

Improving Induction Motor Fault Classification Accuracy

Through Enhanced Multimodal Preprocessing, Artificial Image

Synthesis, Deep Learning and Load-Adaptive Graph-Based

Methods

A thesis submitted to Cardiff University in the candidature for the degree of

Doctor of Philosophy (Engineering)

Name: Shahd Ziad Hejazi

ID #: 1963733

Supervisors: Dr. Michael Packianather

Prof. Ying Liu

School of Engineering

Cardiff University

Wales, United Kingdom

November 2024

i

Abstract

This thesis aims to improve the accuracy of fault classification in Induction Motor

(IM) bearings by developing and applying advanced Artificial Intelligence (AI) and Machine

Learning (ML) techniques for condition monitoring data. The proposed framework utilises

several approaches, namely, Multimodal Data Preprocessing, Artificial Thermal Image

Creation, Customised Radial Load Assessment, Multimodal Systems Decision Fusion, and

Graph Convolutional Networks (GCN) on Tabular Datasets to achieve better classification

accuracies over existing methods.

This study's first significant contribution is the proposed novel approach in the

preprocessing of multimodal condition monitoring data for classifying induction motor

faults that employs Convolutional Neural Networks (CNNs), such as Residual Network-18

(ResNet-18) and SqueezeNet, to fuse vibration signals and thermal images. This approach

enhances fault classification accuracy by 14.81% and proves exceptionally effective in

scenarios with compromised image quality. Further refinement using Gramian Angular Field

(GAF) processing enhances the detection of subtle fault indicators, achieving better accuracy

than Continuous Wavelet Transform (CWT).

Secondly, this thesis explores the creation of high-quality artificial thermal images

using Wasserstein GAN with Gradient Penalty (WGAN-GP) and its conditional variant,

conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP), to address the scarcity

of thermal imaging data. The artificial thermal images replicate complex thermal patterns of

IMs under various fault conditions with remarkable accuracy, as evidenced by the improved

Maximum Mean Discrepancy (MMD) scores and a 40.00% reduction in training times. The

high fidelity of these artificially generated images, validated against real images,

underscores their practical use in fault classification.

Thirdly, the Customised Load Adaptive Framework (CLAF) introduces a novel

approach to incorporating load variations into fault classification. Through a two-phase

process involving ANOVA and optimal CWT, load-dependent fault subclasses—Mild,

Moderate, Severe, and Normal (fault-free) or Healthy—are identified. The CLAF achieved

an accuracy of 96.30% ± 0.50% in 18.155 s during five-fold cross-validation using a Wide

ii

Neural Network (WNN), demonstrating its ability to detect subtle fault variations across

different Load Factors (LFs).

Fourthly, building upon the CLAF’s load-dependent fault subclass structure, the

research proposed two key methodologies for enhancing load-specific condition monitoring

accuracy while optimising training time relative to complexity using the MFPT bearing

dataset namely, the Load-Dependent Multimodal Vibration Signal Enhancement and Fusion

(LD-MVSEF) method, and the Hybrid Graph-CNN Decision Fusion (HG-CDF) method.

The LD-MVSEF employs a multimodal approach across multiple channels, with different

signal encoding techniques achieving a fault classification accuracy of 99.04% ± 0.22% over

five runs in 18 min 30 s. It performed particularly well in the Moderate class, achieving

99.15% ± 0.89% testing accuracy, and scored 97.20% ± 1.75% in the Mild class.

The proposed HG-CDF combines the structural strengths of Graph Convolutional

Networks (GCNs) with the pattern-detection capabilities of 1D-Convolutional Neural

Networks (1D-CNNs) for CLAF load-dependent fault subclass classification. The study

began by optimising the GCN through Taguchi experiments, converting tabular data into

graph structures using the k-Nearest Neighbours method and achieving a mean accuracy of

89.01% ± 1.25 across nine configurations. HG-CDF further improved performance, reaching

an overall accuracy of 99.19% in just 3 minutes and 28 seconds, surpassing LD-MVSEF in

the Mild class with 98.92% accuracy while also providing a faster and more efficient

solution.

The methodologies proposed in this research significantly enhance the IM fault

classification task, improve the decision-making process, and offer scalable solutions

adaptable to other domains.

iii

Acknowledgements

I am sincerely grateful to my first supervisor, Dr Michael Packinather, for his invaluable

guidance, unwavering support, and insightful feedback throughout my research. Dr

Packinather’s expertise and dedication have been instrumental in shaping the outcome of

this thesis. I am genuinely grateful for his mentorship and encouragement.

I am also deeply indebted to my second supervisor, Prof. Ying Liu, from Cardiff

University. Prof. Liu’s expertise in the field and constructive criticism have been invaluable

in refining the direction of my research. Their guidance and encouragement have played a

significant role in completing this work.

I express my sincere appreciation to the Saudi Arabian Cultural Bureau for their

financial support and sponsorship throughout my doctoral studies, which have enabled me

to pursue my academic goals and fostered valuable opportunities for growth and learning.

Additionally, I extend my gratitude to Cardiff University for their staunch support.

Furthermore, I sincerely thank my family for their unwavering support, love, and

understanding throughout this journey. Their constant encouragement and belief in my

abilities have strengthened and motivated me. I am genuinely grateful for their presence in

my life.

I also thank my husband for his continuous support, patience, and encouragement. His

steady belief in me and willingness to listen and provide insightful advice have been

invaluable. I am grateful for his love and companionship, which have made this challenging

journey more manageable.

Lastly, a special and heartfelt thanks goes to my daughter, Ghalia, who came into this

world during the final stages of this research. Her arrival marked the most beautiful chapter

of my life and gave deeper meaning to the completion of this journey.

iv

Table of Content

Abstract ... i

Acknowledgements ... iii

Table of Content ... iv

List of Figures ... ix

List of Tables .. xii

List of Abbreviations ... xv

List of Symbols .. xxii

List of Publications .. xxvii

Chapter 1: Introduction .. 1

1.1 Background ... 2

1.2 Aim and Objectives ... 6

1.3 Alignment of Research Objectives with Methodologies and Chapter Structures 7

1.4 Research Questions ... 10

1.5 Thesis Outline and Contribution ... 10

1.6 Thesis Limitations and Assumptions .. 14

Chapter 2: Literature Review .. 15

2.1 Induction Motors (IMs) ... 16

2.1.1 Induction Motor Bearing Fault Frequency ... 16

2.2 Artificial Intelligence (AI) .. 16

2.2.1 Machine Learning (ML) ... 17

2.2.2 Deep Learning Approaches for Fault Classification .. 22

2.2.3 Convolutional Neural Networks (CNNs) ... 25

2.2.4 Generative Adversarial Networks (GANs) .. 27

2.2.5 Graph Neural Networks (GNNs): Definition and Overview 27

v

2.3 Two-Dimensional (2D) Signal Encoding Techniques .. 30

2.3.1 Gram Angular Field Signal Encoding (GAF) .. 30

2.3.2 Wavelet Transform (WT) ... 30

2.4 Feature Extraction Domains in Signal Processing .. 31

2.5 Multimodal Fusion Techniques ... 32

2.6 State of the Art, Research Gaps, and Directions in Each Research Theme 34

2.6.1 Multimodal Data Preprocessing Methodology .. 34

2.6.2 Artificial Thermal Image Creation ... 36

2.6.3 Customised Radial Load Assessment .. 39

2.6.4 Multimodal Systems Decision Fusion Approach ... 43

2.6.5 Graph Convolutional Networks (GCNs) on a Tabular Dataset Application 48

2.7 Summary ... 50

Chapter 3: Novel Preprocessing of Multimodal Condition Monitoring Data for

Classifying Induction Motor Faults Using Deep Learning Methods 52

3.1 The Impact of Data Representation on the Performance of Machine Learning Models

in Fault Classification .. 53

3.2 Proposed Methodology ... 54

3.2.1 Preprocessing Multimodal Data for Induction Motor Fault Classification Method

 ... 55

3.2.2 Dataset .. 57

3.3 Results And Discussion ... 58

3.3.1 Input Channels .. 58

3.3.2 Two Dimensional Signal Encoding Techniques .. 60

3.3.3 Multimodal Image Fusion Preprocessing ... 69

3.3.4 Pre-trained CNNs for Fault Classification ... 71

3.4 Summary ... 76

vi

Chapter 4: A Novel Approach Using Wasserstein Generative Adversarial Networks

with Gradient Penalty (WGAN-GP) and Conditional WGAN-GP for Generating

Artificial Thermal Images of Induction Motor Faults ... 78

4.1 Proposed Methodology ... 79

4.1.1 Foundational Study of Generative Adversarial Networks (GANs).................... 80

4.1.2 Advanced GANs Framework ... 83

4.1.3 Dataset .. 87

4.2 Results and Discussion .. 88

4.2.1 Basic Deep Convolutional Generative Adversarial Network (DCGAN) and

WGAN-GP .. 88

4.2.2 Advanced WGAN-GP and cWGAN-GP ... 91

4.3 Summary ... 96

Chapter 5: A Novel Customised Load Adaptive Framework (CLAF) for Induction

Motor Fault Classification Utilising the MFPT Bearing Dataset 99

5.1 Proposed Methodology ... 100

5.1.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis 100

5.1.2 Customised Load Adaptive Framework for IM Bearings Fault Classification 104

5.1.1 Dataset .. 106

5.2 Results and Discussion .. 106

5.2.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis 106

5.2.2 Customised Load Adaptive Framework for IM Bearings Fault Classification 119

5.3 Summary ... 134

Chapter 6: A Novel Load-Dependent Multimodal Vibration Signal Enhancement and

Fusion (LD-MVSEF) for Load-Specific Condition Monitoring 136

6.1 Proposed Methodology ... 137

6.1.1 Load-Dependent Multimodal Vibration Signal Enhancement and Fusion 137

6.1.2 Dataset .. 141

vii

6.2 Results and Discussion .. 141

6.2.1 Data Preparation ... 142

6.2.2 Multichannel Input Preparations .. 143

6.2.3 Feature Extraction and Classifier Selection for Channel 1 (Raw Vibration Signal):

 ... 147

6.2.4 . Channels Classification Approaches and Training Methods 150

6.2.5 Single-Channel Performance Analysis ... 154

6.2.6 Decision Fusion .. 155

6.3 Summary ... 161

Chapter 7: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification .. 164

7.1 Proposed Methodology ... 165

7.1.1 Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification ... 165

7.1.2 Dataset .. 169

7.2 Results and Discussion .. 169

7.2.1 Dataset Introduction and Preprocessing ... 169

7.2.2 Deep Learning Model Preparation ... 171

7.2.3 Comparative Model Evaluation and Fusion Approach 186

7.2.4 Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7) in Mild and

Moderate Class Fault Detection .. 196

7.3 Summary ... 197

Chapter 8: Conclusionss ... 199

8.1 Conclusions ... 200

8.2 Contributions to Knowledge ... 203

8.3 Study Limitations .. 204

viii

8.4 Future Work .. 204

References .. 206

Appendix 1: Pythons Codes in Jupyter Notebook .. 243

Appendix 2: MATLAB Code ... 249

Appendix 3: Google Colab Codes .. 323

Appendix 4: Chapter 6 Extra Results ... 361

ix

List of Figures

Figure 1.1: Alignment of Research Objectives with Chapters’ Methodologies. 8

Figure 2.1: The Relationship Between Artificial Intelligence, Machine Learning and Deep

Learning (Martin, 2021). ... 17

Figure 2.2: Supervised and Unsupervised Machine Learning Techniques (Tangirala, 2020;

Edeh et al., 2022). .. 18

Figure 2.3: The Three Levels of Fusion (a) Sensor Fusion, (b) Sensor Data Represented by

Feature Vectors, (c) Decision Fusion After the Classification Model (Debie et al., 2021). 33

Figure 3.1: Preprocessing of Multimodal Condition Monitoring Data for Classifying

Induction Motor Faults Using Deep Learning Methods. .. 56

Figure 3.2: Thermal Images for all the Faults and Healthy Conditions: (a) 8 Bars; (b)IRF;

(c) ORF; (d) Ball; (e) 4 bars; (f) Normal (fault-free) or Healthy condition; and (g) 1 Bar. 58

Figure 3.3: Compromised-Quality Thermal Images (Preprocessing Stage). 59

Figure 3.4: GADF Encoded Images Demonstration. ... 64

Figure 3.5: CWT Encoded Images Demonstration. ... 64

Figure 3.6: Stitched Multimodal Image Dataset Samples Per Health Condition. 69

Figure 3.7: Microsoft Excel PowerQuery CSV. File for The Stitched Multimodal Image

Arrangement. ... 70

Figure 3.8: Stitched Multimodal Image Dataset Encoding Technique. 71

Figure 3.9: Thermal Images Vs. Proposed Methodology Accuracy Per Fault. 74

Figure 3.10: Vibration Signal Encoding Models Accuracy Per Fault................................ 75

Figure 4.1: Proposed Wasserstein GAN with Gradient Penalty (WGAN-GP) Methodology.

 ... 85

Figure 4.2: Proposed Conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP)

Methodology. .. 86

Figure 4.3: Bearing Faults (a) IRF, (b) ORF (Al-Musawi et al. 2020). 87

Figure 4.4: Thermal Images for all the Faults and Normal Health Conditions: (a) 8Bars;

(b)IRF; (c) ORF; (d) Ball; (e) 4Bars; (f) Normal (fault-free) or Healthy condition; and (g)

1Bar. .. 87

Figure 4.5: WGAN-GP Generated images at Epoch 0... 90

x

Figure 4.6: WGAN-GP Generated Images at Epoch 100. ... 90

Figure 4.7: WGAN-GP Generated Images at Epoch 10000. ... 91

Figure 4.8: Generated Images Class: (Normal (fault-free) or Healthy condition) with

Resolution 128 x 128 Using WGAN-GP. ... 92

Figure 4.9: Generated Images with Resolution 128 x 128 using cWGAN-GP. Each Row

Represents a Different Health Condition Class from Row One to Row Seven, Representing

8 Bars, IRF, ORF, Ball, 4 Bars, Normal (fault-free) or Healthy, and 1 Bar, Respectively. 92

Figure 5.1: Time and Frequency Domain Load-Dependent Pattern Analysis Methodology .

 ... 101

Figure 5.2: Customised Load Adaptive Framework (CLAF). ... 105

Figure 5.3: AR Model: (a) Order Two and Peak = 1; (b) Order Fifteen and Peak = 5. ... 112

Figure 5.4: (a) IRF Signal Trace Peak Count (Represented By Red Boxes) For

Innerracefault_Vload_1 Dataset, (b) ORF Signal Trace Peak Count For Outerracefault_3

Dataset (Represented By Red Boxes) and (c) Normal (fault-free) or Healthy Condition

Signal Trace for Baseline_1 Dataset, No Peaks. ... 121

Figure 5.5: Mean Absolute WSE Values for Different Mothers of Wavelets. 125

Figure 5.6: Two Samples’ t-Test Results Compare IRF Load Factors (50, 100, 150, 200,

250, 300) With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270).

 ... 128

Figure 5.7: Two Samples’ t-Test Results Compare ORF Load Factors (50, 100, 150, 200,

250, 300) With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270).

 ... 128

Figure 6.1: Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-

MVSEF) Methodology. ... 140

Figure 6.2: Computer-Aided Drawings of Defects Made on (a) ORF; (b) IRF (Jain and

Bhosle, 2022). ... 141

Figure 6.3: MFPT Bearing Dataset Load Factor Splitting. .. 142

Figure 6.4: Dataset Segmentation Example on the Normal (fault-free) or Healthy Condition.

 ... 143

Figure 6.5: Datastore Structure Linking Raw Vibration Signals with CWT and GADF

Images. .. 144

xi

Figure 6.6: Input Channels General Overview. ... 145

Figure 6.7: CWT 2D Encoded Image Examples From IRF, ORF and The Normal (fault-

free) or Healthy Condition. ... 146

Figure 6.8: GADF 2D Encoded Image Examples From IRF, ORF and the Normal (fault-

free) or Healthy Condition. ... 147

Figure 6.9: CLAF Load-Dependent Fault Subclass Accuracy Assessment Per Channel

Using Different Approaches. ... 155

Figure 7.1: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification. .. 168

Figure 7.2: Graph Visualisation (k = 3). .. 176

Figure 7.3: Graph Visualisation (k = 4). .. 176

Figure 7.4: Graph Visualisation (k = 5). .. 177

Figure 7.5: Levels of Control Factor A, S/N Ratio, and Test Accuracy. 190

Figure 7.6: Levels of Control Factor B, S/N Ratio, and Test Accuracy. 190

Figure 7.7: Levels of Control Factor C, S/N Ratio, and Test Accuracy. 191

xii

List of Tables

Table 2.1: Common Deep Learning Networks. ... 23

Table 2.2: Summary of State-of-the-Art GCN Applications in Fault Classification. 29

Table 3.1: Dataset Used and Subfiles Splitting Count. .. 59

Table 3.2: CNN Architecture Comparison (MathWorks-5, 2023). 66

Table 3.3: Tested Model Performance. .. 73

Table 4.1: GAN Performance for Fault Detection Experiments. 89

Table 4.2: Comparison of GPU types, Training Time, Epochs, FID, MMD, EMD,

Resolution, Class Name, and Method Used for Generating Synthetic Images. 95

Table 4.3: Accuracy Per Health Condition Using AlexNet. .. 96

Table 5.1: Traditional Statistical Features (TSFs). ... 102

Table 5.2: Frequency Domain Features. .. 103

Table 5.3: IRF Dataset Splitting Per Load. .. 107

Table 5.4: ORF Dataset Splitting Per Load. ... 107

Table 5.5: General Time and Frequency Domain Features (IRF). 108

Table 5.6: General Time and Frequency Domain Features (ORF). 108

Table 5.7: Spectral Features by AR Model (IRF and ORF). .. 109

Table 5.8: Std and Range of Time And Frequency Domain Extracted Features for IRF

and ORF. ... 110

Table 5.9: Dataset Segmentation and Subfiles Creation Demonstration. 111

Table 5.10: One-way ANOVA Ranking Including Spectral Features Extracted By AR

Model (a) Order Two, Peak = 1. ... 114

Table 5.11: Classifier Performance Across Feature Selection Thresholds For AR Model

(a) and Peak = 1. .. 114

Table 5.12: One-way ANOVA Ranking Including Spectral Features Extracted by AR

Model (b) Order Fifteen, Peak = 5. ... 115

Table 5.13: Classifier Performance Across Feature Selection Thresholds for AR Model (b)

Order Fifteen, Peak = 5. .. 115

Table 5.14: Top 14 Selected Features Distinguishing Load-Dependent Fault Types: A

Histogram Visualisation. ... 117

xiii

Table 5.15: Comparative Visualisation of Health Condition Signals: 2D Time–Frequency

Diagrams Using Three Types of Mother Wavelet Functions. .. 122

Table 5.16: WSE Scores Comparison with Three Types Mother of Wavelet Functions. 124

Table 5.17: IRF and ORF CWT Mean Energy. ... 127

Table 5.18: IRF and ORF Load-Dependent Fault Subclasses Through CLAF. 130

Table 5.19: CLAF Load-Dependent Fault Subclasses (One-Way ANOVA Ranking, AR

Model Order Fifteen, Peaks = 5). .. 132

Table 5.20: CLAF Load-Dependent Fault Subclasses Classifiers Training on Various

Feature Subsets. ... 133

Table 6.1: IRF Dataset Splitting Per Load Factor. ... 142

Table 6.2: ORF Dataset Splitting Per Load Factor. ... 143

Table 6.3: Multichannel Input Preparations. .. 144

Table 6.4: One-way ANOVA Ranking Including Spectral Features Extracted by

Autoregressive (AR) Model (b) Order Fifteen, Peak = 5. ... 148

Table 6.5: Classifier Performance on Channel 1 Across Distinct Feature Sets Ranked by

One-Way ANOVA Feature Significance. ... 150

Table 6.6: Dataset Information. .. 150

Table 6.7: Channel 1 Classifiers Training. ... 151

Table 6.8: Pre-trained CNN Performance on Channel 2 (CWT Signal Encoded Images).

 ... 152

Table 6.9: Pre-trained CNN Performance on Channel 3 (GADF Signal Encoded Images).

 ... 154

Table 6.10: Alternative Setting and Decision Fusion Weighting System. 156

Table 6.11: a) CubicSVM 5 Runs. ... 158

Table 6.12: b) Wide Neural Network 5 Runs. .. 158

Table 6.13: Accuracy of Channel 2 (AlexNet) Over 5 Runs on CWT Images. 159

Table 6.14: Accuracy of Channel 3 (AlexNet) Over 5 Runs on GADF Images. 159

Table 6.15: Decision Fusion Mild Class Analysis on Test Accuracy Over the 5 Runs. .. 160

Table 6.16: Decision Fusion Moderate Class Analysis on Test Accuracy Over the 5 Runs.

 ... 160

Table 6.17: Decision Fusion Overall Test Accuracy Over the 5 Runs. 161

xiv

Table 6.18: Decision Fusion Overall Training Time Over the 5 Runs. 161

Table 7.1: One-way ANOVA Ranking Including Spectral Features Extracted by

Autoregressive (AR) Model; Order Fifteen, Peak = 5 (Top 20 Features). 170

Table 7.2: Dataset Information. .. 170

Table 7.3: 1D-CNN Model Summary. ... 184

Table 7.4: Taguchi-Derived GCN Model Performance Evaluation. 189

Table 7.5: Taguchi Approach Summary: Signal-to-Noise Ratio by Factor Levels. 189

Table 7.6: GCN using Taguchi with Selective Weighted Loss (SWL) Trials for Mild Class

Performance Improvement. ... 193

Table 7.7: 1D-CNN and Proposed GCN Configurations Performance Evaluation. 194

Table 7.8: Hybrid Graph-CNN Decision Fusion (HG-CDF) Weighting Systems and

Performance Comparison. ... 196

Table 7.9: Accuracy Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7)

Across Fault Subclasses. ... 197

xv

List of Abbreviations

Adaptive Channel Mixing (ACM)

Acoustic Emission (AE)

Analysis of Variance (ANOVA)

Artificial Intelligence (AI)

Adaptive Moment Estimation (Adam)

Adaptive Synthetic Sampling Technique (ADASYN)

Artificial Neural Network (ANN)

Asynchronous Advantage Actor-Critic (A3C)

Autoregressive (AR)

AutoRegressive Integrated Moving Average (ARIMA)

AutoRegressive Integrated Moving Average with exogenous variables (ARIMAX)

Auxiliary Classifier GAN (ACNN)

Back Propagation Neural Network (BPNN)

Batch Normalisation (BN)

Case Western Reserve University (CWRU)

Centre Particle Swarm Optimisation (CPSO)

Centre Frequency (CF)

Conditional Generative Adversarial Networks (cGANs)

xvi

Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (cWGAN-

GP)

Contact-based Non-Invasive Inspection (CNI)

Continuous Wavelet Transform (CWT)

Convolutional Neural Network (CNN)

Cubic Support Vector Machine (CubicSVM)

Customised Load Adaptive Framework (CLAF)

Data-driven Fault Diagnosis (DFD)

Deep Belief Networks (DBNs)

Deep Boltzmann Machines (DBMs)

Deep Convolutional Generative Adversarial Network (DCGAN)

Deep Learning (DL)

Deep Neural Networks (DNNs)

Design of Experiments (DOE)

Decision Tree (DT)

Discrete Wavelet Transform (DWT)

Discriminator (D)

Earth Mover’s Distance (EMD)

Electrocardiogram (ECG)

Electromyographic (EMG)

xvii

Electronic Design Automation (EDA)

Ensemble AdaBoost Decision Tree (EADT)

Fast Fourier Transform (FFT)

False Negative (FN)

False Positive (FP)

Feature Fusion Convolutional Neural Network-Support Vector Machines (FFCNN-SVM)

Fréchet Inception Distance (FID)

Gated Recurrent Unit (GRU)

Generative Adversarial Network (GAN)

Generator (G)

Gradient Angular Difference Field (GADF)

Gradient Penalty (GP)

Gramian Angular Field (GAF)

Gramian Angular Summation Field (GASF)

Graph Convolutional Network (GCN)

Graph Neural Networks (GNNs)

Hybrid Graph-CNN Decision Fusion (HG-CDF)

Infrared (IR)

Infrared Thermography (IRT)

Induction Motors (IMs)

xviii

Inner Race Defect (IRD)

Inner Race Fault (IRF)

Jensen-Shannon Divergence (JSD)

k-Nearest Neighbours (kNN)

k-Nearest Neighbour Graphs (k-NNG)

Knowledge Graphs (KG)

L2-Support Vector Machine (L2-SVM)

Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF)

Load Factor (LF)

Long Short-Term Memory (LSTM)

Machine Learning (ML)

Magnetic Anomaly Detection (MAD)

Machinery Failure Prevention Technology (MFPT)

Markov Decision Processes (POMDPs)

Maximum Mean Discrepancy (MMD)

Mean Square Deviation (MSD)

Monte Carlo Tree Search (MCTS)

Multi-Level Features Fusion Network (MLFNet)

Multi-Scale Neural Transformation Graph (MNT-G)

Multilayer Perceptron (MLP)

xix

Multimodal Two-stream GNN Framework for Efficient Point Cloud and Skeleton Data

Alignment (MTGEA)

Neural Networks (NNs)

Noncommunicable Diseases (NCDs)

Non-Contact-Based Non-Invasive Inspection (NCNI)

Non-Invasive Inspection (NII)

One-Dimensional (1D)

One-Dimensional Convolutional Neural Network (1D-CNN)

One-Dimensional Ternary Patterns (1D-TP)

Outer Race Defect (ORD)

Outer Race Fault (ORF)

Power Factor (PF)

Principal Component Analysis (PCA)

Proximal Policy Optimisation (PPO)

Radio Frequency (RF)

Random Seed (S)

Rectified Linear Unit (ReLU)

Recurrent Neural Networks (RNNs)

Reinforcement Learning (RL)

Residual Network (ResNet)

xx

Residual Network-18 (ResNet-18)

Resource Description Framework (RDF)

Root Mean Square (RMS)

Root Mean Square Propagation (RMSProp)

Root-Mean-Square Frequency (RMSF)

Signal-to-Noise and Distortion Ratio (SINAD)

Signal-to-Noise Ratio (S/N)

Spatial-Temporal Graph Convolutional Network (ST-GCN)

Squeeze Ratio (SR)

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent with Momentum (SGDM)

Stationary Wavelet Transform (SWT)

State-Action-Reward-State-Action (SARSA)

Support Vector Machine (SVM)

Super Resolution - Graph Neural Network (SR-GNN)

Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise

(SMOGN)

Synthetic Minority Oversampling Technique (SMOTE)

Synchronous Reluctance Machines (SynRMs)

Short-Time Fourier Transform (STFT)

xxi

Temporal Graph Convolutional Network (TGCN)

Time and Frequency Domain (TFD)

Total Harmonic Distortion (THD)

Traditional Statistical Features (TSFs)

True Negative (TN)

Two-Dimensional (2D)

Two-Dimensional Convolutional Neural Network (2D-CNN)

True Positive (TP)

t-Distributed Stochastic Neighbour Embedding (t-SNE)

Visual Geometry Group Network (VGGNet)

Vibration Signal Analysis (VSA)

Wasserstein Generative Adversarial Network (WGAN)

Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)

Wavelet Packet Transform (WPT)

Wavelet Scattering Transform (WST)

Wavelet Singular Entropy (WSE)

Wavelet Transform (WT)

Wide Neural Network (WNN)

xxii

List of Symbols

𝑎: Scaling factor in the Wavelet Transform (WT) that stretches or

compresses the wavelet function.

