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

}
, (4.3)

where H is a reproducing kernel Hilbert space.

The maximum mean discrepancy is simply a particular case of an integral

probability metric

sup
f∈F

{∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

}
,

where we choose F to be the set of functions that belong to the unit ball in

a RKHS H. Other choices of F give rise to different distance measures. For

example, setting F = {f : ∥f∥∞ ≤ 1}, where ∥f∥∞ = supx∈X |f(x)|, gives rise to
the total variation distance. Another example is the choice F = {f : ∥f∥L ≤ 1},
where ∥f∥L = supx,y∈X{|f(x) − f(y)|/ρ(x,y),x ̸= y} is the Lipschitz semi-

norm of a real-valued function f for some metric ρ on X . This choice yields the

Wasserstein distance. Further examples can be found in Müller (1997).

The following proposition expresses the maximum mean discrepancy between

two measures in terms of their respective kernel mean embeddings.

Proposition 4.2.4. The maximum mean discrepancy between two measures µ

and ν from Mk can be expressed as the distance between the corresponding mean

embeddings in the reproducing kernel Hilbert space H, i.e.

MMD[H, µ, ν] = ∥K(µ)−K(ν)∥H. (4.4)

Proof. Let f ∈ H. Using the reproducing property of H, we have∫
X
f(x) dµ(x) =

∫
X
⟨f, kx⟩H dµ(x)

=

〈
f,

∫
X
kx dµ(x)

〉
H

= ⟨f,K(µ)⟩H.

Then for two measures µ and ν, we have∣∣∣∣ ∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

∣∣∣∣
= |⟨f,K(µ)−K(ν)⟩H| ≤ ∥f∥H∥K(µ)−K(ν)∥H,
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where the last step follows from the Cauchy-Schwarz inequality. Hence,

sup
∥f∥H≤1

{∫
X
f(x) dµ(x)−

∫
X
f(x) dν(x)

}
≤ ∥K(µ)−K(ν)∥H.

On the other hand the upper bound ∥K(µ)−K(ν)∥H is attained as a supremum

by

f =
K(µ)−K(ν)

∥K(µ)−K(ν)∥H
,

and hence we can rewrite MMD[H, µ, ν] = ∥K(µ)−K(ν)∥H.

Using a characteristic kernel k ensures that ∥K(µ)−K(ν)∥H = 0 if and only if

µ = ν, i.e. no information about the measures µ and ν is lost in their mappings in

the RKHS H. Steinwart and Ziegel (2021) show that all the kernels in Table 4.1

are characteristic.

Given a kernel k and a set of sample locations {x1, . . . ,xN}, the matrix K

with entries Kij = k(xi,xj) is called the kernel matrix. We can rewrite the

maximum mean discrepancy in terms of the kernel matrix as follows. First, note

that

MMD2[H, µ, ν] = ∥K(µ)∥2H + ∥K(ν)∥2H − 2⟨K(µ), K(ν)⟩H. (4.5)

Now consider two discrete measures µ =
∑N

i=1 ωiδxi
and ν =

∑N
j=1 υjδxj

. Then

we can rewrite

⟨K(µ), K(ν)⟩H =
N∑
i=1

N∑
j=1

K(xi,xj)ωiυj = ωTKυ;

this gives

MMD2[H, µ, ν] = (ω − υ)TK(ω − υ).

In what follows, we will look at minimising (a regularised version of) the

squared maximum mean discrepancy between two discrete measures µ and ν. A

detailed study of the following minimisation problems and methods to solve them

is given in Gauthier and Suykens (2018).

Squared maximum mean discrepancy minimisation problem Let µ =∑N
i=1 ωiδxi

be fixed, i.e. ω = (ωi)i=1,...,N with weights ωi > 0 is fixed, then we

define

D(υ) =
1

2
(ω − υ)TK(ω − υ), (4.6)

for υ ∈ RN and where the scalar 1/2 is added for simplification purposes. Obvi-

ously, when minimising D(υ) and K stems from a characteristic kernel and the
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support points xi, i = 1, . . . , N , are mutually distinct, then only υ = ω minimises

(4.6). Since the main purpose of our application is to find a sparse approximation

of the measure µ represented by the vector ω, we add a regularisation term which

will control the sparsity of the solution.

Regularised minimisation problem For a given penalisation direction d ∈
Rn with components di > 0, for α > 0 and υ ∈ RN , we introduce the regularised

minimisation problem

minimise
υ

Dα(υ) =
1

2
(ω − υ)TK(ω − υ) + αdTυ subject to υ ≥ 0. (4.7)

Here, the parameter α ≥ 0 controls the sparsity of the solution to the minimi-

sation problem (4.7). The smaller α is, the less sparse the solution will be. It is

possible to compute values αcrit = α0 > α1 > · · · > αfinal = 0, where the support

of the solution of (4.7) changes; this is called the regularisation path method,

see e.g. Gauthier and Suykens (2018). However, this method is computationally

expensive and hence for large values of N becomes computationally prohibitive.

Therefore, we introduce yet another minimisation problem, which is equivalent

to (4.7).

Constrained minimisation problem For κ > 0 and for υ ∈ RN , we intro-

duce the constrained minimisation problem

minimise
υ

D(υ) =
1

2
(ω − υ)TK(ω − υ) subject to υ ≥ 0 and dTυ = κ.

(4.8)

In this case, the parameter κ > 0 controls the sparsity of the solution. The

smaller κ is, the sparser the solution will be. In Section 4.3, we describe an

algorithm to solve this constrained minimisation problem.

As mentioned, the two minimisation problems (4.7) and (4.8) are equivalent,

and one can easily recover α from κ (and viceversa) using the following proposition

from Gauthier and Suykens (2018).

Proposition 4.2.5. Let υα be a solution to problem (4.7) for a fixed α > 0; then

υα is also a solution to the constrained problem with κ = dTυα. Conversely, let

υκ be a solution to problem (4.8) for a fixed κ > 0; then υκ is also a solution to

the regularised problem with α = υT
κK(ω − υκ)/κ.

This also implies that if κ in (4.8) exceeds or is equal to dTω, the solution to

(4.8) is going to be equal to ω itself. Therefore, we shall assume here and here-

inafter that κ ranges between 0 and dTω. If we work with probability measures

only, and di = 1 for all i = 1, . . . , N , this amounts to the upper bound dTω = 1

for κ.
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4.3 Vertex exchange algorithm

In this section, we cover an algorithm, called the vertex exchange algorithm, which

can be used to solve the constrained minimisation problem (4.8). For more details

on the algorithm, see Böhning (1986), Pronzato and Pázman (2013) or Gauthier

and Suykens (2018), for instance. For convenience, we abbreviate the index set

[N ] = {1, . . . , N}. We use ⊙ to denote the Hadamard product between matrices

(i.e. their pointwise multiplication).

To begin with, let us clarify why we use the term vertex to denote observations.

Recall that we denote the simplex of probability vectors in RN by

△N = {p ∈ [0, 1]N : p1 + · · ·+ pN = 1}.

For each observation x in the data matrix X ∈ RN×d, the point measure δx is a

vertex in the convex set of probability measures{ ∑
i=1,...,N

υiδxi
: υ ∈ △N

}
spanned by the point measures {δxi

}i=1,...,N . This is illustrated in Figure 4.1.

O

υ1δx1

υ2δx2

υ5δx5

υ3δx3

υ4δx4

Figure 4.1: The cone of measures spanned by the vertices υiδxi
, i = 1, . . . , N , for

N = 5. The blue shaded area represents the constraint dTυ = κ.

In what follows, we give an explanation of how the vertex exchange algorithm

works, and provide some pseudocode in Algorithm 1. The key idea is to iteratively

move mass along a direction of pairs of support points (vertices) until the target
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function does not change anymore. To be more precise, recall that the algorithm

is used to solve the constrained minimisation problem

minimise
υ

D(υ) =
1

2
(ω − υ)TK(ω − υ) subject to υ ≥ 0 and dTυ = κ,

where 0 < κ ≤ dTω. Using standard matrix calculus, it can be shown that the

gradient of the quantity D(υ) is given by

∇D(υ) = Kυ −Kω.

We initialise the algorithm by finding the solution to (4.8) with the added

constraint υi = κ/di and υj = 0 for all j ̸= i. The single best vertex (index) b

which minimises this problem can easily be calculated using

b = argmin
j=1,...,N

[diag(K)⊙ ξ2 − 2Kω ⊙ ξ]j, (4.9)

where ξ = κd−1. The algorithm iteratively selects two vertices u ∈ [N ], “up”,

and d ∈ [N ], “down”, as follows:

u = argmin
i=1,...,N

[∇D(υ)⊙ ξ]i, d = argmax
i∈Sυ

[∇D(υ)⊙ ξ]i, (4.10)

where Sυ is the set of support positions of υ.

Note that in the first iteration, the vertex dmust be equal to b, since Sυ = {b}.
Weight is then transferred from the d-th to the u-th component of υ as follows.

