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ABSTRACT
Smart grid operators use load forecasting algorithms to predict energy load for the reliable and economical operation of the
electricity grid. COVID‐19 pandemic‐like situations (PLS) can significantly impact energy load demand due to uncertainties in
factors such as regulatory orders, pandemic severity and human behavioural patterns. Additionally, in a smart grid, cyberattacks
can manipulate forecasted load data, leading to suboptimal decisions, economic losses and potential blackouts. Forecasting load
during these situations is challenging for traditional load forecasting tools, as they struggle to identify cyberattacks amidst
uncertain load demand, where cyberattacks may mimic pandemic‐like load patterns. Traditional forecasting methods do not
incorporate factors related to pandemics and cyberattacks. Recent studies have focused on forecasting by considering factors
such as COVID‐19 cases, social distancing, weather, and temperature but fail to account for the impact of regulatory orders and
pandemic severity. They also lack the ability to differentiate between normal and anomalous forecasts and classify the type of
attack in anomalous data. This paper presents a tool for short‐term load forecasting, anomaly detection and cyberattack clas-
sification for pandemic‐like situations (PLS). The proposed short‐term load forecasting algorithm uses a weighted moving
average and an adjustment factor incorporating regulatory orders and pandemic severity, making it computationally efficient
and deterministic. Additionally, the proposed anomaly detection and cyberattack classification algorithm provides robust op-
tions for detecting anomalies and classifying various types of cyberattacks. The proposed tool has been evaluated using K‐Fold
cross‐validation to improve generalisability and reduce overfitting. The mean squared error (MSE) was used to measure pre-
diction accuracy and detect discrepancies. It has been analysed and tested on real‐load data from the State Load Dispatch Centre
(SLDC), Delhi, of the Indian National Grid.

1 | Introduction

The electricity grid is evolving into a smart grid, integrating
communication, information and computation infrastructure
into its operation, control and protection [1]. Accurate load
forecasting during both normal and abnormal conditions is

essential for reliable grid operation and maintenance [2].
However, load forecasting during pandemic‐like situations
(PLS), such as COVID‐19, can become increasingly difficult due
to dramatic changes in electricity demand caused by regulatory
orders, the severity of the pandemic and other factors [3].
Different studies have analysed the significant impact of
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COVID‐19 on electricity demand, revealing load variations
ranging from 13 to 30% [4–6]. The load showed significant
variable patterns with a total electricity consumption reduction
in both commercial and industrial sectors. Also, the increased
attack base makes load forecasting methods vulnerable to cyber
incidents [7, 8]. During COVID‐19, low demand and uncertain
load conditions could camouflage cyberattacks that threaten to
compromise power system stability [9]. Anomalous forecasted
data can worsen PLS, impact the life span of power system
components and result in a negative economic impact [7].

Government orders such asweekend curfew, complete lockdown,
severity of the pandemic and public reaction have a high impact
on the load profile. Figure 1 illustrates a scenario of the load de-
mand variationwith COVID‐19 cases and restrictions imposed by
theGovernment ofDelhi, India, for the givenduration [10] during
which a weekend curfew on the movement of individuals was
imposed (16 April 2021 to 19 April 2021) to control the increasing
COVID‐19 cases. These restrictions shut down the nonessential
industries andpreventedhumanmovement. This further reduced
the power consumption in different industrial segments. Further,
a complete curfew imposed (on 19 April 2021) extended the
complete lockdown's duration, impacting power use similarly. As
load demand is uncertain, forecasting the load demand during
PLS can be essential in providing reliable supply to hospitals,
emergency care and related industries.

During PLS, electricity load demand changes significantly as
shown in 1 for Delhi SLDC. This change is not normal and has
unseen patterns which can align with various cyberattack pat-
terns. A similar pattern attack can be misunderstood with a
normal event during PLS. Although forecasting algorithms have
seen significant enhancements recently, a successful coordi-
nated attack remains capable of altering the forecasted load.

This paper presents a novel anomaly detection method that uti-
lises function‐based, rule‐based and tree‐based predictors as base
models to classify loads as anomalous or normal based on pre-
defined thresholds and further categorises anomalous data into
various types of cyberattacks. The proposed load forecasting
method incorporates the impact of regulatory orders and
pandemic severity, ensuring accurate predictions under dynamic
conditions. Additionally, the developed tool offers quick evalua-
tion capabilities and in‐depth visualisations of data and results,
enhancing its usability and effectiveness in various situations.
The main contributions of this paper can be summarised below.

� Proposed a machine learning classifier‐based anomaly
detection method to distinguish load volatility from
cyberattacks during PLS, ensuring reliable detection.

� Developed a rotation forest‐based method to classify
anomalous loads into six cyberattack types, enhancing di-
versity and accuracy through subset creation and PCA,
effective even for small datasets.

� Developed a short‐term energy load forecasting method for
PLS that integrates regulatory orders and pandemic severity
factors to account for the pandemic's impact, significantly
enhancing accuracy.

The rest of the paper is organised as follows. In Section 2, a
review of relevant literature is presented. In Section 3, the de-
tails of the cyber risk identification and classification‐based load
forecasting tool for pandemic situations are discussed. Section 4
presents a load forecasting algorithm that considers government
orders and pandemic severity. Section 5 describes the cyber-
attack models, detailed methodology of anomaly detection and
cyberattack classification. Case studies and result analysis per-
formed on publicly available load data are discussed in Sec-
tion 6. Concluding remarks are summarised in Section 7.

