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Abstract 
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on 
between-group matching or controlling for sources of biological variation such as subject’s sex and age. 
However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. 
This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and 
brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 
healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlates with brain 
gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional 
area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). Intracranial volume (ICV) correlates with body 
height (r=0.46) and the brain volumes and CSA-WM (0.37≤r≤0.77). In comparison, age correlates with cortical 
GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlates with 
magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). 
Body weight further correlates with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM 
(r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlates with brain volumes (0.39≤r≤0.64), 
and with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral 
corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of age, sex, or sex and age, explained 2±2%, 24±10%, or 
26±10%, of data variance in brain volumetry and SC CSA. The amount of explained variance increased to 
33±11%, 41±17%, or 46±17%, when body height, ICV, or body height and ICV, were added into the mixture 
model. In females, the explained variances halved suggesting another unidentified biological factor(s) 
determining females’ CNS morphology. In conclusion, body size and ICV are significant biological variables. 
Along with sex and age, body size should therefore be included as a mandatory variable in the design of 
clinical neuroimaging studies examining SC and brain structure; and body size and ICV should be considered 
as covariates in statistical analyses. Normalization of different brain regions with ICV diminishes their 
correlations with body size, but simultaneously amplifies ICV-related variance (r=0.72±0.07) and suppresses 
volume variance of the different brain regions (r=0.12±0.19) in the normalized measurements. 
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1 Introduction 
Knowledge about the relationship between body size (i.e., height and weight), spinal cord (SC) and brain 
structure is essential for a mechanistic understanding of human physiology and pathophysiology and, 
consequently, developing biomarkers critical for robust clinical trial designs. Besides sex and age, numerous 
other factors influence body size, including genetic makeup, race and ethnicity, socioeconomic and 
environmental factors, as well as developmental determinants. There are also diseases affecting physical 
makeup, spanning chronic conditions (i.e., anemia, asthma, celiac disease, inflammatory bowel disease, 
kidney or heart insufficiency), hormonal diseases (i.e., growth or thyroid hormone disbalances), and/or rare 
disorders such as achondroplasia and Down, Noonan or Turner syndromes (Butler et al., 2022; Pierpont et al., 
2024). For example, patients diagnosed with Friedreich ataxia tend to be underweight in young age and 
overweight in adulthood (Boesch & Indelicato, 2021; M. Patel et al., 2021). Patients with different types of 
mucopolysaccharidoses are known to present with a short stature (Lin et al., 2019; Muschol et al., 2019; P. 
Patel et al., 2014). While neuroimaging measurements are usually compared to a healthy population, neither 
body height nor weight have been rigorously considered as putative confounding factors, normalization factors, 
and/or as variables necessary for an inter-population matching (Harding et al., 2021; Joers et al., 2022; Kovac 
et al., 2022; Provenzale et al., 2015; Rezende et al., 2023; Yund et al., 2015). Such a study design deficit can 
lead to bias in clinical outcomes, which applies even more explicitly to studies where the typical body size of 
the patients’ cohort differs from the control group. To assess the significance and importance of body size 
correction, we have investigated the impact of body size on structural neuroimaging measurements in the SC 
and brain of a healthy human population. If the effect is significant, future clinical research studies and trials 
utilizing neuroimaging should include body size as a potential confounding biological factor to avoid bias in 
clinical outcomes. 

Evolutionary biology has identified links between species’ body weight, SC, and cerebral weights (MacLarnon, 
1996b), and between spinal canal dimensions and adjacent cord (MacLarnon, 1995, 1996a). Cadaveric human 
measurements revealed links between the cross-sectional area (CSA) of the cervical SC and cerebral weight, 
body height, and age (Kameyama et al., 1994). However, in vivo evidence of such a relationship between body 
size and central nervous system (CNS) structure is limited to a few magnetic resonance imaging (MRI) studies. 
In vivo CSA of the upper cervical SC (i.e., C2/3 segment) appears to be determined by both the cerebral 
volume and white matter (WM) content of cerebrospinal tracts (Engl et al., 2013). Recent exploration of the UK 
Biobank imaging dataset observed weak in vivo links between the CSA of the C2/3 SC segment and body 
height and weight, and moderate links between the CSA and brain and thalamus volumes (Alfaro-Almagro et 
al., 2018; Bédard & Cohen-Adad, 2022; Littlejohns et al., 2020). Weak correlations between body height, CSA 
of the SC (CSA-SC) and gray matter (GM) as well as brain volume scaling were also reported on a concurrent 
in vivo dataset (Papinutto et al., 2020). However, these effects disappeared when sex was controlled for 
(Papinutto et al., 2020). Additionally, the in vivo CSA of peripheral nerves has also been shown to correlate 
moderately with body height, body weight, and body mass index (BMI), but not age (Kronlage et al., 2019). 
Whether SC WM and GM contents are equally correlated with body size and distinct brain morphology has not 
been satisfactorily determined. Our first hypothesis was therefore that “CSA of cervical SC WM and GM 
interacts with body size and morphology of distinct brain structures”; we tested this premise by utilizing a 
multi-center spine-generic MRI dataset. The dataset allows for the separate assessment of cervical SC WM 
and GM morphology in a large cohort of healthy cosmopolitan volunteers with available demographic records 
and images of cerebral morphology (Cohen-Adad et al., 2021a, 2021b). 

Myelin content is an essential characteristic of the neural tissue microstructural integrity (Levitan & Kaczmarek, 
2002). In the CNS, the ratio between axon diameter and diameter of the total nerve fiber (axon and myelin) is 
0.6–0.7 (Susuki, 2010). As SC axons generally have larger diameters than axons within the brain (Aboitiz et 
al., 1992; Duval et al., 2019; Saliani et al., 2017; Veraart et al., 2020), SC myelin sheaths are often also thicker, 
increasing the overall diameter of the myelinated axons. Thicker myelin sheaths around axons accelerate 



nerve conduction speed independent of the axonal diameter (Rushton, 1951; Zalc, 2006, 2016). Assuming a 
fairly constant axon/fiber diameter ratio (Susuki, 2010), thicker myelin sheaths are therefore expected for 
species with larger body sizes (Zalc, 2006, 2016). Considering intra-species variability in body size, the overall 
degree of SC myelination might be influenced by the body size of a given specimen. If true, the influence of 
body size on myelin content may be detectable in SC images sensitive to tissue microstructure, such as 
diffusion tensor imaging (DTI) or magnetization transfer ratio (MTR) imaging. Both DTI and MTR image 
contrasts are available within the spine-generic dataset (Cohen-Adad et al., 2021a, 2021b). Moreover, body 
weight and BMI are correlated with MTR of peripheral nerves and muscles (Fösleitner et al., 2022). Our 
second hypothesis was therefore that “SC microstructure, as measured using MTR and DTI, interacts with 
body size”. 

Finally, the human brain volume and CSA-SC differ between sexes (Bédard & Cohen-Adad, 2022; Giedd et al., 
1996; Papinutto et al., 2015, 2020). It is well established that brain volume shrinks and cortical GM thickness 
thins with aging (Fjell et al., 2013; Peters, 2006; Thambisetty et al., 2010), with both processes accelerating 
after 45 years of age (Heymsfield et al., 2009; Peters, 2006). However, results obtained from pathological 
(Callaghan et al., 2014; Kameyama et al., 1994; Weitzenkamp et al., 2001; Zhang et al., 1996; Zhou et al., 
1996) and neuroimaging (Callaghan et al., 2014) studies investigating the relationships between age and SC 
CSA have been less consistent. Recent high-resolution in vivo neuroimaging indeed observed weaker and 
slower aging effects in SC CSA than those described for brain morphology (Bédard & Cohen-Adad, 2022; 
Papinutto et al., 2015, 2020). The UK Biobank dataset already showed that physical measures, including body 
height and weight, strongly impact quantitative brain structural measures in a population of 40-69 years olds 
while adjusted for sex and age (Miller et al., 2016). Outside of the UK Biobank, links between body size and 
brain volume have been reported with inconsistent results, spanning significant relationships with a stronger 
height influence (Baaré et al., 2001; Bédard & Cohen-Adad, 2022; Heymsfield et al., 2009) or non-significant 
findings (Willerman et al., 1991). Therefore, our third hypothesis was that: “Cerebral morphology interacts 
with body height more profoundly than with body weight and age,”  

In addition to body size, brain morphology is often normalized with subject-specific intracranial volume (ICV) 
(Voevodskaya et al., 2014; Whitwell et al., 2001; Xie et al., 2005). ICV and head size were identified as 
significant covariates determining brain structure more profoundly than the body size in the UK Biobank 
dataset (Miller et al., 2016). That led us to the fourth hypothesis: “Body size increases the predictive power of 
CNS structure.” We tested our hypotheses by utilizing the spine-generic dataset of predominantly non-elderly 
healthy adults and considering sex effects. 

2 Methods 

2.1 Structural MRI data 
Signed informed consent was obtained from all participants under the compliance of the corresponding local 
ethics committee (more info in the Scientific Data paper (Cohen-Adad et al., 2021b)). The spine-generic 
protocol 3T MRI data were acquired once for each participant. Siemens scanners were used in 180 (67.41%) 
acquisitions, Philips scanners in 50 (18.72%) acquisitions and GE scanners in 37 (13.87%) acquisitions. 3D 
T1w scans were utilized to estimate cerebral volumes and cortical thicknesses. 3D T2w scans were utilized to 
assess the cross-sectional area (CSA) of the cervical spinal cord (SC). Axial T2*w scans were utilized to 
estimate the CSA of white (WM) and gray (GM) matter of the cervical SC. Diffusion weighted imaging was 
utilized to estimate diffusion tensor imaging (DTI) and the corresponding microstructural maps for the cervical 
SC. GRE-T1w, GRE-MT1, and GRE-MT0 scans were used to derive the magnetization transfer ratio (MTR) 
maps in the cervical SC. More detailed information about protocol settings and scanner subtypes can be found 
in the spine-generic protocol original papers (Cohen-Adad et al., 2021a, 2021b).  