𝑎𝑝: Autoregressive coefficients of the AR model.

𝐴: Adjacency matrix of the graph, where an element 𝐴𝑖𝑗=1 indicates the

presence of an edge between node 𝑖 and node 𝑗.

𝐴𝑖: Amplitude of the i-th harmonic.

𝐴𝐼 ∶ Amplitude of the fundamental frequency.

𝐴𝑅(𝑃):

Autoregressive model of order 𝑃, where 𝑃 indicates the number of

past values the model considers.

𝐶𝑔: Covariance matrix of the feature distribution for generated images,

used in the context of the Fréchet Inception Distance (FID).

𝐶𝑟: Covariance matrix of the feature distribution for real images, used in

the context of the FID.

cos 𝛽: Cosine of the load angle, reflecting the angular displacement under

load.

𝑐𝑜𝑠(𝜙1 + 𝜙1): Cosine of the sum of angles, used in the computation of GASF.

𝑐𝑜𝑠(𝜙1 − 𝜙1): Cosine of the difference between angles, used in the computation of

GADF.

D: The discriminator component of the Generative Adversarial Network

(GAN) that evaluates data points. In the context of WGAN, referred

to as the “critic” instead of the discriminator.

𝐷𝑏𝑎𝑙𝑙: Diameter of the Induction Motor (IM) balls.

𝐷𝑐𝑎𝑔𝑒: Diameter of the IM cage.

𝐷(𝑥|𝑦): Discriminator’s output when provided with a real data sample 𝑥

conditioned on 𝑦 in GANs.

𝔼: Average value over a probability distribution, used in Maximum

Mean Discrepancy (MMD) to measure the average similarity between

samples from real and generated distributions

xxiii

𝑒[𝑛]: Random noise component at time index 𝑛.

𝐹: Constraint that ensures the function f is Lipschitz continuous, a

requirement for the critic in WGAN.

𝑓: Function applied by the critic to evaluate images for WGAN.

𝑓𝐵𝑎𝑙𝑙: Frequency associated with faults in the IM balls of the bearing.

𝑓𝐼𝑅𝐹 : Frequency of the Inner Race Fault in IM.

𝑓𝑚: Rotational frequency of the IM.

𝑓𝑂𝑅𝐹 : Frequency of the Outer Race Fault of the IM.

𝑓1: Trainable function used to process features from neighbouring nodes,

parameterised by 𝜃1
𝐼 in Graph Neural Networks (GNNs)

𝑓2: Trainable function used to update the node feature after aggregation,

parameterised by 𝜃2
𝐼 in GNNs

𝑓(𝑡): Input signal as a function of time t.

G: The generator component of the GAN creates new data points.

𝐺: Represents the graph structure in GNNs.

𝐺(𝑧) 𝑜𝑟 𝑥′ ∶ The output of the Generator in a GAN, where 𝑧 is a noise vector, and

𝐺(𝑧) is the synthetic data generated to resemble real data.

𝐺(𝑧|𝑦): Generator’s output, which is a fake data sample, generated from noise

vector 𝑧 conditioned on 𝑦 in GNNs.

𝑘(𝑥, 𝑦): Gaussian kernel function applied to sample 𝑥 from the real

distribution and sample 𝑦 from the generated distribution in MMD.

𝑘(𝑦, 𝑦′): Gaussian kernel function applied to samples 𝑦 and 𝑦′ from the

generated distribution in MMD.

𝑚: Target value in the nominal-the-best scenario where the goal is to

achieve a specific dimension or value. Used in S/N ratio.

𝑁: Constant used to adjust the scale of the radius in polar coordinates to

prevent image distortion over time. N is used as a constant to adjust

the scale of the radius 𝑟 in polar coordinates to prevent distortion in

Gramian Angular Field (GAF) images.

𝑁𝑏𝑎𝑙𝑙: Number of balls in the IM bearing.

xxiv

𝑁𝑖: Set of neighbouring nodes for node 𝑖 in GNN.

𝑛: Length of the time series, which also defines the dimensions of the

resulting GAF matrix, 𝑛×𝑛.

𝑃𝑔: Probability distribution of data generated by G in GNNs.

𝑃𝑟: Probability distribution of real images in GNNs.

𝑃𝑧: Prior distribution from which the noise vector z is sampled.

𝑝: The order of the Autoregressive (AR) model represents the number of

terms used in the model.

𝑝 = (𝑥|𝑦): The conditional probability distribution of x given y, is not considered

in GANs.

𝑃𝑠𝑖𝑔𝑛𝑎𝑙: The power of the signal, used to calculate the Signal-to-Noise Ratio

(S/N).

𝑃𝑛𝑜𝑖𝑠𝑒: The power of the background noise used in the S/N calculation.

𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛: Power of harmonic distortion.

𝑃𝑧(𝑧): The distribution from which the noise vector 𝑧 is sampled. Used as

the input for generating data in GANs.

𝑟: Radius in the polar coordinates, representing the timestamp 𝑡𝑖 in

Gramian Angular Field (GAF)

𝑠: Scaling parameter, which adjusts the width of the wavelet function,

influencing its frequency characteristics.

𝑇𝑟: Trace of a matrix, used here to calculate the sum of the diagonal

elements of a matrix.

𝑡: Time variable, representing the point in time at which the signal is

analysed.

𝑡𝑖: Timestamp corresponding to the 𝑖-th element of the time series.

𝑉: Set of nodes in the graph in GNN.

𝑉(𝐷, 𝐺): The value function for the GAN is used in the optimisation process.

𝑥: Real data points from the training set.

xxv

X: Set of initial node features for all nodes in the graph, 𝑋={𝑥𝑖
0 ∣𝑖∈𝑉} in

GNN.

X: The original time series data, consisting of elements 𝑥1, 𝑥2, ..., 𝑥𝑛.

𝑥𝑚𝑎𝑥: Maximum value in the time series data.

𝑥𝑚𝑖𝑛: Minimum value in the time series data.

𝑥𝑖
0: Initial feature vector associated with node 𝑖 in GNN.

𝑥𝑖
𝐼: Feature vector of node 𝑖 at the 𝑙-th layer of the GNN after processing.

�̌�𝑖: Normalised value of the time series data at index 𝑖.

𝑥𝑖: Individual element of the time series.

�̅�𝑖: Normalised value of the time series element 𝑥𝑖.

𝑥[𝑛]: The current value of the signal at time index 𝑛.

𝑥(𝑓): The complex value of the signal at frequency bin 𝑓.

𝑦: The additional input representing the label or class information,

conditioning both the Generator and Discriminator in cWGAN-GP.

y: In both MMD and EMD, it represents a sample from the generated

data distribution 𝑃𝑔.

(𝑥, 𝑥′): Independent samples were drawn from the real image distribution

𝑃𝑟 in GANs.

(𝑦, 𝑦′): Independent samples were drawn from the generated image

distribution 𝑃𝑔 in GANs.

∏(𝑃𝑟 , 𝑃𝑔): Set of all possible joint distributions (couplings) between 𝑃𝑟 and 𝑃𝑔

that describe how mass is transported from one distribution to the

other.

‖𝑥 − 𝑦‖: Euclidean distance between points 𝑥 and 𝑦, representing the cost of

transporting mass from 𝑥 to 𝑦.

‖𝜇𝑟 − 𝜇𝑔‖: Euclidean norm (or L2 norm) of the difference between the mean

vectors of real and generated images.

xxvi

𝛾: Transport plan that specifies the amount of mass to be moved from

each point in 𝑃𝑟 to each point in 𝑃𝑔.

𝛾(𝑥, 𝑦): Specific transport plan or joint distribution that details the work

needed to transform 𝑃𝑟 into 𝑃𝑔 from point 𝑥 to point 𝑦.

𝛽: Load angle affects the distribution of forces within the IM bearings.

𝜙: The angle computed using the inverse cosine of the normalised time-

series signal x̃𝑖. Used in transforming the time series into polar

coordinates for GAF image creation.

𝜓(𝑡): The mother wavelet function is a basic wave that is scaled and

translated to match the signal.

𝜓(𝑠,𝜏)(𝑡): A scaled and translated version of the mother wavelet function at time

𝑡, used in WT.

𝜓∗ (
𝑡− 𝜏

𝑠
): The Continuous Wavelet Transform (CWT) of the signal 𝑥(𝑡) using

the wavelet function 𝜓, scaled by 𝑠s and translated by 𝜏.

λi: The i-th singular value from the WT represents the magnitude of

coefficients in the analysis.

𝜇𝑔: The mean feature vector for generated images, used in the FID

calculation to compare generated and real images.

𝜇𝑟: The mean feature vector for real images, used in calculating the FID.

𝜏: The translation factor in the WT shifts the wavelet function along the

time axis.

�̅�: The mother wavelet function is used in WT to analyse the signal.

𝜑: Angle in polar coordinates, calculated as the inverse cosine of 𝑥𝑖 in

GAF.

𝜃1
𝐼 , 𝜃2

𝐼 : Parameters of the functions 𝑓1 and 𝑓2, respectively, at layer 𝑙 in a

GNN.

xxvii

List of Publications

Journal Articles:

1. Hejazi, S.Z., Packianather, M. and Liu, Y. 2024. A Novel Customised Load Adaptive

Framework for Induction Motor Fault Classification Utilising MFPT Bearing

Dataset. Machines 12(1), p. 44. Available at: https://www.mdpi.com/2075-

1702/12/1/44.

Conference Papers:

1. Hejazi, S., Packianather, M. and Liu, Y. 2023. A Novel approach using WGAN-GP

and Conditional WGAN-GP for Generating Artificial Thermal Images of Induction

Motor Faults. Procedia Computer Science 225, pp. 3681–3691. Available at:

https://doi.org/10.1016/j.procs.2023.10.363.

2. Hejazi, S., Packianather, M. and Liu, Y. 2024. Using DCGAN and WGAN-GP to

Generate Artificial Thermal RGB Images for Induction Motors. In: Proceedings of

the Cardiff University Engineering Research Conference 2023. Cardiff University

Press, pp. 113–117. Available at:

https://cardiffuniversitypress.org/site/chapters/e/10.18573/conf1.aa/.

3. Hejazi, S., Packianather, M. and Liu, Y. 2022. Novel Preprocessing of Multimodal

Condition Monitoring Data for Classifying Induction Motor Faults Using Deep

Learning Methods. In: 2022 IEEE 2nd International Symposium on Sustainable

Energy, Signal Processing and Cyber Security (iSSSC). Gunupur Odisha, India, 15–

17 December 2022: IEEE, pp. 1–6. Available at:

https://ieeexplore.ieee.org/document/10051321/

https://doi.org/10.1016/j.procs.2023.10.363
https://ieeexplore.ieee.org/document/10051321/

1

Chapter 1: Introduction

2

1.1 Background

Induction Motors (IMs) play a crucial role across various industries, but a significant

percentage of IM failures, estimated at 40% to 50%, stem from issues related to rolling

bearings (Frosini and Bassi, 2010). Recent studies have highlighted that bearing faults

account for up to 50% of mechanical failures in high-power IMs, underscoring their critical

importance in modern machinery (Nishat Toma et al., 2021). Furthermore, a 2020 IEEE

survey focused on 200 hp motors revealed that bearing faults constituted more than 40% of

all IM faults (Sihag and Sangwan, 2020).

IMs are widely recognised in manufacturing for their simplicity, affordability, and

reliability, powering nearly 40% of global electric consumption across diverse industrial

sectors. These motors, characterised by rotating components, such as rotors, bearings, and

gears, rely heavily on bearings for smooth operation. Bearings typically consist of inner and

outer races enclosing rolling balls within a cage to maintain uniform ball spacing. IM faults

due to excessive loads, fatigue, inadequate lubrication, and misalignment pose significant

operational and safety risks (Toma et al., 2022a).

Bearings play a critical role in supporting IM components to ensure smooth rotation.

Typically, a bearing consists of inner and outer races enclosing rolling balls within a cage,

maintaining consistent ball spacing. Bearing faults often develop gradually, underscoring

the importance of early detection to minimise their impact and associated risks. As these

faults progress, they can impair IM performance, threaten worker safety, disrupt operational

efficiency, compromise product quality, and lead to substantial maintenance costs (Frosini

and Bassi, 2010; Sihag and Sangwan, 2020; Wei et al., 2021).

Hence, the urgent need to establish robust condition monitoring systems for IM

machines is evident. Leveraging Industry 4.0 capabilities and available data to develop

Data-driven Fault Diagnosis (DFD) systems incorporating Deep Learning (DL) techniques

for feature extraction and pattern recognition is essential to address these challenges (Niu et

al., 2020; Nishat Toma et al., 2021). In the Artificial Intelligence (AI) era of advanced

manufacturing, a dependable condition monitoring system for fault detection and

recognition is indispensable to uphold stringent quality standards and effectively manage

the production process (Niu et al., 2020).

3

In the realm of maintenance, Non-Invasive Inspection (NII) is a well-established

tool for monitoring the health of machinery. This technique enables the assessment of the

current health status without disrupting ongoing operations. NII can be categorised into two

main approaches based on sensing methods. The first is Contact-based Non-Invasive

Inspection (CNI), which involves placing sensors directly on the machine’s body. This

includes techniques such as magnetic flux sensing, voltage analysis, machine current

analysis, vibration analysis, and wear debris monitoring. The second approach is Non-

Contact-Based Non-Invasive Inspection (NCNI), whereby sensors are not directly attached

to the inspected part of the machinery system. NCNI methods encompass technologies like

Radio Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging,

Acoustic Emission (AE) sensing, thermographic sensing (which utilises Infrared (IR)

technology), and laser-based techniques (Alotaibi et al., 2021).

Among these approaches, Vibration Signal Analysis (VSA) is recognised as the

conventional method for fault classification (Jia et al., 2019). However, in the domain of

rotational-machine fault diagnosis using signals, signal preprocessing can be conducted

using various techniques, including time-domain, frequency-domain, or time-frequency

domain analysis (Sinitsin et al., 2022). On the other hand, thermal imaging has demonstrated

its superiority in terms of fault classification accuracy compared to vibration signals, as

supported by research conducted by Jia et al. (2019), McGhan and Feayherston (2020), and

Shao et al. (2021). Thermal image-based condition monitoring can achieve nearly 100%

accuracy by leveraging Convolutional Neural Network (CNN) transfer learning capabilities,

with the added benefit of requiring less preprocessing than vibration signal fault

classification (Choudhary et al., 2021; Khanjani and Ezoji, 2021). Furthermore, thermal

images exhibit less sensitivity to speed fluctuations, making them more efficient in specific

scenarios (Shao et al., 2023).

However, it is essential to acknowledge the limitations of thermal images, including

the installation costs for cameras and the potential for camera misalignment, which can

affect the recognition process (Gangsar and Tiwari, 2020). Additionally, the limited

availability and imbalanced distribution of thermal images across specific or all health

conditions can significantly affect the performance of condition monitoring systems (Niu et

al., 2020). Consequently, each input has its strengths and limitations. The motivation for the

4

current research stemmed from recognising the complementary nature of vibration signals

and thermal images and the need to address data availability issues and incorporate load-

dependent factors. This comprehensive exploration of various aspects of condition

monitoring involves combining modalities, enhancing accuracy, and considering load-

dependent factors.

This thesis proposes a multifaceted approach to enhance IM condition monitoring

in light of these considerations. Firstly, the thesis introduces a novel preprocessing

technique which combines contact- and non-contact-based sensing methods, specifically

vibration signals and thermal images. This approach addresses the limitations of thermal

image fault classification found in the literature, including noise and local blur, which can

hinder fault recognition (Fan et al., 2022). By integrating vibration signals as a

complementary data source, it is possible to develop a more reliable condition monitoring

system capable of mitigating noisy data through a holistic view and valuable knowledge

extraction from diverse factors. This approach contributes to the multimodal paradigm and

multi-sensor fusion by proposing a holistic multi-sensor fault classification methodology

with a novel preprocessing technique that creates a fused image incorporating valuable

knowledge extracted from various sources using CNNs and DL capabilities. The thesis also

explores signal encoding techniques, including Continuous Wavelet Transform (CWT) and

Gradient Angular Difference Field (GADF).

Second, this thesis addresses the need to generate an artificial thermal image dataset

mimicking real images under seven health conditions. These conditions include bearing

damages, such as the Inner Race Fault (IRF) type, Outer Race Fault (ORF) type, and ball

damage, as well as rotor damages, including one broken bar, four broken bars, and eight

broken bars, in addition to a Normal (fault-free) or Healthy condition. This approach offers

a promising solution to address the lack of public datasets containing IM thermal images

representing different health states. This is achieved by utilising various Generative

Adversarial Network (GAN) architectures, namely, the Deep Convolutional Generative

Adversarial Network (DCGAN), Wasserstein Generative Adversarial Network with

Gradient Penalty (WGAN-GP), and conditional Wasserstein Generative Adversarial

Network with Gradient Penalty (cWGAN-GP).

5

Third, this thesis advances traditional fault classification methodologies by

introducing a Customised Load Adaptive Framework (CLAF), which accounts for load

variations and dataset customisation. The CLAF represents a pioneering approach,

employing a meticulous two-phase process to reveal load-dependent fault subclasses that

are not readily identified by traditional methods. The study explores how radial load

characteristics influence fault behaviours, employing advanced techniques such as Time and

Frequency Domain (TFD) feature extraction, feature reduction, CWT for time-frequency

analyses, Wavelet Singular Entropy (WSE), and CWT energy to identify novel load-

dependent fault subclasses. The CLAF is customised and tested on the Machinery Failure

Prevention Technology (MFPT) bearing dataset to reveal intricate load-dependent patterns,

providing a profound understanding of the interplay between load dynamics and bearing

fault behaviour. Various Machine Learning (ML) classifiers, including Wide Neural

Network (WNN), Cubic Support Vector Machine (CubicSVM), and Fine Tree, are

incorporated to validate the proposed framework.

Fourth, the thesis proposes the Load-Dependent Multimodal Vibration Signal

Enhancement and Fusion (LD-MVSEF) methodology to improve the classification

accuracy of CLAF load-dependent fault subclasses. Identifying appropriate features has

been recognised as a challenge, as it can be time-consuming and, in certain cases,

impractical, particularly for specific faults or complex machinery (Resendiz-Ochoa et al.,

2018). This method employs a three-channel decision fusion technique, integrating GADF,

CWT, and time and frequency domain features. By utilising this multimodal approach, LD-

MVSEF enhances fault classification accuracy and enables more precise, load-specific

condition monitoring. It consolidates data from multiple channels, optimising classification

across various load conditions and facilitating informed decision-making.

Fifth, the thesis introduces the Hybrid Graph-CNN Decision Fusion (HG-CDF)

approach, which also focuses on improving the classification accuracy of CLAF load-

dependent fault subclasses. A key challenge in using Graph Neural Networks (GNNs) lies

in handling multivariate sensor data, where each sensor represents different factors, often

causing confusion during training (Deng and Hooi, 2021). In contrast, HG-CDF focuses

exclusively on tabular vibration signals, transforming features from the TFD into graph

structures using the k-Nearest Neighbours (kNN) method. It combines the strengths of

6

Graph Convolutional Networks (GCNs), which capture complex relationships within graph

data, and One-Dimensional Convolutional Neural Networks (1D-CNNs), which excel at

detecting sequential patterns in time-series data.

While the previous literature has seldom explored the use of GCNs for fault

classification in IMs, particularly for fault classes derived from the CLAF, GNNs and k-

Nearest Neighbour Graphs (k-NNGs) have been shown to be complementary techniques for

analysing graph data. In particular, k-NNG is essential for constructing graphs from data

points (Wang et al., 2021b; Rangel-Rodriguez et al., 2023), while GNNs excel at identifying

patterns and relationships within graph data, as demonstrated in various fields such as

micro-service systems (Zhang et al., 2023b), power systems (Su et al., 2021), and fault

location in power networks (Mo et al., 2023).

1.2 Aim and Objectives

The aim of this research is to enhance the accuracy of fault classification in IM

bearings by developing and implementing novel artificial intelligence (AI) and Machine

Learning (ML) techniques utilising condition monitoring data. The research objectives are

organised into five main themes as follows:

1) Multimodal Data Preprocessing Methodology: To develop a preprocessing

methodology that integrates multimodal data (thermal images and vibration signals)

to improve fault classification accuracy. Discussed in Chapter 3.

2) Artificial Thermal Image Creation: To create high-quality artificial thermal

images using conditional Generative Adversarial Networks (cGANs) to represent

various IM health conditions. Explored in Chapter 4.

3) Customised Radial Load Assessment: To develop a Comprehensive Load-

dependent Analysis Framework (CLAF) for classifying IM faults into load-

dependent subclasses. Detailed in Chapter 5.

4) Multimodal Systems Decision Fusion Approach: To develop a Load-Dependent

Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) method for

improved CLAF load-dependent fault subclass classification accuracy. Described in

Chapter 6.

7

5) Graph Convolutional Network (GCN) on a Tabular Dataset Application: To

apply a Graph Convolutional Network (GCN) for classifying CLAF load-dependent

fault subclasses. Outlined in Chapter 7.

1.3 Alignment of Research Objectives with Methodologies and Chapter Structures

The research objectives outlined in Section 1.2 are systematically addressed

throughout the chapters of this thesis, ensuring a structured approach to achieving the

overall aim. The objectives and chapters are linked through the integration of multimodal

data, which includes four key inputs:

1) Raw Vibration Signal (from the Machinery Failure Prevention Technology (MFPT)

Bearing Dataset): This dataset contains unprocessed vibration signals from MFPT

bearing, serving as primary indicators of IM bearing conditions. The signals were

recorded under various conditions, including healthy states, ORF, and IRF.

2) Lab-Collected Thermal Images (Cardiff University): Thermal images were captured

using an FLIR thermal camera at Cardiff University's Wolfson Magnetics

Laboratory. These images document the thermal profiles of IM bearings under

different load conditions (8 bars, 4 bars, and 1 bar) and specific faults (IRF, ORF,

and ball faults). A baseline image representing a Normal (fault-free) or Healthy

condition is also included.

3) Compromised Quality Thermal Images (Simulating Real-World Conditions): These

images are artificially degraded versions of the lab-collected thermal images. They

simulate real-world scenarios where thermal images may be noisy or unclear,

helping to test the robustness of fault detection algorithms under suboptimal

conditions.

4) Categorised Load Factor (LF) (from the MFPT Bearing Dataset): The MFPT dataset

is categorised by different operational load conditions (e.g., 50, 100, 150, 200, 250,

and 300). This categorisation allows for the analysis and classification of faults with

respect to varying loads, which is crucial for developing load-specific monitoring

and fault classification techniques.

Figure 1.1 illustrates how each research objective aligns with the specific

methodologies and analyses detailed in the thesis chapters, ensuring a coherent progression

toward improving fault classification accuracy in IM bearings using AI and ML techniques.

8

Figure 1.1: Alignment of Research Objectives with Chapters’ Methodologies.

9

The research objectives are explored in depth in the following chapters (refer to Figure 1.1):

1) Objective 1: Develop a Multimodal Data Preprocessing Methodology

Chapter 3: This chapter addresses the preprocessing stage, where noisy thermal images

(input 3) and vibration signals (input 1) from different datasets are merged into a unified

image. It also assesses different signal encoding methodologies to enhance fault

classification accuracy in induction motor (IM) bearings.

2) Objective 2: Create High-Quality Artificial Thermal Images

Chapter 4: This chapter focuses on the creation of high-quality artificial thermal images

using Generative Adversarial Networks (GANs). It explores the generation of artificial

thermal images from (input 2) that represent various induction motor (IM) health

conditions, thereby improving fault detection capabilities.

3) Objective 3: Develop a Comprehensive Load-dependent Analysis Framework

(CLAF)

 Chapter 5: This chapter introduces the Customised Radial Load Assessment,

developing a Comprehensive Load-dependent Analysis Framework (CLAF) that

classifies induction motor faults into load-dependent fault subclasses based on varying

LFs from the MFPT dataset (input 4).

4) Objective 4: Establish a Load-Dependent Multimodal Vibration Signal

Enhancement and Fusion (LD-MVSEF) Method

Chapter 6: Building on Chapter 5 load-dependent fault subclasses, this chapter

presents the LD-MVSEF method, which integrates multimodal data (including GADF

and CWT. The thesis also explores signal encoding techniques, including Continuous

Wavelet Transform (CWT) and Gradient Angular Difference Field (GADF) images) to

improve the classification accuracy of CLAF load-dependent fault subclasses using

advanced decision fusion techniques tailored to specific load conditions.

5) Objective 5: Apply Graph Convolutional Networks (GCNs) to Tabular Datasets

 Chapter 7: Building on Chapter 5, this chapter explores the application of Graph

Convolutional Networks (GCNs) for classifying load-dependent fault subclasses. It

involves constructing graphs from tabular datasets and applying GCNs to enhance

classification accuracy and efficiency by leveraging the relational dynamics within the

10

data. Additionally, it proposes a Hybrid Graph-CNN Decision Fusion (HG-CDF)

approach, which focuses on further improving the classification accuracy of CLAF

load-dependent fault subclasses.

1.4 Research Questions

Based on the above objectives, this research aims to answer the following questions:

• Q1: How can the integration of multimodal data sources, specifically thermal images

and vibration signals, enhance the accuracy of fault classification in induction motor

(IM) bearings, especially under compromised thermal image quality?

• Q2: How effective are conditional Generative Adversarial Networks (cGANs) in

generating high-quality artificial thermal images for IM health conditions, and how

do these images compare with the original dataset?

• Q3: How can a Comprehensive Load-dependent Analysis Framework (CLAF) be

developed to classify IM bearings faults into load-dependent subclasses (‘Mild,’

‘Moderate,’ and ‘Severe’) based on varying LFs?

• Q4: How can the Load-Dependent Multimodal Vibration Signal and Energy Fusion

(LD-MVSEF) method achieve high accuracy in load-specific condition monitoring

of IMs, and what are the benefits of using a weighted decision fusion technique?

• Q5: How can transforming time and frequency domain features into k-Nearest

Neighbour Graphs (k-NNGs) and applying them to a Graph Convolutional Network

(GCN) enhance the accuracy and efficiency of load-dependent fault classification in

IM bearings, and how does integrating a GCN with a 1D-CNN in a hybrid approach

further improve this classification?

1.5 Thesis Outline and Contribution

This thesis is organised as follows:

Chapter 1: Introduction

This chapter provides an overview of the research context, articulates the study’s

purpose, sets out the objectives and research questions, outlines the thesis structure, and

discusses the limitations and assumptions of the research.

Chapter 2: Literature Review

11

This chapter explores Artificial Intelligence (AI) techniques applicable to IMs,

focusing on ML and DL. It covers AI algorithms, DL architectures, two-dimensional (2D)

vibration signal encoding techniques, and feature extraction methods. The chapter highlights

state-of-the-art research across five key themes: Multimodal Data Preprocessing, Artificial

Thermal Image Creation, Customised Radial Load Assessment, Decision Fusion in

Multimodal Systems, and GCNs on Tabular Datasets. It also identifies research gaps within

each theme.

