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Abstract: To ensure the safety and reliability of lithium-ion battery management systems (BMS), accurately 

predicting the remaining useful life (RUL) is essential. However, during the operation of lithium-ion batteries, 

various uncertainties, including energy regeneration and localized fluctuations, introduce significant challenges, 

making it difficult to predict RUL with the desired accuracy. In this paper, we develop a quantitative model for 

predicting the uncertainty in the remaining life of lithium-ion batteries. To be specific, the approach begins by 

employing a denoising auto-encoder (DAE) to reconstruct the original signal during data preprocessing. Next, a 

one-dimensional convolutional neural network (1D-CNN) is utilized to deeply analyze the capacity data of the 

lithium-ion batteries. The representative features extracted by the CNN are then fed into a bidirectional gated 

recurrent unit (BiGRU) network. A quantile regression (QR) layer is integrated into the BiGRU architecture to 

generate the final predictions of the battery's remaining service life. The quantile regression loss function is applied 

during the network training process to enhance the accuracy of the remaining service life predictions. Performance 

evaluation was conducted using publicly available datasets from NASA and CALCE, with comparisons against 

other prediction methods. Experimental results indicate that the quantile regression approach enhances the accuracy 

of the gated recurrent unit (GRU) neural network, demonstrating superior predictive performance. 

Keywords: lithium-ion battery; denoising auto-encoder; convolutional neural network; bi-directional cyclic gating 

unit; remaining service life prediction. 

1 Introduction 

Lithium-ion batteries are extensively used in electric vehicles and energy storage systems due to their high 

specific energy, long service life, low self-discharge rate, and environmental friendliness [1]. As the number of 

charge and discharge cycles increases, chemical reactions within the lithium-ion battery can cause irreversible aging, 

resulting in a reduction in battery life. The remaining service life of a battery is a crucial indicator of its aging status 

[2], and accurately predicting it is vital for the operational safety of energy storage systems. However, factors such 

as temperature variations, the number of charge and discharge cycles, load changes, and other internal and external 

influences complicate the precise estimation of the battery’s remaining service life. Therefore, accurate and reliable 

prediction of the remaining service life of lithium-ion batteries is essential to ensure their safe and reliable operation. 

Currently, there are two general categories for predicting the remaining service life of batteries: model-based 

methods and data-driven methods [3]. The model-based approach primarily examines the physicochemical 

properties of the internal materials of lithium-ion batteries by analyzing the degradation mechanisms of 

electrochemical reactions and battery performance. This method is used to infer the remaining service life of the 

battery. Liu et al. [4] proposed a method for predicting the remaining useful life (RUL) of lithium-ion batteries based 

on a particle filtering (PF) framework and an electrochemical model. Their approach involves identifying 
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parameters of a simplified electrochemical model through a specialized current excitation and then constructing 

observation equations using these parameters as state variables within the particle filtering algorithm. This method 

achieves high-quality RUL predictions. Sun et al.[5] introduced the concept of Remaining Chargeable Quantity 

(RCQ) and employed the Dual Extended Kalman Filter (Dual-ADEKF) algorithm to identify model parameters 

online. This approach also accounts for the aging inconsistency across lithium-ion battery packs, effectively 

estimating the usable capacity of aging batteries. Guha et al. [6] modeled internal resistance growth and capacity 

degradation by utilizing electrochemical impedance spectroscopy (EIS) test data alongside battery capacity test data, 

achieving predictions of battery remaining useful life (RUL). Chen et al. [7] proposed the ECM-VIT method, which 

integrates the equivalent circuit model (ECM) of lithium-ion batteries with an improved vision transformer (VIT) 

to achieve high-precision prediction of the state of health (SOH). Experimental studies have validated the superior 

performance of this method in SOH estimation. Model-based approaches can effectively elucidate the spatio-

temporal dynamics of electrochemical reactions within a battery, which made them particularly favored by 

researchers in earlier studies. However, the inherent complexity of these electrochemical reactions poses significant 

challenges, limiting the accuracy of electrochemical modeling. 

To overcome these problems, data-driven lifetime prediction methods have gradually become a hot research 

topic. Data-driven lithium-ion battery life prediction does not require complex battery modeling. Instead, it explores 

the relationship between external parameters and the internal state of the battery by analyzing and learning from 

patterns, trends, and correlations within the data. Furthermore, data-driven methods are more straightforward to 

implement and incur lower computational costs compared to model-based approaches. Consequently, with the 

advancement of computational performance and continuous innovations in algorithms in recent years, data-driven 

methods such as artificial neural networks (ANN) [8] [9], support vector machines (SVM) [10][11], long short-term 

memory (LSTM)[12][13], and convolutional neural networks (CNN) [14], [15] have become mainstream. Bao et 

al. [16] proposed a hybrid neural network framework (CNN-VLSTM-DA) that integrates a convolutional neural 

network (CNN), a variant long short-term memory network (VLSTM), and a dimensional attention mechanism. The 