2.2 Image analysis 
The same image processing pipeline was employed here, utilizing the Spinal Cord Toolbox (SCT) version 6.1 
(De Leener et al., 2017), as developed originally for the spine-generic protocol (Cohen-Adad et al., 2021a, 
2021b). The spine-generic database (Cohen-Adad et al., 2021b) includes manual SC and/or WM/GM 
segmentation and cervical level labeling for MRI scans where the automated segmentation and/or labeling 
methods were inaccurate. In cases where manual segmentation existed, we used the existing manual 
segmentation to secure result reproducibility and reliability. CSA of the whole SC (CSA-SC) was computed and 
averaged from cervical C3-4 vertebral levels of the 3D T2w scan. CSA of WM and GM structures (CSA-WM, 
CSA-GM) were computed and averaged from cervical C3-4 levels of the axial T2*w scan. C3-4 levels were 
selected for CSA measurements since the T2*w imaging protocol had set the center of the field of view at the 
C3/4 disc and because C3-4 levels still contain the most sensory and motor fiber bundles. C3-4 average 
represents a robust representative morphological measurement as the CSA demonstrates high intra-individual 
correlation over segments (Healy et al., 2012; Kameyama et al., 1996), although the absolute CSA values 
inter-individually vary (Cohen-Adad et al., 2021b). All CSA measurements were measured in mm2 units. FA, 
MD, RD, and MTR were estimated from cervical C2-5 vertebral levels for WM, GM, bilateral lateral 
corticospinal tracts, and bilateral dorsal columns utilizing the PAM50 atlas co-registration and weighted 
average techniques (Lévy et al., 2015). The C2-5 segment range was selected for DTI and MTR averaging to 
guarantee the robustness of the tract-specific measurements with minimal partial volume effects (Lévy et al., 
2015). 

Brain volume was segmented and parceled at partial sub-structures from 3D T1w scans with FreeSurfer ver. 
7.2 (Fischl, 2012). All FreeSurfer-based brain imaging results were visually reviewed for accuracy and any 
inaccurate segmentations were fixed. During initial post-processing, 112 scans (46.86%) had inaccurate 
segmentation. Corrections were performed using FreeSurfer edits (i.e., control points, pial edits, both control 
points and pial edits, and recon-all interventions), AFNI’s (Analysis of Functional NeuroImages) 3dUnifize tool 
(Cox, 1996), and/or lesion fill using ITK-SNAP (Yushkevich et al., 2006) and FSL (Battaglini et al., 2012; 
Jenkinson et al., 2012). The lesion fill was utilized for 1 scan (sub-mountSinai01) where minor white matter 
hypo-intensities were present. Volumes of brain (BrainVol), brain GM (BrainGMVol), cortical GM 
(CorticalGMVol), cortical WM (CorticalWMVol), subcortical GM (SubCortGMVol, including amygdala, caudate, 
hippocampus, nucleus accumbens, pallidum, putamen, thalamus, ventral diencephalon, and substancia nigra), 
thalamus (ThalamusVol), cerebellum (CerebellumVol), brainstem (BrainStemVol), precentral cortex GM 
(PrecentralGMVol), postcentral cortex GM (PostcentralGMVol), and intracranial volume (ICV) were measured 
from the FreeSurfer segmentations in mm3 units. A sub-analysis also utilized brain volume measurements as 
relative ratios of the whole ICV. Cortical thickness (Cortical thickness), thickness of the precentral (PrecentralG 
Thickness), and postcentral gyrus (PostcentralG Thickness) were averaged across the left and right 
hemispheres as derived from the surface-based cortical parcellation. Precentral and postcentral cortices, motor 
and somatosensory cerebral centers, were investigated because the majority of the cervical spinal cord WM 
cross-section are the motor and somatosensory pathways. 

2.3 Exclusion of spinal cord and brain structural measurements 
Spinal cord images were analyzed for all 267 participants. Cross-sectional area of SC (CSA-SC) was not 
estimated for 4 participants (listed in the category “csa_t2” in exclude.yml file, which contains the excluded 
subject ID and the verbal explanation of the exclusion; 1.50% of the dataset), CSA of WM and GM (CSA-WM 
and CSA-GM respectively) were not estimated for 4 different participants (category “csa_gm” in the 
exclude.yml file; 1.50%), DTI measurements were not estimated for 4 participants (categories “dti_fa”, “dti_md” 
and “dti_rd” in the exclude.yml file; 1.50%), and MTR measurements were not estimated for 5 participants 
(category “mtr” in the exclude.yml file; 1.87%). The exclude.yml file is available at: 
https://github.com/spine-generic/data-multi-subject/blob/r20231212/exclude.yml. The most common reasons 
for SC measurement exclusions were: (i) motion artifacts; (ii) subject repositioning during data acquisition; (iii) 
poor data quality; (iv) wrong field of view placement; or (v) not following required imaging parameters. The 



analysis excluded all CSA, DTI and MTR SC measurements for 1 additional subject (sub-mniS05; 0.37% of the 
dataset) due to severe degenerative cervical SC compression (maximal compression at C3/C4 level).   

We analyzed brain images from 239 participants (89.51% of the dataset). We excluded T1w scans of 28 
participants (10.49%) from the analysis because the images demonstrated field of view cut-offs (18 scans; 
6.74%), defacing errors (5 scans; 1.87%), poor image contrast in superior cerebral regions (4 scans; 1.50%), 
and severe motion artifacts (1 scan; 0.37%). Excluded brain scans are listed in the exclude.yml file as the 
category “brain_t1”. 

2.4 Body mass measurements 
Body mass index (Nuttall, 2015), body surface area (Du Bois & Du Bois, 1989) and lean body weight (James, 
1976) were estimated utilizing body height and weight measurements. 

2.5 Effect of ICV normalization on cross-sectional brain volume measurements 
Let x be a region-specific brain volume measurement. If x ≪ ICV (e.g., ThalamusVol), then a normalized brain 
volume xnorm=x/ICV becomes proportional to ICV-1 and an effect of the underlying region-specific brain structure 
can be minimized in the normalized volume measurement. In the statistical analysis, we correlated xnorm with 
original x [mm3] and ICV-1 to test whether xnorm preserves more information about x or ICV. We also correlated x 
and xnorm with body size and assessed outcome differences. 

2.6 Statistical analysis 
Statistical analysis and figure visualization were implemented in the programming environment MATLAB 
R2021b (Natick, USA). Each variable or log(variable) was normalized into the space of the normal distribution 
and the Kruskall-Wallis test tested whether investigated variables meet conditions for Gaussian or 
log-Gaussian distribution (p<0.05). Between-group differences were tested with two-sample or paired t-tests. 
Correlation analysis utilized Pearson (r) and Spearman (⍴) correlation coefficients, considering correlation to 
be significant if pFWE<0.05 (FWE - family wise error correction) after the Bonferroni multiple-comparison 
correction. Correlation coefficients were estimated for raw and normalized dataset values, where the 
manufacturer-specific average was subtracted from all SC quantitative measurements to minimize the effects 
of the previously reported inter-manufacturer variability in the spine-generic dataset (Cohen-Adad et al., 
2021b). For SC DTI and MTR correlation analysis, GE scanner raw values were excluded (i.e., 13.87% of the 
dataset) due to strong offsets compared to Siemens and Philips scanner values. SC qMRI measurements, 
FreeSurfer-based brain measurements, age, body height, and body weight were cross-correlated, and 
significant correlations (after the Bonferroni correction) were identified. The dataset was split into males and 
females and the correlation analysis was post-hoc repeated to address sex effects in the data demonstrating 
significant correlations. Due to the reduced sample size at half, the uncorrected p<0.05 was considered 
significant in the post-hoc analysis investigating the sex effects. The correlation analysis was also post-hoc 
repeated for SC measurements while excluding all 64 subjects with degenerative cervical SC compression (as 
identified in the spine-generic database; r20231212) to test for the compression effects on the study outcomes. 
The critical pFWE<0.05 remained here, although the dataset was reduced to 76% of its original size. 

Manufacturer-specific average was subtracted from all SC structural measurements. Then, all multivariate data 
were normalized to mean=0 and standard deviation STD=1 for each examined variable. Such normalized data 
formed an input matrix for exploratory principal component analysis (PCA) optimized via singular value 
decomposition. Variables were visualized in the space of orthogonal principal components via biplot 
projections, and between-variable relationships were quantified and interpreted in the rotated principal space 
explaining the majority of the data variance. 