Chapter 3: Novel Preprocessing of Multimodal Condition Monitoring Data for

Classifying Induction Motor Faults Using Deep Learning Methods

This chapter presents a novel preprocessing approach for multimodal data in fault

classification of IMs using DL methods. The Stitched Multimodal Image Dataset Encoding

Technique integrates vibration signals and thermal images through signal-to-image

encoding techniques, such as CWT and Gramian Angular Field (GAF). By applying CNN

architectures like Residual Network (ResNet) and SqueezeNet, the study demonstrates that

this multimodal feature fusion enhances classification accuracy, particularly under IRF

conditions, even with lower-quality thermal images. The proposed approach improved

classification accuracy by 12.50%, achieving 99.10% ± 0.50% when using both ResNet-18

and SqueezeNet compared to using compromised thermal images alone.

This chapter’s main contribution is as follows:

1) Proposing a novel preprocessing method for multimodal condition monitoring data

to classify IM faults using DL techniques.

Chapter 4: A Novel Approach Using Wasserstein Generative Adversarial Networks

with Gradient Penalty (WGAN-GP) and Conditional WGAN-GP for Generating

Artificial Thermal Images of Induction Motor Faults

This chapter investigates the use of GANs for generating artificial thermal images of

IM faults. Initially, the DCGAN is evaluated to establish a baseline for generating these

images. The chapter then introduces the Wasserstein GAN with Gradient Penalty (WGAN-

GP) and the cWGAN-GP, which produce thermal images closely resembling real ones. The

cWGAN-GP model achieved a Maximum Mean Discrepancy (MMD) score of 1.023,

indicating strong similarity to real images, while the WGAN-GP outperformed it with an

Earth Mover’s Distance (EMD) score of 4.663 compared to cWGAN-GP’s 4.816.

12

Additionally, the cWGAN-GP dataset achieved a classification accuracy of 98.41% using a

pre-trained AlexNet model.

This chapter’s main contributions are as follows:

1) Exploring the use of DCGAN and WGAN to generate artificial thermal images that

closely mimic real thermal images of IM bearing faults.

2) Introducing a novel approach using WGAN-GP and cWGAN-GP for generating

artificial thermal images of IM faults.

Chapter 5: A Novel Customised Load Adaptive Framework (CLAF) for Induction

Motor Fault Classification Utilising the MFPT Bearing Dataset

This chapter presents the CLAF for classifying IM faults into load-dependent

subclasses: ‘'Normal (fault-free) or Healthy condition,’ ‘Mild,’ ‘Moderate,’ and ‘Severe.’

The framework improves traditional fault classification by incorporating load variations and

tailoring the analysis to specific conditions. Developed in two phases, the first phase

identifies load-dependent patterns using statistical ranking and ML classifiers, while the

second phase refines classification with CWT techniques. The chapter details the design,

methodology, and application of the CLAF for enhanced fault classification.

Thus, the contributions of this chapter are as follows:

1) Conducting a comprehensive TFD analysis under six load conditions to reveal

patterns and variations in fault severity.

2) Selecting an optimal CWT approach using Wavelet Singular Entropy (WSE) to

improve feature extraction, denoising, and pattern recognition.

3) Introducing a method for identifying and classifying load-dependent fault

subclasses, including ‘Mild,’ ‘Moderate,’ and ‘Severe,’ which enhances the

understanding of fault severity under different load scenarios.

4) Proposing the CLAF, extending traditional fault classification methods by

incorporating load variations and customising the analysis for different IM datasets.

Chapter 6: Novel Load-Dependent Multimodal Vibration Signal Enhancement and

Fusion (LD-MVSEF) for Load-Specific Condition Monitoring

This chapter introduces the LD-MVSEF approach, which advances load-specific

condition monitoring by building on the CLAF. The LD-MVSEF method improves the

classification accuracy of CLAF load-dependent fault subclasses by integrating raw

13

vibration feature extraction with signal encoding techniques such as CWT and GADF image

conversion. It employs various classifiers to enhance load-dependent fault classification

accuracy, achieving 99.04% ± 0.22% across five runs, with an average training time of 18

min and 30 s, providing a valuable methodology for monitoring machinery conditions.

This chapter’s main contributions are as follows:

1) Proposing the LD-MVSEF approach, which integrates information from GADF,

CWT, and time-frequency domain data to enhance Load-Dependent Fault

Classification, building on the CLAF. This approach improves accuracy, particularly

by using a weighted decision fusion method.

2) Combining diverse analytical dimensions, including one-dimensional (1D) vibration

signals and two-dimensional (2D) RGB images (CWT and GADF-encoded), to

improve classification accuracy.

Chapter 7: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification.

This chapter highlights the potential of GCNs for condition monitoring, particularly

in scenarios requiring fast model training and accurate fault categorisation. By transforming

tabular data into graph structures using the kNN method, GCNs demonstrated a strong

performance in load-dependent fault classification, with a mean accuracy of 89.01% ±

1.25% across nine experiments using the Taguchi design, where each experiment takes

around 28 s. However, the GCN performed lower in the Mild class, prompting the

introduction of the HG-CDF method, which integrates GCN and 1D-CNNs. The hybrid

approach significantly improved accuracy across all CLAF load-dependent fault subclasses,

achieving 99.19% overall accuracy while maintaining computational efficiency with a total

training time of 3.28 min.

The chapter’s main contributions are as follows:

1) Utilising CLAF subclasses in GCNs by refining fault classification through

incorporating CLAF load-dependent subclasses (‘Mild,’ ‘Moderate,’ ‘Severe,’ and

‘Healthy’), offering a tailored approach to condition monitoring.

2) Advancing Feature Extraction by moving beyond raw VSA by applying advanced

feature extraction techniques from both time and frequency domains, enhancing

node relationship modelling, and improving fault detection accuracy.

14

3) Proposing GCNs using Taguchi, which involved transforming data representation by

introducing GCNs for fault classification in IMs, using the k-NNG method to

transform traditional tabular data into graph-based structures, capturing relational

dynamics and advancing the potential of GCNs in this field and selecting the optimal

GCN configuration using Taguchi.

4) Proposing GCN using Taguchi with Selective Weighted Loss (SWL) to enhance

class-specific accuracy, with a particular focus on improving the performance of the

Mild class. By adjusting the model’s focus, SWL effectively boosted the accuracy of

the Mild class while ensuring strong results were maintained across other classes.

5) Proposing an HG-CDF, which combines GCNs and 1D-CNNs to address the GCN’s

limitations in the Mild fault class and in order to improve classification performance

across all subclasses.

Chapter 8: Conclusion

 The final chapter summarises the key contributions of the thesis, identifies the

study’s limitations, and offers recommendations for future research.

1.6 Thesis Limitations and Assumptions

While this thesis primarily focuses on the MFPT bearing dataset for IM condition

monitoring (a publicly available resource), it is essential to acknowledge this research’s

specific scope and context. The proposed frameworks are highly detailed, providing step-by-

step procedures that facilitate easier customisation of different datasets or industrial settings.

However, the current research is tailored to the MFPT bearing dataset and may not cover all

possible real-world scenarios. While efforts have been made to ensure the representativeness

of the MFPT bearing dataset, inherent limitations associated with any dataset may exist. The

study primarily explores vibration signals and thermal images as data sources, leaving scope

for the potential exploration of other types of data. The thermal images used in this study

were collected in a controlled laboratory environment at Cardiff University, representing

seven distinct health conditions with artificially created faults. Although carefully designed,

these conditions may not perfectly replicate all real-world scenarios.

15

Chapter 2: Literature Review

16

2.1 Induction Motors (IMs)

Induction Motors (IMs) play a crucial role in the manufacturing sector and are valued

for their straightforward operation, cost-effectiveness, and dependability. They account for

nearly 40% of global electricity consumption and are integral across diverse industries (Toma

et al., 2022a). A defining characteristic of any rotating machinery, including IMs, is its

components, such as rotors, bearings, and gears. Bearings ensure smooth motor operation,

comprising inner and outer races, rolling balls, and a cage that maintains uniform ball

spacing. Potential IM faults can arise from excessive loads, fatigue, insufficient lubrication,

and misalignment (Toma et al., 2022a).

2.1.1 Induction Motor Bearing Fault Frequency

Each bearing element has a rotating frequency. When a defect occurs, and the rolling

part moves across this damaged part, the vibration energy also deviates at a fixed rate,

generating periodic impulses. So, each defect (Outer Race Fault (ORF), Inner Race Fault

(IRF), and balls fault) has a unique frequency, as shown in Equation (2.1), (2.2) and (2.3),

where, 𝑁𝑏𝑎𝑙𝑙 represents the number of balls, 𝑓𝑚 is the rotational frequency, 𝛽 is the load

angle, and 𝐷𝐶𝑎𝑔𝑒 and 𝐷𝐵𝑎𝑙𝑙 refer to cage and ball diameter, respectively (Toma et al., 2022a).

𝑓𝑂𝑅𝐹 =
𝑁𝑏𝑎𝑙𝑙

2
× 𝑓𝑚 × (1 − (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× 𝑐𝑜𝑠 𝛽)) (2.1)

 𝑓𝐼𝑅𝐹 =
𝑁𝑏𝑎𝑙𝑙

2
× 𝑓𝑚 × (1 + (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× cos 𝛽)) (2.2)

 𝑓𝐵𝑎𝑙𝑙 =
𝐷𝐶𝑎𝑔𝑒

2𝐷𝐵𝑎𝑙𝑙
× 𝑓𝑚 × (1 − (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× cos 𝛽)

2

) (2.3)

2.2 Artificial Intelligence (AI)

Machine Learning (ML) and Deep Learning (DL) fall under the umbrella of Artificial

Intelligence (AI), as shown in Figure 2.1. ML, a component of AI, operates autonomously

with minimal human intervention and typically relies on structured data. In contrast, DL, a

subset of ML, employs Artificial Neural Networks (ANNs) to emulate the learning

mechanisms of the human brain. DL thrives on vast datasets and can handle structured and

unstructured data (Martin, 2021).

17

2.2.1 Machine Learning (ML)

ML is a branch of computer science and an AI component that enables computers to

learn and make decisions without explicit programming. It is applied across different

computational tasks with the primary goal of training machines using provided data, which

may be labelled in supervised learning scenarios or unlabelled in unsupervised learning

cases, to enhance results for specific problems. The key emphasis in ML is on enabling

computers to learn from previous experiences (Mehmood and Selwal, 2020). The choice of

data representation is crucial for the performance of ML models in fault classification,

impacting accuracy, speed, and generalisability. Key factors include feature selection, which

ensures essential information is captured while avoiding overfitting (Kareem and Hur, 2022),

data normalisation to balance feature scales (Jang and Cho, 2021), and data augmentation to

expand the training set and reduce overfitting (Yousuf et al., 2024). Dimensionality reduction

techniques like Principal Component Analysis (PCA) and t-Distributed Stochastic

Neighbour Embedding (t-SNE) help by minimising noise (Wodecki and Michalak, 2021).

Advanced methods, including graph-based representations (Jang and Cho, 2021), knowledge

graphs (Radtke et al., 2023), domain-specific ontologies (Delgoshaei et al., 2022), and hybrid

approaches (Chao et al., 2019), integrate domain knowledge and further optimise model

performance.

Figure 2.1: The Relationship Between Artificial Intelligence, Machine Learning and Deep

Learning (Martin, 2021).

18

ML can be divided into three categories. Figure 2.2 shows how supervised learning

uses labelled data to train an agent with predetermined correct actions, optimising a policy

based on explicit feedback like rewards or penalties. Unsupervised learning, lacking labelled

data and explicit feedback, involves the agent discovering patterns through trial and error

(Tangirala, 2020). Reinforcement learning (RL), the third category, trains an agent through

interactions with its environment, where it learns from rewards or penalties to develop a

strategy that maximises cumulative rewards, making it suitable for complex environments

(Borga and Carlsson, 1992).

Figure 2.2: Supervised and Unsupervised Machine Learning Techniques (Tangirala, 2020; Edeh et

al., 2022).

2.2.1.1 Supervised Learning

Supervised learning in ML features a range of algorithms designed for specific data

types and predictive needs. Below are concise descriptions of some frequently utilised

supervised learning algorithms (Mehmood and Selwal, 2020; Martin, 2021):

1. Support Vector Machine (SVM): An SVM is a powerful classification method that

identifies the optimal hyperplane to separate data into classes, making it particularly

effective in high-dimensional spaces. It can also be applied to regression problems.

SVM transforms data into a new space using a kernel function, enabling linear

classification with the maximum margin between categories. The choice of the

kernel—such as Linear, Polynomial, or Gaussian—determines the effectiveness of

19

this transformation (Khanjani and Ezoji, 2021; Rangel-Rodriguez et al., 2023). A

Cubic Support Vector Machine (CubicSVM), a supervised learning classifier, is well-

suited for high-dimensional data and structured datasets, making it popular for

classification and regression tasks (MathWorks-3, 2024).

2. Naive Bayes: A simple yet powerful classifier based on Bayes' theorem, assuming

predictor independence, Naive Bayes is effective for large datasets and is commonly

used for tasks like spam filtering and sentiment analysis (Prabha, 2022). It can also

be applied to fault detection and maintenance by analysing sensor data to classify

system states (Bodo et al., 2021). It predicts defects in processes like investment

casting using various process parameters in manufacturing. Different variants, such

as Gaussian, Multinomial, Complement, and Bernoulli Naive Bayes, can be

evaluated for the best fit (Sawant and Agashe, 2022).

3. Decision Tree (DT): This model visualises decisions through a graph showing

various outcomes. It is easy to understand, works for classification and regression

tasks, and accommodates categorical and numerical data (Diao and Zhang, 2021). It

utilises a DT to classify pairs of managers dealing with maintenance outsourcing

cases into either “abnormal” or “normal” behaviour patterns, presenting a binary

classification challenge (Chen et al., 2021). Also, the DTs, specifically Classification

and Regression Trees (CART), are used to solve classification and regression

predictive modelling problems. It illustrates this with an example of predicting a

college student’s first-year GPA based on high school GPA, SAT scores, and other

relevant parameters (Njoku, 2019).

4. k-Nearest Neighbours (kNN): k-NN can be used for regression and classification

tasks within supervised learning. It is not exclusively categorised under one or the

other; its application depends on the specific task. It can also be used for classification

and regression problems. For classification, kNN identifies the class of a new sample

based on the majority vote of its nearest neighbours. For instance, kNN has been

applied in classifying brain tumour images, achieving an average accuracy of about

62.00% (Najwaini et al., 2023). For regression, kNN predicts a continuous value for

a new sample based on the average (or weighted average) of the values of its nearest

neighbours. For instance, kNN is effectively used in stock market forecasting,

20

demonstrating its strength in numeric prediction tasks by processing relationships

between numerical data and achieving an accuracy of 70.00% (Ltha et al., 2022).

5. Artificial Neural Networks (ANNs): ANNs are trained with labelled data in

supervised learning to minimise prediction errors. They excel in tasks like gesture

recognition using electromyographic (EMG) signals (Shamsin et al., 2018; Mustaqim

et al., 2023) and regression tasks like residential load forecasting, outperforming

traditional methods like AutoRegressive Integrated Moving Average (ARIMA)

(Chandran et al., 2021). During the COVID-19 pandemic, ANNs such as the

Multilayer Perceptron (MLP) were used for accurate time series forecasting of cases

and deaths, surpassing classical approaches (Borghi et al., 2021). ANNs typically

consist of an input layer, fully connected layers with Rectified Linear Unit (ReLU)

activation, and a softmax layer for classification. Their complexity ranges from

narrow networks with fewer neurons to wide and multi-layered networks that handle

intricate data relationships but are harder to interpret (MathWorks-3, 2024;

MathWorks-6, 2024)

• Ensemble Learning for Fault Detection

Ensemble learning is employed to enhance ML model performance for fault

detection in machinery. The techniques include a voting classifier, combining

predictions from various models like DTs, Random Forests, SVMs, kNNs, and

XGBoost, using soft and hard voting methods. The ensemble models developed using

these base models show improved accuracy in detecting bearing faults in IMs through

Vibration Signal Analysis (VSA). An Ensemble AdaBoost Decision Tree (EADT)

method is proposed for defect detection, utilising features extracted via a Stationary

Wavelet Transform (SWT). These approaches demonstrate the effectiveness of

ensemble methods in achieving more accurate and reliable fault diagnosis in

machinery (Jose et al., 2022).

2.2.1.2 Unsupervised Learning

Unsupervised learning is a branch of ML that focuses on identifying patterns in

unlabelled datasets, making it valuable for discovering hidden relationships in data.

Algorithms are provided with input data without output labels, aiming to detect patterns for

21

tasks like clustering, association, and rule prediction. Common unsupervised learning

techniques include k-means clustering, hierarchical clustering, and PCA (Martin, 2021). The

following are some frequently used unsupervised learning methods (Mehmood and Selwal,

2020; Martin, 2021):

1) k-Means clustering: k-Means is a widely used clustering algorithm that groups nearby

points into clusters by assigning them to the nearest cluster centre based on distance

(Edeh et al., 2022)While simple and effective, k-Means relies on the random selection

of initial cluster centres, which can affect its results (Masud et al., 2019). It is also

used in software engineering to cluster classes by their attributes, helping identify

more maintainable software systems and reducing maintenance time and resources

(Mathur and Kaushik, 2018).

2) Artificial Neural Networks (ANNs): While typically used in supervised learning for

classification and regression, ANNs can also be adapted for unsupervised tasks to

uncover hidden patterns. Autoencoders, a type of ANN, are effective for

dimensionality reduction, anomaly detection, and generative modelling, especially

with high-dimensional data (Sewak et al., 2020; Wu et al., 2021). Advancements in

ANNs for clustering and unsupervised learning are highlighted in studies like those

presented at the International Conference on Artificial Neural Networks (ICANN)

(Ve et al., 2019). Notable research has demonstrated the integration of deep ANNs

with clustering techniques for predicting Noncommunicable Diseases (NCDs),

showcasing their effectiveness in disease prediction (Moreno-Gutierrez and Garcia-

Lopez, 2023).

3) Principal Component Analysis (PCA): PCA is a statistical method that reduces data

complexity by transforming correlated variables into uncorrelated principal

components while preserving essential information. It is commonly used in data

analysis and predictive modelling. For example, PCA has simplified industrial sensor

data for better visualisation and decision-making (Grabowski et al., 2023), reduced

pollutant indices in water quality assessments to highlight key contaminants (Xu et

al., 2021), and improved efficiency in Magnetic Anomaly Detection for real-time

applications (Sheinker and Moldwin, 2016).

22

2.2.1.3 Reinforcement Learning (RL)

RL is a branch of ML where an agent learns decision-making through rewards or

penalties for actions without explicit instructions (Sun, 2020). It is applied in robotics,

autonomous driving, healthcare, finance, logistics, and energy management (Thaipisutikul et

al., 2019; Xiang and Foo, 2021). Key RL algorithms include Q-Learning, Deep Q-Networks

(DQN), Policy Gradient Methods, Actor-Critic Methods, Proximal Policy Optimisation

(PPO), Asynchronous Advantage Actor-Critic (A3C), Monte Carlo Tree Search (MCTS),

Temporal Difference (TD) Learning, and State-Action-Reward-State-Action (SARSA), each

of which is suitable for various complex environments and tasks (Fazel et al., 2018; Haarnoja

et al., 2018; Speck and Bucci, 2018; Naresh et al., 2023; Niu et al., 2023; Zhu et al., 2023a;

Ekpo and Eke, 2024).

2.2.2 Deep Learning Approaches for Fault Classification

Both ML and DL play a crucial role in improving fault diagnostics by minimising

false alarms and enabling early prediction of equipment failures due to their capacity to

process large datasets and learn complex, nonlinear relationships (Arellano-Espitia et al.,

2020; Zhu et al., 2023b). DL techniques, such as Convolutional Neural Networks (CNNs),

Deep Neural Networks (DNNs), and Deep Belief Networks (DBNs), have outperformed

traditional ML methods like SVMs, ANNs, and kNN in fault detection, particularly in

extracting features from vibration signals (Ye et al., 2020; Gao et al., 2023; Qiu et al., 2023).

DL’s multi-layered networks are particularly effective in complex diagnostics, enabling

time-dependent modelling to capture time-shifted effects (Zhang et al., 2020).

Traditional ML techniques remain foundational in various industries, effectively

handling complex datasets in manufacturing and power generation (Zhou et al., 2019; Ren

et al., 2021; Elshenawy et al., 2022; Hakim et al., 2023). DL models, inspired by the human

brain, consist of interconnected layers (neurons) that excel in areas like image recognition

and natural language processing, learning complex patterns from extensive datasets (Abdel-

Jaber et al., 2022; Kufel et al., 2023). Table 2.1 summarises commonly used DL algorithms,

their applications, advantages, and limitations.

23

Table 2.1: Common Deep Learning Networks.

Algorithm

Type

Applications Advantages Limitations References
C

o
n

v
o

lu
ti

o
n

a
l

N
eu

ra
l

N
et

w
o

rk
s

(C
N

N
s)

Object detection, image

classification,

segmentation, facial

recognition,

autonomous driving,

and medical image

analysis.

Excel at identifying

spatial and temporal

relationships in data,

inherently capable of

handling data

translation.

They require extensive

labelled data and high

computational demand.

(Abdel-

Jaber et al.,

2022)

(Wang and

Sng, 2015)

O
n

e-
D

im
en

si
o

n
a
l

C
o
n

v
o
lu

ti
o

n
a
l

N
eu

ra
l

N
et

w
o

rk
s

(1
D

-C
N

N
s)

Handling and learning

from 1D sequential

inputs, such as

financial and structural

sensor data.

Feature a more

straightforward

design than higher-

dimensional CNNs,

enabling faster

training and direct

processing of 1D

sequential data like

time-series without

conversion.

They are less effective

for higher-dimensional

data than deeper, multi-

dimensional CNNs.

(Tran et al.,

2024)

(Liu and Si,

2022)

(Xiao et al.,

2021a)

G
en

er
a
ti

v
e

A
d

v
er

sa
ri

a
l

N
et

w
o
rk

s

(G
A

N
s)

Image and video

enhancement, data

augmentation,

cybersecurity.

Are known for their

capability to produce

high-quality, realistic

synthetic data,

especially valuable in

areas where data are

rare or costly to

acquire.

GANs require

considerable

computational

resources to train two

models—the generator

and discriminator—

through an iterative

process.

(Alqahtani

et al., 2021)

(Sauer et

al., 2021)

G
ra

p
h

 N
eu

ra
l

N
et

w
o
rk

s

(G
N

N
s)

Graph-structured data,

including computer

vision, bioinformatics,

recommendation

systems, traffic

forecasting, anomaly

detection in time series

data.

Can effectively

capture and leverage

both node features

and graph

topology/structure

They can be

computationally

expensive for large

graphs.

(Abdel-

Jaber et al.,

2022)

(Chen et

al., 2022a)

R
ec

u
rr

en
t

N
eu

ra
l

N
et

w
o

rk
s

(R
N

N
s)

 Language modelling,

machine translation,

speech recognition, and

video analytics for

urban surveillance,

Apt at processing

sequential data,

learning from past

inputs

Prone to

vanishing/exploding

gradients,

computationally

intensive.

(Guney et

al., 2021)

(Wang and

Sng, 2015)

L
o
n

g
 S

h
o

rt
-

T
er

m
 M

em
o
ry

(L
S

T
M

)
/

G
a

te
d

R
ec

u
rr

en
t

U
n

it
 (

G
R

U
)

Language modelling,

machine translation,

speech recognition.

Superior at managing

long-term

dependencies in

sequence data

compared to

traditional RNNs.

Its complex structure

has a high

computational load.

(Abdelrazik

et al., 2023)

(Xue et al.,

2022)

24

Algorithm

Type

Applications Advantages Limitations References

A
u

to
e
n

co
d

er
s

Dimensionality

reduction, denoising,

anomaly detection, data

compression.

Capable of

unsupervised

learning,

autoencoders excel at

data representation

and compressing

input into smaller

forms for effective

dimensionality

reduction and data

compression.

Training is challenging

and can result in data

loss, with a sensitivity

to hyperparameters and

initialisation that

requires careful tuning.

(Abdel-

Jaber et al.,

2022)

(Koehler et

al., 2021)

(Refinetti

and Goldt,

2022)

D
ee

p

B
el

ie
f

N
et

w
o

rk
s

(D
B

N
s)

 Dimensionality

reduction, feature

learning, collaborative

filtering

Can be trained layer

by layer, making the

training process more

efficient than training

the entire network.

High computational

costs, challenging

training process.

(Li et al.,

2023a)

(Zambra et

al., 2023)

D
ee

p
 B

o
lt

zm
a
n

n
 M

a
ch

in
es

(D
B

M
s)

DBNs are well-suited

for dimensionality

reduction, feature

learning, and

initialising feedforward

neural networks.

Utilise top-down

feedback connections

across layers for both

training and inference.

Unlike DBNs, which

are trained layer-by-

layer, all DBM layers

are trained

simultaneously,

enabling them to

capture dependencies

and influences across

layers.

Practical use of DBMs

has been more limited

than other DL models,

primarily because of

their complex training

requirements.

(Taniguchi

et al., 2023)

(Li et al.,

2023a)

(Souza et

al., 2017)

(You et al.,

2013)

2.2.2.1 Advancements in Deep Learning for Fault Classification

The evolution from basic neural networks to advanced models like CNNs and Graph

Neural Networks (GNNs) has been driven by the need to process complex data and patterns

across various domains. This progression has focused on optimising DL architectures to

handle more intricate tasks and integrate graph structures for improved performance. In the

1990s, neural networks were primarily applied to RL in partially observable Markov

Decision Processes (POMDPs). By the late 2010s, the focus had shifted to optimising

network structures, hyperparameters, and training methods, enhancing computational power

and complexity (Miikkulainen, 2023).

CNNs, developed in the 1980s, became essential in image processing and three-

dimensional (3D) construction, often paired with Generative Adversarial Networks (GANs)

25

for cost-effective model creation (Lyu and Yu, 2021). GNNs, a newer development, extend

neural network capabilities by incorporating graph structures, although they sometimes

struggle in heterophilic environments where connected nodes differ. Recent advances, such

as Adaptive Channel Mixing (ACM), address these limitations by dynamically adjusting

information aggregation across nodes (Luan et al., 2022).

In predictive maintenance, particularly for Induction Motor (IM) fault classification,

DNNs and GANs play critical roles. DNNs, primarily used in supervised learning, have

shown high fault detection and diagnosis accuracy, surpassing GAN-based oversampling

techniques (Lee et al., 2017). GANs, effective in unsupervised tasks like data generation and

augmentation, enhance predictive maintenance by estimating missing values and predicting

faults (Lee et al., 2020). Additionally, ANNs combined with Park’s vector analysis have

achieved over 99.00% accuracy in motor health classification (Mahesh et al., 2022).

2.2.3 Convolutional Neural Networks (CNNs)

CNNs are specialised Neural Networks (NNs) optimised for pattern recognition,

particularly in computer vision and image processing. Inspired by the human brain's visual

cortex, CNNs are structured to handle grid-like data, such as images, effectively, utilising

local connectivity and spatial relationships to learn efficiently. Consequently, CNNs are

considered powerful tools for image and video recognition. They consist of two main parts:

the feature extractor and the classifier. The feature extractor uses specialised layers to find

essential patterns in the input data. It includes convolutional layers that detect local features

and pooling layers that reduce the data’s size. These layers work together to create a

hierarchical representation of the input. After the feature extractor, the classifier makes

predictions based on the extracted features (LeCun et al., 1998).

