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Abstract 

Although several studies have demonstrated that perceptual discrimination of 

complex scenes relies on an extended hippocampal posteromedial system, we 

currently have limited insight into the specific functional and structural properties 

of this system in humans. Here, combining electrophysiological 

(magnetoencephalography, MEG) and advanced microstructural (multi-shell 

diffusion MRI, dMRI; quantitative magnetisation transfer, qMT) imaging in healthy 

human adults (30 female/10 male), we show that both theta power modulation of 

the hippocampus, and fibre restriction/hindrance (reflecting axon 

packing/myelination) of the fornix (a major input/output pathway of the 

hippocampus), were independently related to scene, but not face, perceptual 

discrimination accuracy. Conversely, microstructural features of the inferior 

longitudinal fasciculus (a long-range occipito-anterotemporal tract) correlated with 

face, but not scene, perceptual discrimination accuracy. Our results provide new 

mechanistic insight into the neurocognitive systems underpinning complex scene 

discrimination, providing novel support for the idea of multiple processing streams 

within the human medial temporal lobe.  

 

Keywords: hippocampus, microstructure, theta, spatial perception, face 

processing, MEG 

 

Significance Statement 

 

In contrast to theories positing segregated cortical areas for perception and memory, 

the specialized representations of the hippocampus may support both the perception 

and memory of visual scenes. To investigate, we utilised the unique window into 

hippocampal electrophysiological activity offered by magnetoencephalography (MEG).  

We found hippocampal theta activity modulations in the hippocampus and 
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posteromedial cortex during scene, versus face and shape-size, perceptual odd-one-

out discrimination, the magnitude of which correlated with scene, but not face or shape-

size, discrimination accuracy. Moreover, multimodal white matter imaging revealed 

that specific microstructural features of the fornix – the major hippocampal output tract 

- independently predicted scene discrimination performance. Our multimodal MEG-

microstructure study provides novel evidence that the hippocampus and connected 

structures conjointly support online scene processing.  

 

Introduction 

Challenging the long-standing view that the hippocampus exclusively supports long-term 

declarative memory to the exclusion of other cognitive capacities (Squire & Dede, 2015), 

neuroimaging and lesion studies suggest that the hippocampus is better understood through its 

role in forming complex scene (or relational) representations that support episodic memory, but 

also ‘on-line’ processing including complex scene discrimination (Lee, Buckley, et al., 2005; 

Graham et al., 2010; Zeidman & Maguire, 2016; Hodgetts et al., 2017; Murray et al., 2017; Ruiz 

et al., 2020; Gardette et al., 2022). The hippocampus’s role in scene representation is thought to 

emerge primarily through interactions within an “extended hippocampal” or “posteromedial” 

system - comprising the hippocampus, mammillary bodies, anterior thalamic nuclei and 

retrosplenial cortex (Gaffan & Hornak, 1997; Aggleton, 2012; Ranganath & Ritchey, 2012). 

Indeed, by imaging inter-individual differences in brain microstructure with diffusion magnetic 

resonance imaging (dMRI) alongside performance of an odd-one-out (‘oddity’) perceptual 

discrimination task, we found that variation in microstructure (mean diffusivity, MD) of the fornix – 

a tract that interconnects regions within the extended hippocampal system (Aggleton, 2012) – 

was related to scene, but not face, discrimination ability (Hodgetts et al., 2015). By contrast, 

microstructure variation of the inferior longitudinal fasciculus (ILF) (Herbet et al., 2018), a ventral 

long-range fibre tract interconnecting the occipital and anterior temporal lobes, correlated with 

face, but not scene, discrimination. We also found evidence for associations between fornix and 

ILF microstructure and category-selective blood oxygen-level dependent (BOLD) responses in 
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the hippocampus and the fusiform face area / perirhinal cortex for scenes and faces, 

respectively. 

Nevertheless, given the indirect link between the BOLD signal and neural activity 

(Ekstrom, 2021), we lack understanding of specific neurobiological mechanisms supporting 

scene processing within this extended hippocampal system. Magnetoencephalography (MEG) 

offers a window into the behavioural correlates of hippocampal electrophysiological activity 

(Ruzich et al., 2019; Alberto et al., 2021). Notably, Barry et al. (2019) showed modulation 

(attenuation) of hippocampal theta (~4-8 Hz) oscillatory activity during novel scene imagery (see 

also Monk et al., 2021). 

To investigate whether such findings extend to a hippocampal role in perception, we 

recorded theta power modulations, using MEG, in participants performing a perceptual oddity 

discrimination task for scenes and faces (plus a size-oddity control). We predicted that theta 

power modulations for scenes (relative to non-scene stimuli) would occur across the 

hippocampus and connected regions within the extended hippocampal system, including 

posteromedial regions encompassing retrosplenial cortex (Aggleton, 2012; Hodgetts et al., 

2016). We then examined whether individual differences in hippocampal theta modulation were 

related to scene, but not face, oddity discrimination abilities. 

We next investigated the relationship between oddity performance and microstructure of 

the fornix and ILF, alongside the parahippocampal cingulum bundle (PHCB) (Bubb et al., 2018). 

We Included PHCB since, although retrosplenial fibres join the PHCB to reach parahippocampal 

regions (Bubb et al., 2018), in contrast to the fornix, PHCB integrity does not appear critical to 

spatial/scene memory (Bubb et al., 2018).  

 Tract tissue properties were obtained from principal components analysis (PCA)-based 

reduction of indices derived from advanced biophysical (Neurite Orientation and Dispersion 

Density Imaging, NODDI; Composite Hindered And Restricted Model of Diffusion, CHARMED) 

and standard tensor-derived (DTI) models applied to multi-shell dMRI data, together with indices 

derived from quantitative Magnetization Transfer (qMT) imaging (Chamberland et al., 2019; 
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Read et al., 2023). We predicted that tissue properties of the fornix would be associated with 

scene, but not face oddity discrimination, and vice versa for the ILF.  

Finally, based on the proposed association between regional functional specialisation 

and long-range structural connectivity (Chen et al., 2017), and evidence of links between 

(developmental) variations in white-matter tissue, electrophysiological responses, and behaviour 

(Caffarra et al., 2024), we examined potential three-way relationships between hippocampal 

theta power, fornix microstructure, and scene oddity discrimination. Our results provide new 

insights into the role of an extended hippocampal system in complex scene perception. 

 

Materials and methods 

Participants 

Forty-three adult volunteers, with no reported neurological pathology, participated in a 

MEG session with cognitive tasks, and a Magnetic Resonance Imaging (MRI) session within a 

fortnight of each other. Due to data collection disruptions, data from three participants were 

incomplete, leaving forty MEG-oddity datasets (mean age: 22.5 years, SD 4.0, range: 18-38 

years; 30 female/10 male). Of these, one participant requested to leave the MRI scans early, 

resulting in thirty-nine microstructure datasets (mean age: 22.5 years, SD 4.2, range: 18-38 

years; 29 female/10 male). This study was approved by the Cardiff University School of 

Psychology Research Ethics Committee and all participants provided written informed consent. 

