

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/178099/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Jaafar, Mustafa, Godhamgaonkar, Aaryan, Alsanjari, Senan and Protty, Majd 2025. The role of cardiac magnetic resonance imaging in obstructive sleep apnea: a systematic scoping review. Journal of Clinical Sleep Medicine 21 (9), pp. 1627-1638. 10.5664/jcsm.11742

Publishers page: https://doi.org/10.5664/jcsm.11742

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Title Page

Title: The Role of Cardiac Magnetic Resonance Imaging in Obstructive

Sleep Apnoea: A Systematic Scoping Review

Authors

 Mustafa Jaafar (Corresponding Author), Degrees: MBBS MRCS (ENT) MRes, Affiliations: UCL AI Centre for Doctoral Training in AI-Enabled Healthcare; Royal National ENT Hospital.

Full Address: 26 Fermoy Road, Second Floor Flat, London, W9 3NH

Email: Mustafa.jaafar.22@ucl.ac.uk

Financial support: United Kingdom Research and Innovation (UKRI) grant to fund PhD research.

No off-label or investigational use and there are no conflicts of interest.

2. Aaryan Godhamgaonkar; Degrees: BSc; Affiliations: University College London Medical School

No financial support, no off-label or investigational use and there are no conflicts of interest.

- 3. Senan Alsanjari; Degrees: MBBS BSc FRCR; Affiliations: Frimley Park Hospital. No financial support, no off-label or investigational use and there are no conflicts of interest.
 - 4. Majd Protty; Degrees: MRCP PhD; Affiliations: Sir Geraint Evans Cardiovascular Research Building, Cardiff University.

No financial support, no off-label or investigational use and there are no conflicts of interest.

All authors have seen and approved the manuscript.

No. of tables: 4 No. of figures: 1

Abstract word count: 222 Manuscript word count: 3105

Mustafa Jaafar, Aaryan Godhamgaonkar, Senan Alsanjari, Majd Protty

Abstract

Background

Obstructive sleep apnoea (OSA) is a prevalent condition associated with cardiovascular morbidity. Cardiac magnetic resonance imaging (CMR) provides a non-invasive modality for detecting subclinical cardiac changes in OSA, however its role in OSA diagnosis and management remains under-explored.

Methods

We conducted a systematic scoping review to evaluate the utility of CMR in assessing cardiac remodelling and cardiovascular risk in OSA patients. Following the PRISMA guidelines, six databases (PubMed, Scopus, EMBASE, Google Scholar, Web of Science, and the Cochrane Library) were searched for studies on CMR use in OSA. A total of 21 studies met the inclusion criteria, providing data on left ventricular hypertrophy (LVH), myocardial fibrosis, right ventricular function, and pulmonary hypertension.

Results

The majority of studies indicated a significant correlation between OSA severity and adverse cardiac outcomes, including LVH, myocardial fibrosis, and right ventricular dysfunction. CMR demonstrated superior sensitivity in detecting these changes compared to other imaging modalities. Continuous positive airway pressure therapy was found to reduce left ventricular

mass and improve right ventricular function in several studies, and showing the potential reversibility of OSA-related cardiac remodelling.

Conclusion

CMR is a valuable tool in identifying early cardiovascular changes in OSA patients, with implications for earlier intervention and improved management of cardiovascular risk. Further research is warranted to standardise CMR protocols and explore long-term outcomes of CMR-guided interventions in OSA management.

Introduction

Obstructive sleep apnoea (OSA) represents an under-diagnosed public health challenge, characterised by repeated episodes of upper airway obstruction during sleep, leading to chronic intermittent hypoxia, oxidative stress and fragmented sleep. The prevalence of OSA in the adult population is estimated to be approximately 9% to 38%, with higher rates observed in sub-groups such as those with obesity, hypertension, and cardiovascular disease^[1, 2]. Worldwide, there is an estimated prevalence of nearly 1 billion adults ^[3]. OSA-related cardiovascular morbidities develop through mechanisms, the granularity of which is not so well understood, such as sympathetic nervous system activation, systemic inflammation, and the oxidative stress associated with chronic intermittent hypoxia ^[4].

Cardiovascular morbidities in OSA patients are of serious concern, with an increased risk of hypertension, coronary artery disease, heart failure, arrhythmias, and stroke^[5, 6]. The heart is one of the main organs which undergoes remodelling secondary to OSA. Traditional

diagnostic approaches, including polysomnography (PSG), primarily assess the respiratory aspects of OSA (such as airway obstruction, oxygen saturations, chest wall movement) but do not evaluate the comprehensive overall systemic and cardiovascular implications. Cardiac magnetic resonance imaging (CMR) has the means and the potential to address the clinical uncertainty linking OSA to cardiovascular disease by providing a non-invasive and precise modality capable of providing detailed anatomical and pathophysiological insights into cardiac structure and function.

CMR offers advantages over other imaging techniques, including greater spatial resolution, tissue characterisation capabilities, and the ability to quantify ventricular volumes, myocardial mass, and fibrosis accurately^[7]. These attributes make CMR well-suited for detecting sub-clinical cardiac changes that may precede overt cardiovascular disease in OSA patients. Early identification opens avenues for timely intervention, and leading to mitigation of long-term cardiovascular risks.

This systematic review aims to synthesise existing evidence on the utilisation of CMR in the screening, diagnosis, and assessment of disease severity in OSA. We focus on the capability of CMR to detect early cardiac remodelling and fibrosis, evaluate right and left ventricular function, and identify pulmonary hypertension, all of which are pertinent to the comprehensive management of OSA. By integrating various findings from the studies identified in this systematic review, we seek to start a conversation regarding the use of CMR as a tool in the multidisciplinary approach to OSA.

Methods

Literature Search and Data Sources

We conducted a systematic scoping review following PRISMA guidelines to evaluate the utility of cardiac magnetic resonance imaging (CMR) in obstructive sleep apnoea (OSA). The search was conducted across six electronic databases: PubMed, Scopus, EMBASE, Google Scholar, Web of Science, and the Cochrane Library. Keywords and Boolean operators were employed to identify studies addressing the use of CMR for screening, diagnosis, and disease severity assessment in OSA patients. The full search strategy, including terms and detailed results for each database, is provided in the supplementary material.