2 | Related Works

In this section, we have discussed a brief literature review on
load forecasting, anomaly detection and cyberattack classifica-
tion in the view of PLS. In ref. [6], it is shown that COVID‐19
had a significant impact on the energy demand curve, leading
to a reduction in consumption and changes in the demand
pattern throughout the day. As discussed, load forecasting is
important for planning and scheduling power to ensure the
reliable operation of power systems. The existing short‐term
load forecasting models are based on time series analysis
(ARIMA, seasonal decomposition, exponential smoothing etc.)
[11], regression analysis [12] and machine learning approaches
[13–15]. These methods do not account for factors related to the
impact of COVID‐19‐like situations, resulting in inaccurate
forecasts that affect power system reliability. Recently explored
approaches for load forecasting during pandemics and similar
situations use either statistical methods or artificial intelligence‐
based methods [15–17]. These methods require a large amount
of data and have higher computational requirements. Given the
short‐term nature of pandemics and similar situations,
acquiring long‐duration data may not be feasible. In ref. [8], an
online model for probability density load forecasting is pro-
posed, using a regression LSTM network to capture time

FIGURE 1 | Relation between lockdown orders, COVID cases and
actual load demand of SLDC, Delhi.
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dependencies and learn new concepts in the data. However, this
model does not include factors such as government orders,
pandemic severity and other external influences.

Attacks on load forecasting from an attacker's perspective can
be divided into six types, which include random attack, pulse
attack, Type 1 ramping attack, Type 2 ramping attack, scaling
attack and smooth curve attack [7, 18, 19]. These attacks can
cause the forecast system to over forecast or under forecast
which will have negative economic and social impacts. During
an under‐forecast, the available capacity may not meet the
required demands, increasing strain on the energy supply sys-
tem. As reserves are used to fill the gap during regular operating
times, outages to entire geographical areas become even more
likely during peak times. While, if over‐forecasted, power
scheduled to produce this over‐forecast can result in the un-
necessary start‐up of power generation units and excess use of
storage devices in the network, resulting in over‐frequency
events leading to power system instabilities. Load forecasting
and detection of cyberattacks in load forecasting during PLS can
be challenging due to the regulatory orders, pandemic severity,
human reaction patterns, coordinated attack strategy etc [9].

There are various tools available in the market for load fore-
casting. Sensewaves Adaptix Grid platform [20] is an adaptive
machine learning‐based forecasting tool which considers indi-
vidual customer’s energy usage data and weather forecasts to
calculate separate predictions for residents, commercial market
and industrial customers. Flexo Hive Power [21] is a smart grid
analytic tool to manage electrical energy and electrical grids
using data‐driven methods. Amperon AmpGrid [22] enables
short‐term load forecasting at the level of individual buildings.
Nectaware E4SIGHT [23] is a cloud‐based platform which
makes use of both consumption data from smart grids and
predictive algorithms. These tools have limited capability of
cyberattack detection during PLS due to the uncertainty of load
demand, impact of imposed rules etc.

A short‐term load forecasting algorithm with limited previous
days' data is proposed in ref. [16]. However, the impact of
government orders and pandemic severity was not considered.
Arjomandi et al. in ref. [24] uses a machine learning ensemble
method to forecast the load, considering lockdown temporal
policies as a feature. The inclusion of pandemic‐related policies
has been mentioned. Still, the contribution of each severity due
to policies needed to be clarified, and the contribution due to
COVID‐19 cases, is not included. In ref. [25], an ensemble
anomaly detection method outperformed ARIMA in forecasting
electricity demand during the COVID‐19 pandemic. However, it
does not consider factors like pandemic severity and regulatory
orders, which are crucial for understanding the pandemic's
impact on energy use. Other limitations can be in terms of the
duration of load data available as the PLS can be a short‐term
situation. Also, previous studies [7, 26] focus on anomaly
detection, but less attention is given to attack classification. In
ref. [27], an ARIMA and autoencoder‐based load forecasting
method are presented, demonstrating that the autoencoder
outperforms ARIMA for load forecasting. The paper also pro-
poses a method to detect cyberattacks in load forecasting, uti-
lising the Gaussian 3‐sigma rule as a threshold to determine
anomalies in the forecasted load. However, autoencoder‐based

methods require a large amount of historical data, which pose
a challenge for short‐term events such as COVID‐19. Although
this paper successfully detects anomalies, it does not identify the
specific types of attacks performed on the load data.

Considering the limitations of existing studies, this research
performs short‐term load forecasting using actual load data
from Delhi SLDC during the COVID‐19 pandemic, taking into
account pandemic severity and regulatory orders. It employs ML
classification methods to detect anomalies and predict the type
of cyberattack among six categories, as detailed in Section 3.

3 | Overview of the Proposed Cyber Risk
Assessment Methodology

As discussed, a cyber risk identification and classification‐based
load forecasting method for pandemic situations can be utilised
to detect and classify cyberattack incidents and anomalies in
forecasted energy load during normal and PLS. This section
provides an overview of the functionalities of the developed tool,
as illustrated in Figure 2.