 

Experimental Design 

Oddity Task and procedure 

The cognitive tasks were presented using Psychtoolbox (Kleiner et al., 2003) for MATLAB 

(MATLAB, 2015a). The oddity task was modified from previous fMRI studies (Barense et al., 

2010; Lee et al., 2013; Hodgetts et al., 2015) for use in MEG. In this, participants examined 
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simultaneously presented triplet images and identified the odd-one-out (Figure 1). For the scene 

and face stimuli, the images were shown at three different angles and one image had either 

differing spatial object relationships (scene condition) or differing facial features (face condition). 

The control task (size condition) was designed to not require MTL-supported representations 

(Barense et al., 2010; Hodgetts et al., 2015). It comprised 3 circles shown with different locations 

within the three image spaces, with one circle differing in size (see Fig. 1). In all conditions, the 

location of the odd image was counterbalanced across trials. Before scanning, participants 

practised the task with 8 trials of each condition. All stimuli were trial-unique.  

Participants responded using a button-box with their right hand and three keys 

represented the three images. Trials were sequentially displayed in mini-blocks of three trials of 

the same condition (Figure 1). Mini-blocks were presented in a pseudo-random order, such that 

each mini-block’s condition was different from the previous one. The first trial of each mini-block 

was preceded by a 5 s fixation period of a black screen with a white cross at the centre (fixation 

condition). Other trials of the mini-block were preceded by an inter-trial fixation period lasting 

randomly between 1 s and 1.5 s. Participants were shown trials for up to 8 s but each trial ended 

as soon as a response was made, to reduce inclusion of post-decision mnemonic processes.  

There was a total of 96 size trials and 144 face and scene trials each (plus an additional 

8 practice trials of each). For each participant, the oddity task included all 96 size trials, 96 of the 

face trials, and 96 of the scene trials. To reduce fatigue and head movement over trials, the 

resulting 288 trials of the oddity task were split into four stimuli-counterbalanced blocks of 72 

trials. 

To test if hippocampal involvement during the oddity task was solely a reflection of 

incidental encoding, there was a subsequent surprise memory task, still during the MEG scan. 

Participants were presented with a series of 48 new scene and 48 new face trials plus 48 of the 

previously used scene trials and 48 of the previously used face trials (192 trials in total). Stimuli 

appearing in the oddity and memory tasks were counterbalanced across participants. 

Participants responded using a button with their right hand and four keys represented four 

answers: ‘definitely old’, ‘I think it’s old’, ‘I think it’s new’ and ‘definitely new’. For this study, 
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answers were grouped together and analysed as answered ‘old’ or ‘new’. Since decision making 

in the memory task was predicted to be faster than that of the oddity task, trials lasted for up to 

3.5 s and mini-blocks were separated by a 2 s fixation period. As in the oddity task, the inter-trial 

fixation period randomly varied between 1 s and 1.5 s. 

 

Stimulus Design 

Most of the scene stimuli were generated by Lee et al. (2013), using Deus Ex (Ion Storm, 

2000) and an editor (Deus Ex SDK), and were edited for this study (16 additional scenes were 

made using the same methods).  

Face stimuli were generated using Facegen (Singular Inversions, 1998). After applying 

the default settings for face type (race, age, symmetry), setting the sex rating equidistant 

between male and female, and removing the facial hair, the 'generate random face' function was 

used. The odd-one-out was constructed by using the 'genetics' tab and applying a variation of 

0.4. Faces within a trial were presented from three different viewpoints from four possibilities, 

'right' (45o right), 'left-up' (45o left and 20o up), 'up' (20o up) and straight-on (0o).  

To minimise differences in image statistics between the task and control conditions, the 

size images were constructed using phase-scrambled versions of the scene and face images. 

Phase-scrambling was performed using a technique (Perry, 2016) that allows the user to 

determine the level of phase scrambling by using the ‘weighted mean phase’ method (Dakin et 

al., 2002). A weighting factor (determining the proportion of unaltered spatial phase in the 

scrambled image) of 0.16 was used because this has been shown to produce a subthreshold 

detection rate (Perry, 2016). Then, using the python package ‘PIL’ (Umesh, 2012), translucent 

homogenous black circles were placed over the scrambled images. Circles were randomly sized 

between 60x60 pixels to 90x90 pixels and one differed in size (pixel change of +/-4).  

As visual signals can be stronger than those from deep brain sources, contrasting 

conditions with similar visual properties can be beneficial when measuring MTL signals with 

MEG (Quraan et al., 2011). To reduce differences in image statistics between conditions, all 
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condition images were turned greyscale and altered using the SHINE toolbox for MATLAB 

(Willenbockel et al., 2010). Luminance was normalised across images using the ‘lumMatch’ 

function and the luminance histograms were matched using the ‘histMatch’ function. The Fourier 

amplitudes were matched across stimuli using ‘sfMatch’. To improve the quality of the histogram-

matched images, ‘structural similarity index’ (Wang et al., 2004) was optimised over 15 iterations 

(Avanaki, 2009; Willenbockel et al., 2010).  

 

MEG recording and analyses 

The MEG recordings were performed using a 275-channel (excluding 1 faulty channel) 

axial gradiometer CTF system, located inside a magnetically shielded room. The data were 

acquired continuously, with a sampling rate of 1200 Hz. Electromagnetic coils were placed on 

three fiducial locations, the nasion, and left and right pre-auricular regions. During the MEG 

recording, these sensors were energised with a high-frequency signal, to locate their positions 

relative to the MEG sensors. The locations of the fiducial points for each participant, and head 

shape, were recorded digitally using an Xsensor camera system (ANT Neuro, Enschede, The 

Netherlands), for subsequent co-registering to each participant’s T1-weighted MRI scans. To 

reduce the effects of head motion over long recordings, head localization was performed before 

each of the four recording blocks. 

MEG analyses were carried out using the Fieldtrip toolbox (2019; Oostenveld et al., 

2011) for MATLAB, with a pipeline based upon that of Magazzini & Singh (2018). First, the 

recordings were inspected manually for muscle and system artefacts before being downsampled 

(600Hz) and decomposed into 100 components using independent component analysis (with 

Fieldtrip’s fast ICA). Components relating to eye-movement, heart rate, and movement, were 

removed from the original data. These data were then cut into trials and visually inspected. Trials 

with remaining artefacts were manually excluded. In addition, an error meant that some 

participants viewed a scene image twice, so these trials were also removed. 
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We studied an early 2 s time period of the trial, starting at 0.3 s post stimulus onset, to 

exclude the majority of the visual evoked potentials which make deep brain source localization 

challenging (Quraan et al., 2011; see Rudoler et al., 2023 for a similar approach), and lasting 

until 2.3 s. As trials ended when participants responded, trial lengths varied, resulting in different 

average trial length between the conditions (see RTs in Results). Trials shorter than 2 s were not 

included in the analyses, which resulted in unequal trial numbers across conditions. After data 

cleaning and cutting, there were 82 scene trials, 82 face trials, 65 size trials and 88 fixation trials, 

per participant, on average. 