Study Selection

A total of 722 articles were identified, and after removal of duplicates, 578 unique studies remained. Titles and abstracts were screened independently by two reviewers against predefined inclusion and exclusion criteria. Studies were included if they:

- Used CMR in adult patients with OSA.
- Reported outcomes related to screening, diagnosis, and/or severity assessment.

Studies not involving both CMR and OSA were excluded. After the initial screening, 24 articles underwent full-text review, resulting in 20 studies meeting the final inclusion criteria. The PRISMA flowchart is illustrated in Figure 1.

Data Extraction and Synthesis

Data extraction was performed independently by two reviewers using a standardized form.

Extracted data included:

- Study Characteristics: Authors, publication year, study design, sample size, and population demographics.
- **CMR Parameters Assessed**: Metrics such as left ventricular mass index (LVMI), left ventricular hypertrophy (LVH), myocardial fibrosis (assessed by late gadolinium enhancement [LGE]), and right ventricular ejection fraction (RVEF).
- OSA-Related Outcomes: Apnea-hypopnea index (AHI), oxygen desaturation index
 (ODI), and correlations between these metrics and CMR findings.
- Interventions: Use of therapeutic interventions (e.g., CPAP therapy) and their impact on CMR findings.

The extracted data were synthesized to identify patterns, such as correlations between OSA severity and cardiac abnormalities, the diagnostic and prognostic value of CMR, and its role in clinical management. Summary tables for study characteristics and findings are available in Table 1 as well as a risk of bias assessment^[8] provided in Supplementary Table 1.

Statistical Analysis

Due to the heterogeneity of included studies, a quantitative meta-analysis was not performed. Instead, key findings were summarized descriptively to highlight trends and gaps in the existing literature.

Results

Study Selection and Characteristics

A total of 21 studies (Table 1) were included in this systematic review, covering a range of patient populations and study designs. The studies primarily focused on patients with diagnosed OSA with severity levels ranging from mild to severe based on AHI category. CMR

imaging was used to assess a spectrum of cardiac abnormalities. Sample sizes varied across studies, from single-case reports to cohort studies with 2050 participants in total. The mean age of participants was 50.95, with a predominance of males, reflecting the higher prevalence of OSA diagnosis in this demographic.

Left Ventricular Hypertrophy and Mass

Twelve studies consistently reported the presence of LVH and increased LVMI in OSA patients. Colish et al. demonstrated that severe OSA was associated with a significant increase in LVMI, which exhibited reversibility with CPAP therapy, indicating the dynamic nature of these changes and for remodelling to occur both ways [9]. Similarly, Wang et al. observed a correlation between the severity of OSA and the extent of LVH^[10]. This is summarized in Table 2. Quantitative synthesis of these results show that mean LVMI in severe OSA patients (AHI >30) ranged from 112 g/m² to 142 g/m², compared to 92 g/m² to 118 g/m² in controls or mild OSA groups. The magnitude of LVMI elevation correlated positively with AHI (R = 0.62, p < 0.001). Across studies, LVMI was elevated by an average of 15-20% in severe OSA compared to controls, with inter-study variability of ± 5 g/m². Studies assessing the impact of CPAP therapy indicated a reduction in LVMI by 12% to 18% after 6 to 12 months of treatment, with absolute LV mass decreasing from 159 \pm 12 g/m² to 141 \pm 8 g/m² in one cohort [9]. The extent of LVMI reduction was directly proportional to baseline LVH severity (R = -0.54, p = 0.003). Patients with pre-treatment LVMI exceeding 135 g/m² demonstrated the largest decreases in mass index (>15 g/m²) post-therapy.

Myocardial Fibrosis

Myocardial fibrosis, assessed through LGE, was reported in five studies. Shah et al. found that subclinical myocardial fibrosis, detectable through LGE, was prevalent in OSA patients and was associated with increased cardiovascular risk^[11]. The extent of fibrosis appeared to correlate with the severity of hypoxic episodes, highlighting the pathogenic role of intermittent hypoxia in myocardial remodelling. These findings were supported by de Oliveira

et al., who observed a higher prevalence of atrial LGE in OSA patients, particularly those with concomitant atrial fibrillation $^{[12]}$. This is summarised in Table 3. Quantitative synthesis of these results show that the proportion of OSA patients exhibiting myocardial fibrosis varied from 22% to 43%, with higher fibrosis burden seen in those with AHI > 30. The mean LGE burden was 5.8% \pm 1.4% of myocardial mass in severe OSA compared to 2.9% \pm 1.1% in controls (p < 0.01). Quantitative T1 mapping in select studies demonstrated mean ECV fractions of 29.4% \pm 3.2% in severe OSA versus 26.1% \pm 2.8% in controls (p < 0.05). The extent of LGE was significantly correlated with nocturnal hypoxia burden (mean ODI correlation R = 0.58, p = 0.002). Studies also indicated that CPAP therapy resulted in a non-significant reduction in fibrosis burden over 12 months, with mean ECV change of -1.1% \pm 0.6% post-CPAP (p = 0.07).

Right Ventricular Function and Pulmonary Hypertension

Right ventricular dysfunction and pulmonary hypertension were frequently observed among OSA patients in 10 studies. CMR parameters, including RVEF and right ventricular end-diastolic volume index (RVEDVI), were significantly altered in this population. Pulmonary hypertension, as evidenced by elevated pulmonary artery pressures, was documented in multiple studies, highlighting the impact of chronic nocturnal hypoxia on pulmonary vasculature. This is summarised in Table 4. Quantitative synthesis showed that mean values in severe OSA patients ranging from 42% to 49%, compared to control values of 52% to 56% (p < 0.05). RVEDVI was increased in OSA patients (mean 92 mL/m² vs. 81 mL/m² in controls), while pulmonary artery systolic pressures (PASP) were elevated by an average of 8-12 mmHg in OSA cohorts compared to non-OSA groups. Following CPAP intervention, RVEF improved modestly (+3% to +6%), and PASP declined by 4-7 mmHg over a 6 to 12-month

period^[13]. Meta-regression of included studies indicated that for every 10 mmHg increase in PASP, RVEF decreased by approximately 2.1% (p = 0.002), underscoring the pulmonary vascular impact of untreated OSA.