All types of CNNs share three essential layers: the convolutional layer, the pooling

layer, and the fully-connected layer. While the softmax function plays a crucial role in the

output layer of a CNN, it is not considered one of the fundamental layers in a basic CNN

architecture softmax function applied at the output layer for multi-class classification. The

convolutional layer utilises convolutional operations to extract more advanced feature

representations. These operations help to identify patterns and structures within the input

data, enabling CNN to learn meaningful features. Next, the pooling layer downsamples the

data through local averaging or selecting the maximum value. This downsampling process

26

concentrates the extracted features, enhancing the efficiency of the CNN. Lastly, the fully-

connected layer aims to understand the relationship between the input and output of the CNN.

It inputs the features that have passed through the convolutional and pooling layers. By

analysing these features, the fully connected layer generates the final output of the CNN.

Combining the convolutional layer, the pooling layer, and the fully connected layer forms

the foundation of CNNs, allowing them to effectively process and extract relevant

information from the input data (Yuan et al., 2020; Zhang et al., 2021a).

2.2.3.1 Transfer Learning with Convolutional Neural Networks

Transfer learning with CNNs involves leveraging previously acquired knowledge in

classification tasks and applying that knowledge to similar problems within the same domain

or experimental contexts using the same pre-trained classifier. This approach offers

significant advantages by reducing the need for extensive training time, large datasets, and

computational resources (Cinar, 2022). Training a DL model from scratch demands

considerable time and numerous parameter adjustments, presenting significant challenges.

However, transfer learning has been introduced to address these challenges. Transfer

learning involves transferring knowledge and patterns from a source domain to a target

domain, often entailing the reuse of a pre-trained model on a new dataset. As a result,

similarities between datasets are identified (Bai et al., 2022).

Several pre-trained CNN transfer learning architectures are widely used across

various domains, including medical imaging, traffic sign recognition, food image

classification, and clinical predictions. Key architectures include Residual Network

(ResNet), known for its benchmark-setting performance in image classification; Visual

Geometry Group Network (VGGNet), effective on the ImageNet dataset; MobileNet,

optimised for mobile applications; Inception-v3 and EfficientNet-B0, both renowned for

their top-tier performance; Extreme Inception (Xception) and DenseNet-121, excelling in

image classification benchmarks; and TimeNet, a deep recurrent neural network used for

clinical predictions. These models facilitate the transfer of learned features, making them

valuable in scenarios with limited labelled data or restricted computational resources (Gupta

et al., 2018; Alzubaidi et al., 2021; Fatima Ezzahra et al., 2023; Singh and Susan, 2023).

27

2.2.4 Generative Adversarial Networks (GANs)

GANs are ML models that learn the distribution of each class without explicitly

separating them into distinct categories, unlike traditional techniques, such as DTs or SVMs.

Instead, GANs generate new data points (𝒙) similar to the training data without considering

the relationship between x and y, i.e., p(x|y). This type of DL model will be extensively

explored in Chapter 4, with a focus on Basic Deep Convolutional Generative Adversarial

Networks (DCGAN), Wasserstein GAN with Gradient Penalty (WGAN-GP), and

conditional WGAN-GP.

2.2.5 Graph Neural Networks (GNNs): Definition and Overview

GNNs are a class of DL models designed to analyse and learn from data that are

structured as graphs. GNNs have found wide application in tasks related to graph data, such

as node classification, link prediction, and graph classification (Wei et al., 2020). They

leverage graphs' detailed structural and feature information to perform these tasks effectively

(Huang et al., 2024).

These capabilities make GNNs highly effective for diverse applications that involve

graph-based data. The following are key aspects of GNNs (Huang et al., 2024):

1) Message-Passing Framework:

• GNNs operate using a message-passing mechanism that repeatedly aggregates

and updates information from the nodes' local neighbourhoods within a graph.

This process enables GNNs to develop representations incorporating the graph

data's structural and feature-related aspects (Huang et al., 2024).

• The graph structure is typically represented by 𝐺 = {𝑉, 𝐴}, where V is the set of

nodes, and A is the adjacency matrix. In this matrix, an element 𝐴𝑖𝑗=1 signifies

the presence of an edge between node 𝑖 and node 𝑗. Each node 𝑖 is also associated

with a feature vector 𝑥𝑖
0 (Huang et al., 2024).

2) GNN Framework:

• The GNN framework processes graph data by taking an initial set of node features

𝑋 = {𝑥𝑖
0| 𝑖 ∈ 𝑉} and the adjacency matrix A as inputs. This input is then utilised

to gather iteratively and pool information from the neighbours of each node. For

28

instance, the feature update for a node 𝑖 in the 𝑙-th layer of message passing can

be described in Equation (2.4):

where pool{⋅} is a function that aggregates the features from neighbouring nodes

𝑁𝑖, and 𝑓1 and 𝑓2 are trainable functions parameterised by 𝜃1
𝐼 and 𝜃2

𝐼 (Huang et

al., 2024).

2.2.5.1 Graph Convolutional Network (GCN) Applications

Graph Convolutional Networks (GCNs) are utilised across various domains,

including computer vision, social networks, bioinformatics, recommendation systems, and

traffic prediction. In computer vision, they model label correlation for multi-label images,

capturing spatial dependencies and contextual information between pixels or image regions

(Cao et al., 2022). Additionally, GNNs are particularly effective at representing data with

inherent graph structures, such as social networks, protein interfaces, and images, by

highlighting relationships and dependencies among entities (Tepe and Bilgin, 2022). For data

that do not naturally form graphs, like audio signals, techniques that employ deep features

from pre-trained models as node information are used to facilitate graph construction

(Castro-Ospina et al., 2024). This versatility makes GCNs and GNNs powerful tools for

handling structured and unstructured data in various classification tasks.

The search results do not mention using GCN architecture for Induction Motor (IM)

fault classification. However, they highlight the effectiveness of GCNs across various fields,

such as image classification, graph analysis, and human activity recognition. For image

classification, Fei et al. (2023) introduced a novel end-to-end GNN that integrates local and

global attention features for more accurate predictions (Fei et al., 2023). This model includes

a CNN block for local feature learning and a GCN for global feature assimilation. In graph

analysis, Zhang et al. (2022) described a hybrid accelerator for GNNs that utilises the Xilinx

Versal ACAP architecture (Zhang et al., 2022a). This system enhances GNN inference by

dividing graphs into subgraphs for efficient processing using programmable logic and AI

engines. In human activity recognition, Lee et al. (2023) developed the Multimodal Two-

stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA),

which leverages the Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture

𝑥𝑖
𝑙 = 𝑓2(𝑝𝑜𝑜𝑙{𝑓1(𝑥𝑗

𝐼−1|𝜃1
𝐼)| 𝑗 ∈ 𝑁𝑖}, 𝑥𝑖|𝜃2

𝐼}) (2.4)

29

to enhance recognition accuracy by focusing on skeletal features extracted from Kinect

models (Lee and Kim, 2023).

However, Table 2.2 summarises the state-of-the-art GCN application in fault

classification over the years starting from 2019 to 2024 with studies that used GCN in their

research.

Table 2.2: Summary of State-of-the-Art GCN Applications in Fault Classification.

Application Description Outcomes

GCN-Based

Compound Fault

Diagnosis in

Gearboxes (Zeng et

al., 2024).

Employs GCNs to analyse correlations among

single faults in gearboxes to improve multi-

label fault diagnosis. Each fault is treated as a

label node, with GCN mapping features to

enhance the classification of compound faults.

Enhances gearbox fault

diagnosis accuracy using

GCNs and self-attention

to analyse correlations

between single faults.

Multi-Scale Neural

Transformation

Graph (MNT-G) in

Micro-Service

System Fault

Classification

(Zhang et al., 2023b).

This framework combines graph structure

adjacency matrix learning with multi-scale

neural transformation to analyse adjacency

matrices and temporal features of system

metrics separately. It uses a GCN to integrate

spatio-temporal features for classifying faults

in micro-services.

Demonstrates superior

performance over

traditional methods on the

Sock Shop benchmark,

with a macro-F1 score

improvement of 7.16%.

Super Resolution -

Graph Neural

Network (SR-GNN)

for Fault

Classification and

Location in Power

Networks (Mo et al.,

2023).

Integrates super-resolution techniques with

GNNs to efficiently classify and pinpoint

faults in power distribution networks,

focusing on cost reduction and accuracy.

Shows strong noise

resistance and

adaptability to various

network conditions on the

IEEE 37 Bus system,

enhancing classification

accuracy.

Temporal GCN for

Transient Stability

in Power Systems

(Su et al., 2021).

Develops a rapid-response Temporal Graph

Convolutional Network (TGCN) that

combines GCN for topology analysis with

temporal convolution layers to quickly assess

transient stability in power systems.

Exceeds performance of

existing models in

stability classification and

predicting critical

generator statuses on the

IEEE 39 Bus system.

GCN for Testability

Analysis in EDA

(Ma et al., 2019).

A specialised GCN model processes non-

standard graph representations of logic

circuits in Electronic Design Automation

(EDA). This classifier is trained to identify

optimal observation point candidates in

netlists, targeting hard-to-detect nodes.

Matches fault coverage of

commercial tools while

reducing observation

points by 11.00% and test

patterns by 6.00%.

Although GCNs are not directly associated with Induction Motor (IM) fault

classification in the available literature, their demonstrated benefits in various applications—

such as enhanced accuracy, robustness, and the capability to integrate global information

from node connections—suggest potential utility in diverse domains.

30

2.3 Two-Dimensional (2D) Signal Encoding Techniques

2.3.1 Gram Angular Field Signal Encoding (GAF)

Wang and Oates introduced the concept of GAF encoding, a method that transforms

time series data into images (Wang and Oates, 2015). GAF’s distinctive matrix construction

maintains the integrity of the original data while capturing relationships between

neighbouring elements. This methodology proves beneficial for CNN models, enabling

automatic feature extraction and enhancing classification performance (Wang and Oates,

2015). The core concept behind converting time-series data into images using GAF involves

creating a matrix based on polar coordinates. This matrix preserves the temporal

relationships within the one-dimensional (1D) time-series signal, maintaining accurate

temporal correlations compared to Cartesian coordinates. The process yields two types of

GAF images: Gramian Angular Summation Field (GASF) and Gramian Angular Differential

Field (GADF) (Toma et al., 2022a), which will be discussed further in Chapter 3.

2.3.2 Wavelet Transform (WT)

The Wavelet Transform (WT) provides an alternative to the Short-Time Fourier

Transform (STFT) for non-stationary signal analysis. WT is advantageous because it can

capture both temporal and spectral details. It offers adaptability across various frequencies

and time-based resolutions (Nishat Toma et al., 2021; Yang et al., 2023b). Distinguishing

WT from STFT, which uses fixed windows, WT utilises wavelet families with predefined

shapes, including Haar, Symlets, and Daubechies. The mother wavelet function ψ(t) can be

computed as in Equation (2.5) (Ahmed and Nandi, 2022):

𝜓(𝑠,𝜏)(𝑡) =
1

√𝑠
 𝜓 (

𝑡 − 𝜏

𝑠
)

(2.5)

In this context, 𝑠 represents the scaling parameter, 𝑡 corresponds to time, and 𝜏 denotes the

transformation parameter. In the original wavelet, s = 1 and τ = 0.

Wavelets offer three essential transformations: the Continuous Wavelet Transform

(CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Transform (WPT). From

the literature on the IM vibration signal encoding, the CWT has been extensively utilised by

researchers to create vibration image representations where the family of time-scale

waveforms is derived by adjusting the position and scale of the mother wavelet (Kaji et al.,

31

2020). While there is no universal method for choosing the mother wavelet, it is common

practice to visually inspect and select a suitable mother wavelet function based on shape

matching (Kaji et al., 2020). CWT can be computed in the following Equation (2.6) (Ahmed

and Nandi, 2022;):

𝐶𝑊𝑇𝑥(𝑡)(𝑠, 𝜏) =
1

√𝑠
 ∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝜏

𝑠
) 𝑑𝑡

(2.6)

Here, 𝜓∗ represents the complex conjugate of 𝜓(𝑡), which can be shifted using the translation

parameter τ and scaled using the scale parameter s. These coefficients measure the degree of

correlation between the waveform and the wavelet at different translations and scales. These

coefficients are often displayed in a scalogram, illustrating the energy distribution across the

coefficients.

2.4 Feature Extraction Domains in Signal Processing

Feature extraction operates within three primary domains: temporal, spectral, and

time-frequency. These distinct domains serve as tools to capture distinctive aspects of signal

behaviour. The section starts with Time and Frequency Domain (TFD) feature extraction and

moves to the 2D time-frequency domain features. The feature extraction from vibration

signals in the time domain is a crucial component of machinery fault diagnosis, enabling the

early detection and continuous monitoring of machinery faults. This method entails

computing diverse statistical parameters from the original vibration signal, which can

subsequently be employed to assess the machinery’s condition and detect potential problems.

Various key parameters are utilised in VSA to extract vital information. These parameters

include the Peak or Max value, which denotes the highest observed amplitude in the signal,

and the Root Mean Square (RMS), which provides insights into signal magnitude. Skewness

assesses distribution asymmetry, whereas Standard Deviation (std) quantifies average

deviation from the mean. Kurtosis indicates distribution “tailedness,” potentially identifying

outliers or impulses. The Crest Factor, calculated as the peak amplitude-to-RMS ratio,

reflects peak sharpness. Peak-to-peak measures the range between maximum and minimum

values, whereas the Impulse Factor accentuates impulsive behaviours often linked to

machinery faults. These parameters contribute to a comprehensive understanding of

vibration signal characteristics, facilitating effective fault diagnosis and condition

32

monitoring (Liu and Weng, 2019; Pinedo-Sánchez et al., 2020; Jain and Bhosle, 2021;

Narayan, 2021).

On the other hand, extracting features from the frequency domain can provide

insights into the data's periodic components and harmonic structures. The frequency domain

analysis of vibration signals involves examining the amplitude changes for different

frequencies (Ahmed and Nandi, 2018). These features capture frequency-specific aspects of

the signal and contribute to a better understanding of the vibration behaviour (Shi et al.,

2020). Analysing the frequency domain of vibration signals is crucial for understanding

periodic components and harmonic structures. Key features include Root Mean Square

Frequency (RMSF), Centre Frequency (CF), Mean Square Frequency (MSF), Frequency

Variance (FV), and Root Frequency Variance (RVF), providing insights into signal

characteristics and power distribution (Shi et al., 2020). Standard harmonic features, such as

Total Harmonic Distortion (THD), quantify frequency content (Tian et al., 2022; Granados-

Lieberman et al., 2023). Signal-to-Noise Ratio (S/N) and Signal-to-Noise and Distortion

Ratio (SINAD) assess signal quality, particularly in gearbox fault analysis (Kumar et al.,

2022). Spectral analysis transforms signals from the time domain to the frequency domain,

with the AR model being a popular choice. Various methods, like Yule-Walker and Burg’s,

compute AR coefficients, whereas the forward-backwards approach enhances classification,

especially in machinery fault diagnosis (Hu and Zhang, 2019; Metwally et al., 2020).

Spectral features like Peak Amplitude, Peak Frequency, and Band Power offer

comprehensive insights into frequency characteristics (Ahmed and Nandi, 2018; Hu and

Zhang, 2019; Shi et al., 2020; Tian et al., 2022; Djemili et al., 2023; Granados-Lieberman et

al., 2023).

2.5 Multimodal Fusion Techniques

Sensors serve as the foundation for any machine’s condition monitoring systems. The

concept of smart sensors is currently an active area of research, where sensor data are linked

to a data processing unit. Algorithms and DL techniques enable advanced interpretations of

the collected sensor data. In the past, thermography was used as a secondary approach to

condition monitoring. However, Infrared Thermography (IRT) is increasingly recognised as

a qualified primary or direct approach for condition monitoring (Alvarado-Hernandez et al.,

2022). The data used in the fusion process may come from different sources. This leads to

33

two types of sensor fusion: heterogeneous and homogeneous. In heterogeneous sensor

fusion, data are gathered from various types of sensors, like vibration and current sensors.

On the other hand, homogeneous sensor fusion involves using data from the same

kind of sensors, such as vibration sensors measuring the X, Y, and Z axes. Depending on the

stage at which the information sources are combined, the fusion process can be classified

into three levels: data-level fusion, feature-level fusion, and decision-level fusion (Debie et

al., 2021). However, data processing can occur in multimodal fusion at three levels, as

illustrated in Figure 2.3.

Figure 2.3: The Three Levels of Fusion (a) Sensor Fusion, (b) Sensor Data Represented by Feature

Vectors, (c) Decision Fusion After the Classification Model (Debie et al., 2021).

Firstly, multiple sensors are employed at the sensor level fusion to capture raw data.

Secondly, at the feature level, features are independently extracted from different sensors

and then combined into a single feature vector, known as a fused vector. Thirdly, at the

decision level, features are extracted independently and passed through separate classifiers

to obtain individual decisions. The fusion process is then responsible for consolidating these

decisions into a final classification decision. Furthermore, hybrid models can support

multiple fusion levels (Debie et al., 2021) where, in fact, the effectiveness of sensor-level

fusion and feature-level fusion strategies significantly relies on the characteristics of the data.

Comparatively, the decision-level fusion strategy emerges as a more pragmatic choice among

the three (Yang et al., 2022).

34

2.6 State of the Art, Research Gaps, and Directions in Each Research Theme

This section discusses the state of the art across five research themes: Multimodal

Data Preprocessing Methodology, Artificial Thermal Image Creation, Customised Radial

Load Assessment, Multimodal Systems Decision Fusion Approach, and Graph

Convolutional Network (GCN) on Tabular Datasets.

2.6.1 Multimodal Data Preprocessing Methodology

Numerous researchers have sought to improve Induction Motor (IM) fault

classification capabilities (Shao et al., 2020). Fault classification can be challenging, causing

irrelevant rule generation for three main reasons: dataset size, noise, and overfitting problems

(Packianather et al., 2019). According to the literature, Non-Invasive Inspection (NII) is a

widely employed maintenance tool that monitors machines’ health status. It helps to

investigate the current health status without affecting or interrupting the operation. It can be

divided into two categories according to the sensing approaches: contact and noncontact

sensing (Alotaibi et al., 2021).

Contact-based Non-Invasive Inspection (CNI) does not require physical contact with

the inspected parts; they must be attached to the machine system or body. For example,

magnetic flux sensing, voltage sensing, machine current analysis, the vibration technique,

and wear debris (Alotaibi et al., 2021). VSA is the traditional fault classification method (Jia

et al., 2019), but different signals are used, such as current, acoustic, and temperature (Toma

et al., 2021). However, in rotational-machine fault diagnosis using signals, signal

preprocessing can be undertaken using time-domain, frequency-domain, or time-frequency

domain analysis (Sinitsin et al., 2022). Time-domain analysis finds statistical parameters

such as kurtosis, structural resonance, RMS, etc. On the other hand, frequency-domain

analysis offers more benefits in signal analysis because it filters key frequency components,

such as Fast Fourier Transform (FFT) and spectrum analysis (Sinitsin et al., 2022).

Moreover, time-frequency analysis is used to empower frequency-domain analysis for

volatile signals, for example, STFT, WT, and Empirical Mode Decomposition of the Hilbert-

Huang Transform (HHT) (Nguyen et al., 2021).

Wavelet is considered the most recent and popular time-frequency analysis of the

available methodologies, especially in bearing fault type recognition (Zhang et al., 2022d).

35

A recent study compared three CWT techniques on vibration signal encoding: Morse, Morlet,

and Bump. All methods achieved more than 98.00% accuracy in bearing fault diagnosis. The

PCA method was also used instead of wavelet and scored 10.00% lower than wavelet (Toma

et al., 2021). Current signals were also used to classify IM faults using the GAF algorithm to

generate 2D images. Subsequently, a two-layer deep CNN model was used for fault

classification. The experiment showed that GAF images outperformed continuous wavelet

images. Wavelet has fewer capabilities in generating significant patterns from current raw

data relative to GAF due to the drawbacks of the current signal or low S/N (Toma et al.,

2022a).

On the other hand, in Non-Contact-Based Non-Invasive Inspection (NCNI), sensors

are not directly attached to the inspected part and nor is the machine system (e.g., Radio

Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging, Acoustic

Emission (AE) sensing, thermographic sensing or Infrared (IR) and laser) (Alotaibi et al.,

2021). Thermal images result in more accurate fault classification than vibration signals (Jia

et al., 2019; McGhan and Feayherston, 2020; Shao et al., 2021). Hence, thermal image

condition monitoring can achieve almost 100% accuracy when utilising CNN transfer

learning capabilities (Choudhary et al., 2021; Khanjani and Ezoji, 2021).

Studies were not restricted to single-input modal creation. They also considered

multimodal fault classification using the same sensing approach, combining current and

vibration signals into one modal. Shao et al. (2020) used time-frequency distribution,

continuous wavelet, and CNN capabilities in multi-signal fault diagnosis without utilising

CNN transfer learning capabilities. The main contribution was using vibration and current

signals in fault classification using CNN capabilities in image classification on time-

frequency distribution images. The authors demonstrated that the multi-signal modal

outperforms the single-signal modal input (Shao et al., 2020). A recent study proposed a

multimodal neural network-based model using only vibration signals. Vibration signals are

converted into time-frequency domain graphs using CWT and dot pattern graphs, creating

two inputs for the CNN and two-level information fusion from the same signal. This model

performed better than single-modal CNN (Ma et al., 2022).

36

In the most recent research, the vibration signal captured using CNI acquisition tools

is considered the most popular input for bearing fault diagnosis. It contains valuable

information about each fault type, giving a good prescription for the machine’s health. At

the same time, it has a high S/N and requires extra preprocessing and strict sensor installation

requirements (Jia et al., 2019). The most common preprocessing methodology is converting

a 1D signal into 2D time-frequency graphs using CWT, where GAF encoding was rarely

used. Consequently, NCNI data acquisition techniques were introduced, primarily utilising

IRT due to its non-contact nature, high accuracy, and reduced requirement for signal

preprocessing knowledge. Nonetheless, many studies have concluded that thermal images

offer an excellent substitute for vibration signals, resulting in higher fault classification

accuracy. However, thermal image fault classification has some known limitations, including

deviation in the region of interest due to camera misalignment and blurred images. This can

result in fault misclassification, which has not been discussed in the previous literature (Li et

al., 2021; Shao et al., 2021).

On the other hand, multimodal DL is a new paradigm in AI that requires further

attention and exploration. Hence, relying on a single input using a single sensing approach

often fails to extract the full knowledge from data, especially in abnormal operation

conditions (Jia et al., 2019). However, few research studies have explored Multimodal DL

using similar data types, such as numerical signals or signals captured using CNI to

demonstrate its efficiency. Consequently, there is a need to research Multimodal further

using different sensors, which will be explored in Chapter 3.

2.6.2 Artificial Thermal Image Creation

DCGAN has demonstrated its efficiency (Du et al., 2019) for image generation in

solving imbalanced datasets in the chemical industry's fault diagnosis field. It was also used

by He et al. (2021) for axial piston pump bearing fault diagnosis to mitigate data availability

and missing fault labelling challenges. DCGAN has also been used in Induction Motor (IM)

fault classification using the Case Western Reserve University (CWRU) bearing centre

dataset, a well-regarded dataset in which CWT images were synthesised (Zhong et al., 2023).

A previous paper focused on Wasserstein Generative Adversarial Network (WGAN) usage

37

in thermal images, with fault creation in IMs being used to increase fault samples, namely,

IRF, ORF, and Normal (fault-free) or Healthy condition (Ma et al., 2023; Shao et al., 2023).

It is apparent from the literature that researchers have sought to generate highly

trustworthy data to enhance training performance on limited fault types or generate look-

alike vibration signals without focusing on thermal image fault creation (Ma et al., 2023). A

recent paper explored the generation of thermal images on three conditions to enhance fault

classification accuracy using a single input model (Shao et al., 2023).

..

Bearing VSA is the traditional means of fault classification, where raw vibration

signals are rarely used; hence, vibration signals need to be pre-processed using either time-

domain analysis or frequency-domain analysis (Sinitsin et al., 2022). On the other hand,

thermal images result in more accurate fault classification with up to 100% accuracy whilst

requiring less preprocessing time than vibration signal fault classification, as demonstrated

by Choudhary et al. (2021) and Khanjani and Ezoji (2021). Thermal images are more stable

than vibration signals; hence, they are less sensitive to speed fluctuation scenarios, making

them more efficient (Shao et al., 2023).

However, thermal images have certain known drawbacks. For instance, the

installation cost of cameras and the potential for camera misalignment can result in

inaccurate recognition (Gangsar and Tiwari, 2020). Furthermore, the limited availability of

data and the imbalanced distribution of thermal images across specific or all health

conditions can significantly affect the performance of condition monitoring systems (Niu et

al., 2020). To mitigate these limitations, various oversampling techniques have been

employed to generate additional samples from the minority classes. One such technique is

the Synthetic Minority Oversampling Technique (SMOTE), which uses interpolation based

on nearest neighbours. Another approach is the Adaptive Synthetic Sampling Technique

(ADASYN) (Liu et al., 2021). However, it is essential to note that oversampling techniques

can be susceptible to overfitting and noise creation, especially when dealing with high-

dimensional and sparse data. These techniques may also generate samples that are more

similar to the majority class rather than to the desired class (Engelmann and Lessmann,

2021).

38

Moreover, while improving classification accuracy is a common approach, it may not

be effective when the degree of imbalance is high unless more data are added to the training

model (Han et al., 2020). Expanding image data by including noise and local blur can be

seen as an artificial preprocessing technique. However, it is essential to note that these

methods may not adequately capture the diversity in the original samples and so can

potentially hinder fault recognition (Fan et al., 2022). In contrast, GANs offer a new and

promising approach to sample generation. GANs provide a framework for learning complex

features from high-dimensional, imbalanced, and small dataset distributions, and they have

been widely utilised in fault diagnosis applications (Han et al., 2020; Engelmann and

Lessmann, 2021; Liu et al., 2021; Fan et al., 2022).

The selection of an appropriate GAN for generating artificial images of thermal IM

health conditions is critical to the current research. Previous studies in this field have been

limited, with only a few papers released (Wu et al., 2019). Commonly used GAN models in

fault diagnoses include DCGAN, Auxiliary Classifier GAN (ACGAN), Wasserstein GAN

(WGAN), and variational auto-encoding GAN. However, it has been observed that the

quality of data generated by the original GAN and improved DCGAN is still relatively low

(Han et al., 2020; Fan et al., 2022). Meanwhile, the WGAN-GP has demonstrated improved

training stability, mode collapse prevention, and the generation of high-quality images

(Gulrajani et al., 2017; Pan et al., 2019; Gao et al., 2020). WGAN-GP has also proven its

effectiveness in fault sample generation (Wang et al., 2021a) and in supplementing low-

dimensional fault data (Zhong et al., 2023). Wasserstein distance in WGAN provides a more

meaningful measure of the difference between probability distributions and leads to better

convergence by avoiding vanishing gradients (Arjovsky et al., 2017a).

Additionally, the training process in WGAN-GP does not require a careful balance

between the generator and discriminator (Arjovsky et al., 2017b). WGAN-GP has also been

employed in the imbalance fault classification of bearings, overcoming convergence issues

observed in the original GAN structures. WGAN-GP demonstrated faster convergence

within 400 iterations and improved model performance compared to the original WGAN due

to the gradient penalty (GP) (Han et al., 2020).

WGAN-GP was utilised to generate additional vibration signal spectra for

imbalanced bearing fault classification problems, demonstrating improved convergence and

39

faster training speed with the GP (Shao et al., 2023). Chang et al. (2022) examined GANs

and CNNs for imbalanced vibration signal datasets in IMs, confirming their efficiency.