Data analysis involves performing mathematical analysis on the
data we are using for cyberattack identification and
classification‐based load forecasting tools for PLS.

In order to perform data analysis, three different types of
analysis are developed in this tool. First, some attributes provide
more significant information than others when predicting a
scenario. Measurements used in this are known as information
gained, and the analysis performed is known as information
gained analysis. The second data analysis functionality is the
correlation attribute analysis. This analysis evaluates the worth
of an attribute by measuring its Pearson's correlation coefficient
between it and the identified class. Last, data summary analysis
includes the name of each attribute, its type, how many were
missing, the uniqueness of the data found within and the
distinct values found within the data.

The load forecasting feature of the tool allows system operators
to forecast the load during COVID‐19‐like pandemic situations
based on previous loads, pandemic situations and government
orders. The attack detection and classification function enable

FIGURE 2 | Functionality overview of the cyber risk assessment tool.
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system operators to detect the anomalies and cyberattacks in
forecasted load and classify the cyberattack types using an
attack classifier trained based on the attack classifier feature of
the tool. A total of six types of classifiers were identified as
successful with the data we used and provided to the tool users.
A feature to train the attack classifier is provided with different
attack classifiers, which can be selected based on user choice.
This tool enhances user flexibility by presenting a range of
prediction models as a base for precise anomaly detection.

Quick‐fold and ten‐fold classifier evaluationmethods are utilised
to evaluate the selected classifier. Also, the tool adds the data
visualisation feature of load input data, attack classification and
forecasted load for the operator's convenience. The tool provides
a data analysis feature which is essential to understand the data
quality, correlation between data and information gained from
each data point. The tool is developed using Python and is
available as open source on GitHub [28].

4 | Proposed Load Forecasting Approach

As discussed in 3, load forecasting during PLS is critical for a
reliable and secure operation of power systems. In this work, a
load forecasting model during PLS is developed using the
weighted factor for immediate previous loads, considering the
availability of limited previous load data due to the short
duration of the situation and COVID‐19‐related orders from the
regulatory authorities. Equation (1) gives the forecasted load
value of day of interest d at time block t (Yd

t ).

Yd
t =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y ʹd
t (1 −

β
b(α

d
t,max−αdt )

), if αdt > 0

Y ʹd
t (1 +

β
b(α

d
t,max+α

d
t )
), if αdt < 0

Y ʹd
t , Otherwise

(1)

In Equation (1), αdt ,αdt,max, b and β are the model parameters. A
country may have different states which are governed by
different governments. During emergencies, different actions
are taken by the governments of different states, which leads to
different form of lockdowns with varying infections spread
across state borders. αdt is the relative severity factor assigned to
each time interval within a day. This score is derived by ana-
lysing both government‐issued COVID‐19 prevention orders
and guidelines, along with historical patterns of COVID‐19
cases. αdt,max is the severity factor corresponding to maximum
severity, that is, complete lockdown. b is the exponential base
which provides the relation between different lockdowns. We
can determine the relative impact on load demand changes by
analysing previous orders and their relationships. β is the max
load deviation due to complete lockdown in the given geometry.

Y ʹd
t is the contribution of the previous days load on the fore-

casted load. Y ʹd
t is determined from Equation (2) which is also

presented in ref. [16].

Y ʹd
t = η̃η−1Ld−1

t + η̃η−2Ld−2
t +⋯ + η̃η−ηLd−η

t (2)

η̃η−i =
ηη−i

∑
η
j=1ηη−j (3)

Ld− 1
t ,Ld− 2

t …Ld− η
t are the load values of the immediate previous

η days. Where η is the number of days contributing to load
forecasting. η̃η− 2, η̃η− 3,…, η̃η− η are normalised weights such that

∑

η

i=1
η̃η−i = 1 (4)

Weights η̃η− i decrease exponentially with the highest weight to
immediate previous day load, that is, Ld− 1

t as represented in
Figure 3.

The optimal η value for the load forecasting is selected using
the averaged mean absolute percentage error (MAPE), where
the averaged MAPE is the average of MAPE of given days and
MAPE of each day is the average of MAPE for training in-
tervals in that day. The η with least average MAPE is consid-
ered as the optimal η. The weight contributions from previous
days, shown in Figure 3, are modelled by Equations (2–4),

where the weights (η
∼η− i

) decrease exponentially, giving higher
importance to more recent loads. This ensures the model
effectively captures temporal dependencies, making it robust to
abrupt load pattern changes during emergencies. If any pre-
vious day is missing while determining the optimal η, the
number of days can be extended to ensure the total number of
days matches η.

The forecasted load (Yd
t ) is determined using the previous loads

(Y ʹd
t ) and adjusts exponentially based on the severity factor αdt .

Figure 4 illustrates the impact of the relative severity factor (αdt )
on the forecasted load (Yd

t ) by capturing the relative difference
in pandemic‐related restrictions and COVID‐19 cases between
the current and previous days with different exponential bases
(b = 1.5, 2.0, e, 10). The impact of the severity factor αdt can be
summarised as follows:

1. Negative relative severity (αdt > 0): When restrictions are
eased, the forecasted load increases relative to the previous
day. This increase is more pronounced for smaller values
of the base b, indicating higher sensitivity to changes in
severity.