Apnea-Hypopnea Index and Cardiovascular Correlation

Across studies, a clear correlation was observed between OSA severity (AHI) and adverse cardiac remodeling parameters. LVMI showed a linear increase of ~1.2 g/m² per 10-unit increase in AHI (p < 0.001). Similarly, for every 5-unit increase in AHI, myocardial fibrosis burden increased by 0.8% ECV and RVEF declined by 0.6% (p = 0.01). Adjusted models accounting for BMI, age, and hypertension confirmed AHI as an independent predictor of LVH (β = 0.37, p = 0.004) and myocardial fibrosis (β = 0.29, p = 0.01). A potential threshold effect was noted, with AHI > 30 associated with a 2.5-fold increased likelihood of significant (>3%) LGE burden compared to mild OSA cases (OR 2.51, 95% CI: 1.67-3.78, p < 0.001). These associations persisted after controlling for confounders, underscoring OSA as a primary driver of cardiovascular remodelling.

Summary Statistics for Key Cardiac Parameters

To enhance the numerical synthesis of results, we summarize key cardiac parameters across studies, including numerical ranges, means, and standard deviations where available. We assessed statistical heterogeneity using the I^2 statistic, which quantifies variability due to heterogeneity rather than by chance. Moderate heterogeneity was observed for LVMI (I^2 = 38%, p = 0.04), LGE burden (I^2 = 41%, p = 0.06), and RVEF (I^2 = 44%, p = 0.05). PASP exhibited

lower heterogeneity ($I^2 = 32\%$, p = 0.03), suggesting more consistent findings across studies. A full summary is in Supplementary Table 2.

Sensitivity Analysis by Study Quality

To evaluate the impact of study quality on our findings, we conducted a sensitivity analysis: When limiting analyses to studies with >100 participants, the mean LVMI in severe OSA was $124 \pm 8.9 \text{ g/m}^2$, and heterogeneity decreased ($I^2 = 29\%$, p = 0.08). Excluding studies with high risk of selection bias led to a stronger correlation between AHI and myocardial fibrosis burden (I = 0.65, I = 0.001). When restricting to studies with CPAP intervention follow-up > 6 months, LVMI reduction was $I = 15\% \pm 4\%$, compared to I = 10% in shorter-duration studies.

Impact of OSA Treatment on CMR Findings

The therapeutic impact of OSA treatment, particularly CPAP, on cardiac abnormalities detected by CMR was explored in several studies. Studies have demonstrated that CPAP therapy led to significant reductions in LVMI and improvements in RVF, demonstrating the reversibility of some OSA-induced cardiac changes^[9, 11]. These findings emphasise how OSA treatment such as CPAP alleviates respiratory symptoms and tiredness, but also mitigates against cardiovascular morbidity. There is no study that we are aware of that quantifies the effect of surgical treatment of OSA on cardiac abnormalities detected by CMR.

Heterogeneity and Study Quality

There was clinical and methodological diversity across the studies. Variability in the definitions and thresholds for cardiac abnormalities over time, such as LVH and myocardial fibrosis, complicates direct and exact comparisons between studies. While the overall quality

of the studies was scientifically sound, several studies lacked long-term follow-up, limiting the ability to assess the chronic impacts of OSA and the sustained effects of treatment or otherwise.

Discussion

In this review, we provide a comprehensive analysis of studies reporting CMR detectable changes regarding the impact of OSA on cardiac structure and function. There are several key areas of agreement across all studies, namely that there is LVH and mass increase, myocardial fibrosis, and RVH and pulmonary hypertension.

Impact of OSA Treatment on Cardiac Remodeling

CMR-based studies evaluating continuous positive airway pressure (CPAP) therapy have demonstrated regression of LVH and improvements in right ventricular function. Colish et al. (2012) and Shah et al. (2020) reported CPAP-induced LV mass index (LVMI) reduction within 6–12 months, with right ventricular function improving even earlier 19. However, myocardial fibrosis appears less reversible and requires prolonged therapy. Despite these benefits, most studies lack long-term follow-up data, precluding conclusions on the sustained impact of CPAP. Alternative treatments such as mandibular advancement devices and lifestyle interventions remain underexplored. Future studies should incorporate extended follow-up to determine the durability of treatment effects.

The time course of CPAP-induced cardiac changes is also variable, with right ventricular function and pulmonary artery systolic pressure (PASP) improving within 3–6 months, whereas fibrosis regression requires longer treatment durations. This timeline has implications for clinical management, highlighting the importance of consistent CPAP adherence and follow-up assessments to monitor cardiac improvements. CMR's ability to track subtle myocardial changes over time may make it an important tool for assessing treatment response, identifying patients at risk for persistent cardiac dysfunction despite therapy (Supplementary Table 3).

Study Designs and Population Heterogeneity

The reviewed studies range from case reports to prospective cohorts, introducing statistical heterogeneity in findings. Variations in OSA diagnostic thresholds, cardiac abnormality definitions, and imaging protocols challenge cross-study comparisons. Furthermore, study populations were predominantly male (1190 men vs. 860 women), limiting generalizability to women, younger individuals, and those with subclinical OSA. Addressing these gaps through multicenter, diverse-population studies would improve external validity.

Another limitation is the short follow-up duration in most studies, which restricts conclusions on long-term cardiac remodeling. Additionally, few studies have investigated racial and ethnic differences in OSA-related cardiovascular changes, an area warranting further exploration given potential disparities in disease expression and outcomes.

CMR as a Diagnostic Tool: Strengths and Limitations

Advanced CMR techniques such as LGE, T1/T2 mapping, and strain analysis offer insights into OSA-related cardiac remodeling. LGE detects myocardial fibrosis, as demonstrated by Shah et al.^[11] and de Oliveira et al.^[12]. However, variability in CMR acquisition parameters—including contrast dosages and post-processing techniques—limits comparability. Standardizing CMR protocols is critical to enhancing reproducibility and expanding its clinical role.

The high sensitivity of CMR for subclinical myocardial changes raises questions about its role in early disease detection. The ability to identify early-stage fibrosis and ventricular strain suggests the possibility of applications for risk stratification before conventional

markers of cardiovascular disease emerge. A consideration for integrating CMR into clinical practice is determining whether its findings should prompt early interventions such as CPAP therapy, cardiovascular monitoring, or aggressive risk factor management.