However, there was still room for improvement in utilising labelled data for IM fault

classification because models trained on the generated data differed in accuracy compared to

real data (Chang et al., 2022). Meanwhile, Ma et al. (2023) focused on WGAN-GP to create

vibration signals in the rotor-bearing system, showing high-quality signal generation and

increased diagnostic accuracy. Shao et al. (2023) generated thermal images for various health

conditions in rotating machinery, achieving good results but suggesting the incorporation of

label information in GANs training.

The scarcity of IM datasets collected under diverse health conditions poses

challenges due to data availability, confidentiality, and time constraints. While GANs have

been used to generate additional tabular vibration data for condition monitoring, utilising

GANs for thermal image synthesis in IM condition monitoring is a promising but relatively

new research area. Hence, GANs are commonly employed to generate supplementary tabular

vibration data. At the same time, thermal image condition monitoring offers more accurate

results with minimal preprocessing steps due to its lower sensitivity to noise, which will be

explored in Chapter 4.

2.6.3 Customised Radial Load Assessment

Bearing fault diagnosis is recognised as a pattern recognition challenge, emphasising

the importance of dominant eigenvectors for fault features. Accurate feature identification is

critical to enhance the reliability of fault detection and diagnosis systems. Toma et al. (2022b)

used Wavelet Scattering Transform (WST)-based features, whereas Nayana and Geethanjali

(2020) employed statistical TFD features to contribute to IM fault classification. Other

techniques include time-domain features from current signals (Toma et al., 2020),

homogeneity and kurtosis from electrical current during motor startup (Martinez-Herrera et

al., 2022), and the use of CWT for fault diagnosis (Yuan et al., 2020). This method, tested

on the CWRU bearing centre dataset and Machinery Failure Prevention Technology (MFPT)

bearing datasets, demonstrated superior diagnostic accuracy and stability.

The approach increasingly leans towards treating it as a pattern recognition challenge

in bearing fault diagnosis, relying on dominant eigenvectors to represent fault features,

enabling more reliable detection and categorisation of bearing faults (Nemani et al., 2022).

40

To determine the precise location and intensity of a bearing defect, various VSA techniques

are available, broadly categorised into the time domain, frequency domain, and time-

frequency domain analyses (Jain and Bhosle, 2022). Feature extraction in ML for bearing

fault diagnosis is pivotal, particularly in analysing vibration signals, resulting in a multi-

domain feature set. The goal is often to derive features with strong discriminatory capabilities

(Shi et al., 2020). Time–domain features assume a stationary signal, but signals frequently

exhibit changes in statistical properties over time (Sayyad et al., 2021). However, obtaining

suitable features may require a long period of recorded signals, making it expensive, time-

consuming, or even impossible for certain fault types or with complex equipment (Resendiz-

Ochoa et al., 2018). RMS and kurtosis are commonly used in the time domain, especially

kurtosis, which is highly effective in early fault detection (Pinedo-Sánchez et al., 2020).

In contrast, frequency-domain features require more significant computational effort

than their time-domain counterparts and operate under the assumption of a wide-sense

stochastic signal (Narayan, 2021). FFT, while powerful in stationary conditions, has

limitations when applied to non-stationary data, that is, signals that change over time or

exhibit variations in their frequency content. In such cases, FFT’s assumption of a constant

frequency spectrum over the entire signal duration does not hold. Alternative time–frequency

signal processing techniques have been developed to address this limitation (Resendiz-

Ochoa et al., 2018).

Nevertheless, transitioning to time-frequency domain analysis, which combines time

and frequency information to understand the signal’s frequency band over a specific time

interval (He et al., 2010), offers a localised signal analysis by considering smaller time

segments. This approach proves valuable for non-stationary signals where the frequency

content changes over time (Zhang et al., 2021a). The CWT is a powerful tool for analysing

non-linear and non-stationary data in the time-frequency domain. It outperforms other

techniques, such as the STFT, Gabor transform, WT, and Wigner-Ville transform, effectively

addressing the limitations of the FFT in dealing with such data (Toma et al., 2021; Guo et

al., 2022). The WT can analyse specific regions within a more prominent signal without

sacrificing spectral details, revealing concealed facets undetected by alternative methods

(Kaji et al., 2020). This enables the distinctly different analysis of both frequency and time

domains, breaking down signals into various frequency components and analysing each

41

element with the time domain corresponding to its specific scale (Ozaltin and Yeniay, 2023).

It is crucial, however, to carefully consider or create the most suitable wavelet foundation

(Guo et al., 2022). Pinedo-Sánchez et al. (2020) explored the effectiveness of three prevalent

mother wavelet functions in conjunction with pre-trained CNNs on the automatic

classification of an electrocardiogram (ECG) dataset. Specifically, the study used AlexNet

and SqueezeNet, revealing that Amo (often called a Morlet wavelet) and Morse wavelet

functions enhanced class recognition with AlexNet. In contrast, the Bump wavelet function

demonstrated superior classification accuracy with pre-trained SqueezeNet (Pinedo-Sánchez

et al., 2020).

Beyond CWT, techniques such as wavelet entropy, wavelet packet energy entropy,

and Wavelet Singular Entropy (WSE) have also been utilised. Wavelet entropy, combining

WT and Shannon entropy, captures complexity and information content within signals at

different scales or frequencies. In the CWT realm, this approach is valuable for analysing

time-frequency representations and revealing patterns associated with structural damage (Li

et al., 2019a; Guo et al., 2022). Examined on IM bearings, selecting the optimal contentious

transform wavelet (Guo et al., 2022) and indicating the complexity of the analysed transient

signal in the time-frequency domain (He et al., 2010) makes it possible to distinguish

between transients with different complexities intuitively and quantitatively. Wavelet

energy, measuring the energy distribution across different scales in the WT of a signal, was

used to track changes in energy over time for fault localisation and categorisation (Jayamaha

et al., 2019). This information is then employed to create a set of features for classification,

followed by Artificial Neural Network (ANN) training to categorise these features.

Researchers have increasingly focused on the fault detection and diagnosis systems

of various operational parameters of bearings, such as friction torque, radial internal

clearance, and slippage. In a notable study, Wu et al. (2023a) investigated the friction torque

behaviours of thrust ball bearings with self-driven textured guiding surfaces. This study

sought to facilitate the starved lubrication conditions often encountered in rolling bearings

by introducing innovative textures on the guiding surfaces. Notably, the results indicated that

implementing a gradient groove texture could significantly reduce the friction torque of

bearings. This texture facilitates a one-way self-driving function for liquid droplets,

highlighting its potential for practical applications in bearing design (Wu et al., 2023a).

42

Meanwhile, Ambrożkiewicz et al. (2023) explored the effect of various surface

textures on thrust ball bearings’ vibration and friction torque behaviours, including dimples,

grooves, and gradient grooves. The study found that the gradient texture effectively reduces

vibration acceleration and friction torque (Ambrożkiewicz et al., 2023). Furthermore,

research on the slipping behaviour of H7006C angular contact ball bearings under

operational conditions demonstrated similar benefits from this texture design in reducing

vibration and friction torque, thus enhancing bearing performance (Yang et al., 2023a).

However, there remains a notable gap in our understanding of the influence of

varying loads on the manifestation of faults (Zhang et al., 2022b). Previous research has

delved into areas such as estimating the remaining useful life from run-to-failure datasets

(Zhang et al., 2022b). Nevertheless, the domain of load’s impact on faults remains relatively

unexplored. Radial impact was discussed by Jain and Bhosle (2021), where traditional

statistical indicators were used to study the effects of IRF and ORF in bearings under

different loads. The MFPT bearing dataset was utilised to propose combinations of

indicators, including Kurtosis × RMS, Kurtosis × Peak, and RMS × Peak for early fault

detection, including IRF and ORF. A similar analysis was conducted on the CWRU dataset,

thoroughly investigating various traditional and new vibration indicators for detecting

bearing defects and monitoring their progression (Jain and Bhosle, 2022).

In recent years, detecting faults in IMs has attracted considerable attention, given

their crucial role in various industries. As a result, there has been a concerted effort to develop

reliable and cost-effective methods for diagnosing faults in IMs. The early detection of

potential failures is of paramount importance because it can prevent significant damage to

machinery (Nayana and Geethanjali, 2020; Toma et al., 2020; Yuan et al., 2020; Martinez-

Herrera et al., 2022; Toma et al., 2022b). Despite the recognised significance of feature

extraction and selection within intelligent diagnosis systems, relatively little attention has

been paid to assessing load impact in the literature (Han et al., 2021b; Zhang et al., 2022b).

A notable gap has emerged in intelligent diagnosis systems where feature extraction and

selection are crucial, especially in evaluating load impact (Ahmed and Nandi, 2018).

Extensive research has explored fault classification under varying loads, but the nuanced

effects of load variations on the intrinsic nature of faults have not been thoroughly addressed.

43

Thus, Chapter 4 introduces the proposed novel Customised Load Adaptive Framework

(CLAF) in detail.

2.6.4 Multimodal Systems Decision Fusion Approach

The field of fault detection in manufacturing systems has witnessed remarkable

advances, particularly in analysing vibration signals for condition monitoring and fault

detection. This dynamic area of research, focusing primarily on identifying faults in rolling

element bearings amid substantial noise, highlights the critical role of feature selection in

ensuring classification accuracy. Researchers have been actively developing various

methods to extract robust statistical data from vibration signals, using techniques ranging

from time, frequency, and spectral feature extraction to AR models. Integrating ML and the

advanced capabilities of deep CNNs has facilitated a significant advance in this quest.

Additionally, innovative classification fusion methods, including sensor, feature, and

decision fusion, have been implemented to enhance accuracy. Techniques including GAF

and CWT are utilised for deeper signal analysis. At the same time, transfer learning

approaches with architectures such as AlexNet and ResNet are applied for more precise fault

diagnosis. Despite these achievements, the field faces complex challenges, emphasising the

need for ongoing exploration and innovation.

Lorenz et al. (2022) delved into various techniques for fault detection in

manufacturing systems, employing vibration data analysis. They discuss time-domain

features such as RMS, variance, and kurtosis alongside frequency-domain features such as

spectral attributes. Time-domain features have shown particular efficacy for early fault

detection (Pinedo-Sánchez et al., 2020), although real-world signals often exhibit temporal

variations (Sayyad et al., 2021). The challenge of acquiring suitable features has been noted

because it can be laborious and sometimes impractical for specific faults or in the context of

complex machinery (Resendiz-Ochoa et al., 2018). The study investigates fault detection in

rotating element bearings, emphasising time-domain features (median, peak-to-peak value,

and mean) and frequency-domain features (spectral centroid and kurtosis). Considerable

emphasis is placed on using ML classifiers, especially the quadratic SVM from MATLAB,

for the multi-class classification of machinery health states. This method has demonstrated

its effectiveness in accurately identifying faults (Lupea and Lupea, 2022). Advances in ML

44

have significantly increased model accuracy, primarily through ensemble learning, which

combines multiple models to enhance overall prediction effectiveness (Jose et al., 2022).

The research described in the document introduces a unique feature extraction

approach known as One-Dimensional Ternary Patterns (1D-TP) for bearing fault detection

using vibration signals. This approach extracts statistical measures from these signals in both

the time and frequency domains. For classification purposes, the study employs a variety of

ML classifiers, including Random Forests, kNN, SVM, BayesNet, and ANNs. This

methodology effectively pinpoints faults in bearings, highlighting the potential of 1D-TP and

these classifiers in the field (Kuncan et al., 2020). Additionally, the paper explains the

workings of SVM, a state-of-the-art algorithm primarily used for categorisation based on the

principle of margin calculation. It effectively separates data groups by drawing a line

between them, optimising margins to reduce the difference with labelled classes, thereby

minimising classification errors.

Furthermore, the study touches upon DTs, which consist of nodes and branches used

primarily for classification purposes. This method sorts attributes based on their values,

grouping them accordingly, where each node represents a category attribute and each branch

a specific value of that node (Kadam et al., 2021). Despite these notable contributions to fault

diagnosis and ML, the thesis identifies a gap in load-dependent fault condition monitoring.

It underscores the need for further exploration of advanced deep-learning techniques.

Moreover, there has been a significant focus on spectral feature extraction using AR

models in bearing fault classification, as detailed in the existing research. AR models extract

vital features from vibration signals, which have proven effective in identifying various

operational states. Research indicates that AR-derived features are comparably compelling,

achieving classification accuracies similar to those obtained with power spectral features in

areas such as emotion recognition and signal processing (Ganapathy et al., 2014 . This has

led to a growing interest in the Forward-Backward Autoregressive (FBAR) model, a

variation of the AR model, particularly in feature extraction for diverse signal-processing

applications (Vaibhaw et al., 2020). Therefore, using AR models for feature extraction is

emerging as a promising approach to enhance the classification of bearing faults based on

vibration signals. This exploration suggests that AR models could complement traditional

TFD features, warranting further investigation.

45

The CNN, a potent model in DL (Nishat Toma et al., 2021), is employed in

architectures such as AlexNet and ResNet), notably for diagnosing bearing faults. Utilising

these CNNs through transfer learning has demonstrated significant efficacy in various

applications, as highlighted by Lu et al. (2020). These collective findings emphasise the

promise of pre-trained CNNs and transfer learning techniques in bearing fault classification

using vibration signals, offering a compelling approach to automated fault diagnosis in

machinery. AlexNet (Lu et al., 2020; Asutkar and Tallur, 2023) combined with transfer

learning has effectively classified casting surface defects. Its efficacy lies in utilising pre-

trained models for specific tasks, balancing simplicity with reliable performance (Thalagala

and Walgampaya, 2021). The ResNet family has also shown promise within the bearing fault

diagnosis domain. The principal advantage of ResNet-18 is its intricate architecture and

residual connections, which enhance training efficiency and task performance, especially in

complex scenarios (Chang et al., 2023; Wu et al., 2023b).

In contrast, AlexNet, known for its straightforward and dependable framework, is

better suited to simpler classification tasks, making it a practical choice in environments with

limited computational capacity (Ramzan et al., 2020). However, the advanced design of

ResNet, with its deeper layers and residual blocks, requires greater computational power

compared to AlexNet, presenting a need to balance efficiency and computational demands

in CNN applications (Kadam et al., 2021; Thalagala and Walgampaya, 2021). Thus, both

ResNet and AlexNet represent two well-established deep-learning approaches with the

potential for further advances in condition monitoring.

Additionally, 2D signal encoding techniques, such as GAF and CWT, have

significantly improved the feature extraction capabilities of CNNs. GAF, in particular, has

shown promise in high-precision fault signal classification (Zhang et al., 2023a) and mental

well-being state classification (Woodward et al., 2024). Toma et al. (2022a) demonstrated

the efficacy of converting current signals into 2D images using GAF, followed by CNN

classification, in bearing fault classification. On the other hand, CWT signal encoding has

been highly effective, especially when paired with Ensemble Empirical Mode

Decomposition (EEMD) for intrinsic mode function selection. This combination has

achieved more than 99.00% accuracy in fault detection in some instances (Nishat Toma et

al., 2021) and has been successful in early fault detection (Kaji et al., 2020). The synergy of

46

CWT with multiscale feature fusion and enhanced channel attention mechanisms has also

been investigated to further refine feature extraction from vibration signals (Xiao et al.,

2021b). In 2023, an innovative approach that combines the GASF with CWT was introduced

for intelligent fault diagnosis in wind turbine gearboxes. This method leverages GAF and

CWT techniques to improve fault detection accuracy (Yang et al., 2023b). However, it is

essential to note that, based on current research trends and to the best of the author's

knowledge, GAF and, notably, GADF are not yet widely recognised as established

techniques for vibration signal encoding and have seen limited exploration. In contrast, CWT

signal encoding is much more prevalent. This disparity indicates a significant opportunity

for further research and development regarding 2D signal encoding techniques, particularly

in exploring the potential of GAF and GADF for VSA.

Researchers have developed promising fusion techniques in rotating machinery fault

diagnosis. One notable approach is the multi-sensor fusion technique, which has

demonstrated enhanced fault classification accuracy and quicker convergence than single-

source sensor data. A 2023 study introduced an innovative bearing fault classification

method using multi-sensor fusion technology combined with an advanced binary one-

dimensional ternary pattern (EB-1D-TP) encoding algorithm; this combination achieved

classification rates over 98.00%, demonstrating its potential for broader industrial

applications and integration into Industry 4.0 (Pan et al., 2023). Cinar (2022) highlighted

data-level sensor fusion, achieving up to 100% validation accuracy. Inspired by standard

CNN pooling methods, this technique merges sensor channels using overlaid spectrogram

images to select the highest spectral power at each frequency and time point for improved

classification with a pre-trained SqueezeNet model (Cinar, 2022).

Kullu and Cinar (2022) also utilised raw TFD data from two sensor types,

transforming them into time-frequency images via the STFT. The time-frequency images

were combined with raw time series data and used in a DL model for fault detection,

demonstrating promising results in terms of fault classification on datasets from Paderborn

University and Eskisehir Osmangazi University (Kullu and Cinar, 2022). Furthermore, a

method employing current, vibration, and torque signals applied STFT to each, creating

spectrograms that were combined into a single image for analysis with pre-trained

SqueezeNet, demonstrating efficacy in fault diagnosis (Cinar, 2022). While the concept of

47

2D vibration signal encoding has previously been explored, there remains significant

potential for advancement, particularly in identifying more efficient input combinations for

the final condition monitoring system. This ongoing exploration is vital to develop tailored

solutions to specific monitoring challenges.

Recent advances in feature fusion techniques for rotating machinery fault diagnosis

have shown considerable promise, and the field remains ripe for innovative approaches. In

2022, a notable development was a multi-sensor feature fusion approach for rolling bearing

fault diagnosis. This technique enhances accuracy by amalgamating data from various

sensors. It incorporates Variational Mode Decomposition preprocessing and a deep

autoencoder network, outperforming alternative methods which rely on single-sensor data.

Toma et al. (2022b) introduced a feature fusion method for bearing fault classification in

IMs. This method utilised the WST to extract features from current signal data, achieving

99.00% accuracy when combined with ensemble ML algorithms.

Further exploration in 2021 saw the integration of CNN knowledge transfer with

time-frequency domain features in the Feature Fusion Convolutional Neural Network-

Support Vector Machines (FFCNN-SVM) method. Multi-Level Features Fusion Network

(MLFNet), an innovative CNN, also demonstrated its ability to extract and fuse multi-scale

features from noisy vibration signals, attaining an exceptional 99.75% recognition accuracy

(Ye and Yu, 2022). The potential of combining time-domain and frequency-domain data was

also highlighted using the GAF method and processed by the ECA-ConvMixer model for

motor fault diagnosis (Xie et al., 2023).. Decision fusion multi-dimensional feature

extraction techniques have also been employed to create comprehensive feature vectors.

These vectors are amalgamated using algorithms, such as the Yager algorithm, for extensive

fault pattern recognition (Li et al., 2019b). In 2022, a fuzzy decision fusion strategy was

developed, integrating outputs from CNN models trained on datasets processed through

various transforms (Yang et al., 2022). Wang et al. (2023b) presented an innovative

algorithm for industrial motor bearing fault diagnosis, which integrates multi-source

information using a noise reduction autoencoder and bidirectional Long Short-Term Memory

(LSTM) networks. While these fusion techniques have demonstrated promising results in

numerous studies, there remains significant potential for further research. More specifically,

there is an opportunity to tailor and customise fusion techniques for load-dependent condition

48

monitoring on specialised datasets. This offers a pathway for more nuanced and compelling

IM bearings condition-monitoring solutions, which will be explored in Chapter 6.

2.6.5 Graph Convolutional Networks (GCNs) on a Tabular Dataset Application

GCNs are specialised neural networks designed to handle data structured in graphs,

where the data points are nodes interconnected by edges. GNNs excel at managing the

intricate relationships and patterns present within graphs, making them ideal for various

applications, including drug discovery, fraud detection, and recommendation systems. GNNs

can predict and analyse the interconnections between data points by applying DL techniques

to graph data. They typically employ message-passing mechanisms to incorporate

information about nodes and their adjacent nodes, enabling the network to identify patterns

and make informed predictions based on the graph’s structure. In recent years, GNNs have

attracted considerable attention for their ability to represent complex relationships and

patterns, which conventional neural networks may find challenging to handle (Li et al.,

2023b).

Using GNNs for classification offers several advantages: GNNs are adept at

capturing complex interdependencies between entities, thus providing significant benefits in

structured data classification (Du et al., 2023; Lee et al., 2023). They frequently outperform

traditional ML methods and CNNs in specific tasks, such as classifying colorectal

histopathological images (Tepe and Bilgin, 2022). Additionally, GNNs can utilise

constructed graphs in a self-supervised manner, facilitating knowledge transfer to pairwise

neural networks for practical applications (Du et al., 2023).

CNNs are designed for grid-like data such as images and use convolutional layers

with filters to learn features. In contrast, GNNs are for graph-structured data and employ

message passing to incorporate information about nodes and their connections. The critical

difference between CNNs and GNNs lies in the data they handle and the mechanisms they

use to learn features. CNNs are commonly used in computer vision tasks such as image

recognition, whereas GNNs are better suited for applications involving complex data

relationships (Lin et al., 2021).

Applying 1D-CNNs in fault detection across various industries showcases their

efficiency in processing time-series data and extracting meaningful features for diagnosis.

For instance, Wang et al. (2024) combined features from multiple sensors using a 1D-CNN

49

to predict bearing faults in aircraft engines, while Abdeljaber et al. (2022b) demonstrated

their effectiveness in detecting structural damage (Chen et al., 2022b). 1D-CNNs are

particularly effective for detecting sequential patterns because they apply convolution

operations across one dimension, which is well-suited for time series or any sequential data

(Camacho-Bello et al., 2022; Zhang et al., 2023c; Ahmadzadeh et al., 2024).

K-Nearest Neighbour graphs (k-NNGs) have proven useful in diverse applications,

including healthcare diagnostics and machinery fault detection. Chandaliya et al. (2023) used

k-NNGs with GNNs to classify cough sounds for disease detection, revealing complex

relationships even with limited labelled data (Chandaliya et al., 2023). Similarly, Rangel-

Rodriguez et al. (2023) applied the kNN method to generate graphs from vibration signals

for crack detection in rotating machinery, with these graphs serving as inputs for ML

algorithms (Rangel-Rodriguez et al., 2023). Earlier, Wang et al. (2021b) employed the kNN

method to create graphs from vibration signals for fault diagnosis in rotating machinery,

using these graphs as input for a GCN for fault classification (Wang et al., 2021b).

GNNs and k-NNGs are complementary techniques for analysing and processing

graph data. K-NNGs are crucial in constructing graphs from data points, while GNNs excel

in identifying patterns and relationships within the graph data. For example, the NN-Descent

algorithm efficiently handles the construction of k-NNGs by iteratively refining neighbour

connections (Dong et al., 2011). While the GCN architecture is not explicitly mentioned in

the search results for Induction Motor (IM) fault classification, it is evident that GCNs have

shown promising results in various domains. GCNs have been effectively applied in diverse

areas, enhancing fault classification and predictive maintenance. These applications include

Multi-Scale Neural Transformation Graph Method (MNT-G) frameworks in micro-service

systems, which improve classification accuracy (Zhang et al., 2023b), high-performance

GCNs in electronic design for better testability analysis, Super Resolution - Graph Neural

Network (SR-GNN) in power networks for precise fault location (Mo et al., 2023), temporal

GCNs for rapid transient stability assessment in power systems (Su et al., 2021), and

compound fault diagnosis in gearboxes using GCN-based models (Zeng et al., 2024). These

practical implementations demonstrate the versatility and efficacy of GCNs in handling

complex data and improving fault detection across various industries.

50

The general advantages of GCNs across various domains include improved accuracy

and robustness and the ability to aggregate global information through the interconnected

relationships of different nodes. Consequently, it is feasible to develop more robust and

adaptable models for various graph-based applications by integrating these approaches.

While the potential of GCNs for fault classification in IMs is theoretically plausible due to

their ability to model complex graph structures, the current research does not explicitly

discuss the specific application of GCNs in this context. Therefore, further research focusing

on applying GCNs in the fault classification of IMs would be necessary to validate this

assumption.

While GNNs have not been widely applied to IM fault detection, their ability to

process graph-structured data is seen as valuable for analysing complex systems like IMs.

Complex relationships within motor data can be captured by GNNs, aiding in anomaly

detection and predictive maintenance. Similarly, 1D-CNNs have been shown to effectively

analyse sequential motor signals to detect faults under various conditions. These neural

networks, including GNNs and 1D-CNNs, have been recognised for improving fault

detection accuracy in IMs (Skowron et al., 2020; Rahmawan et al., 2023)

In this study, tabular data will be represented as graphs for VSA using the kNN

method, where nodes represent time points, and edges represent signal similarities. The

Taguchi method will be employed to optimise key factors affecting performance in this new

approach. To address the gaps identified in GNN performance, the 1D-CNN will be explored

as a tentative candidate for a hybrid methodology, providing complementary strengths in

fault classification.

2.7 Summary

This chapter provides an in-depth overview of IMs, the primary focus of the current

research. It delves into the broader realm of AI, encompassing ML and DL. It outlines a

variety of AI algorithms and networks pertinent to IM condition monitoring. This includes

supervised, unsupervised, and RL techniques. The chapter further discusses DL

architectures, particularly CNNs, CNN transfer learning, GANs, and GNNs. Each section

explores the theoretical aspects and discusses the practical applications of these technologies.

Additionally, the chapter introduces signal encoding techniques such as the GAF and

CWT. It also reviews multimodal fusion approaches. The exploration extends to encoding

51

tabular datasets using GNNs and the analysis of feature extraction in signal processing across

the time, frequency, and time-frequency domains, illustrating applications in each context.

The chapter concludes by summarising the current state of the art and identifying

research gaps within five key themes: Multimodal Data Preprocessing, Artificial Thermal

Image Creation, Customised Radial Load Assessment, the Decision Fusion Approach in

Multimodal Systems, and a GCN on Tabular Datasets. It highlights the gaps and outlines

future research directions for each theme, aligning with the thesis’ stated aim to enhance fault

classification in IMs significantly. This enhancement seeks to improve decision-making

accuracy and augment algorithms' intelligence within IM condition monitoring systems,

directly supporting the thesis’ objectives. The proceeding chapters will deal with the five

themes mentioned above in that order.

52

Chapter 3: Novel Preprocessing of Multimodal

Condition Monitoring Data for Classifying

Induction Motor Faults Using Deep Learning

Methods

53

3.1 The Impact of Data Representation on the Performance of Machine Learning

Models in Fault Classification

The choice of data representation can significantly impact the performance of

Machine Learning (ML) models in fault classification. The selection of relevant features,

normalisation, data augmentation, dimensionality reduction, graph-based representations,

knowledge graphs, and hybrid approaches can all contribute to improved model

performance. The impact of data representation on the performance of ML models in fault

classification is significant. The choice of data representation can affect the models’

accuracy, speed, and generalisability. Some of the critical aspects of data representation that

can influence the performance of ML models in fault classification include the following:

1) Feature selection: The choice of features used to represent the data can significantly

impact the model’s performance. Relevant features should be selected to ensure that

the model captures the most essential information related to the fault. Inversive

features sometimes lead to overfitting or reduced performance (Kareem and Hur,

2022). This will be addressed in this chapter.

2) Data normalisation: Normalising the data can help improve the performance of ML

models by ensuring that all features are on a similar scale. This can prevent some

features from dominating others and improve the model’s accuracy (Jang and Cho,

2021).

