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Albedo Novel View Synthesis and Relighting at 240 FPS

Fig. 1. Our method incorporates an efficient yet effective lighting model into generative 3D Gaussian and can synthesize high-quality relightable 3D Gaussian
heads that allow for novel view synthesis and relighting given any HDRI environment maps. Our method does not require expensive light stage data and
achieves real-time rendering at 240 FPS, surpassing the previous 3D-aware portrait relighting research by at least 12 times.

Relighting and novel view synthesis of human portraits are essential in ap-
plications such as portrait photography, virtual reality (VR), and augmented
reality (AR). Despite recent progress, 3D-aware portrait relighting remains
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challenging due to the demands for photorealistic rendering, real-time per-
formance, and generalization to unseen subjects. Existing works either rely
on supervision from limited and expensive light stage captured data or pro-
duce suboptimal results. Moreover, many works are based on generative
NeRFs, which suffer from poor 3D consistency and low real-time perfor-
mance. We resort to recent progress on generative 3D Gaussians and design
a lighting model based on a unified neural radiance transfer representation,
which responds linearly to incident light. Using only in-the-wild images, our
method achieves state-of-the-art relighting results and a significantly faster
rendering speed (×12) compared to previous 3D-aware portrait relighting
research.

CCS Concepts: • Computing methodologies→ Image manipulation.

Additional Key Words and Phrases: 3D portrait relighting, 3D Gaussian
splitting, radiance transfer
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1 INTRODUCTION
Relighting and novel view synthesis of human portraits have always
been two fundamental demands in various applications. In portrait
photography, finding the ideal lighting and viewpoint often requires
intensive expert knowledge and extensive trial and error. In virtual
reality and augmented reality, virtual avatars need to be rendered
under different lighting conditions and viewpoints in real-time and
high fidelity. These demands drive the rapid development of the
emerging field of 3D-aware portrait relighting.
However, 3D-aware portrait relighting remains highly challeng-

ing due to its three demands: photorealistic appearance, real-time
rendering, and one-shot generalization to unseen subjects. Human
heads consist of highly intricate and varied materials that display
different scattering and reflectance properties, making them among
the most challenging objects to model accurately. The demand for
real-time rendering significantly constrains algorithm design and
model capabilities, and the requirement for sparse data input (single
image or video) in many real-world applications brings the ambigu-
ity between lighting and materials. Solving this under-constrained
problem inevitably requires leveraging the powerful visual prior
from pre-trained generative models.

It has been proven that Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014] can provide such a prior.When incorporated
with 3D representations, GANs can even learn 3D geometries from
mere image datasets. Among them, generative NeRF [Chan et al.
2022; Mildenhall et al. 2021] find the balance between photorealism
and 3D consistency. The 3D head priors have enabled 3D-aware
manipulation over human portraits such as attribute editing [Gao
et al. 2023; Jiang et al. 2025; Sun et al. 2022], style transfer [Yuan
et al. 2024] and relighting [Cai et al. 2024a; Jiang et al. 2023; Mei et al.
2024; Rao et al. 2024]. To resolve the ambiguity between lighting and
materials, some works [Mei et al. 2024; Rao et al. 2024] employ light
stage data as ground truth for supervision. Nevertheless, light-stage
captured data are expensive and usually closed source, so they are
not accessible to common researchers. For better generalization and
scalability, learning from casual image datasets is preferred. Jiang
et al. [2023] distill albedo from weakly labeled image datasets at
the cost of handling only white light. Deng et al. [2024] propose an
inverse rendering framework that models radiance transfer for the
diffuse term and uses a simple BRDF for the specular term. Impres-
sive as these works are, most of them are based on generative NeRF,
which is prone to limited rendering speed and 3D inconsistencies
because of volume rendering and upsampling. More importantly,
these works rely on neural rendering and need network evaluation
for each lighting, which further limits the real-time performance of
relighting.
We introduce GSHeadRelight, a relightable 3D head generative