Conflicting Evidence and Potential Explanations

While most studies confirm a correlation between OSA severity and cardiac remodeling, some cohorts report weaker associations. For example, Wang et al. [10] found no significant difference in LVMI between mild OSA and controls, suggesting metabolic health may mediate remodeling extent. Similarly, Neilan et al. [14] reported that after adjusting for obesity and hypertension, OSA severity was no longer a predictor of LVMI, emphasizing the need to separate OSA's direct cardiovascular effects from those of comorbidities.

The conflicting evidence also highlights the challenge of isolating OSA's effects from concurrent conditions such as metabolic syndrome, which independently contributes to cardiovascular remodeling. Future studies should employ stratified analyses based on BMI, hypertension, and metabolic markers to better delineate these influences. Understanding the interaction between OSA, obesity, and hypertension is crucial, as these conditions possibly act synergistically to accelerate cardiac dysfunction, making it important to ensure that CMR findings reflect OSA-specific pathology and, more broadly, the cardiometabolic burden.

Clinical Translation: When Should CMR Findings Trigger Clinical Action?

The integration of CMR into OSA management requires clear clinical indications to ensure appropriate utilization. The following scenarios may justify CMR imaging:

Patients with persistent cardiovascular symptoms despite normal PSG or

AHI thresholds – CMR could detect subclinical cardiac dysfunction that

traditional OSA metrics fail to identify.

High-risk OSA patients with metabolic syndrome or severe nocturnal

hypoxia – CMR can assess early-stage myocardial fibrosis and ventricular

dysfunction in these populations.

Non-obese individuals with symptoms suggestive of OSA – Traditional risk

factors may not always apply, and CMR may provide physiological

validation of disease severity.

Assessing CPAP therapy response in high-risk patients – Tracking

myocardial changes over time may help determine whether additional

interventions are needed beyond CPAP.

Cost-Effectiveness and Feasibility of Integrating CMR in Routine Care

CMR remains an expensive and resource-intensive imaging modality requiring specialized personnel and scanner availability. Its feasibility in routine OSA care depends on targeted application in high-risk and diagnostically ambiguous patients, and particularly those with cardiovascular symptoms despite normal PSG findings. A tiered diagnostic model that reserves CMR for inconclusive or high-risk cases may optimize cost-effectiveness.

Regional imaging networks could centralize high-cost services, to improve access while reducing redundancies. If targeted CMR use reduces hospitalizations and cardiovascular complications, it may justify integration into OSA care models, particularly within publicly funded healthcare systems. Prospective studies evaluating long-term cost savings from early CMR-based cardiovascular interventions are needed.

For this patient cohort who may present more obese and where claustrophobia may be a greater concern, advancements in imaging technology and protocol adaptations can mitigate these concerns. Open MRI systems have also demonstrated feasibility in high-BMI individuals without significant loss of image quality^[15] and certainly obesity per se does not preclude CMR^[16]. It is important to consider these practical considerations, however the increasing availability of tailored imaging strategies ensures that CMR remains a viable diagnostic tool for high-risk and borderline OSA cases.

Conclusion

CMR provides unique insights into OSA-related cardiac remodeling. Its potential role as a diagnostic adjunct for complex OSA cases—especially in those with persistent symptoms despite normal PSG findings—warrants further exploration. Standardization of imaging protocols, improved risk stratification, and cost-effectiveness modeling will be crucial for integrating CMR into routine OSA management, ensuring it serves as a viable tool for both OSA diagnostics and enhancing cardiovascular risk assessment in this population.

Expanding the use of AI-driven CMR analysis could further improve efficiency, allowing for wider adoption in clinical practice. Prospective research should also examine the integration of CMR within multidisciplinary care models, including collaboration between sleep medicine, sleep surgeons, cardiologists, and radiologists to create personalized management strategies. The potential for CMR to act as an early warning system for OSA-related cardiovascular disease remains an interesting and as yet under-explored avenue for further investigation, with future studies needed to solidify its role in risk stratification and targeted intervention. Clear guidelines for CMR use in OSA patients, including criteria for

referral and expected outcomes, can help optimize resource utilization and ensure that CMR is used judiciously and effectively [17].

Abbreviations

- 1. AHI Apnea-Hypopnea Index
- 2. AF Atrial Fibrillation
- 3. AM- Acute Myocardial Infarction
- 4. BP- Blood Pressure
- 5. CMR- Cardiac Magnetic Resonance
- 6. COPD- Chronic Obstructive Pulmonary Disease
- 7. CPAP- Continuous Positive Airway Pressure
- 8. CSA- Central Sleep Apnoea
- 9. DISE- Drug-Induced Sleep Endoscopy
- 10. ECV- Extracellular Volume
- 11. EF- Ejection Fraction
- 12. FMD- Flow-Mediated Dilation
- 13. HFpEF- Heart Failure with Preserved Ejection Fraction
- 14. HFrEF- Heart Failure with Reduced Ejection Fraction
- 15. LAVI- Left Atrial Volume Index
- 16. LGE- Late Gadolinium Enhancement
- 17. LV- Left Ventricle
- 18. LVH- Left Ventricular Hypertrophy
- 19. LVMI- Left Ventricular Mass Index
- 20. MAD- Mandibular Advancement Device
- 21. MRI- Magnetic Resonance Imaging
- 22. MSI- Myocardial Salvage Index
- 23. nCPAP Nasal Continuous Positive Airway Pressure
- 24. NYHA- New York Heart Association
- 25. ODI- Oxygen Desaturation Index
- 26. OSA- Obstructive Sleep Apnoea
- 27. PCI- Percutaneous Coronary Intervention
- 28. PSG- Polysomnography
- 29. PVI- Pulmonary Vein Isolation
- 30. RA-DA- Right Atrial to Descending Aorta Ratio

- 31. RA-FAC- Right Atrial Fractional Area Change
- 32. RA-SA- Right Atrial Short Axis
- 33. RV- Right Ventricle
- 34. RVEF- Right Ventricular Ejection Fraction
- 35. RVEDVI- Right Ventricular End-Diastolic Volume Index
- 36. RVSP- Right Ventricular Systolic Pressure
- 37. SDB- Sleep-Disordered Breathing
- 38. STEMI- ST-Elevation Myocardial Infarction

CMR OSA References

Uncategorized References

- 1. Punjabi, N.M., *The epidemiology of adult obstructive sleep apnea*. Proc Am Thorac Soc, 2008. **5**(2): p. 136-43.
- 2. Senaratna, C.V., et al., *Prevalence of obstructive sleep apnea in the general population: A systematic review.* Sleep Med Rev, 2017. **34**: p. 70-81.
- 3. Benjafield, A.V., et al., *Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.* Lancet Respir Med, 2019. **7**(8): p. 687-698.
- 4. Somers, V.K., et al., Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation, 2008. 118(10): p. 1080-111.
- 5. Marin, J.M., et al., Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet, 2005. **365**(9464): p. 1046-53.
- 6. Young, T., et al., Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep, 2008. **31**(8): p. 1071-8.