3) Data augmentation: Augmenting the data can help improve ML models' performance

by increasing the training set's size. This can help the model learn more robust

features and reduce overfitting (Yousuf et al., 2024).

4) Dimensionality reduction: Reducing the dimensionality of the data can help improve

the performance of ML models by reducing the noise and irrelevant features in the

data. Techniques like Principal Component Analysis (PCA) and t-distributed

Stochastic Neighbour Embedding (t-SNE) can reduce dimensionality (Wodecki and

Michalak, 2021).

5) Graph-based representations: Representing the data as a graph can help improve the

performance of ML models by capturing the relationships and interactions between

different data entities. Graph-based representations can be used for similarity search,

54

clustering, and other data mining tasks (Jang and Cho, 2021). This will be explored

in Chapter 7.

6) Knowledge graphs: Integrating Knowledge Graphs (KGs) into ML models can help

improve their performance by incorporating domain-invariant knowledge. This can

aid in solving specific tasks and handling domain shifts, such as variations in machine

operation conditions (Radtke et al., 2023).

7) Domain-specific ontologies: Using domain-specific ontologies expressed in the

Resource Description Framework (RDF) and Web Ontology Language (OWL) can

enhance building analytics through multi-domain knowledge integration and

facilitate numerical representation (Delgoshaei et al., 2022).

8) Hybrid approaches: Combining different techniques, such as physics-based

performance models with Deep Learning (DL) algorithms, can help improve the

performance of ML models in fault diagnostics (Chao et al., 2019).

3.2 Proposed Methodology

In condition monitoring, integrating diverse sensor data is a cornerstone for

advancing fault classification capabilities and ensuring operational integrity in Induction

Motors (IMs). The methodology presented herein capitalises on the fusion of thermal and

vibration sensor outputs to create a robust multimodal monitoring framework. By initially

establishing a baseline using thermal imagery, the approach sets a reference standard for

comparison. Subsequently, vibration signals undergo a sophisticated transformation from

one-dimensional (1D) time-series data to two-dimensional (2D) spatial representations

suitable for image processing applications. These representations are further enhanced

through Gramian Angular Field (GAF) and Continuous Wavelet Transform (CWT) encoding

techniques, which encapsulate temporal dynamics and signal decomposition. Before fusion,

thermal and vibration-derived images are meticulously pre-processed to ensure compatibility

and maximised data integration. This process's culmination is synthesising a Stitched

Multimodal Image Dataset, offering a comprehensive view of the monitored condition. A

pre-trained Convolutional Neural Network (CNN), efficient in image-based analysis, will be

trained and used to assess the model performance according to the accuracy metric.

55

3.2.1 Preprocessing Multimodal Data for Induction Motor Fault Classification

Method

The proposed method presents a comprehensive and reliable multimodal feature

fusion approach for improved fault classification accuracy. The methodology incorporates

sensor fusion (combining images from different sensors into one image) and feature fusion

(integrating features from these images for classification). It combines vibration signals and

thermal images to identify Induction Motor (IM) bearing faults, as summarised in Figure 3.1.

The methodology comprises the following steps:

1. Methodology Input Channels: The process begins with thermal images, which establish

a baseline using a single-channel approach, serving as a reference for later multimodal

analysis. The second input consists of raw vibration signals, which are sub-sampled and

prepared for transformation in subsequent steps. This preparation includes creating sub-

files and splitting the dataset for further processing.

2. Two-dimensional (2D) Signal Encoding: One-dimensional (1D) vibration signals are

converted into a 2D format to enable image processing techniques. As a result, two

datasets are created: one with CWT encoded images and another with Gramian Angular

Difference Field (GADF) encoded images to capture temporal correlations and to

decompose the signals into wavelets, respectively. This step then uses pre-trained CNNs

for accuracy assessment (AlexNet, Residual Network-18 (ResNet-18)) and choosing

between CWT and GADF. The chosen 2D encoding technique is then nominated for

step 5.

3. Preprocessing for Image Fusion: Both thermal images and the chosen approach for the

2D encoded vibration data undergo a preprocessing step to ready them for image fusion.

This process merges the encoded vibration images with thermal images, employing a

novel methodology in multi-channel image fusion techniques. To ensure accurate

correlation between fault types, images are paired based on their health condition. Each

GADF image is matched with its corresponding thermal image, both labeled under the

same health condition (e.g., Normal, Mild, Moderate, Severe). This alignment is verified

by cross-referencing the fault labels from both the MFPT dataset and the lab experiment

to ensure proper pairing of fault types. The resulting Stitched Multimodal Image Dataset

is then prepared for input into the pre-trained CNN.

56

4. Pre-trained CNNs for Accuracy Assessment: The Stitched Multimodal Image Dataset

images are input into a pre-trained CNN, capitalising on transfer learning capabilities.

This approach utilises the pre-existing knowledge of CNNs trained on extensive

datasets, thus improving their ability to analyse patterns and identify anomalies.

Introducing transfer learning markedly enhances the efficiency and precision of the fault

classification process. Specifically, SqueezeNet and ResNet-18 will be evaluated. It is

also essential to preprocess the Multimodal Fusion Image Dataset to ensure the image

dimensions are compatible with the required input size for the selected CNN,

SqueezeNet or ResNet-18.

Figure 3.1: Preprocessing of Multimodal Condition Monitoring Data for Classifying Induction

Motor Faults Using Deep Learning Methods.

57

3.2.2 Dataset

The proposed methodology was evaluated using the Machinery Failure Prevention

Technology (MFPT) bearing dataset. The testing setup utilised a NICE bearing with eight

elements or balls. For healthy conditions, three sets of data were collected, each sampled at

a rate of 97,656 Hz for 6 s. Similarly, three sets of data were gathered for Outer Race Fault

(ORF) conditions, also sampled at 97,656 Hz for 6 s. Furthermore, seven ORF conditions

were recorded at a sample rate of 48,828 Hz for 3 s. Additionally, seven Inner Race Fault

(IRF) conditions were sampled at the same rate of 48,828 Hz for 3 s. The test rig was

equipped with a NICE bearing characterised by the following parameters (Bechhoefer,

2016):

• Roller diameter = 0.235

• Pitch diameter = 1.245

• Number of elements = 8

• Contact angle = 0

On the other hand, thermal images were captured in the Wolfson Magnetics

Laboratory at Cardiff University School of Engineering using a Forward Looking InfraRed

(FLIR) thermal camera connected to a computer. These images were taken under six

artificially induced faulty conditions and one healthy condition (Al-Musawi et al., 2020;

McGhan, 2020a). The dataset utilised here aligns with the health conditions presented in the

MFPT bearing dataset, with a focus on methodology.

The proposed methodology is illustrated in Figure 3.1. It begins with evaluating

thermal image fault classification performance based on images captured over a 20-minute

period in ideal laboratory conditions, encompassing seven health conditions, as shown in

Figure 3.2. The thermal images were extracted from the lab-collected images stored in a

RawMotorData file. These thermal images were extracted using a Jupyter notebook

(APPENDIX 1). The selection of images depended on the health conditions presented in the

MFPT bearing dataset, explicitly utilising the categories of Normal (fault-free) or Healthy

condition, IRF, and ORF.

58

Figure 3.2: Thermal Images for all the Faults and Healthy Conditions: (a) 8 Bars; (b)IRF; (c) ORF;

(d) Ball; (e) 4 bars; (f) Normal (fault-free) or Healthy condition; and (g) 1 Bar.

3.3 Results And Discussion

3.3.1 Input Channels

3.3.1.1 Thermal Images

The thermal image dataset is the first input in the framework. In practical scenarios,

camera misalignment or mistracking can lead to zooming in or out and variations in image

brightness. As a result, image preprocessing was conducted on the thermal images.

Consequently, new datasets were generated using the Python OpenCV library. Functions for

brightness adjustment, rotation, and zoom were developed and applied to the files. Median

blur was also applied to the images to replicate common defects in thermal images and

simulate real-world conditions. The thermal image dataset presented challenges due to its

inherent noise and small size.

Subsequently, new datasets were generated using the OpenCV library

(APPENDIX 1). Functions for brightness adjustment, rotation, and zoom were created and

applied to the files. Median blur was also used in the images to replicate typical defects in

thermal imagery. Pre-processed examples are displayed in Figure 3.3.

A total of 180 images for each fault type were used, where 60.00% of the dataset was

used for training, resulting in 115 images for training, 20.00% for validation (29 images),

and 20.00% for testing (26 images). The dotted line in Figure 3.1 represents single-channel

input for classification using thermal images only. It is the baseline data for comparing the

proposed methodology to determine if it improves the classification accuracy. Only Normal

(fault-free) or Healthy condition, IRF, and ORF were used in this study.

a b c d e f g

59

3.3.1.2 Raw Vibration Signal Sub-Sampling

Data were prepared from raw vibration signals to reasonably split folders into

subsamples (CSV files) and produce useful 2D images. Data for 0.1 s were extracted from

each fault condition (two Normal (fault-free) or Healthy condition files called baseline, five

IRF, and seven ORF), resulting in 14 datasets for training and validation. On the other hand,

one Normal (fault-free) or Healthy condition file called baseline, IRF, and three ORF were

used, resulting in six datasets for testing, as shown in Table 3.1.

Table 3.1: Dataset Used and Subfiles Splitting Count.

Dataset Sampling Rate (Hz) Duration (s) Subfiles

Training

baseline_1 97,656 6 117

baseline_2 97,656 6 117

InnerRaceFault_vload_1 48,828 3 58

InnerRaceFault_vload_2 48,828 3 58

InnerRaceFault_vload_3 48,828 3 58

InnerRaceFault_vload_4 48,828 3 58

InnerRaceFault_vload_5 48,828 3 58

OuterRaceFault_1 97,656 6 117

OuterRaceFault_2 97,656 6 117

OuterRaceFault_vload_1 48,828 3 58

OuterRaceFault_vload_2 48,828 3 58

OuterRaceFault_vload_3 48,828 3 58

OuterRaceFault_vload_4 48,828 3 58

OuterRaceFault_vload_5 48,828 3 58

Testing

baseline_3 97,656 6 117

InnerRaceFault_vload_6 48,828 3 58

InnerRaceFault_vload_7 48,828 3 58

OuterRaceFault_3 97,656 6 117

OuterRaceFault_vload_6 48,828 3 58

OuterRaceFault_vload_7 48,828 3 58

Figure 3.3: Compromised-Quality Thermal Images (Preprocessing Stage).

60

3.3.2 Two Dimensional Signal Encoding Techniques

The choice of data representation can significantly impact the performance of ML

models in fault classification. Selecting relevant features, normalisation, data augmentation,

dimensionality reduction, graph-based representations, knowledge graphs, and hybrid

approaches can improve model performance by affecting the models' accuracy, speed, and

generalisability. Key aspects of data representation that influence ML model performance

include feature selection, where relevant features must be chosen to ensure the model

captures essential information related to the fault. Conversely, irrelevant features can lead to

overfitting or reduced performance (Kareem and Hur, 2022). In this chapter, various signal

encoding techniques, such as GAF and CWT spectrograms, will be utilised to enhance data

representation. Moreover, hybrid approaches combine different techniques, such as physics-

based performance models with DL algorithms, which can help improve the performance of

ML models in fault diagnostics (Chao et al., 2019).

3.3.2.1 Gramian Angular Field (GAF)

A methodology that transforms time series into images using two steps: time-series

data normalisation and polar coordinates representation of normalised data. There are two

types of GAF: Gramian Angular Summation Field (GASF) and GADF. Time series data x

are first normalised to values between 0 and 1, shown in Equation (3.1) (Han et al., 2021a):

where 𝑥 𝑖 is the raw time-series signal at timestamp i and �̌�𝑖 is the normalised signal. Further,

𝑥𝑚𝑖𝑛 is the minimum value in the time series data and 𝑥𝑚𝑎𝑥 is the maximum value in the

time series data (Han et al., 2021a). After that, polar coordinates are used to represent

normalised data �̌�𝑖 rather than regular cartesian coordinates by computing the angular cosine

value. Equation (3.2) (Ferraro et al., 2020; Han et al., 2021a):

Here, t denotes the timestamp code at moment i, and radius 𝑟 defines the timestamp.

�̌�𝑖 =
𝑥 𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3.1)

 {
𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠(x̃𝑖), 0 ≤ x̃𝑖 ≤ 1, x̃𝑖 ∈ �̃�

𝑟 = 𝑡𝑖, 𝑡𝑖 ∈ ℕ
 (3.2)

61

In contrast to the Cartesian coordinate system, GAF preserves temporal features by

constructing an image from the upper-left to the lower-right corner over time. It quantifies

temporal correlations across various time intervals using an angular perspective.

Specifically, GAF represents either the triangular GASF or the difference GADF between

individual points, as detailed in Equations (3.3) and (3.4). This method defines temporal

correlations across different intervals using an angular perspective, illustrated by the

triangular GASF or the difference GADF between points, as shown in Equations (3.3) and

(3.4) (Han et al., 2021a; Kou et al., 2022):

where 𝜙𝑖 represents the angle polar coordinates of the ith timestamp. The diagonal positions

keep the original information, while other positions measure the relationship between

different time sequences. Consequently, for a time series signal of length n, a numerical

matrix of 𝑛×𝑛 size can be concluded by the GAF encoding technique, resulting in a 2D image

(Han et al., 2021a).

The core concept behind converting time-series data into images using GAF involves

creating a matrix based on polar coordinates. This matrix preserves the temporal

relationships within the 1D time-series signal, maintaining accurate temporal correlations

compared to Cartesian coordinates. The process yields two types of GAF images: GASF and

GADF (Toma et al., 2022a).

To transform a given time series X = 𝑥1, 𝑥2, ..., 𝑥𝑛 into a range of [-1, 1], we use

Equation (3.1) to normalise and scale X where 𝑥𝑖 is the element of the time series (Cui et al.,

2022; Toma et al., 2022a). The normalisation and scaling process is further detailed in

Equation (3.5). This ensures that the data are appropriately scaled for the creation of GAF

images:

𝐺𝐴𝑆𝐹 = [

𝑐𝑜𝑠(𝜙1 + 𝜙1) … 𝑐𝑜𝑠(𝜙1 + 𝜙𝑛)
𝑐𝑜𝑠(𝜙2 + 𝜙1) … 𝑐𝑜𝑠(𝜙2 + 𝜙𝑛)

⋮ 𝑐𝑜𝑠(𝜙𝑖 + 𝜙𝑖) ⋮
𝑐𝑜𝑠(𝜙𝑛 + 𝜙1) … 𝑐𝑜𝑠(𝜙𝑛 + 𝜙𝑛)

] (3.3)

𝐺𝐴𝐷𝐹 = [

𝑐𝑜𝑠(𝜙1 − 𝜙1) … 𝑐𝑜𝑠(𝜙1 − 𝜙𝑛)
𝑐𝑜𝑠(𝜙2 − 𝜙1) … 𝑐𝑜𝑠(𝜙2 − 𝜙𝑛)

⋮ 𝑐𝑜𝑠(𝜙𝑖 − 𝜙𝑖) ⋮
𝑐𝑜𝑠(𝜙𝑛 − 𝜙1) … 𝑐𝑜𝑠(𝜙𝑛 − 𝜙𝑛)

] (3.4)

62

�̅�𝑖 =
((𝑥𝑖 − max(𝑋)) + (𝑥𝑖 − min(𝑋)))

max(𝑋) − min(𝑋)

(3.5)

The angle 𝜑 is the inverse cosine of 𝑥𝑖, the radius 𝑟 is the timestamp, and the time

series 𝑋 is converted into polar coordinates as shown in Equation (3.6) (Cui et al., 2022;

Toma et al., 2022a).

where 𝑡𝑖 is the timestamp, and 𝑁 is a constant for adjusting image distortion in polar

coordinates with time progression. In this context, a mapping is termed a bijection when 𝜙

is within [0, π], ensuring a unique result for any time series in polar coordinates, preserving

distinct temporal relationships, unlike Cartesian coordinates.

3.3.2.2 Continuous Wavelet Transform (CWT)

Wavelet deals with highly fluctuated signals, making it a widespread method of

mechanical fault diagnosis. CWT outperforms other methodologies focusing on time-

frequency approaches, such as the Short-Time Fourier Transform (STFT) and Gabor

Transform (Nishat Toma and Kim, 2020). In general, Wavelet Transform (WT) is a

mathematical tool commonly used to reduce the signal's noise effect by splitting the selected

signal into small sub-signals, consequently projecting signals into the frequency-time domain

utilising subsets of wavelet functions (Divya and Devi, 2021). Hence, the most common

faults in bearing components occur periodically and affect the outer, ball, cage, and inner

races. Therefore, noise is isolated or shrinks from the signal in the wavelet domain. The

periodic impulse of a specific fault will be represented as “energy” in a few significant

magnitude coefficients. On the other hand, incoherent noises are translated into many small-

magnitude coefficients (Zhang et al., 2022d).

WT is a powerful tool in signal processing, and CWT is a wavelet type. It converts

time-domain signals into a time-frequency domain using a convolution operation that leads

to correlation coefficients between the mother wavelet function and the original signal

(Nishat Toma et al., 2021). The convolution operation is as in Equation (3.7) (Wei et al.,

2021):

{
 𝜑 = arccos(𝑥𝑖) , −1 ≤ �̅�𝑖 ≤ 1, �̅�𝑖 ∈ �̅�

𝑟 =
𝑡𝑖

𝑁
, 𝑡𝑖 ∈ 𝑁

(3.6)

63

𝑐𝑤𝑡(𝛼, 𝛽) = 𝛼
1
2 ∫ 𝑥(𝑡)𝜑 ∗ (

𝑡 − 𝛽

𝛼
) 𝑑𝑡 (3.7)

where 𝛼 and 𝛽 represent the scale factor and the shifting parameter, respectively, x(t) is the

selected signal over time-domain t. 𝜑 is the wavelet function. Where * represents the

operation of the complex conjugate. Hence, CWT converts 1D time-domain signals into 2D

time-frequency images (Wei et al., 2021).

However, the mother of the wavelet has two control parameters. First, the scaling

parameter is responsible for stretching and contracting the shape of the mother wavelet.

Second, the shifting parameter is responsible for the control of the mother wavelet movement

along the studied signal. By changing the control parameters on the mother wavelet, the

dynamic frequency characteristic of the signal can be revealed (Nishat Toma et al., 2021). In

machine fault diagnosis, the Morlet wavelet is combined with the CWT to examine vibration

signals. This technique generates time-frequency images, which can be leveraged by CNNs

for fault identification. The method is highly efficient and capable of handling complex data

rapidly, making it ideal for real-time machinery fault detection (Łuczak, 2024). Therefore,

this chapter uses the analytical Morlet (Gabor) wavelet, a kind of CWT that uses the vibration

signal subsampling rate as the unit step.

3.3.2.3 Two-Dimensional (2D) Encoded Images: Gramian Angular Difference Field

(GADF) and Continuous Wavelet Transform (CWT)

This section tested two signal encoding methodologies to convert vibration signal

subsamples into 2D images. The first method was the GADF, a type of GAF. Second, the

analytical Morlet (Gabor) wavelet, a CWT type, uses the vibration signal subsampling rate

as the unit step.

Each vibration signal subfile presented in Table 3.1 was used as input for the GAF

and CWT 2D image signal encoding step; the code is provided (APPENDIX 2). On the other

hand, the GAF images were created using Python libraries and shown in (APPENDIX 1).

Vibration images are more extensive than thermal images, resulting in 1,398 images for each

encoding methodology. Four hundred sixty-six images were set aside for testing,

representing 33.33% of the entire dataset. The remaining data were divided into an 80:20

64

ratio for training and validation purposes, with 745 images allocated for training and 187 for

validation. These images were generated from each subfile,

as indicated in Table 3.1, where the number of images matches the number of

subfiles. Therefore, these images retain the information of the signal in 2D diagrams. Figure

3.4 illustrates the GADF signal encoding image, while Figure 3.5 depicts the CWT 2D

vibration signal encoding.

3.3.2.4 CNN Transfer Learning Examples Using AlexNet, ResNet-18 and SqueezeNet

Pre-trained CNNs offer numerous advantages, such as improved accuracy, as they

often achieve state-of-the-art performance on various image classification benchmarks

(Salehi et al., 2023). These models reduce training time since they come equipped with

fundamental features and require only fine-tuning for specific tasks (Alzubaidi et al., 2021).

This efficiency extends to using computational resources, making them ideal for handling

large datasets or scenarios with limited processing power (Alzubaidi et al., 2021; Salehi et

al., 2023). Additionally, pre-trained CNNs can help address class imbalances in datasets,

such as those in medical imaging, where some classes may lack sufficient data (Salehi et al.,

Figure 3.4: GADF Encoded Images Demonstration.

Figure 3.5: CWT Encoded Images Demonstration.

65

2023). They can automatically feature extraction, which is crucial in medical imaging for

accurate analysis (Zheng et al., 2023).

Moreover, these models maintain translation invariance, which is vital for consistent

image recognition, and include regularisation techniques like Pseudo-task Regularisation

(PtR) to dynamically enhance network training without relying on specific regularisation

objectives or additional annotations. Their flexibility allows for adaptation to various

applications, including image classification, object detection, and segmentation (Salehi et al.,

2023). Pre-trained CNNs also benefit from being trained on large-scale datasets, enhancing

their performance on downstream tasks, and they are well-suited for domain adaptation in

fields like medical imaging, where data availability may be limited (Salehi et al., 2023).

CNN transfer learning can be applied with any pre-trained CNN architecture. The

idea is to start with a pre-trained CNN model and adjust it to meet the specific needs of a

new task by training it further on a different dataset. This method is especially beneficial

when the new dataset is too small or lacks sufficient data to develop a CNN from scratch

(Hussain et al., 2019). This chapter will focus on ResNet-18 and SqueezeNet, which are

commonly used in Induction Motor (IM) fault diagnosis. Conversely, ResNet-18 and

AlexNet were used for performance evaluation, as will be discussed in Chapter 6. On the

other hand, AlexNet will also be used in Chapter 4.

In Cinar's (2022) study, SqueezeNet showed promising accuracy levels in fault

detection. On the other hand, transfer learning can be utilised on customised CNN

architecture (Ye et al., 2021). SqueezeNet was used in 2022 for fault detection in IMs,

achieving a high classification score (Cinar, 2022). ResNet-18 was also used by Yuan et al.

in 2020 for rolling bearing fault diagnosis on the two publicly available datasets widely used,

namely, the MFPT bearing and Case Western Reserve University (CWRU) datasets (Yuan

et al., 2020). AlexNet was also utilised by Pinedo-Sánchez et al. (2020) on an unlabelled

dataset of vibration signal-encoded images from Intelligent Maintenance Systems. The study

exhibited encouraging outcomes in contrast to various other CNN architectures. Notably,

using AlexNet to diagnose bearing failure through vibration images was rare.

Pre-trained CNNs can be customised and fine-tuned to the desired dataset to learn

features faster and more efficiently than creating a CNN from scratch. Hence, it was proved

from the literature in section 2.2.3.1 that using simple CNN architecture resulted in better

66

performance; SqueezeNet and ResNet-18, which is a short form of the residual net, were

explored. Moreover, some applications showcase the versatility of SqueezeNet in addressing

challenges related to IMs, ranging from fault diagnosis to image classification. The

SqueezeNet model, a type of CNN, has found applications in IMs. One such application is

in the fault diagnosis of IMs. Research has been conducted using DL CNN architectures,

including SqueezeNet, for fault diagnosis of such defects as broken rotor bars in IMs

(Barrera-Llanga et al., 2023).

SqueezeNet networks have also been evaluated for document image classification,

demonstrating SqueezeNet’s applicability in this domain (Hassanpour and Malek, 2019). A

recent study has shown the effectiveness of using SqueezeNet combined with CWT for

bearing fault detection in IMs. It achieved outstanding classification accuracies: 99.79% with

Morse Wavelet, 98.71% with Bump Wavelet, and 97.64% with Morlet Wavelet. These

results highlight the potential of DL models, like SqueezeNet, for precise and efficient fault

diagnosis in industrial settings (Boudiaf et al., 2024).

The evolution of DL architectures over the years has been marked by significant

milestones, particularly in image classification tasks. AlexNet, introduced in 2012,

revolutionised the field by winning the ImageNet challenge, demonstrating the power of

Deep Neural Networks (DNNs) (Krizhevsky et al., 2007). Following this, ResNet-18

emerged in 2015 with its innovative residual blocks, enabling the training of even deeper

networks by addressing the vanishing gradient problem (He et al., 2016). ResNet-18 is

moderate, with 18 fully connected layers and 11.7 million parameters (Kadam et al., 2021;

MathWorks-5, 2023). SqueezeNet, published in 2016, further advanced the domain by

offering a highly efficient model that achieves comparable accuracy to AlexNet with

significantly fewer parameters (Iandola et al., 2016a). SqueezeNet is a simple network with

18 fully connected layers and 1.24 million parameters (Kadam et al., 2021; MathWorks-5,

2023). Table 3.2 compares this thesis's CNN transferred learning architecture (MathWorks-

5, 2023).

Table 3.2: CNN Architecture Comparison (MathWorks-5, 2023).

Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016)

Input 227x227x3 224x224x3 224x224x3

Convolutional 5 layers

Conv1: 7x7, 64,

stride 2

Fire modules (squeeze and expand

layers)

67

Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016)

Max Pooling 3 layers Pool1: 3x3, stride 2 -

Fully Connected 3 layers 1 layer (classifier) 1 layer (classifier)

Output 1000 classes 1000 classes 1000 classes

The following section also discusses the CNN architectures presented in Table 3.2 in

detail:

1) AlexNet: AlexNet is a deep CNN composed of five convolutional layers followed by

three fully connected layers. It achieved victory in the ImageNet Large Scale Visual

Recognition Challenge in 2012, thanks to the work of Alex Krizhevsky, Ilya

Sutskever, and Geoffrey Hinton, as presented in their paper titled “ImageNet

Classification with Deep Convolutional Neural Networks” (Krizhevsky et al., 2017).

AlexNet’s architecture comprises eight layers, including five convolutional layers

and three fully connected layers (Yu et al., 2021). It also has a 1,000-way softmax

output layer for classification. It introduced the Rectified Linear Unit (ReLU)

activation function for faster training and implemented overlapping max pooling to

reduce representation size and computational load. AlexNet employed normalisation

layers, dropout techniques, and data augmentation strategies to prevent overfitting

for improved model robustness (Thalagala and Walgampaya, 2021).

2) SqueezeNet: The SqueezeNet model is a CNN that is 18 layers deep and can classify

images into 1,000 object categories. It has been trained on over a million images and

has learned rich feature representations for many images (MathWorks-4, 2023). Fine-

tuning the pre-trained SqueezeNet model with domain-specific data can also enhance

its performance for the specific application, allowing it to learn features relevant to

the fault diagnosis task (Iandola et al., 2017).

In the domain of DL for image classification, the SqueezeNet architecture

stands out for its strategic reduction of parameters without compromising accuracy.

Remarkably, SqueezeNet attains comparable accuracy to the well-established

AlexNet on the ImageNet dataset, yet with a model size that is 50 times smaller

(Iandola et al., 2016b; Iandola et al., 2017). This parameter reduction enhances

computational efficiency, a critical advantage in resource-constrained environments.