model with the latest generative 3D Gaussian backbone [Hyun and
Heo 2024; Kirschstein et al. 2024]. Inspired by precomputed radiance
transfer [Sloan et al. 2002], we design a lighting model based on
Unified Neural Radiance Transfer. We assign spherical harmonics
coefficients for each 3D Gaussian ellipsoid to model the radiance
transfer, which handles visibility and global illumination, including
self-occlusion and subsurface scattering. By making radiance trans-
fer coefficients a function of view directions, our method can model

both diffuse terms and low-frequency reflections. However, without
explicit supervision of albedo, the ambiguity between albedo and
lighting severely affects relighting quality. Since most in-the-wild
images are under white illumination, we make a simple white-light
assumption during training to mitigate the ambiguity, which pro-
vides plausible albedo decoupling. One desirable feature of radiance
transfer is that the outgoing radiance, i.e. irradiance, responds to
incident light linearly. Although our model is trained solely on white
light, it can generalize well to colored illumination during test time.
Moreover, since all components are organized as Gaussian attributes
independent of lighting, only one forward inference is needed for
head synthesis, and relighting can be performed without further
generator evaluations. As a result, our method is extremely efficient
and significantly reduces hardware requirements.

To summarize, we present three main contributions:
• A relightable 3DGaussian head generativemodel based on unified

radiance transfer that supports global illumination.
• A regime that distills plausible albedo and light transport func-

tions from in-the-wild images without a heavy light stage setup.
• Extensive experiments show that our method achieves state-of-

the-art 3D-aware relighting results with extreme efficiency. Our
model achieves a rendering speed of ~240 FPS on a single NVIDIA
H800, with at least 12× speedup over previous methods.

2 RELATED WORK
In this section, we review relevant work in the field of 3D-aware
portrait synthesis.We then examine deep neural face relighting from
two perspectives: studio-captured data and casual image datasets.

3D-aware Portrait Synthesis. Despite Diffusion Models (DMs) [Ho
et al. 2020] being proven to have stronger model capabilities than
GANs [Goodfellow et al. 2014] in synthesizing images [Rombach
et al. 2022], videos [Brooks et al. 2024] and 3D assets [Zhang et al.
2024d], GANs excel at 3D-aware portrait synthesis. The sparsity of
high-quality 3D head models hinders the training of DMs, whereas
3D-GANs can learn fine geometry from mere image datasets.
Early 3D-GANs directly render pixels from explicit or implicit

3D representations, such as meshes [Chen and Zhang 2019; Hen-
derson et al. 2020; Kanazawa et al. 2018] and voxels [Gadelha et al.
2017; Henzler et al. 2019], or implicit neural radiance fields [Chan
et al. 2021; Schwarz et al. 2020]. Some works [Nguyen-Phuoc et al.
2019; Niemeyer and Geiger 2021; Xue et al. 2022] append neural
rendering on the image side to improve image fidelity and enable
high-resolution rendering. Subsequent works [Chan et al. 2022; Gu
et al. 2021; Or-El et al. 2022] mostly adopt StyleGAN [Karras 2019]
as the generator due to its success. Among them, EG3D [Chan et al.
2022] proposes a hybrid radiance field representation and applies a
super-resolution module to the generated tri-plane features. Despite
its high expressiveness, volume rendering is too slow for native
high-resolution synthesis, and super-resolution inevitably causes
spatial inconsistencies across views.
Recent works [Hyun and Heo 2024; Kirschstein et al. 2024] uti-

lize 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] as the new
explicit representation, allowing for native high-resolution head
synthesis in real-time. Kirschstein et al. [2024] bind 3D Gaussians to
a template mesh and generate UV maps of each Gaussian attribute
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Fig. 2. We incorporate a lighting model based on unified radiance transfer into a generative 3D Gaussian framework. The generator G takes in Gaussian noise
and camera pose as condition and generates for each Gaussian an embedding x, which is then linearly transformed into the albedo 𝜌 and geometry attributes
{g} including position, scale, rotation and opacity. A light-weight decoder conditioned on view direction transforms x into radiance transfer coefficients t,
which are used to compute the unified light transport with the light condition. Color is obtained by multiplying the light transport component with the
albedo. The image is then rendered by standard splatting and sent to the discriminator D, which takes both camera pose and light condition as input. Mapping
modules are omitted for simplicity. Gaussian noise and camera pose are represented as icons, and light condition as a diffuse sphere.

