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Social networks influence the spread of parasites through populations.
Although we know how parasites are transmitted as a product of social
interactions, we have a limited understanding of how social networks
are affected by parasites over time. Host—parasite interactions and the
networks they form, are typically examined as static networks, and
while topological descriptions at a specific time point are useful, both
behaviour and the infection process are dynamic. By monitoring replicate
populations of Trinidadian guppies (Poecilia reticulata) daily before and
during infection with the ectoparasite Gyrodactylus turnbulli, we show
how parasitism drives social network dynamics. Specifically, infected
individuals increased their connections in networks affected by parasitism.
In contrast, uninfected control shoals showed no change in network
metrics. The structure of subnetworks (motifs) and networks, however, did
not change in response to infection status. These findings provide further
evidence of reciprocal host behaviour—parasite feedback mechanisms, and
highlight that infected fish alter their interactions in order to ‘off-load’
their parasites. Understanding how these reciprocal interactions affect the
structure and function of natural systems, as well as understanding how
these interactions may alter with future environmental change, are key
areas of future research.

1. Introduction

Complex social networks are observed across a range of different organisms,
from fish [1] to humans [2]. Interactions within these networks can take many
forms, from mutualistic through to antagonistic [3]; however, a commonality
across social interactions, is that they typically involve close contact between
individuals. As such, the structure of social networks, as well as the iden-
tity and strength of the interactions therein, have important implications for
population-level processes, such as disease transmission [4].

The structure of social networks is influenced by both biotic and abiotic
factors [5]. Firstly, the behavioural ecology of the organism in question has a
large bearing on the structure of the social network [6]; at the extremes, social
organisms form tightly interconnected networks, with many connections
between individuals, whereas more solitary organisms may have far sparser
social networks [7]. Secondly, environmental conditions alter social networks
through their influence on the habitable area (e.g. restricting available habitat
[8]); as well as the interactions on the behaviour of the individuals themselves
(e.g. temperature and activity rates [9]). As well as these direct drivers of
social networks, there are reciprocal feedback and indirect influences. The
transmission of parasites, for example, can be influenced both by social
interactions, their hierarchical structure and the social networks they form
[10].

Although many studies have investigated social network structures, and
the implications at individual, population and community levels, most
assessments are static (i.e. focusing on a single point in time) or use a dynamic
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approach, but with simulated networks [11]. Existing studies that have investigated dynamic responses of social networks have [ 2 |

typically focused on the removal or replacement of key individuals [12,13]. These studies have shown that social networks
can respond at a series of different scales, from changes in individual behaviour to shifts in the topology of the overall social
network. There remains limited information on how networks respond to other types of perturbation, e.g. environmental
change or parasitism, despite there being a wealth of information on individual behaviours [14].

Parasites are central in all ecological systems [15] and present a potentially significant disruptor of social networks [16].
Interactions between hosts and parasites can generate a range of changes from individuals through to entire networks [17]. At
the individual scale, parasites can affect all organism-level traits from physiology to fecundity [18]. In fish, infected individuals
showing increased sociality [19] may try off-loading parasites onto uninfected or less infected individuals [20]. This process
of ‘off-loading’ has been observed in other experiments focusing on dyads (see [20]), and appears to be an individual-level
response aimed at reducing the negative effects associated with high parasite burdens and diluting their parasites amongst
potential hosts (see [21]). Indeed, previous studies have shown that a higher contact rate between individuals enhances the
transmission of parasites [22] and could thus be used to reduce individual burdens. Furthermore, greater shoal sizes, and
therefore higher dilution, have been shown to act as an anti-ectoparasite mechanism in other shoaling fish species [23].
Individuals may also exhibit behavioural traits that select for a reduction in parasitism, e.g. seeking water conditions that are
less favourable for the parasites [24]. Other responses, such as avoidance, have been shown in host—parasite systems; however,
these processes take longer to emerge (multiple weeks) and only appear to occur at very high levels of infection [25]. Across
subnetworks, also known as motifs [26], interactions between individuals can be altered by parasites, although motifs are an
underutilized tool [27]. Three-mode motifs, or ‘triangles’, can provide additional information, including indirect interactions,
and thus are an intermediate structural unit between individuals and networks [26]. In the case of social networks and parasite
transmission, motifs can provide information on intermediate hosts, as well as transmission pathways within subnetworks of
the wider social network. For example, they can be used to identify when an uninfected individual is in contact with multiple
infected individuals or vice versa. Finally, entire social networks may become more or less connected in response to parasites,
depending on the mechanisms through which parasites affect individual and group behaviours [28].