2. Positive relative severity (αdt < 0): When restrictions are
tightened, the forecasted load decreases relative to the

FIGURE 3 | Day and weight relation for the η = 2, 3, 4, 5, 6.
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previous day. The rate of decrease is more significant for
smaller bases, reflecting sharper load responses.

3. Neutral severity (αdt ≈ 0): In this scenario, the forecasted
load remains nearly constant, matching the contribution
from the immediate previous day's load, as described in
Equation (2).

The proposed method emphasises the exponential relationship
between the severity factor αdt and load deviations. By incorpo-
rating historical load data and regulatory information, the model
provides accurate and dynamic load forecasting, which is critical
for a reliable power system operation during disruptive events.

A detailed proposed algorithm is presented in Algorithm 1. This
method depends on the lockdown orders, COVID‐19 cases and
load demand of previous days, whichmakes it accurate. Also, it is
easy to decide the model parameter by analysing the regulatory
orders and information from other trusted broadcast sources.

5 | Proposed Cyberattack Detection and
Classification Approach

As discussed in 1, load forecasting during COVID‐19 PLS is
crucial and may be vulnerable to cyberattacks due to a large
attack base. This section presents a detailed explanation of
cyberattack models, anomaly detection and attack classification
methodology.

5.1 | Attack Models

Accurate modelling of cyberattacks is essential for the effective
detection of data integrity attacks in load forecasting. All six
types of cyberattacks on load forecasting based on the attacker's
perspective as discussed in Section 1 are modelled as follows:

5.1.1 | Random Attacks

Random attacks involve adding positive values from a uniform
random function to the initially forecasted loads. These attacks
are challenging to detect due to their unpredictable nature,

especially during lockdown periods when energy consumption
levels are already inconsistent.

Af (t) = Of (t) + SF ∗ rand(t) (5)

Where, for ts (start time of attack) < t < te (end time of attack),
rand() is a uniformly distributed random number generator,
Af (t) is the altered forecast, Of (t) is the original forecast and SF
is a scale factor defined as half of the maximum load forecast
value, that is, SF = max(Of (t))/2.

5.1.2 | Pulse Attacks

A pulse attack involves manipulating the load forecasting data
to higher or lower values at specific points throughout an attack.
These attacks are often mistaken as normal loads with anoma-
lies during lockdown periods due to the unpredictability of
energy requirements.

Af (t) = (1 + PulseAttackParameter) ∗ Of (t) (6)

For t = tP, where tP is the occurrence time of a single pulse
attack. During a lockdown situation, pulse attack may remain
undetectable because of the uncertainty of the load irrespective
of previous loads.

5.1.3 | Type 1 Ramping Attacks

Type 1 ramping attack involves only the ramping up of values in
a specific range by a ramping function. These attacks are
particularly effective during transition periods of lockdowns,
exploiting rapid changes in energy demand.

Af (t) = RF ∗ (t − ts) ∗ Of (t); ts < t < te (7)

When this time increases, the value of t − ts ensuring that an
up‐ramping anomaly is performed.

FIGURE 4 | Impact of the severity factor (αdt ) on forecasted load.

ALGORITHM 1 | Algorithm for load forecasting considering
government orders and pandemic severity.

Input: Previous load data for η duration, αdt
for each load of η duration

Output: Forecasted load value for days of
interest

1: Initialisation:
2: Determine optimal η as based on averaged

MAPE
3: Determine normalised weights as per (3) for

optimal η
4: Forecast load
5: for t = 0 to tmax do
6: Calculate Y ′d

t for time block t using (2)
7: Calculate Yd

t for time block t using (1)
8: end for
9: return Yd

t for 0 ≤ t ≤ tmax
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5.1.4 | Type 2 Ramping Attacks

Type 2 ramping attacks involve both ramping up and ramping
down of the forecasted loads,making themharder to detect due to
their similarity to natural load variations during volatile periods.

Af (t) = [1 + RF ∗ (t − ts)] ∗ Of (t); ts < t < (ts + te)/2 (8)

Af (t) = [1 + RF ∗ (te − t)] ∗ Of (t); (ts + te)/2 < t < te (9)

Equations (8) and (9) are up and down ramping anomalies for
Type 2 ramping attacks, respectively. Ramping attacks particu-
larly during lockdown's initial and end stages are difficult to
detect.

5.1.5 | Scaling Attack

A scaling attack involves modifying the values produced during
a specific time frame. These sets of values are multiplied by the
scaling attack parameter.

Af (t) = (1 + ScaleAttackParameter) ∗ Of (t); ts < t < te (10)

Scaling attacks are more effective during low consumption pe-
riods, resembling the pandemic's recovery conditions.

5.1.6 | Smooth Curve Attack

A smooth curve attack is produced by replacing a set of
continuous start and endpoints within the original load fore-
casting data. These attacks are less detectable initially but cause
significant deviations as time progresses.

As discussed, each attack can have one of two effects on the sys-
tem. They can either cause the forecast system to over‐forecast or
under‐forecast. Both over and under forecast can cause a negative
impact on the grid in terms of stability, load loss or equipment
failure or life‐span reduction. A Python programme was devel-
oped to simulate all six attack events on real‐load data. This
simulated event data were then used to train a nominal classifier
to distinguish between all seven possible events.