Several linear regression models (Eqs. 1-10) were estimated for the SC and brain structural measurements (y) 
demonstrating significant correlation with age, ICV, body height and/or body weight, respectively. Models’ 
coefficients of determination (R2) objectively assessed which demographic variable or set of demographic 



variables explained most of the demography-related variance in the SC and brain structure. Models utilizing 
simultaneous regression of body height and body weight were not utilized as body height and weight are 
strongly linearly dependent variables. The variable y0 represents the model’s constant member, the 𝛽𝛽 
parameters are model regression coefficients (Eqs. 1-14). Categorical variable Sex was modeled as a vector of 
values 0.5 at positions of males and of values -0.5 at positions of females. Manufacturer-specific average was 
subtracted from all SC structural measurements before the regression analysis. 

y ∝ y0 + 𝛽𝛽Age·Age (1) 

y ∝ y0 + 𝛽𝛽Sex·Sex (2) 

y ∝ y0 + 𝛽𝛽Height·Height (3) 

y ∝ y0 + 𝛽𝛽Weight·Weight (4) 

y ∝ y0 + 𝛽𝛽ICV·ICV (5) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age (6) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Height·Height (7) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Weight·Weight (8) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽ICV·ICV (9) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age + 𝛽𝛽Height·Height (10) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age + 𝛽𝛽Weight·Weight (11) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age + 𝛽𝛽ICV·ICV (12) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age + 𝛽𝛽ICV·ICV + 𝛽𝛽Height·Height (13) 

y ∝ y0 + 𝛽𝛽Sex·Sex + 𝛽𝛽Age·Age + 𝛽𝛽ICV·ICV + 𝛽𝛽Weight·Weight (14) 
Stepwise linear regression was also performed utilizing the same variables as in the Eqs. 1-14. The threshold 
p-value to consider a variable as statistically significant for the multiple linear regression model was p<0.05. 

3 Results 

3.1 Study cohort demography 
Structural MRI data were acquired in a cohort of 267 neurologically healthy (self-reported) volunteers whose 
demographic data and intracranial volumes are summarized in Table 1. There was no significant difference in 
age between females and males, but body height, weight, BMI, body surface area (BSA), lean body weight 
(LBW) and ICV differed (Table 1). Female dataset provided slightly lower variance in age, body height, body 
weight, BSA, LBW and ICV; and slightly higher variance in BMI (Table 1). All subject-specific demographic 
data are available at: https://github.com/spine-generic/data-multi-subject/blob/r20231212/participants.tsv. Body 
height and weight were significantly intercorrelated (Pearson correlation coefficient r=0.702). ICV correlated 
significantly with body height (r=0.463) and weight (0.357). However, the correlation coefficient magnitudes 
shows that ICV and body size were also carrying portions of mutually independent information. Moreover, only 
correlation between ICV and body height in males survived significance when the dataset was split regarding 
the sex (Table 2).  

 



 All Female Male p-value 

Number of subjects 267 125 (46.82%) 142 (53.18%)  

Age [years] 30.1±6.6 (19.0-56.0) 29.4±6.4 (20.0-56.0) 30.6±6.7 (19.0-56.0) 0.1537 

Height [cm] 172.1±10.0 (148.0-203.0) 164.9±6.5 (148.0-185.0) 178.5±8.0 (161.0-203.0) <0.0001 

Weight [kg] 68.3±13.4 (41.0-120.0) 59.5±9.7 (41.0-86.0) 76.0±11.4 (55.0-120.0) <0.0001 

BMI [kg/m2] 22.9±3.3 (16.6-35.5) 21.9±3.5 (16.6-35.5) 23.8±2.8 (18.6-35.1) <0.0001 

BSA [m2] 1.80±0.21 (1.35-2.42) 1.65±0.13 (1.35-2.01) 1.94±0.17 (1.60-2.42) <0.0001 

LBW [kg] 52.5±10.0 (33.5-78.1) 44.0±4.5 (33.5-56.0) 60.2±6.8 (46.2-78.1) <0.0001 

ICV [*106mm3] 1.48±0.23 (0.95-2.10) 1.34±0.18 (0.95-1.72) 1.59±0.20 (0.99-2.10) <0.0001 

Table 1: Demography and intracranial volume of recruited cohort. 
Cell values are as follows: mean ± standard deviation (minimum-maximum). P-value was derived from a two-sample t-test 
comparing variable distributions between females and males. Abbreviations: BMI  - body mass index; BSA - body surface 
area; LBW -  lean body weight; ICV -  intracranial volume. 

The 112 subjects (42 / 37.5% females) with manual edits necessary in brain image analysis were about 2 years 
younger (p=0.0063; non-edited 31±6 years; edited 29±7 years), 5cm taller (p=0.0007; non-edited 170±10cm; 
edited 175±10cm), with 0.06m2 higher BSA (p=0.0276) and 3kg higher LBW (p=0.0237). Body weight 
(p=0.1848), BMI (p=0.4393),  and ICV (0.0719; non-edited [1.45±0.22]*106mm3; edited [1.51±0.24]*106mm3) 
did not differ. Most variables that differed appear proportional to the higher frequency of manual edits in male 
brain scans. Seventy-seven of the 112 manually edited scans were acquired with the Siemens MRI scanner 
(49% of the Siemens scans), 18 of the 112 with the Philips scanner (37%), and 17 of the 112 with the GE 
scanner (52%). 

3.2 Minimal impact of manual segmentation edits on accuracy of brain morphology 
BrainGMVol was higher at about 27000mm3 (estimated error (Eq. 15) +3.8%; p=0.0182) in males and 
26400mm3 (error +2.8%; p=0.0056) in females. CorticalGMVol was higher at about 25600mm3 (error +4.2%; 
p=0.0061) in males and 23500mm3 (error +5.0%; p=0.0028) in females. PrecentralGMVol was higher at about 
1400mm3 (error +5.1%; p=0.0203) in males. Cortical thickness was higher at about 0.04mm (error +1.5%; 
p=0.0349) in females. Please note that the detected mm thickness error is markedly below the imaging spatial 
resolution. Otherwise, no differences were observed in brain morphology measurements regarding non-edited 
and manually edited results (Supplementary Table 1). Because all detected errors were ≤5%, we conclude a 
minimal impact of the utilized manual edits on brain morphology measurements. Contrary, the errors would be 
much larger without the editing. 

error = 200*(edited_mean-non-edited_mean)/(edited_mean+non-edited_mean) (15) 

3.3 Gaussianity of demographic and structural MRI data 
Age demonstrated log-Gaussian distribution. Body height demonstrated neither Gaussian (p=0.0089) nor 
log-Gaussian (p=0.0259) distributions. Body weight, BMI, all CSA measurements, all SC DTI measurements 
and all brain morphological measurements demonstrated Gaussian distributions. All SC MTR measurements 
demonstrated neither Gaussian (p<0.0086) nor log-Gaussian (p<0.0009) distributions. 

3.4 Body size interacts with the structure of spinal cord white matter 
The following CSA measurements were averaged from cervical C3-4 segments (see Methods for details). CSA 
of SC (CSA-SC) was correlated moderately with body height (r=0.355, Fig. 1, Table 2), and this correlation 
strength was higher for the CSA-WM subregion (r=0.437, Fig. 1, Table 2). CSA-SC and CSA-WM 



demonstrated minimal differences between scanner manufacturers (Fig. 1). Thus, the same correlation 
patterns for height were preserved even when manufacturer-specific averages of CSA-SC or CSA-WM were 
subtracted from corresponding CSA measurements prior to the correlation analysis in order to normalize data 
across scanners (Table 2). The correlation between body height and CSA-SC/CSA-WM remained significant 
even when the dataset was split into males and females (Table 2). Body weight was correlated weakly with 
CSA-SC (r=0.261) and CSA-WM (r=0.274). In addition, this correlation was not significant when the dataset 
was split into males and females (Supplementary Table 2). CSA-GM was not correlated with body size (Fig. 
1, Supplementary Table 2). The CSA-GM measured on Philips scanners demonstrated a lower mean offset 
than for data obtained on Siemens and GE scanners (Fig. 1; p<0.0001). Neither CSA measurement (i.e, SC, 
WM, GM) was correlated with age (Fig. 1, Supplementary Table 2). Overall, body height is the demographic 
variable driving the impact on CSA-WM and explaining the majority of demography-related variability in CSA 
measurements (Fig. 2b, Supplementary Table 3). ICV correlated with CSA-WM and CSA-SC less profoundly 
than body height (Fig. S1, Fig. 1, Table 2). 

DTI- and MTR-derived microstructural measurements were averaged from cervical C2-5 levels (see Methods 
for details). GE-scanner-derived DTI and MTR measurements significantly differed from Siemens and Philips 
scanners (Fig. 3, p<0.0001). Therefore, GE scanner microstructural measurements (13.87% of the dataset) 
were not included in correlation analyses that did not use manufacturer-specific normalized microstructural 
values (Table 2). Body weight was correlated weakly with mean diffusivity (MD) in the WM region (r=-0.200, 
Fig. 3, Table 2, Fig. S2) and bilateral dorsal columns (DC, r=-0.207, Fig. S3). Body weight was not 
significantly correlated to MD for females (Table 2). No investigated DTI measures (i.e., MD, fractional 
anisotropy - FA or radial diffusivity) were correlated to body size when extracted from the GM region (Fig. S4) 
or bilateral lateral corticospinal tracts (LCST; Fig. S5). CSA-WM and SC FA were correlated weakly in DC 
(r=-0.247) and LCST (r=-0.224). Body weight was correlated weakly to MTR in WM (r=-0.225, Fig. 3) DC 
(r=-0.231, Fig. S6) and LCST (r=-0.200, Fig. S6), and not correlated to MTR in GM (Fig. S6). The correlation 
between body weight and MTR remained significant, even when the dataset was split into males and females 
(Table 2). When the dataset was normalized for each manufacturer and values from GE scanners were 
included in the analysis, the correlation values remained almost identical (Table 2). This finding signifies that 
the observed effect remained identical but had slightly higher power due to the larger sample size (added 37 
samples; +13.87%). The correlation analysis revealed no aging effects in DTI (-0.004≥r≥-0.099) or MTR 
(-0.047≥r≥-0.094) measures (Fig. S2-6) in our sample. However, the exploratory principal component analysis 
showed small effects in mutual covariance (Fig. 7d). Linear regression analysis showed that body weight 
explained the majority of the demography-related variance in our young adult sample DTI and MTR 
measurements (Supplementary Table 3). 