The aim of using a fixed trial duration was to minimise differences in signal-to-noise ratio 

(SNR) between trials. The length of 2 s was chosen as a compromise between having long 

enough trials such that there was sufficient data to be sensitive to theta power modulations and 

including as many trials as possible to facilitate accurate hippocampal source localization 

(Quraan et al., 2011). 

 

Whole brain power 

Data were downsampled to 300Hz, and condition trials were cut from 0.3-2.3 s and the 

fixation trials were cut from 1-3 s (to exclude post-stimulus effects). Source-localised modulations 

in the theta frequency band (4-8Hz) were calculated by band-pass filtering the data within this 

frequency band and carrying out source localisation, in the 2 s window of each trial, using the 

Linearly Constrained Minimum Variance beamforming method (LCMV: Van Veen et al., 1997). 

LCMV beamforming was carried out by first estimating the covariance matrix across all trials to 

obtain common grid filters, and then applying these pre-computed spatial filters to each of the 

condition trials separately. To reduce the magnitude of participant movement in each 

beamformer calculation, oddity MEG recording blocks were analysed separately. The source 

images were then interpolated to an MNI template-space model (included with Fieldtrip), 

appended across MEG recording blocks, and anatomically labelled using the Automated 

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). First, the conditions were 

compared at the individual level so that unequal trial numbers between the conditions could be 
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accounted for. Average power within the 0.3-2.3 s trials were compared across conditions with 

Fieldtrip’s ‘ft_sourcestatistics’ using MATLAB’s t-test with unequal variance. This resulted in t-

maps for each condition comparison (scene vs size, face vs size, scene vs face) for each 

participant. To implement a one-sample t-test across participants, of these within-participant 

effects, these condition effect t-maps were compared to equivalently-sized maps of zeros at the 

group level, using a paired-samples t-test with Monte Carlo sampling and 5000 permutations. 

Using the resulting scene>face significant clusters mask and t-value map, minimum t-value (peak 

reductions) locations were identified in the bilateral hippocampus ROIs.   

 

Hippocampal theta modulation from baseline 

To measure individual differences in theta modulation from baseline, scene and face 

conditions were compared to the fixation condition. The same frequency and source analysis 

steps described above were carried out without statistical comparisons, but the average power 

modulations (across trials) were calculated as percentage changes between scene/face 

conditions and the fixation condition. The hippocampal mask was made using bilateral 

hippocampal AAL ROIs. Percentage power change within the voxels of this mask was averaged 

to create the hippocampal oscillatory power modulation values for each participant.  

 

MRI acquisition and analyses 

Scanning protocol  

Structural MRI data were collected using a Siemens Prisma 3T MRI system with a 32-

channel head coil. T1-weighted anatomical images were obtained using an MPRAGE sequence 

with the following parameters: slices = 176, time to repetition (TR) = 2300 ms, FOV = 256 mm  x 

256 mm, matrix size = 256 mm x 256 mm, flip angle = 9o, echo time (TE) = 3.06 ms, slice 

thickness = 1 mm. 
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Diffusion weighted data were acquired using a multi-shell HARDI protocol (Assaf & 

Basser, 2005; Santis et al., 2014) with the following parameters: phase encoding = A>P; slice 

thickness = 2 mm; TE = 73 ms; TR = 4100 ms; 203 gradient directions and 4 shells (maximum b-

value: 4000 s/mm2); FOV = 220 mm x 220 mm. In addition, a reference acquisition with the 

opposite phase encoding direction (P>A) was acquired for blip-up blip-down correction, with 33 

directions and 2 shells (maximum b-value: 1200 s/mm2) (Andersson et al., 2003; Andersson & 

Sotiropoulos, 2016).  

MT-weighted data were acquired through an optimised 3D MT‐weighted fast spoiled‐

gradient recalled‐echo (SPGR) sequence (Cercignani & Alexander, 2006) with the following 

parameters: TR = 32 ms, TE = 2.46 ms, flip angle = 5°, bandwidth = 330 Hz/Px, FOV = 240 mm 

x 240 mm, slice thickness = 2 mm. The 11 MT-weighted volumes used Gaussian MT pulses of 

duration 12.8 ms the following with off-resonance irradiation frequencies/saturation pulse 

amplitudes: 1000 Hz/332°, 1000 Hz/333°, 12060 Hz/628°, 47180 Hz/628°, 56360 Hz/332°, 2750 

Hz/628°, 1000 Hz/628°, 1000 Hz/628°, 2768 Hz/628°, 2790 Hz/628°, 2890 Hz/628°. In addition, 

maps of the RF transmit field (B1
+) were collected using a pre-saturation TurboFLASH (satTFL) 

acquisition with the following parameters: TR = 5000 ms, TE = 1.83 ms, flip angle = 8°, matrix = 

64 × 64. B0 maps were calculated using two gradient recalled acquisitions with the following 

parameters: TE = 4.92 ms and 7.38 ms; TR = 330 ms; FOV = 240 mm; slice thickness = 2.5 mm. 

 

Diffusion MRI data processing 

Diffusion data were denoised (Veraart et al., 2016). Motion distortion correction was 

carried out using the Eddy tool in FSL (Jenkinson et al., 2012). Full Fourier Gibbs ringing 

correction was carried out using mrdegibbs MRtrix software (Tournier et al., 2012). The separate 

contribution of the free water compartment to the DTI data was identified and removed from 

these data by a customised version of the Free Water Elimination (FWE-DTI) algorithm 

(Pasternak et al., 2009). 
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Tractography analysis was applied to the 1400 b-value shell. To detect and eliminate 

signal artefacts, the Robust Estimation in Spherical Deconvolution by Outlier Rejection 

(RESDORE) algorithm was applied (Parker et al., 2012). Subsequently, peaks in the fibre 

Orientation Distribution Function (fODF) in each voxel were extracted using the damped 

Richardson-Lucy technique (Dell'acqua et al., 2010). Whole-brain deterministic tractography was 

carried out in Explore DTI (version 4.8.3; Leemans et al., 2009). The streamlines were 

constructed using an fODF amplitude threshold of 0.05, step size of 0.5 mm and an angle 

threshold of 45°. 

Tensor fitting was carried out on the 1200 b-value shell. To estimate the diffusion tensor 

in the presence of physiological noise and system-related artefacts, the Robust Diffusion Tensor 

Estimation (RESTORE) algorithm was applied (Chang et al., 2005). This analysis resulted in FA, 

MD and RD maps. 

NODDI maps were created using the Accelerated Microstructure Imaging via Convex 

Optimization NODDI algorithm (Daducci et al., 2015). CHARMED analysis was carried out using 

an in-house program coded in MATLAB that calculated FR per voxel. 

 

Magnetization transfer-weighted data 

The magnetization transfer-weighted SPGR images were co-registered (affine, 12 

degrees of freedom), within each participant, to the image with the highest contrast, to correct for 

interscan motion, using Elastix (Klein et al., 2010). Modelling was then carried out by using two-

pool pulsed-magnetization transfer approximation as described by Ramani et al. (2002), which 

corrects for B0 and B1
+ field inhomogeneities and produces MPF maps.  