5.2 | Anomaly Detection and Attack Classification
Method

A numeric machine learning model is employed to identify
various anomalies in load forecasts by training on historical load

data. Training a numerical machine learning model on past load
data can predict the expected load. If the disparity between the
forecasted load and the predicted load exceeds a predefined
threshold, the forecasted load will be categorised as anomalous.
After identifying an anomalous load, an attack classifier is
employed to categorise the cyberattack present within the load.
The attack classifier is trained on simulated attack and historical
load data to classify the anomalous forecasted load. Figure 5
represents the anomaly detection and attack classification
method based on historical load data.

5.2.1 | Load Anomaly Detection

In the proposed attack detection method, a load prediction
classifier utilises a numeric machine learning classification al-
gorithm trained on previous load data to detect altered load.
This load data would have been used to produce the forecast so
the classifier will understand where each forecasted load should
be in relation to each other. This means that when there is a
sudden increase or decrease in the forecasted load, a classifier
will identify this as anomalous and not identify regular changes
in load forecasting as anomalous data. Load prediction models
for anomaly detection are specified in Table 1. This load pre-
diction classifier uses changing the classifiers class attribute to
be the same as the load currently being tested. This takes into
context the rest of the data points within the instance (day) due
to the volatility experienced during a lockdown. Previous load
data produce the forecast (PPred) by the selected load prediction
model. It helps the load prediction classifier to understand
where each forecasted load should be in relation to each other.
When there is a sudden increase or decrease in the forecasted

FIGURE 5 | A representation of the proposed method with attack
type classification and anomaly detection.

TABLE 1 | Load prediction models details.

Prediction model group Model name Description
Function PLSFilter and classifier [29] Partial least square method

SLR [30] Simple linear regression method

SMOreg [14] Support vector machine for regression

Rule M5Rules [31] Builds a model tree using M5 and makes the ‘best’ leaf into a rule

Tree M5P [32] Tree‐based multivariate linear model
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load, the load prediction classifier will identify this as anoma-
lous, not affecting regular changes. The tolerance Equation (11)
is represented as a fraction of the actual load (PAct) in the given
time period to classify the load as anomalous. The details of
each anomaly detection classifier are summarised below.

tolerance = αPAct; 0 < α < 1 (11)

The load is identified as anomalous if the difference between the
predicted (PPred) and actual (PAct) loads exceeds relative
tolerance.

5.2.1.1 | PLSFilter and Classifier. Partial least squares
(PLS) regression is a dimensionality reduction technique that
constructs latent variables to maximise the covariance between
the predictor (PAct) and target (PPred) variables. The PLSFilter
and classifier directly calculate PLS components as linear
combinations of the original attributes, bypassing the need for
iterative data deflation as in traditional algorithms like NIPALS
[29]. For PPred, the PLSFilter identifies the most relevant com-
ponents from PAct by maximising their covariance while main-
taining orthogonality and normalisation. Each latent variable is
a weighted sum of original attributes, ensuring the model re-
mains robust against multicollinearity. The classifier uses these
components to classify data points and detect anomalies in load
forecasting, particularly under pandemic‐like scenarios.

5.2.1.2 | Simple Linear Regression. Simple linear regres-
sion (SLR) is a numeric prediction technique that models the
relationship between the predicted load (PPred) and previous
load attributes within an instance (e.g., a day) [30]. SLR estab-
lishes this relationship by representing the dependent variable
(PPred) as a linear combination of attribute values (x1, x2,…, xk)
from the load data, weighted by coefficients (w1,w2,…,wk) and
expressed mathematically as follows:

PPred = w0 + w1x1 + w2x2 +⋯ + wkxk, (12)

where w0 is the intercept. The model's coefficients (wj) are
optimised by minimising the sum of squared residuals between
the actual load (PAct) and the predicted load (PPred):

min∑
n

i=1
(PActi − ∑

k

j=0
wjx(i)j )

2

. (13)

SLR is particularly suited for identifying load anomalies during
pandemic‐like situations (PLS), where sudden shifts in demand
caused by factors such as regulatory actions or human behav-
iour changes can significantly affect load patterns. By being
trained on previous load data, SLR captures the inherent re-
lationships between load attributes, allowing it to contextualise
forecasted values within the broader temporal structure of the
data (e.g., daily or hourly patterns).

5.2.1.3 | SMOreg. SMOreg uses support vector regression
(SVR) to model the relationship between actual load (PAct) and
predicted load (PPred) for anomaly detection [14]. The regression
function is defined as follows:

PPred = b + ∑
i∈support vectors

αiPActi K(x, xi), (14)

where b is the bias term, αi are Lagrange multipliers and K(x, xi)
is the kernel function.

An e‐insensitive loss function is employed to ignore deviations
within a margin of tolerance (e), focusing only on significant
anomalies. The optimisation problem minimises the model
complexity while penalising deviations beyond e:

|PAct − PPred| > αPAct, (15)

where α is the tolerance parameter.

SMOreg efficiently handles large datasets by iteratively opti-
mising pairs of Lagrange multipliers, ensuring computational
scalability. This makes it well‐suited for detecting sudden spikes
or drops in load while filtering out regular fluctuations, partic-
ularly in volatile conditions like lockdowns.

