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 A B S T R A C T

We study the bullwhip behaviour in the proportional order-up-to (POUT) policy with non-stationary autore-
gressive integrated moving average (ARIMA) demand. We build a state-space model of the POUT policy where 
the damped trend forecasting method predicts ARIMA(1,1,2) demand. The POUT policy is closely related to 
the order-to-up (OUT) policy with the addition of a proportional feedback controller in the inventory and 
work-in-progress feedback loops. Our modelling approach allows us to derive and/or analyse the demand, 
order, and inventory variances. We also find the covariance between the demand forecast and the inventory 
forecast in an attempt to obtain the order variance. However, both the demand and the order variances are 
infinite under the non-stationary ARIMA(1,1,2) process. Thus, the traditional bullwhip measure (the ratio of 
the order variance divided by the demand variance) is indeterminate. Despite this difficulty, we can study the 
difference between the order variance and the demand variance for both the OUT and POUT policies. These 
differences are finite and their sign indicates whether a bullwhip effect has been generated or not. We find 
under non-stationary demand, the POUT policy’s bullwhip behaviour contradicts some of the existing bullwhip 
theory. The POUT policy sometimes generates more bullwhip than the OUT policy, revealing that existing 
knowledge based on stationary demand should be used with caution in non-stationary demand environments. 
We validate our findings with an investigation of some ARIMA(1,1,2) time series from the M4 competition.
1. Introduction

The bullwhip effect, where the order variance is amplified as the 
orders proceed up the supply chain, has been observed in many indus-
tries for decades, Lee et al. (1997). Most analytics studies of this effect 
assume stationary random demand. Herein, we reveal existing bullwhip 
knowledge should be used with caution under non-stationary demand. 
Demand forecasting and ordering policies have been found to be two 
of the most important causes of the bullwhip effect, Wang and Disney 
(2016). The order-up-to (OUT) policy and the proportional order-up-to 
(POUT) policy are two of the most common ordering algorithms in the 
literature. The OUT policy is often used for regulating production and 
distribution in high-volume settings as it minimises inventory holding 
and backlog costs while maintaining customer service levels.

Researchers have quantified the bullwhip effect in supply chains 
with correlated demand processes. For example, Zhang (2004) study 
first-order auto-regressive, AR(1), demand. Whereas Luong and Phien 
(2007) consider second order AR demand, AR(2), demand. Alwan 
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et al. (2003) studied the bullwhip effect resulting from the OUT re-
plenishment policy with optimal forecasts for first-order autoregressive 
and moving average, ARMA(1,1), demand. Rostami-Tabar and Disney 
(2023) investigate the impact of a first-order integer auto-regressive, 
INAR(1), demand process on the bullwhip generated in the OUT policy. 
Findings from these studies all indicate the existence of the bullwhip 
effect in the OUT policy under different demand patterns, even with 
optimal forecasts. Despite that, the bullwhip effect can be avoided for 
some demand processes by the OUT policy, Gaalman et al. (2022). For 
example, the OUT policy with minimum mean squared error (MMSE) 
forecasting of some negatively correlated AR(1) demand process does 
not generate bullwhip, Alwan et al. (2003).  Gaalman et al. (2022) 
reveal when ARMA(2,2) and ARMA(p,q) demand produces bullwhip 
that is, and is not, increasing in the lead time.

The POUT policy adds a proportional feedback controller to the 
OUT policy to alter the trade-off between inventory and capacity costs. 
The effectiveness of the POUT policy at reducing the bullwhip effect 
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is widely recognised. A steady stream of research on the POUT policy 
assumes stationary demand. Hosoda and Disney (2006) quantified and 
compared the bullwhip generated by the POUT and OUT policies with 
optimal forecasts for AR(1) demand. They found the order variance is 
increasing convex in the proportional feedback controller in most cases 
(except when the autoregressive parameter is near unity). The POUT 
policy with ARMA(p,q) demand was studied in Gaalman (2006). Gaal-
man and Disney (2009) studied the bullwhip effect generated by the 
POUT policy under ARMA(2,2) demand processes.

Less attention has been given to non-stationary demand. Of the few 
that do, Graves (1999) quantified the bullwhip effect for a first-order 
integrated moving average demand, IMA(0,1,1). Boute et al. (2022) 
considered non-stationary demand in a dual sourcing setting with a low 
cost, long lead time global supplier coupled with a local SpeedFactory. 
The more expensive, short lead time, local supplier allowed for tighter 
inventory control. The inventory benefit was sufficient to enable the 
re-shoring of a small proportion of the total demand to the high-cost 
SpeedFactory, even before production price parity was reached.

The exponential smoothing forecasting mechanism is popular in 
practice as it only has one parameter, and all future forecasts are 
constant (level) projections of the forecast of the next period’s demand. 
Holt’s method adds a linear trend to the future forecasts (and an 
extra smoothing parameter) to account for long-term linear trends 
in demand. The damped trend forecasting mechanism adds a further 
parameter to the forecasting mechanism that shapes future forecast 
projections. These projects can be damped, where future forecast projec-
tions level out geometrically of time, or they grow (decline) geometri-
cally towards positive (negative) infinity, or they oscillate in a stable (as 
we will see in the 4 times series from the M4 competition in Fig.  1) or 
unstable manner. The damped trend forecasting mechanism contains, 
as special cases, 11 other forecasting methods, including exponential 
smoothing and Holt’s method. The bullwhip effect can be avoided when 
the OUT policy employs the damped trend forecasting mechanism, Li 
et al. (2014). Bullwhip was eliminated when the forecasting parameters 
were selected from a special region in the parameter space under an 
independently and identically distributed (i.i.d.) demand, a feat never 
previously reported for the OUT policy. Li et al. (2023) further studied 
the system behaviour of the damped trend OUT policy, finding that 
its dynamic behaviour was equivalent to the POUT policy.  Herein, we 
explore how optimal damped trend forecasts for ARIMA(1,1,2) demand 
perform.

While the damped trend forecasting method can be applied to 
any demand process, it is the optimal forecasting method for the 
ARIMA(1,1,2) process, Gardner and McKenzie (1985). However, OUT 
and POUT policy’s bullwhip performance under ARIMA(1,1,2) demand 
remains under-explored. The auto-regressive, integrated, moving aver-
age, ARIMA(1,1,2), demand has one AR parameter, 𝜑, one integration 
term, and two MA parameters, 𝜃1, and 𝜃2; the need to both capture 
long-term trends and filter short-term fluctuations presents a greater 
challenge for forecasting compared to simpler alternatives. Fig.  1 il-
lustrates some example time series from the weekly time series of the 
M4 competition1 (Makridakis et al., 2020) identified as ARIMA(1,1,2) 
demand processes by the auto.arima function in R. Two of the time 
series were excessively long, so we performed the ARIMA identification 
process on only the last 100 data points, see Panels (a) and (b) in 
Fig.  1. The other two time series only had 80 data points; we used 
all available data for Panels (c) and (d). In the title of each panel, 
you can find information on: the index of the weekly time series, the 
ARIMA(1,1,2) parameters identified by the auto.arima function in 
R, and the equivalent damped trend forecasting parameters.2

1 The M4 data set is available from https://github.com/Mcompetitions/M4-
methods.

2 Using the relations 𝛼 = (𝜃2 + 𝜑)𝜑−1, 𝛽 = (𝜑2 − 𝜃2 − 𝜃1𝜑)(𝜃2𝜑 + 𝜑2)−1, and 
𝛾 = 𝜑, Li et al. (2023).
2 
Another difficulty encountered when studying the ARIMA(1,1,2) 
process is its non-stationary nature. Non-stationary demand is charac-
terised by a time-varying mean and variance, Gardner and McKenzie 
(1985). Over an infinite time horizon, this leads to infinite demand 
variance and infinite order variance. However, the inventory variance 
remains finite, Graves (1999). Of the few papers that study damped 
trend forecasting in a supply chain setting, Li et al. (2014, 2023), focus 
on using the damped trend forecasting method in suboptimal demand 
settings that result in finite demand and order variances. Thus, the 
complexity and challenges ARIMA(1,1,2) demand poses, particularly in 
the context of the bullwhip effect and inventory performance, remain 
significant. To address this inventory control challenge, we present a 
generalisable approach based on a state-space model and an analysis 
of the demand eigenvalues to understand the impact of the feedback 
controller under non-stationary demand.

The purpose of this paper is to study the performance of using the 
damped trend forecasting method to predict ARIMA(1,1,2) demand in 
both the OUT and POUT policies. We build state-space models of the 
policies and provide exact expressions for the order variance and the 
inventory variance in eigenvalue form. We measure the bullwhip effect 
as the difference between the order and demand variances, allowing 
us to study variance amplification under non-stationary demand. We 
compare the bullwhip in the two policies and show:

• The bullwhip effect can be larger in the POUT policy than in 
the OUT policy for certain types of ARIMA(1,1,2) demand with a 
short lead time, even when the proportional feedback controller 
lies in the region 0 ≤ 𝑓 < 1.

• For other types of ARIMA(1,1,2) demand, the POUT policy (with 
0 ≤ 𝑓 < 1) always generates less bullwhip than the OUT policy, 
for all lead times.

• Under certain type of ARIMA(1,1,2) demand, the proportional 
controller 𝑓 needs to be carefully tuned in relation to the demand 
pattern and the lead time in order for the POUT policy to generate 
less bullwhip than the OUT policy.

The remainder of the paper is organised as follows. In Section 2, 
we present a state space approach to model ARIMA(1,1,2) processes. 
Inventory policies are modelled in state-space form in Section 3, and the 
variances for orders and inventory are derived in Section 4. Section 5 
investigates the bullwhip produced by the OUT and POUT policies. 
Section 6 explores the four demand patterns in Fig.  1 numerically. 
Section 7 concludes.

2. The demand and the forecast

The ARIMA(1,1,2) demand process, 

𝑑𝑡+1 − 𝑑𝑡 − 𝜑(𝑑𝑡 − 𝑑𝑡−1) = 𝜂𝑡+1 − 𝜃1𝜂𝑡 − 𝜃2𝜂𝑡−1, (1)

where 𝑑𝑡+1 is the demand at time 𝑡+1 and 𝜂𝑡+𝑗 is an i.i.d. random process 
(white noise). We can also interpret the ARIMA(1,1,2) demand as a 
non-stationary (unstable) ARMA(2,2) process, 

𝑑𝑡+1 − (1 + 𝜑)𝑑𝑡 − (−𝜑)𝑑𝑡−1 = 𝜂𝑡+1 − 𝜃1𝜂𝑡 − 𝜃2𝜂𝑡−1. (2)

Several state space forms of ARMA processes exist; there is no unique 
form. We follow Gaalman (2006) and Gaalman and Disney (2009) and 
use a state 𝑦𝑡 and a (left) canonical form of the system matrix 𝐃,
𝑑𝑡+1 = 𝐌𝑦𝑡+1 + 𝜂𝑡+1
𝑦𝑡+1 = 𝐃𝑦𝑡 +𝐆𝜂𝑡

}

, (3)

where 

𝐃 =
(

1 + 𝜑 1
)

, 𝐆 =
(

1 + 𝜑 − 𝜃1
)

, 𝐌 =
(

1 0
)

. (4)

−𝜑 0 −𝜑 − 𝜃2

https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
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Fig. 1. Example ARIMA(1,1,2) time series plots and their optimal damped trend forecasts. Key: The black line is the demand, and the rainbow-coloured lines, originating at the 
circles, represent the five periods-ahead damped trend forecasts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
The system matrix 𝐃 contains only auto-regressive coefficients; some-
times 𝐃 is denoted as 𝐃𝜙. The characteristic polynomial of 𝐃 is 

det(𝐃 − 𝜆𝐈) = 𝜆2 − (1 + 𝜑)𝜆 − (−𝜑) = (𝜆 − 𝜑)(𝜆 − 1) =
2
∏

𝑗=1

(

𝜆 − 𝜆𝜙𝑗
)

. (5)

Setting the polynomial equation in (5) to zero and solving for 𝜆 provides 
𝜆𝜙𝑗 , the poles of the demand process; 𝜆

𝜙
𝑗  are the AR eigenvalues and are 

related to the AR coefficients. There are two AR eigenvalues (poles): 
𝜆𝜙1 = 𝜑 and 𝜆𝜙2 = 1, Li et al. (2023). 