Here, we investigated how social networks in populations of the Trinidadian guppy (Poecilia reticulata Peters 1859) respond
to parasitism by Gyrodactylus turnbulli (Harris 1986) over time. Through a series of controlled experiments, we aimed to
understand how infection of individual P. reticulata with G. turnbulli, and subsequent transmission, affected the host social
interaction networks. We hypothesized that social networks would respond to parasitism at individual, motif and network
scales in the following ways:

(1) Social interactions among individuals will change after infection, based on two previously observed mechanisms: (i)
out-degree of infected individuals will increase (shedding or off-loading) and (ii) in-degree of uninfected individuals will
increase (acquiring);

(2) Motifs associated with the transmission of parasites will increase in frequency as infection increases in prevalence and
intensity;

(3) Networks will become more connected, have greater interaction reciprocity and a higher ratio of interactions between
infected and uninfected individuals compared with solely between uninfected individuals after infection; and

(4) Changes in node, motif and network properties will be related to parasite intensity.

2. Methods

(a) Ethics statement

All applicable institutional and/or national guidelines for the care and use of animals were followed. Procedures and protocols
were conducted under the UK Home Office license (PPL 302 876) with approval by the Cardiff University Animal Ethics
Committee.

(b) Host—parasite system

Trinidadian guppies (P. reticulata) were laboratory-reared descendants of wild-caught stock from the Lower Aripo River,
Trinidad, in 2012. Fish were initially housed at the University of Exeter, before transfer to Cardiff University in 2014 to be
maintained in 70 I dechlorinated water tanks under standard conditions of 24 + 0.5°C on a 12 h light: 12 h dark photoperiod
(lights on 07.00-19.00). Fish were fed daily on Aquarian® Tropical fish flakes, subsidized with freshly hatched Artemia salina
and adult Daphnia magna. Aquaria were checked weekly for fry, which were transferred to rearing tanks from which female
fish were isolated at 8-12 weeks. Only female guppies (1 = 120) were used due to their greater propensity to shoal than males
[29], but also to avoid the confounding effects of male courtship behaviour and sexual interactions on parasite transmission and
social network structure.

For experimental infections, we used the isogenic Gt3 strain of G. turnbulli, which originated from a single worm isolated
from an ornamental guppy in 1997. This ectoparasite population has since been maintained in culture, as described by Stewart
et al. [30]. The monogenean worm is a common ectoparasite of guppies in both wild and ornamental stocks, and has a range of
physiological and behavioural impacts [16,30,31]. It is directly transmitted, transferring from host to host when the fish contact
one another and has a short generation time, giving birth to live (already pregnant) young that attach to the fish alongside the
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parent worm [32]. To experimentally infect a fish, an infected (donor) fish from the culture was sacrificed via cranial destruction, n

and the caudal fin was brought into close contact with a naive (recipient) guppy, which had been temporarily anaesthetized
with 0.02% tricaine methanesulfonate (MS-222). The transfer of parasites was observed under a dissecting microscope with
fibre-optic illumination, following the standard methods of King & Cable [33]. Control fish (i.e. sham infected) were handled
and exposed to anaesthetic in the same manner as the experimental fish but without exposure to parasitic infection. Parasite
infections were monitored non-destructively throughout the experiment by again briefly anaesthetizing each fish in a shoal
(including the control shoals) and counting the number of external worms on the surface of the fish using a dissecting
microscope.

(c) Experimental set-up

Experimental trials took place in a 70 1 tank of dechlorinated water, maintained under standard light and temperature
conditions (see §2b). A 2 cm layer of fine gravel substrate filled the base of the aquarium, which was lit from above using
daylight-mimicking strip lights (Sylvania T5 F13W/54-765 G5 Luxline Standard Daylight bulb) diffused by white fabric. The
chamber was surrounded on three sides with opaque white fabric to prevent external disturbances, with one side left open to
allow for observations.

(d) Behavioural experiments

A total of 20 replicate shoals, each containing six sized-matched female P. reticulata, were monitored daily for 10 days, with
experimental infection occurring on day 5 in 15 randomly selected replicates, and a sham infection in the remaining five
controls. Each fish was uniquely marked using visual implant elastomer (VIE), enabling individual fish identification during
a trial. To do this, fish were briefly anaesthetized using 0.02% MS-222, and VIE was injected into the ventral or dorsal muscle
tissue. This is a marking procedure extensively used in guppies [34-37] that does not appear to influence social behaviour [38].