5.2.1.4 | M5Rules. M5Rules generates regression rules
from model trees to predict PPred based on PAct and other attri-
butes of the instance. It constructs a model tree with linear
regression models at its leaf nodes and extracts rules from the
tree. Each rule is derived from a tree branch, with a linear
model representing the relationship between PPred and its pre-
diction attributes [31]. For anomaly detection, M5Rules iden-
tifies deviations between PPred and PAct beyond a predefined
tolerance, leveraging its ability to model nonlinear interactions
while maintaining interpretability. The rules are pruned to
ensure generalisation, and smoothing is applied to reduce dis-
continuities between adjacent models, enhancing robustness in
detecting anomalous patterns in load forecasting.

5.2.1.5 | M5P. M5P is a model tree algorithm that in-
tegrates decision tree construction with multivariate linear
regression at the leaf nodes, enabling piecewise linear pre-
dictions for PPred using PAct and related attributes [32]. It
recursively splits data to minimise variance, with variance
reduction calculated as follows:

ΔError = sd(T) − ∑
i

|Ti|
|T|

sd(Ti),

where T represents the dataset at the current node, Ti are the
subsets formed by the split, |T| and |Ti| are the number of in-
stances in T and Ti, respectively, and sd(T) is the standard de-
viation of the target variable PAct in T. Linear models at leaf
nodes predict PPred as in Equation (12). These linear models use
only attributes relevant to the subtree, ensuring computational
efficiency. Pruning replaces subtrees with linear models when
they improve accuracy, and smoothing adjusts predictions along
the path from the root to leaf, reducing discontinuities and
enhancing robustness. Unlike M5Rules, which extracts regres-
sion rules from branches for simplicity, M5P retains the full tree
structure, offering global consistency and superior handling of
complex and dynamic datasets. In anomaly detection for load
forecasting, M5P effectively identifies deviations between PPred
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and PAct when these exceed the predefined tolerance, making it
a robust tool for identifying irregularities in volatile conditions.

5.2.2 | Prediction Model Enhancers

Single or multiple model enhancers can be applied to the
selected regression models to improve load prediction for
anomaly detection. Three types of model enhancers are
considered:

5.2.2.1 | Bagging. Bagging establishes a regressor/classifier
for each uniquely created multiple samples based on the base
learner [33]. A bootstrap aggregate predictor combines the
prediction of each base learner to produce overall predictions.
This single‐learner enhancer also significantly increases the
creation time of the prediction model. It can improve accuracy
if uniquely created learning sets can cause the changes in the
predictor.

5.2.2.2 | Boosting. Ada Boost EM1 is a statistical classifi-
cation meta‐algorithm that gives a weighted sum of weak
learner algorithms output to an overall boosted predictor. This
algorithm enhances the accuracy, albeit at the cost of
increased time requirements.

5.2.2.3 | Vote. The vote is a single predictor enhancer that
allows the combination of predictors to produce an overall
predictor that is, in theory, more accurate than an individual
predictor. This can be applied to one predictor by merging the
adapted boosting predictor and the bootstrap aggregating pre-
dictor. Subsequently, this single predictor enhancer can also be
applied to all the individual predictor algorithms, making it a
multiple predictor enhancer.

These predictors and predictor enhancers are incorporated into
the tool using a Python wrapper of WEKA API [34].

5.2.3 | Attack Classification

The load anomaly detection method as detailed in Section 5.2.1
determines whether the load is classified as anomalous or not
depending on its adherence to a specified tolerance threshold.
When a group of anomalous loads is detected, the challenge lies
in accurately determining the specific type of attack within the
load forecasting data. This includes categorising the attack
among the seven possibilities of no event or attack events as
defined in Section 5.1 from the perspective of the attacker. A
rotation forest [35] classifier is employed to classify the cyber-
attack on forecasted loads marked as anomalous by the initial
classifier. This classifier is called the cyberattack classifier as
shown in Figure 6. This classifier is trained using N days his-
torical load and attack data generated using attack models
specified in 5.1. These data are used to train the attack classifier
where load data (Xi

t) of each time interval t of given day i are
considered the features/input for the classifier. The attack class
is determined by the numeric value predicted by the attack
classifier.

5.2.4 | Evaluation Methods

This section discusses the evaluation methods of the classifiers
considered for cyberattack classification. This tool uses WEKA
library‐based evaluation models to evaluate the classifiers.

5.2.4.1 | K Fold Analysis. In k‐fold cross‐validation, the
dataset is split into k number of subsets, and then training is
performed on all the subsets, but one (k‐1) subset is used to
evaluate the trained model [36].

5.2.4.2 | Quick Analysis. The default evaluation method
for the weka.classi f ier.evaluation class in WEKA is typically ‘10‐
fold cross‐validation’. In this default evaluation method, the
dataset is divided into 10 subsets (folds), and the classifier is
trained and tested on these subsets in a rotating fashion.

These analysis methods reduce overfitting, improve generalisa-
tion to unseen data and ensure fair performance assessment,
even with limited or imbalanced datasets. Specifically, 10‐fold
cross‐validation, as the WEKA default, balances computational
efficiency and reliability, enabling consistent evaluation across
varied data splits.