Remark 1.  The poles are distinct.

The conditional expectation of the demand can be found from the 
one-period-ahead forecast using an a priori estimation,
𝑑𝑡+1|𝑡 = 𝐌𝑦̂𝑡+1|𝑡
𝑦̂𝑡+1|𝑡 = 𝐃𝑦̂𝑡|𝑡−1 +𝐊𝑡(𝑑𝑡 − 𝑑𝑡|𝑡−1)

}

(6)

of the gain 𝐊, which can be determined by the discrete-time matrix 
Ricatti equation. As the system’s structure has only one error 𝜂𝑡, the 
gain 𝐊 can be derived directly by minimising the variance of the state 
space forecast error 𝑣𝑡+1 = (𝑦𝑡+1 − 𝑦̂𝑡+1|𝑡). Hyndman et al. (2008) call 
this a single source of error (SSOE) model.

The state space error at time 𝑡 satisfies 

𝑣 = (𝑦 − 𝑦̂ ) = 𝐃(𝑦 − 𝑦̂ ) −𝐊(𝑑 − 𝑑 ) +𝐆𝜂 , (7)
𝑡+1 𝑡+1 𝑡+1|𝑡 𝑡 𝑡|𝑡−1 𝑡 𝑡|𝑡−1 𝑡

3 
resulting in the variance expression 
V[𝑣𝑡+1] = (𝐃 −𝐊𝐌)V[𝑣𝑡](𝐃 −𝐊𝐌)𝑇 + (𝐆 −𝐊)(𝐆 −𝐊)𝑇V[𝜂]. (8)

This expression holds for each 𝑡, as infinite past demand observations 
are considered. Backward iteration reveals that (𝐃 − 𝐊𝐌) is stable. At 
time 𝑡, the minimum variance of 𝑣𝑡 exists when 𝐊 = 𝐆 and can even be 
zero, 𝐊 = 𝐆 = 0. The state space one-period-ahead forecast 𝑦̂𝑡+1|𝑡 then 
becomes 
𝑦̂𝑡+1|𝑡 = 𝐃𝑦̂𝑡|𝑡−1+𝐊(𝑑𝑡−𝑑𝑡|𝑡−1) = 𝐃𝑦̂𝑡|𝑡−1+𝐆𝐌(𝑦𝑡−𝑦̂𝑡|𝑡−1) = 𝐃𝑦̂𝑡|𝑡−1+𝐆𝜂𝑡. (9)

The (𝐃 −𝐊𝐌) matrix is 

(𝐃 −𝐊𝐌) = (𝐃 −𝐆𝐌) =
(

𝜃1 1
𝜃2 0

)

= 𝐃𝜃 . (10)

Eq. (10) shows that 𝐃𝜃 is always stable and invertible. Assuming the 
zeros are distinct, the MA characteristic polynomial is 

det(𝐃𝜃 − 𝜆𝐈) = 𝜆2 − 𝜃1𝜆 − 𝜃2 =
2
∏

𝑗=1

(

𝜆 − 𝜆𝜃𝑗
)

(11)

Setting the polynomial equation in (11) to zero and solving for 𝜆
provides 𝜆𝜃𝑗 , the zeros of the demand process; 𝜆𝜃𝑗  are the MA eigenvalues 
and are related to the MA coefficients. The MA eigenvalues (zeros) are 
located at 𝜆𝜃1 = 1

2

(

𝜃1 −
√

𝜃21 + 4𝜃2

)

 and 𝜆𝜃2 = 1
2

(

𝜃1 +
√

𝜃21 + 4𝜃2

)

, 

Gaalman et al. (2022).
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The companion matrix 𝐃 = 𝐃𝜙 has two eigenvalues and two left-
hand eigenvectors. This is written as 𝐔𝐃𝜙 = 𝛬𝜙𝐔, where 𝛬𝜙 is the (2 × 2) 
diagonal matrix of eigenvalues and 𝐔 is the Vandermonde matrix that 
consists of two rows of two eigenvectors: 

𝛬𝜙 =

(

𝜆𝜙1 0
0 𝜆𝜙2

)

=
(

𝜑 0
0 1

)

, 𝐔 =

(

(𝜆𝜙1 )
1 (𝜆𝜙1 )

0

(𝜆𝜙2 )
1 (𝜆𝜙2 )

0

)

=
(

𝜑 1
1 1

)

. (12)

These eigenvalues should be distinct (but they can be conjugate com-
plex) otherwise, the inverse 𝐔−1 does not exist. If some eigenvalues 
are common, extra independent eigenvectors are required. These can 
be found using the Jordan form (see Kailath, 1979). An alternative to 
the Kailath’s approach is to take the 𝑧-transformation of the demand 
process, and using partial fractions, identify the systems poles and 
zeros. The ARMA demand process is written as a transfer function of 
the ratio of output (zeros) to the input (poles) eigenvalues, Gaalman 
et al. (2022).

To write 𝐃𝜙 as a function of the eigenvectors, we get 
𝐃𝜙 = 𝐔−1𝛬𝜙𝐔. (13)

We now need to determine 𝐔−1. There are many approaches avail-
able; we follow Kailath (1979) and Antsaklis and Michel (2005). Con-
sider the matrix 𝐕 of right eigenvectors (𝐕 ≠ 𝐔−1), 

𝐕 =
(

1 0
−(1 + 𝜑) 1

)

(

1 1
𝜆𝜙1 𝜆𝜙2

)

. (14)

Then, 

𝐔−1 = 𝐕
(

𝑠1 0
0 𝑠2

)

, 𝑠𝑙 =
1

∏2
𝑗=1
𝑗≠𝑙

(

𝜆𝜙𝑙 − 𝜆𝜙𝑗
) . (15)

Next the state space form of the demand process (3) will be trans-
formed to an eigenvector form (𝐔𝑦𝑡+1) = 𝛬𝜙(𝐔𝐃𝜙𝑦𝑡) +𝐔𝐆𝜂𝑡 and further 
simplified to 𝜐𝑡+1 = 𝛬𝜙𝜐𝑡 +𝐆𝜆𝜂𝑡, where 

𝐆𝜆 = 𝐔𝐆 =
⎛

⎜

⎜

⎝

∏2
𝑗=1

(

𝜆𝜙1 − 𝜆𝜃𝑗
)

∏2
𝑗=1

(

𝜆𝜙2 − 𝜆𝜃𝑗
)

⎞

⎟

⎟

⎠

=

(

(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2)

(1 − 𝜆𝜃1)(1 − 𝜆𝜃2)

)

. (16)

Then, the demand is rewritten as 𝑑𝑡+1 = 𝐌𝑦𝑡+1 + 𝜂𝑡+1 = 𝐌𝐔−1(𝐔𝑦𝑡+1) +
𝜂𝑡+1. Let 𝐌𝜆 = 𝐌𝐔−1, we get 𝑑𝑡+1 = 𝐌𝜆𝜐𝑡+1 + 𝜂𝑡+1, 

𝐌𝜆 = 𝐌𝐔−1 =
(

𝑠1 𝑠2
)

, 𝑠1 =
1

𝜑 − 1
, 𝑠2 =

1
1 − 𝜑

. (17)

Thus, the eigenvector form of ARIMA(1,1,2) is:
𝜐𝑡+1 = 𝛬𝜙𝜐𝑡 +𝐆𝜆𝜂𝑡, (18)

𝑑𝑡+1 = 𝐌𝜆𝜐𝑡+1 + 𝜂𝑡+1. (19)

Finally, we find the impulse response3 for the ARIMA(1,1,2) demand 
in the eigenvector form to be 

𝑑𝑡+1 = 𝐌𝜆𝛬𝑡𝐆𝜆 =
2
∑

𝑗=1
𝑟𝑗 (𝜆

𝜙
𝑗 )

𝑡, where 𝑟𝑖 =

∏2
𝑗=1

(

𝜆𝜙𝑖 − 𝜆𝜃𝑗
)

∏2
𝑗=1
𝑗≠𝑖

(

𝜆𝜙𝑖 − 𝜆𝜙𝑗
) . (20)

Our study uses the damped trend forecasting method to predict 
ARIMA(1,1,2) demand, as damped trend forecasts are optimal for the 
ARIMA(1,1,2) demand process, Gardner and McKenzie (1985). The 
impulse response for 𝑗-step ahead demand forecast is identical to the 
𝑗-step ahead demand impulse 
𝑑𝑡+1+𝑗 = 𝑟1(𝜑)𝑡+𝑗 + 𝑟2, (21)

where 

𝑟1 =
(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2)

(𝜑 − 1)
, 𝑟2 =

(1 − 𝜆𝜃1)(1 − 𝜆𝜃2)
(1 − 𝜑)

. (22)

3 We use a tilde to indicate an impulse response. The impulse response is 
the system’s response to an impulse input. That is, 𝜂𝑡=0 = 1 and 𝜂𝑡={1,2,3...} = 0. 
The impulse response is also equal to the system’s autocovariance function.
4 
Remark 2.  This derivation assumes the AR eigenvalues are distinct, 
see Remark  1. It also shows the eigenvalues do not need to be stable 
(−1 < 𝜆𝜙𝑗 < 1 is required for stability).

For the OUT policy, Gaalman and Disney (2009) introduced the 
inventory gain component, 

𝐸[0] = 1; 𝐸[𝑙] =
𝑙

∑

𝑗=0
𝑑𝑗 = 1 +

𝑙−1
∑

𝑗=0
𝐌(𝐃𝑗 )𝐆, (23)

which we also use here. We can then rewrite the ARIMA(1,1,2) demand 
impulse response (20) as 
𝑑0 = 1; 𝑑𝑡 = 𝐌𝐃𝑡−1𝐆 = 𝐸[𝑡] − 𝐸[𝑡 − 1],  and 
𝐸[𝑡] = 1 +𝐌(𝐈 − 𝐃)−1(𝐈 − 𝐃𝑡)𝐆.

(24)

Note, 𝑑𝑡+1 = (𝐌𝐃𝑡𝐆).

3. Formulation of the inventory policy

The order 𝑜𝑡 is placed at the end of period 𝑡 (or the beginning of 
period 𝑡+1) with lead time 𝑘 and a review period. This order is received 
and influences the end inventory at time 𝑡 + 𝑘 + 1. Thus, like Gaalman 
(2006) and Gaalman and Disney (2009), we focus on the inventory state 
at 𝑡 + 𝑘 + 1: 
𝑖𝑡+𝑘+1 = 𝑖𝑡+𝑘 + 𝑜𝑡 − 𝑑𝑡+𝑘+1. (25)

𝑘 is a non-negative integer that represents the physical lead time, 𝑘 ∈
N0. As state variables in the future need to be forecasted, we have 
𝑖𝑡+𝑘+1|𝑡+1 = 𝑖𝑡+𝑘|𝑡 + 𝑜𝑡 − 𝑦̂𝑡+𝑘+1|𝑡 − 𝐸[𝑘]𝜂𝑡+1. (26)

From (6) and (9), we can write the demand state forecast made at time 
𝑡 + 1 for 𝑘 + 1 periods ahead: 
𝑦̂𝑡+𝑘+2|𝑡+1 = 𝐃𝑦̂𝑡+𝑘+1|𝑡 + 𝐃𝑘𝐆𝜂𝑡+1. (27)

By this, the forecast state space system for inventory and demand, Gaal-
man and Disney (2009), can be written as 
(

𝑖𝑡+𝑘+1|𝑡+1
𝑦̂𝑡+𝑘+2|𝑡+1

)

=
(

1 −𝐌
0 𝐃

)(

𝑖𝑡+𝑘|𝑡
𝑦̂𝑡+𝑘+1|𝑡

)

+
(

1
0

)

𝑜𝑡 +
(

−𝐸[𝑘]
𝐃𝑘𝐆

)

𝜂𝑡+1 (28)

The order in the POUT policy is 

𝑜𝑡 =
(

−𝑓 0
0 1

)(

𝑖𝑡+𝑘|𝑡
𝑑𝑡+𝑘+1|𝑡

)

. (29)

𝑓 is the proportional feedback controller. 0 ≤ 𝑓 < 2 is required for 
stability, Disney (2008). When 𝑓 = 1, the POUT policy (29) degenerates 
into the OUT policy.