3.5 Body height, ICV, and age interact with brain morphology 
Body height was correlated moderately with several cerebral volumes (r=0.54±0.06; 0.434≤r≤0.622), i.e., 
volumes of the brain, brain GM, cortical GM, cortical WM, subcortical GM, thalamus, cerebellum, brainstem, 
precentral GM and postcentral GM (Fig. 4, Fig. 5a). The vast majority of correlations with body height 
remained significant even after the dataset was split to males and females, except for the volumes of cortical 
WM, subcortical GM, precentral GM and postcentral GM in females (Table 2). The body height interacted most 
profoundly with the cortical GM volume (Fig. 2b). 

Body weight demonstrated weaker correlations in all the cortical regions that correlated moderately with body 
height (r=0.37±0.07, Fig. 4, Fig. 5a, Supplementary Table 2). The only significant correlation that survived the 
dataset split to males and females was brainstem volume in males (Table 2). 

Body height or body weight were not correlated with total cortical, precentral gyrus, and postcentral gyrus 
thicknesses (Fig. 5a). 



ICV correlated with brain morphology more profoundly than body height (Table 2, Fig. S1, Fig. 4, Fig. 5a). Yet, 
regarding the low-to-moderate correlation coefficients between ICV and body size (Table 2), we assume that 
ICV and body size do not share entropy entirely. Thus, all effects in brain morphology cannot be explained by 
ICV only. 

As expected, a weak manifestation of age-related cortical GM atrophy was observed in volume (r=-0.213) and 
thickness (r=-0.274) measures (Fig. 4, Fig. 5a). The aging GM atrophy effects remained significant after the 
dataset split to males and females (Table 2). 

Most importantly, the magnitude of linear dependence between brain morphology and body height (or ICV) was 
about 2- to 3-fold compared to the effects of age (Table 2, Fig. 4, Fig. 5a). Moreover, the young adult dataset 
showed that body height and ICV explain more, pathology unrelated, variance in brain volumetry than age and 
sex (Supplementary Table 3). Contrary, cortical thickness variance was associated predominantly with age 
(Supplementary Table 3). 

3.6 Body size or concurrent body mass measurements? 
BMI was highly linearly dependent on body weight (rBMI=0.801). BSA and LBW were highly linearly dependent 
on body height (rBSA=0.864; rLBW=0.867) and weight (rBSA=0.964; rLBW=0.933) favoring effects of the weight 
against the height in the final measurement. Therefore, neither BMI, BSA and LBW demonstrated higher linear 
dependence effects with CNS morphology than were observed for the body height (Fig. S7-9 vs Fig. 1, Fig. 4, 
Fig. 5a). BMI, BSA and LBW do not seem to increase correlation magnitude with SC MTR when compared to 
body weight (Fig. S10 vs Fig. 3). However, LBW may increase the correlation magnitude with SC DTI (Fig. 
S10 vs Fig. 3). 

3.7 Body size and ICV improves prediction of CNS structure 
Linear regression of age itself explained only 2±2% of investigated CNS morphology variance 
(Supplementary Table 3). Utilizing body height (R2=27±8%), sex (R2=24±10%) or ICV (R2=36±16%) 
separately explained a significant portion of variance in CNS morphology (Supplementary Table 3). However, 
the amount of explained variance in CNS morphology was maximized when a linear mixture of all four 
variables were modeled together (R2=46±17%; Supplementary Table 3). Stepwise linear regression identified 
age, body height and ICV as significant variables determining investigated CNS morphological measurements 
(R2=45±17%; Table 3). Sex was an additional significant variable in predictions of cerebellar, brainstem, and 
subcortical GM volumes (Table 3). Pearson correlation coefficient between measured and predicted CNS 
morphology increased from r=0.58±0.15 to r=0.66±0.13 when compared to ICV correlations (Table 3). Utilizing 
male dataset only: The identified set of significant variables predicting CNS morphology remained very similar. 
Additionally, body weight was identified as an additional variable in some measurements. Explained CNS 
morphology variance was R2=38±18% and the Pearson correlation coefficient increased from r=0.52±0.16 to 
r=0.60±0.16 when compared to ICV correlations (Supplementary Table 4). Utilizing female dataset only: The 
identified set of significant variables predicting CNS morphology remained very similar to male and both sex 
models. However, the explained variance was only 20±9% and the correlation coefficient increase was from 
r=0.31±0.15 to r=0.43±0.11, suggesting unidentified biological factor/s further determining the CNS morphology 
in young adult females (Supplementary Table 5). 

Body weight explained ≈5% variance in SC microstructure measured with DTI or MTR (Supplementary 
Tables 3-5; Table 3). When the dataset was split into males or females only, body weight was not identified as 
a significant variable determining DTI (Supplementary Tables 4 and 5). Age explained ≈8% variance in 
cortical thickness measurements (Supplementary Tables 3-5; Table 3). 

CNS structural measurements and root mean square errors (RMSE) of all model predictions are listed in Table 
3 and Supplementary Tables 4 and 5. In all cases, the RMSE was lower than standard deviation of the 
structural measurement (Table 3, Supplementary Tables 4 and 5). 



3.8 Cross-sectional area of spinal cord white matter interacts with brain morphology 
CSA-SC (r=0.38±0.09; 0.240≤r≤0.575) and CSA-WM (r=0.48±0.07; 0.389≤r≤0.640) were correlated 
moderately with the investigated brain volumes, i.e., volumes of the brain, brain GM, cortical GM, cortical WM, 
subcortical GM, thalamus, cerebellum, brainstem, precentral GM, and postcentral GM (Fig. 5b, Fig. 6, Table 
2). Compared to CSA-SC, correlation strengths were higher for CSA-WM (Fig. 5b, Fig. 6, Table 2). CSA-GM 
was correlated weakly with the volume of the brain, cortical WM, subcortical GM, and brainstem, but the 
strength of these correlations was half weaker than those observed for CSA-SC and CSA-WM (Fig. 6, Table 
2). All CSA-WM and most of the other observed correlations remained significant after the dataset split to 
females and males (Table 2) or when SC data were normalized (zero mean) for each manufacturer prior to 
correlation analysis (Table 2). CSA-WM was the primary marker defining the correlations with the brain 
volumes. There was a descending gradient of the CSA-WM correlation from the brainstem to subcortical GM 
and then cortical WM to the cortical GM (Fig. 2c). All these correlations were higher than the correlation with 
the volume of the cerebellum (Fig. 2c). Yet, even the correlation between CSA-WM and cerebellum volume 
was significant (Fig. 2c, Fig. 6). 

CSA-SC (r=0.211) and CSA-WM (r=0.252) were correlated weakly with the thickness of the precentral gyrus 
(Fig. 5b). The correlations remained significant after the dataset split to females and males (Table 2). 
However, the correlations disappeared when SC data were normalized before correlation analysis (Table 2). 
CSA-GM was not correlated with any utilized cortical thickness measurement (Fig. 5b). 

3.9 Brain morphology and spinal cord microstructure are not related 
No correlations were detected between SC WM/GM microstructure and cerebral volumes (i.e., total brain, brain 
GM, cortical GM, cortical WM, subcortical GM, thalamus, cerebellum, brainstem, precentral GM and 
postcentral GM) or cortical thickness (Fig. S11-12), and between thickness measurements and DTI/MTR 
measurements, even if the SC ROIs were limited to the bilateral LCST or DC (Fig. S13-15). 

3.10 ICV normalization of brain volumes emphasizes ICV information in the measurements 
ICV normalization of volumes of different brain regions reduced correlation levels with body height and weight 
(Fig. S16 vs Fig. 4, Fig. 5a). But the normalization also reduced variance/entropy about the brain structure 
itself in the measurement because the normalized brain volumes (xnorm) correlated more strongly with ICV-1 
(r=0.72±0.07; min 0.58; max 0.83; Fig. S16) than with original volumes (x; r=0.12±0.19; min -0.14; max 0.42). 
Moreover, the ICV normalization emphasized scanner-effects in the brain volume measurements. ICV 
normalization of brain volumes generated a distinct cluster of GE measurements (Fig. S16) that was not 
observed in non-normalized brain volume measurements (Fig. 4, Fig. 5a). Both brain volumes and ICV were 
measured with FreeSurfer v7.2. In 14 (8.9%) Siemens and 4 (8.2%) Philips T1w scans, ICV was estimated 
lower than the unnormalized brain volume. Therefore, the Freesurfer software provided unphysiological 
normalized brain volumes >100% in such scans (Fig. S16). The utilized brain and intracranial volume variables 
are called BrainSegVol and eITV in the FreeSurfer software. Further detail origin of such software error is 
unknown to us at the moment. Image visual inspection did not identify any obvious pitfall in these 18 cases. 

3.11 Scanner-related effects on SC structural measurements 
CSA-SC and CSA-WM offsets differed minimally between manufacturers (Fig. 1, Fig. 5b, Fig. 6). CSA-GM 
measurements on Philips scanners were significantly lower than CSA-GM measurements from Siemens and 
GE scanners (Fig. 1, Fig. 5b, Fig. 6, p<0.0001). Additional discussion about this specific CSA-GM issue can 
be found in (Cohen-Adad et al., 2021b). Data normalization before correlation analysis mainly decreased the 
correlation strengths in all CSA measures (without normalization: r=0.348±0.127; with normalization 
r=0.313±0.128; Table 2; paired t-test p<0.0001). This finding underlines the importance of adjusting for 
scanner-related variability in CSA measurements to minimize risks of false positive results due to 
scanner-related data trends. 