6 | Case Study and Results

India is a largely populated country, so the impact of COVID‐19‐
like situations can be huge. The load demand of Delhi (the
capital city of India) has been considered for the analysis pur-
pose. The Delhi State Load Dispatch Centre (SLDC) provides the
load demand data for 5 min for all distribution companies in
their territory [10]. All the cases analysed use the data available
at the Delhi SLDC during the first and second waves of the
COVID‐19 pandemic. Cyberattack incidents are generated by
imposing attacks specified in 5.1 on Delhi SLDC load data.

FIGURE 6 | Attack classification model using rotation forest.
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6.1 | Load Forecasting

As shown in Figure 3, the model first determines the optimal η,
which is then used for load forecasting for the given time period.
The model parameters are determined based on Delhi Govern-
ment Orders and pandemic cases and are described below.

� The value of αdt has a maximum value of 10, which corre-
sponds to maximum severity, that is, complete lockdown
and has lower values when severity decreases. As per load
data from Delhi SLDC, we have a range of αdt in between 1
and 10.

� By observing the load demand, it is determined that the
impact of each relaxed level on load demand decreases by a
factor of 2, so the value of b is considered as 2.

� Additionally the maximum impact on the load due to the
complete lockdown is considered to have a 0.2 times
decrease from the nominal value.

The determination of the severity factor is done based on the
government orders and COVID‐19 related cases as shown in
Figure 7.

Complete lockdown and increasing COVID‐19 cases can be
assigned with the highest severity. No restrictions imposed by
the government and very low COVID‐19 cases can define zero
severity, which means the pandemic's impact is minimal. The
considered cases include single‐day and multi‐day forecasts, as
described below.

6.1.1 | One Day Forecast

The initial η range can be considered based on the available
previous load data where more than 1 week of data is suffi-
cient. Here, the considered η range is between 2 and 9. As
discussed in Section 4, the optimal η value is determined based
on the average MAPE. Load data for April 2–10 April 2021
have been considered to forecast the load for April 11, 2021.
The optimal η obtained from the model is 9. Based on this,
Figure 8 shows the results of the forecasted and actual load
demand of April 11, 2021, which shows high accuracy for the
forecasted load.

6.1.2 | Multi‐Day Forecast

For the multi‐day forecast, optimal η is determined using the
previous load data present and remains unchanged for the
duration of the forecast. In this case, the load forecast duration
is May 14–May 17, 2021. The optimal η determined for this case
is 3. The forecasted load is shown in Figure 8. The average
MAPE obtained for this case is 4.3%. The proposed method in
this paper achieves higher accuracy with a low‐averaged MAPE
(mean absolute percentage error) for both single‐day and multi‐
day forecasts.

6.1.3 | One Day Forecast With Missing Data

Load data for April 2–10, 2021, are considered to forecast the
load for April 11, 2021. However, load data for April 7–9 are
missing. The model compensates for the missing data by uti-
lising the available load data from earlier days during fore-
casting. Figure 9 shows the load profiles of the actual load,
forecasted load without missing data and forecasted load with
missing data for April 11, 2021. The MAPE for the actual load
compared to the forecasted load without the missing data is
2.81%, whereas the MAPE for the actual load compared to the
forecasted load with the missing data increases to 3.19%. This
demonstrates a slight reduction in accuracy due to the missing

FIGURE 7 | Determination of the COVID‐19 severity factor with
government orders and COVID‐19 confirmed cases.

FIGURE 9 | Plot of actual and forecasted load for one day (April 14,
2021) with and without missing data.

FIGURE 8 | Plots of actual and forecasted load for (a) one day (April
14, 2021) (b) multi‐day (May 14–May 17, 2021).
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data, emphasising the importance of continuous data avail-
ability for reliable load forecasting.

6.2 | Cyberattack Detection and Classification

Due to the unavailability of real attack data from Delhi SLDC,
attack scenarios were simulated using forecasted load data from
the SLDC and the attack models defined in Section 5.1. This
simulated attack data were then used to perform anomaly
detection and attack classification. A total of 511 cases were
developed, including all six types of attack models as shown in
Table 2.

6.2.1 | Anomaly Detection

The attack and forecasted data are inputted to the anomaly
classifier. This classifier will predict the load and compare it
with the input forecasted load. As defined in Section 5.2.1, a
total of five types of classifiers are used to determine whether
the forecasted load is anomalous or not. To evaluate the models,
k‐fold cross‐validation is performed for all the classifiers. In k‐
fold cross‐validation, the dataset is split into k subsets; training
is performed on k − 1 subsets, and the remaining subset is used
to evaluate the trained model [36]. A ‘10‐fold cross‐validation’ is
used for a quick evaluation of classifier performance. A relative
performance comparison for all classifiers is shown in Table 3.
SMOreg performed relatively better, detecting 241 anomalies
out of a total of 287 tested instances, with a maximum relative
difference of 0.4322 and an average difference of 478.46.

6.2.2 | Attack Classification

After detecting anomalies in the load, an attack classification
was performed. In the initial testing of the meta‐type classifier,
the rotation forest achieved a 92.37% correct classification rate
without any single‐classifier enhancers compared to other
classifiers. A confusion matrix is presented in Figure 10 for
meta‐type classifier rotation forest for specified data types and
classes.