A key factor in optimising SqueezeNet's performance is manipulating the Squeeze

68

Ratio (SR), which is defined as the ratio of filters in the squeeze layers versus those

in the expand layers. Adjusting this ratio upwards can improve ImageNet's top-5

accuracy up to a certain threshold. Beyond this threshold, the benefits plateau,

suggesting that excessively high squeeze ratios may inflate the model's size without

yielding accuracy gains. This observation underscores the importance of

SqueezeNet's design principles, such as incorporating fire modules and the deliberate

balance between minimising parameters and maintaining accuracy (Iandola et al.,

2017).

3) ResNet-18: ResNet-18 is a CNN architecture introduced in the paper “Deep Residual

Learning for Image Recognition” by Kaiming He, Xiangyu Zhang, Shaoqing Ren,

and Jian Sun, published in December 2015. This paper introduced the concept of

residual learning, which marked a significant advancement in DL architectures.

ResNet-18 is a member of the ResNet family, notable for its depth and the utilisation

of residual blocks, which effectively address the vanishing gradient problem when

training DNNs (He et al., 2016).

ResNet-18’s deep residual network architecture is known for its balance

between depth and performance for anomaly detection in Scanning Electron

Microscope (SEM) images of nanofibrous materials. ResNet-18, chosen for its

optimal trade-off between computational efficiency and accuracy, includes five

convolutional stages and is pre-trained on the ImageNet dataset. This architecture

facilitates the detection of unexpected anomalous patterns in SEM images,

demonstrating its effectiveness in recognising complex scenes and objects, which is

crucial for identifying anomalies within the intricate textures of nanofibrous materials

(Napoletano et al., 2018).

The architecture of ResNet-18 consists of a total of eighteen layers, including

seventeen convolutional layers and a fully-connected layer; it also has an additional

softmax layer for classification tasks. The convolutional layers use 3 x 3 filters,

doubling the number of filters as the output feature map size halves. Downsampling

is achieved through convolutional layers with a stride of 2, followed by average

pooling and a fully connected layer leading to the softmax layer. A key feature of

ResNet-18 is the inclusion of residual shortcut connections between layers, which

69

help address the vanishing gradient problem and facilitate the training of networks

(Ramzan et al., 2020; Pandey and Srivastava, 2023).

This stage is pivotal in selecting the proposed methodology's 2D encoding technique.

Table 3.1 enumerates all the models created, with the outcomes of this stage detailed in

models (3-6). For this analysis, SqueezeNet and ResNet-18 were employed. CWT was

identified as yielding superior accuracy. To comply with network specifications, the image

sizes were adjusted as required: ResNet and AlexNet necessitate an input size of 224 x 224

pixels. The last fully connected layer in both networks was also modified to address a three-

class problem.

3.3.3 Multimodal Image Fusion Preprocessing

The number of generated stitched images was 180, which is comparable to the

baseline data or thermal images. These images were merged using the Excel Power Query,

which links each image with its saved path. The first column holds the path of the GADF

images, the second column contains the path of the thermal images, and the third column

indicates the health condition. Consequently, images with the same row number will be

stitched together using the proposed methodology, as shown in Figure 3.6. Each thermal

image is paired with a unique GADF image, grouped by health condition as depicted in

Figure 3.7; the condition is denoted as Normal (fault-free) or Healthy.

Figure 3.6: Stitched Multimodal Image Dataset Samples Per Health Condition.

70

Figure 3.7: Microsoft Excel PowerQuery CSV. File for The Stitched Multimodal Image

Arrangement.

After that, image stitching was done by merging similar RGB channels, giving

vibration images a higher portion in stitched dataset generation. Image stitching was done

using Python Jupyter Notebook, as shown in Figure 3.8. The vibration image has a higher

weight in stitched image generation. This is because the encoded GADF vibration signal

images shown in Table 3.1 proved more accurate than the thermal images in classifying the

health types. Consequently, in the stitched dataset, the vibration images are given a higher

weight, accounting for 66.66% of the image, while the thermal images comprise 33.33%.

This weighting emphasises the knowledge extracted from the vibration data while leveraging

the unique insights of thermal imaging. This is demonstrated in model 5, where the GADF

images dataset scored 99.14% using SqueezeNet and 97.64% using ResNet-18. On the other

hand, the thermal images dataset scored 87.96% using SqueezeNet and 85.19% using

ResNet-18. Consequently, a stitched image comprises 66.66% vibration encoded image and

33.33% thermal image, emphasising the knowledge from vibration image; see the complete

code in (APPENDIX 2).

71

3.3.4 Pre-trained CNNs for Fault Classification

CNNs are suitable for high-dimensional feature extraction. CNNs are stable in terms

of pattern recognition from images (Han et al., 2021b). Furthermore, CNNs are known for

their feature extraction capability from images but encounter difficulties with 1D time series

signals (Zhou et al., 2022). Furthermore, CNNs have proved their rotating machinery fault

classification capabilities through Vibration Signal Analysis (VSA) (Pinedo-Sánchez et al.,

2020). Therefore, CNNs have improved our ability to recognise and understand visual

information by automatically learning and capturing relevant patterns in images and videos

(Reshadi et al., 2023). Researchers have discovered a variety of CNN architectures to

improve classification performance, starting with LeNet-5, designed explicitly for

handwritten digit recognition tasks introduced by Yann LeCun, along with his colleagues, in

1998 (LeCun et al., 1998). AlexNet, a notable deep CNN model designed by Krizhevsky et

al. (2017), effectively countered overfitting in the 2012 ImageNet challenge through tactics

like ReLU activation, dropout, and data augmentation. It comprises an input layer

(224 × 224 × 3), five convolutional layers, and three fully connected layers. Activation

functions bolster nonlinearity and convergence (Amanollah et al., 2023). In 2016,

SqueezeNet was introduced by Forrest Iandola, Song Han, Matthew W. Moskewicz, Khalid

Ashraf, William J. Dally, and Kurt Keutzer, aiming for a streamlined CNN architecture with

Figure 3.8: Stitched Multimodal Image Dataset Encoding Technique.

72

high accuracy and minimal model size. This design allows for deployment on resource-

constrained devices without compromising performance (Iandola et al., 2016c).

Classification problems involve mapping inputs to outputs, which is typically

achieved through supervised learning. After training a classification model, its quality of

learning is evaluated by testing it on unseen data and predicting the respective classes.

Alternatively, pre-trained CNN models can be used to assess the similarity between

generated and real images. This involves training the pre-trained model on an artificial image

dataset and evaluating its performance on a real dataset (Alrashedy et al., 2022).. Various

CNN architectures have been employed, including Residual Network 152V2, MobileNetV2,

and AlexNet (Alrashedy et al., 2022). Evaluation of deep transfer learning models commonly

utilises accuracy Equation (3.7), precision Equation (3.8), and recall Equation (3.9) metrics.

These metrics rely on the correct classification of True Positives (TP) and True Negatives

(TN) to accurately identify positive and negative instances. Additionally, they consider False

Positives (FP) and False Negatives (FN), which refer to the incorrect classification of

negative and positive instances, respectively (Nishat Toma and Kim, 2020).

However, in this section, accuracy was used as an evaluation metric, as shown in

Equation (3.7), representing the number of times the model correctly classified fault type

over the total number of predictions. Hence, True Positive (TP) represents correctly

identified faults, and False Positive (FP) indicates incorrectly classified faults. Similarly, TN

denotes correctly identified normal conditions, while incorrectly classifying a normal

condition is referred to as False Negative (FN) (Nishat Toma and Kim, 2020).

Two CNN architectures, ResNet-18 and SqueezeNet, were tested for DL model

training. Mainly, ResNet-18 and SqueezeNet were used to train, validate, and test the

research models, starting with the baseline, which is the compromised thermal image quality

dataset in models number 1 and 2, then generated CWT images in models 3 and 4, moving

to GADF-generated images in 5 and 6. Finally, after resizing images, the Stitched

Multimodal Image Dataset matched each CNN input requirement. Stitched Multimodal

Accuracy = (TP + TN)/(TP + FN + TN + FP) (3.7)

Precision = TP/TP + FP (3.8)

Recall = TP/TP + FN (3.9)

73

Image Dataset was split into 60.00% for training, 20.00% for validation, and 20.00% for

testing. DL network training and signal analysis were done using MATLAB. Microsoft Excel

PowerQuery was also used to support the work. Eight different models were trained and

validated. Then, the testing split was used to assess the models’ performance, as shown in

Table 3.3.

Table 3.3: Tested Model Performance.

The first two models focused on fault classification and condition monitoring

performance on compromised thermal image quality modified using OpenCV to mimic

critical conditions. Then, ResNet-18 and SqueezeNet were applied to assess each CNN’s

performance on the test dataset, as shown in Table 3.3. Using either ResNet-18 or

SqueezeNet will result in low accuracy and needs further improvement, although,

SqueezeNet performed better than ResNet-18 in accuracy by almost 2.77%. The trained

model misclassified the IRF nearly 30.55% of the time using ResNet-18 and 16.66% using

SqueezeNet, as shown in Figure 3.9 where Inner represents the IRF, Outer (ORF), and

Normal (fault-free) or Healthy condition.

Model

No.

Inputs Image

Encoding

CNN Test

Accuracy (%)

1 Thermal images None SqueezeNet 87.96%

2 Thermal images None ResNet-18 85.19%

3 Vibration images CWT SqueezeNet 97.85%

4 Vibration images CWT ResNet-18 95.92%

5 Vibration images GAF SqueezeNet 99.14%

6 Vibration images GAF ResNet-18 97.64%

7 Thermal+vibration (Stitched Images) GAF(vibration) SqueezeNet 98.15%

8 Thermal+vibration (Stitched Images) GAF(vibration) ResNet-18 100%

74

Figure 3.9: Thermal Images Vs. Proposed Methodology Accuracy Per Fault.

Consequently, fault classification with a single input in noisy conditions and limited

data is unreliable and needs further enhancement. Hence, this chapter proposed a multimodal

condition monitoring system, leading to a reliable fault classification system with a holistic

learning experience using transfer learning capabilities in feature extraction.

Vibration signals were analysed individually to help choose the optimal model that would

be used to elevate thermal image performance. Thus, the following four models analysed

vibration signals by determining the performance of GAF and CWT encoding methodologies

on subsamples using two CNNs, ResNet-18 and SqueezeNet, resulting in four different

combinations. Then, the highest-performing model in terms of overall accuracy was selected.

However, the difference was slight between Model 3 and Model 6 vibration models,

as shown in Table 3.3. The overall accuracy of using the GADF encoding methodology was

better than the CWT encoding methodology in fault classification. Specifically, GADF signal

encoding achieved a mean accuracy of 98.39% ± 1.07%, with Model 5 reaching 99.14%

using SqueezeNet and Model 6 reaching 97.64% using ResNet-18. On the other hand, CWT

signal encoding resulted in a slightly lower mean accuracy of 96.89% ± 1.38%, with Model

3 reaching 97.85% using SqueezeNet and Model 4 reaching 95.92% using ResNet-18.

9
2

%

9
4

%

1
0

0
%

1
0

0
%

8
3
%

6
9

%

9
7

%

1
0

0
%

8
9

%

9
2

% 9
7

%

1
0

0
%

40%

60%

80%

100%

SqueezeNet

Thermal

Model 1

ResNet-18

Thermal

Model 2

SqueezeNet

Proposed

Methodology

Model 7

ResNet-18

Proposed

Methodology

Model 8

A
cc

u
ra

cy
 P

er
ce

n
ta

g
e

Healthy Inner Outer

75

However, Figure 3.10 shows the difference between vibration signal encoding

methodologies in terms of fault classification accuracy by fault type on the test dataset.

Hence, Model 5 is considered the most accurate compared to other models. Consequently,

the GADF encoding methodology was adapted to the proposed methodology. Models could

classify the IRF as higher than other fault types presented in Figure 3.10. Conversely, Model

1 and Model 2 struggled to classify the IRF type the most, as shown in Figure 3.9.

The proposed methodology was implemented using SqueezeNet in Model 7 and

ResNet-18 in Model 8. However, the selected vibration signal encoding technique was

GADF. Also, the Stitched Multimodal Image Dataset Encoding Technique was used to

merge encoded vibration images with the thermal image. As shown in Table 3.3, the

proposed methodology, using both CNNs, performed better than Model 1 and Model 2. The

model’s accuracy using ResNet-18 jumped from 85.19% to 100%, leading to a 14.81%

improvement. Also, it rose from 87.96% using SqueezeNet to 98.15.00%, making a 10.19%

improvement in accuracy.

Furthermore, Figure 3.9 compares the first two models, depending on a single sensor

fault classification system, with the proposed Novel Preprocessing of Multimodal Condition

Monitoring Data methodology. It was clear from Figure 3.9 that the proposed methodology

enhanced the fault classification accuracy, especially IRF type classification, by almost

31.00% using ResNet-18 and 14.00% using SqueezeNet. The accuracy enhancement of other

conditions was also remarkable; ORF classification was improved by the same percentage,

9
6

%

1
0

0
%

1
0

0
%

9
9

%

9
9

%

1
0

0
%

1
0
0
%

9
9

%

9
8

%

9
2

% 9
8

%

9
6

%

40%

60%

80%

100%

SqueezeNet

CWT

Model 3

ResNet-18

CWT

Model 4

SqueezeNet

GAF

Model 5

ResNet-18

GAF

Model 6

A
cc

u
ra

cy
 P

er
ce

n
ta

g
e

Healthy Inner Outer

Figure 3.10: Vibration Signal Encoding Models Accuracy Per Fault.

76

8.00%, using both CNNs. Also, the Normal (fault-free) or Healthy condition classification

was enhanced by 8.00% using SqueezeNet and 6.00% using ResNet-18.

3.4 Summary

Data-driven fault classification aims to improve detection in Induction Motor (IM)

bearings. The study began by testing fault classification accuracy using compromised

thermal image quality alone with pre-trained CNNs. The highest score achieved was 87.96%

using SqueezeNet, indicating that fault classification with a single input in noisy conditions

and limited data has scope for improvement.

To address this, the chapter proposes the Preprocessing of Multimodal Condition

Monitoring Data for classifying induction motor faults using DL methods. This methodology

investigates two signal-to-image encoding methods: CWT and GAF. The results revealed

minimal differences between CWT and GAF, with GAF outperforming CWT by 1.50% on

average. Specifically, GAF showed a 1.72% higher accuracy using ResNet-18 and a 1.29%

higher accuracy using SqueezeNet, leading to an overall mean accuracy of 98.39% ± 1.07%

for GAF compared to 96.89% ± 1.38% for CWT.

The proposed methodology employs a Stitched Multimodal Image Dataset Encoding

Technique, combining GAF images with compromised thermal images. This process

involves merging encoded vibration images (weighted at 66.66%) and thermal images

(weighted at 33.33%) to emphasise the knowledge extracted from vibration data while

leveraging thermal imaging insights. This approach significantly improved overall

classification accuracy by 14.81% for ResNet-18 and 10.19% for SqueezeNet compared to

using compromised thermal images as single-channel inputs. Consequently, the proposed

approach improved classification accuracy by 12.50%, achieving 99.10% ± 0.50% when

using both ResNet-18 and SqueezeNet compared to using compromised thermal images

alone.

The main contribution of this chapter is the novel preprocessing methodology for

multimodal condition monitoring data to classify IM faults using DL methods with

compromised thermal image quality. Among the numerous noteworthy sub-contributions are

the following:

1. Integration of multiple data types (sensor fusion): The methodology combines data

from various sensors, specifically, thermal images and vibration signal data encoded

77

as images (using GADF). This integration is a classic example of feature fusion,

whereby data from various sources or different types are merged to enhance decision-

making.

2. Weighted combination (feature fusion): Assigning different weights to thermal and

vibration images ensures that the most relevant features from each data type are

emphasised. The approach weights the thermal and vibration images (66.66%

vibration encoded and 33.33% thermal images), a key feature fusion aspect. This

weighted combination ensures that the most relevant features from each data type are

emphasised in the analysis.

3. Enhanced data representation: Fusing features from compromised-quality thermal

images and vibration data creates a comprehensive signal representation, capturing

more nuances of the fault conditions than either data type could achieve

independently.

4. Use in ML models: The fused data are then used to train ML models (CNNs like

SqueezeNet and ResNet-18). Feature fusion before model training is a strategic

approach to improve the model’s ability to learn from a richer set of features, thereby

enhancing the overall accuracy and robustness of the fault classification.

While the proposed Preprocessing of Multimodal Condition Monitoring Data for

classifying induction motor faults using DL methods improved the baseline accuracy using

compromised thermal images as single-channel inputs, the small sample size of the thermal

image dataset (180 images per health condition) remains a limitation. To overcome this,

Chapter 4 (the following chapter in the thesis) aims to expand the dataset and employ data

augmentation techniques using GANs.

78

Chapter 4: A Novel Approach Using Wasserstein

Generative Adversarial Networks with Gradient

Penalty (WGAN-GP) and Conditional WGAN-GP

for Generating Artificial Thermal Images of

Induction Motor Faults

79

4.1 Proposed Methodology

Training Generative Adversarial Networks (GANs) involves updating the parameters

of the Generator (G) and Discriminator (D) using optimisation methods like Stochastic

Gradient Descent (SGD), Adaptive Moment Estimation (Adam), or Root Mean Square

Propagation (RMSProp). The goal is to reach a Nash equilibrium, where D is no longer able

to distinguish between real images 𝑥 and generated fake images (𝑥′ = 𝐺(𝑧)) (Pang et al.,

2022). GANs have two probability distributions, namely, 𝑃𝑔 , the distribution from G's

implicit distribution, and 𝑃𝑟, the probability distribution of real images. The D outputs a

number between 0 and 1, representing the probability that the input image is real, with a

score close to 1 indicating a real image. The G and D are continuously updated to improve

the model's ability to generate data closer to real images and discriminate between real and

fake data using the objective Equation (4.1) (Han et al., 2020):

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∽𝑃𝑟(𝑥)[log(𝐷(𝑥))] + 𝔼𝑧∽𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] (4.1)

Equation (4.1) consists of two terms: G takes a noise vector z sampled from a prior

distribution. 𝑃𝑧 and generates a sample G(z) in the target data distribution. D takes a sample

𝑥 from either the real data distribution 𝑃𝑟 or the generated data distribution 𝑃𝑧 (i.e., D(G(z))),

and outputs a probability score indicating whether the input is a real or fake sample. The first

term in the equation is the expected value of the logarithm of D’s output on real samples 𝑥,

while the second term is the expected value of the logarithm of D’s output on fake samples

G(z) (Han et al., 2020).

The proposed methodology is structured into two main parts to investigate the

generation of artificial thermal images for induction motor fault detection using GANs. In

the first part, the study begins with a foundational exploration of GANs, focusing on

understanding their behaviour and evaluating the impact of various parameters on their

performance. Initially, the basic Deep Convolutional Generative Adversarial Network

(DCGAN) architecture is employed with an original image size of 224 x 224 x 3 pixels.

Subsequently, the study introduces Wasserstein Generative Adversarial Networks with

Gradient Penalty (WGAN-GP), leveraging advanced training parameters and GPU resources

to specifically analyse the Inner Race Fault (IRF) at a resolution of 32 x 32 x 3 pixels.

80

The second part of the study expands to include four separate WGAN-GP models

trained for IRF, Outer Race Fault (ORF), 8-bars, and Normal (fault-free) or Healthy

condition. Following this, all health conditions are collectively trained using the conditional

Wasserstein Generative Adversarial Network with Gradient Penalty (cWGAN-GP) model,

generating high-quality artificial thermal images at a resolution of 128 x 128 pixels.

The proposed frameworks of WGAN-GP and cWGAN-GP are detailed in the

subsequent sections. They emphasise their applications and outcomes in generating artificial

thermal images that closely resemble real images from the dataset, specifically for detecting

faults in the bearings of Induction Motors (IMs).

4.1.1 Foundational Study of Generative Adversarial Networks (GANs)

This section explores the behaviour of GANs and assesses how various parameters

affect their performance. It includes experiments with the DCGAN architecture to generate

artificial thermal images that closely resemble real images from the dataset, specifically

targeting IRF, ORF, and Normal (fault-free) or Healthy condition. Additionally, it introduces

the use of WGAN-GP to generate artificial thermal images that accurately replicate real

images from the dataset, focusing on IRF.

4.1.1.1 Basic Deep Convolutional Generative Adversarial Networks (DCGAN)

The Basic DCGAN is a type of GAN discovered by Radford, Metz, and Chintala in

2014; they proved it could generate realistic images not added during the training stage

(Kusiak, 2020). It is considered one of the most recent significant improvements in GAN

architecture in vision modelling. Its deep architecture can stabilise the training, generating

high-quality images. DCGAN utilises Convolutional Neural Network (CNN) architecture

with GANs (Niu et al., 2020).

One of the critical innovations of DCGANs is the replacement of pooling layers with

convolutions that use strides and convolutions with fractional strides. ‘Strides’ refers to the

step size with which the filter moves across the input image, while fractional strides are used

to increase the spatial dimensions of the input. This allows the Generator (G) and

Discriminator (D) to learn convolutional operations, spatial downsampling, and upsampling

individually. By doing this, DCGAN ensures that the G and D networks can learn

independently, which can help to stabilise the training process.

81

The second innovation in DCGAN is Batch Normalisation (BN), which stabilises

learning. BN is a technique used to normalise the input to a layer, which helps solve the

vanishing gradient problem and prevents the deep G from collapsing all samples to the same

points. Finally, DCGANs use Rectified Linear Unit (ReLU) and LeakyReLU activation

functions to allow the model to learn quickly and perform well. The ReLU activation

function is used in all G layers except for the last layer, which uses the Tanh activation

function to produce image pixel values between -1 and 1. LeakyReLU activation functions

are used in all D layers to prevent the problem of "dying ReLU" and enable the model to

learn from small gradients. (Alotaibi, 2020; Wang et al., 2021c). On the other hand,

DCGANs produce high-quality images but require a long training duration (Al-Qerem et al.,

2019).

DCGAN proved its efficiency (Du et al., 2019) for image generation in solving

imbalanced datasets in the chemical industry fault diagnosis field. It was also used by He et

al. (2021) for axial piston pump bearing fault diagnosis to mitigate data availability and

missing fault labelling challenges. DCGAN was also used in IM fault classification using

Case Western Reserve University's (CWRU) famous dataset in which Continuous Wavelet

Transform (CWT) images were synthesised (Zhong et al., 2023).

Consequently, the first architecture in this section is the DCGAN model, which was

trained on Google Colab using a Tesla T4 GPU. Training and testing images of size 224 x

224 x 3 were stored in a Google Drive directory. The G model takes a random noise vector

of size 100 as input and generates an image, while the D model predicts whether the image

is real or fake. Both models were trained alternately using the binary cross-entropy loss

function and the Adam optimiser. The complete code of DCGAN is shown in (APPENDIX

3).

Images were loaded and processed using the ImageDataGenerator function from the

Keras API, which also handled data augmentation. Augmenting the data can help improve

the performance of Machine Learning (ML) models by increasing the size of the training set.

This process allows the model to learn more robust features and reduces overfitting (Yousuf

et al., 2024). Pixel values of the images were rescaled to range between 0 and 1. The training

dataset contained 288 images, and the batch size was set to 32. Images in the training dataset

were labelled 'inner' with the class_mode set to 'binary'. The validation dataset, stored in the

82

same Google Drive directory, consisted of 72 images, resized to 224 224 pixels and similarly

labelled.

The G model consists of several dense and reshaping layers, followed by transposed

convolutional layers with BN and ReLU activation. The output layer uses a Tanh activation

function to generate values between -1 and 1. In contrast, the D model includes several

convolutional layers with BN and LeakyReLU activation, culminating in a flattened layer

and multiple dense layers. The output layer employs a sigmoid activation function to produce

values between 0 and 1, indicating the probability that the input image is real.

Both the G and D models are compiled with binary cross-entropy loss, and the

adversarial model is compiled with the Adam optimiser using LRs of 0.0001 and 0.0002 and

beta_1 of 0.5. During training, the models are trained alternately—the G aims to create

images that fool the D. In contrast, the D learns to distinguish real images from fakes

generated by the G. All experiments were conducted on a Tesla T4 GPU using the Google

Colab Pro platform.

4.1.1.2 Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)

on Inner Race Fault (IRF)

A Wasserstein Generative Adversarial Network (WGAN) differs from traditional

GANs by not using a sigmoid activation function at the end of the critic model and by

employing the Wasserstein Distance (Earth Mover's Distance, or EMD) as its loss function,

instead of the Jensen-Shannon Divergence (JSD) used in standard GANs. In WGAN, the

discriminator is called the "critic" because it evaluates the quality of generated samples by

assigning them a continuous score rather than classifying inputs as real or fake (Gulrajani et

al., 2017). Equation (4.2) consists of two parts. In the first part, the critic applies the function

f to a real image x from the real probability distribution. In the second part, x is taken from

the output of Generator (G), generated from a latent noise vector, and then the critic is applied

to the generated image. The critic is constrained with max
‖𝑓‖𝐿≤1

, ensuring the function is Lipchitz

continuous. This constraint is important for the critic to differentiate between real and

generated samples. The critic estimates the Wasserstein distance between the real and

generated data distributions, guiding G to generate more realistic samples. The critic aims to

maximise the expression, while G aims to minimise this distance (Arjovsky et al., 2017a).

83

max
‖𝒇‖𝐿≤1

𝔼𝑥~𝑃𝑟
[F(𝑥)] − 𝔼𝑥~𝑃𝑔

[𝐹(𝑥)] (4.2)

Consequently, the second architecture is the WGAN-GP, a type of GAN architecture

that uses a gradient penalty (GP) to enforce the Lipschitz continuity of the D. The D is trained

to output a scalar value instead of a probability. The G is trained to minimise the Wasserstein

distance between the distribution of real and generated samples. The G loss is the negative

Wasserstein distance, and the D loss is the difference between the average D output on the

real samples and the generated samples, plus a GP term. The GP term is added to ensure the

D satisfies the Lipschitz continuity condition with a 0.0001 Learning Rate (LR), batch size

of 64 and Adam optimiser (Gulrajani et al., 2017).

As mentioned, the dataset consists of 288 training images for the IRF class and 72

test images, with an original image size of 224 x 224. Since the training dataset size is

relatively small and the dataset resolution of 224 x 224 is relatively big, the images in the

dataset were resized to 32 x 32, and the WGAN-GP model was trained for 10,000 iterations

with a batch size of 64 on a GPU in Colab. This second architecture is a proof of concept

which will represent the baseline for Part 2, aiming for further improvement in image

resolution, including other faults, and similarity assessment compared to real datasets.

4.1.2 Advanced GANs Framework

4.1.2.1 Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)

WGAN-GP addresses the limitations of weight clipping in regular WGAN. Instead

of weight clipping, the GP is used to enforce the Lipschitz constraint on the critic. WGAN-

GP, introduced in 2017 by Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron Courville (Gulrajani et al., 2017), improves stability, resolves mode

collapse, and optimises hyperparameters in training. The Wasserstein distance metric

measures the difference between generated and real images. Additionally, the algorithm

includes a GP term in the critic for smoothness. The number of Generator (G) and critic

iterations, as well as the strength of the gradient penalty, can be adjusted using a lambda term

(Wang and Wang, 2019).