All microstructural measurements obtained with GE scanners showed significant offsets compared to those 
from Siemens and Philips scanners (Fig. 3, Fig. S2-6, Fig. S10-15, p<0.0001). The differences had a direct 
impact on correlation analyses. Therefore, we performed correlation analyses of original values without GE 
values and correlation analyses of normalized values utilizing all scanners’ data. Correlation analyses were 
stable and comparable in the magnitude of correlation coefficients for MTR (Table 2) and MD (Table 2). The 
normalized correlation analysis provided higher statistical power due to the larger sample size. Additionally, if 
we utilized GE data (Fig. 3) in the correlation analysis without normalization, the resulting correlation 
coefficients for MD-SC-WM and MTR-SC-WM in Table 2 would be substantially lower. 

3.12 Minimal impact of degenerative cervical spinal cord compression on correlation analysis 
We excluded one participant with severe degenerative cervical SC compression that introduced outliers in SC 
structural measurements. However, the spine-generic database identifies an additional 61 subjects with mild 
degenerative compression and 2 subjects with severe degenerative compression and radiological myelopathy 
(Valošek et al., 2024). Analysis power decreased, but minimal nuances were detected in correlation 
coefficients when tested separately on subjects without or with degenerative cervical SC compression (see 
Supplementary Slides). Thus, we conclude that SC compression had a minimal impact on the current study 
outcomes. 

3.13 Principal component analysis (PCA) reveals body-SC-brain structural links 
We subtracted manufacturer-specific average values from all SC structural measurements prior to the 
exploratory analysis via PCA. PCA did not include DTI and MTR measurements from bilateral LCST and DC, 
as the WM region provided analogic observations. Cerebral volumes, CSA-WM, body height and ICV formed 
the first principal component (PC1), characterizing 44.00% of data variance (Fig. 7a). CSA-SC and body 
weight were close, yet separated from the PC1 cluster (Fig. 7a). This finding supports the previously observed 
body height and CSA-WM dominance in the observed effects (Fig. 1, Fig. 2, Fig. 4, Fig. 5, Fig. 6, Table 2, 
Table 3). Cortical thickness, MD-SC-WM, and age (negative effect) formed the second principal component 
(PC2), characterizing 12.06% of data variance (Fig. 7a) and presenting predominantly negative aging effects in 
the thickness measures. The PC1-PC3 projection showed that the PC3 characterizes about 8.65% of data 
variance, predominantly explained by CSA-GM, MD-SC-WM, and FA-SC-GM (negative effect), i.e., a link 
between SC GM morphology and SC microstructure (Fig. 7b). The PC2-PC3 projection verified that the 
cortical thickness variability predominantly forms PC2. In contrast, PC3 is predominantly formed by SC DTI 
and CSA-GM (Fig. S17a). PC4 explained 5.51% of unique SC DTI microstructural data variance, which is not 
present in other investigated modalities and investigated demographic measures (Fig. 7c). PC5 showed 
positive effects of body weight and age on MD-SC-WM, and negative effects of body weight and age on 
MTR-SC-WM, FA-SC-GM, and CSA-GM. These effects explained about 4.56% of data variance (Fig. 3, Fig. 
7d). Simultaneously, the PC projections suggest that the impact of body weight on MTR- and DTI-derived 
microstructure metrics might be ≈5% (Fig. 3, Fig. 7). That follows the result of explained variance in the 
regression analyses (Supplementary Table 3, Table 3). However, the positive effects of body weight on 
MD-SC-WM contradicts our observation of weak negative correlation between body weight and SC MD (Fig. 
3). PC3 and PC5 showed clear evidence that CSA-GM morphology and SC microstructure are linked, yet 
unrelated to cerebral and SC WM morphology (Fig. 7b,d, Fig. S17a). In summary, PCA analysis explained 
75% of data variance, and  roughly 25% is unexplained (Fig. S17b). 



 
Figure 1: Cross-sectional area of spinal cord white matter correlates with body height and weight. 
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; r - Pearson correlation 
coefficient; ⍴ - Spearman correlation coefficient. All spinal cord measurements were averaged from cervical C3-4 levels. 
Regression lines (i.e., the dashed black lines) were estimated from all available data points. Plots with statistically 
significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴ values are 
highlighted with black bold font. 



 
Figure 2: Pearson correlation coefficient maps showing interactions between body height and morphology of the 
central nervous system. 
Panel a) Representative image of brain and spinal cord (SC) anatomy. The brain scan shows cortical gray matter (GM), 
cerebral white matter (WM), subcortical GM structures, brainstem and cerebellum. The axial SC scan shows the WM and 
GM anatomy at the C3/C4 level. Image orientation is described in panel a): A - anterior, P - posterior, S - superior, I - 
Inferior, L - left and R - right. Panel b) Pearson correlation coefficient between body height and (i) cortical GM volume; (ii) 
cerebral WM volume; (iii) subcortical GM structure volume; (iv) brainstem volume; (v) cerebellar volume; and (vi) 
cross-sectional area (CSA) of cervical SC WM at C3/C4 level. The colormap for the correlation values is shown in the left 
bottom corner of the figure. All correlations are significant (pFWE<0.05). Regarding the investigated list of structures, body 
height demonstrated the strongest correlation with the cortical GM volume. Panel c) Pearson correlation coefficient 
between the CSA of cervical WM at C3/C4 level and (i) cortical GM volume; (ii) cerebral WM volume; (iii) subcortical GM 
structure volume; (iv) brainstem volume; and (v) cerebellar volume. The colormap for the correlation values is shown in 
the left bottom corner of the figure. All correlations are significant (pFWE<0.05). The correlation map shows a descending 
gradient from the brainstem through subcortical GM structures and cerebral WM to cortical GM. The gradient may be 
driven by the increasing distance to the cervical SC level and decreasing relative volume of common tract pathways. The 
cerebellum shows the lowest, yet significant, correlation level. This finding may be explained by the fact that the cerebrum 
is more strongly and directly interconnected to the peripheral nervous system via SC than the cerebellum, with 
spinocerebellar tracts as the primary direct connections (Chandar & Freeman, 2014; Purves et al., 2001). 
 



Table 2: Pearson correlation coefficients 
between body size, age, spinal cord 
structure, brain structure, and intracranial 
volume, and post-hoc sex-effects in the 
correlation analysis. 
Abbreviations: CSA - cross-sectional area; SC - 
spinal cord; WM - white matter; GM - gray 
matter; Vol - volume. The correlation analysis on 
non-normalized data identified a list of variable 
pairs with a correlation coefficient of pFWE<0.05. 
The final list here only selects the variable pairs 
with a significant post-hoc Pearson correlation 
coefficient (uncorrected p<0.05 in at least one 
sex-specific sub-dataset (i.e., female and/or 
male). Insignificant correlation coefficients, that 
did not meet the post-hoc condition uncorrected 
p<0.05, are written with gray font. Positive 
correlation coefficients (p<0.05) are visualized 
as a yellow-orange-pink-red color shade of the 
table background. Negative correlation 
coefficients (p<0.05) are visualized as a light 
blue-blue color shade of the table background. 
CSA was measured as averages between 
C3-C4 segments. DTI and MTR were calculated 
as averages between C2-C5 segments. The 
column denoted “Original values” reports 
correlation coefficients for raw measurements 
with no normalization procedure prior to the 
correlation analysis. The column denoted 
“Manufacturer-specific normalized SC 
measures” reports correlation coefficients for SC 
structural measurements, which were 
normalized to zero mean for each scanner 
manufacturer before correlation analysis. Empty 
cells in the right half of the table represent 
combinations where no updated correlation 
coefficients were measured, because the 
utilized normalization of SC structural 
measurements had no effect on these  
correlation coefficients. Brain structural 
measurements were not considered necessary 
to normalize as we did not observe strong 
scanner-related effects in brain macrostructural 
measurements. 

 

Grouping 

Variable 

 

Original values (no data 

normalization) 