As 𝐌 =
(

1 0
) for ARIMA(1,1,2) demand processes, substituting 

(29) into (28) yields the complete forecast state space recursion for the 
damped trend POUT policy: 
(

𝑖𝑡+𝑘+1|𝑡+1
𝑦̂𝑡+𝑘+2|𝑡+1

)

=
(

(1 − 𝑓 ) 0
0 𝐃

)(

𝑖𝑡+𝑘|𝑡
𝑦̂𝑡+𝑘+1|𝑡

)

+
(

−𝐸[𝑘]
𝐃𝑘𝐆

)

𝜂𝑡+1. (30)

The eigenvalues of this system can be found from the determinant, 

det
(

(1 − 𝑓 ) − 𝜆 0
0 𝐃 − 𝐈𝑚𝜆

)

= 0. (31)

Solving ((1 − 𝑓 ) − 𝜆)(𝐃 − 𝐈𝑚𝜆) = 0 gives us the eigenvalue 𝜆1 = (1 − 𝑓 )
and the two eigenvalues of the ARIMA(1,1,2) demand 𝐃 ∶ 𝜆𝜙1  and 𝜆

𝜙
2 . 

Since 0 < 𝑓 < 2, −1 < 𝜆1 = (1− 𝑓 ) < 1 means the real 𝜆1 lies within the 
stability area, the unit circle in the complex plane.4

4. Expressions for variances

Before deriving the order and inventory variance expressions, we 
first study the variance of demand. The demand at time 𝑡+𝑘+1, 𝑑𝑡+𝑘+1, 

4 Note: The alternative formulation of the POUT policy is given the liter-
ature: 𝑜𝑡 = 𝑑𝑡+𝑘+1|𝑡 + 𝑓

(

𝑖⋆ − 𝑖𝑡 +
∑𝑘

𝑖=1 𝑑𝑡+𝑘+𝑖|𝑡 −
∑𝑘

𝑖=1 𝑜𝑡−𝑖
)

. Here 𝑖⋆ is the target 
inventory (safety stock).
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can be formulated as a function of the forecast 𝑑𝑡+𝑘+1|𝑡 made at time 𝑡
for 𝑑𝑡+𝑘+1, 

𝑑𝑡+𝑘+1 = 𝑑𝑡+𝑘+1|𝑡+𝑘 + 𝜂𝑡+𝑘+1 = 𝑑𝑡+𝑘+1|𝑡 + 𝜂𝑡+𝑘+1 +
𝑘−1
∑

𝑗=0
𝐌(𝐃𝑗 )𝐆𝜂𝑡+𝑘−𝑗 . (32)

Remark 3.  As 𝑑𝑡+𝑘+1|𝑡 is a function of {𝜂𝑡, 𝜂𝑡−1, 𝜂𝑡−2,…} and the error 
terms in (32) are a function of {𝜂𝑡+𝑘+1, 𝜂𝑡+𝑘,… , 𝜂𝑡+1}, the components 
in (32) are uncorrelated.

Due to Remark  3, the demand variance in period 𝑡 + 𝑘 + 1 is given 
by 

V[𝑑𝑡+𝑘+1] = V[𝑑𝑡+𝑘+1|𝑡] + V[𝜂]

(

1 +
𝑘−1
∑

𝑗=0
(𝐌𝐃𝑗𝐆)2

)

= V[𝑑𝑡+𝑘+1|𝑡] + V[𝜂]

(

1 +
𝑘−1
∑

𝑗=0
(𝑑𝑗 )2

)

.

(33)

Remark 4.  As 𝑑𝑡+𝑘+1|𝑡 contains an infinite number of error terms 
(Remark  3), the first component in (33), V[𝑑𝑡+𝑘+1|𝑡], is infinite. The 
second component in (33), ∑𝑘−1

𝑗=0 (𝑑𝑗 )
2V[𝜂], is a finite sum. The demand 

variance V[𝑑𝑡+𝑘+1] is infinite.

4.1. Inventory variance

Eq. (30) shows that the inventory forecast 𝑖𝑡+𝑘+1|𝑡+1 = (1 − 𝑓 )𝑖𝑡+𝑘|𝑡 −
𝐸[𝑘]𝜂𝑡+1 is stable. As V[𝑖𝑡+𝑘+1|𝑡+1] ≡ V[𝑖𝑡+𝑘|𝑡], the variance of ̂𝑖𝑡+𝑘+1|𝑡+1 is 

V[𝑖𝑡+𝑘+1|𝑡+1] =
(

1
𝑓 (2 − 𝑓 )

)

(𝐸[𝑘])2V[𝜂]. (34)

The inventory can be written as 
𝑖𝑡+𝑘+1 = 𝑖𝑡+𝑘+1|𝑡 + (𝑖𝑡+𝑘+1 − 𝑖𝑡+𝑘+1|𝑡), (35)

where (𝑖𝑡+𝑘+1 − 𝑖𝑡+𝑘+1|𝑡) = −
∑𝑘+1

𝑗=1 (𝑑𝑡+𝑗 − 𝑑𝑡+𝑗|𝑡) = −
∑𝑘+1

𝑗=1 𝐸[𝑘+ 1− 𝑗]𝜂𝑡+𝑗 . 
The component, (𝑖𝑡+𝑘+1 − 𝑖𝑡+𝑘+1|𝑡), is the inventory forecast error and is 
uncorrelated with the inventory forecast, Gaalman and Disney (2009). 
We then obtain the variance for the inventory forecast error 

V[𝑖𝑡+𝑘+1 − 𝑖𝑡+𝑘+1|𝑡] =
𝑘
∑

𝑙=0
(𝐸[𝑙])2V[𝜂], (36)

where 

𝐸[𝑙] =
𝜃2 + 𝜑𝑙 (𝜑(𝜑 − 𝜃1) − 𝜃2

)

+ 𝑙(𝜑 − 1)(𝜃1 + 𝜃2 − 1) + 𝜑(𝜃1 − 2) + 1
(𝜑 − 1)2

.

(37)

In the OUT case, ̂𝑖𝑡+𝑘+1|𝑡 = 0. However in the POUT case, ̂𝑖𝑡+𝑘+1|𝑡 ≠ 0. 
Consider (30) and (36), the inventory forecast variance in the POUT 
policy can be obtained 

V[𝑖𝑡+𝑘+1|𝑡] = (1 − 𝑓 )2V[𝑖𝑡+𝑘|𝑡] =
(

(1 − 𝑓 )2

𝑓 (2 − 𝑓 )

)

(𝐸[𝑘])2V[𝜂]. (38)

The POUT policy’s inventory variance then becomes 

V[𝑖𝑡+𝑘+1|POUT] = V[𝜂]

(

(

1
𝑓 (2 − 𝑓 )

)

(𝐸[𝑘])2 +
𝑘−1
∑

𝑙=0
(𝐸[𝑙])2

)

. (39)

When 𝑓 = 1, V[𝑖𝑡+𝑘+1|OUT] = 𝐸[𝑘]2 +
∑𝑘−1

𝑙=0 𝐸[𝑙]2V[𝜂] =
∑𝑘

𝑙=0 𝐸[𝑙]2V[𝜂], 
which concurs with the OUT case. The function (𝑓 (2 − 𝑓 ))−1 is positive 
and is convex in 𝑓 with a minimum of 1 at 𝑓 = 1 and asymptotes 
to infinity at 𝑓 = 0 and 𝑓 = 2. Thus, the OUT policy’s inven-
tory variance is the minimal case of the POUT policy. The deriva-
tive, 𝑑 (

V[𝑖𝑡+𝑘+1|POUT]
)

∕𝑑𝑓 also confirms this; details are provided in 
Appendix  A. The difference 

V[𝑖𝑡+𝑘+1|POUT] − V[𝑖𝑡+𝑘+1|OUT] =
(𝑓 − 1)2

𝑓 (2 − 𝑓 )
(𝐸[𝑘])2V[𝜂] > 0, (40)

also verifies these claims.
5 
4.2. Covariance of demand forecast and inventory forecast

The state space expression (30) shows that both 𝑖𝑡+𝑘+1|𝑡+1 and 
𝑦̂𝑡+𝑘+2|𝑡+1 have the same error component 𝜂𝑡+1. Then we have 

cov[𝑖𝑡+𝑘+1|𝑡+1, 𝑦̂𝑡+𝑘+2|𝑡+1] = ((1 − 𝑓 )𝐃) cov[𝑖𝑡+𝑘|𝑡, 𝑦̂𝑡+𝑘+1|𝑡]. (41)

The inventory is a scalar, thus an alternative expression is
cov[𝑦̂𝑡+𝑘+2|𝑡+1, 𝑖𝑡+𝑘+1|𝑡+1]

= ((1 − 𝑓 )𝐃) cov[𝑦̂𝑡+𝑘+1|𝑡, 𝑖𝑡+𝑘|𝑡] − (𝐃𝑘𝐆)𝐸[𝑘]V[𝜂]. (42)

In the OUT case (𝑓 = 1), cov[𝑦̂𝑡+𝑘+2|𝑡+1, 𝑖𝑡+𝑘+1|𝑡+1] = −(𝐃𝑘𝐆)𝐸[𝑘]V[𝜂]. 
Given infinite past observations, cov[𝑦̂𝑡+𝑘+2|𝑡+1, 𝑖𝑡+𝑘+1|𝑡+1] ≡ cov[𝑦̂𝑡+𝑘+1,𝑡,
𝑖𝑡+𝑘|𝑡] holds. Then we obtain 

cov[𝑦̂𝑡+𝑘+1|𝑡, 𝑖𝑡+𝑘|𝑡] = −(𝐈𝑚 − (1 − 𝑓 )𝐃)−1(𝐃𝑘𝐆)𝐸[𝑘]V[𝜂]. (43)

Thus, the covariance between the demand forecast and the inventory 
forecast is 
cov[𝑑𝑡+𝑘+1|𝑡, 𝑖𝑡+𝑘|𝑡] = 𝐌cov[𝑦̂𝑡+𝑘+1|𝑡, 𝑖𝑡+𝑘|𝑡] = −𝑊 [𝑓, 𝑘]𝐸[𝑘]V[𝜂], (44)

where 
𝑊 [𝑓, 𝑘] = 𝐌((𝐈𝑚 − (1 − 𝑓 )𝐃)−1𝐃𝑘)𝐆. (45)

The (𝐈𝑚−(1−𝑓 )𝐃)−1 in (45) is the Woodbury matrix identity, Woodbury 
(1950), (𝐴−𝐵)−1 =

∑∞
𝑗=0(𝐴

−1𝐵)𝑗𝐴−1. Let 𝐴 = 𝐈𝑚 and 𝐵 = (1−𝑓 )𝐃, then 

(𝐈𝑚 − (1 − 𝑓 )𝐃)−1 =
∞
∑

𝑗=0
((1 − 𝑓 )𝐃)𝑗 . (46)

Substituting (13) into the above equation, we have 

(𝐈𝑚 − (1 − 𝑓 )𝐃)−1 = 𝐔−1
∞
∑

𝑗=0

(

((1 − 𝑓 )𝜆𝜙1 )
𝑗

0 ((1 − 𝑓 )𝜆𝜙2 )
𝑗

)

𝐔. (47)

As −1 < (1 − 𝑓 )𝜆𝜙𝑖 < 1, the infinite summation ∑∞
𝑗=0((1 − 𝑓 )𝜆𝜙𝑖 )

𝑗 =
(1 − (1 − 𝑓 )𝜆𝜙𝑖 )

−1. Thus, 

𝑊 [𝑓, 𝑘] = 𝐌((𝐈𝑚 − (1 − 𝑓 )𝐃)−1𝐃𝑘)𝐆 =
2
∑

𝑖=1

𝑟𝑖(𝜆
𝜙
𝑖 )

𝑘

1 − (1 − 𝑓 )𝜆𝜙𝑖
. (48)

Substituting (22) into (48), the 𝑊 [𝑓, 𝑘] in the POUT policy, when the 
damped trend mechanism produces optimal forecasts of the ARIMA
(1,1,2) demand, becomes 

𝑊 [𝑓, 𝑘] =

(

(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2)
(𝜑 − 1)

)

(

(𝜑)𝑘

1 − (1 − 𝑓 )𝜑

)

+
(1 − 𝜆𝜃1)(1 − 𝜆𝜃2)

(1 − 𝜑)(1 − (1 − 𝑓 ))
.