Let ei ∈ RN be the i-th element of the standard basis of RN , i.e. [ei]i = 1 and

all other components equal to zero, and let δ = ξueu − ξded. The optimal step

size is given by

r = min

{[
υ

ξ

]
d

,−δT∇(υ)

δTKδ

}
. (4.11)

We then update our solution υ and the gradient ∇D(υ) using the optimal

stepsize r and repeat the steps until the maximum number of iterations is reached.

Whilst each iteration is computationally inexpensive, with a complexity of O(N),

we also implement the following stopping criterion, which allows us to perform

fewer iterations and still obtain a good approximation of the solution to (4.8)

for a given κ; at each iteration we calculate the value of D(υ) and check the

difference to its previous value. If this is smaller than a pre-set tolerance level,

we stop the algorithm. At this stage, the algorithm is close to converging and

at each subsequent iteration, D(υ) endures minimal change, i.e. υ approximates

the true solution to a satisfying degree.
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Algorithm 1 Vertex exchange

Input:
data matrix X of N observations {xi}i=1,...,N in Ω; positive definite kernel
k : Ω × Ω → R; vector of probability weights ω ∈ RN ; penalisation direction
d ∈ RN ; sparsity tuning parameter κ ∈ (0,dTω]; tolerance level for stopping
criterion ϵ > 0; maximal number of iterations I ∈ N;

Preliminary:
compute kernel matrix K = {k(xi,xj)}i,j=1,...,N and vectors ξ = κd−1 and
g = Kω;

Initialisation:
find index b ∈ [N ] of single best vertex using (4.9); initialise non-negative

weight vector υ(1) with one support position at b and weight υ
(1)
b = ξb; set

Sυ(1) = {b}; compute initial gradient ∇D(υ(1)) = Kυ(1) − g; initialise vector
ρ of length I and compute ρ1 = (ω − υ(1))TK(ω − υ(1));

for i = 2 to I do
compute u ∈ [N ] and d ∈ [N ] using (4.10);
determine optimal step size r from (4.11) using υ = υ(i);
set υ(i+1) = υ(i) + rδ, and Sυ(i+1) = Sυ(i) ∪ {u};
compute new gradient ∇D(υ(i+1)) = ∇D(υ(i)) + rKδ;
compute ρ(i) = (ω − υ(i))K(ω − υ(i))
if (ρ(i−1) − ρ(i))/ω

Tg < ϵ then
break

end if
end for

Output:
vector of non-negative weights υ ∈ RN ; support positions Sυ ⊆ [N ] of υ

Outlook In our practical implementation (Section 5.2 below), we have typically

started with equal probability weights ωi = 1/N from the empirical spectral

measure, penalisation direction d = 1 (di = 1, i = 1, . . . , N), leading to the

bounds 0 < κ ≤ 1. While the vertex exchange algorithm’s search takes place in

the cone spanned by the Dirac-measures at the support points (cf. Figure 4.1),

we shall interpret its output measure ν subsequently as a probability measure

after renormalisation of its weight vector υ.
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Chapter 5

Sparse representations of
extremal dependence in high
dimensions for large data sets

The lack of meaningful sparsity notions and sparsity enforcement in multivariate

extreme value analysis has triggered a range of novel approaches to deal with the

implied shortcomings when analysing dependence among multivariate extremes,

in particular in high-dimensional settings and when dealing with very large data

sets. A first review of recent developments has been given in Engelke and Ivanovs

(2021). These include identifying clusters in regular variation (Chautru, 2015;

Janßen and Wan, 2020; Fomichov and Ivanovs, 2023; Avella-Medina et al., 2024),

identifying groups of variables, which may take large values jointly (Goix et al.,

2017; Meyer and Wintenberger, 2023) or incorporating notions of conditional

independence and defining directed or undirected graphs in multivariate extremes

(Gissibl and Klüppelberg, 2018; Engelke and Hitz, 2020). Cooley and Thibaud

(2019) introduce a PCA-type approach to decompose an extreme signal based

on an eigen-decomposition of a tail dependence matrix, used by Rohrbeck and

Cooley (2023) to simulate hazard event sets for river flows, whereas Drees and

Sabourin (2021) prove consistency for a PCA-methodology to identify a linear

subspace, in which regular variation takes place. Quite recently, Avella-Medina

et al. (2022) propose kernel PCA in order to analyse the extremal dependence

structures, especially among linear factor models, where subsequently preimages

of kernel PCA are used for clustering extremes. To the best of our knowledge, this

is the first time RKHS-techniques have been introduced in multivariate extremes

in order to analyse dependence structures.

Here, we also incorporate RKHS techniques into the analysis of dependence

structures in a regular variation framework. However, our notions of sparsity

and accuracy for a spectral measure are fundamentally different from Avella-

Medina et al. (2022): given data from a regularly varying random vector, we aim
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to estimate a sparse and as accurate as possible representation of its spectral

measure, where we measure sparsity through the number of its support points

and assess accuracy through the Wasserstein distance.

More precisely, we consider the following regular variation framework, cf. also

Section 2.3: let X be a random vector in Rd, which is multivariate regularly

varying, that is, (2.16) is satisfied, i.e.

uP
(

X

∥X∥
∈ B, ∥X∥ > ra(u)

)
−→ r−ασ(B) as u → ∞, (5.1)

where ∥·∥ = ∥·∥2 is the Euclidean norm, a is an auxiliary function tending to ∞,

and (5.1) holds for any r > 0 and Borel set B ⊂ Sd−1. Here, α is the index of

regular variation, and the measure σ is the spectral (or angular) measure of X,

which is the object that contains all the extremal dependence information about

X.

If we have data in the form of independent copies Xi, i = 1, . . . , n, of X, a

simple canonical estimator for σ is the empirical spectral/angular measure:

σ̂n,k =
k∑

i=1

1

k
δX(i)/∥X(i)∥, (5.2)

where X(i), i = 1, . . . , k, are the k largest vectors among Xi, i = 1, . . . , n,

where we mean “largest” according to the Euclidean norm. The empirical angular

measure is known to be a consistent estimator for σ for an intermediate sequence

k = kn, i.e. kn → ∞, but kn/n → 0 (Einmahl and Segers, 2009). On the other

hand, for very large data sets σ̂n,k will not be a sparse representation of σ. Since

it is always based on k support points, a lot of information needs to be saved in

order to represent the dependence information σ, and exploring such information,

especially in high dimensions, will not be very insightful.

This is where our new approach for estimating σ comes in. We seek to obtain

a representation of σ from σ̂n,k using much fewer support points that contain

essentially (almost) the same information and where the proximity to the actual

spectral measure is not too heavily compromised (or even better). In other words,

we seek to compress the information of σ̂n,k relatively fast, where we measure the

loss of information in terms of Wasserstein distance to the true spectral measure.

In order to do so, we borrow ideas from the theory of kernel mean embedding

and maximum mean discrepancy minimisation and apply them to this context,

cf. Chapter 4. More precisely, we apply the vertex exchange algorithm (Algo-

rithm 1) to the empirical angular measure to obtain a much sparser representation

of σ.

In order to demonstrate the feasibility and value of such an approach, we first

need to refine the regular variation framework, which is still very general, to have
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a large class of models, where we can test such an approach in a meaningful way.

This is done in Section 5.1. We introduce a stochastic model for our numerical

experiments and show that it falls under the multivariate regular variation frame-

work. Subsequently, we apply the vertex exchange algorithm to a broad range of

settings arising from the model of Section 5.1. Such experiments and numerical

outcomes are documented in Section 5.2.

5.1 Stochastic model for numerical experiments

In order to explore the capability of the vertex exchange algorithm to compress

effectively information from the empirical angular measure, we need a reasonable

framework to test it in situations, where (a) we know the true spectral measure,

but (b) have also a sufficient amount of noise and variation in the way the model

is exhibiting regular variation. For instance, we refrain from testing our model

in a spectrally discrete max-stable model as in Janßen and Wan (2020), as such

a model produces artificially many ties among its components, which are very

unlikely to be seen in real data.

Instead, we introduce a refined model, from which it is easy to simulate; in

this section we demonstrate that it is indeed regularly varying.

Theoretical model for numerical experiments Let Sd−1 = {x ∈ Rd :

∥x∥2 = 1} be the unit sphere in Rd and σ0 and σ1 probability measures on Sd−1.

Then we consider the d-dimensional random vector

X = R0S0 +R1S1, (5.3)

where S0 and S1 are drawn from σ0 and σ1, respectively. A conceptual figure of

model (5.3) is given below in Figure 5.1.

The first direction S0 is multiplied with a positive scalar R0 with distribution

function FR0 such that FR0 = 1−FR0 is regularly varying with index α > 0. This

implies that, with

a(u) = F−1
R0

(
1− 1

u

)
= inf

{
t ≥ 0 : FR0(t) ≤

1

u

}
, (5.4)

the following holds:

uP(R0 > ra(u)) −→ r−α as u → ∞

for all r > 0, cf. Section 2.3.