Manufacturer-specific 

normalized SC measures 

Correlated variable All Female Male All Female Male 

INTRA 

CRANIAL 

VOLUME 

Height 0.463 0.045 0.226    

Weight 0.357 -0.117 0.124    

BrainVol 0.773 0.522 0.750    

BrainGMVol 0.703 0.412 0.663    

CorticalWMVol 0.723 0.507 0.666    

CorticalGMVol 0.684 0.420 0.644    

SubCortGMVol 0.673 0.389 0.604    

ThalamusVol 0.558 0.372 0.435    

CerebellumVol 0.556 0.225 0.470    

PrecentralGMVol 0.524 0.230 0.461    

PostcentralGMVol 0.526 0.290 0.504    

BrainStemVol 0.500 0.145 0.396    

CSA-WM 0.370 0.140 0.304 0.413 0.210 0.342 

CSA-SC 0.300 0.108 0.273 0.312 0.132 0.279 

HEIGHT 

BrainGMVol 0.622 0.321 0.446    

BrainVol 0.611 0.274 0.409    

CorticalGMVol 0.583 0.252 0.449    

CerebellumVol 0.546 0.411 0.219    

BrainStemVol 0.530 0.310 0.259    

CorticalWMVol 0.522 0.157 0.313    

SubCortGMVol 0.521 0.107 0.288    

PrecentralGMVol 0.495 0.092 0.418    

CSA-WM 0.437 0.295 0.303 0.422 0.285 0.268 

PostcentralGMVol 0.434 0.121 0.369    

CSA-SC 0.355 0.323 0.230 0.344 0.319 0.205 

WEIGHT 
BrainStemVol 0.431 0.119 0.191    

MD-SC-WM -0.200 -0.022 -0.191 -0.252 -0.108 -0.206 

MTR-SC-WM -0.225 -0.374 -0.221 -0.221 -0.331 -0.217 

AGE 
CorticalGMVol -0.213 -0.357 -0.257    

PrecentralGMVol -0.205 -0.326 -0.232    

Cortical Thickness -0.274 -0.278 -0.277    

CSA-WM 

BrainStemVol 0.350 0.624 0.533 0.585 0.580 0.454 

BrainVol 0.519 0.392 0.445 0.503 0.379 0.413 

SubCortGMVol 0.506 0.257 0.508 0.483 0.248 0.459 

CorticalWMVol 0.498 0.315 0.456 0.496 0.339 0.432 

BrainGMVol 0.479 0.341 0.397 0.443 0.286 0.351 

CorticalGMVol 0.447 0.283 0.383 0.411 0.227 0.340 

CerebellumVol 0.430 0.501 0.170 0.438 0.508 0.177 

ThalamusVol 0.421 0.244 0.373 0.441 0.279 0.384 

PrecentralGMVol 0.420 0.235 0.382 0.370 0.178 0.317 

PostcentralGMVol 0.389 0.243 0.356 0.345 0.181 0.311 

PrecentralG Thickness 0.252 0.249 0.209 0.146 0.142 0.087 

CSA-SC 

BrainStemVol 0.572 0.622 0.485 0.517 0.573 0.403 

BrainVol 0.417 0.337 0.361 0.391 0.311 0.321 

SubCortGMVol 0.415 0.207 0.441 0.387 0.198 0.385 

CorticalWMVol 0.430 0.291 0.414 0.409 0.280 0.377 

BrainGMVol 0.357 0.265 0.283 0.324 0.225 0.239 

CorticalGMVol 0.319 0.195 0.259 0.291 0.159 0.223 

CerebellumVol 0.355 0.508 0.104 0.341 0.493 0.082 

ThalamusVol 0.329 0.176 0.308 0.333 0.201 0.296 

PrecentralGMVol 0.307 0.159 0.273 0.275 0.132 0.228 

PostcentralGMVol 0.240 0.146 0.184 0.218 0.120 0.160 

PrecentralG Thickness 0.211 0.180 0.201 0.144 0.125 0.117 

CSA-GM 

BrainStemVol 0.390 0.444 0.478 0.335 0.440 0.376 

BrainVol 0.221 0.250 0.296 0.186 0.219 0.255 

SubCortGMVol 0.216 0.093 0.389 0.197 0.119 0.344 

CorticalWMVol 0.267 0.275 0.352 0.218 0.215 0.302 



Table 3: Stepwise linear regression fitted models predicting CNS structural measure (y). 

Abbreviations: ICV - intracranial volume; CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray 
matter; Vol - volume; SubCort - subcortical; y - CNS measured structure; y0 - model constant member (intersect); bi - 
regression coefficient of i-th variable x; x - regressed significant variable (e.g. Height, ICV, etc.); R2 - coefficient of 
determination for the stepwise fitted model; R2

ICV - coefficient of determination for fitted linear regression model utilizing 
sex, age and ICV variables;  R2

Height - coefficient of determination for fitted linear regression model utilizing sex, age and 
body height variables; r - Pearson correlation coefficient between measured y and stepwise model predicted y; rICV - 
Pearson correlation coefficient between measured y and ICV; RMSE - root mean square error between measured y and 
stepwise model predicted y; STD - standard deviation. 
All variables listed in the fitted models met the statistical threshold condition p<0.05. In all cases, the stepwise linear 
regression fitted model explained more data variance than concurrent linear mixture model utilizing sex, age and ICV 
(R2

ICV); or sex, age and body height (R2
Height), respectively. Coefficients of determination for other investigated mixture 

models are listed in the Supplementary Table 3. Pearson correlation coefficient also increased for the stepwise fitted 
model when compared to correlation levels with ICV (rICV) or body height (Table 2) separately. 

Fitted model: y ∝ y0 + ∑ bi*xi R2 R2
ICV R2

Height r rICV RMSE y (mean ± STD) 

BrainGMVol ∝ 42252 -1943*Age +2593*Height +0.164*ICV 63.6% 49.4% 38.7% 0.797 0.703 42399mm3 673668±70031mm3 

BrainVol ∝ -35072 +4215*Height +0.354*ICV 68.0% 59.8% 37.4% 0.824 0.773 73122mm3 1213993±128729mm3 

CorticalGMVol ∝ 35408 -1778*Age +1834*Height +0.13*ICV 59.7% 46.7% 34.0% 0.772 0.684 35417mm3 490600±55570mm^3 

CerebellumVol ∝ 48271 -348*Age +446*Height +0.025*ICV 

+6953*Sex 44.4% 30.9% 29.8% 0.666 0.556 13028mm3 151930±17344mm3 

BrainStemVol ∝ 5814 +71.6*Height +0.003*ICV +1069*Sex 38.5% 25.0% 28.1% 0.620 0.500 2049mm3 22613±2597mm3 

CorticalWMVol ∝ -3594 +1465*Height +0.165*ICV 56.9% 52.2% 27.2% 0.754 0.723 40055mm3 491753±60605mm3 

SubCortGMVol ∝ 29015 +91*Height +0.012*ICV +2474*Sex 53.0% 45.3% 27.2% 0.728 0.673 3989mm3 62987±5804mm3 

PrecentralGMVol ∝ 1702 -111*Age +114*Height +0.0061*ICV 39.1% 27.5% 24.5% 0.625 0.524 2865mm3 27103±3641mm3 

PostcentralGMVol ∝ 1217 -50.5*Age +67.3*Height +0.0054*ICV 33.8% 27.6% 18.8% 0.582 0.526 2344mm3 19197±2858mm3 

CSA-WM ∝ 14.23 +0.242*Height +8e-06*ICV 25.6% 17.1% 17.8% 0.506 0.370 6.2mm2 68.1±7.4mm2 

CSA-SC ∝ 29.88 +0.224*Height +6e-06*ICV 15.5% 9.7% 11.8% 0.394 0.300 7.4mm2 77.4±8.0mm2 

MD-SC-WM ∝ 1.030 -0.0012*Weight 4.3% 0.3% 2.2% 0.252 -0.015 0.08*10-9m2/s (0.95±0.13)*10-9m2/s 

MTR-SC-WM ∝ 50.3 -0.037*Weight 5.1% 1.5% 0.8% 0.221 -0.116 2.1% 47.5±3.7% 

Cortical Thickness ∝ 2.57 -0.0037*Age 7.6% 0.2% 0.8% 0.274 0.042 0.08mm 2.46±0.09mm 



 
Figure 3: Mean diffusivity and magnetization transfer ratio in spinal cord white matter correlates with body 
weight. 

Abbreviations: GM - gray matter; WM - white matter; SC - spinal cord; FA - fractional anisotropy; MD - mean diffusivity; 
MTR - magnetization transfer ratio; r - Pearson correlation coefficient; ⍴ - Spearman correlation coefficient. All spinal cord 
measurements were averaged from cervical C2-5 levels. Black dashed regression lines were estimated from the Siemens 
and Philips scanners’ data points. Red dotted regression lines were estimated from the GE scanner’s data points. Plots 
with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴ 
values are highlighted with black bold font. 



 
Figure 4: Brain morphology strongly correlates with body size but weakly with age. 
Abbreviations: GM - gray matter; WM - white matter; Vol - volume; SubCort - subcortical; r - Pearson correlation 
coefficient; ⍴ - Spearman correlation coefficient. Regression lines (i.e., the dashed black lines) were estimated from all 
available data points. Plots with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and 
corresponding r and ⍴ values are highlighted with black bold font. 



 
Figure 5: Cortical morphology correlates with body size, age, and cross-sectional area of the spinal cord white 
matter. 
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; PrecentralG - 
precentral gyrus; PostcentralG - postcentral gyrus; Vol - volume; r - Pearson correlation coefficient; ⍴ - Spearman 
correlation coefficient. Regression lines (i.e., the dashed black lines) were estimated from all available data points. Plots 
with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴ 
values are highlighted with black bold font. a) Graphs demonstrate correlations with body size and age. b) Graphs 
demonstrate correlation with CSA measured in the SC region as averages from cervical C3-4 levels. 



 
Figure 6: Brain morphology correlates with spinal cord morphology. 
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; Vol - volume; SubCort - 
subcortical; r - Pearson correlation coefficient; ⍴ - Spearman correlation coefficient. All SC measurements were averaged 
from cervical C3-4 levels. Regression lines (i.e., the dashed black lines) were estimated from all available data points. 
Plots with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and 
⍴ values are highlighted with black bold font. 



 
Figure 7: Exploratory visualization using biplot projections of principal components. 
a) biplot projection of 1st and 2nd principal components (PCs); b) biplot projection of 1st and 3rd PCs; c) biplot projection of 
1st and 4th PCs; d) biplot projection of 1st and 5th PCs. Variable vectors are visualized in each biplot projection with a 
color-coding characteristic for a corresponding variable group. Variable name abbreviations and variable color codings are 
described as follows. Variable abbreviations: ICV - intracranial volume; MD - mean diffusivity; RD - radial diffusivity; MTR - 
magnetization transfer ratio; SC - spinal cord; WM - white matter; GM - gray matter; CSA - cross-sectional area; Vol - 
volume; PrecentralG - precentral gyrus; PostcentralG - postcentral gyrus. Variable color coding: ICV - orange; 
demography - green; cerebral volumes - light blue; cortical thicknesses - yellow; SC morphometry - magenta; SC WM 
microstructure - red. How to read a biplot: The overall domain of each component axis is <-1,1>. Each variable is 
characterized as a vector of magnitude in the range of <0,1> in the biplot space. Angle 0° between the component axis 
and variable vector with magnitude 1 (or between two variable vectors both with magnitude 1) is proportional to Pearson 
correlation coefficient 1. Under the same vector magnitude circumstances, an angle of 180° equals Pearson correlation 
coefficient -1, and angles of 90° and 270° equal Pearson correlation coefficient 0. The lower magnitude of variable vectors 
proportionally decreases the overall linear dependence between vector angles close to 0° or 180°, respectively. Similarly, 
angle deviation from 0° or 180° also decreases the level of linear dependence between pairs of vectors in the biplot. 