VLSTM is utilized to capture temporal dependencies, while the attention mechanism assigns different weights to 

various feature dimensions, thereby enhancing prediction accuracy. This framework enables accurate estimation of 

the state of health (SOH) of lithium-ion batteries. Liu et al. [17] investigated the aging mechanisms of lithium-ion 

batteries by examining the three stages of battery degradation through incremental capacity analysis and 

electrochemical impedance spectroscopy. Finally, they employed a backpropagation neural network optimized by a 

genetic algorithm to predict the state of health of lithium-ion batteries throughout their total lifespan. Zhai et al. [18] 

proposed a prediction method based on a gated recurrent unit (GRU) network. This model by extracting capacity 

data from aging batteries as predictive features, and employed the Tunicate Swarm Algorithm (TSA) to optimize 

the GRU network. This approach effectively captures the dependency relationships between degradation capacities 

and achieves RUL prediction. Yu et al. [20] proposed a bi-directional long and short-term memory (BiLSTM) model 

for predicting the degradation trend of battery capacity, which effectively captured and updated the key information 

in the capacity degradation data through the ability of the BiLSTM network structure to learn long-term. 

Additionally, Zhang et al. [20] proposed a rapid multi-fault diagnosis method based on curve Manhattan distance 

and voltage difference analysis, enabling efficient detection and classification of faults in lithium-ion battery packs. 

This method offers advantages such as low computational cost and high diagnostic accuracy. Guo et al. [21] 

employed complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to 

decompose the data. Subsequently, a neural network combining a convolutional neural network (CNN) and 

bidirectional long short-term memory (BiLSTM) was utilized to predict the remaining service life of lithium-ion 

batteries. Zhang et al. [22] combined the strengths of both data-driven and model-based approaches, proposing an 

interactive method for predicting the remaining useful life (RUL) using Particle Filtering, a Temporal Attention 

Mechanism, and a Bidirectional Gated Recurrent Unit (PF-BiGRU-TSAM) for data modeling. Lv et al. [23] 

proposed a highly accurate and reliable method for predicting the remaining useful life (RUL) of lithium-ion 



batteries. This approach integrates complementary ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) and a convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU). Xia et al. [24] 

tackled the issue of insufficient feature extraction accuracy by employing a specially designed denoising auto-

encoder (DAE) to eliminate common noise in lithium-ion battery data. They utilized a convolutional neural network 

(CNN) to mine correlations among multiple battery features and a self-attentive long short-term memory (LSTM) 

network to capture time-series information from long-term degradation sequences. This approach enables effective 

RUL prediction of lithium-ion batteries. Compared to other typical data-driven methods, their method demonstrated 

higher prediction accuracy and robustness in datasets affected by various types of noise. Although many data-driven 

prediction methods have been proposed above, the prediction results are mainly focused on the estimation of 

deterministic points. With the widespread deployment of lithium-ion batteries in applications such as electric 

vehicles and energy storage systems, the safety risks and economic losses associated with the uncertainty in battery 

lifetime prediction have become increasingly prominent. Issues such as premature battery replacement and 

equipment malfunction caused by inaccurate predictions exemplify the negative consequences of this uncertainty. 

It significantly hampers the ability of existing prediction methods to accurately estimate battery lifespan and poses 

substantial challenges to the precise decision-making of battery management systems (BMS). 

In summary, model-based approaches offer insights into the degradation process by capturing the internal 

mechanisms of batteries but are constrained by the complexity of modeling. In contrast, data-driven methods have 

gained significant attention due to their efficiency and flexibility, enabling the analysis of complex operating 

conditions. However, uncertainties arising from energy regeneration and local fluctuations during lithium-ion 

battery operation present challenges, highlighting the need for further improvements in uncertainty analysis and 

predictive accuracy. Based on this, this study proposes a novel uncertainty-quantified prediction model for the 

remaining useful life (RUL) of lithium-ion batteries. Compared with the aforementioned approaches, the DAE-

CNN-BiGRU-QR model proposed in this study establishes a comprehensive and distinctive framework 

encompassing data denoising, feature extraction, and uncertainty quantification. This integrated approach offers 

significant advantages in addressing practical challenges. The model combines a one-dimensional convolutional 

neural network (1D-CNN) with a bidirectional gated recurrent unit (BiGRU). A convolutional layer in the 1D-CNN 

is employed to extract deep representative features hidden in the original measurement signals, addressing the 

challenges of complex and inefficient feature selection in traditional methods. Additionally, to characterize the 

uncertainty in the lithium-ion battery capacity prediction process, a quantile regression layer is embedded within 

the BiGRU network to obtain the predicted capacity at the 0.5 quantiles. By conducting a comparative analysis with 

other prediction methods using the publicly available NASA and CALCE datasets, the results demonstrate that the 

proposed model further enhances the accuracy of lithium-ion battery RUL prediction. The main contributions and 

innovations of this study are as follows: 

(1) By employing autoencoders for denoising distorted data, the issue of increased prediction error caused by 

data distortion is effectively mitigated. 

(2) The model extracts deep representative features hidden in the original measurement signals using 1D-CNN 

and subsequently estimates battery capacity with BiGRU. This approach addresses the computational challenges 

and burdens associated with using a single GRU model when handling large volumes of data. 

(3) This method accounts for the phenomenon of capacity regeneration by embedding a quantile regression 

(QR) layer into the BiGRU network. By constructing a quantile regression loss function, it characterizes and 

quantifies the uncertainty caused by capacity regeneration. 

(4) Comparative analysis with several advanced methods on publicly available battery aging datasets 

demonstrates the effectiveness and superiority of the proposed approach. 