The second direction S1 is multiplied withR1 = h(R0), where h is a continuous

function such 0 ≤ h(x) ≤ x, for every x, h(x) = o(x), and g(x) = x + h(x) is
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monotonously increasing to ∞. As we shall see below, these conditions on h

ensure that the second summand R1S1 assumes the role of a perturbation term.

In fact, we have the following result, which shows that X is a regularly varying

random vector, and the features of the regular variation are fully determined by

the regularly varying random vector R0S0. We write f ∼ g if

lim
x→∞

f(x)

g(x)
= 1.

Theorem 5.1.1. Let X be the random vector from (5.3). Then

(a) P(∥X∥ > x) ∼ P(R0 > x) as x → ∞;

in particular, ∥X∥ is regularly varying with the same tail index as R0 and

uP(∥X∥ > ra(u)) −→ r−α as u → ∞,

for a(u) as in (5.4);

(b) the weak convergence

L
(

X

∥X∥

∣∣∣∣ ∥X∥ > t

)
−→ L(S0) = σ0 as t → ∞

holds true;

(c) X is multivariate regularly varying in the sense that for any measureable

B ⊂ Sd−1, for which σ0(∂B) = 0, and any r > 0

uP
(

X

∥X∥
∈ B, ∥X∥ > ra(u)

)
−→ r−ασ0(B) as u → ∞.

Note that (c) is immediate from (a) and (b), since

uP
(

X

∥X∥
∈ B, ∥X∥ > ra(u)

)
= uP

(
X

∥X∥
∈ B

∣∣∣∣ ∥X∥ > ra(u)

)
P(∥X∥ > ra(u))

= uP(∥X∥ > ra(u))P
(

X

∥X∥
∈ B

∣∣∣∣ ∥X∥ > ra(u)

)
.

The proof of parts (a) and (b) of Theorem 5.1.1 is given in the next subsection.

5.1.1 Proof of Theorem 5.1.1

To begin with, we will need a few technical lemmas.
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O S0 R0S0

X

X
∥X∥

R0

R1

Figure 5.1: Illustration of the theoretical model (5.3), that is, X = R0S0+R1S1.
Note that S1 = (X −R0S0)/R1 is only implicitly depicted via the direction that
X takes starting from R0S0. The blue and red lines have been added to illustrate
part of the proof of Proposition 5.1.10 below.

Definition 5.1.2 (Beirlant et al. (2004), Proposition 2.5). Let ℓ be a slowly

varying function, then any slowly varying function ℓ∗ satisfying

ℓ(x)ℓ∗(xℓ(x)) → 1, x → ∞

is called de Bruijn conjugate of ℓ.

Proposition 5.1.3 (Beirlant et al. (2004), Proposition 2.5). For any slowly vary-

ing function ℓ, a de Bruijn conjugate ℓ∗ exists. It is asymptotically unique in the

following sense: let ℓ̄ be another de Bruijn conjugate for ℓ, then ℓ∗ ∼ ℓ̄. Moreover,

(ℓ∗)∗ ∼ ℓ.

Lemma 5.1.4. Let g : [a,∞) → [b,∞) be an unbounded continuous and strictly

increasing function from the interval [a,∞) to [b,∞) for some a, b > 0, given by

g(x) = x± h(x),

where h(x) = o(x).

(a) Then the inverse function g−1 : [b,∞) → [a,∞) can be expressed as

g−1(x) = x∓ h∗(x)

for h∗(x) = o(x).

(b) If, in addition, h ≥ 0, then h∗ ≥ 0.

(c) If, in addition, h > 0, then h∗ > 0.
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Proof. (a) We rewrite g as

g(x) = x

(
1± h(x)

x

)
= xℓ(x),

and observe that the thereby defined function ℓ is slowly varying with

limx→∞ ℓ(x) = 1. Let ℓ∗ be the de Bruijn conjugate of ℓ. Then

ℓ(x)ℓ∗(xℓ(x)) → 1 as x → ∞. (5.5)

Hence ℓ∗(y) → 1 as y → ∞. Moreover,

lim
y→∞

y

g−1(y)
ℓ∗(y) = lim

x→∞

g(x)

x
ℓ∗(g(x)) = 1,

where the last equality follows from rewriting (5.5) in terms of g. Therefore,

1∓ lim
y→∞

h∗(y)

y
= lim

y→∞

y ∓ h∗(y)

y
= lim

y→∞

g−1(y)

y
= lim

y→∞

(
yℓ∗(y)

g−1(y)

)−1

ℓ∗(y) = 1.

Hence, h∗(y) = o(y).

(b) Let

graph(g) = {(x, g(x)) : x ∈ [a,∞)}

be the graph of the function g : [a,∞) → [b,∞) and

graph(g−1) = {(x, g−1(x)) | x ∈ [b,∞)}

be the graph of its inverse g−1 : [b,∞) → [a,∞).

Case 1: g(x) = x + h(x) and g−1(x) = x − h∗(x). Then h ≥ 0 is equivalent

to g(x) ≥ x, which is equivalent to

graph(g) ⊂ {(x, y) | x ≤ y}. (5.6)

Similarly, h∗ ≥ 0 is equivalent to g−1(x) ≤ x, which is equivalent to

graph(g−1) ⊂ {(x, y) | x ≥ y}. (5.7)

It suffices to note that (5.6) and (5.7) are equivalent. So h ≥ 0 implies h∗ ≥ 0.

Case 2: g(x) = x − h(x) and g−1(x) = x + h∗(x). This case follows with

identical proof by swapping the roles of g and g−1.

(c) The implication h > 0 implies h∗ > 0 follows as in (b) with minor modifica-

tions (strict inequalities instead of non-strict ones).
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Definition 5.1.5 (Foss et al. (2013), Section 2.8). Let F be a univariate distribu-

tion function and F = 1−F its survival function. Then F is called o(x)-insensitive

if

F (x± y) ∼ F (x)

uniformly in |y| ≤ f(x) for all functions f such that f(x) = o(x).

Lemma 5.1.6 (Foss et al. (2013), Section 2.8). The class of regularly varying

distributions is o(x)-insensitive.

Lemma 5.1.7. Let R0 and h be as in (5.3). Let Y be any random variable such

that |Y − R0| ≤ h(R0) almost surely. Then Y and R0 are tail-equivalent in the

sense that

P(Y > r) ∼ P(R0 > r).

In addition, if a(u) is a normalising function for R0 as in (5.4), then it will also

be a normalising function for Y , that is, for any r > 0

uP(Y > ra(u)) −→ r−α as u → ∞.

Proof. By assumption the probability P(Y > r) is bounded by

P(R0 − h(R0) > r) ≤ P(Y > r) ≤ P(R0 + h(R0) > r).

By Lemma 5.1.4 this implies

P(R0 > r + h∗(r)) ≤ P(Y > r) ≤ P(R0 > r − h∗∗(r))

for functions h∗(x) = o(x) and h∗∗(x) = o(x). Since R0 is regularly varying,

Lemma 5.1.6 implies that left-hand side and right-hand side are asymptotically

equivalent to P(R0 > r). Hence, the same holds true for P(Y > r).

The second part follows then from

lim
u→∞

uP(Y > ra(u)) = lim
u→∞

uP(R0 > ra(u)) · lim
u→∞

P(Y > ra(u))

P(R0 > ra(u))
= r−α · 1.

In our setup, Y can be for instance R0 − R1, R0 + R1 or ∥X∥, which sits

inbetween the first two expressions. In particular, this shows that P(∥X∥> t) is

regularly varying with the same tail index as R0 and uP(∥X∥ > ra(u)) −→ r−α

as u → ∞, for a(u) as in (5.4). This shows part (a) of Theorem 5.1.1. Note that

part (a) of Theorem 5.1.1 is a particular case of a primary result in de Haan et al.

(2015).

Lemma 5.1.8. Consider the model X = R0S0 + R1S1 as in (5.3). For any

ε > 0,

P
(
R1

R0

> ε

∣∣∣∣ ∥X∥ > r

)
−→ 0 as r → ∞.
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Proof. Note that

P
(
R1

R0

> ε

∣∣∣∣ ∥X∥ > r

)
=

P
(
R1

R0
> ε, ∥X∥ > r

)
P(∥X∥ > r)

· P(R0 +R1 > r)

P(R0 +R1 > r)
· P(R0 > r)

P(R0 > r)

≤
P
(
R1

R0
> ε, R0 +R1 > r

)
P(R0 +R1 > r)

· P(R0 +R1 > r)

P(R0 > r)
· P(R0 > r)

P(∥X∥ > r)
.