under the StyleGAN [Karras 2019] backbone. Gaussian ellipsoids
are then queried and mapped back onto the template at arbitrary
resolution. Hyun and Heo [2024] instead explore a hierarchical gen-
erative paradigm without a template mesh, where at each layer 3D
Gaussians are constrained by anchor points from the previous layer.
A new generative architecture is designed to generate multiple-level
anchors and Gaussians. Our method is based on the recent progress
in generative 3D Gaussian head synthesis. We refer to [Sun et al.
2024] for more recent advances in 3D Gaussian Splatting.

Deep Neural Face Relighting. Portrait relighting requires decom-
position of appearance, geometry, and lighting. To acquire accu-
rate facial reflectance fields, a line of works resort to meticulously
calibrated studio equipment, including the widely adopted light
stage [Debevec et al. 2000]. Neural networks are incorporated into
the light stage processing to enable single image portrait relight-
ing [Kim et al. 2024; LeGendre et al. 2020; Nestmeyer et al. 2020;
Pandey et al. 2021; Sun et al. 2019; Wang et al. 2020; Weir et al.
2022; Zhou et al. 2019]. Novel view synthesis and animation along
with relighting are present with the development of 3D representa-
tions such as mesh [Bi et al. 2021; Lombardi et al. 2018], volumetric
primitive [Lombardi et al. 2021; Yang et al. 2023, 2024], NeRF [Rao
et al. 2022; Sarkar et al. 2023; Xu et al. 2023] and 3D Gaussian [He
et al. 2024; Saito et al. 2024]. Inverse rendering is widely used to
decouple intrinsics and enable lighting manipulation [Kim et al.
2024; Nestmeyer et al. 2020; Pandey et al. 2021; Tan et al. 2022;
Zhang et al. 2024c]. Recent development of diffusion models enables
more lighting condition interfaces like prompt [Zhang et al. 2024b],
background [Ren et al. 2024], and scribble [Mei et al. 2023].

While the expensive studio-captured data provides ground truth
supervision, easily accessible casual image collections offer more di-
versity and scalability. Deep generative neural networks like GANs
are usually adopted to learn the priors of appearance and lighting.

Early works explore style transfer [Abdal et al. 2021; Deng et al. 2020;
Fu et al. 2024; Shih et al. 2014; Shu et al. 2017] to transfer lighting,
but fail to maintain identity consistency. The quotient image [Peers
et al. 2007; Shashua and Riklin-Raviv 2001] decouples albedo from
appearance and is widely used for plausible relighting [Jiang et al.
2023; Pan et al. 2021; Tewari et al. 2020]. Inverse rendering is also
explored [Deng et al. 2024] with self-supervised regulation. Relight-
ing with novel view synthesis from casual images [Sun et al. 2021;
Tewari et al. 2020; Zhang et al. 2021] is also present with semantic
control over GANs. The incorporation of generative NeRF allows
for 3D-aware portrait relighting [Cai et al. 2024b,a; Deng et al. 2024;
Mei et al. 2024; Pan et al. 2021; Ranjan et al. 2023; Rao et al. 2024;
Tan et al. 2022].

3 METHOD
In the following, we first introduce preliminaries including spher-
ical harmonics, precomputed radiance transfer, and 3D Gaussian
head synthesis. Then we discuss design choices in generative 3D-
GAN relighting. Finally, we introduce the proposed Unified Neural
Radiance Transfer and the loss functions.