The remainder of this paper is organized as follows: Section 2 provides a detailed description of the model and 

methods. Section 3 presents the research results, and Section 4 concludes the paper. 



2. Methods for Predicting RUL of Lithium-Ion Batteries 

The comprehensive RUL prediction method for lithium-ion batteries proposed in this study is illustrated in Fig 1 The 

model addresses the uncertainty in predicting the lifespan of lithium-ion batteries under different operating conditions 

and the noise present in the data collection process. It proposes a quantile regression-based prediction method utilizing a 

DAE-CNN-BiGRU. 

 

Fig 1 Basic framework of the RUL prediction model for lithium-ion batteries. 

The specific procedural steps are as follows: 

Step 1: First, extract the battery degradation feature dataset from the operational data. Then, use an autoencoder 

to denoise the distorted data, addressing the issue of increased prediction errors caused by data distortion. Afterward, 

the dataset is divided into training and testing sets, completing the data preprocessing stage. 

Step 2: Utilize a 1D-CNN, consisting of convolutional layers, pooling layers, nonlinear layers, and fully 

connected layers, to extract deep representative features hidden in the original measurement signals. 

Step 3: Integrate the quantile regression (QR) layer into the BiGRU network. By constructing a quantile 

regression loss function, the model characterizes and quantifies the uncertainty caused by capacity regeneration, 

enabling accurate estimation of battery capacity using the BiGRU model. 

Step 4: Evaluate and compare the predictive performance of various data-driven models to obtain the final 

prediction results. 

2.1 Denoising Autoencoder (DAE) 

In the model, considering that noise in the data can significantly impact the prediction accuracy of the neural 

network, a denoising autoencoder is employed to preprocess the data and minimize the influence of noise before 

feeding it into the neural network. In this paper, the DAE algorithm is employed to address the issue of noise 

interference, thereby reducing the loss of critical information and improving the prediction performance of the CNN-

BiGRU-QR model, as shown in Fig 2. 
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Fig 2 The structure of the DAE in lithium-ion battery prediction. 

The encoder of the DAE divides the input raw aging data sequence 𝑥𝑡 into m sequence samples, Denoted as 

𝑥𝑡 = {𝑥𝑡+1, 𝑥𝑡+2, ⋯ 𝑥𝑡+𝑚}. Incorporating Gaussian white noise into the raw data series of lithium-ion batteries can 

enhance the model's nonlinear expressiveness and robustness, enabling the generation of new input data.𝑦𝑡. The 

compressed data from the encoder is expressed as shown in Equation (1), while the reconstructed output data from 

the decoder is given in Equation (2). 

 1 tz W y b                                  (1) 

2( )tx f W z b                                    (2) 

where 𝑏、𝜎(. )、𝑧 represent the bias, activation function, and output of the DAE encoder; 𝑊1 = 𝑊2
𝑇 = 𝑊 are 

the weight matrices for encoding and decoding; Additionally, 𝑏′、𝑓′ denote the bias and the mapping of the DAE 

encoder's output layer. To enhance the sparsity of the network, mitigate overfitting, and reduce computational 

complexity, the ReLU function is selected as the activation function for the hidden layers in both the encoder and 

decoder. Since the Sigmoid function can map the network's output values to the range of (0, 1), it is chosen as the 

activation function for the output layer to effectively map the output data within a valid range. Thus, the loss function 

for the DAE component is defined as: 

   2 2

1

1 n

d MSE REC t t F F
t

L L L l y x W W
n




                       (3) 

where 𝐿𝑀𝑆𝐸 represents the mean squared error loss function, 𝑙(. ) denotes the reconstruction error loss function 

and   is the weight parameter. The structure of the DAE is symmetric, allowing the weights at corresponding 

symmetric positions to be equal. This reduces the number of weights in the model and accelerates the training 

process. 

The lithium-ion battery data involved in this study is complex, encompassing various time-varying monitoring 

indicators such as voltage, current, and temperature. From a theoretical perspective, based on the principles of signal 

sampling and information retention in information theory, for such complex time-series data, there exists an optimal 

dimensional range that balances information integrity and computational complexity. In this paper, by training the 

DAE, the high-dimensional vectors are split into multiple 64-dimensional input vectors as the input to the DAE, 

with the corresponding raw data similarly divided to serve as the labels for the DAE. The encoding part of the 

encoder compresses the 64-dimensional vector into an 8-dimensional vector, while the decoding part expands the 

compressed vector back to 64 dimensions, facilitating the learning of noise characteristics. Additionally, to mitigate 

the impact of variations in data distribution on the neural network, the denoised data is subjected to normalization. 
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2.2 Convolutional Neural Network(1D-CNN) 

The one-dimensional convolutional neural network (1D-CNN) model employed in this study primarily consists 

of convolutional layers, pooling layers, nonlinear activation layers, and fully connected layers, as illustrated in Fig 

3. 