(49)

4.3. Order variance

From (29), the order variance expression can be written as 
V[𝑜𝑡] = V[𝑑𝑡+𝑘+1|𝑡] − 2𝑓cov[𝑑𝑡+𝑘+1|𝑡, 𝑖𝑡+𝑘|𝑡] + 𝑓 2V[𝑖𝑡+𝑘|𝑡]. (50)

We have shown that 𝑑𝑡+𝑘+1|𝑡 and 𝑖𝑡+𝑘|𝑡 are correlated. Substitution of 
the inventory forecast variance (34) and the covariance (44) results in 

V[𝑜𝑡] = V[𝑑𝑡+𝑘+1|𝑡] + 2𝑓𝑊 [𝑓, 𝑘]𝐸[𝑘]V[𝜂] +
(

𝑓
2 − 𝑓

)

(𝐸[𝑘])2V[𝜂]. (51)

Substituting (49) into (51), the order variance in the POUT policy 
becomes

V[𝑜𝑡] = V[𝑑𝑡+𝑘+1|𝑡] + 2
2
∑

𝑖=1

(

𝑓

1 − (1 − 𝑓 )𝜆𝜙𝑖

)

𝑟𝑖(𝜆
𝜙
𝑖 )

𝑘𝐸[𝑘]V[𝜂]

+
(

𝑓
2 − 𝑓

)

(𝐸[𝑘])2V[𝜂]. (52)

The order variance is also infinite due to the infinite V[𝑑𝑡+𝑘+1|𝑡]. The 
remainder of the components in the order variance function are finite.
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Fig. 2. The possible eigenvalue orderings. Panel a: All possible eigenvalue ordering for second order systems. Panel b: Possible eigenvalue orderings for ARIMA(1,1,2).
𝑜

5. Comparison of bullwhip effect produced by the OUT and POUT 
policies

The order impulse response of the OUT policy under ARIMA(1,1,2) 
demand consists of two components. When 𝑡 = 0, 𝑜̃0 is the sum of the 
first 𝑘 + 1 demand impulses; when 𝑡 > 0, the order impulse is identical 
to the (𝑘 + 1) period-ahead demand impulse 𝑜̃𝑡 = 𝑑𝑡+𝑘+1, 

𝑜̃𝑡 =

{

∑𝑘+1
𝑡=0 𝑑𝑡 = 𝐸[𝑘 + 1], if 𝑡 = 0,

𝑑𝑡+𝑘+1 = 𝑟1𝜑𝑡+𝑘 + 𝑟2, if 𝑡 > 0.
(53)

As the demand variance for ARIMA(1,1,2) is infinite, we measure 
bullwhip as the difference between the order variance and the demand 
variance, 𝐶𝐵[𝑘] = V[𝑜𝑡] − V[𝑑𝑡+𝑘+1]. This leads to the cancellation of 
the infinite component, V[𝑑𝑡+𝑘+1|𝑡], in the functions V[𝑜𝑡] and V[𝑑𝑡+𝑘+1], 
leaving a finite bullwhip measure for analysis: 

𝐶𝐵[𝑘|OUT] = V[𝜂]

(

2(𝑟2 + 𝑟1𝜑
𝑘)𝐸[𝑘] + (𝐸[𝑘])2 −

(

1 +
𝑘−1
∑

𝑗=0
(𝑑𝑗 )2

))

.

(54)

For the POUT policy, the bullwhip difference can be written as

𝐶𝐵[𝑘|POUT] = V[𝜂]
(

2𝑓𝑊 [𝑓, 𝑘]𝐸[𝑘] +
(

𝑓
2 − 𝑓

)

(𝐸[𝑘])2

−

(

1 +
𝑘−1
∑

𝑗=0
(𝑑𝑗 )2

))

(55)

= V[𝜂]

(

2
2
∑

𝑖=1

(

𝑓

1 − (1 − 𝑓 )𝜆𝜙𝑖

)

𝑟𝑖(𝜆
𝜙
𝑖 )

𝑘𝐸[𝑘]

+
(

𝑓
2 − 𝑓

)

(𝐸[𝑘])2 −

(

1 +
𝑘−1
∑

𝑗=0
(𝑑𝑗 )2

))

.

To compare the bullwhip between POUT and OUT policies, we measure 
𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] = V[𝑜𝑡|OUT] − V[𝑜𝑡|POUT]. Using (54) and 
(55), 

𝐶𝐵[𝑘|OUT]−𝐶𝐵[𝑘|POUT] = 2(1−𝑓 )𝐸[𝑘]
(

𝐸[𝑘]
2 − 𝑓

+
𝑟1(1 − 𝜑)𝜑𝑘

1 − (1 − 𝑓 )𝜑

)

V[𝜂].

(56)

Note, 𝜆𝜙1 = 𝜑, thus, when 𝜑 < 0 an odd-even lead time effect can be 
directly observed from (54), (55), and (56). Further note when 𝑓 = 1, 
𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] = 0

Li et al. (2023) show that ARIMA(1,1,2) eigenvalues (the poles and 
zeros) have three orderings, A, B, and F, out of 6 possible cases, see 
Fig.  2, Gaalman et al. (2022). Note, the zeros of Type A and B, 𝜆𝜃1, 𝜆𝜃2, 
can be negative or positive. With knowledge of (22), we can deduce 
the following Lemma. 

Lemma 5.1.  For Type A ARIMA(1,1,2) demand, 𝑟2 > 0 and 𝑟1 < 0; for 
Type B demand, 𝑟 > 0 and 𝑟 > 0; and for Type F, 𝑟 > 0 and 𝑟 < 0.
2 1 2 1

6 
Proof.  The proof of Lemma  5.1 can be found in Gaalman et al. 
(2022). □

We will now examine each Type (A, B, and F) of the ARIMA(1,1,2) 
demand process in detail, studying their impulse response and investi-
gating the OUT and POUT policy’s bullwhip performance.

5.1. Type A ARIMA(1,1,2) demand

When the eigenvalues are ordered zero-zero-pole-pole, we have 
Type A ARIMA(1,1,2) demand. 

Lemma 5.2.  The demand impulse response 𝑑𝑡 is always positive for Type 
A ARIMA(1,1,2) processes.

Proof.  Observe from Fig.  2 (Type A), we know that the distance 
between 𝜆𝜙2 = 1 and 𝜆𝜃1 is greater than the distance between 𝜆

𝜙
1 = 𝜑 and 

𝜆𝜃1, that is (1−𝜆𝜃1) > (𝜑−𝜆𝜃1) > 0. Similarly, we have (1−𝜆𝜃2) > (𝜑−𝜆𝜃2) > 0. 
Rewriting (20) as 

𝑑𝑡+1 =
(1 − 𝜆𝜃1)(1 − 𝜆𝜃2) − (𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2)𝜑

𝑡

(1 − 𝜑)
, (57)

and knowing that |𝜑𝑡
| < 1 and 𝑑0 = 1, ∀𝑡 ∈ N0, 𝑑𝑡+1 > 0 is proved. □

For Type A, Lemma  5.2 holds for both positive and negative 𝜑, recall 
−1 < (𝜑 = 𝜆𝜙1 ) < 1. A positive demand impulse response means the 
OUT policy creates a bullwhip effect that always increases in the lead 
time, Gaalman et al. (2022). When 𝜑 > 0 the Type 𝐴1 is present in the 
taxonomy of Gaalman et al. (2022); when 𝜑 < 0 Type 𝐴2𝑖 is present. 
The other instances of Type A second order systems are not possible as 
always 𝜆𝜙2 = 1 for ARIMA(1,1,2) demand. 

Lemma 5.3.  For Type A ARIMA(1,1,2) demand, 𝐸[𝑘] > 0.

Proof.  This can be proved directly by recalling 𝐸[𝑘] =
∑𝑘

𝑡=0 𝑑𝑡 and 
𝑑𝑡 > 0. □

Gaalman et al. (2022) finds the demand impulse for ARMA(2,2) is 
positive for the Type 𝐴1 case 

(

𝜆𝜙1 = 𝜑
)

> 0 but is not always positive 
for (𝜆𝜙1 = 𝜑) < 0. We show for any Type A ARIMA(1,1,2) demand, 
the demand impulse is always positive. The difference for negative 𝜑 is 
due to the second ARIMA(1,1,2) pole being at unity, 𝜆𝜙2 = 1. Then, 
the OUT’s order impulse response 𝑜̃𝑡 = 𝐸[𝑘 + 1] > 0. When 𝑡 > 0, 
̃𝑡 = 𝑑𝑡+𝑘+1 > 0, as assured by Lemma  5.2. Therefore, we conclude 
the OUT policy’s order impulse response is always positive for Type 
A ARIMA(1,1,2) demand.

For Type A ARIMA(1,1,2) demand, the proportional controller in 
the POUT policy value needs to be carefully tuned based on the 
eigenvalues of the demand process in order to reduce bullwhip. As 
𝑟1 < 0, 𝐸[𝑘] > 0, it is possible that (56) is negative (that is, it is possible 
that 𝐶𝐵[𝑘|POUT] > 𝐶𝐵[𝑘|OUT]). Solving 𝐶𝐵[𝑘|OUT]−𝐶𝐵[𝑘|POUT] > 0
(see (56)) for 𝑓 while 0 ≤ 𝑓 < 2, we obtain,
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Table 1
The value of the lower bound in 𝑓 for different 𝑘 within the Type A ARIMA(1,1,2) parameter sets.
 Parameters Lead time 𝑘
 𝜑 𝜃1 𝜃2 0 1 2 3 4 5 6 7 8 9 10  
 −0.6 −1.4 −0.5 0 0 0 0 0 0 0 0 0 0 0  
 −0.1 −1.77 −0.78 0.25 0 0 0 0 0 0 0 0 0 0  
 0.5 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0  
 0.75 0.1 0.05 0.53 0 0 0 0 0 0 0 0 0 0  
 0.9 0.3 0.01 0.67 0.25 0.08 0.01 0 0 0 0 0 0 0  
 0.99 0.4 0.1 0.65 0.31 0.18 0.11 0.08 0.06 0.04 0.03 0.02 0.02 0.01 
Theorem 5.4.  Define 𝑓 ′ as 

𝑓 ′ =
(𝜑 − 1)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘)

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 . (58)

For positive 𝜑, if 𝑓 |0≤𝑓<1 > 𝑓 ′ or 𝑓 |1<𝑓<2 < 𝑓 ′, then 𝐶𝐵[𝑘|𝑃𝑂𝑈𝑇 ] <
𝐶𝐵[𝑘|𝑂𝑈𝑇 ]. When 𝜑 is negative, 𝑓 |0≤𝑓<1 > 𝑓 ′ for 𝑘 = 0. When 𝑘 > 0, 
any 0 ≤ 𝑓 < 1 ensures 𝐶𝐵[𝑘|𝑃𝑂𝑈𝑇 ] < 𝐶𝐵[𝑘|𝑂𝑈𝑇 ].