3.1 Preliminaries
Precomputed Radiance Transfer. Computing global illumination

is costly because it requires iterative path tracing due to multi-
bounce reflections, refractions, and scattering of light. Sloan et al.
[2002] propose to precompute radiance transfer functions, which
are applied to actual incident lighting at run-time. Assuming distant
illumination 𝐿in, exit radiance 𝐿out,𝑝 from a point 𝑝 is computed by
the rendering equation with light transport:

𝐿out,𝑝 (v̂) =
∫
Ω
𝐿in (l̂)𝑉𝑝 (l̂) 𝑓𝑟 (v̂, l̂)max(0, n̂ · l̂) 𝑑 l̂ (1)
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where n̂ is the surface normal at 𝑝 , l̂ and v̂ are global light direction
and viewing direction, 𝑓𝑟 is Bidirectional Reflectance Distribution
Function (BRDF) and 𝑉𝑝 is the light transport function considering
self-occlusion and interreflection.
To efficiently compute the integral in Equation 1, lighting and

transfer functions are represented using 𝑛th-order spherical har-
monics (SH). For specular surfaces, a transfer matrix M𝑝 including
the BRDF and cosine terms describes the radiance transfer via

Lout,𝑝 =
∑︁𝑛2

𝑗=1
M𝑖 𝑗

𝑝 L
𝑗

in . (2)

Specifically for diffuse surfaces, radiance transfer can be represented
by a transfer vector V𝑝 producing scalar exit radiance 𝐿out,𝑝 by

𝐿out,𝑝 =
∑︁𝑛2

𝑖=1
V𝑖𝑝L

𝑖
𝑝 . (3)

In modern neural rendering, precomputing transfer functions is
often impractical because the geometric and material properties
are unknown. Previous works [Deng et al. 2024; Saito et al. 2024;
Xing et al. 2024; Zhang et al. 2024a] choose to parameterize and
learn diffuse radiance transfer vectors, while employing alternative
representations for specular terms because the transfer matrix is
too large. We instead propose to use a unified representation that
models both diffuse terms and low-frequency reflections.

3D Gaussian Head Synthesis. 3D Gaussian Splatting [Kerbl et al.
2023] is recently introduced as a point-based 3D representation that
assigns to each point 5 attributes: position 𝜇 ∈ R3, scale 𝑠 ∈ R3,
rotation quaternion 𝑞 ∈ R4, opacity 𝛼 ∈ R and color 𝑐 ∈ R3. A
Gaussian ellipsoid is formulated as

𝐺 (𝑥) = 𝑒−
1
2 (𝑥−𝜇 )

TΣ−1 (𝑥−𝜇 ) , with Σ = 𝑅𝑆𝑆T𝑅T, (4)

where 𝑥 is the world coordinates, and the scaling matrix 𝑆 and
rotation matrix 𝑅 are derived from the scaling 𝑠 and quaternion 𝑞.
The color 𝐶 of a pixel in image space is computed by blending 𝑁

overlapping sorted points:

𝐶 =
∑︁𝑁

𝑖=1
𝑐𝑖𝛼𝑖

∏𝑖−1
𝑗=1

(1 − 𝛼 𝑗 ) . (5)

Recent works in 3D Gaussian head synthesis [Hyun and Heo 2024;
Kirschstein et al. 2024] allow for native high-resolution head syn-
thesis in real time. Kirschstein et al. [2024] bind 3D Gaussians to a
template mesh and use StyleGAN2 [Karras et al. 2020] to generate
UV maps of each Gaussian attribute. Hyun and Heo [2024] instead
explore a hierarchical generative paradigm, where the 3D Gaussians
at each layer are constrained by anchor points from the previous
layer.

3.2 Unified Neural Radiance Transfer
Radiance transfer was primarily used to describe the diffuse compo-
nent of lighting. We show that by incorporating view directions into
the generative framework, a Unified Neural Radiance Transfer rep-
resentation is capable of describing both diffuse and low-frequency
specular terms. Revisiting Equation 1, by absorbing the light trans-
port, BRDF, and cosine term into a unified radiance transfer function
𝑇𝑝 in SH basis, the rendering equation becomes

𝐿out,𝑝 (v̂) =
∫
Ω
𝐿in (l̂)𝑇𝑝 (v̂, l̂) 𝑑 l̂ ≈

∑︁𝑛2

𝑖=1
𝑙𝑖in𝑡

𝑖
𝑝 (v̂), (6)

where 𝑙𝑖in and 𝑡𝑖𝑝 (v̂) are the 𝑛th-order expansion coefficients. Specif-
ically, we disentangle the albedo 𝜌𝑝 from 𝑡𝑖𝑝 (v̂) for disentangling
appearance from lighting. With minor notation abuse, the view-
dependent exit radiance is formulated as