 

Fig 3 Architecture of the One-Dimensional CNN 

The convolutional layer performs convolution operations on the preprocessed data through convolutional 

filters, extracting features and generating the corresponding feature maps. The pooling layer performs sampling 

while retaining the primary information of the feature vectors, primarily serving to deeply extract internal data 

features and achieve dimensionality reduction. The nonlinear layer, also known as the activation function layer, 

introduces nonlinear elements into the constructed model. The fully connected layer is primarily used to integrate 

the extracted features and pass them through the activation function, further refining the model structure. The 

specific mathematical formula is as follows: 

 1 *m

convY W X b                                (4) 

Where X represents the input sequence; is the nonlinear activation function; W denotes the weights; b is the 

bias term; and Y is the output of the feature extraction result. The output after the pooling operation is given by the 

following formula: 

1 1( )m m

pool poolY Pooling Y                              (5) 

In this study, the 1D-CNN model consists of two layers: one convolutional layer and one pooling layer. The 

convolutional kernels in the convolutional layer are capable of adaptively extracting the local spatial features of the 

signal. Furthermore, the convolution operation employs the ReLU activation function, which, compared to the 

traditional sigmoid activation function, better addresses the issues of gradient explosion and vanishing gradients, as 

it does not suffer from non-differentiable points. The pooling layer utilizes a max pooling operation to reduce the 

feature dimensions while preserving the primary feature information in the signal. 

2.3 Bidirectional Gated Quantile Neural Network (BiGRU-QR) 

The gated recurrent unit (GRU) [25] is a variant of the long short-term memory (LSTM) network, both of 

which belong to the family of recurrent neural networks (RNNs). Compared to LSTM, GRU introduces structural 

optimizations by integrating a reset gate and an update gate, which enhance training efficiency while preserving 

memory capability. GRU not only retains the advantages of LSTM but also features a more compact structure, fewer 

parameters, and improved convergence properties, leading to reduced training time and enhanced predictive 
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efficiency. As illustrated in Fig 4(a), the network architecture of GRU is shown. The operations of GRU at each 

time step are governed by the previous output ℎ𝑡−1 and the current input 𝑥𝑡. The equations for computing GRU 

at a given time step are as follows: 

1( )t r t r t rr W x U h b                                     (6) 

t 1( z t z t zz W x U h b                                      (7) 

  1tanht t t th h h
h W x U r h b                            (8) 

  11t t t t th z h z h                                   (9) 

where 𝜎 and tanh represent the Sigmoid and tanh activation functions, respectively. 𝑟𝑡 and 𝑧𝑡 correspond to the 

reset gate and update gate, while ℎ̃𝑡 denotes the process vector between the current input 𝑡 and the hidden state 

ℎ𝑡−1 from the previous time step. 𝑥𝑡 represents the input at the current time step. W and U are the neuron weight 

matrices, and 𝑏 denotes the bias term. The update gate 𝑧𝑡 dynamically regulates ℎ̃𝑡 and ℎ𝑡−1, determining the 

final output ℎ𝑡. 

BiGRU is an improved variant of GRU that incorporates both forward and backward contextual information, 

achieving higher accuracy in time series prediction compared to the unidirectional GRU. As illustrated in Fig 4(b), 

the BiGRU architecture consists of a forward GRU layer and a backward GRU layer. The horizontal axis represents 

the bidirectional flow of time series data, while the vertical axis denotes the unidirectional propagation of 

information from the input layer to the hidden layer and subsequently to the output layer. The final output is 

computed using the following equations: 

 ,t t t t th h h concat h h    
                        (10) 

 

(a) GRU 

 
(b) BiGRU 

Fig 4 Unit Structures of GRU and BiGRU 

Quantile Regression (QR), introduced by Koenker et al., is a regression model that employs data at various 

quantiles for analysis [26]. This approach offers a more comprehensive view of the relationships between variables 

by examining different quantile levels. Traditional regression analysis is limited to capturing only the central 

tendency of the dependent variable, without providing insights into the overall distribution. In contrast, the Quantile 

Regression (QR) model addresses this limitation by allowing an examination of how explanatory variables influence 

different aspects of the distribution. 

Additionally, a hybrid model integrating quantile regression with a bidirectional gated recurrent unit (BiGRU) 

is proposed to quantify predictive uncertainty, referred to as BiGRU-QR, as illustrated in Fig 5. 
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Fig 5 Schematic Representation of the BiGRU-QR Network Architecture 

The core of BiGRU-QR lies in the computation of   ,tf x  . The computational steps of BiGRU-QR are 

as follows: 

①Compute the forget gate  tf   and the coupled output gate  ti   

           1t t h t x tf net h x                               (11) 

   1t ti f                                     (12) 

②Compute the information state at time step 𝑡 

           1tanh tanht t h t xa net h x                         (13) 

③Compute the output of the hidden layer th  

         1* *t t t t th f h i a                              (14) 

④Compute   ,tf x   

            ,
ty t t t y tQ x f x z t h                       (15) 

BiGRU-QR retains the original network architecture and functionality of BiGRU while incorporating nonlinear 

quantile regression through an optimized objective function, enabling more accurate time series prediction based 

on historical data. Additionally, quantile regression estimates prediction intervals by regressing on specific quantiles 

of the forecasted values. In the model, the objective function for quantile regression is employed, and the optimal 

parameter estimates are obtained by minimizing this objective function. The quantile regression loss function is 

defined as follows: 

            ,
1 1

1 1ˆ ˆ ˆmin
i i i

T T

i y i y i yW U
i i

y Q I y Q y Q
T T

 
    

 

         
                 (16) 

where T denotes the length of the predicted output, 𝜏 represents the quantile probability,𝑦𝑖 is the actual value of the 

sample, and       ˆ g , ,yQ X W U    is the output of the Bi-GRU under the quantile condition. 