4 Discussion 
The current study, using the spine-generic dataset, presents unique multi-center in vivo evidence about adult 
human cervical SC and brain, and emphasizes the following findings: 

(i) Body height correlates moderately with SC WM and brain morphology, improves explanation of 
demography-related variance in such structural measurements from 26±10% (range 6-37%) to 33±11% 
(range 12-46%) in young adults, and underlines the impact of such pathology unrelated variability in 
structural neuroimaging data. When ICV is added into the morphology modeling, the explained variance 
increases to 46±17% (range 16-69%). 

(ii) The expected aging effects (Bédard & Cohen-Adad, 2022; Fjell et al., 2013; Heymsfield et al., 2009; 
Papinutto et al., 2020; Peters, 2006; Thambisetty et al., 2010) explain minimal amounts of SC and brain 
structural data variance (2±2%) in young adults except cortical thickness (8%). 

(iii) Body height predominantly impacts cortical GM volume (Fig. 2b) and may even define overall brain GM 
volume. 

(iv) Body weight correlates weakly with SC WM MTR, which is influenced by myelin content. 
(v) Body weight correlates weakly with SC WM microstructure assessed with DTI MD. 
(vi) Body weight explains ≈5-7% of DTI and MTR data variance. 
(vii) SC WM DTI and MTR explain a significant portion of examined dataset variance (≈14-19%) and are nearly 

orthogonal to most macrostructural measurements, except for the CSA-GM. 
(viii) Subcortical and cortical GM volumes are correlated with CSA-WM more profoundly than the cerebellar 

volume with a descending correlation gradient from the brainstem toward cortical GM (Fig. 2c). 
(ix) Cortical WM, subcortical GM, and brainstem volumes correlate with CSA-GM but much less profoundly 

than CSA-WM. 
(x) Cortical thickness of the precentral cortex correlates weakly with CSA-WM. 
(xi) We highlight the importance of considering the scanner-related effects present in SC imaging data 

(Cohen-Adad et al., 2021a, 2021b). 
(xii) We confirm significant relationships between body size, brain volumes/weight, and CSA-SC in line with 

previously reported results (Baaré et al., 2001; Bédard & Cohen-Adad, 2022; Kameyama et al., 1994). 
(xiii) We confirmed strong ICV effects on brain morphology (Miller et al., 2016). Moreover, we demonstrated 

interactions between ICV and CSA-WM and that utilizing both ICV and body height can maximize the 
amount of explained variance in CNS morphology (i.e., brain volumetry and CSA measurements in the 
spinal cord). 

(xiv) We showed that ICV normalization of brain volumes amplifies ICV-related variance/entropy in all tested 
regions of interest. Moreover, the normalization emphasized scanner effects. 

(xv) Females showed a consistently lower level of association with the variables of interest compared to males; 
and thus also a lower predictive power of the tested linear mixture models to the brain and SC morphology. 

4.1 Practical impact of the current study in clinical neuroimaging study designs 
MRI of SC structure is emerging in clinical research of neurodegenerative diseases and SC injuries (Badhiwala 
et al., 2020; David et al., 2019; de Albuquerque et al., 2017; Fatemi et al., 2005; Hernandez et al., 2022; 
Huffnagel et al., 2019; Lema et al., 2017; Lukas et al., 2013; Pisharady et al., 2020; Querin et al., 2017; 
Schmierer et al., 2004; van de Stadt et al., 2020). Microstructural SC MRI of neural tissue integrity aims to 
understand pathophysiological changes at the subclinical or presymptomatic stage (Joers et al., 2022; 
Labounek et al., 2020; Martin et al., 2018; Valošek et al., 2021). Quantitative MRI has made significant 
advances over the past two decades for brain imaging (Ahn et al., 2019; Anik et al., 2007; Appelman et al., 
2009; Asken et al., 2018; Aylward et al., 2000; Benatar et al., 2022; Fox et al., 1996; Ginestroni et al., 2009; 
Hall et al., 2008; Hayakawa et al., 2013; Kabani et al., 2002; Kinnunen et al., 2018; Masuda et al., 2022; 
Reading et al., 2005; Ringman et al., 2007; Rosano et al., 2005, 2010; Rosas et al., 2006; Rovira et al., 2001; 
Wade et al., 2008), but is still in its early development stage when it comes to SC imaging. Sex- and 



age-matching are critical for any clinical neuroimaging study. Yet, we are proposing that mismatched variability 
in body size may influence imaging outcomes more profoundly than mismatched variability in age. Persistent 
marginal impact of body stature on brain structural and functional neuroimaging outcomes in the early elderly 
population (Alfaro-Almagro et al., 2021; Miller et al., 2016) further underlines the importance of our proposal. 
Therefore, body size needs to be considered in the rigor of future neuroimaging studies focusing on 
between-group differences in brain or SC structure to secure and guarantee the reproducibility of results. It has 
not been a common practice in design of the vast majority of current clinical studies focusing on brain or SC 
neuroimaging. An alternative solution in future clinical study designs can be normalizing structural 
measurements for body size or using body size as a confounding factor. In brain volume measurements, e.g., 
SIENAX (Smith et al., 2002) or other kinds of normalization for the total ICV may offer an effective 
normalization method that provides reproducible results independent of body size. In the SC morphology, 
SIENAX (Papinutto et al., 2020) or the dimension of pontomedullary junction (Bédard & Cohen-Adad, 2022) 
have been implemented to normalize the CSA measurement. Yet, if possible, we conclude that body size 
matching provides a more optimal study design solution because we showed that body size characterizes a 
significant portion of CNS structural information that is not characterized by the ICV. Simultaneously, 
recruitment of body size matched participants should be an easier clinical design task than to utilize ICV 
matching. 

4.2 Body size, sex, neuroimaging and CNS (patho-)physiology 
Body height had the highest impact on brain GM and SC WM morphology. Body height, higher cortical volume, 
and improved cognitive ability appears to be phenotypically interlinked (Vuoksimaa et al., 2018). The higher 
brain GM volumes in taller people may also explain their higher resistance to Alzheimer’s disease and other 
dementias (Daghlas et al., 2023; Jørgensen et al., 2020; Larsson et al., 2017). Gene expression could play a 
role here, as genetic variants that affect height also influence brain development and biological pathways that 
are involved in the development of Alzheimer’s disease (Larsson et al., 2017). 

Although our data showed an insignificant interaction between body weight and CNS morphology after 
controlling for sex, body weight is known to influence CNS morphology and microstructure. Varying body 
weight showed WM and GM brain volume loss in patients with acute anorexia nervosa, and full WM volume 
and almost complete GM volume recoveries after the body weight had been regained (Seitz et al., 2014). In 
the opposite body weight spectrum, obesity demonstrated lower intra-cortical myelination in regions involved in 
reward processing, attention, salience detection, and higher intra-cortical myelination in regions associated 
with somatosensory processing and inhibitory control (Dong et al., 2021). High cumulative BMI is associated 
with smaller brain volume, larger volume of white matter lesions, and abnormal microstructural integrity (Lv et 
al., 2024; Ward et al., 2005; West et al., 2020). Increasing BMI changes cerebral WM microstructure assessed 
with DTI (Kullmann et al., 2016), but direction of DTI parameter trends in relation to body weight varies 
between studies (Okudzhava et al., 2022). Although precise pathophysiological processes are not well known 
today, it is certain that obesity causes neuroinflammation, thus, alters brain microstructure and increases risks 
of neurodegenerative disorders such as Alzheimer’s disease and other types of dementias (Woo et al., 2022). 
Our DTI and MTR data acquired in the current healthy population with low-to-moderate BMI may point to a 
borderline trend between homeostasis and mild microstructural changes related to higher body weight. The 
negative correlation between body weight and MTR has also recently been reported in peripheral nerves and 
skeletal muscles (Fösleitner et al., 2022). However, we cannot rule out the possibility of a transmit field (i.e., 
B1+) inhomogeneity-mediated bias in MTR. Although B1+ maps were not measured for the cervical SC in our 
study, similar to what has been observed in the brain at 3T (Glasser et al., 2022), we expect both B1+ 
inhomogeneity and deviation to correlate with body weight positively, hence body transmit coil loading. 
Typically, an underflipping (i.e., reaching smaller than the desired flip angle) is more likely than an overflipping 
for small structures like the cervical SC in the body. MTR’s sensitivity to B1+ potentially exacerbates the effect 
of even a small degree of underflipping for the MT pulse at 3T. 



Body height and spinal cord length are linearly dependent (r≈0.6) (Fradet et al., 2014; Zyoud et al., 2020). We 
showed that even CSA-SC and CSA-WM are linearly dependent with body height. Thus, the magnitude of the 
correlation with body height would be even higher than observed for the CSA measurements if level-specific 
SC and SC WM volumes were analyzed. Although CSA values are level dependent (Cohen-Adad et al., 
2021a), the impact of the C3-4 level selection on general study conclusions should remain minimal due to high 
intra-individual CSA correlation over segments (Healy et al., 2012; Kameyama et al., 1996). Different 
associations of CSA-GM and CSA-WM with other investigated variables may affirm the necessity of further 
development of MRI protocols imaging SC GM in high contrast and detail (Cohen-Adad et al., 2022). 