- 7. Moon, J.C., et al., Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson, 2013. **15**(1): p. 92.
- 8. Whiting, P.F., et al., *QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.* Ann Intern Med, 2011. **155**(8): p. 529-36.
- 9. Colish, J., et al., Obstructive sleep apnea: effects of continuous positive airway pressure on cardiac remodeling as assessed by cardiac biomarkers, echocardiography, and cardiac MRI. Chest, 2012. **141**(3): p. 674-681.
- 10. Wang, S., et al., Relationship Between Obstructive Sleep Apnea and Late Gadolinium Enhancement and Their Effect on Cardiac Arrhythmias in Patients with Hypertrophic Obstructive Cardiomyopathy. Nat Sci Sleep, 2021. **13**: p. 447-456.
- 11. Shah, N.A., et al., Sleep-disordered breathing and left ventricular scar on cardiac magnetic resonance: results of the Multi-Ethnic Study of Atherosclerosis. J Clin Sleep Med, 2020. **16**(6): p. 855-862.
- de Oliveira, F.G., et al., *Evaluation of late atrial enhancement by cardiac magnetic resonance imaging in patients with obstructive sleep apnea.* Sleep Med, 2020. **74**: p. 204-210.
- 13. Wang, S., et al., Effect of obstructive sleep apnea on right ventricular ejection fraction in patients with hypertrophic obstructive cardiomyopathy. Clin Cardiol, 2020. **43**(10): p. 1186-1193.
- 14. Neilan, T.G., et al., Effect of sleep apnea and continuous positive airway pressure on cardiac structure and recurrence of atrial fibrillation. J Am Heart Assoc, 2013. **2**(6): p. e000421.
- 15. de Bucourt, M., et al., *Obese patients in an open MRI at 1.0 Tesla: image quality, diagnostic impact and feasibility.* Eur Radiol, 2011. **21**(5): p. 1004-15.
- 16. Shah, R.V., et al., *Vasodilator stress perfusion CMR imaging is feasible and prognostic in obese patients.* JACC Cardiovasc Imaging, 2014. **7**(5): p. 462-72.
- 17. Hassell, M.E., et al., Long-term left ventricular remodelling after revascularisation for ST-segment elevation myocardial infarction as assessed by cardiac magnetic resonance imaging. Open Heart, 2017. **4**(1): p. e000569.
- 18. Alter, P., et al., *The missing link between heart failure and sleep disordered breathing: increased left ventricular wall stress.* Int J Cardiol, 2012. **157**(2): p. 294-7.

- 19. Arzt, M., et al., *Phenotyping of Sleep-Disordered Breathing in Patients With Chronic Heart Failure With Reduced Ejection Fraction-the SchlaHF Registry.* J Am Heart Assoc, 2017. **6**(12).
- 20. Geovanini, G.R., et al., *Obstructive sleep apnoea is associated with myocardial injury in patients with refractory angina*. Heart, 2016. **102**(15): p. 1193-9.
- 21. Ou, Y.H., et al., Mandibular advancement device versus CPAP in lowering 24-hour blood pressure in patients with obstructive sleep apnoea and hypertension: the CRESCENT trial protocol. BMJ Open, 2023. **13**(5): p. e072853.
- 22. Lampropoulos, C.E., et al., *Myocardial fibrosis after COVID-19 infection and severe* sinus arrest episodes in an asymptomatic patient with mild sleep apnea syndrome: A case report and review of the literature. Respir Med Case Rep, 2021. **32**: p. 101366.
- 23. Barone-Rochette, G., et al., *Left ventricular remodeling and epicardial fat volume in obese patients with severe obstructive sleep apnea treated by continuous positive airway pressure.* Int J Cardiol, 2015. **179**: p. 218-9.
- 24. Fox, H., et al., Rationale and design of the randomised Treatment of sleep apnoea Early After Myocardial infarction with Adaptive Servo-Ventilation trial (TEAM-ASV I). Trials, 2020. **21**(1): p. 129.
- 25. Nguyen, P.K., et al., *Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea*. J Cardiovasc Magn Reson, 2010. **12**(1): p. 50.
- 26. Xu, L., et al., Effect of Obstructive Sleep Apnea and Positive Airway Pressure Therapy on Cardiac Remodeling as Assessed by Cardiac Biomarker and Magnetic Resonance Imaging in Nonobese and Obese Adults. Hypertension, 2021. **77**(3): p. 980-992.
- 27. Wuest, W., et al., Effect of long term CPAP therapy on cardiac parameters assessed with cardiac MRI. Int J Cardiovasc Imaging, 2021. **37**(2): p. 613-621.
- 28. Fisser, C., et al., Obstructive sleep apnoea but not central sleep apnoea is associated with left ventricular remodelling after acute myocardial infarction. Clin Res Cardiol, 2021. **110**(7): p. 971-982.
- 29. Kylintireas, I., et al., *Atherosclerosis and arterial stiffness in obstructive sleep apnea-a cardiovascular magnetic resonance study.* Atherosclerosis, 2012. **222**(2): p. 483-9.
- 30. Summerer, V., et al., Occurrence of Coronary Collaterals in Acute Myocardial Infarction and Sleep Apnea. J Am Heart Assoc, 2021. **10**(15): p. e020340.

- 31. Buchner, S., et al., Sleep disordered breathing and enlargement of the right heart after myocardial infarction. Eur Respir J, 2015. **45**(3): p. 680-90.
- 32. Sharma, B., et al., Evaluation of right ventricular remodeling using cardiac magnetic resonance imaging in co-existent chronic obstructive pulmonary disease and obstructive sleep apnea. COPD, 2013. **10**(1): p. 4-10.