The rotation forest confusion matrix shows high levels of correct
classification amongst all event types but the worst performance
for the pulse attack. A small minority of the pulse attack in-
stances are classified as no events due to the nature of the pulse
attack only affecting the forecasted load for a single instance,
making it difficult to detect with these algorithms. The best
attack types classified were the ramping and smooth curve at-
tacks. These three attack types were correctly classified as 71 out
of 73 times. This is due to the significant increase in the dif-
ference between the forecasted load and the affected load by the
end of the day, thus making it relatively apparent when these
types of attacks have occurred.

6.2.3 | Data Analysis

Individual attributes used in training data affect the model's
prediction ability. Some attributes provide a more significant
amount of information predicting the scenario than others. This
measurement is known as information gained. In this tool, the
WEKA code library produces a ranked list of attributes based on
how much information they provide to a classifier. In Figure 11,
using information gained analysis, it can be seen that each of
the different time attributes is useful in predicting the forecasted
load for 12:00 o'clock. Two distinct groups have formed within
the graph. Most of the time attributes belong to the first group,
providing a Pearson's correlation coefficient of over 6.15. The
attributes day, month and year are also shown in Figure 11,
where the day attribute is the best performing out of the three,
still managing to score a respectable 4.90, but apart from this
exception, both month and year perform very poorly, with
month scoring only 1.48 and year scoring 0. This is because the
PLS are short‐term events, and the impact of temporal attributes
diminishes with increasing granularity. Specifically, the day
attribute exhibits some influence on the attack classification,
whereas the month and year attributes have progressively
decreasing impacts.

The second data analysis performed is the correlation attribute
evaluation. This evaluates the worth of an attribute by
measuring its Pearson's correlation coefficient using Equa-
tion (16) between it and the identified class in the given
instance, whether the instance is malicious or not, where each

TABLE 2 | Training data distribution for all attack types and normal forecasted load.

No event Pulse Random Smooth curve Scaling Type 1 ramping Type 2 ramping
73 73 73 73 73 73 73

TABLE 3 | An analysis of different classifiers in anomaly detection in the forecasted load.

Prediction model Anomalous
Anomalies
detected

Total
tested

Maximum relative
difference

Average
difference

Linear regression
method

Yes 243 287 0.5262 559.19

PLSFilter and classifier Yes 240 287 0.4787 490.24

SMOreg Yes 241 287 0.4322 478.46

M5Rules Yes 241 287 0.740 516.45

M5P Yes 241 287 0.740 514.14
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instance in our data is defined as load data for the day of interest
d at time block t, day, month and year.

ρX,Y =
∑

T
t=1(xt − x)( yt − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
T
t=1(xt − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
T
t=1( yt − y)2

√ (16)

In Figure 12, different attributes are ranked based on corre-
lation analysis. The vast majority of the attributes performed
poorly, with only a few surrounding the targeted load
achieving higher than the rest correlation, although this in-
crease is only 0.0005. Month and day had a higher Pearson's
correlation coefficient than the best‐performing time attribute.
Month attribute managed to score 0.115, and day managed to
score 0.043, with the highest time attribute coming in at
0.0294. Year attribute is still the worst‐performing attribute,
scoring 0 for this analysis. Different days of week affect the
forecasted load as more energy might be required. Month
attribute is affected by weather conditions, which can intro-
duce difficulty in classification.

6.2.4 | Applications

The proposed tool provides various functionalities for load
forecasting during emergency energy situations, as well as
anomaly detection and cyberattack classification. It can assist
system operators in predicting load patterns during emergen-
cies, such as the COVID‐19 pandemic, and ensure reliable
operations. By detecting anomalies and classifying attacks, the
tool can enable operators to correct load forecasts and prevent
using false data in system operations. Additionally, it can help
analyse the impact on the grid caused by the severity of PLS,
such as COVID‐19, along with government‐imposed regula-
tions. Load forecasting can be crucial for optimising power
usage, particularly in scenarios involving human‐in‐the‐loop
systems, contributing to the societal and economic benefits of
a country. The tool can also benefit utilities and service pro-
viders by maximising their contributions during such situa-
tions while maintaining optimal costs and ensuring system
reliability.

7 | Conclusion

This paper introduces a novel energy load forecasting tool for
the detection and classification of cyberattacks in the context of
pandemic scenarios. This tool takes into account regulatory
orders and incorporates COVID‐19 information for short‐term
load forecasting, ensuring its relevance during uncertain con-
ditions. The proposed load forecasting approach is computa-
tionally efficient and effectively utilises limited historical load
data, making it suitable for rapidly changing scenarios like
pandemics. The inclusion of regulatory orders has a positive
impact on the accuracy of load predictions. The anomaly
detection and cyberattack classification are enabled through
multiple base prediction models, with the developed anomaly
detection method effectively handling the volatility commonly
observed during lockdowns. By incorporating the context of
lockdowns, the method accurately classifies regular pandemic‐
induced load patterns, distinguishing them from anomalous or
malicious data. Notably, rotation forest demonstrates robust
performance across various types of attacks. In future, the load
forecasting model can be enhanced by incorporating more
precise values of forecasting parameters derived using machine
learning‐based methods.
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