 

Tractography and tract microstructure features 

Fornix, ILF and PHCB streamlines were generated using the protocols previously 

described in Read et al. (2023). In short, 'way-point' ROIs were manually drawn onto whole-brain 

FA maps in the diffusion space of 18 subjects, using Explore DTI, to isolate individual tracts. 
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These streamlines were then used to train in-house automated tractography software (Cardiff 

University; written in MATLAB, 2015), and the resulting tract models were then applied to the 

entire dataset.  

FA, MD, RD, FR, MPF, NDI and OD values for the voxels encompassed in the tract 

streamlines were extracted and the mean was calculated for each tract. This resulted in seven 

microstructure metrics for three tracts for 39 participant datasets. 

Microstructure data were reduced through PCA using the same methods as those 

described in Read et al. (2023). This approach has been shown to be effective in capturing 

biologically informative features in previous microstructure datasets (Chamberland et al., 2019; 

Geeraert et al., 2020; Karahan et al., 2022). In short, the Bartlett test was used to assess the 

data’s appropriateness for PCA, the prcmp function in R (R Core Team, 2019) was then used to 

apply PCA to centred and scaled data, and the sampling adequacy of the results was tested 

using the Kaiser-Meyer-Olkin (KMO) test (from the R ‘Psych’ package; Revelle, 2020). 

Components were retained depending on the amount of cumulative variation they explained. 

Following data reduction, participant scores in two principal components (PCs) were used for 

analysis.  

 

Statistical analysis 

Statistical analyses were carried out using Fieldtrip for MATLAB or using Rstudio and 

additional R packages (Oostenveld et al., 2011; R Studio Team, 2015; Wickham, 2016; R Core 

Team, 2019; Kassambara, 2019; Patil, 2021). Analysis Of Variance (ANOVA) tests and 95% 

confidence intervals were calculated in JASP (Version 0.18.1; JASP Team, 2023). Note that the 

95% CIs reported throughout were derived using a 1000 iteration bootstrapping procedure.  

The alpha thresholds for the whole-brain MEG condition power/connectivity comparisons 

were Bonferroni-corrected to 0.017 (0.05 / 3 comparisons). The cluster alpha threshold was 

0.001. Fieldtrip’s ‘correct tail = alpha’ option was applied to further correct for two-sided tests.  



14 
 

Pearson’s correlation tests were applied to understand relationships between tract 

microstructure, oscillatory power and oddity performance. In cases where variable data did not 

have a normal distribution, the data were transformed (squared) to de-skew the distribution 

(McDonald, 2014). Coefficients of correlations were compared using the Pearson and Filson’s 

test within the R package ‘Cocor’ (Diedenhofen & Musch, 2015). Bayesian correlation tests were 

also calculated (Morey & Rouder, 2018) and Bayes Factors (BFs) were reported as BF10 

(evidence of the alternative model over the null model).   

Since Hodgetts et al. (2015) found negative correlations between fornix MD and scene 

oddity accuracy, and ILF MD and face oddity accuracy, and positive correlations between fornix 

FA and scene oddity accuracy, and ILF FA and face oddity accuracy, there were directed 

hypotheses about correlations between microstructure and oddity task performance. Therefore, 

the contribution of FA and MD values to microstructure PCA components, prescribed the 

hypotheses of how the components of the tracts would relate to oddity task performance, 

supporting the use of one-tailed statistical tests. Similarly, as the scene oddity task induced  

hippocampal theta attenuation, we predicted improved oddity performance with decreased 

hippocampal theta power, also supporting the use of one-tailed statistical tests.  

Partial correlations were used for correlation analyses involving MEG data so that MEG 

trial numbers in each condition could be controlled for. MEG trials in which the participant did not 

respond were not included in the MEG analysis (to reduce the influence of off-task thoughts) but 

were regarded as incorrect in the behavioural data (as removing such trials would inflate 

performance). Although this is a small proportion of excluded MEG trials, there was still an 

association between the number of MEG trials and oddity performance. Therefore, partialling - 

out the variance from MEG trial numbers was required to adjust for its potential biasing of 

performance-MEG data correlations.  

For the microstructure-oddity performance correlation tests, the alpha level was 

Bonferroni-corrected by dividing by the number of statistical comparisons involving each 

microstructure PC (0.05/3 oddity accuracy measures = 0.017; Hodgetts et al., 2015). This rule 

was also used for the oscillatory power-oddity performance correlation tests and oscillatory 
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power-microstructure correlation tests since the alpha level was Bonferroni-corrected by dividing 

by the number of statistical comparisons involving each microstructure PC or oscillatory 

modulation measure. Similarly, when comparing correlation coefficients, the alpha level was 

Bonferroni-corrected by dividing by the number of statistical comparisons relating to a variable 

(0.05/2 = 0.025).  

 

 

Results 

Behavioural Results 

Task difficulty (i.e., proportion correct) across the conditions was very well matched, as 

all condition accuracy means were around 61% (see Table 1). To reduce the scene accuracy 

data skew (to <1), so that parametric tests could be used while keeping the conditions matched, 

all accuracy data were transformed (McDonald, 2014). Transformed (squared) accuracy values 

(Table 1) were used for subsequent parametric tests and the terms ‘scene accuracy’, ‘face 

accuracy’ and ‘size accuracy’ refer to the transformed conditions. Condition reaction times were 

significantly different from each other (F(2,78) = 250.178, p<0.01, η2=0.865; post-hoc 

comparisons all p<0.01; see Table 2) and were not included in the following analyses. 

 

 

Reduced theta power in the anteromedial hippocampus and 

posteromedial cortex during scene oddity 

First, we sought to examine whether theta power in the hippocampus would be more 

strongly modulated during scene discrimination trials versus face and size trials (see Fig. 1, and 

Materials and Methods).  
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In the scene>size comparison, there were two negative (i.e., lower theta power in the 

scene condition compared with the size condition) clusters (cluster p-values = 0.0004; 0.002). 

These encompassed areas of left medial and inferior temporal lobe (including the hippocampus), 

and the medial occipital cortex (Figure 2A). Within AAL atlas parcellations, the cluster peaks of 

theta power reduction were located in the inferior temporal gyrus (MNI coordinates: -46, -16, -36) 

and cuneus (MNI coordinates: 6, -94, 20). The peak hippocampal theta power reduction was 

located in the anterior hippocampus (MNI coordinates: -34, -16, -20).  

In the face>size comparison, there were two positive (i.e., higher theta power in the face 

condition compared with the size condition) clusters (cluster p-values = 0.0026; 0.008), 

encompassing areas of the inferior occipital cortex, and a negative cluster (cluster p-value = 

0.0016), encompassing areas of the left lateral and inferior frontal cortices (Figure 2B). 

The scene>face comparison revealed a significant negative cluster of theta power 

reduction (cluster p-value = 0.0002), which encompassed areas of the cerebellum, medial 

occipital and parietal cortices, including the posteromedial cortex/retrosplenial cortex, and right 

medial temporal lobe (MTL) areas, including an anteromedial portion of the hippocampus (Figure 

2C-D). Within AAL atlas parcellations, the cluster peak of theta power reduction was located in 

the calcarine cortex (MNI coordinates: -14, -96 -4). The peak hippocampal theta power reduction 

was located in the anteromedial hippocampus (MNI coordinates: 22 -20 -16; Fig.2D).  