Proof.  The proof of Theorem  5.4 is given in Appendix  B. □

Expanding out 𝐸[𝑘] and simplifying 𝑓 ′,

𝑓 ′ =

(𝜑 − 1)
(

𝜃2 + (2𝜑 − 1)𝜑𝑘 (𝜑2 − 𝜃1𝜑 − 𝜃2
)

+ 𝑘(𝜑 − 1)(𝜃1 + 𝜃2 − 1) + (𝜃1 − 2)𝜑 + 1
)

((𝜑 − 1)𝜑 + 1)𝜑𝑘
(

𝜑2 − 𝜃1𝜑 − 𝜃2
)

+ 𝜑(𝜃2 + 𝑘(𝜑 − 1)(𝜃1 + 𝜃2 − 1) + (𝜃1 − 2)𝜑 + 1)
.

(59)
Both the numerator and denominator of (59) contain a term that 

is linear in 𝑘, and also a term that is either: decreasing or increasing 
in 𝑘 when 𝜑 > 0, or is oscillating in 𝑘 when 𝜑 < 0, or is zero when 
𝜑 = 0. Note, when 𝜑 = 0 the ARIMA(1,1,2) demand degenerates into an 
ARIMA(0,1,2) process. Some numerical examples of the lower bound in 
𝑓 for some Type A ARIMA(1,1,2) demand processes are shown in Table 
1.

We also derive a sufficient condition of the lead time 𝑘, that ensures 
𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT] for Type A ARIMA(1,1,2) demand with any 
0 ≤ 𝑓 < 1: 

𝑘min >
𝜑 − 2
𝜑 − 1

−
𝑊

[

𝜑
1

1−𝜑+2 log[𝜑](1 − 𝜑)−1
]

log[𝜑]
. (60)

Here, 𝑊 [⋅] is the Lambert W function, Disney and Warburton (2012). 
The feasibility of the POUT policy can be evaluated by considering 
both the demand and the organisation’s lead time (60). Theorem  5.4 
informs the selection of a proportional feedback controller value that 
targets the desired bullwhip performance. The POUT policy may not 
always be dynamically superior to the OUT policy. However, Theorem 
5.4 and (60) can be used to define a POUT policy that surpasses the 
OUT policy’s bullwhip performance.

Fig.  3 illustrates an example of Type 𝐴1 ARIMA(1,1,2) demand 
process when 𝜑 = 0.9, 𝜃1 = −1.7, and 𝜃2 = −0.72; note the signed log 
scale on the 𝑦-axis. The corresponding eigenvalues in Panel a are 𝜆𝜙1 =
0.9, 𝜆𝜙2 = 1, 𝜆𝜃1 = −0.9, and 𝜆𝜃2 = −0.8. In Panel b, the demand impulse 
originates from unity and increases. Tyspkin’s relation (Tsypkin, 1964; 
Disney and Towill, 2003; Boute et al., 2022), reveals both the demand 
and order variances are infinite (as they are equal to the sum of the 
squared impulse response over all non-negative 𝑡).

In addition, we observe the OUT’s order impulse response is larger 
than the demands impulse response. This implies the OUT policy 
generates the bullwhip effect, confirming our previous analysis. The 
OUT’s order impulse response is a tick shape, initially rising above the 
POUT’s order impulse response before falling below it. However, using 
the figure alone, it is unclear whether the POUT policy will generate 
more or less bullwhip than the OUT policy. Instead, we must resort to 
the test in Theorem  5.4.

Fig.  3c illustrates the difference in the bullwhip between these 
two policies; note, the signed log scale on the 𝑦-axis. For 𝑘 = 0, 
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𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] < 0 for all 0 ≤ 𝑓 < 1. That is, the POUT 
policy always generates more bullwhip than the OUT policy for Type 
A ARIMA(1,1,2) demand when 𝑘 = 0 and 0 ≤ 𝑓 < 1. For 𝑘 = 5, 
as predicted by (60), any POUT policy with proportional controller 
0 ≤ 𝑓 < 1 exhibits less bullwhip than the OUT policy. Fig.  3c also 
suggests when 1 < 𝑓 < 2, the POUT policy exhibits limited efficacy 
at mitigating the bullwhip effect compared to the OUT policy across a 
wide range of lead-times (only for 𝑘 = 0 does the POUT policy exhibit 
less bullwhip that the OUT policy; even than, it is only for a small range 
of 𝑓 > 1.) In addition, unlike the i.i.d. or AR(1) demand cases where 
𝑓 → 0 reduces the bullwhip significantly, a lower 𝑓 value might result 
in higher bullwhip in the POUT policy than the OUT policy for Type 
A ARIMA(1,1,2) demand with small lead times. These observations 
corroborate our prior analysis, underscoring the critical role of the 
lead time and the proportional feedback controller at mitigating the 
bullwhip effect within the POUT policy. Fig.  3d shows the impact 
of lead time on the bullwhip effect, confirming Panels b and c. Both 
policies generate bullwhip that increases in the lead time.

5.2. Type B ARIMA(1,1,2) demand

When the eigenvalues are ordered zero-pole-zero-pole, we have 
Type B ARIMA(1,1,2) demand. 

Lemma 5.5.  The demand impulse response 𝑑𝑡 is always positive for Type 
B ARIMA(1,1,2) processes with non-negative 𝜑. When 𝜑 < 0, 𝜑 > −𝑟2∕𝑟1
ensures demand impulse is always positive. When 𝜑 < 0 and 𝜑 < −𝑟2∕𝑟1 the 
demand impulse response is initially oscillating positive and negative, before 
becoming and remaining positive.

Proof.  For non-negative 𝜑, this is the 𝐵1 case in Gaalman et al. (2022). 
Here, (1 − 𝜆𝜃1)(1 − 𝜆𝜃2) > 0 and (𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2) < 0. These facts, in 
conjunction with 𝑑0 = 1, reveal 𝑑𝑡 > 0. For negative 𝜑, as −𝜑 < 1, the 
positivity of the demand impulse is determined by the sign of 𝑑𝑡+1 at 
𝑡 = 1. If (𝜆𝜙1 ∕𝜆

𝜙
2 )

1 > −𝑟2∕𝑟1, 𝑑2 > 0 and all subsequent 𝑑𝑡+1 > 0. This is 
equivalent to the 𝐵2𝑖𝑎 case in Gaalman et al. (2022). □

The always positive demand impulse implies that the OUT pol-
icy generates bullwhip that increases in the lead time for Type B 
ARIMA(1,1,2) demand. When 𝜑 < −𝑟2∕𝑟1, the case 𝐵2𝑖𝑏 in Gaalman 
et al. (2022) is present. In this case, demand is initially oscillating 
positive and negative, implying the OUT policy exhibits an odd-even 
lead time effect in the bullwhip effect. That is, and increase in the lead 
time can result in a larger or smaller amount of bullwhip, depending 
on the parity of the lead time. When the lead time is sufficiently large, 
the bullwhip always increases in the lead time. The other 𝐵 cases 
in Gaalman et al. (2022) are not possible under ARIMA(1,1,2) demand.

Lemma 5.6.  For Type B ARIMA(1,1,2) demand, 𝐸[𝑘] > 0.

Proof.  Expanding (23), 

𝐸[𝑘] = 1 + 𝑘𝑟2 +
1 − 𝜑𝑘

1 − 𝜑
𝑟1. (61)

It is easy to notice that 1−𝜑𝑘

1−𝜑 ≥ 0. Considering {𝑟1, 𝑟2} > 0 for Type B 
ARIMA(1,1,2) demand and 𝑘 ≥ 0, 𝐸[𝑘] > 0. □
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Fig. 3. Bullwhip analysis for Type 𝐴1 ARIMA(1,1,2) demand.
Lemma  5.6 implies 𝑑0 is increasing in 𝑘. 

Lemma 5.7.  For Type B ARIMA(1,1,2) demand, the lower bound of 
𝐸[𝑘] + 2𝑟1𝜑𝑘 is 12 + 𝑘𝑟2; that is 𝐸[𝑘] + 2𝑟1𝜑𝑘 ≥ 1

2 + 𝑘𝑟2.

Proof. 

𝐸[𝑘] + 2𝑟1𝜑𝑘 = 1 +
𝑟1

(

1 − 2𝜙𝑘+1 + 𝜙𝑘)

1 − 𝜙
+ 𝑘𝑟2 (62)

= 1 +
(𝜑 − 𝜆𝜃1)(𝜆

𝜃
2 − 𝜑)(1 − 2𝜙𝑘+1 + 𝜙𝑘)

(1 − 𝜑)2
+ 𝑘𝑟2 (63)

For Type B ARIMA(1,1,2) demand, 0 < (𝜑−𝜆𝜃1)(𝜆
𝜃
2−𝜑) < 1. When 𝜑 > 0, 

1−2𝜙𝑘+1+𝜙𝑘

(1−𝜑)2 > 1. When −1 ≤ 𝜑 < 0 and 𝑘 = 0, 1 ≤ 1−2𝜙𝑘+1+𝜙𝑘

(1−𝜑)2 < 2. When 
−1 ≤ 𝜑 < 0 and 𝑘 is even, 0 < 1−2𝜙𝑘+1+𝜙𝑘

(1−𝜑)2 < 1. When −1 ≤ 𝜑 < 0

and 𝑘 is odd, −0.5 ≤ 1−2𝜙𝑘+1+𝜙𝑘

(1−𝜑)2 < 1. Thus, we can deduce that 
(

1 +
(𝜑−𝜆𝜃1 )(𝜆

𝜃
2−𝜑)(1−2𝜙

𝑘+1+𝜙𝑘)
(1−𝜑)2

)

≥ 0.5. 𝐸[𝑘]+2𝑟1𝜑𝑘 ≥ 1
2+𝑘𝑟2 is proved. □

Both Lemmas  5.6 and 5.7 provide important properties of Type B 
ARIMA(1,1,2) demand that will be used in the following Theorem. 

Theorem 5.8.  For 𝜑 > 0 or for 𝜑 < 0 with even lead time 𝑘, 0 ≤
𝑓 < 1 leads to 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT], while 1 < 𝑓 < 2 results in 
𝐶𝐵[𝑘|POUT] > 𝐶𝐵[𝑘|OUT]. For 𝜑 < 0 with odd lead time 𝑘, it is always 
that 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT] if 0 ≤ 𝑓 < 1.

Proof.  When 𝜑 > 0 or 𝜑 < 0 with even lead time 𝑘, 𝜑𝑘 > 0. In 
addition, 1 − (1 − 𝑓 )𝜑 > 0, and 2 − 𝑓 > 0 when 0 ≤ 𝑓 < 2. We also 
have shown, for Type B ARIMA(1,1,2) demand, 𝑟1 > 0 and via Lemma 
5.6, 𝐸[𝑘] > 0. Then, the sign of 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0 (the 
sign of (56)) is only determined by the sign of (1 − 𝑓 ). Thus, when 
0 ≤ 𝑓 < 1, 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0, and when 1 < 𝑓 < 2, 
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𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] < 0 are proved for Type B ARIMA(1,1,2) 
demand with positive 𝜑 as well as negative 𝜑 with even lead time 𝑘.