Fish standard length (SL; mm) was measured before each group was placed into a separate 5 1 aquarium to form shoals over
a 2 week familiarization period [39] before transferring to an experimental chamber to acclimate for 24 h.

On day 5, all fish were temporarily isolated in individual 1 1 pots and either the most or least connected shoal member
(determined by assessing accumulated contact frequency data until day 5; see §2e) was infected with exactly 30 G. turnbulli
individuals. This procedure formed three experimental treatments: most connected infected (n = 7 shoals), least connected
infected (n = 8 shoals) and uninfected controls (1 = 5 shoals). The unbalanced experimental design arose through the limited
availability of mature female fish for the experiment. Despite uneven sample sizes, an adequate number of replicates ensured
that robust statistical analysis comparing experimental treatments could be performed. Within each infected shoal, a single fish
was experimentally infected and the remaining five fish in each shoal, as well as each fish in the control groups, were sham
infected by anaesthetizing and manipulating under the microscope, but without exposure to parasites. Fish were revived in
11 of dechlorinated water and returned to their shoal groups. Infection was confirmed on day 6, and each fish was screened
on consecutive days thereafter (days 7, 8, 9 and 10) to quantify G. turnbulli intensity, following behavioural observations. At
each time step, the control and experimental groups underwent the same experimental procedures; anaesthesia followed by
handling.

(e) Social network construction

For each shoal, interactions were monitored on each day (1-10) for a 10 min period (between 9.00-12.00, three shoals per
experiment). The frequency of interactions between individuals (the number of direct contact events, e.g. skin-skin contact
including a bite or the brushing of fins, typically lasting <1 s) was recorded for all individuals, as well at the directionality of the
interactions (i.e. which fish initiated the interaction). This resulted in a series of directed, weighted networks, where individuals
are represented by nodes and interactions between individual fish by edges. Each behaviour recorded was directional such that
we could record who approached who, giving us the ability to quantify the number of outgoing contacts from shoal mates (‘out
degree’) and the number of incoming contacts (“in degree’). Because multiple interactions can occur over time these edges, or
interactions within the network, were weighted, i.e. were a simple count of how many times they occurred.

() Data analysis

All metric calculations and statistical analyses were completed using R Statistical Software (v. 4.3.1. ‘Beagle Scouts’ [40]).

We calculated metrics to summarize the node, motif and network-level properties of the directed, weighted networks. At
the node level, weighted in- and out-degree were calculated for all individuals using the ‘strength’ function in the ‘igraph’
package [41]. We also calculated unweighted betweenness centrality using the ‘igraph’ package [41], which measures the
number of times an individual lies on the shortest path between others in a network and from a disease perspective can
identify individuals that may act as ‘bridges’ of transmission to otherwise unreachable individuals, or if uninfected can act
as a ‘firebreak’ for infection passing through a network [42,43]. Motifs and subnetwork structures [26] were identified and
enumerated across the different networks. We focused on a series of motifs that are important for parasite transmission, and
provide additional information to that provided by in- and out-degree by incorporating additional interactions with shared
nodes (figure 1): (i) asymmetric two-node interactions (in- and out-degree), (ii) out-star interactions from an infected fish to two
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Figure 1. Two- and three-node motifs relevant to parasite transmission. There are other metrics involving more nodes (e.g. four or five), but as these networks were
composed of six nodes in total, we restricted analysis to motifs with <50% of nodes.
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Figure 2. Changes in node-level metrics with parasite infection. (a—c) Weighted node metrics before and after infection across the three treatments in the experiment.

(d—e) Differences in weighted degree metrics before and after infection across fish that eventually become infected or avoided infection throughout the experiment

(i.e. to see whether patterns in (a—c) are a result of changes in the interactions for uninfected or infected fish). (f) Relationship between time and parasite intensity

across individuals. (g—h) Relationships between weighted in- and out-degrees for uninfected and infected fish, respectively.

other individuals (infected or uninfected) and (iii) in-star interactions between two infected individuals to another individual
(infected or uninfected). For each motif type, we summarize the frequency as both count (i.e. the total number of those motifs
[n]) and weighted count (i.e. the sum of the interaction strengths within those motifs [q]). As motif frequency is contingent
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Figure 3. Motif frequencies post-infection (days 6—10). (a) Relationship between the number of infected fish and the frequency of motifs (best-fit lines from linear
regression).(b) Relative frequency of motifs across the treatments. Motifs are either count (n) or weighted count (q) (see §2).

on the number of interactions within networks, we standardized the frequencies based on total number of infected fish, i.e.
converting the values into a relative frequency. We then assessed the relationships between motif frequency and the mean
intensity of parasites within shoals. At the network scale, we calculated connectance, as edge density (edges/nodes?), to describe
the degree to which the overall network is connected, as this equates to the potential for a parasite to be transmitted to all
individuals if the network is fully connected. We also calculated reciprocity, the proportion of mutual connections (i.e. the
probability of an opposite counterpart to a directed edge in the graph). Finally, for each network, we calculated the ratio of links
from fish with higher to lower levels of infection (number of G. turnbulli individuals per fish), and vice versa, to indicate whether
highly infected fish are more strongly interacting with uninfected or less infected fish.