 

Hippocampal theta power modulation correlates with scene oddity 

accuracy 

We next tested whether hippocampal theta attenuation (see Material and Methods) was 

related to scene oddity performance. We found modest support for a negative partial correlation 

(controlling for MEG trial numbers; see Materials and Methods) between hippocampal scene 

theta and scene oddity accuracy, such that a greater attenuation of theta was associated with 

greater accuracy (r(37) = -0.331, p = 0.020, 95% CI [-0.508, -0.133], BF10 = 2.41, one-tailed; just 

exceeding the corrected alpha threshold of 0.017; Figure 3). There was no evidence for 
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significant partial one-tailed correlations between hippocampal theta during the face condition 

and face oddity accuracy (r(37) = 0.105, p = 0.738, 95% CI [-0.161, 0.296], BF10 = 0.42), or 

between hippocampal theta during the size condition and size oddity accuracy (r(37) = 0.026, p = 

0.563, 95% CI [-0.381, 0.411], BF10 = 0.36). Importantly, the coefficient of the correlation 

between the scene hippocampal theta power modulation and scene oddity accuracy was 

significantly stronger than that of the correlation between face hippocampal theta power 

modulation and face oddity accuracy (z(37) = -2.46, p = 0.007), and that of the correlation 

between size hippocampal theta power modulation and size oddity accuracy (z(37) = -2.206, p = 

0.020).  

 

Using PCA to identify major features of white-matter tract 

microstructure 

Next, we examined the relationship between tract microstructure (fornix, ILF and PHCB) 

and oddity performance. To derive major features of white-matter microstructure, we applied 

advanced biophysical models (i.e., CHARMED and NODDI) as well as the free-water corrected 

diffusion tensor model (‘FWE-DTI’; see Materials and Methods). These modelling approaches 

resulted in seven measures per tract (averaged across hemispheres) for each participant 

(summary statistics shown in Table 3): FWE-FA; FWE-MD; FWE-Radial Diffusivity (RD); 

Restricted Fraction (FR); Molecular Protein Fraction (MPF); Neurite Density Index (NDI); and 

Orientation Dispersion (OD). This larger metric space was then reduced through PCA, a 

technique that has been shown to be effective in capturing biologically informative features of 

white-matter microstructure (Chamberland et al., 2019; Geeraert et al., 2020; Karahan et al., 

2022; Read et al., 2023). The results from the PCA (KMO: 0.66, sphericity: p<0.0001; Figure 4) 

showed that 94% of the microstructure data variance was accounted for by the first two principal 

components, PC1 and PC2. PC1 accounted for 56% of the variance with MD and RD providing 

the major negative contributions, while FR and MPF provided the major positive contributions 

(FA: 0.16, MD: -0.48, RD: -0.50, FR: 0.42, MPF: 0.48, OD: 0.16, NDI: -0.23). PC2 accounted for 
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38% of the variance, with FA and NDI providing the major negative contributions, while OD 

provided a major positive contribution (FA: -0.56, MD: -0.17, RD: -0.01, FR: -0.32, MPF: 0.12, 

OD: 0.55, NDI: -0.48). 

 

PC1 was named the ‘tissue restriction/hindrance’ property of the fibre (the proclivity for 

water movement along the fibres as opposed to other dispersed directions, likely influenced by 

axonal packing and myelination) because RD and MPF have been shown to relate to myelin 

proportion (Song et al., 2003; Song et al., 2005; Kisel et al., 2022), and FR gives an estimate of 

axon density (De Santis et al., 2014). PC2 was named the ‘microstructural complexity’ property 

of the fibre (modelled fibre orientation dispersions, likely influenced by underlying tract fanning 

and crossing), because OD is higher in tracts known to have more fibre fanning and crossing, 

and it typically correlates more strongly with FA than does NDI (e.g., Zhang et al., 2012), 

suggesting that fibre orientations influence FA more than the tissue properties themselves. Note 

that PC1 and PC2 were sign-flipped to aid interpretation, such that increases in PC1 and PC2 

reflected increases in tissue restriction/hindrance and microstructural complexity, respectively. 

 

The relationship between tissue microstructure and oddity 

accuracy 

As predicted based on Hodgetts et al. (2015), there was a positive correlation between fornix 

tissue restriction/hindrance (PC1) and scene oddity accuracy (r(37) = 0.321, p = 0.023, 95% CI [-

0.002, 0.564], BF10 = 2.05; Figure 5; just exceeding the corrected alpha threshold of 0.017). The 

correlations between fornix tissue restriction/hindrance and face (r(37) = 0.243, p = 0.068, 95% CI 

[-0.101, 0.537], BF10 = 0.94) or size (r(37) = -0.035, p = 0.585, 95% CI [-0.313, 0.255], BF10 = 

0.36) oddity accuracies were not significant. The coefficient of the correlation between fornix 

tissue restriction/hindrance and scene oddity accuracy was significantly larger than that of the 

correlation between fornix tissue restriction/hindrance and size oddity accuracy (z(36) = 2.052, p = 

0.020), but not larger than that of the correlation between fornix tissue restriction/hindrance and 
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face oddity accuracy (z(36) = 0.446, p = 0.328). There were no significant correlations between 

fornix complexity (PC2) and any oddity accuracies (scene (r(37) = 0.057, p = 0.635, 95% CI [-0.222, 

0.309], BF10 = 0.38); face (r(37) = -0.090, p = 0.292, 95% CI [-0.419, 0.237], BF10 = 0.41); size (r(37) = 

0.088, p = 0.702, 95% CI [-0.236, 0.395] , BF10 = 0.40). 

Again as predicted, ILF tissue restriction/hindrance significantly correlated with face 

oddity accuracy (r(37) = 0.349, p = 0.015, 95% CI [0.022, 0.590], BF10 = 2.84; Figure 5) and not 

with scene (r(37) = 0.100, p = 0.272, 95% CI [-0.254, 0.406], BF10 = 0.42) or size (r(37) = -0.037, p 

= 0.589, 95% CI [-0.301, 0.229], BF10 = 0.36) oddity accuracy. ILF complexity significantly 

(inversely) correlated with face oddity accuracy (r(37) = -0.341, p = 0.017, 95% CI [-0.600, -0.002], 

BF10 = 2.58) and not with scene (r(37) = -0.119, p = 0.236, 95% CI [-0.447, 0.261], BF10 = 0.45) or 

size (r(37) = 0.170, p = 0.849, 95% CI [-0.106, 0.416], BF10 = 0.57) oddity accuracies. The 

correlation coefficient between ILF tissue restriction/hindrance (PC1) and face oddity accuracy 

was significantly larger than that of the correlation between ILF tissue restriction/hindrance and 

size oddity accuracy (z(36) = 2.00, p = 0.023), but was not larger than that of the correlation 

between ILF tissue restriction/hindrance and scene oddity accuracy (z(36) = 1.402, p = 0.081). 