𝐿out,𝑝 (v̂) = 𝜌𝑝

∑︁𝑛2

𝑖=1
𝑙𝑖in𝑡

𝑖
𝑝 (v̂) . (7)

In this way, both diffuse and specular terms can be handled in a
unified manner by making radiance transfer coefficients a function
of view direction.
Based on 3D Gaussian GAN framework, we additionally assign

each Gaussian point 𝑝 an albedo 𝜌𝑝 ∈ [0, 1]3 and a transfer vector
t𝑝 ∈ R3×𝑛2

to replace the original view-independent color. Specifi-
cally, as shown in Figure 2, the generator gives each Gaussian point
𝑝 an embedding x𝑝 . The transfer vector t𝑝 is obtained by concate-
nating the Gaussian embedding with encoded view direction and
sending it to a transfer vector decoder Ψ𝑡 ,

t𝑝 (v̂) = Ψ𝑡 (x′𝑝 | |v𝑝 ), (8)

where x′𝑝 is a shortened embedding transformed linearly from the
Gaussian embedding x𝑝 . It can be stored to perform real-time ren-
dering with standard 3D Gaussian splatting after generation.
Without explicit supervision of albedo, the ambiguity between

albedo and transfer vectors is unavoidable, as demonstrated in Sec-
tion 4.5. Observing that the illumination in most real images is ap-
proximately white light, we propose to train the model under white
light conditions. The light and transfer vectors are then reduced to
single channel, i.e. l, t ∈ R1×𝑛2

. In this way, the contribution of the
transfer vector to the color distribution is discarded, and thus the
ambiguity is resolved. We find in the experiment that adversarial
training will average out the impact of light color residuals on the
albedo. Moreover, due to the linearity of our unified radiance trans-
fer functions, our model can render colored lighting at test-time by
channel-wise applying Equation 7.

4 EXPERIMENTS

4.1 Implementation Details
Our method is based on GSGAN [Hyun and Heo 2024], which fol-
lows the same data preparation pipeline as EG3D [Chan et al. 2022].
The lighting labels, represented as monochromatic 3rd-order spheri-
cal harmonics, are extracted using DPR [Zhou et al. 2019], following
the approach of Jiang et al. [2023]. We use MODNet [Ke et al. 2022]
to extract foreground components to alleviate background leakage.
The transfer vector decoder Ψ𝑡 is implemented as a lightweight
MLP with one hidden layer of 64 units. We train the models on the
FFHQ dataset [Karras 2019] from scratch for 15M images with four
NVIDIA H800 GPUs.

4.2 Quantitative Comparisons
Baselines. We compare our method with previous publicly acces-

sible works for novel view portrait relighting: ShadeGAN [Pan et al.
2021], Volux-GAN [Tan et al. 2022], NeRFFaceLighting [Jiang et al.
2023]. We also include LumiGAN [Deng et al. 2024], which is not
accessible, and report results from the original paper if presented.
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Table 1. Comparison of generative quality and rendering speed. KID is
reported by 100×. SR denotes super resolution. For relighting methods,
rendering speed is measured under varying illumination and view direction.
All methods render at 512 resolution except for Volux-GAN at 256 on a
single RTX A6000 GPU. We bold the best score, underline the second, and
double-underline the third.

Method SR FID ↓ KID ↓ Rendering Speed ↑
EG3D ✓ 4.30 0.132 42 fps
GSGAN × 5.60 0.161 245 fps

Volux-GAN ✓ 59.79 4.124 21 fps
ShadeGAN ✓ 9.92 0.453 0.5 fps
LumiGAN ✓ 5.28 0.251 -
NeRFFaceLighting ✓ 4.16 0.147 2.8 fps

Ours × 5.71 0.151 243 fps

Table 2. Comparison of lighting quality.