Next, we study the Type B ARIMA(1,1,2) demand case with 𝜑 < 0
and odd lead time 𝑘. When 𝑓 = 1, (56) = 0. When 𝑓 = 0, (56) reduces 
to 

𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] = 2𝐸[𝑘]
(

𝐸[𝑘]
2

+ 𝑟1𝜑
𝑘
)

V[𝜂]. (64)

Consider 𝑘 ∈ N0 and 𝑟2 > 0 for Type B ARIMA(1,1,2) demand, and 
Lemma  5.7, we conclude 𝐶𝐵[𝑘|OUT]−𝐶𝐵[𝑘|POUT] > 0 at 𝑓 = 0. Then, 
we investigate the sign of (56) in the open interval 0 < 𝑓 < 1. Rewrite 
(56) as 

𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] = 2(1 − 𝑓 )𝐸[𝑘]
(

ℎ[𝑓 ]
𝑔[𝑓 ]

)

V[𝜂], (65)

where 
ℎ[𝑓 ]
𝑔[𝑓 ]

=
𝑓
(

−𝐸[𝑘]𝜙 − 𝑟1𝜑𝑘+1 + 𝑟1𝜑𝑘) + (𝜑 − 1)
(

𝐸[𝑘] + 2𝑟1𝜑𝑘)

𝑓 2𝜑 + 𝑓 (1 − 3𝜑) + 2𝜙 − 2
. (66)

𝑔[𝑓 ] and ℎ[𝑓 ] are univariate polynomials of 𝑓 with real coefficients. 
Let 𝑣[𝑔] denote the number of sign variations in the sequence of the 
coefficients of 𝑔[𝑓 ]. Also, let 𝑣𝜏 [𝑔] denote the number of sign variations 
in the sequence of the coefficients of the polynomial 𝑔[𝑓 + 𝜏]. Thus, 
𝑔[𝑓 + 0] = 𝑔[𝑓 ]. 𝑔[0] = −2 + 2𝜑 < 0 when −1 < 𝜑 < 0; 𝑔[1] = −1, and 
𝑣0[𝑔] − 𝑣1[𝑔] = 2 − 2 = 0. Budan’s Theorem suggests there are no real 
roots for the polynomial 𝑔[𝑓 ] in the open interval (0, 1) and 𝑔[𝑓 ] < 0. 
ℎ[0] = (𝜑 − 1)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘) < 0, due to Lemma  5.7.
ℎ[1] = 𝑟1(𝜑 − 1)𝜑𝑘 − 𝐸[𝑘]

= −

(

1 +
(𝜑 − 𝜆𝜃1)(𝜆

𝜃
2 − 𝜑)(1 − 2𝜑𝑘+1 + 𝜑𝑘+2)

(1 − 𝜑)2
+ 𝑘𝑟2

)

. (67)

As −0.5 ≤ 1−2𝜑𝑘+1+𝜑𝑘+2

(1−𝜑)2 < 1 for −1 ≤ 𝜑 < 0 and 𝑘 even, ℎ[1] < 0. 
𝑣 [ℎ] − 𝑣 [ℎ] = 0 − 0 = 0. Budan’s Theorem suggests there are no real 
0 1
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Fig. 4. Bullwhip analysis for Type 𝐵1 ARIMA(1,1,2) demand.
roots for the polynomial ℎ[𝑓 ] in the interval 0 ≤ 𝑓 < 1 and ℎ[𝑓 ] < 0. 
Since {ℎ[𝑓 ], 𝑔[𝑓 ]} < 0 in the interval 0 < 𝑓 < 1, we know (66) > 0, 
thus, (65) > 0. This means 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0 for Type B 
ARIMA(1,1,2) demand with negative 𝜑 and odd 𝑘 when 0 ≤ 𝑓 < 1. □

Fig.  4 presents an example of Type 𝐵1 ARIMA(1,1,2) demand where 
𝜑 = 0.3, 𝜃1 = −0.4, and 𝜃2 = 0.32. In this case, we have one zero on the 
left 𝜆𝜃1 = −0.8, followed by a pole 𝜆𝜙1 = 0.3, the second zero 𝜆𝜃2 = 0.4, 
and the second pole 𝜆𝜙2 = 1, see Panel a.

Fig.  4b illustrates the demand impulse starts from unity, increases, 
and then drops to a fixed level. The POUT policy order impulse re-
sponse starts from a higher value than the demand impulse response, 
decreases and approaches the demand impulse response over time. The 
OUT policy order impulse response starts from a much higher value, 
then drops significantly to slightly under the demand impulse response, 
which it then approaches over time. Thus, we expect both POUT and 
OUT to generate bullwhip, as their order variances will likely be larger 
than the demand variance. The POUT policy generates less bullwhip 
than the OUT policy, as the OUT policy will be penalised by its very 
large impulse response at time 𝑡 = 0.

Fig.  4c confirms that the bullwhip difference is always positive when 
the proportional controller 𝑓 is between 0 and 1. There is always 
less bullwhip in the POUT policy than the OUT policy when facing 
Type B ARIMA(1,1,2) demand for any lead time. While 1 < 𝑓 < 2, 
OUT policy exhibits less bullwhip than the POUT policy. We also find 
the difference 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] is the most positive when 
𝑓 = 0. As 𝐶𝐵[𝑘|OUT] is a constant over 𝑓 , this means the bullwhip 
produced by the POUT policy, 𝐶𝐵[𝑘|POUT], has a minimum for 𝑓 = 0. 
This behaviour has also been observed under i.i.d. demand and AR(1) 
demand in the literature. Fig.  4d shows both the OUT and POUT 
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policies’ bullwhip is increasing in the lead time (note, the log scale on 
the y-axis).

5.3. Type F ARIMA(1,1,2) demand

When the eigenvalues are ordered pole-zero-zero-pole, we have 
Type B ARIMA(1,1,2) demand.

Lemma 5.9.  For Type F ARIMA(1,1,2) demand with 𝜑 > 0, the demand 
impulse response is positive if 𝑑1 = 1 + 𝜑 − 𝜃1 > 0 (this is equivalent to 
1 + 𝜑 > 𝜆𝜃1 + 𝜆𝜃2).

Proof.  When 𝜑 > 0, the 𝐹1 case in Gaalman et al. (2022) is 
present. Gaalman et al. (2022) proves that the demand impulse is 
always positive if 𝑑1 > 0 (in which case we have case 𝐹1𝑏). If 𝑑1 < 0 then 
case 𝐹1𝑎 is present. Case 𝐹1𝑎 initially has a negative demand impulse, 
but after one change in sign, the demand impulse will become and 
remain positive. The demand at time 𝑡 = 1, 𝑑1 is positive if 1+𝜑−𝜃1 > 0. 
This is equivalent to the stated condition 1 + 𝜑 > 𝜆𝜃1 + 𝜆𝜃2. □

If 𝜑 < 0 and 𝑑1 < 0, the demand alternates in sign with 𝑑𝑡+1|odd 𝑡 > 0
and 𝑑𝑡+1|even 𝑡 > 0; after some time, the demand impulse becomes and 
remains positive, case 𝐹2𝑖𝑎. If 𝜑 < 0 and 𝑑1 > 0, the demand impulse is 
always positive, case 𝐹2𝑖𝑏, Gaalman et al. (2022). The 𝐹2𝑖𝑖 and 𝐹3 cases 
are not possible. Complex conjugate poles have an impulse response 
that oscillates between positive and negative values and bullwhip does 
not always increase in the lead time.

For Type 𝐹1𝑏 with 𝜑 > 0 and 1+𝜑 > 𝜆𝜃1 + 𝜆𝜃2, the demand impulse is 
always positive, as shown in Lemma  5.9. In this case, (𝜑−𝜆𝜃)(𝜑−𝜆𝜃) +
1 2
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Fig. 5. Bullwhip comparison for four Type 𝐹1 ARIMA(1,1,2) demands with 𝜑 > 0.
𝜑 > 0. This means 
(𝜑 − 1)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘)

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 < 1 (68)

is needed for 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT]. The LHS of (68) is always 
negative and decreasing in 𝑘. Thus, 0 ≤ 𝑓 < 1 leads to 𝐶𝐵[𝑘|POUT] <
𝐶𝐵[𝑘|OUT].

When 𝜑 > 0 and 1 + 𝜑 < 𝜆𝜃1 + 𝜆𝜃2, the Type 𝐹1𝑎 demand impulse 
response is not always positive. However, 𝐸[𝑘] is positive. 𝐶𝐵[𝑘|POUT]
can be less than or greater than 𝐶𝐵[𝑘|OUT]. 𝑓 |0≤𝑓<1 > 𝑓 ′ is required 
for 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT].

It is interesting to note when 𝜆𝜃1 → 1 and 𝜆𝜃2 → 1, 𝐶𝐵[𝑘|OUT] −
𝐶𝐵[𝑘|POUT] is concave in 0 ≤ 𝑓 < 1. This suggests reducing 𝑓 value 
might not always reduce the bullwhip in the POUT policy. A POUT 
policy with a small 𝑓 value might result in poor bullwhip performance. 
More specifically, under the above conditions (𝜆𝜃1 → 1 and 𝜆𝜃2 → 1), 
𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT] always holds for 𝜑 ≥ 0.5, see Fig.  5a and b, 
and 𝐶𝐵[𝑘|POUT] > 𝐶𝐵[𝑘|OUT] is likely to happen when 0 < 𝜑 < 0.5, 
see Fig.  5c. In addition, when 𝜆𝜃1 and 𝜆𝜃2 are not close to 1, any 0 ≤ 𝑓 < 1
leads to 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT], for example, see Fig.  5d.

Theorem 5.10.  When 𝜆𝜃1 → 1 and 𝜆𝜃2 → 1, 𝐶𝐵[𝑘|POUT] > 𝐶𝐵[𝑘|OUT]
for negative 𝜑, 𝐶𝐵[𝑘|POUT] < 𝐶𝐵[𝑘|OUT] for 𝜑 > 0.5, 𝐶𝐵[𝑘|POUT] can 
be less than or greater than 𝐶𝐵[𝑘|OUT] for 0 < 𝜑 ≤ 0.5.

Proof.  When 𝜆𝜃1 → 1 and 𝜆𝜃2 → 1, (56) reduces to

𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] = ℎ[𝑓 ]
𝑔[𝑓 ]

=
2𝜑2𝑘 (𝑓 2 (𝜑2 − 𝜑 + 1

)

− 𝑓
(

3𝜑2 − 4𝜑 + 2
)

+ 2𝜑2 − 3𝜑 + 1
)

𝑓 2𝜑 + 𝑓 (1 − 3𝜑) + 2(𝜑 − 1)
. (69)

Via the same approach used in Theorem  5.8, given the interval [0, 1)
for 𝑓 , 𝑔[0] = −2(1−𝜙), 𝑔[1] = −1. 𝑣0[𝑔]−𝑣1[𝑔] = 1−1 = 0 for 0 < 𝜑 < 1. 
Budan’s Theorem suggests that the polynomial 𝑔[𝑓 ] has no real roots in 
the open interval (0, 1). As 𝑔[0] = −2(1−𝜙) < 0 and 𝑔[1] = −1, we assert 
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that 𝑔[𝑓 ] < 0 for positive 𝜑. In addition, we have 𝑣0[𝑔]−𝑣1[𝑔] = 2−2 = 0
for 𝜑 < 0. Via Budan’s Theorem, we assert that 𝑔[𝑓 ] < 0 for negative 𝜑
too.

We study ℎ[𝑓 ] in the same manner. For 𝜑 < 0, 𝑣0[ℎ]−𝑣1[ℎ] = 2−2 =
0, ℎ[0] > 0, and ℎ[1] = 0, suggesting ℎ[𝑓 ] > 0. For 0 < 𝜑 ≤ 0.5, 
𝑣0[ℎ]−𝑣1[ℎ] = 2−0 = 2, meaning that ℎ[𝑓 ] has zero, or one, or two real 
roots in the open interval (0, 1). There is only one 𝑓 value that satisfies 
ℎ[𝑓 ] = 0 with 0 < 𝜑 < 1 and 0 < 𝑓 < 1. These facts reveal ℎ[𝑓 ] has 
one real root. As ℎ[0] > 0 when 0 < 𝜑 < 0.5, ℎ[0] = 0 when 𝜑 = 0.5, 
ℎ′[0] < 0, ℎ[1] = 0, and ℎ′[1] > 0, we assert that ℎ[𝑓 ] is non-negative 
at 𝑓 = 0, decreases in 𝑓 , becomes negative, until reaching a stationary 
point, and then increases in 𝑓 with a negative value, approaches to zero 
when 𝑓 → 1. Therefore, ℎ[𝑓 ] is non-negative at small 𝑓 values and is 
negative at large 𝑓 values.