Additionally, the negative correlation coefficient between ILF complexity (PC2) and face oddity 

accuracy was significantly greater than that of the correlation between ILF complexity and size 

oddity accuracy (z(36) = -2.722, p = 0.003, but was not greater than that of the correlation 

between ILF complexity and scene oddity accuracy (z(36) = -1.250, p = 0.106). 

Additionally, we examined the link between PHCB microstructure and oddity 

performance. In the monkey, retrosplenial fibres join the PHCB to reach parahippocampal areas 

TH and TF, as well as the presubiculum, parasubiculum, and parts of entorhinal cortex (Bubb et 

al., 2018). In contrast to the fornix, however, there is little evidence that the PHCB plays a critical 

role in spatial memory and navigation (Parker & Gaffan, 1997; Bubb et al., 2018). 

Unlike our fornix findings, neither PHCB tissue restriction/hindrance or complexity 

correlated with scene oddity accuracy (tissue restriction/hindrance: r(37) = 0.054, p = 0.372, 95% 

CI [-0.256, 0.333], BF10 = 0.37; complexity: r(37) = -0.030, p = 0.427, 95% CI [-0.328, 0.307], BF10 

= 0.36). Nor did PHCB restriction/hindrance or complexity correlate with face oddity accuracy or 
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size oddity accuracy (face oddity accuracy - tissue restriction/hindrance: r(37) = 0.294, p = 0.034, 

95% CI [-0.098, 0.583], BF10 = 1.52; complexity: r(37) = -0.258, p = 0.057, 95% CI [-0.528, 

0.051], BF10 = 1.07). size oddity accuracy - tissue restriction/hindrance: r(37) = 0.180, p = 0.136, 

95% CI [-0.158, 0.474], BF10 = 0.61; complexity: r(37) = -0.106, p = 0.260, 95% CI [-0.387, 

0.216], BF10 = 0.43). 

Multiple linear regression was used to assess whether fornix microstructure predicted 

scene oddity accuracy beyond ILF and PHCB microstructure (see Niogi et al., 2010 for a similar 

approach to establishing selectivity of white matter-behaviour associations). A model with fornix 

tissue restriction/hindrance, PHCB tissue restriction/hindrance and ILF tissue 

restriction/hindrance did not significantly predict scene oddity accuracy (adjusted R2 = 0.029, p = 

0.267) but fornix tissue restriction/hindrance (PC1) was an independent predictor (p = 0.031, 

adjusted for one-tailed prediction). These results indicate that microstructure of the fornix, 

specifically the ‘tissue restriction/hindrance’ component, relates to scene processing 

performance, whereas microstructure properties of the ILF and PHCB do not.  

 

No evidence for a three-way association between fornix tissue 

restriction/hindrance, hippocampal scene theta modulations, and 

scene accuracy 

A partial correlation test (controlling for number of trials, see Materials and Methods) 

showed that fornix tissue restriction/hindrance and scene hippocampal theta power modulation 

did not significantly correlate (r(36) = -0.078, p = 0.642, 95% CI [-0.360, 0.270], BF10 = 0.39), 

despite both having been found to relate to scene oddity accuracy. Multiple linear regression was 

used to assess whether fornix tissue restriction/hindrance and scene hippocampal theta power 

modulation influences on scene processing were independent of one another. In a model with 

scene oddity accuracy as the dependant variable, and fornix tissue restriction/hindrance, scene 

hippocampal theta power modulation and scene MEG trials numbers (included to control for the 

number of trials, see Materials and Methods) as covariates (adjusted R2 = 0.225, p = 0.007), 
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fornix tissue restriction/hindrance and scene hippocampal theta power modulation were both 

independent predictors (p-values = 0.035, 0.034, standardised regression coefficients = 0.269, -

0.270, respectively).  

 

No evidence that the findings purely reflect incidental encoding  

Lastly, to test if our findings of relationships between scene discrimination performance 

and scene hippocampal theta modulation / fornix tract microstructure were influenced by 

incidental encoding, we examined relationships between these imaging measures and 

performance in the subsequent surprise memory task.  

Overall, memory performance was poor, which was understandable as the participants 

were not told to memorise the oddity stimuli. The mean d’ scores for scenes and faces were 0.49 

(SD = 0.452) and 0.28 (SD = 0.287), respectively (summarised in Table 4). There was no 

significant partial correlation (controlling for the number of oddity scene MEG trials) between 

scene oddity hippocampal theta power modulation and scene d’ (r(37) = 0.171, p = 0.298, 95% 

CI [-0.186, 0.515], BF10 = 0.57). Also, there was no significant correlation between scene d’ and 

fornix PC1 (r(37) = 0.137, p = 0.203, 95% CI [-0.223 0.483], BF10 = 0.48; one-tailed). 

Although we collected participants’ memory response confidence, investigations of 

memory confidence would be better suited to a study with improved memory performance. 

Future studies could test for scene and face stimuli memory separately, reducing memory 

demand. 

 

Discussion 

Here, we advanced understanding of the role of an extended hippocampal posteromedial 

(Aggleton, 2012; Ranganath & Ritchey, 2012) system in cognition by demonstrating theta power 

attenuation during scene compared with face or shape-size discrimination in the hippocampus, 

alongside parahippocampal and posteromedial cortices. Furthermore, inter-individual differences 
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in scene hippocampal theta power attenuation correlated with scene, but not face, oddity 

accuracy. There was also a correlation between scene oddity accuracy and fornix microstructure, 

specifically the ‘tissue restriction/hindrance’ property. Conversely, ILF microstructure correlated 

with face, but not scene oddity accuracy. A multiple regression analysis with fornix, ILF, and 

PHCB tissue restriction/hindrance as predictors, revealed that fornix tissue restriction/hindrance 

was a unique predictor of scene accuracy, supporting a distinct fornix contribution to scene 

processing (Niogi et al., 2010).  

 

Scene discrimination may be supported by theta power modulation 

in an extended system, including an anteromedial hippocampus 

scene-selective ‘hub’ 

We identified a peak in hippocampal theta modulation in the comparison of scene versus 

face oddity in the anteromedial hippocampus, aligning with previous fMRI studies of scene 

imagery (Zeidman et al., 2015) and discrimination (Hodgetts et al., 2017). High-resolution fMRI 

work suggests this scene-selective region corresponds to the anteromedial subicular complex 

(Hodgetts et al., 2017; Read et al., 2024), connecting the hippocampus, (partly via the fornix) to 

the extended hippocampal system (Aggleton, 2012), receiving spatial input from cortical areas 

including retrosplenial and parahippocampal cortices (Aggleton, 2012). Therefore, our results 

may reflect the scene-selective processes taking place in the subicular complex, specifically. 

Relatedly, previous source-space MEG work revealed reduced anterior hippocampal theta power 

during scene imagery (Barry et al., 2019). The clusters of scene oddity reduced theta power also 

included extra-hippocampal MTL, medial occipital, and posteromedial cortices. Prior research 

identified reduced theta power across these regions during scene imagery (Barry et al., 2019) 

and spatial memory (Crespo-Garcia et al., 2016; Fellner et al., 2016; Nilakantan et al., 2017). 