Method Lighting Error↓ Lighting Stability↓
StyleFlow 0.7523 0.1530
DisCoFaceGAN 0.5860 0.1335
GAN-Control 0.6647 0.1485

ShadeGAN 1.0714 0.2149
NeRFFaceLighting 0.6377 0.1455

Ours 0.6213 0.1537

Table 3. Comparison of spatial consistency. SR denotes super resolution.

Method SR PSNR↑ SSIM↑ Id. Sim. (view) ↑
EG3D ✓ 38.13 0.9612 0.7501
GSGAN × 35.85 0.9395 0.7416

ShadeGAN ✓ 24.23 0.7316 0.5238
Volux-GAN ✓ 31.64 0.8820 0.6882
NeRFFaceLighting ✓ 37.98 0.9561 0.7303

Ours × 35.57 0.9521 0.7538

Generative quality and rendering speed. We follow Chan et al.
[2022] and compute Frechnet Inception Distance (FID) [Heusel et al.
2017] and Kernel Inception Distance (KID) [Bińkowski et al. 2018]
between 50k generated images and all training images. From Table 1,
we see that EG3D-based methods have a higher FID due to the 2D
super-resolution module, which upsamples low-resolution volume
rendering results at the cost of losing 3D consistency. Our method
achieves similar or even better generative quality than our backbone
GSGAN [Hyun and Heo 2024]. Moreover, our method maintains a
high rendering speed, surpassing other relighting works by at least
12×. This is attributed to the simple yet effective architecture of our
unified radiance transfer relighting framework.

Lighting quality. Following Jiang et al. [2023], we measure the
relighting performance with an off-the-shelf estimator [Feng et al.
2021] using two metrics: the Lighting Error computes the distance
between real lighting and estimated lighting in fake images; the
Lighting Stability computes the standard deviation of estimated
lighting in 100 fake images generated using the same lighting con-
ditions. The metrics are averaged for 1000 samples. Since these
metrics can only be applied to methods with lighting conditions
estimated from real images, Volux-GAN and LumiGAN are excluded.
Instead, StyleFlow [Abdal et al. 2021], DisCoFaceGAN [Deng et al.
2020], and GAN-Control [Shoshan et al. 2021] are included as 2D
generative relighting methods for comparison. Table 2 shows that
our method is comparable in lighting quality with state-of-the-art
3D-portrait relighting methods. The 2D relighting method DisCo-
FaceGAN has higher lighting scores at the cost of low generative
quality. Moreover, our method can perform RGB relighting, thanks
to its linear radiance transfer framework. This is not achievable by
other methods based on implicit neural relighting.

Spatial consistency. Following Hyun and Heo [2024], we use a
surface estimation model NeUS2 [Wang et al. 2023] to validate the
spatial consistency of 3D-aware relighting models. Specifically, we
randomly generate 30 views of a lit subject, fit them to surface esti-
mation, and compute the reconstruction error using standard PSNR
and SSIM metrics. We generate 30 subjects and record the average
metrics. We also include the identity similarity metric proposed
by Tan et al. [2022], and report the mean score across 30 views.
From Table 3 we see that although EG3D-based methods do not
preserve exact 3D consistency due to 2D super resolution, they do
not exhibit disadvantages in terms of reconstruction error. This is
possibly because EG3D and NeUS2 share a similar implicit represen-
tation and volume rendering process. However, in terms of identity
similarity, our method achieves the highest score, demonstrating
better 3D consistency than other methods. In general, EG3D-based
methods suffer from texture flickering when continuously changing
viewpoint due to 2D super resolution, while our method renders
an explicit 3D Gaussian model and maintains view consistency. We
further refer to the video demo for better visual comparison.