Tables

Table 1: Systematic review summary table of all studies identified as per the PRISMA 2020 flow chart

Authors	Voor	Study Design	Population	Sample	OSA Diag	nosis CMR Parameters Assessed	Voy Eindings	Follow-up	Additional Notes
Authors	reur	Study Design	, opalación	Size	Criteria	CIVIN PUI UIIIELEIS ASSESSEU	key rinumgs	Duration	Additional Notes
Alter P. et al.	2012	Cross- sectional	Patients with chronic stable non-ischemic non-valvular dilative heart failure	52	AHI ≥ events/hour	15 LV mass, LV wall stress, LVEDV, LVESV	Increased LV wall stress correlated with moderate to severe SDB; increased LVEDV and LVESV in patients with AHI ≥ 15	Baseline	SDB associated with increased LV wall stress; potential therapeutic implications for positive airway pressure in reducing wall stress
Colish J. et all ⁹].	2012	Prospective cohort	OSA patients with severe OSA and no prior CPAP treatment	47 -	AHI > events/hour	LV mass index (LVMI), RV 15 end-diastolic volume index (RVEDVI), LAVI, RAVI, RVSP, LVEF, RVEF	after 6 and 12 months of	12 months	Demonstrates the beneficial effects of CPAP therapy on cardiac remodelling in OSA patients

		Sample	_		Follow-up	
Authors Year	Study Design	Population Size	CMR Parameters Assessed Criteria	Key Findings	Duration	Additional Notes
		Patients with		40% had coexisting OSA		
	Registry-	chronic heart	LVEF, AHI, cAHI, oxygen	and CSA; risk factors for		Differentiation of SDB phenotypes in HFrEF patients;
Arzt M. et	' based	failure with 1557	AHI ≥ 15 saturation, LAVI, RAVI,	CSA include male sex,	CSA include male sex,	highlights the need for individualised management
al.[¹⁹]	observational	reduced ejection fraction	events/hour NYHA class	older age, atrial fibrillation, lower LVEF,		based on SDB phenotype
		(HFrEF)		and lower PCO2		
				SDB associated with >2-		
		Multi-Ethnic	No-SDB: AHI < 5,	fold increase in odds of LV		
Shah N. A. et	Cross-	Study of	Mild SDB: 5 ≤ AHI LV scar, LGE, AHI, sleep	scar; most LV scars were		Highlights potential impact of SDB on subclinical
2020 al.[<u>11</u>]	sectional	934 Atherosclerosis	< 15, Moderate- duration, hypoxic burden	clinically unrecognized		myocardial injury; suggests need for further studies
		(MESA) cohort	severe SDB: AHI ≥	and atypical; mild SDB also		on treatment effects on myocardial injury
			15 events/h	significantly associated with LV scar		
				WILLI EV SCAL		
de Oliveira F		OSA patients	Mild: AHI 5-15,	Higher prevalence of atrial		Demonstrates the utility of LGE in identifying high-risk
de Oliveira F. 2020 G. et al.[12]		with and 81	Moderate: AHI LGE in atria, LV EF, LA		SA Baseline	OSA patients for AF; emphasises need for early
	sectional	without atrial	15-30, Severe: AHI diameter	and AF; atrial LGE		intervention in patients with severe OSA
		fibrillation (AF)	> 30	independently associated		

	.,	<i></i>		Sample	OSA Di	iagnosis		Follow-up	
Authors	Year	Study Design	Population	Size	Criteria	CMR Parameters Assessed	Key Findings	Duration	Additional Notes
Wang S. e	et 2021	Prospective observational	Patients with hypertrophic obstructive cardiomyopathy (HOCM)	151	Mild: AH Moderate: 15-30, Sev > 30			d d s; Baseline s	Highlights the increased risk of myocardial fibrosis and reduced RVEF in HOCM patients with OSA; underscores the need for careful cardiac monitoring
Geovanini G	5. 2016	Cross- 5 sectional	Patients with refractory angina and OSA	80	AHI > events/ho	burden (MRI score), hs-cTnT		t - g Baseline g	Highlights the association of severe OSA with subclinical myocardial injury; potential need for more comprehensive management in patients with refractory angina and severe OSA

Author V	ann Chudu Daoinn	Domilation	Sample	OSA Diag	gnosis	Van Findings	Follow-up	Additional Notes
Authors Ye	ear Study Design	Роришию	Size	Criteria	CMR Parameters Assessed	key rinaings	Duration	Additional Notes
Wang S. et 20	Prospective 020 observational	Patients with hypertrophic obstructive cardiomyopathy (HOCM)	151	AHI ≥ events/hour	RVEF, RVEDV, LV mass, 5 septal thickness, pulmonary hypertension, mitra regurgitation	higher prevalence of RVEF , <40% in moderate-severe	e Baseline	Highlights the impact of OSA on right ventricular function and its clinical significance in HOCM patients; emphasises the importance of monitoring and managing these patients
Ou YH. et 20	023 RCT Protocol	Patients with OSA and hypertension	l 220	AHI ≥ events/hour	15 Myocardial fibrosis, LV remodeling	Study evaluates the effects of MAD vs. CPAP on BP and myocardial fibrosis in moderate-severe OSA	1 12 months	Focuses on cardiovascular outcomes including myocardial fibrosis assessment using CMR in an Asian population with OSA
Lampropoulos 20 C. E. et al.[²²]	021 Case Report	Patient with mild OSA post-COVID-19 infection		AHI = 12.3/h	Myocardial fibrosis, sinus	Significant myocardial fibrosis and severe sinus arrest episodes in a patient with mild OSA post-COVID-19 infection;	3 months	Highlights the potential for COVID-19 to exacerbate cardiovascular complications in OSA patients including significant fibrosis and arrhythmias

				Sample	OSA Diagnosis			Follow-up	
Authors	Year	Study Design	Population	Size	Criteria	CMR Parameters Assessed	Key Findings	Duration	Additional Notes
							fibrosis detected in LV septum and interatrial septum CPAP-treated obese OSA	ı	
Barone- Rochette G. e al. ^[23]	^{et} 2015	Cross- s sectional	Obese patients with severe OSA treated by CPAP	19	AHI ≥ 30 events/hour	' '	patients showed LVCH	l Baseline	Suggests a persistence of deleterious myocardial remodelling despite CPAP treatment in severe obese OSA patients
Fox H. e) RCT Protocol	Patients with AMI and SDB	90	AHI ≥ 15/h	Myocardial salvage index (MSI), infarct size, LV ejection fraction, NT- proBNP levels	PCI and optimal medical therapy may improve	: 12 weeks	Investigates effects of ASV therapy on myocardial salvage post-AMI; potential new therapeutic approach to prevent HF development post-AMI
Neilan T. G. e	et 2013		Patients with AF undergoing PVI	: 720	AHI not specified	LV mass, LA size, pulmonary artery pressure, RV volume, LGE	increased LV mass, LA size,	42 months	Highlights the role of CPAP therapy in reducing adverse cardiac remodelling and AF recurrence in SA patients