Recently, the correlation between CSA-SC at C2-3 level and body height, body weight, brain (WM/GM) 
volumes and thalamus volume were observed in 804 UK Biobank brain imaging database participants (Bédard 
& Cohen-Adad, 2022). Our current spine-generic database study complements the UK Biobank results and 
expands the knowledge that these observations are almost exclusively SC WM-related. Moreover, the current 
study identified more cerebral sub-regions involved than those investigated in the previous study. The lateral 
corticospinal tracts predominantly serving motor function are the major portion of the CSA-WM (Chandar & 
Freeman, 2014). Thus, its significant correlation with precentral gyrus thickness (primary motor cortex) seems 
logical from a neuroanatomical perspective. SC microstructure was also investigated and our exploratory 
approach via PCA clearly visualizes the body-SC-brain structural relationships. 

Although we showed interactions between CSA-WM and ICV and that ICV can explain variance in SC 
morphology, it can often be challenging to design a neuroimaging study that measures both parameters. 
Studies focusing on SC pathology do not often acquire brain images (David et al., 2019; Kadanka et al., 2017; 
Kerkovský et al., 2012; Labounek et al., 2020; Martin et al., 2017, 2018; Nouri et al., 2016; Valošek et al., 
2021). In case of the ultra-high field MRI (≥7T), it can even be a challenging task as the highly optimized SC 
imaging coils do not cover the whole brain (Lopez-Rios et al., 2023). 

Although clinical studies focusing on cerebral atrophy often normalize distinct brain region volumes with ICV 
(Voevodskaya et al., 2014; Whitwell et al., 2001; Xie et al., 2005) and we would usually normalize the data too, 
our cross-sectional results suggest that the normalization magnifies ICV information in such volume 
measurements. The ICV normalization impact on associations with neurocognitive or behavioral outcomes 
remains unclear. ICV normalization flips signs of the association with neurocognitive outcomes in dementia, but 
does not change the overall association conclusion (Konstantinou et al., 2016; Wang et al., 2024). The 
opposite sign may be an effect of the additional ICV-1 scaling factor. However, ICV normalization biases 
volume-based behavioral models (Dhamala et al., 2022). In the spine-generic dataset, the Freesurfer provided 
higher BrainSegVol (brain volume) than eITV (ICV) in 18 scans. The FreeSurfer was reported to overestimate 
ICV by about 4% due to brain volume bias (Klasson et al., 2018), but that does not explain our observed 
phenomena that BrainSegVol can be higher than eITV. Future research may assess brain volume and ICV with 
concurrent tools (Harkey et al., 2022; Manjón & Coupé, 2016; Nerland et al., 2022). 

The slightly lower variance in female data may be a cause of the lower predictive power of the utilized linear 
mixture models to brain and SC morphology. However, we doubt that it would halve the predictive accuracy. 
Thus, we speculate that unidentified female-specific biological factor(s) further determine females’ CNS 
morphology. Brain structural organization differs between males and females, potentially due to different 
hormonal levels and gene expression (Liu et al., 2020). Moreover, a pregnancy increases hormone production 
and induces long-lasting reversible and irreversible changes in females’ brain structure (Hoekzema et al., 
2017; Pritschet et al., 2024). Neither hormonal, genetic and pregnancy data were collected thus impossible to 
test in the models with the current spine-generic records. 

The spine-generic database (r20231212) identifies 64 recruited subjects with the presence of degenerative 
cervical SC compression, with 2 of these even demonstrating radiological signs of myelopathy (Valošek et al., 
2024). These findings may represent a source of unexplained variance in our results, as compression and 



myelopathy are pathologies affecting CSA, DTI, and MTR measures (Kadanka et al., 2017; Labounek et al., 
2020; Martin et al., 2018; Valošek et al., 2021). However, we showed in the Supplementary Slides that the 
impact of the compression on the correlation coefficient outcomes was minimal. 

The observed negative correlation between age and cortical thickness and absence of correlation between 
body size and cortical thickness are in line with previous literature (Frangou et al., 2022; Sowell et al., 2007; 
Tamnes et al., 2010; Thambisetty et al., 2010; Vuoksimaa et al., 2018). The GM volume reduction in 
subcortical structures is less profound than in the cortical GM volume and thickness (Fjell et al., 2013, 2021; 
Narvacan et al., 2017). Therefore, we may only detect low, insignificant trends in the age-related reductions of 
the subcortical structures due to an undersampled elderly population in our dataset. SC CSA-GM is also 
expected to decline with age (Papinutto et al., 2015), but we observed no such effects. Absent SC GM 
reduction might imply a false positive result due to the limited spatial resolution of the imaging methods, and 
the undersampled elderly population. It may also mean that the pathophysiological dynamics of SC GM 
reduction are slower than in the subcortical region. Yet, validating and concluding any of such statements 
require a rigorous re-test utilizing a dataset with a larger sample elderly population or longitudinal follow-up. 

4.3 Study limitations 
Despite the relatively large sample size, there are still several limitations. First, we recruited healthy, 
predominantly young adults with average weight and low-to-moderate BMI. Therefore, the negative link 
between age and SC morphology, as observable in cohorts with greater age variability (Bédard & Cohen-Adad, 
2022; Ishikawa et al., 2003; Papinutto et al., 2015), was absent in our study. We found that body size impacts 
structural measurements more profoundly than age. However, this finding warrants further investigation, as the 
moderate age effects may be explained by the relatively narrow age range and younger cohort (Heymsfield et 
al., 2009). However, concurrent study of 40-69-year-old adults also showed significant impact of body size on 
brain neuroimaging data (Alfaro-Almagro et al., 2021; Miller et al., 2016). ICV and head size were identified as 
an effective confounding factor minimizing the body size effects in brain structural measurements 
(Alfaro-Almagro et al., 2021; Miller et al., 2016). The head size is not possible to measure precisely from the 
spine-generic database, because the images covering the brain were manually defaced by deleting the facial 
area in images. Thus, a significant portion of the image capturing head is missing in every scan. Yet, we 
employed the ICV covariate that is highly correlated to the head size and expected to be a more relevant 
measure for brain-related analyses (Miller et al., 2016). CSA-GM, SC DTI, and SC MTR measurements 
demonstrated scanner-related variability, which needs to be addressed in multi-center data acquisition and 
analysis. Data of subjects with very low and high BMI may help to investigate the dependence of MTR and DTI 
measures on body weight. RF inhomogeneities need to be better mapped in future studies to avoid risks of 
biases in MTR outcomes. Comparison between SC and cerebral microstructure is impossible with the 
spine-generic database because the database does not contain images of brain microstructure. The current 
spine-generic database version does not allow assessing the impact of socioeconomic and race/ethnicity 
status on obtained MRI metrics (Piccolo et al., 2016). Relationships between spinal canal area (Fradet et al., 
2014), cervical cerebrospinal fluid area (Fradet et al., 2014), and body size have not been investigated. Axial 
diffusivity (AD, i.e., another DTI metric) was not investigated. We expected that AD would provide similar 
results as observed for MD and RD due to expected high FA-MD-RD-AD intra-correlation levels; therefore, we 
decided to shrink the variable space. Overall, we conclude that body height and weight should be sufficient and 
self-explanatory measures of body size for the current study outcomes. However, future studies should 
measure LBW more rigorously than has been possible here and determine LBW effects on CNS 
microstructure. Reliable interpretation and additional value of our LBW and BSA association results may be 
limited because they were theoretically calculated utilizing body height and weight. The cross-sectional study 
design limits testing of body size changes on the CNS over time. 



5 Conclusions 
(i) We confirmed that “Future clinical research studies and trials utilizing neuroimaging should include body 
size as a potential confounding biological factor to avoid bias in clinical outcomes”. (ii) We hypothesized that 
“CSA of cervical SC WM and GM interacts with body size and morphology of distinct brain structures”, but after 
analysis we refine this to “CSA of cervical SC WM interacts with body height and morphology of distinct brain 
structures with a descending gradient from subcortical structures to cortical gray matter”. (iii) We hypothesized 
that “SC microstructure, as measured using MTR and DTI, interacts with body size”, but after analysis we 
refine this to “SC WM microstructure, as measured as MD and MTR, interacts with body weight, and more 
profoundly in dorsal columns than in lateral corticospinal tracts”. We confirmed our hypotheses that (iv) 
“Cerebral morphology interacts with body height more profoundly than with body weight and age”; and that (v) 
“Body size increases the predictive power of CNS structure”. 

6 Data and Code Availability 
All raw data are publicly available at: https://github.com/spine-generic/data-multi-subject (utilized release ID: 
r20231212) 

MRI imaging protocols for all optimized manufacturers and scanner types are publicly available at: 
https://github.com/spine-generic/protocols 

Tables with SCT and Freesurfer measurements are available at: 
https://github.com/umn-milab/spine-generic-body-size-results (utilized release ID: r20250226) 

Spinal Cord Toolbox is available at: https://github.com/spinalcordtoolbox/spinalcordtoolbox (utilized version: 
6.1; git commit: git-master-c7a8072fd63a06a2775a74029c042833f0fce510) 

FreeSurfer is available at: https://surfer.nmr.mgh.harvard.edu (utilized version: 7.2) 

All computer code providing image and statistical analyses is available at: 
https://github.com/spine-generic/spine-generic (utilized release ID: height-weight-analysis-v1.2) 
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