Collectively, these results suggest that reduced theta power in subicular complex and 

interconnected cortical regions reflects common processes across these tasks (Zeidman & 

Maguire, 2015). 
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Our finding of a relationship between theta power reduction and scene oddity accuracy 

indicates that reduced theta power reflects neuronal processes beneficial to scene 

discrimination. Hanslmayr et al. (2012) argued alpha/beta power decreases are a mechanism to 

de-correlate neural activity to enhance neural coding capacity. This may extend to hippocampal 

theta.  

 

Fornix tissue restriction/hindrance linked to scene discrimination 

Most subiculum outputs rely on the fornix (Aggleton, 2012). Hodgetts et al. (2015) found 

fornix MD and ILF MD to correlate with scene and face oddity accuracy, respectively (see also 

Postans et al., 2014). Here, we link scene discrimination to more specific features of fornix 

microstructure. Redundancies in microstructure measures were exploited to reveal two 

biologically interpretable components, comparable to previous studies (Chamberland et al., 

2019; Read et al., 2023). PC1 was most influenced negatively by MD, RD and positively by FR 

and MPF, and was interpreted as positively relating to a ‘tissue restriction/hindrance’ (axonal 

packing/myelination) property of the fibre. PC2 was most influenced positively by OD and 

negatively by FA and was interpreted as negatively relating to a ‘microstructural complexity’ (tract 

fanning/crossing) property of the fibre (Chamberland et al., 2019). We found a relationship 

between fornix tissue restriction/hindrance and scene discrimination, whereas both ILF 

microstructure components correlated with face oddity discrimination. Multiple regression 

analysis indicated fornix tissue restriction/hindrance as a distinct predictor (from ILF and PHCB 

tissue restriction/hindrance) of scene discrimination. 

 

Fornix fibre restriction/hindrance and hippocampal theta 

modulation independently influence scene processing 

The fornix is a conduit for theta in the extended hippocampal system, conveying 

hippocampal inputs from the medial septum (involved with theta oscillation generation; Rawlins 
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et al., 1979), as well as hippocampal outputs to the anterior thalamus (containing theta 

modulated cells; Jankowski et al., 2013). However, we found no evidence that the relationship 

between fornix microstructure and scene discrimination was mediated by hippocampal theta 

power modulation. Rather, fornix tissue restriction/hindrance and scene hippocampal theta 

power modulation were independent predictors of scene discrimination. 

This echoes previous findings (Hodgetts et al., 2015) that hippocampal BOLD did not 

mediate the relationship between fornix MD and scene discrimination, together suggesting that 

fornix microstructure and hippocampal activity independently influence scene discrimination. In 

rodents, while fornix and hippocampal lesions frequently cause comparable spatial deficits, 

dissociations between fornix and hippocampal lesions have been reported (Dumont et al., 2015; 

Aggleton & O’Mara, 2022). Non-fornical cortical connectivity, presumably important to 

hippocampal scene activity, includes connections between subiculum and retrosplenial cortex 

(Aggleton, 2012). Retrosplenial cortex, alongside the hippocampus, was included in the 

posteromedial cluster of theta power reduction during scene discrimination and is known to 

support multiple aspects of spatial processing (Vann et al., 2009). Our findings of independent 

fornix microstructure and hippocampal/cortical theta contributions align with proposals of partially 

independent hippocampal-cortical and medial diencephalic-cortical processing streams 

(Aggleton & O'Mara, 2022). 

 

Face discrimination supported by ILF microstructure 

The ILF interconnects occipital and anterior temporal cortices including perirhinal cortex 

(Herbet et al., 2018), a region critical to face oddity discrimination (Barense et al., 2007). ILF MD 

was previously linked to face discrimination (Hodgetts et al., 2015). Here, ILF tissue 

restriction/hindrance and complexity both correlated with face oddity accuracy, positively and 

negatively, respectively, the latter perhaps reflecting branching patterns or crossing of axons. 
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Limitations 

There is a necessary discrepancy in how trials with no response were treated in the MEG 

(excluded) and behavioural data (classed as incorrect) which was addressed by using partial 

correlations (controlling for MEG trial numbers). The inclusion of unanswered trials in the MEG 

data processing may have reduced sensitivity to task relevant signals as it is unclear if the 

participant was distracted, but in the behavioural data, if unanswered trials are removed then, 

when calculating the percentage of correct responses, scores of participants who missed trials 

would be inflated, assuming that prolonged trial attempts or distraction would result in incorrect 

answers. Importantly, there were no correlations between MEG-measured task oscillatory power 

differences and MEG trial numbers.  

Relatedly, to include sufficient theta per MEG trial, while limiting trial-to-trial SNR 

differences, we cut trials to equal 2 s lengths. This approach neglects any task-related theta 

occurring later in longer trials. While time-dependent processes could be examined by splitting 

trials, perhaps comparing first and second 2 s epochs, limiting the current analyses to longer 

trials was infeasible, as reducing the number of trials would impact hippocampal MEG signal 

localization accuracy (Quraan et al., 2011). 

We interpret our MEG results mostly considering fMRI work albeit that spatial resolution 

in MEG is lower than in fMRI. The hippocampus is no longer universally considered too deep a 

structure for MEG (Pu et al., 2018), as distance to the sensors may be partly counteracted by the 

high source-current density generated by hippocampal pyramidal cell layers (more than twice 

that of neocortical grey-matter) (Attal & Schwartz, 2013; Ruzich et al., 2019). Hippocampal signal 

detection with MEG has been validated using concurrent intracranial electrophysiology (iEEG) 

and modelling (e.g., Attal & Schwartz, 2013; Pizzo et al., 2019). We are confident our results 

demonstrate hippocampal contribution, rather than signal spread from nearby MTL cortex. 

Multiple studies successfully measured hippocampal signals with MEG (Mills et al., 2012; Meyer 

et al., 2017; Barry et al., 2019) whereas few report perirhinal cortex signals (e.g., Moses et al., 

2009). Also, we found that hippocampal theta power modulation during scene oddity correlated 
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with discrimination ability, consistent with the effects of selective hippocampal lesions (Lee, 

Bussey, et al., 2005).   

Apparent unilateral MEG hippocampal effects should be interpreted with caution. 

Beamforming techniques assume sources are uncorrelated, supressing bilateral responses, 

perhaps explaining similar fMRI and MEG studies finding bilateral and unilateral effects, 

respectively (O'Neill et al., 2021). 

Although our microstructure PCA technique was applied to increase biological 

interpretability, tractography does not capture fibre properties directly, and interpretations of PCA 

components have not been confirmed histologically (see Read et al., 2023 for discussion).  

While accuracy scores were matched across oddity conditions, RTs were not (scene 

RT>face RT>size RT). Much faster RTs for the size condition reflect the temporal demands 

inherent in medial temporal lobe processes critical for complex visual discrimination (Bonnen et 

al., 2021). However, differences in hippocampal activity for scenes versus faces are unlikely a 

result of RT differences, since the theta power comparison between scenes versus faces, shows 

a more extensive cluster than that of the comparison of scenes versus size (Fig. 2), despite a 

larger RT difference between scene and size, than scene and face, conditions. Moreover, 

previous fMRI work (e.g., Hodgetts et al., 2017) using fixed trial lengths also found hippocampal 

BOLD signal changes for scene versus face oddity.   