By Lemma 5.1.7, the second and third terms in the product above converge to 1

as r → ∞. For the first term, we have

P
(
R1

R0
> ε, R0 +R1 > r

)
P(R0 +R1 > r)

= P
(
R1

R0

> ε

∣∣∣∣ R0 +R1 > r

)
= P

(
h(R0)

R0

> ε

∣∣∣∣ R0 + h(R0) > r

)
= P

(
h(R0)

R0

> ε

∣∣∣∣ R0 > r − h∗∗(r)

)
,

with h∗∗(r) = o(r) due to Lemma 5.1.4. Finally, we have

lim
r→∞

P
(
h(R0)

R0

> ε

∣∣∣∣ R0 > r − h∗∗(r)

)
= lim

r→∞
P
(
h(R0)

R0

> ε

∣∣∣∣ R0 > r

)
= 0,

since h(r) = o(r).

Corollary 5.1.9. For any ε > 0,

P
(

R1/R0√
1− (R1/R0)2

> ε

∣∣∣∣ ∥X∥ > r

)
−→ 0 as r → ∞.

Proof. The result follows from Lemma 5.1.8, together with the observation that

x√
1− x2

∼ x as x → 0.

Proposition 5.1.10. Let dist2 be the Euclidean distance in Rd. Then

dist2

(
X

∥X∥
,S0

)
≤ R1/R0√

1− (R1/R0)2

Proof. Let O be the the origin in Rd. For a given S0 and R0, the radius R1 =

h(R0) is fully determined by R0 and the distance dist2(X/∥X∥,S0) becomes

largest in the situation where S1 lies on the unit circle in such a way that the

angle ∢S0OX becomes largest. This is the situation depicted in Figure 5.1 when

the line OX becomes a tangent line to the circle around R0S0 with radius R1,

i.e. when the angle ∢OX(R0S0) is a right angle. Now choose A and B in such a
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way (Figure 5.2) that the three triangles O(R0S0)X, OA(X/∥X∥) and OS0B

are similar. This gives

dist2(S0,B)

1
=

R1

R0

and

dist2(X/∥X∥,A)

1
=

dist2(S0,B)

dist2(O,B)
=

dist2(S0,B)√
1− dist2(S0,B)2

,

where the last identity follows from Pythagoras’ theorem. Hence,

dist2

(
X

∥X∥
,A

)
=

R1/R0√
1− (R1/R0)2

,

and it remains to be seen that dist2(X/∥X∥,S0) ≤ dist2(X/∥X∥,A). However,

this follows from the fact that the angle ∢AS0(X/∥X∥) is larger than 90◦. In

order to see this, note that (i) the perpendicular projection of X/∥X∥ onto

the line OS0, say P , must lie between O and S0, and (ii), since (X/∥X∥)A
is a tangent line to the unit circle, A must lie outside the unit circle. Hence

90◦ = ∢AP (X/∥X∥) ≤ ∢AS0(X/∥X∥). This finishes the proof.

O S0

X
∥X∥

A

B

Figure 5.2: Refinement of part of Figure 5.1 to illustrate the geometric argument
used in the proof of Proposition 5.1.10.

Corollary 5.1.11. (a) For any ε > 0,

P
(
dist2

(
X

∥X∥
,S0

)
> ε

∣∣∣∣ ∥X∥ > r

)
−→ 0 as r → ∞.

(b) the weak convergence

L
(

X

∥X∥

∣∣∣∣ ∥X∥ > r

)
−→ L(S0) = σ0 as r → ∞

holds true.

Proof. (a) This is an immediate consequence of Corollary 5.1.9 and Proposition

5.1.10.

(b) This follows directly from part (a), since convergence in probability implies

weak convergence (see e.g. Billingsley (1999), Theorem 3.1).
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5.2 Numerical experiments

In order to explore the effectiveness of the vertex exchange algorithm, let us first

make the framework we use to generate synthetic data more precise.

5.2.1 Setup

We have seen in Section 5.1 that we may interpret the stochastic model (5.3) as

follows:

X︸︷︷︸
regularly varying

= R0︸︷︷︸
determines index

of regular variation of X

S0︸︷︷︸
determines

spectral measure of X

+ R1S1︸ ︷︷ ︸
distortion

,

In particular, we have control over the spectral measure σ of X via the choice

of model for S0 ∼ σ0, since σ = σ0, cf. Theorem 5.1.1. In subsequent numerical

experiments, we will choose σ0 to be a weighted measure on a finite set of cluster

centers C ⊂ Sd−1 and σ1 the uniform distribution on Sd−1. In order to explore a

broad range of configurations of cluster centers C ⊂ Sd−1, we first specify their

number c = |C| and draw the points in C uniformly and independently from Sd−1

and then explore the distribution of outcomes across these experiments. Since we

focus on recovering the dependence structure, we simply draw R0 from a standard

Pareto distribution, P(R0 > r) = r−1 for r > 1. For the perturbation function

h in the distortion term we will typically consider h(x) = log(x). Alternatively,

one might consider, for instance, h(x) =
√
x. Figure 5.3 shows an example in

dimension d = 2.

We simulate data across different dimensions d and choose as the number of

cluster centres in our setup c = ⌈d log(d)⌉, where ⌈·⌉ denotes the ceiling function.

In all experiments, we assign equal weights 1/c to each cluster. Hence the true

σ = σ0 is the uniform distribution on those centers.

In extreme value analysis, the choice of the threshold (or equivalently k) to

select the largest observations is typically a critical issue. As we have already a

wide range of parameters for exploration, we opt for a pragmatic way of dealing

with this issue here (similar to Janßen and Wan (2020)), and simply choose k as

10% of the number of observations.

On the other hand, when setting up meaningful experiments, we need to think

carefully that we do not set ourselves an impossible task. Generating too few data

points could lead to a situation, where some clusters are not evenly (or not often

enough) drawn, when we simulate S0 ∼ σ0 = σ. Then, essentially no estimation

procedure would be able to pick up points in those centers without data (not even

the empirical spectral measure), and wrong conclusions would be drawn due a
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Table 5.1: Stochastic model and vertex exchange algorithm parameters used for syn-
thetic experiments. For the stochastic model parameters, d denotes the dimension; c is
the number of clusters; w is the weight assigned to each cluster; h is the perturbation
function; n is the number of observations generated; k is the number of selected obser-
vations. For the vertex exchange algorithm parameters, κ is the sparsity parameter;
K is the kernel function; b is the kernel scale parameter; I is the potential maximal
number of iterations.

Stochastic model Vertex Exchange Algorithm Rep.
Parameters Parameters

d c w h n k p κ K b I

3 4 0.25 log 1000 100 10 0.3 Powered exp. (α = 1) 1 200 100

3 4 0.25 log 1000 100 10 0.6 Powered exp. (α = 1) 1 200 100

3 4 0.25 log 1000 100 10 0.9 Powered exp. (α = 1) 1 200 100

5 9 1/9 log 2500 250 15 0.3 Powered exp. (α = 1) 1 500 100

5 9 1/9 log 2500 250 15 0.6 Powered exp. (α = 1) 1 500 100

5 9 1/9 log 2500 250 15 0.9 Powered exp. (α = 1) 1 500 100

7 14 1/14 log 5000 500 20 0.3 Powered exp. (α = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.6 Powered exp. (α = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.9 Powered exp. (α = 1) 1 1000 100

20 60 1/60 log 32000 3200 30 0.3 Powered exp. (α = 1) 1 6400 100

20 60 1/60 log 32000 3200 30 0.6 Powered exp. (α = 1) 1 6400 100

20 60 1/60 log 32000 3200 30 0.9 Powered exp. (α = 1) 1 6400 100

25 80 1/80 log 48000 4800 35 0.3 Powered exp. (α = 1) 1 9600 100

25 80 1/80 log 48000 4800 35 0.6 Powered exp. (α = 1) 1 9600 100

25 80 1/80 log 48000 4800 35 0.9 Powered exp. (α = 1) 1 9600 100

30 103 1/103 log 70000 7000 40 0.3 Powered exp. (α = 1) 1 14000 100

30 103 1/103 log 70000 7000 40 0.6 Powered exp. (α = 1) 1 14000 100

30 103 1/103 log 70000 7000 40 0.9 Powered exp. (α = 1) 1 14000 100

7 14 1/14 log 5000 500 20 0.3 Matérn (ν = 0.25) 1 1000 100

7 14 1/14 log 5000 500 20 0.6 Matérn (ν = 0.25) 1 1000 100

7 14 1/14 log 5000 500 20 0.9 Matérn (ν = 0.25) 1 1000 100

7 14 1/14 log 5000 500 20 0.3 Gen. Cauchy (α = τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.6 Gen. Cauchy (α = τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.9 Gen. Cauchy (α = τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.3 Dagum (α = 0.5, τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.6 Dagum (α = 0.5, τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.9 Dagum (α = 0.5, τ = 1) 1 1000 100

7 14 1/14 log 5000 500 20 0.3 Powered exp. (α = 1) 0.5 1000 100

7 14 1/14 log 5000 500 20 0.6 Powered exp. (α = 1) 0.5 1000 100

7 14 1/14 log 5000 500 20 0.9 Powered exp. (α = 1) 0.5 1000 100

7 14 1/14 log 5000 500 20 0.3 Powered exp. (α = 1) 1.5 1000 100

7 14 1/14 log 5000 500 20 0.6 Powered exp. (α = 1) 1.5 1000 100

7 14 1/14 log 5000 500 20 0.9 Powered exp. (α = 1) 1.5 1000 100

7 14 1/14 log 5000 500 20 0.3 Powered exp. (α = 1) 3 1000 100

7 14 1/14 log 5000 500 20 0.6 Powered exp. (α = 1) 3 1000 100

7 14 1/14 log 5000 500 20 0.9 Powered exp. (α = 1) 3 1000 100
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Figure 5.3: Illustration of 100 largest points (with respect to Euclidean norm)
of a sample of length 1000 from model (5.3) in dimension d = 2. Here, S0 is
a discrete distribution on the unit circle taking 4 specific values for potential
directions (depicted in red), S1 is uniformly distributed, R0 is drawn from a
standard Pareto distribution P(R0 > r) = r−1 for r > 1, and R1 = log(R0). Left:
Original sample (clipping). Right: Projections onto the unit circle.

too complex model that is not sufficiently well represented by the data at hand.