For 0.5 < 𝜑 < 1, 𝑣0[ℎ] − 𝑣1[ℎ] = 1 − 0 = 1, and there is no 𝑓 value 
that satisfies ℎ[𝑓 ] = 0 with 0.5 < 𝜑 < 1 and 0 < 𝑓 < 1. These facts 
reveal there are no real roots in the interval 0 ≤ 𝑓 < 1. In addition, we 
have ℎ[0] < 0 and ℎ[1] = 0. Thus, ℎ[𝑓 ] < 0 and we can conclude, when 
𝜑 < 0, (69) < 0; when 0 < 𝜑 ≤ 0.5, (69) ≤ 0 for small 𝑓 values and 
(69) > 0 for large 𝑓 values; when 0.5 < 𝜑 < 1, (69) < 0. □

The POUT bullwhip behaviour contradicts much of the existing 
bullwhip theory. The literature often recommends switching from the 
OUT policy to the POUT policy in order to reduce bullwhip. Our 
results show the POUT policy’s order variance is sometimes larger 
than the OUT policy’s order variance when demand is non-stationary, 
even when 0 ≤ 𝑓 < 1. This highlights that existing knowledge based 
on stationary demand should be used with caution in non-stationary 
demand environments.

6. Numerical explorations

We now revisit the four ARIMA(1,1,2) time series from the M4 
competition dataset (Makridakis et al., 2020) illustrated in Fig.  1 to 
verify some of our theoretical results. In the header of Table  2 we 
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Table 2
Comparison of simulated and theoretical bullwhip measures for the OUT policy under the four real demands in Fig.  1.
 Index 228 282 351 356

 𝑛 100 100 80 80
 𝜑 −0.4883 −0.7055 −0.4852 −0.7175
 𝜃1 −0.5216 −0.9452 −0.0453 −0.2896
 𝜃2 −0.4851 −0.492 0.6912 0.5957
 𝜆1𝜙 −0.4883 −0.7055 −0.4852 −0.7175
 𝜆2𝜙 1 1 1 1
 𝜆1𝜃 −0.278 − 0.6458𝑖 −0.4726 − 0.5152𝑖 −0.8543 −0.9301
 𝜆2𝜃 −0.278 + 0.6458𝑖 −0.4726 + 0.5152𝑖 0.8090 0.6405
 𝛼 1.9934 1.6974 −0.4246 0.1698
 𝛽 0.9896 0.3822 4.7799 −3.033
 𝛾 −0.4851 −0.7055 −0.4852 −0.7175
 V[𝑑] 403129.8 38265.6 164929.1 621714.2
 V[𝜂] 37362.1 1013.43 130591.8 418311.4
 Type F2ib F2ib B2ia B2ia

 Lead time 𝑘 𝐵𝑊𝑅 𝐶𝐵[𝑘]𝑆 𝐶𝐵[𝑘]𝑇 𝐵𝑊𝑅 𝐶𝐵[𝑘]𝑆 𝐶𝐵[𝑘]𝑇 𝐵𝑊𝑅 𝐶𝐵[𝑘]𝑆 𝐶𝐵[𝑘]𝑇 𝐵𝑊𝑅 𝐶𝐵[𝑘]𝑆 𝐶𝐵[𝑘]𝑇  
 0 1.20 2.19 2.07 1.07 2.59 2.48 1.81 1.03 1.12 1.81 1.20 1.14  
 1 1.77 8.34 8.18 1.26 9.66 9.48 2.05 1.32 1.38 2.37 2.03 2.04  
 2 2.62 17.45 17.18 1.53 19.90 19.63 2.84 2.32 2.41 3.62 3.89 3.86  
 3 3.85 30.79 30.50 1.93 35.30 34.99 3.47 3.11 3.20 4.67 5.46 5.46  
 4 5.39 47.32 46.98 2.42 53.68 53.33 4.33 4.21 4.30 6.31 7.90 7.87  
 5 7.28 67.74 67.40 3.04 77.11 76.77 5.22 5.32 5.41 7.86 10.20 10.21  
 6 9.49 91.62 91.27 3.75 103.76 103.41 6.23 6.61 6.70 9.89 13.22 13.20  
 7 12.05 119.21 118.89 4.58 135.19 134.87 7.32 7.99 8.06 11.93 16.25 16.25  
 8 14.94 150.36 150.08 5.50 170.10 169.82 8.52 9.49 9.56 14.36 19.85 19.85  
 9 18.16 185.16 184.94 6.55 209.54 209.33 9.80 11.11 11.16 16.87 23.59 23.60  
 10 21.72 223.56 223.42 7.69 252.69 252.54 11.18 12.85 12.88 19.71 27.81 27.81  
 11 25.61 265.58 265.54 8.95 300.18 300.14 12.65 14.71 14.71 22.69 32.23 32.24  
 12 29.84 311.22 311.30 10.31 351.52 351.59 14.21 16.68 16.65 25.95 37.08 37.08  
 13 34.41 360.48 360.69 11.78 407.09 407.30 15.87 18.78 18.71 29.38 42.18 42.18  
 14 39.31 413.36 413.72 13.36 466.60 466.97 17.62 20.99 20.88 33.07 47.66 47.66  
have gathered some descriptive statics for the four demand patterns. 
Here the index denotes which time series is being considered in the 
weekly demand subset of the M4 dataset. 𝑛 is the number of data points 
considered (see our discussion on Fig.  1). The identified ARIMA(1,1,2) 
parameters (𝜑, 𝜃1, and 𝜃2) are then noted. The ARIMA(1,1,2) param-
eters were found using the auto.arima function in R. Following, 
the four eigenvalues of the ARIMA(1,1,2) demand process (𝜆𝜙1 , 𝜆

𝜙
2 , 𝜆𝜃1, 

and 𝜆𝜃2) are listed, together with the three damped trend forecasting 
parameters (𝛼, 𝛽, 𝛾), Li et al. (2023). The demand variance (V[𝑑]) and 
the variance of the forecast error (V[𝜂]) is given.5 Finally, in the header 
of the table, we note the type of the demand pattern identified by the 
order of eigenvalues.

In the main body of Table  2 we have collected some bullwhip 
measures for different lead times when the OUT policy with damped 
trend forecasts is used to set production targets. The bullwhip ratio 
𝐵𝑊𝑅 = V[𝑜]∕V[𝑑] was generated by an Excel simulation. As the time 
series had a finite length, the bullwhip ratio was finite. The simulated 
𝐶𝐵[𝑘] was determined by 𝐶𝐵[𝑘]𝑆 = (V[𝑜] − V[𝑑])∕V[𝜂] using the data 
from the Excel simulation; the theoretical 𝐶𝐵[𝑘]𝑇  was determined by 
(54). We can see the simulated 𝐶𝐵[𝑘]𝑆 is remarkably close to the 
theoretical 𝐶𝐵[𝑘]𝑇 . More importantly, the increasing-in-the-lead-time-
bullwhip-behaviour for demands 228 and 282 corroborate our results 
on the nature of Type F2ib ARIMA demand. Furthermore, the results 
for demands 351 and 356 corroborate our results on the nature of Type 
B2ia in Lemma  5.5.

Table  3 documents the bullwhip differences, 𝐶𝐵[𝑘|OUT] − 𝐶𝐵
[𝑘|POUT], for each of the time series for two example values of 𝑓 . 
Table  3 also concurs with our previous analysis. None of the weekly 
M4 time series that were identified as ARIMA(1,1,2) had surprising 
POUT policy bullwhip behaviour. That is, the POUT policy with 0 <

5 V[𝜂] was found by minimising the sum of squared error between the 
simulated and theoretical 𝐶𝐵[𝑘] values for each time series.
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𝑓 < 1 resulted in less bullwhip than the OUT policy. One wonders how 
common ARIMA(1,1,2) demands with surprising bullwhip behaviour 
are in practice?

7. Concluding remarks

We have contributed to the understudied area of the bullwhip effect 
under non-stationary demand patterns by investigating the bullwhip 
effect when optimal forecasts for ARIMA(1,1,2) demand processes are 
used in both the OUT and POUT inventory replenishment policies. We 
quantify the bullwhip for all possible ARIMA(1,1,2) demand processes 
under the OUT and POUT policies. Prior research has demonstrated 
that the bullwhip can be reduced and even eliminated by using the 
proportional controller. However, our analysis reveals that conven-
tional values for the proportional controller parameter (0 ≤ 𝑓 <
1) can, in certain scenarios (Type A and Type F), lead to a more 
pronounced bullwhip effect compared to the OUT policy when demand 
is non-stationary.

For Type A ARIMA(1,1,2) demand, the bullwhip in the OUT policy 
is always increasing in the lead time. In order to mitigate the bullwhip 
effect, the POUT policy’s proportional controller, 𝑓 , deviates from the 
conventional 𝑓 ∈ [0, 1] interval. While 𝑓 → 0 can effectively dampen 
demand variability under stationary conditions, this approach may 
paradoxically exacerbate the bullwhip effect in the presence of some 
non-stationary ARIMA(1,1,2) demand processes. We also noticed that 
there is a minimum lead time when the feedback controller is always 
effective. The amplitude of harmonic frequencies in a Bode plot for 
ARIMA(1,1,2) demand tends to infinity as the frequency tends to zero. 
While the POUT policy with a small 𝑓 near zero is very effective 
at reducing the amplitude of high-frequency harmonics, it amplifies 
some low-frequency harmonics. For some short lead times, this low-
frequency amplification is sufficient to produce bullwhip (bullwhip 
is proportional to the area under the squared frequency response). 
This line of reasoning was not reported in this paper but is worthy 
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Table 3
𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] for the four weekly ARIMA(1,1,2) demand time series in M4 dataset.
 Index 228 282 351 356

 k 𝑓 = 0.666 𝑓 = 1.5 𝑓 = 0.666 𝑓 = 1.5 𝑓 = 0.666 𝑓 = 1.5 𝑓 = 0.666 𝑓 = 1.5 
 0 0.16 −1.00 0.43 −1.73 0.70 −2.30 0.65 −2.64  
 1 2.06 −6.96 3.11 −11.73 0.93 −3.88 1.00 −4.53  
 2 5.49 −19.67 7.56 −30.05 1.36 −5.02 1.80 −7.34  
 3 10.78 −37.74 14.59 −57.35 1.76 −6.74 2.49 −10.47 
 4 17.68 −62.29 23.34 −92.91 2.27 −8.47 3.56 −14.46 
 5 26.37 −92.58 34.62 −137.41 2.80 −10.54 4.60 −18.86 
 6 36.73 −129.06 47.70 −190.26 3.42 −12.76 5.95 −24.04 
 7 48.83 −171.46 63.21 −251.97 4.08 −15.23 7.34 −29.70 
 8 62.64 −219.95 80.63 −322.10 4.81 −17.90 8.98 −36.08 
 9 78.17 −274.42 100.38 −401.02 5.59 −20.79 10.70 −42.98 
 10 95.41 −334.94 122.13 −488.43 6.44 −23.90 12.64 −50.57 
 11 114.37 −401.47 146.13 −584.56 7.35 −27.23 14.69 −58.71 
 12 135.05 −474.03 172.20 −689.25 8.31 −30.78 16.93 −67.51 
 13 157.45 −552.61 200.47 −802.61 9.34 −34.55 19.31 −76.89 
 14 181.57 −637.22 230.83 −924.55 10.42 −38.53 21.86 −86.91 
of investigation in future research. The conclusions drawn for Type F 
ARIMA(1,1,2) demand exhibit similar characteristics to those observed 
for Type A. For Type B demand, encompassing both positive 𝜑 and neg-
ative 𝜑 with even lead times, the POUT policy generates less bullwhip 
than the OUT policy, provided the proportional controller 𝑓 ∈ [0, 1]. 
Conversely, values of 𝑓 > 1 produces a greater bullwhip effect under 
the POUT policy than under the OUT policy.