 

Conclusions 

We found engagement of a hippocampal posteromedial system during scene 

discrimination, denoted by attenuated theta power, and that hippocampal theta power modulation 

correlated with scene oddity performance. Moreover, fornix tissue restriction/hindrance was 

important for scene oddity performance, independent of hippocampal theta. This work provides 

novel support for multiple processing streams within the human MTL (Aggleton & O'Mara, 2022).  
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Figures and Legends 

 

Figure 1. Oddity task outline. A) Three trial examples. The triplets of images were presented 

simultaneously. For these examples, an asterisk is placed over the odd-one-out. B) An illustration of a 

mini-block comprising three trials of the same condition, separated by short (1 - 1.5 s) inter-trial 

fixation periods, preceded and followed by 5 s fixation periods. The trials could be displayed up to 8 s 

in total but ended as soon as the participant made a response. 
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Figure 2. Whole-brain theta power differences between conditions. A) scene - size comparison. 

B) face - size comparison. C) scene - face comparison. In each section, colours represent t-values 

according to the keys to the left, and the significant clusters are overlaid on template brain surfaces. 

D) The same masks of significant clusters for the scene>size and scene>face comparisons are 

overlaid (in green and blue, respectively) onto glass brains (separately) and a template T1 (together). 

For illustration, the hippocampus is shown in yellow (the Cornu Ammonis areas and subiculum 

probabilistic ROIs from the FSL Jülich histological atlas thresholded at 50%). The red dots indicate 

the location of the most negative t-value in the scene>face comparison (MNI coordinates: 22 -20 -16). 

Note that the alpha value was 0.017 (0.05 / 3 comparisons). L = Left. R = Right. Brain images made 

with Fieldtrip and Nilearn (Abraham et al., 2014). 
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Figure 3. Relationships between oddity task accuracy and hippocampal theta power difference 

between task and fixation, controlling for the number of MEG trials. The histogram outlines show 

the distributions of the variables. Note that ‘hippocampus theta power modulation’ refers to 

modulation during the respective conditions (scene, face and size). The blue/red/green lines are the 

regression lines, and surrounding shaded areas represent the standard two-tailed 95% confidence 

interval. Note that these are plots of partial correlations, controlling for the number of MEG trials. 

Examples of the trials are shown next to the relevant scatter plots. The hippocampus ROI is shown in 

yellow on a template brain. N = 40.  
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Figure 4. Redundancy between tract microstructure values and results from PCA. A) Pearson’s 

correlations within the microstructure data from each tract suggest that the values give overlapping 

information. Colour denotes r value according to the key. B) Biplot illustrating the influence of each of 

the measures on PC1 and PC2, which account for 56% and 38% of the variance, respectively. C) 

Tract component scores for each participant, illustrating the differing properties of the tracts. Note that 

DTI-derived measures are free water corrected (from FWE-DTI). 

FA, Fractional Anisotropy; FR, Restricted Fraction; ILF, Inferior Longitudinal Fasciculus; MD, Mean 

Diffusivity; MPF, Macromolecular Protein Fraction; NDI, Neurite Density Index; OD, Orientation 

Dispersion; PC, Principal Component; PHCB, Parahippocampal Cingulum Bundle; RD, Radial 

Diffusivity.  
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Figure 5. Scatterplots showing the relationship between fornix and ILF microstructure, and 

scene and face oddity accuracies. The histograms’ outlines show the distributions of the variables. 

The blue and red lines are the regression lines and surrounding shaded areas represent the standard 

two-tailed 95% confidence interval. Example images of the tract streamlines (upper: fornix, lower: ILF; 

standard red-green-blue direction code) are shown next to the relevant axes. N=39.  

ILF, Inferior Longitudinal Fasciculus; PC, Principal Component. Brain images made from the 

ExploreDTI example data.   
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Tables 

 

Table 1. Oddity task performance: accuracy.  

 

 

 

 

 

 

 

Table 2. Oddity task performance: reaction times.  

 

 

 

 

 

 

Condition Mean ± SD (%) Range Skew Squared  

Mean ± SD (%) 

Squared Range Squared 

Skew 

Scene 60.52% ± 7.18 38.54-70.83 -1.05 3754.64 ± 807.59 1516.90-4973.96 -0.84 

Face 60.68% ± 8.841 39.58-80.21 -0.08 3768.77 ± 1062.13 1566.84-6433.38 0.40 

Size 61.30% ± 13.00 29.17-89.58 -0.16 3927.25 ± 1580.89 850.70-8025.17 0.42 

Condition Mean ± SD (%) Range Skew 

Scene 5.14 ± 0.51 3.95 - 6.00 -0.81 

Face 4.16 ± 0.78 2.56 - 5.48 -0.06 

Size 3.14 ± 0.70 2.14 - 4.96 0.78 
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Table 3. Group mean and standard deviation for each microstructure value, for each tract.  

 

 

 

 

 

Table 4. Memory task d-prime scores.  

 

 Fornix 

Group Mean ± SD 

ILF 

Group Mean ± SD 

PHCB 

Group Mean ± SD 

FA 0.72 ± 0.03 0.78 ± 0.03 0.64 ± 0.05 

MD 0.09 x10-2 ± 0.03 x10-3 0.07 x10-2 ± 0.01 x10-3 0.07 x10-2 ± 0.002 x10-3 

RD 0.07 x10-2 ± 0.03 x10-3 0.05 x10-2 ± 0.01 x10-3 0.06 x10-2 ± 0.002 x10-3 

FR 0.24 ± 0.01 0.33 ± 0.02 0.25 ± 0.02 

MPF 0.08 ± 0.01 0.14 ± 0.01 0.12 ± 0.01 

ICVF 0.56 ± 0.03 0.52 ± 0.02 0.48 ± 0.02 

OD 0.15 ± 0.01 0.17 ± 0.01 0.21 ± 0.03 

Condition Mean ± SD (s) Range 

Scene 0.49 ± 0.45 -0.57 - 1.67 

Face 0.28 ± 0.29 -0.19 - 0.98 
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Table Legends 

 

Table 1. Oddity task performance: accuracy. Mean, SD, range and skew for the three conditions 

accuracy data. Untransformed (left) and squared (right), data are shown. Note that all condition 

accuracy skews are between -1 and 1 after squaring.  

Table 2. Oddity task performance: reaction times. Mean, SD, range and skew for the three 

conditions reaction time data.  

Table 3. Group mean and standard deviation for each microstructure value, for each tract. 

Microstructure values were averaged over tract streamlines for each participant.  

FA: Fractional Anisotropy. FR: Restricted Fraction. ICVF: Intracellular Volume Fraction. MD: Mean 

Diffusivity. MPF: Macromolecular Proton Fraction. OD: Orientation Dispersion. RD: Radial Diffusivity.  

Table 4. Memory task d-prime scores. Mean, SD and range for the scene and face conditions. 

 

 

 