4.3 Qualitative Comparison
The Lighting Error and Lighting Stability metrics used in Section 4.2
can only evaluate the lighting similarity by an off-the-shelf lighting
estimator. To further evaluate lighting quality under colored light
conditions and compare the lighting realism under human eyes, we
compare our method to previous works in real environment map
lighting conditions. We include NeLF [Sun et al. 2021], which is
trained using a synthetic lightstage dataset and needs multi-view
inputs. Figure 3 shows that our method achieves better relighting
quality than previous methods. Volux-GAN [Tan et al. 2022] uses 2D
convolution layers to add shadows and details, leading to view in-
consistencies. NeRFFaceLighting [Jiang et al. 2023] can only handle
white-light conditions and performs poorly on environment map
lighting. LumiGAN [Deng et al. 2024] relies on inverse rendering,
and incorrect geometry decoupling leads to lighting artifacts, like
the unnatural lit parts on the cheek and beside the wings of the
nose. NeLF shows poor visual quality and loses facial details like
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Fig. 3. Qualitative Comparison. We use the same environment maps as LumiGAN [Deng et al. 2024] for comparison, since it is not publicly accessible.

wrinkles and pores. In contrast, our method performs well both in
visual quality and relighting quality.

4.4 Visual Relighting Results
Our model presents overall good photorealism under different light
intensity and directions, as shown in Fig 4. Colored illumination
can also be handled correctly, as shown in Figure 5. Given an envi-
ronment map, image-based lighting requires first converting it to
spherical harmonic (SH) coefficients. Specifically, we apply Gauss-
ian blurring before SH sampling with a radius of 0.1× image width
to remove high-frequency details. Image-based lighting results are
shown in Figure 6. Thanks to the unified radiance transfer frame-
work, our approach responds linearly to incident light and innately
satisfies the light transport consistency. Our method maintains 3D

consistency in head poses while delivering plausible albedo and
relighting results under various environment maps.

Real portrait relighting. With the help of the GAN inversion tech-
nique, our model can relight real-face images. The basic idea is to
project a real-face image into the latent space and manipulate light-
ing during reconstruction. We implement the inversion similar to
Pivotal Tuning [Roich et al. 2022] and compare the result with NeRF-
FaceLighting in Figure 7. Our method produces better photorealism
and identity consistency. We also quantitatively evaluate identity
consistency using cosine similarity of VGGFace [Parkhi et al. 2015]
embedding on a subset of the Goliath dataset [Martinez et al. 2024],
which has 4 sets of light-stage head capture. Our method (0.443)
significantly outperforms NeRFFaceLighting (0.298).
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Albedo Light Condition 1 Light Condition 2 Light Condition 3 Light Condition 4

Fig. 4. White lighting samples of our method. Lighting conditions are provided at the lower left corner.

4.5 Other Design Choices and Ablation Study
Multiple design choices exist for implementing unified radiance
transfer in the 3D-GAN framework. First, the model could be trained
using RGB lighting labels instead of monochromatic ones. Second,
diffuse and specular reflectance could be modeled separately. We
discuss these designs and validate their feasibility. We then conduct
an ablation study on our proposed unified radiance transfer.

No white-light assumption. Some works [Fei et al. 2023; Phongth-
awee et al. 2024] allow extracting estimated RGB lighting conditions
from a single image, which makes training on colored illumination
possible. We follow the same setting and modify the parameteriza-
tion of lighting labels and transfer functions from 1 channel to 3
channels. We use [Fei et al. 2023] to extract HDRI environment maps
and turn them into 3rd-order RGB spherical harmonics coefficients.
As shown in Figure 8, without explicit supervision of intrinsics,
training under RGB lighting conditions leads to faded albedo. In
this case, the contribution to appearance is entirely provided by

Albedo Colored Illumination 1 Colored Illumination 2

Fig. 5. RGB lighting samples of our method.
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Albedo Environment Map 1 Environment Map 2 Environment Map 3 Environment Map 4

Fig. 6. Environment map relighting samples of our method. The first column presents albedo images and the rest columns present renderings under different
environment maps and view directions. Environment maps are rotated for different rows.

lighting, and relighting becomes a style transfer process. The model
overfits on certain lighting conditions, does not learn a physically
consistent lighting model, and fails under unseen lighting.

diffuse and specular decomposition. Inverse rendering is widely
adopted in portrait relighting [Deng et al. 2024; Kim et al. 2024;
Saito et al. 2024] to infer physical properties such as geometry,
materials, and lighting. Diffuse and specular terms are often decou-
pled using different lighting models. We validate this setting in the
3D-GAN framework. We decouple the transfer vector t(v̂) into view-
independent diffuse transfer vector tdiffuse and view-dependent spec-
ular transfer vector tspecular (v̂). However, without explicit supervi-
sion, albedo, diffuse, and specular terms are disentangled incorrectly
and exhibit significant inconsistencies, as shown in Figure 9.