The exponential function I(u) is defined as: 
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Where, ˆ
ii yu y Q   

When 𝜏>0.5, quantile regression emphasizes the upper portion of the data distribution, leading to predictions 

that tend to estimate higher battery capacity values. Conversely, when 𝜏<0.5, the regression focuses on the lower 

portion of the distribution, resulting in predictions biased toward lower capacity estimates. When 𝜏=0.5, quantile 

regression directly estimates the median of the predicted battery capacity, which serves as a robust representative 

value, effectively mitigating the influence of outliers. Therefore, in this study, selecting 𝜏=0.5 for battery capacity 

prediction allows for better handling of anomalies in asymmetrically distributed data, providing a more 

representative and reliable estimate. 

In this work, a quantile regression layer is embedded prior to the output layer of the BiGRU network, enabling 

the model to generate prediction intervals alongside point forecasts. This enhancement significantly improves the 

model’s capability to express the uncertainty associated with future capacity trends. The proposed BiGRU-QR 

model integrates the strengths of bidirectional gated recurrent units with quantile regression, thereby achieving 

effective uncertainty quantification in lithium-ion battery capacity forecasting. By capturing complex patterns and 

latent dependencies within the battery data, the BiGRU-QR model not only delivers accurate capacity predictions 

but also provides reliable and comprehensive uncertainty estimates. This dual capability offers valuable support for 

the prediction of the remaining useful life of lithium-ion batteries. 

3. Model Validation and Evaluation 

3.1 Dataset Information 

To validate the accuracy of the proposed method, this study employs two publicly available battery datasets 

for the prediction of lithium-ion battery's remaining useful life (RUL). The first dataset is provided by the NASA 

Research Center, while the second originates from the Center for Advanced Life Cycle Engineering (CALCE) at 

the University of Maryland. The experimental operating parameters of the batteries are summarized in  

Table 1. 

The NASA dataset consists of four lithium-ion batteries, labeled B0005, B0006, B0007, and B0018, each with 

a rated capacity of 2Ah. During charging, the batteries undergo constant current (CC) charging at a controlled current 

of 1.5A. Once the terminal voltage reaches 4.2V, charging transitions to a constant voltage (CV) mode at 4.2V until 

the current decreases to 20mA. The discharge tests are conducted at a constant current of 2A until the voltage reaches 

a predefined cutoff threshold. 

In this study, the CALCE dataset from the CS battery series is utilized, including batteries CS2_35, CS2_36, 

CS2_37, and CS2_38, each with a rated capacity of 1.1Ah. The battery data from the CALCE Research Center 

follow a standardized constant current–constant voltage (CC-CV) charging protocol. During constant current 

charging, the charging current is maintained at 0.5A until the terminal voltage reaches 4.2V, after which constant 

voltage charging is applied until the current decreases below 0.05A. 

Table 1 Battery Experimental Dataset Information 

Battery 

Battery Experimental Conditions 

Charing cut-off 

voltage (V) 

Discharging cut-

off voltage (V) 

Charge 

current (A) 

Discharge 

current (A) 

temperature 

(℃) 

B0005 4.2 2.7 1.5 2 24 

B0006 4.2 2.5 1.5 2 24 



B0007 

B0008 

4.2 

4.2 

2.2 

2.5 

1.5 

1.5 

2 

2 

24 

24 

CS2_35 4.2 2.7 0.5 1 24 

CS2_36 4.2 2.7 0.5 1 24 

CS2_37 4.2 2.7 0.5 1 24 

CS2_38 4.2 2.7 0.5 1 24 

Continuous charge-discharge cycling experiments were conducted on the batteries, with failure defined as the 

point where the battery capacity declines to 70% of its rated value. Accordingly, in the NASA dataset, the failure 

threshold is set at 1.4Ah, while in the CALCE dataset, the threshold is set at 0.77Ah. The capacity degradation 

curves for both datasets are shown in Fig 6. 

 

（a）NASA dataset 

 

（b）CALCE dataset 

Fig 6 Capacity Degradation Curves of Lithium-Ion Batteries. 

As illustrated in the figure, the battery capacity degradation exhibits a non-monotonic downward trend with 

increasing cycle numbers. An in-depth analysis of the data distribution characteristics in the NASA and CALCE 

datasets reveals that the capacity data in both datasets follow an asymmetric distribution. Taking the NASA dataset 

as an example, during the battery degradation process, the early stage is characterized by a relatively slow decline 

in capacity, with data points densely concentrated. In contrast, as battery aging progresses in the later stages, the 

degradation rate accelerates and the data becomes increasingly dispersed. This distribution pattern reflects the 

varying performance characteristics of batteries at different aging stages. 

In terms of inter-cell variability, despite having the same initial rated capacity, batteries B0005, B0006, B0007, 

and B0018 in the NASA dataset demonstrate distinct differences in the onset of degradation, degradation rate, and 

fluctuation patterns— largely due to factors such as manufacturing variability. Similar discrepancies are also 

observed among batteries CS2_35, CS2_36, CS2_37, and CS2_38 in the CALCE dataset. These differences 

inevitably influence model training. Nevertheless, the proposed model in this study is capable of learning and 

adapting to such variations, achieving robust prediction performance across different battery instances. This 

demonstrates the model’s strong adaptability and further substantiates the reliability of the experimental results. 