Therefore, in order to formulate a reasonable setup, we determine first, how large

k needs to be so that

P(There exist at least p points in each cluster.) ⪆ 0.95,

where p ranges between 10 and 40, cf. Table 5.1. In order to determine such

k, we need to understand quantiles of the multinomial distribution, which due

to the combinatorial explosion for even moderately large number of clusters, we

approximate by a multivariate normal distribution.

The vertex exchange algorithm is then applied to the empirical angular (prob-

ability) measure σ̂n,k from (5.2) with penalisation direction d = 1. This means

the k largest (in norm) X(1), . . .X(k) act as support points in the vertex ex-

change algorithm (Algorithm 1) to return a final estimate σ̂
(κ)
n,k for the angular

measure σ based on the choice of the tuning parameter κ. In particular, the

threshold-determining k here corresponds to N in the vertex exchange algorithm.

We experiment with different values of the tuning parameter κ to illustrate how

it controls the sparsity of the approximation. Recall that lower κ means a sparser

solution, while κ = 1 recovers the empirical angular measure. As kernel function,

we primarily use the powered exponential kernel from Table 4.1 with smoothness

parameter α = 1 and scale parameter b = 1, but also explore the impact of

changing kernels with different scale parameters.
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Table 5.1 summarises the stochastic model parameters and the vertex ex-

change parameters used in all numerical experiments. The column I (maximal

number of iterations) is merely a numerical safety measure, which is irrelevant

subsequently, as our stopping rules never hit I. However, note that each exper-

iment is repeated 100 times, and within each experiment a new set of cluster

centers is drawn. So we are evaluating performance on a population of models in

a certain dimension, rather than fixing cluster centers arbitrarily.

The core pieces of our implementation are documented in Appendix C. All

experiments have been run in R Core Team (2023). In order to evaluate the

Wasserstein distance of empirical spectral measures σ̂n,k and resulting sparse ap-

proximations σ̂
(κ)
n,k to the true spectral measure σ, we use the package transport

(Schuhmacher et al., 2024).

5.2.2 Results

Recall that the aim was to obtain a sparse, but as accurate as possible repre-

sentation of the angular measure σ of the random vector X from independent

samples of X, and that we refrain from a too wide exploration of the choice of

the threshold k in our data experiments (by default the top 10% sample with

respect to the norm). Instead, we focus on the role of the tuning parameter κ,

and see to what extent it can indeed enforce sparsity in the approximations σ̂
(κ)
n,k

obtained by the vertex exchange algorithm (Algorithm 1) without compromising

accuracy too heavily (or even not at all).

We measure sparsity here in terms of the number of data points needed to rep-

resent σ. As expected, the sparsity of the approximations σ̂
(κ)
n,k obtained through

the vertex exchange algorithm decreases as the value of κ increases across all of

our experiments, as can be seen in Figures 5.4, 5.5, 5.7, 5.8. Exemplarily, let

us focus on Figure 5.4 and dimension d = 7. Here, the full empirical spectral

measure σ̂n,k is supported by 500 points on the sphere, whereas all vertex ex-

change approximations σ̂
(κ)
n,k live on less than 70 points. The significant reduction

in terms of sparsity is well visible in the plot on the right-hand side of Figure 5.4.

In the higher-dimensional experiments (Figure 5.5) the compression is even more

impressive reducing, for instance, an empirical representation from 7000 points

to a value around 100 (when d = 30), a compression to less than 1.5%.
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Wasserstein distances in low/moderate dimensions

d = 3

d = 5

d = 7

Figure 5.4: Left: Number of support points (sparsity) plotted against the error
(Wasserstein distance) of the vertex exchange approximations with κ = {0.3, 0.6, 0.9}.
Right: same, but with the empirical angular measure included.

66



Wasserstein distances in higher dimensions

d = 20

d = 25

d = 30

Figure 5.5: Left: number of support points (sparsity) plotted against the error (Wasser-
stein distance) of the vertex exchange approximations with κ = {0.3, 0.6, 0.9}. Right:
same, but with the empirical angular measure included.
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In order to compare the accuracy of the approximations obtained through the

vertex exchange algorithm and the empirical spectral measure, we calculate the

Wasserstein distance

W1(σ, σ̂) = inf
µ∈Γ(σ,σ̂)

∫
S+d−1×S+d−1

∥x− y∥2 µ(dx, dy)

of our approximation σ̂ to the true spectral measure σ (which we know to be

the uniform distribution of the cluster centers, cf. Section 5.2.1). Here Γ(σ, σ̂) is

the space of all probability measures on S+
d−1 × S+

d−1 having first marginal σ and

second marginal σ̂. For discrete measures, it can be computed using the package

transport (Schuhmacher et al., 2024).

A priori, our methodology involving the vertex exchange algorithm only en-

sures proximity of the output σ̂
(κ)
n,k to the empirical spectral measure σ̂n,k (a con-

sistent estimator for σ) in terms of MMD, cf. (4.8), and only up to regularisation.

We may view the MMD distance using a characteristic kernel as a surrogate for

the Wasserstein distance; however it is not clear what we can expect in terms of

accuracy for our outputs, since in theory we only know that the MMD is domi-

nated by the Wasserstein distance (up to a multiplicative normalising constant),

cf. Sriperumbudur et al. (2010, Thm. 21) (and not vice versa).

However, we would normally expect the choice of κ to represent a trade-

off between sparsity and accuracy, i.e. higher κ enforcing less sparsity and giving

typically the potential for a more accurate representation of σ. That this is indeed

the case can again be seen in all of our data examples, cf. Figures 5.4, 5.5, 5.7,

5.8. Again, let us focus on dimension d = 7; Figure 5.6 compares the Wasserstein

distances between the approximations σ̂
(κ)
n,k and the empirical angular measure

σ̂n,k to the true spectral measure σ. As κ increases from 0.3 to 0.9, we observe a

significant decrease in the Wasserstein distance, and, naturally, higher values of

κ lead to smaller variance of the error. In particular, note that when κ = 0.9, we

typically even obtain a smaller Wasserstein distance than the empirical spectral

measure σ̂n,k; but already κ = 0.6 leads to only a minor information loss. That

being said, all of these value for κ lead to a significantly reduced amount of

data points to be saved, as discussed above. They are very sparse representation

of σ compared to the empirical angular measure. Hence, within the trade-off

between sparsity and accuracy, the vertex exchange approximations σ̂
(κ)
n,k show

a very promising behaviour. Overall, the benefits become most visible once we

consider higher dimensions and larger data sets, cf. the comparison of left-hand

and right-hand sides of the boxplots in Figure 5.6 as well as the corresponding

sparsity-accuracy scatterplots in Figures 5.4 and 5.5.
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Low/moderate dimensions Higher dimensions

d = 3 d = 20

d = 5 d = 25

d = 7 d = 30

Figure 5.6: Boxplots of the Wasserstein distances for the empirical angular measure
(green) and the vertex exchange algorithm approximations (purple, blue, cyan) with
κ = {0.3, 0.6, 0.9} in dimensions d ∈ {3, 5, 7, 20, 25, 30}.
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Whilst specific compression rates and errors may vary, this general pattern

does not seem to depend on various choices. For instance, this behaviour is

replicated for different choices of kernels, cf. Figure 5.7, or scale parameters b,

cf. Figure 5.8. Figures 5.9 and 5.10 display the kernel functions used. However,

we also see that as the curves of the kernels functions decay slower, the approxi-

mations σ̂
(κ)
n,k become less sparse. Moreover, when using a higher scale parameter,

we obtain sparser approximations σ̂
(κ)
n,k, at the expense of a bigger Wasserstein

distance to the original spectral measure σ.