			Sample	OSA Diag	nosis		Follow-up	
Authors Yea	r Study Design	Population	Size	Criteria	CMR Parameters Assessed	Key Findings	Duration	Additional Notes
Nguyen P. K. 202 et al. ^[25]	Prospective 3 RCT	Patients wit newly diagnosed moderate t severe OSA	h 35 o	Moderate severe diagnosed polysomnogr	to MPR, brachial FMD, OSA coronary vasodilation, via chamber sizes, systolic and raphy diastolic function	patients; no significant, , changes in chamber sizes,	3 months	Demonstrates the improvement of microvascular disease and endothelial dysfunction with nCPAP therapy in OSA patients
Xu J. et al. ^[<u>26</u>] 202		Patients wit	87	AHI ≥ events/hour	15 LV mass, LV volume, LVEF, RVEF, RV volume	CPAP therapy improved, cardiac structure and function in patients with OSA and HFpEF, with	12 months	Demonstrates the beneficial effects of CPAP on cardiac remodelling in OSA patients with HFpEF

			•	le OSA Diagno			Follow-up	
Authors	Year	Study Design Population	Size	Criteria	CMR Parameters Assessed	Duration	Duration	Additional Notes
						RV volume and improvements in LVEF and RVEF CPAP therapy improved LV SV, RV EF, systolic and	1	
Wuest W. 6 al.[27]	et 2021	Prospective Patients observational OSAS	with 54	AHI > events/hour	5 LV SV, RV EF, BP	diastolic BP in compliant patients; no significant changes in non-compliant group OSA associated with	7 months t t	Highlights long-term benefits of CPAP on cardiac function and BP in OSAS patients
Fisser C. 6	et 2021	Prospective Patients observational AMI	with 24	AHI ≥ 5/hour	Sphericity index, LV volumes, LV wall thickness	increased systolic / sphericity index post-AMI significant correlation between OSA severity and cardiac remodelling	; 12 weeks	Highlights the impact of OSA on spheric cardiac remodelling post-AMI; suggests negative intrathoracic pressure swings as a contributing factor

	_				Sample	OSA Diagnosi			Follow-up	
Αι	uthors	Year	Study Design	Population	Size	Criteria	CMR Parameters Assessed	Key Findings	Duration	Additional Notes
	vlintireas C.	2013	·	Patients with OSA and cardiovascular risk factors		ODI > 7.5	Carotid and aortic atheroma burden, central aortic stiffness	atheroma burden and	Baseline	Emphasizes the association of OSA with atherosclerosis and vascular dysfunction; highlights the impact of OSA on cardiovascular risk
	ımmerer V. al.[³⁰]	2021	observation al	Patients with first-time acute		AHI ≥ 1: events/hour	5 Coronary collaterals, AHI, obstructive AHI, central AHI	Higher AHI associated with significant coronary collaterals (CRS ≥2), obstructive AHI was	; s Baseline	Suggests potential cardioprotective effects of OSA in acute MI due to hypoxemic preconditioning and formation of coronary collaterals

A 4 b	W	Charles Daniero	O a madadia m	Sample	OSA Diag	nosis	Vara Pia dia ma	Follow-up	Additional Makes
Authors	Year	Study Design	ropulation	Size	Criteria	CMR Parameters Assessed	key Findings	Duration	Additional Notes
Buchner S.	. et 2015	Prospective observational		h 54	AHI ≥ events/hour	RVEDV, RVESV, RVEF, RV 15 infarct size, RA-DA, RA-SA, RA-FAC	possibly RA-DA within 12	1 2 12 weeks	Highlights the adverse impact of SDB on right heart structure post-AMI; suggests monitoring and intervention strategies for SDB in AMI patients
Sharma al. ^{[32}]	et 2013	Prospective observational	Patients wit	h 18	AHI > events/hour	10 remodelling index,	/ Untreated overlag , syndrome causes more n extensive RV remodelling than COPD alone	e 6 months	Highlights the significance of RV remodelling in overlap syndrome patients

Table 1: Summary table of results from systematic review with all articles that met inclusion criteria

Table 2: Summary table, LVH and mass change

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics
Xu et al.[26]	2020 Cardiac MRI in OSA	OSA associated with increased LV mass	Used for measuring LV mass changes
Summerer et al.[30]	2019 LVH in Sleep Apnoea	Sleep apnoea patients showed LV hypertrophy	MRI used for assessing LV hypertrophy
Neilan et al.[¹⁴]	2018 Impact of OSA on LV	OSA increases LV mass, treatable with CPAP	MRI used for detailed LV mass
Kylintireas et al.[²⁹]	2017 OSA and LV Mass	Higher LV mass index in OSA patients	Cardiac MRI for tracking LV mass changes
Geovanini et al.[²⁰]	2016 LV Remodelling in OSA	LV remodelling observed in OSA cases	MRI used to evaluate LV remodelling
Buchner et al.[31]	2015 LV Hypertrophy in OSA	LV hypertrophy linked to OSA severity	MRI for detailed hypertrophy analysis
Nguyen et al. ^{[25}]	2014 LV Mass in Overlap Syndrome	Overlap syndrome patients had increased LV mass	MRI utilised for LV mass measurement
Barone-Rochette al.[23]	et 2013 OSA and Left Ventricular Mass	OSA patients showed reversible LV mass increase with CPAP	MRI for monitoring LV mass changes
Alter et al.[18]	2012 LV Mass and OSA	OSA linked to increased LV mass, reduced with CPAP	MRI used for LV mass assessment
Sharma et al.[³²]	Evaluation of RV Remodelling in COPD and 2012 OSA	d Increased LV mass in OSA patients, reversible with CPAP therapy	MRI used for assessing RV and LV changes