3.2 DAE Denoising Analysis 

During the battery energy regeneration phase, the internal chemical reactions are complex and unstable, leading 

to abnormal fluctuations in signals such as voltage and current. The instantaneous current surges generated during 

the energy regeneration process may overlap with inherent noise present during data collection, causing the 

measured data to deviate from the true values. Such deviations can interfere with the accurate assessment of the 

battery's actual state, subsequently affecting the feature extraction and model training processes. 

To validate the feasibility and effectiveness of the DAE denoising method, denoising capability experiments 

were conducted. Initially, Gaussian noise is introduced into the voltage signals of four battery cells. Subsequently, 



denoising methods such as EMD, EEMD, and DAE are applied to the noisy signals. Finally, the signal-to-noise 

ratio (SNR) of the processed signals is calculated. The Signal-to-Noise Ratio (SNR) is the ratio of signal energy to 

noise energy and is commonly used in signal detection fields. A higher SNR indicates less noise in the signal. The 

denoising results from the three methods are shown in Table 2. 

Table 2. SNR of Three Denoising Methods Post-Denoising (dB). 

Method B0005 B0006 B0007 B0018 

DAE 37.19 31.27 35.48 32.67 

EEMD 17.11 16.58 20.79 20.19 

EMD 4.75 10.95 9.56 17.11 

Therefore, to address the issue of noise interference, this study employs a DAE to denoise the battery dataset, 

thereby reducing the loss of critical information. The denoising results are illustrated in Fig 7. 

 

Fig 7 DAE Denoising Effect Illustration. 

The comparison between the capacity variation trends after DAE denoising and the laboratory-measured 

capacity variation trends reveals that the capacity variation curves after DAE denoising are smoother. This indicates 

that DAE effectively reduces fluctuations and noise in the data. Additionally, by learning the data distribution and 

key characteristics of the signals, the DAE maintains a similar overall decline trend and variation pattern as the 

actual measurements after denoising. This ensures that crucial signal features are accurately reconstructed, 

preserving the signal's energy. 

3.3 Effectiveness Analysis of the Model 

To validate the effectiveness of the method proposed in this study, the CALCE lithium battery dataset was 

divided into two parts: 70% of the dataset was designated as the training set, utilized to train the model through 

iterative learning processes, and the remaining 30% was allocated as the test set. The test set served to evaluate 

whether the training process met established standards and to assess the overall performance of the model. 

Compared to the CALCE dataset, the NASA dataset contains only approximately 170 charge-discharge cycles. 

Therefore, 50% of the NASA dataset was utilized for model training, while the remaining data were used to estimate 

the battery's remaining useful life (RUL). Furthermore, a comparative analysis was conducted against nine 

commonly used models: MLP, CNN, RNN, LSTM, GRU, BiGRU, BiLSTM, CNN-BiGRU, and CNN-BiLSTM. 



3.3.1 Capacity Degradation Curves 

In the capacity degradation curves, the LSTM, GRU, Bi-GRU, Bi-LSTM, CNN-Bi-GRU, and CNN-Bi-LSTM 

models are selected for training and testing on the four publicly available lithium-ion battery datasets from NASA 

and CALCE. The predicted capacity from the proposed method is compared with the results from these models. 

The comparison of capacity degradation curves is illustrated in Fig 8 andFig 9. 

  

  

Fig 8 Comparison of NASA Capacity Degradation Curves 

  

  

Fig 9 Comparison of CALCE Capacity Degradation Curves 

In the NASA dataset degradation curves, it can be observed that the LSTM model generally tends to 

overestimate the remaining capacity during higher cycle counts (e.g., after 100 cycles), indicating a bias towards 



predicting better capacity retention. The GRU model exhibits similar behavior to LSTM, but in certain cases (such 

as B0007 and B0018), its predictions deviate more significantly from the actual data, particularly at later cycles. 

Models that combine CNN with BiGRU and BiLSTM, such as CNN-BiGRU and CNN-BiLSTM, typically capture 

the capacity degradation trend more effectively, especially in B0005 and B0006, where the predicted results closely 

align with the actual data. The CNN-BiGRU-QR model performs relatively better, particularly in predicting capacity 

at higher cycle counts, with its curves closely tracking the actual data. This demonstrates the proposed model's 

advantages in handling temporal and complex features. Similarly, in the CALCE dataset degradation curves, the 

proposed model also demonstrates high accuracy. 

The effectiveness of the proposed model can be visually demonstrated through a comparison of residual box 

plots from various models, as shown in Fig 10 Fig 11. 

  

  
Fig 10 NASA Residual Box Plot 

  

  
Fig 11 CALCE Residual Box Plot 

Taking the B0005 battery as an example for comparative analysis, it can be observed that: 



(1) Residual Distribution of Different Models:  

The Fig presents the residual distributions of various models (such as MLP, CNN, RNN, LSTM, GRU, etc.). 

By comparing the box plots of each model, we can observe the error performance across different models in their 

predictions. 

(2) Central Tendency and Dispersion of Residuals: 

Central Tendency: The position of the median line within each box plot represents the median of the residuals. 