Powered Exponential Matérn

Generalised Cauchy Dagum

Figure 5.7: Number of support points (sparsity) plotted against the error (Wasserstein
distance) of the vertex exchange approximations with κ = {0.3, 0.6, 0.9} for the powered
exponential kernel with α = 1 (top left), Matérn kernel with ν = 0.25 (top right),
generalised Cauchy kernel with α = τ = 1 (bottom left) and Dagum kernel with
α = 0.5 and τ = 1 (bottom right). Here, the dimension is d = 7 and we fix the scale
parameter b = 1.
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b = 0.5 b = 1

b = 1.5 b = 3

Figure 5.8: Number of support points (sparsity) plotted against the error (Wasserstein
distance) of the vertex exchange approximations with κ = {0.3, 0.6, 0.9} for the powered
exponential kernel with smoothness parameter α = 1 and scale parameters b = 0.5 (top
left), b = 1 (top right), b = 1.5 (bottom left) and b = 3 (bottom right). Here, the
dimension is d = 7.
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Figure 5.9: The powered exponential
kernel with α = 1, Matérn kernel with
ν = 0.25, generalised Cauchy kernel
with α = τ = 1 and Dagum kernel with
α = 0.5 and τ = 1 for θ ∈ [0, π] and
scale parameter b = 1, cf. Table 4.1.

Figure 5.10: The powered expo-
nential kernel, cf. Table 4.1, for
θ ∈ [0, π], smoothness parameter
α = 1 and different scale parameters
b ∈ {0.5, 1, 1.5, 3}.

72



Appendix A

Complete alternation and
Bernstein functions

We recall some elementary definitions and facts from Berg et al. (1984), cf. also

Molchanov (2017). Let (S, ◦, e) be an abelian semigroup, that is, a non-empty set

S with a composition ◦ that is associative and commutative and has a neutral

element e. Three examples are of interest to us:

(i) S = [0,∞) with + and neutral element 0,

(ii) S = Pd, the power set of {1, . . . , d}, with the union operation ∪ and neutral

element ∅,

(iii) S = [0,∞)d with the componentwise maximum operation ∨ and neutral

element 0.

Examples (ii) and (iii) are even idempotent semigroups, as s ◦ s = s for these

operations. We use the standard notation

(∆bf)(a) = f(a)− f(a ◦ b).

Definition A.0.1. A function f : S → R is called completely alternating if for

all n ≥ 1, {s1, . . . , sn} ⊂ S and s ∈ S

(∆s1∆s2 . . .∆snf)(s) =
∑

I⊂{1,...,n}

(−1)|I|f(s ◦⃝i∈I si) ≤ 0.

For idempotent semigroups (examples (ii) and (iii) above), the complete alter-

nation property coincides with negative definiteness, cf. Berg et al. (1984) 4.4.16

and 4.6.8.

Definition A.0.2. A function f : S → R is called negative definite if for all

n ≥ 2, {s1, . . . , sn} ⊂ S, {a1, . . . , an} ⊂ R with a1 + · · ·+ an = 0

n∑
j=1

n∑
k=1

ajakf(sj ◦ sk) ≤ 0.
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In the context of multivariate extremes, max-complete alternation of the sta-

ble tail dependence function implies union-complete alternation of the extremal

coefficient function. In fact, the following directional version holds true irrespec-

tive of whether we take homogeneity or marginal standardisation into account or

not.

Lemma A.0.3. Let ℓ : [0,∞)d → [0,∞) be max-completely alternating. Let

x ∈ [0,∞)d. Let θ(x) : Pd → [0,∞) be defined as θ(x)(A) = ℓ(xA), where xA =

x · eA ∈ [0,∞)d is the vector with xi as i-th coordinate if i ∈ A and zero else.

Then θ(x) is union-completely alternating.

Proof. The result follows from the observation that xA∪B = xA ∨ xB for A,B ∈
Pd. Therefore,

(∆A1 . . .∆Anθ
(x))(A) = (∆xA1

. . .∆xAn
ℓ)(xA) ≤ 0

for A,A1, . . . , An ∈ Pd, where n ≥ 1.

Lemma A.0.4 (Independent concatenation). Let θ1 : P(M) → [0,∞) and θ2 :

P(N) → [0,∞) be union-completely alternating, where P(M) and P(N) are the

power sets of finite sets M and N , respectively, such that θ1(∅) = θ2(∅) = 0. Then

θ : P(M ∪N) → [0,∞) with θ(A) = θ1(A ∩M) + θ2(A ∩N) is union-completely

alternating and θ(∅) = 0.

Proof. By the Choquet theorem (Schneider and Weil, 2008, Theorem 2.3.2) we

may express

θ1(A) =
∑

K∈P(M):K∩A ̸=∅

aK and θ2(B) =
∑

L∈P(N):L∩B ̸=∅

bL

for non-negative coefficients aK , K ⊂ M , K ̸= ∅ and bL, L ⊂ N , L ̸= ∅. Define

for A ⊂ M , B ⊂ N

θ(A ∪B) =
∑

(K,L)∈P(M)×P(N):(K∪L)∩(A∪B)̸=∅

cK∪L,

where

cK∪L =


aK if K ̸= ∅, L = ∅,
bL if K = ∅, L ̸= ∅,
0 if K ̸= ∅, L ̸= ∅.

Then it is easily seen that θ(A ∪B) = θ1(A) + θ2(B), hence the assertion.

Corollary A.0.5. Let θ : Pd → [0,∞) be union-completely alternating with

θ(∅) = 0. Then θ′ : Pd+1 → [0,∞), θ′(A) = θ(A ∩ {1, . . . , d}) + c1d+1∈A is

union-completely alternating with θ′(∅) = 0 for any c ≥ 0.
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There are various equivalent definitions for Bernstein functions. For us it

will be sufficient to consider the following. The equivalence of (i) and (ii) in

the following theorem is a consequence from the 2-divisibility of ([0,∞),+, 0),

cf. Berg et al. (1984) 4.6.8.

Theorem/Definition A.0.6. A function g : [0,∞) → R is called a Bernstein

function if one of the following equivalent conditions is satisfied:

(i) g ≥ 0, g is continuous, and g is negative definite with respect to addition.

(ii) g ≥ 0, g is continuous, and g is completely alternating with respect to

addition.

(iii) g can be expressed as

g(r) = a+ br +

∫ ∞

0

(1− e−tr)ν(dt), r ≥ 0,

where a, b ≥ 0 and ν is a non-negative Radon measure on (0,∞) satisfying

the integrability condition
∫∞
0

min(t, 1)ν(dt) < ∞.

An important property of Berstein functions is that they act on negative

definite kernels with non-negative diagonal, cf. Berg et al. (1984) 4.4.3.

Corollary A.0.7. Let S be an idempotent semigroup and f : S → [0,∞) be

completely alternating and g a Bernstein function. Then the composition map

g ◦ f : S → [0,∞) is completely alternating.

Corollary A.0.8. Let θ : Pd → [0,∞) be union-completely alternating with

θ(∅) = 0 and g be a Bernstein function. Let A∗ ⊂ {1, . . . , d} and c > 0. Then∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ(A∗ ∪ J)

)
≤

∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ(A∗ ∪ J) + c

)
.

Proof. By Corollary A.0.5, the function θ′ : Pd+1 → [0,∞), θ′(A) = θ(A ∩
{1, . . . , d}) + c1d+1∈A is union-completely alternating with θ′(∅) = 0. Hence,

Corollary A.0.7 implies that g ◦ θ′ is again union-completely alternating. Hence,

by Definition A.0.1 and since {1, . . . , d, d + 1} \ A∗ is not empty (it contains at

least the element d+ 1) ∑
J ′⊂{1,...,d,d+1}\A∗

(−1)|J
′|g
(
θ′(A∗ ∪ J ′)

)
≤ 0.

Now each J ′ above is either a subset J of {1, . . . , d} \ A∗ or it is of the form

J ∪ {d + 1}, where J is a subset of {1, . . . , d} \ A∗. Separating the summands

accordingly gives the assertion.
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The following proposition is the key argument to establish the implication

Λ ≤uo Λ̃ ⇒ G ≤uo G̃ in Theorem 3.2.1.

Proposition A.0.9. Let θ : Pd → [0,∞) and θ̃ : Pd → [0,∞) be union-

completely alternating with θ(∅) = θ̃(∅) = 0. For A ⊂ {1, . . . , d}, A ̸= ∅ set

χ(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1θ(I) and χ̃(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1θ̃(I).

Suppose

χ(A) ≤ χ̃(A) for all A ⊂ {1, . . . , d}, A ̸= ∅.

Let g : [0,∞) → [0,∞) be a Bernstein function. Then∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ(I)

)
≤

∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ̃(I)

)
.

Remark A.0.10. Under the assumptions of Proposition A.0.9 we have also∑
I⊂A

(−1)|I|+1g
(
θ(I)

)
≤

∑
I⊂A

(−1)|I|+1g
(
θ̃(I)

)
for any non-empty subset A of {1, . . . , d}. This follows directly from the propo-

sition as we may restrict θ and θ̃ to the respective subset A and all assumptions

that were previously made for {1, . . . , d} will be valid for the restrictions to A,

too.