Existing knowledge of the bullwhip effect derived from stationary 
demand models should be applied cautiously in non-stationary demand 
scenarios. The viability of the POUT policy under non-stationary de-
mand can be assessed through a two-pronged approach, considering 
both the eigenvalues of the demand process and the lead time. For 
supply chains characterised by long lead times and frequent replenish-
ment cycles, the POUT policy is a robust approach to mitigating the 
bullwhip effect. In supply chains with short lead times, or where the 
lead time approximates the replenishment cycle, practitioners should 
ascertain (from historical demand data) whether the demand pattern 
aligns with Type A or Type F. If so, the boundaries we have identified 
for the proportional feedback controller can guide the selection of an 
appropriate 𝑓 value to reduce the bullwhip effect. If the identified 
demand pattern is classified as Type B, practitioners can leverage their 
existing understanding of the bullwhip effect for stationary demand, 
even though the underlying demand process is non-stationary.

The efficacy of supply chain management is predicated on a com-
prehensive understanding of demand, forecasting, production planning, 
and strategic considerations which extend beyond mere quantitative 
projections of future demand. While demand forecasting teams fre-
quently produce numerical forecasts, a gap often exists in the charac-
terisation of the underlying demand patterns, which are crucial for the 
optimisation of inventory control and supply chain management. This 
is particularly pertinent in the context of advanced control method-
ologies, such as POUT, where the tuning of the feedback controller 
needs a nuanced understanding of the demand characteristics. The 
absence of such knowledge within the supply chain management team 
can result in excessive bullwhip generated in the supply chain and/or 
sub-optimal inventories. Therefore, the integration of demand forecast-
ing and supply chain management functions, specifically to facilitate 
the transmission of demand characteristics alongside numerical fore-
casts, is essential for enhancing operational performance and ultimately 
maximising organisational value. In addition, the integration of the 
controller, 𝑓 , into the ERP system (which can be implemented into 
SAP’s planning book with a User Defined Function) is crucial for 
realising the full potential of optimised inventory management. This 
allows for automated, data-driven calculation of replenishment deci-
sions in real-time across the (potentially) many hundreds or thousands 
of stock-keeping units.
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Four distinct ARIMA(1,1,2) demand patterns were identified within 
the M4 dataset have been analysed. Simulation based on these real-
world data corroborates our theoretical findings. Further empirical 
investigation with additional real-world data, particularly for Type A 
and Type F demand, is warranted to further validate our theoreti-
cal analysis. Previous research on i.i.d. and AR(1) demand processes 
suggests that the bullwhip is increasing in the proportional controller 
value. While our findings concur with this finding under certain non-
stationary demands, it does not always hold true. Exploring the POUT 
policy’s bullwhip behaviour for other non-stationary demand processes 
is another promising avenue for further research.
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Appendix A. The inventory variance

Substituting in the relevant expressions for 𝐸[𝑘] and simplifying 
provides the following expression for (36): 

V[𝑖𝑡] =V[𝜂]
(

((𝜃1 − 2)𝜑 + 𝜃2 + 𝜑𝑘(𝜑(𝜑 − 𝜃1) − 𝜃2) + 𝑘(𝜑 − 1)(𝜃1 + 𝜃2 − 1) + 1)2

𝑓 (2 − 𝑓 )(𝜑 − 1)4
+

(

𝑘3(𝜑 + 1)(𝜑 − 1)3(𝜃1 + 𝜃2 − 1)2 + 3𝑘2(𝜑 + 1)(𝜑 − 1)2(𝜃1 + 𝜃2 − 1)(𝜃1𝜑+

𝜃1 − 𝜃2𝜑 + 3𝜃2 − 3𝜑 + 1) + 𝑘(𝜑2 − 1)(𝜃21 (−12𝜑
𝑘+1 + 𝜑2 + 4𝜑 + 1)−

4𝜃1(𝜃2(3𝜑𝑘+1 + 3𝜑𝑘 + 𝜑2 − 2𝜑 − 2) − 3𝜑𝑘+1 − 3𝜑𝑘+2 + 2𝜑2 + 2𝜑 − 1)+

𝜃22 (−12𝜑
𝑘 + 𝜑2 − 8𝜑 + 13) + 2𝜃2(6𝜑𝑘+2 + 6𝜑𝑘 + 5𝜑2 − 16𝜑 + 5)−

12𝜑𝑘+2 + 13𝜑2 − 8𝜑 + 1) + 6(𝜑𝑘 − 1)(𝜑(𝜃1 − 𝜑) + 𝜃2)(𝜃1𝜑(𝜑𝑘 + 1)+

𝜃2(𝜑𝑘 + 2𝜑2 − 1) − 𝜑𝑘+2 + 𝜑2 − 2)
)

(6(𝜑 − 1)5(𝜑 + 1))−1
)

(A.1)

 Differentiating (A.1) with respect to 𝑓 provides
𝑑V[𝑖𝑡]
𝑑𝑓

=

2(𝑓 − 1)
(

𝜃1𝜑 + 𝜃2 + 𝑘(𝜑 − 1)(𝜃1 + 𝜃2 − 1) − 𝜃1𝜑𝑘+1 − 𝜃2𝜑𝑘 + 𝜑𝑘+2 − 2𝜑 + 1
)2

𝑓 2(𝑓 − 2)2(𝜑 − 1)4
,

(A.2)
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Fig. A.6. Variance of the inventory maintained by the POUT policy.

which clearly has a stationary point at 𝑓 = 1. Fig.  A.6 confirms this for 
three example ARIMA(1,1,2) demands corresponding to cases A, B and 
F.

Appendix B. Proof to Theorem  5.4

From (56), we can rewrite 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0 as 

2𝐸[𝑘](1 − 𝑓 )
(

(1 − 𝜑)
(

𝐸[𝑘] + 2𝑟1𝜑𝑘) + 𝑓
(

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘))

(2 − 𝑓 )(1 − (1 − 𝑓 )𝜑)
> 0.

(B.1)

We know 𝐸[𝑘] > 0 for Type A ARIMA(1,1,2) and (2−𝑓 )(1− (1−𝑓 )𝜑) >
0, thus, for (B.1) to hold, (1 − 𝑓 )

(

(1 − 𝜑)
(

𝐸[𝑘] + 2𝑟1𝜑𝑘) + 𝑓 (𝐸[𝑘]𝜑
+ 𝑟1(𝜑 − 1)𝜑𝑘)) > 0 is needed.

Now let us consider if 𝐸[𝑘]𝜑+𝑟1(𝜑−1)𝜑𝑘 > 0. After expanding 𝐸[𝑘], 
the following relation holds: 

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 = 𝜑 + 𝑘𝑟2𝜑 + 𝑟1

(

(𝜑 − 1)𝜑𝑘 +
𝜑
(

𝜑𝑘 − 1
)

𝜑 − 1

)

. (B.2)

We wish to understand if the RHS of (B.2) is positive or negative: 

𝜑 + 𝑘𝑟2𝜑 + 𝑟1

(

(𝜑 − 1)𝜑𝑘 +
𝜑
(

𝜑𝑘 − 1
)

𝜑 − 1

)

> 0. (B.3)

Subtracting 𝜑 from both sides provides, 

𝑘𝑟2𝜑 + 𝑟1

(

(𝜑 − 1)𝜑𝑘 +
𝜑
(

𝜑𝑘 − 1
)

𝜑 − 1

)

> −𝜑. (B.4)

We wish to divide (B.4) by 𝜑. When 𝜑 > 0 the following relation exists, 

𝑘𝑟2 + 𝑟1

(

(𝜑 − 1)𝜑𝑘−1 +
𝜑𝑘 − 1
𝜑 − 1

)

> −1. (B.5)

When 𝜑 < 0 provides the alternative relation exists 

𝑘𝑟2 + 𝑟1

(

(𝜑 − 1)𝜑𝑘−1 +
𝜑𝑘 − 1
𝜑 − 1

)

< −1, (B.6)

requiring us to bifurcate our analysis. First consider positive 𝜑, the 
following relation holds: 

𝑘 > (𝜑 − 1)𝜑𝑘−1 +
𝜑𝑘 − 1
𝜑 − 1

. (B.7)

This means the coefficient of 𝑟2 is always greater than the coefficient 
of 𝑟1 in (B.5). As 𝑟2 > 0, 𝑟1 < 0, and 𝑟2 >∣ 𝑟1 ∣ for Type A ARIMA(1,1,2) 
demand, the relationship in (B.3), 𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 > 0, is proved. 
Then to ensure (B.1) is positive (that is, for the POUT policy to produce 
less bullwhip than the OUT policy) for 0 ≤ 𝑓 < 1, we have 

𝑓 |0≤𝑓<1 >
(𝜑 − 1)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘)

(B.8)

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘

13 
and for 1 < 𝑓 < 2

𝑓 |1<𝑓<2 <
(𝜑 − 1)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘)

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 . (B.9)

Next, consider negative 𝜑. 𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘 > 0 indicates 
𝑓
(

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘) > 0. In addition, 1 − 𝜑 > 0 always holds. The 
sign of (1−𝜑)

(

𝐸[𝑘] + 2𝑟1𝜑𝑘)+𝑓
(

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘) is determined by 
the value of 𝐸[𝑘] + 2𝑟1𝜑𝑘. After expanding 𝐸[𝑘], the following relation 
is revealed: 

𝐸[𝑘] + 2𝑟1𝜑𝑘 = 1 + 𝑘𝑟2 + 𝑟1

(

1 + 𝜙𝑘 − 2𝜙𝑘+1)

1 − 𝜙
. (B.10)

When 𝑘 > 0 and 𝜑 < 0, 

𝑘 >

(

1 + 𝜙𝑘 − 2𝜙𝑘+1)

1 − 𝜙
. (B.11)

As 𝑟2 > 0, 𝑟1 < 0, and 𝑟2 >∣ 𝑟1 ∣ for Type A ARIMA(1,1,2) demand, 
𝐸[𝑘] + 2𝑟1𝜑𝑘 > 1 (B.12)

is proved. This means (1−𝜑)
(

𝐸[𝑘] + 2𝑟1𝜑𝑘)+𝑓
(

𝐸[𝑘]𝜑 + 𝑟1(𝜑 − 1)𝜑𝑘) >
0. Thus, for 𝜑 < 0 and 𝑘 > 0, 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0 when 
0 ≤ 𝑓 < 1; and 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] < 0 when 1 < 𝑓 < 2.

When 𝑘 = 0, 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] simplifies to 

𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] =
2(1 − 𝑓 )((2 − 𝑓 )𝑟1(1 − 𝜑) − (1 − 𝑓 )𝜑 + 1)

(2 − 𝑓 )(1 − (1 − 𝑓 )𝜑)
.

(B.13)

Substituting 𝑟1 then solving 𝐶𝐵[𝑘|OUT]−𝐶𝐵[𝑘|POUT] = 0 for 𝑓 subject 
to the condition that 𝑓 ≠ 1, 

𝑓 =
2(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2) − (1 − 𝜑)

(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2) + 𝜑
. (B.14)

Studying (B.14) for Type A ARIMA(1,1,2) demand with negative 𝜑, we 
found (B.14) can only be less than 1, or greater than 2. Therefore, 

𝑓 |0≤𝑓<1 >
2(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2) − (1 − 𝜑)

(𝜑 − 𝜆𝜃1)(𝜑 − 𝜆𝜃2) + 𝜑
(B.15)

is required to ensure 𝐶𝐵[𝑘|OUT] − 𝐶𝐵[𝑘|POUT] > 0 for Type A 
ARIMA(1,1,2) demand when 𝑘 = 0 and 𝜑 < 0. Note, (B.15) is equivalent 
to (B.8) when 𝑘 = 0.

Data availability
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