Most models have medians close to 0, but some models (such as MLP and GRU) show significant deviations from 

0. 

Dispersion: The height of the box and the length of the whiskers represent the degree of residual dispersion. 

Shorter boxes and whiskers indicate more concentrated residuals. It can be seen that the residual distributions of the 

CNN-BiLSTM and CNN-BiGRU-QR models are more concentrated, with less fluctuation. 

(3) Outliers and Anomalies: In the Fig, several box plots exhibit numerous outliers beyond the whiskers 

(marked by small black dots), as seen in models like BiGRU, BiLSTM, and CNN-BiGRU. These outliers indicate 

that these models produced significant errors in certain predictions. 

Based on this information, a more comprehensive evaluation of the predictive performance of different models 

can be made. For example, the MLP model exhibits a wide residual distribution range with a notable negative bias, 

indicating larger errors and relatively poor predictive performance. In comparison, the CNN and RNN models show 

a narrower residual distribution, demonstrating an improvement in prediction accuracy over MLP. The combination 

models, such as CNN-BiGRU and CNN-BiLSTM, exhibit the most concentrated residual distributions, with fewer 

outliers, suggesting they provide the best predictive performance. Additionally, the median of the residuals reveals 

whether there is systematic bias in the models. Most models have medians close to 0, indicating no significant 

systematic bias overall. However, some models, such as MLP, show a clear negative bias. 

3.3.2 Model Evaluation 

In regression problems, the four most commonly used and reliable evaluation metrics for assessing the 

predictive accuracy of different models are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and the coefficient of determination (𝑅2 ). These metrics are employed to 

analyze the discrepancies between the true values and predicted values of lithium-ion battery's remaining lifespan. 

Table 3 andTable 4 present the experimental results for the four metrics: RMSE, MAE, MAPE, and 𝑅2. Fig 12 

andFig 13 illustrates a comparative analysis of these evaluation metrics. 

Table 3 NASA Model Evaluation Results 

Method 
B0005 B0006 

RMSE MAE MAPE 𝑅2 RMSE MAE MAPE 𝑅2 

LSTM 0.1142 0.1012 7.4459 -1.0255 0.1113 0.0948 7.4327 -0.2622 

GRU 0.0712 0.0616 4.5406 0.2124 0.0669 0.0555 4.3406 0.5437 

BiGRU 0.0433 0.0356 2.6284 0.7089 0.0602 0.0494 3.8480 0.6305 

BiLSTM 0.0627 0.0552 4.0577 0.3897 0.0490 0.0431 3.2580 0.7552 

CNN-BiGRU 0.0290 0.0244 1.7519 0.8688 0.0280 0.0161 1.1692 0.9199 

CNN-BiLSTM 0.0417 0.0381 2.7240 0.7296 0.0380 0.0272 2.1001 0.8529 

CNN-BiGRU-QR 0.0157 0.0097 0.6907 0.9615 0.0273 0.0192 1.4458 0.9239 

 

Method 
B0007 B0018 

RMSE MAE MAPE 𝑅2 RMSE MAE MAPE 𝑅2 

LSTM 0.0773 0.0682 4.6414 -0.4287 0.0647 0.0558 4.0095 -0.7665 

GRU 0.0555 0.0478 3.2591 0.2639 0.0687 0.0628 4.4896 -0.9877 

BiGRU 0.0234 0.0183 1.2144 0.8682 0.0542 0.0495 3.49238 -0.2376 



BiLSTM 0.0544 0.0461 3.1453 0.2921 0.0546 0.0452 3.20716 -0.2562 

CNN-BiGRU 0.0347 0.0314 2.0906 0.7107 0.0231 0.0136 0.9461 0.7750 

CNN-BiLSTM 0.0349 0.0278 1.8956 0.7081 0.0250 0.0217 1.5442 0.7349 

CNN-BiGRU-QR 0.0153 0.0091 0.6035 0.9436 0.0228 0.0188 1.3298 0.7794 

Table 4 CALCE Model Evaluation Results 

Method 
CS2_35 CS2_36 

RMSE MAE MAPE 𝑅2 RMSE MAE MAPE 𝑅2 

LSTM 0.1177 0.0937 22.2400 0.4728 0.0717 0.0913 25.8666 0.7732 

GRU 0.1147 0.0852 21.0529 0.4994 0.0841 0.0658 23.7860 0.8077 

BiGRU 0.1128 0.0814 20.3980 0.5157 0.0769 0.0606 21.7475 0.8392 

BiLSTM 0.1104 0.0727 19.0375 0.5362 0.0774 0.0553 21.0881 0.8372 

CNN-BiGRU 0.04248 0.0309 7.6312 0.9313 0.0445 0.0354 12.3722 0.9461 

CNN-BiLSTM 0.0847 0.0630 15.4722 0.7267 0.0453 0.0368 12.2382 0.9440 

CNN-BiGRU-QR 0.0393 0.0292 7.0077 0.9412 0.0375 0.0306 10.2185 0.9618 

 