Proof. The inverse linear operation to recover θ from χ is given by

θ(A) =
∑

I⊂A, I ̸=∅

(−1)|I|+1χ(I)

(and likewise for θ̃ and χ̃), so that both quantities contain the same information.

If χ = χ̃ and hence θ = θ̃, the statement is trivially true. Otherwise, we will show

the proposition in two steps. First, we will establish its validity in the situation

when χ(A) < χ̃(A) only for one A∗ ⊂ {1, . . . , d}, A∗ ̸= ∅ and χ(A) = χ̃(A) for all

other A ⊂ {1, . . . , d}, A ̸= ∅. Second, we will show how this allows us to derive

the proposition using convexity and continuity arguments.

Step 1: Let χ(A) < χ̃(A) only for one A∗ ⊂ {1, . . . , d}, A∗ ̸= ∅ and χ(A) =

χ̃(A) for all other A ⊂ {1, . . . , d}, A ̸= ∅. Then c = χ̃(A∗)− χ(A∗) > 0 and

θ̃(A) =

{
θ(A) + c if A∗ ⊂ A,

θ(A) else

if |A∗| is odd, and

θ(A) =

{
θ̃(A) + c if A∗ ⊂ A,

θ̃(A) else
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if |A∗| is even, and in both situations it suffices to show that∑
I⊂{1,...,d}:A∗⊂I

(−1)|I|+1g
(
θ(I)

)
≤

∑
I⊂{1,...,d}:A∗⊂I

(−1)|I|+1g
(
θ̃(I)

)
,

which is equivalent to∑
J⊂{1,...,d}\A∗

(−1)|J |+|A∗|+1g
(
θ(A∗ ∪ J)

)
≤

∑
J⊂{1,...,d}\A∗

(−1)|J |+|A∗|+1g
(
θ̃(A∗ ∪ J)

)
.

Hence, if |A∗| is odd, we need to establish∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ(A∗ ∪ J)

)
≤

∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ(A∗ ∪ J) + c

)
,

and, if |A∗| is even, we need to establish∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ̃(A∗ ∪ J)

)
≤

∑
J⊂{1,...,d}\A∗

(−1)|J |g
(
θ̃(A∗ ∪ J) + c

)
.

Both inequalities now follow directly from Corollary A.0.8.

Step 2: Let Cd be the set of points x = (xA)A∈Pd\{∅} in RPd\{∅} such that the

mapping A 7→ xA becomes union-completely alternating when setting x∅ = 0.

Then Cd is a convex cone with non-empty interior and Cd ⊂ [0,∞)Pd\{∅} with

(0, 0, . . . , 0) ∈ Cd. Let T : RPd\{∅} → RPd\{∅} be the linear map, such that

(Tx)A =
∑

I⊂A, I ̸=∅

(−1)|I|+1xI .

Then T ◦ T is the identity mapping, hence T is invertible. In particular Dd =

{Tx : x ∈ Cd} is also a convex cone with non-empty interior and Cd = {Tx : x ∈
Dd}. We also note that Dd ⊂ [0,∞)Pd\{∅}, cf. (??) and that (0, 0, . . . , 0) ∈ Dd.

Within the setting of the proposition, we have θ, θ̃ ∈ Cd and χ, χ̃ ∈ Dd with

θ = T (χ), θ̃ = T (χ̃) and χ = T (θ), χ̃ = T (θ̃).

If both θ and θ̃ are points in the interior of Cd, then χ and χ̃ are in the

interior of Dd. Therefore, there exists ε > 0 such that the Minkowski sum of

the line segment between χ and χ̃ and an (e.g. Euclidean) ε-ball centered at

(0, 0, . . . , 0) ∈ RPd\{∅} is completely contained in Dd. Within this set we can find

a chain χ = χ(0) ≤ χ(1) ≤ χ(2) ≤ · · · ≤ χ(n) = χ̃, such that for each i = 0, . . . , n−1

we have that χ(i) and χ(i+1) differ only in one component. By construction, we

also have that θ(i) = T (χ(i)) ∈ Cd and θ(i+1) = T (χ(i+1)) ∈ Cd, so that we are in

the situation of Step 1 and we may conclude that∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ(i)(I)

)
≤

∑
I⊂{1,...,d}

(−1)|I|+1g
(
θ(i+1)(I)

)
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for all i = 0, . . . , n− 1, hence the assertion (which does not depend on the choice

of ε or the choice of the chain). In other words, we have established the assertion

of the proposition if both θ and θ̃ are points in the interior of Cd.

To complete the argument, note that the mapping f : Cd → R with

f(x) = g(0) +
∑

I⊂{1,...,d},I ̸=∅

(−1)|I|+1g
(
xI

)
is continuous. Let v ∈ Cd be a vector in the interior of Cd. Then, for any δ > 0

both θ + δv and θ̃ + δv are in the interior of Cd, whereas χ+ δT (v) = T (θ + δv)

and χ̃+ δT (v) = T (θ̃+ δv) are in the interior of Dd and still satisfy χ+ δT (v) ≤
χ̃+δT (v). Therefore, f(θ+δv) ≤ f(θ̃+δv). Finally, since f is continuous, we can

find for given ε > 0 a corresponding δ > 0, such that f(θ+ δv) is ε-close to f(θ),

while f(θ̃ + δv) is ε-close to f(θ̃). The assertion of the proposition f(θ) ≤ f(θ̃)

follows as we may choose ε arbitrarily close to zero.
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Appendix B

Calculation of the max-zonoid
envelope

Let K be the max-zonoid (or dependency set) associated with a stable tail de-

pendence function ℓ of a simple max-stable random vector, that is,

K =
{
k ∈ [0,∞)d : ⟨k,u⟩ ≤ ℓ(u) for all u ∈ S(d−1)

+

}
,

and, conversely,

ℓ(x) = sup{⟨x,k⟩ : k ∈ K}, x ∈ [0,∞)d,

cf. Molchanov (2008). Here, S(d−1)
+ = {u ∈ [0,∞)d : ∥u∥2 = 1} denotes the

(d − 1)-dimensional Euclidean unit sphere in Rd restricted to the upper orthant

[0,∞)d. It is well-known that

∆d ⊂ K ⊂ [0, 1]d,

where the cross-polytope ∆d = {x ∈ [0,∞)d : ⟨x,1⟩ ≤ 1} corresponds to

perfect dependence, whereas the cube [0, 1]d corresponds to independence. In

particular, in the direction along the i-th axis the set K contains precisely the

set {tei : t ∈ [0, 1]}.
For illustrative purposes we restrict our attention to d = 2, where we seek to

calculate a parametrisation of the boundary curve of a general dependency set K.

To this end, we parametrise the upper unit circle via u = (cos(α), sin(α))T ∈ S1
+

for α ∈ [0, π/2] and we assume that ℓ is differentiable. For α ∈ (0, π/2) a point

(x1, x2) on the desired envelope curve will then satisfy the two conditions〈(
cos(α)
sin(α)

)
,

(
x1

x2

)〉
− ℓ

(
cos(α)
sin(α)

)
= 0,

∂

∂α

[〈(
cos(α)
sin(α)

)
,

(
x1

x2

)〉
− ℓ

(
cos(α)
sin(α)

)]
= 0,
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which can be seen by a standard calculus of variations argument (European Math-

ematical Society, 2020). Let ∂1ℓ and ∂2ℓ denote the partial derivatives of ℓ with

respect to first and second component. The two conditions can be then be ex-

pressed as

x1 cos(α) + x2 sin(α) = ℓ(cos(α), sin(α))

−x1 sin(α) + x2 cos(α) = − sin(α)∂1ℓ(cos(α), sin(α)) + cos(α)∂2ℓ(cos(α), sin(α)).

Solving the system for x1 and x2 (while taking into account sin
2(α)+cos2(α) = 1)

gives

x1 = cos(α)L(α) + sin2(α)L1(α)− sin(α) cos(α)L2(α), (B.1)

x2 = sin(α)L(α)− sin(α) cos(α)L1(α) + cos2(α)L2(α), (B.2)

where

L(α) = ℓ(cos(α), sin(α)) and Li(α) = ∂iℓ(cos(α), sin(α)), i = 1, 2.

The parametrisation of the boundary curve of K as given by (B.1) and (B.2) is

the basis for all our plots in this text.

Example B.0.1 (Hüsler-Reiß distribution). For the bivariate Hüsler-Reiß family

with stable tail dependence function

ℓ(x1, x2) = x1Φ

(
η

2
+

log(x1/x2)

η

)
+ x2Φ

(
η

2
+

log(x2/x1)

η

)
, (B.3)

where η2 = γ12, straightforward calculations show that

L1(α) = L̃(cot(α)) and L2(α) = L̃(tan(α)),

with

L̃(t) = Φ

(
η

2
+

log (t)

η

)
+

1

η
φ

(
η

2
+

log (t)

η

)
− 1

ηt
φ

(
η

2
− log (t)

η

)
.