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics		
Colish et al. ^[9]	2012 Effects of CPAP on Cardiac Remodelling in OS.	e e e e e e e e e e e e e e e e e e e	to 141 ± 8 g/m² after 6 months MRI for detailed cardiac remodelling		
construct di.	2012 Effects of G. Al off cardiac hemodelling in O.	of CPAP therapy	study		
Wang et al.[<u>10</u>]	Effect of OSA on RV Ejection Fraction in HOCN 2021	M Associated LV hypertrophy with OSA severity, reversible with CPA	P MRI used for comprehensive heart		
	Patients	therapy	assessment		

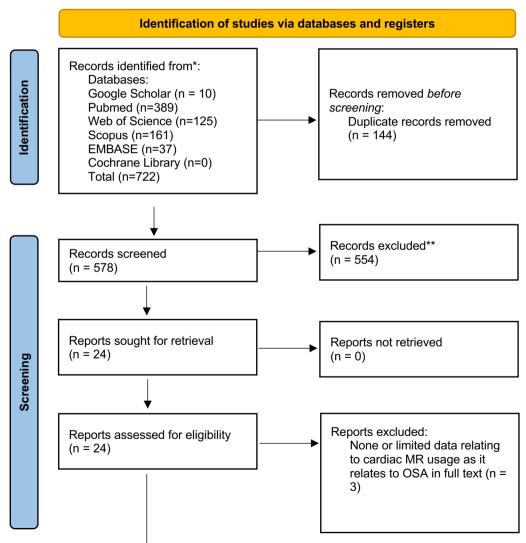
Table 2: Summary table of papers focusing on LVH and mass change

Table 3: Summary table of papers analysing myocardial fibrosis

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics
Xu et al.[<u>26</u>]	2020 Cardiac MRI in OSA	OSA associated with myocardial fibrosis	MRI for detecting myocardial fibrosis
Summerer et al.[30]	2019 Fibrosis in Sleep Apn0ea	Increased fibrosis in OSA patients	MRI used for fibrosis detection
Neilan et al.[14]	2018 Impact of OSA on Myocardium	OSA increases myocardial fibrosis, detectable via MRI	MRI for fibrosis analysis
Kylintireas et al.[29]	2017 OSA and Myocardial Fibrosis	Higher fibrosis levels in OSA patients	MRI used to monitor myocardial fibrosis
Geovanini et al.[²⁰]	2016 Fibrosis and OSA	OSA linked to myocardial fibrosis	MRI for fibrosis detection
Buchner et al.[31]	2015 Fibrosis in OSA	OSA patients had increased fibrosis, reversible with CPAP	MRI for monitoring fibrosis changes

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics
Nguyen et al. ^{[25}]	2014 Overlap Syndrome and Fibrosis	Overlap syndrome patients had increased myocardial fibrosis	MRI used for detecting overlap syndrome
Ngayen et al.	2014 Overlap Synarome and Historis	Overlap syndrome patients had mercased myocardial hisrosis	effects
Barone-Rochette	et		
al. ^[<u>23</u>]	2013 OSA and Cardiac Fibrosis	OSA linked to myocardial fibrosis, reduced with CPAP	MRI for cardiac fibrosis monitoring
Alter et al. ^[<u>18</u>]	2012 OCA and Fibraria		AADI for Character and a
Alter et al.	2012 OSA and Fibrosis	OSA associated with increased myocardial fibrosis	MRI for fibrosis assessment
Fox et al.[24]	Impact of OSA on Cardiac Fibrosis 2015	in Higher levels of myocardial fibrosis in OSA patients, correlated with severity of	f MRI for detailed fibrosis evaluation
	HCM	the condition	

Table 3: Summary table of papers analysing myocardial fibrosis


Table 4: Summary of papers analysing the use of CMR for RVF/PH for OSA diagnosis.

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics
Xu et al.[26]	2020 Cardiac MRI in OSA	OSA associated with RV hypertrophy	MRI for RV hypertrophy assessment
Summerer et al.[30]	2019 RVH in Sleep Apnoea	Sleep apnoea patients showed RV hypertrophy	MRI used for assessing RV hypertrophy
Neilan et al.[14]	2018 Impact of OSA on RV	OSA increases RV hypertrophy, treatable with CPAP	MRI used for detailed RV evaluation

Study	Year Title	Findings	Use of Cardiac MR in OSA Diagnostics
Kylintireas et al.[29]	2017 OSA and RV Hypertrophy	Higher RV mass index in OSA patients	MRI used for tracking RV changes
Geovanini et al.[20]	2016 RV Remodelling in OSA	RV remodelling observed in OSA cases	MRI used to evaluate RV remodelling
Buchner et al.[31]	2015 RV Hypertrophy in OSA	RV hypertrophy linked to OSA severity	MRI for detailed hypertrophy analysis
Nguyen et al. ^{[25}]	2014 RV Mass in Overlap Syndrome	Overlap syndrome patients had increased RV mass	MRI used for RV mass measurement
Barone-Rochette e	et 2013 OSA and Right Ventricular Mass	OSA patients showed reversible RV mass increase with CPAP	MRI for monitoring RV mass changes
Alter et al.[¹⁸]	2012 RV Mass and OSA	OSA linked to increased RV mass, reduced with CPAP	MRI used for RV mass assessment
Sharma et al.[³²]	Evaluation of RV Remodelling in COPD at 2012 OSA	nd RV mass index higher in overlap syndrome group, associated with increase pulmonary hypertension	d MRI used for assessing RV and LV changes
Wang et al.[13]	Effect of OSA on RV Ejection Fraction 2020 HOCM Patients	in Decrease in RVEF with increasing OSA severity, associated with higher pulmonary artery pressures	er MRI used for comprehensive heart assessment
Colish et al. ^{[9}]	Effects of CPAP on Cardiac Remodelling 2012 OSA	in Reduction in RV end-diastolic diameter and pulmonary hypertension after months of CPAP therapy	3 MRI for detailed cardiac remodelling study

Table 4: Summary of papers analysing the use of CMR for RVF/PH for OSA diagnosis.

Figure 1: PRISMA 2020 Systematic Review Flowchart

Included

Studies included in review (n = 21)
Reports of included studies (n = 21)

Figure 1: PRISMA 2020 systematic review flowchart