Ablation study. We validate the effectiveness of unified radiance
transfer in Table 4. Without radiance transfer, we assume the color

is directly predicted by a decoder that takes in lighting conditions.
All models are trained for 3M images before evaluation. We find
that radiance transfer provides strong lighting manipulation ability,
demonstrated by the significant increase in Lighting Error in the
case without radiance transfer. At the same time, without the view
condition, the lighting accuracy also drops since the vanilla vector-
based radiance transfer cannot model specular effects. In this case,
the albedo is often observed with specular residuals. In contrast, our
complete unified radiance transfer representation achieves the best
lighting manipulation accuracy and yields smooth albedos. From
Figure 10, view conditioning reduces most highlight residuals in
albedo and yields more satisfactory relighting results.
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Fig. 7. Results of real portrait relighting and novel view synthesis. LC and VD stand for light condition and view direction, respectively. Our method shows
better photorealism and identity consistency compared to NeRFFaceLighting [Jiang et al. 2023].

Albedo Seen Lighting Unseen lighting

Fig. 8. Visual comparison between training under RGB light condition
(left) and white light condition (right), both trained for 3M images. We
present albedo and relighting results under seen lighting and unseen lighting.
Lighting conditions are provided at the lower left corner.

Albedo Diffuse Specular Render

Fig. 9. Visual demonstration of diffuse and specular decomposition. Color
inconsistencies are marked by red dashed boxes.

5 CONCLUSION, LIMITATION, AND FUTURE WORK
We present GSHeadRelight, a real-time relightable 3D-aware por-
trait synthesis framework based on a unified radiance transfer rep-
resentation, addressing the challenging problem of colored lighting
manipulation in the 3D-GAN setting. Our model learns the light

Albedo Left Light Albedo Left Light

(A) w/o View Condition (B) w/ View Condition

Fig. 10. Visual ablation of view condition. Albedo and left light renderings
with and without view condition are presented. Zoom in for a better view.

Table 4. Quantitative ablation of unified radiance transfer. R.T. denotes
radiance transfer and V.C. denotes view condition.

Method Lighting Error↓ Lighting Stability↓
w/o R.T. 1.2296 0.4288
w/o V.C. 0.7019 0.1723
Ours 0.6520 0.1582

transport functions under a white-light assumption from casual
image datasets, without requiring expensive and inaccessible light-
stage captured data. Since our model responds linearly to incident
lighting and innately retains light transport consistency, it general-
izes well to colored illumination and produces overall high-quality
relighting results. The simple model design discards network evalu-
ation for each light condition, adding real-time relightability for 3D
head synthesis. Extensive evaluations demonstrate that our method
achieves state-of-the-art 3D-aware relighting quality, superior real-
time performance, and better spatial consistency compared with
previous relighting methods.
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Albedo (A) (B) (C)

Fig. 11. Failure cases. Albedo with highlight residuals and renderings under
illumination from three directions are presented. Zoom in for a better view.

One limitation of our method is that it mainly models low-
frequency and diffuse lighting effects due to the nature of radi-
ance transfer in the spherical harmonics basis. Although the view-
conditioned radiance transfer decoder models low-frequency view-
dependent effects to some extent, our method is still not expressive
enough for high-frequency reflections. In some cases, the model
incorrectly learns the specular highlight in the albedo. As shown in
Figure 11 (A), highlight on the right cheek remains in the albedo and
leads to artifacts. In addition, relighting under illumination from
below the face region may seem implausible, as shown in Figure 11
(C). This is because such illumination is scarce in in-the-wild images.

For future work, it is interesting to model high-frequency and
largely view-dependent effects on top of this explicit linear light-
ing model to support more complex lighting conditions other than
spherical harmonics. Exploring the adaptation of our method to
dynamic human head scenarios is also worth further investigation.
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