In other situations the spectral density h of ℓ may be known, such that

ℓ(x1, x2) =

∫ 1

0

max(ωx1, (1− ω)x2)h(ω)dω. (B.4)

Example B.0.2 (Dirichlet model). The spectral density of the bivariate Dirichlet

model with parameter vector (α1, α2) ∈ (0,∞)2 is given by

h(ω) =
Γ(α1 + α2 + 1)

(α1ω + α2(1− ω))(α1+α2+1)

αα1
1

Γ(α1)

αα2
2

Γ(α2)
ωα1−1(1− ω)α2−1. (B.5)
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Let us abbreviate

H(t) =

∫ t

0

h(ω)dω and H̃(t) =

∫ t

0

ωh(ω)dω.

Taking into account the identities H(1) = 2 and H̃(1) = 1 (due to marginal

standardisation) straightforward calculations yield

ℓ(x1, x2) = x1 − (x1 + x2)H̃

(
x2

x1 + x2

)
+ x2H

(
x2

x1 + x2

)
,

∂1ℓ(x1, x2) = 1− H̃

(
x2

x1 + x2

)
,

∂2ℓ(x1, x2) = H

(
x2

x1 + x2

)
− H̃

(
x2

x1 + x2

)
.

Hence,

L(α) = cos(α)− (sin(α) + cos(α))H̃

(
1

1 + cot(α)

)
+ sin(α)H

(
1

1 + cot(α)

)
,

L1(α) = 1− H̃

(
1

1 + cot(α)

)
,

L2(α) = H

(
1

1 + cot(α)

)
− H̃

(
1

1 + cot(α)

)
.
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Appendix C

Supplementary code

The following code represents the core pieces for the numerical experiments in

Section 5.2.

For low dimensions, one could in principle still determine k from p in the

numerical setup of Section 5.2 using actual quantiles of the multinomial distribu-

tion.

StarsBars <- function(n,k){

## stopifnot(is.integer(n) & is.integer(k))

stopifnot(n >= 1 & k>=0)

nr_J <- k+1

nc_J <- n-k+1

J_matrix <- matrix(0:k,nr_J,nc_J)

New_list <- list(matrix(NA,nr=0,nc=0))

for (i in 1:n){

Old_list <- New_list

New_list <- vector("list", i+1)

v <- cbind(1:(i+1),rev(1:(i+1)))

J_i <- J_matrix[v[v[,1] <= nr_J & v[,2] <= nc_J,,drop=F]]+1

for (j in J_i) {

if (j==1) {

res <- matrix(0,1,i) }

else {

if (j==i+1) {

res <- matrix(1,1,i)

}

else {

A <- cbind(1,Old_list[[j-1]])

B <- cbind(0,Old_list[[j]])

res <-rbind(A,B)

}

}

New_list[[j]] <- res

}

}

return(New_list[[k+1]])

}

allocation_from_SB <- function(sb_row){

diff(c(0,which(sb_row==1),length(sb_row)+1))-1

}
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all_cluster_allocations <- function(no_clusters,no_points){

t(apply(StarsBars(no_clusters+no_points-1,no_clusters-1),

MARGIN=1, FUN=allocation_from_SB))

}

probab_lowerbound_event <- function(lower_bound,no_clusters,no_points,

cluster_prob=NULL){

if (!is.null(cluster_prob)) {stopifnot(length(cluster_prob)==no_clusters)}

stopifnot(lower_bound*no_clusters <= no_points)

all_alloc <- all_cluster_allocations(no_clusters,no_points)

new_alloc <- all_alloc[apply(all_alloc,1,

function(row){all(row>=lower_bound)}),,drop=F]

if (is.null(cluster_prob)){cluster_prob=rep(1/no_clusters,no_clusters)}

sum(apply(new_alloc,1,function(row){dmultinom(row, prob = cluster_prob)}))

}

In all other cases, we use the central limit theorem approximation of the

multinomial distribution in order to determine k from p in the numerical setup

of Section 5.2.

probab_lowerbound_event_clt <- function(lower_bound,no_clusters,no_points,

cluster_prob=NULL){

require(mvtnorm)

if (!is.null(cluster_prob)) {stopifnot(length(cluster_prob)==no_clusters)}

remaining_points <- no_points - lower_bound*no_clusters

stopifnot(remaining_points >=0)

if (is.null(cluster_prob)){cluster_prob=rep(1/no_clusters,no_clusters)}

upper_mvnorm <- (no_points * cluster_prob - lower_bound)/

sqrt(no_points * cluster_prob * (1-cluster_prob))

a <- matrix(cluster_prob/(1-cluster_prob),nc=1)

corr_matrix <- - sqrt(a %*% t(a))

diag(corr_matrix) <- rep(1,no_clusters)

pmvnorm(lower=-Inf, upper=upper_mvnorm, corr=corr_matrix)

}

The following code is used to simulate data according to the model (5.3)

detailed in Section 5.1.

# Generate uniform points on d-dimensional sphere

unif.sphere <- function (r,d,nsim){

x <-matrix(rnorm(d*nsim),ncol=d,nrow=nsim)

norm <- sqrt(rowSums(x^2))

(r*x)/norm

}

# Generating regularly varying data, spectral measure given by cluster centers

model.1.simu <- function(nsim, clusters, weights, h=function(x){1/(x^0.5)}){

d <- ncol(clusters)

cl <- nrow(clusters)

stopifnot(abs(sum(weights)-1)<1e-12 & all(weights>=0))

stopifnot(cl == length(weights))
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S0 <- clusters[sample(1:cl,nsim,replace=T,prob=weights),]

R0 <- 1/runif(nsim)

R1 <- h(R0)

S1 <- unif.sphere(1,d,nsim)

return(R0*S0 + R1*S1)

}

The following is the code used for the vertex exchange algorithm (Algorithm 1)

from Section 4.3.

VEX_Solver <- function(n_iter, Mat_K, w_vec = 1, d_vec = 1, kappa, stop = T){

N <- nrow(Mat_K)

if (identical(w_vec,1)){w_vec <- rep(1/N,N)}

if (identical(d_vec,1)){d_vec <- rep(1,N)}

Kw_vec <- Mat_K %*% w_vec

wKw <- sum(Kw_vec * w_vec)

d_vec_inv <- kappa / d_vec

x_vec <- rep(0,N)

x_supp <- c()

## Initialisation (best vertex alone, for sparsity)

vec_ini <- diag(Mat_K) * (d_vec_inv^2) - 2 * Kw_vec * d_vec_inv

b <- which.min(vec_ini)

x_supp <- b

x_vec[b] <- d_vec_inv[b]

Kx_vec <- Mat_K[,b] * x_vec[b]

grad <- Kx_vec - Kw_vec # up to 2

## Record evolution of D (useful for stopping)

Rec_D <- rep(0, n_iter)

Rec_D[1] <- wKw + vec_ini[b]

xKx <- Mat_K[b,b] * d_vec_inv[b]^2

wKx <- Kw_vec[b] * d_vec_inv[b]

if (n_iter>2){

for (i in 2:n_iter){

u <- which.min(grad * d_vec_inv)

d <- x_supp[which.max(grad[x_supp] * d_vec_inv[x_supp])]

if (u==d){ i <- i-1 ; break } # can only happen if x is the true solution

## Optimal stepsize

term_1 <- grad[u] * d_vec_inv[u] - grad[d] * d_vec_inv[d]

term_2 <- Mat_K[u,u] * d_vec_inv[u]^2 +

Mat_K[d,d] * d_vec_inv[d]^2 -

2 * Mat_K[u,d] * d_vec_inv[u] * d_vec_inv[d]
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oss <- - term_1 / term_2

r <- min(oss, x_vec[d]/d_vec_inv[d])

## Update

xKx <- xKx + (r^2) * term_2 +

2 * r * (Kx_vec[u] * d_vec_inv[u] - Kx_vec[d] * d_vec_inv[d])

wKx <- wKx + r * (Kw_vec[u] * d_vec_inv[u] - Kw_vec[d] * d_vec_inv[d])

x_vec[u] <- x_vec[u] + r * d_vec_inv[u]

x_vec[d] <- x_vec[d] - r * d_vec_inv[d]

x_supp <- union(x_supp, u)

Kx_vec <- Kx_vec + r * (Mat_K[,u] * d_vec_inv[u] - Mat_K[,d] * d_vec_inv[d])

grad <- Kx_vec - Kw_vec

## Record evolution of D

Rec_D[i] <- wKw + xKx - 2 * wKx

if(stop==T){## Stopping based on improvement

eps <- 1e-4 # sensitivity parameter

if ((Rec_D[i-1]-Rec_D[i])/wKw < eps){ break } }

}

}

return(list(x_vec = x_vec,

x_supp = x_supp,

Rec_D = Rec_D[1:i]))

}
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