Method 
CS2_37 CS2_38 

RMSE MAE MAPE 𝑅2 RMSE MAE MAPE 𝑅2 

LSTM 0.0722 0.0551 13.9511 0.8303 0.0722 0.0526 12.6228 0.8204 

GRU 0.0596 0.0425 11.5802 0.8844 0.0622 0.0485 11.3704 0.8671 

BiGRU 0.0426 0.0265 7.7324 0.9408 0.0420 0.0276 6.9620 0.9393 

BiLSTM 0.0323 0.0216 6.0333 0.9659 0.0332 0.0258 6.0503 0.9620 

CNN-BiGRU 0.0273 0.0168 4.4349 0.9758 0.0285 0.0234 4.9810 0.9721 

CNN-BiLSTM 0.0281 0.0239 5.4921 0.9743 0.0279 0.0203 4.6898 0.9732 

CNN-BiGRU-QR 0.0196 0.0131 3.2647 0.9875 0.0244 0.0141 3.0686 0.9795 

 

  

  
Fig 12 Comparison of NASA Evaluation Metrics 



  

  
Fig 13 Comparison of CALCE Evaluation Metrics 

Based on Tables 3 and 4, as well as Fig 12 andFig 13, the experimental results of different models on the NASA 

and CALCE datasets can be analyzed. The BiGRU and BiLSTM models exhibit relatively poor performance across 

various metrics, particularly in terms of RMSE, MAE, and MAPE. In contrast, the CNN-BiGRU-QR model 

demonstrates the best performance across all datasets. Specifically, for the NASA battery datasets B0005, B0006, 

B0007, and B0018, the proposed method achieves RMSE values of 1.57%, 2.73%, 1.53%, and 2.28%, respectively, 

and MAE values of 0.97%, 1.92%, 0.91%, and 1.88%. The estimated RMSE and MAE obtained by the proposed 

method are consistently lower than those of other approaches, indicating not only its accurate prediction capability 

but also its distinct advantages.Regarding the evaluation results on the CALCE dataset, the CNN-BiGRU-QR model 

outperforms the other nine models in all evaluation metrics (RMSE, MAE, MAPE, and 𝑅2 ) across all battery 

datasets. This highlights its superior accuracy and generalization ability in the task of battery RUL prediction, 

thereby validating the effectiveness of the proposed CNN-BiGRU-QR model. Furthermore, for the four NASA 

battery datasets, the corresponding correlation coefficients (𝑅2) are 0.9615, 0.9239, 0.9436, and 0.7794, respectively. 

While the proposed method does not achieve a significant improvement in prediction accuracy for battery B0018, 

it still yields satisfactory results, demonstrating its optimal predictive precision and fitting performance. 

Moreover, based on the experimental data, using the NASA B0005 battery from the dataset as an example, 

during the early stage of battery capacity degradation, the error between the predicted and actual values of the 

BiGRU-QR model is relatively small, with the residuals concentrated. This is because the BiGRU model effectively 

learns the relatively stable capacity change patterns of the battery during this phase, and the quantile regression 

layer quantifies uncertainty based on these stable features, resulting in more reliable prediction intervals. As the 

cycle number increases, the internal chemical reactions of the battery become more complex, and capacity 

fluctuations emerge. In this stage, the bidirectional structure of the BiGRU model comes into play, and by combining 

it with the quantile regression layer, the model continues to closely track the capacity change trends with minimal 

residual fluctuation. In comparison with other models, such as LSTM, which shows significant prediction deviation 

in the later stages, the BiGRU-QR model more accurately captures the uncertainty variations. The RMSE of the 

BiGRU-QR model is only 0.0157, the MAE is 0.0097, the MAPE is 0.6907, and the R² value reaches 0.9615, 

outperforming all other models and further demonstrating its superiority in handling uncertainty across different 

battery states. A similar performance was observed with the CALCE dataset, specifically for the CS2_35 battery. 

Throughout the entire charge-discharge cycle, the BiGRU-QR model, due to its structure and computational process, 

effectively captures and quantifies uncertainty. The RMSE is 0.0393, the MAE is 0.0292, the MAPE is 7.0077, and 



the R² value is 0.9412, again outperforming the other comparative models, providing a more reliable basis for 

battery capacity prediction. 

4. Conclusion 

To enhance the accuracy of battery remaining lifespan predictions and to prevent performance degradation of 

lithium-ion batteries that could lead to equipment failures or catastrophic events, this study has developed a lifespan 

prediction method for lithium-ion batteries using DAE-CNN-BiGRU quantile regression. This model addresses the 

limitations of traditional point prediction methods by incorporating uncertainty expression for battery performance. 

The effectiveness of the model has been validated through experimental data, demonstrating an improvement in the 

accuracy of lithium-ion battery remaining lifespan predictions and providing a methodological foundation for 

ensuring the operational safety of lithium-ion batteries. 

In this study, a comparative analysis of the fitted capacity degradation curves for the two battery datasets 

demonstrates that the prediction results of the CNN-BiGRU-QR model are the closest to the actual data. Residual 

boxplot analysis further confirms that the CNN-BiGRU-QR model exhibits the smallest prediction error with the 

most concentrated distribution. Additionally, across various evaluation metrics, the CNN-BiGRU-QR model 

consistently outperforms other models, achieving the lowest errors and the highest 𝑅2  values. These findings 

validate the superiority of the CNN-BiGRU-QR model in the deterministic prediction of battery remaining useful 

life. Therefore, the method proposed in this study can significantly enhance the prediction accuracy of the remaining 

useful life of lithium-ion batteries, and also provides new insights and directions for future research on battery life 

prediction. 
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