We investigated differences in the node, motif and network properties between social networks across different treatments,
before and after infection, as well as in relation to the levels of parasitism using generalized linear mixed models (GLMMs). We
ran models in the ‘Ime4’ package [44] and the ‘glmmTMB’ package [45] and validated model performance using the ‘DHARMa’
package [46]. Model formulae are provided in the electronic supplementary material. However, the generic model structure
follows:

Metric ~ Parasite intensity + Treatment*Time + (1|FishID) + (1| Shoal ID)

Time was included in two ways within models: (i) before and after infection (categorical; before and after) or (ii) days (ordinal;
1-10). A mixture of Gaussian, negative binomial and Poisson model families and associated link functions were used for
different metrics (see electronic supplementary material, table S1), and in some cases, zero-inflation corrections were applied.

3. Results

Over the duration of the experiments, across the experiments and in response to parasitism, node metrics varied significantly:
weighted in-degree (Negative binomial GLMM: lognormal R*c =026, n parameters = 10, n observations = 719, X?=7228,p<
0.001), weighted out-degree (Zero-inflated Poisson GLMM: R*c=0.14, n parameters = 11, n observations = 719, X*=79.83,p<
0.001) and betweenness (Zero-inflated Poisson GLMM: R’c = 0.26, n parameters = 11, n observations = 719, X* = 84.33, p < 0.001).
After infection with G. turnbulli (i.e. comparing days 1-5 against 6-10), interactions between individuals of P. reticulata changed
(figure 2). Specifically, weighted in-degree (Wald test: X*> = 9.47, d.f. = 2, p = 0.009) increased after infection in the least and most
connected treatments (figure 1a,c) but not in the controls. Weighted out-degree (Wald test: X* = 78.5, d.f. = 1, p < 0.001) and
betweenness (Wald test: X*> = 5.62, d.f. = 1, p = 0.018) both increased alongside the intensity of parasites, but did not significantly
increase after infection in the least or most connected treatments in comparison to the control (Weighted out-degree Wald test:
X*=2.56, d.f. =2 p = 0.28; and betweenness Wald test: X* = 0.49, d.f. = 2, p = 0.78). The change in node metrics was primarily due
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Figure 4. Changes in network characteristics. (a, b) Edge density (a measure of connectance) and reciprocity before and after infection across the three treatments
in the experiment. (c) Aggregated network of interactions for shoal | before infection (days 1—5). (d) Aggregated network of interactions for shoal | after infection.
Grey nodes indicate uninfected individuals and red nodes indicate infected individuals. Values represent mean number of parasites (days 6—10). (e) Relationships
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to increases in the degree values for infected fish, as opposed to those that never became infected during the study (figure 2d,e).
At higher temporal resolutions (e.g. across days), as the infection trajectory progressed over time, so too did the mean in- and
out-degree of fish across the shoals (figure 2g).

Motifs were variable across the treatments and time points (figure 3), but showed no significant patterns in relation to the
experimental manipulations. There was not a significant increase in motifs over time after the infection (figure 3a). Although
there were general increases in the relative number of motifs with mean parasite intensity in the different shoals, this was
nonlinear and non-significant across the different motif types (figure 3b).

Network topology, in comparison to node and motif metrics, was far less variable across treatments (figure 4). There was
no significant difference between network topological metrics (connectance/edge density and reciprocity; figure 4a,b) after
infection, despite there being variation in the node characteristics and the strength of interactions varied across the pairwise
interactions (e.g. figure 4c,d). With regards to the ratio of interactions from high to low infection fish, and vice versa, in general,
across the networks, there was asymmetry —with greater frequency and weights of high to low interactions (figure 4e,f).

4. Discussion

Ectoparasite infection led to changes in the interactions within social networks in a shoaling fish species. Interactions between
individuals switched and the frequency of these interactions changed, primarily driven by infected individuals interacting
more strongly with a greater number of conspecifics. Furthermore, there was a turnover in interactions over time, with fish
with greater parasite burdens interacting more strongly with fish with lower parasite burdens. Findings at the individual level
provide further evidence for ‘shedding’ or ‘off-loading’ behaviour in parasitized fish. Individual-level changes in interactions,
however, did not manifest themselves in significant alterations at the motif and network scale. This may indicate that the
responses of social networks in fish to stressors (e.g. parasitism) are driven primarily by individual responses, as opposed to
responses at the group level.

Before interpreting the results of the study further, it is important to acknowledge the following caveats of the work. Firstly,
only female guppies were used during this experiment due to their greater propensity to shoal than males [47]. In the wild,
male guppies move between female shoals in search of mating opportunities, which could subsequently enhance parasite
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transmission between individuals (see [48,49]), and thus have the potential to substantially modify social network dynamics. -

Secondly, the experiments in this study focused on short-term effects on behaviour, as our trials were over a limited time.
Monitoring shoals until the point of parasite clearance would have provided further insight into the efficacy of the behavioural
adaptations to parasitism. However, it would have also inflicted suffering on the individual fish, as we specifically started the
experimental infections with a high parasite burden (to focus more on the direct host response to the parasite, rather than
host immune effects) and would be in violation of the 3Rs (replacement, reduction and refinement; [50]). Thirdly, findings
are relevant to directly transmitted parasites with direct life cycles. In fact, there is a significant gap in our understanding of
how parasites, with indirect life cycles (i.e. those that have life stages in intermediate hosts), affect social network structure.
Finally, other characteristics of the hosts (e.g. size, reproductive status, fitness, immune status; [51]) as well as the parasites are
important in parasite transmission, and subsequently social network structure (based on the findings of this study). Here, we
use a single fish and a single parasite species, and therefore, the wider applicability of the findings to other fish and parasites
that, e.g. have different social interactions, transmission strategies or co-infections is unknown.

The linear increase in the number and strength of interactions with parasite intensity (i.e. relationship between parasite
intensity and weighted-out degree), provides further support on top of the current literature for the ‘off-loading” mechanism,
as the greater the level of parasite infection the stronger the interactions and thus more intense ‘off-loading’ behaviour.
‘Off-loading’, although appearing to be an individually motivated behaviour, may actually provide a benefit at the shoal level,
vaccinating conspecifics against future infections. Faria et al. [52], e.g. showed how guppies that had endured a primary G.
turnbulli infection experienced significantly lower parasite intensities during secondary infections. However, it remains unclear
as to whether this individual-level response has group-level benefits.

Modifications to social interactions, and the networks they form, may have knock-on effects. It can affect the fundamen-
tal ecology of an ecosystem. Intra-group interactions can drive changes in intra-specific competition and, in turn, resource
utilization and consumption [53]. Changes in competition and dietary niches, in turn, could have a variety of implications for
the wider structure and function of the aquatic ecosystem, e.g. the flux of energy and material through food webs (e.g. [54]).
Alterations in the structure of social networks may also have implications for the resilience of individuals and populations
to future biotic and abiotic changes [55]. The observed increases in the strength of interactions may have an effect on the
transmission of other parasites, as has been shown in other systems (see review by [56]). Also, changes in the topology might
make the network more susceptible or resilient to parasites. For example, loss of individual fish due to changes in water
quantity or quality, or enhanced interspecific competition from an introduced species, may enhance parasite transmission
and effects (e.g. [57,58]). Our understanding of these interactive and cascading effects of environmental change and social
interactions is currently limited, yet this is a vital avenue of future research [59].

Social networks are constantly adapting to changing biotic and abiotic conditions [60]. Previous studies have shown that
behaviours in fish shoals are altered by parasite infection (e.g. [61]), yet here, we identify that although the identity and strength
of interactions between individuals change, there is little alteration in the overall structure of the motifs and networks. This
suggests either a dynamic and adaptive response across all individuals in the social network, mitigating any changes observed
at the individual level, or that other confounding factors are influencing structure. It is, therefore, important to monitor not only
network structure, but also the identity, direction and strength of the individual interactions within those networks. Moving
forward, it is important to understand how social networks respond to simultaneous and sequential stressors of different types
(e.g. multiple stressors), while also understanding how behavioural networks affect individual and population endpoints (e.g.
mortality, fecundity, growth, population dynamics). With this additional understanding, moving across levels of biological
organization, it will be possible to predict the response of populations to multiple stressors, accounting for behavioural
plasticity and the effects of intraspecific ecological interactions.
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