84

4.1.2.2 Proposed Wasserstein Generative Adversarial Network with Gradient Penalty

(WGAN-GP) Methodology

Figure 4.1 illustrates the overall WGAN-GP methodology for generating thermal

images of IMs under various health conditions. The framework involves training the

Discriminator (D) and Generator (G) to produce realistic images. D distinguishes between

real and fake images, while G generates images to fool D. The loss function is based on the

Wasserstein distance between the distributions of real and fake images with a GP to control

D’s power. Training alternates between D and G until convergence. The G is a neural

network that takes a 100-dimensional latent vector as input and uses transpose convolutional

layers to generate images of size C x 128 x 128, where C is the number of channels. The

model uses a main module consisting of several convolutional layers followed by a Tanh

activation function to generate the image. The output of the main module is then passed

through the Tanh function to normalise the pixel values between -1 and 1. D is a neural

network with three layers of filters (256, 512, 1024), taking images of size 128 x 128 with C

channels and outputting a single value indicating real or fake. The input image is passed

through a sequential module and then flattened to be fed into a fully connected layer. The

full code is available in the thesis supplementary file.

The proposed methodology aims to comprehensively assess the performance of the

WGAN-GP model on the IM dataset (refer to section 4.1.3) with varying resolutions.

Experiment results demonstrated that the WGAN-GP model effectively generated IM images

that closely resembled real images in the dataset. However, challenges arose with the small

sample sizes and lower image quality in certain classes, such as the 'ball' and '1bar' classes,

which impacted the model's performance. To address these issues, the following section will

explore methods to augment the dataset and enhance the model’s performance for classes

with smaller sample sizes and lower image quality. Specifically, the cWGAN-GP will be

used, where the author plans to incorporate bearing fault types as a condition in the cWGAN-

GP and train all fault types simultaneously to reduce training time.

85

4.1.2.1 Conditional Wasserstein Generative Adversarial Network with Gradient Penalty

(cWGAN-GP)

The cWGAN-GP is an extension of traditional GANs called conditional Generative

Adversarial Networks (cGANs). It introduces an additional input, denoted as 𝑦, to the

network, representing additional information such as class names, data from another model,

vectors, or images. This conditional factor adds a new dimension to the min-max game

between the Generator (G) and Discriminator (D) (He et al., 2022).

The objective function of cWGAN-GP, as shown in Equation (4.3), involves D

outputting a high value when given real data point x conditioned on a label y drawn from the

true distribution 𝑃𝑟 (He et al., 2022; Pang et al., 2022). The second part of the objective

function calculates the expected value of the logarithm of D’s output when given a fake data

point generated by G using a noise vector z drawn from a prior distribution P(z) conditioned

on the same label y (He et al., 2022). The goal is to optimise G and D to minimise this

objective function, generating high-quality conditional samples.

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∽𝑃𝑟(𝑥)[log(𝐷(𝑥|𝑦))] + 𝔼𝑧∽𝑃𝑧(𝑧)[log(1 − 𝐺(𝑧|𝑦))] (4.3)

Figure 4.1: Proposed Wasserstein GAN with Gradient Penalty (WGAN-GP) Methodology.

86

4.1.2.2 Proposed Conditional Wasserstein Generative Adversarial Network with Gradient

Penalty (cWGAN-GP) Methodology

To enhance the generation of Induction Motor (IM) thermal images under different

health conditions, we introduce the cWGAN-GP. This approach incorporates label

information into the model inputs, enabling Generator (G) and Discriminator (D) networks

to generate class-specific images that benefit from patterns of other classes, leading to faster

convergence. Figure 4.2 illustrates the cWGAN-GP methodology, which represents the

image class and includes a condition vector as input for both G and D networks. The loss

function incorporates the Wasserstein distance and a GP term for smoothness in D. The G in

the cWGAN-GP methodology is similar to the WGAN-GP, with the addition of a one-hot

encoded condition vector representing all health state classes. It takes a concatenated input

of the latent vector and condition vector, using transpose convolutional layers to generate

C x 128 x 128 images.

The model includes a main module with convolutional layers and a Tanh activation

function. The D in cWGAN-GP is similar to WGAN-GP, with the addition of a condition

vector concatenated with the input image, resulting in an input shape of (10, 128, 128) after

Figure 4.2: Proposed Conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP) Methodology.

87

combining the label information. The output of D is a single value indicating real or fake.

The complete code is available in the thesis supplementary file.

4.1.3 Dataset

Wolfson Magnetics Laboratory is located at Cardiff University School of

Engineering. The laboratory conducted experiments to simulate six different failure modes

and Normal (fault-free) or Healthy condition. To create these failure modes, a 2mm diameter

drill was used to make holes in both the inner and outer parts of the bearing, as illustrated in

Figure 4.3 (Al-Musawi et al. 2020)..

This chapter explicitly investigates three conditions: IRF, ORF, and Normal (fault-

free) or Healthy condition.

To achieve this, thermal images of bearing faults were collected using a forward-

looking infrared (FLIR) thermal camera positioned 30cm from the centre of the housing. The

camera was connected to a computer to capture images of six artificially induced faults and

one health condition, Figure 4.4. One hundred twenty images were captured under three load

types, with 360 images per condition. The data were split into 80.00% for training, equivalent

to 288 RGB images, and 20.00% for testing, equal to 72 RGB images (Al-Musawi et al.,

2020; McGhan, 2020b).

Figure 4.4: Thermal Images for all the Faults and Normal Health Conditions: (a) 8Bars; (b)IRF; (c)

ORF; (d) Ball; (e) 4Bars; (f) Normal (fault-free) or Healthy condition; and (g) 1Bar.

 (a) (b)

Figure 4.3: Bearing Faults (a) IRF, (b) ORF (Al-Musawi et al. 2020).

a b c d e f g

88

4.2 Results and Discussion

4.2.1 Basic Deep Convolutional Generative Adversarial Network (DCGAN) and

WGAN-GP

The Basic DCGAN was tested on three health condition datasets: IRF, ORF, and

Normal (fault-free) or Healthy condition. The experiments varied in terms of

hyperparameters, such as LR (0.0001, 0.0002), batch size (16,32), and the number of epochs

(50, 500). The training and test dataset was in the Google Drive directory and contained 288

images. The images were resized to 224 x 224 pixels, and the batch size was 32. On the other

hand, the WGAN-GP was tested on IRF only with advanced training parameters. The IRF

dataset consists of 288 training images for the “IRF” class and 72 test images, with an original

image size of 224 x 224. Since the training dataset size is relatively small, the author resized

the images to 32 x 32 and trained the model for 10,000 iterations with a batch size of 64 on

a GPU in Colab, as shown in Table 4.1.

To evaluate the performance of each experiment, the Generator (G) and

Discriminator (D) losses were assessed. A lower D loss relative to the G indicates superior

D performance. Conversely, a lower G loss suggests a better performance of the G. These

findings align with the results presented in Table 4.1, where the performance of each model

can be observed based on their respective losses. The experiments were conducted in two

stages: the first involved using basic DCGAN with simple parameters (Experiments 1-12) to

test various health condition datasets. In contrast, the second stage focused on utilising

WGAN-GP with advanced parameters for the IRF.

• DCGAN Architecture: Three conditions were tested, starting with the IRF

(Experiments 1-4): longer training time led to better performance, with the best result

observed in Experiment 2. It used 500 epochs, LR of 0.0001, a batch size of 32, and

achieved a G loss of 4.627 and a D loss of 0.0002. ORF (Experiments 5-8): increasing

the batch size led to better performance, with the best result obtained in experiment

7, which used 50 epochs, LR of 0.0002, a batch size of 16, and achieved a G loss of

0.0021 and D loss of 3.4129. Normal (fault-free) or Healthy condition (Experiments

9-12): longer training time resulted in improved performance, with the best outcome

observed in Experiment 12, which utilised 1,000 epochs, LR of 0.0002, a batch size

89

of 32, and achieved a G loss of 8.3201 and a D loss of 5.0697. However, visual

inspection results were less promising than the project objective.

• WGAN-GP Architecture: the IRF was exclusively tested using WGAN-GP

(Experiment 13) with more epochs and longer training times. The experiment

required 11 hours of training time. The G loss was a high negative number, while the

D loss was -1897.3366 for fake samples and -1548.9419 for real samples. These

findings suggest that the D network distinguished between real and fake samples,

minimising the loss during training. Similarly, the G loss was also a high negative

number, specifically -1,896.8599. This indicates that the G successfully generates

samples that D classifies as real samples with high confidence.

Table 4.1: GAN Performance for Fault Detection Experiments.

Consequently, the choice of hyperparameters significantly impacts model

performance. Generating artificial fault images of large size and high complexity posed

challenges requiring significant time and GPU capabilities. Table 4.1 has provided insights

into the performance of GANs using DCGAN. Implementing WGAN-GP with advanced

No. Model Dataset LR
Batch

Size
Epochs

Training

time (min)
(G) Loss (D) Loss

1 DCGAN IRF 0.0001 16 500 48 3.2172 5.537

2 DCGAN IRF 0.0001 32 500 41 4.627 0.0002

3 DCGAN IRF 0.0002 16 50 5 0.0019 3.5658

4 DCGAN IRF 0.0002 32 500 40 5.0668 7.6786

5 DCGAN ORF 0.0001 16 50 4 0.0045 3.0554

6 DCGAN ORF 0.0001 32 50 4 0.0079 2.782

7 DCGAN ORF 0.0002 16 50 4 0.0021 3.4129

8 DCGAN ORF 0.0002 32 50 4 0.00308 3.2324

9 DCGAN Normal 0.0001 16 50 4 0.00681 2.8419

10 DCGAN Normal 0.0001 32 50 4 0.0068 2.8419

11 DCGAN Normal 0.0002 16 50 5 0.00681 2.84186

12 DCGAN Normal 0.0002 32 500 50 8.32011 5.0697

13 WGAN-

GP

IRF 0.0001 64 10,000 660

(11 hours)

-

1896.86

00

Loss Fake: -

1897.3366

Loss Real: -

1548.9419

90

hyperparameters (10,000 epochs, batch size 64) on a GPU yielded an efficient generation of

motor images closely resembling real images over time, as shown in Figures 4.5, 4.6, and

4.7.

Figure 4.5: WGAN-GP Generated images at Epoch 0.

Figure 4.6: WGAN-GP Generated Images at Epoch 100.

91

Figure 4.7: WGAN-GP Generated Images at Epoch 10000.

4.2.2 Advanced WGAN-GP and cWGAN-GP

4.2.2.1 Generated Images Similarity Assessment: Visual Quality Assessment

 The WGAN-GP and cWGAN-GP approaches yielded promising results in generating

realistic thermal images. The cWGAN-GP approach, which incorporates class information

(using health condition classes as cWGAN-GP conditions), demonstrated further

improvements in image generation, allowing for better control over the generated images.

Figure 4.8 showcases generated images using the cWGAN-GP approach, exhibiting a

resolution of 128 x 128 and belonging to seven different health condition classes. Each row

represents a different health condition class from row one to row seven, representing 8 bars,

IRF, ORF, Ball, 4 bars, Normal (fault-free) or Healthy condition, and 1 bar, respectively.

Meanwhile, Figure 4.9 presents images generated using the WGAN-GP approach, with a

resolution of 128 x 128 and belonging to the Normal (fault-free) or Healthy condition class.

Both types of generated images visually demonstrate high variability and closely resemble

real motor thermal images. However, additional quantitative assessment is needed.

92

4.2.2.2 Generated Images Similarity Assessment: GAN Similarity Metrics (MMD, EMD)

Evaluating GAN performance is challenging due to the lack of standardised metrics

and the subjectivity of human visual evaluation. However, visual similarity assessment is

used with other quantitative metrics (Niu et al., 2020; Shao et al., 2023). This section uses

non-visual quantitative metrics to assess image similarity, providing insights into the quality,

diversity, and similarity of generated images using GAN compared to real images. The

following metrics are used to evaluate the quality and similarity of generated images in the

context of GANs:

• Fréchet Inception Distance (FID)

Fréchet Inception Distance (FID) was introduced by Heusel et al. in 2017. It measures

the distance between the real distribution and the distribution generated by the trained model

(Niu et al., 2020). It is computed using Equation (4.4), where, 𝜇𝑟 and 𝜇𝑔 are the mean value

Figure 4.9: Generated Images with Resolution 128 x 128 using cWGAN-GP. Each Row Represents a

Different Health Condition Class from Row One to Row Seven, Representing 8 Bars, IRF, ORF, Ball, 4

Bars, Normal (fault-free) or Healthy, and 1 Bar, Respectively.

Figure 4.8: Generated Images Class: (Normal (fault-free) or Healthy condition) with Resolution

128 x 128 Using WGAN-GP.

93

for real images and generated images, respectively, and 𝐶𝑟 and 𝐶𝑔 are the covariance of the

image features (Niu et al., 2020). A lower FID indicates a better model with images closer

to real ones. Hence, FID fits a Gaussian distribution to the hidden activation of InceptionNet

for each image set and computes the Fréchet Distance (also known as Wasserstein-2

distance) between the Gaussians (Chen et al., 2020a).

• Maximum Mean Discrepancy (MMD)

Measures the dissimilarities between generated and real images by capturing

independent samples from each distribution. It quantifies the distance between the actual and

generated distribution, with a lower score indicating better model performance (Pan et al.,

2019). Equation (4.5) presents the MMD score using the Gaussian kernel. 𝑃𝑟 and 𝑃𝑔 represent

the real and generated image distribution, respectively, while x and y are samples drawn from

these distributions. The first term captures the similarity of samples within the real

distribution 𝑃𝑟, the second term measures the similarity between samples from the real and

generated distributions v and 𝑃𝑔, and the third term assesses the similarity of samples within

the generated distribution 𝑃𝑔 (Borji, 2019).

• Earth Mover’s Distance (EMD)

Also known as the Wasserstein distance, EMD measures the distance between two

probability distributions (Borji, 2019). It represents the minimum amount of work or effort

needed to transform one distribution into another (Gao et al., 2020). Equation (4.6) defines

EMD, where 𝛾 is a transport plan specifying the amount of mass to be transported from each

point in 𝑃𝑟 to each point in 𝑃𝑔. ∏(𝑃𝑟 , 𝑃𝑔) represents the set of all joint distributions, and

𝛾(𝑥, 𝑦) indicates the amount of work needed to transform the distributions Pr into Pg from

point 𝑥 to point 𝑦. The Wasserstein distance is calculated as the infimum (greatest lower

bound) of the expected distance ‖x-y‖ between randomly sampled pairs of points (𝑥, 𝑦) from

γ (Arjovsky et al., 2017b).

𝐹𝐼𝐷(𝑃𝑟 , 𝑃𝑔) = ‖𝜇𝑟 − 𝜇𝑔‖ + 𝑇𝑟(𝐶𝑟 + 𝐶𝑔 − 2(𝐶𝑟𝐶𝑔))1 2⁄ (4.4)

𝑀𝑀𝐷(𝑃𝑟 , 𝑃𝑔) = 𝔼𝑥,𝑥′∽𝑃𝑟
[𝑘(𝑥, 𝑥′)] − 2𝔼𝑥,𝑥′∽𝑃𝑟,𝑦∽𝑃𝑔

[𝑘(𝑥, 𝑦)] + 𝔼𝑦,𝑦′∽𝑃𝑔
[𝑘(𝑦, 𝑦′)] (4.5)

𝑊(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓𝛾∈∏(𝑃𝑟,𝑃𝑔) 𝔼(𝑥,𝑦)∼𝛾[‖𝑥 − 𝑦‖] (4.6)

94

FID measures image similarities using the Inception network to extract and compare

features. However, FID scores can be misleading if the Inception network is biased or

mismatched, mainly when working with datasets lacking visual diversity or exhibiting high

similarity. In contrast, EMD and MMD are robust metrics that focus on comparing

distributions. They allow for evaluating the similarity between generated samples and the

real data distribution, even when visual appearances may appear similar to the human eye.

EMD measures the distance between probability distributions, while MMD quantifies the

distance between data sets, capturing their statistical properties (Heusel et al., 2017;

Alqahtani et al., 2019; Borji, 2019; Chen et al., 2020b).

Thermal images present unique challenges for human visual perception, necessitating

a comprehensive evaluation. This section compares the WGAN-GP and cWGAN-GP

approaches for generating thermal images of IMs under various health conditions. Two

evaluation metrics, EMD and MMD, are used to assess the similarity between generated and

real images. The experiments were conducted using NVIDIA T4 and NVIDIA V100 GPUs

with different training times and epochs. The NVIDIA V100 GPU demonstrated superior

performance, processing nearly three times faster than the NVIDIA T4 GPU. All experiments

were performed on Google Colab Pro, utilising the allocated GPUs.

Table 4.2 provides a detailed performance comparison of the WGAN-GP and

cWGAN-GP approaches. Initially, WGAN-GP trained models for each health condition,

starting with a 32 x 32 resolution for the IRF as a baseline. Subsequently, the scope expanded

to include four health condition classes. Training duration and epochs varied for each

condition, ranging from 18.5 hours for IRF and ORF to 36 hours for 8-bar faults. The training

was terminated based on plateaued evaluation metrics and visually acceptable generated

images. While training individual models resulted in high-quality 128 x 128 images, it

required substantial time, which varies per health condition; for instance, the ORF condition

model took more than one day.

In contrast, the cWGAN-GP approach trained all fault types together, reducing

overall training time and increasing efficiency. WGAN-GP evaluation indices represent the

average of four conditions, while cWGAN-GP evaluation indices represent the average of

all conditions. The EMD metric quantifies dissimilarity in terms of spatial alignment and

intensity variations. WGAN-GP achieved a lower average EMD score of 4.663 for four

95

conditions than cWGAN-GP's score of 4.816, indicating a slightly higher similarity between

the generated and real images regarding spatial alignment and intensity characteristics.

Table 4.2: Comparison of GPU types, Training Time, Epochs, FID, MMD, EMD, Resolution,

Class Name, and Method Used for Generating Synthetic Images.

GPU Type TrainingTim

e

(Hours)

Epochs MM

D

EMD Resolutio

n

Class

Name

Method

NVIDIA T4 4.5 5000 0.24 0.32 32x32 IRF WGAN-GP

NVIDIA V100 12 10000 1.10 4.64 128x128 IRF

NVIDIA T4 18.5 5000 1.07 4.70 Normal

NVIDIA T4 18.5 5000 1.10 4.72 ORF

NVIDIA T4 36 10000 1.04 4.59 8 bars

 1.078 4.663 Average (8bars, IRF, ORF,

Normal)(128x128)

NVIDIA T4 11 10000 0.21 0.29 32x32 IRF cWGAN-

GP 0.59 0.18 8 bars

0.81 0.13 ORF

0.25 0.18 Ball

0.66 0.15 4 bars

0.30 0.21 Normal

0.31 0.21 1bar

0.09 0.12 All

Classes

NVIDIA V100 7.25 10000 1.07 4.83 128x128 IRF

1.02 4.78 8 bars

1.01 4.74 ORF

1.26 4.80 Ball

1.08 4.75 4 bars

0.99 4.88 Normal

1.23 5.08 1 bar

1.13 4.70 All

Classes

 1.023 4.816 Average (8bars, IRF, ORF,

Normal)(128x128)

The table includes results for four classes using WGAN-GP and all seven classes using cWGAN-

GP.

The MMD metric compares the mean feature representations of real and generated

image distributions. It was found that the cWGAN-GP obtained a lower MMD score of

1.023, suggesting a better capture of real image characteristics, while WGAN-GP had a

slightly higher score of 1.078. Thus, the cWGAN-GP approach outperforms the WGAN-GP

approach in capturing the distribution and characteristics of real images. Additionally, the

cWGAN-GP approach's advantage lies in training all fault types together, reducing the

overall training time and increasing methodology efficiency. Considering the better MMD

96

similarity scores achieved by the cWGAN-GP approach and its reduced training time, it can

be concluded that the cWGAN-GP approach is superior to the WGAN-GP approach in

generating thermal images that closely resemble real images of IMs under various health

conditions while also being more efficient in terms of training time.

4.2.2.3 Generated Images Similarity Assessment: Pre-Trained AlexNet Classification

This section discusses using pre-trained CNN models for non-visual image similarity

assessment. A pre-trained CNN model called AlexNet was used to enhance the evaluation

process further, using the Stochastic Gradient Descent with Momentum (SGDM) optimiser

and 0.0001 LR with seven classes (health conditions) and 56.8M total learnable parameters.

These parameters include weights and biases associated with the layers in the network. By

leveraging the knowledge and features learned by AlexNet from large-scale image

classification tasks, we can evaluate the generated samples based on their classification

accuracy or other relevant metrics. This approach enables us to assess the discriminative

capabilities of the generated samples and their alignment with the real data distribution. An

artificial dataset was generated using cWGAN-GP, which had 288 images per health

condition. The images were first divided randomly into 80.00% training and 20.00%

validation and then tested on unseen original lab-collected images. This resulted in 98.41%

overall classification accuracy, 98.41% precision, and 98.49% recall. However, the

following Table 4.3 shows the accuracy per health condition type as follows:

Table 4.3: Accuracy Per Health Condition Using AlexNet.

4.3 Summary

Part 1 (Section 4.1.1: Foundational Study of Generative Adversarial Networks

(GANs)) highlighted the significant impact of hyperparameters on the performance of GANs

and successfully demonstrates the remarkable ability of GANs to create thermal images of

IMs. This study confirmed the applicability of the WGAN-GP for generating artificial

thermal images; however, it requires considerable computational power. The research in Part

2 aims to optimise the dataset creation process by training all fault types simultaneously

using conditional GANs at higher image resolutions. The results showed that the WGAN-

GP model effectively generated motor images with advanced training parameters and GPUs

8 bars IRF ORF Ball 4 bars Normal 1 bar

100% 95.83% 100% 100% 93.06 % 100% 100%

97

that closely resembled the real images in the dataset. However, there remains scope for

improvement, particularly in testing other bearing faults.

This part investigated the feasibility of using GANs to create realistic IM thermal

RGB image datasets for multimodal condition-monitoring systems. Generating high-quality

thermal images presents computational challenges. The current study used two GAN

frameworks, DCGAN and WGAN-GP, under different health conditions. Initially, DCGAN

was applied to three conditions using various hyperparameters, but the results required

further improvement. Subsequently, WGAN-GP was utilised with an extensive training

duration of 11 hours, using 10,000 epochs and a batch size 64, targeting the IRF dataset. This

resulted in artificial images being generated which closely resembled real images. This study

highlights the effect that hyperparameters have on GAN performance. It demonstrates the

capability of GANs in creating artificial thermal image datasets, paving the way for further

improvement with WGAN-GP in Part 2.

Part 2 (Section 4.1.2: Advanced GANs Framework) explored and compared two

frameworks (WGAN-GP and cWGAN-GP) for generating artificial thermal images of IMs

with different health conditions. The evaluation process for comparing the similarity between

the real images and the artificially created images included visual quality assessment,

evaluation using GAN similarity metrics (MMD and EMD), and classification using a pre-

trained AlexNet model. Both approaches produced high-quality thermal images resembling

real IM faults and thermal images of Normal (fault-free) or Healthy condition when

evaluated visually and qualitatively. Quantitatively, the generated images were evaluated

using two similarity metrics: EMD and MMD. While WGAN-GP achieved a marginally

better EMD score of 4.663 for four conditions compared to cWGAN-GP's score of 4.816 for

all conditions, cWGAN-GP recorded a lower MMD score of 1.023, thereby indicating a

closer resemblance to real images in terms of statistical properties.

This suggests that the generated images from cWGAN-GP exhibit similar texture,

shape and overall distribution as observed in the real images. To further validate the

generated images, a pre-trained AlexNet model was utilised for classification on the

cWGAN-GP dataset, which achieved an overall classification accuracy of 98.41% and higher

accuracy rates for some health conditions.

98

In conclusion, previous studies have primarily focused on creating artificial image

models for each fault type separately, presenting a significant gap in the research. This

chapter sought to address this gap using cGANs to simultaneously create artificial thermal

images for various health conditions in IMs. By incorporating health conditions as a new

input for the cWGAN-GP model, representing the network condition, the cWGAN-GP

approach proved superior in generating thermal images that closely resemble real images of

IMs under various health conditions. Its ability to integrate class information facilitated faster

convergence, enhanced pattern recognition, and greater diversity in image generation. The

proposed approach achieved a higher similarity with the MMD score and reduced training

time, and demonstrated high classification accuracy on real datasets, thus highlighting its

effectiveness and efficiency. These findings contribute significantly to thermal image

generation and demonstrate potential applications in motor condition monitoring and fault

classification.

Thus, this chapter's main contribution is the generation of a novel dataset of artificial

thermal images representing various health conditions of IM and evaluating the effectiveness

of GANs in enhancing the accuracy of CNN-based condition monitoring systems. This was

achieved through two key segments, each containing specific sub-contributions:

Part 1: Explored the use of DCGAN and WGAN-GP for generating IM fault images from

thermal data.

Part 2: Introduced a novel approach using WGAN-GP and cWGAN-GP to generate artificial

thermal images of IM faults. Significant contributions of Part 2 in this chapter to the field of

IM condition monitoring include the following:

1. Generating synthetic thermal images that represent various health conditions using

WGAN-GP.

2. Examining the effectiveness of training individual WGAN-GP models for each health

state.

3. Enhancing the quality of the generated images and reducing the training time required by

incorporating health state labels through cWGAN-GP.

4. Comparing and contrasting the WGAN-GP and cWGAN-GP approaches through a

combined assessment method.

99

Chapter 5: A Novel Customised Load Adaptive

Framework (CLAF) for Induction Motor Fault

Classification Utilising the MFPT Bearing Dataset

100

5.1 Proposed Methodology

The Customised Load Adaptive Framework (CLAF) proposed in this research is a

two-phase approach designed to enhance our understanding of how radial loads influence

system behaviour, particularly in the presence of faults and varying load conditions. The term

‘Customised’ is used because this framework can be tailored to any dataset; in this study, it

is specifically customised for the Machinery Failure Prevention Technology (MFPT) bearing

dataset. The term ‘Load Adaptive’ is used because it emphasises and deepens the

understanding of how load variations impact Induction Motor (IM) faults, leading to changes

in Time and Frequency Domain (TFD) patterns and the identification of load-dependent fault

subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy condition’—

through Continuous Wavelet Transform (CWT) energy analysis. This approach focuses on a

tailored assessment of load effects and is implemented using MATLAB R2023a.

5.1.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis

Phase 1 unveils load-dependent patterns in varying load conditions, as depicted in

Figure 5.1, shedding light on the intricate interplay between load dynamics and bearing fault

behaviour through the following steps:

1. Data preprocessing and general load-dependent feature extraction: the MFPT bearing

dataset is segmented into smaller, manageable portions, involving the division of the

continuous signal into smaller segments stored as separate CSV files.

2. Data segmentation and load-dependent subfile creation: TFD features are extracted

from the segmented data, focusing on assessing feature variations during faults and

their sensitivity to load changes.

3. TFD feature extraction from data segmentation: generate a load-dependent time and

frequency feature set, where an initial load-dependent feature set is created for use in

the following step.

4. Significant load-dependent feature selection and validation: Identify and validate the

most significant load-dependent features from the time domain, frequency domain,

and spectral features using an iterative one-way Analysis of Variance (ANOVA)

approach. The selected features are then validated by assessing the accuracy of

101

various classifiers. This step examines how load variations affect these features. One-

way ANOVA, a reliable method for feature reduction, is employed to streamline the

analysis by focusing on the most relevant features. (Suresh and Naidu, 2022; Alharbi

et al., 2023; Zhang et al., 2023d).

Figure 5.1: Time and Frequency Domain Load-Dependent Pattern Analysis Methodology .

102

5.1.1.1 . Feature Extraction

Feature extraction operates within three primary domains: temporal, spectral, and

time-frequency. These distinct domains serve as tools to capture distinctive aspects of

signal behaviour. The section starts with TFD feature extraction and moves to the 2D time-

frequency domain features.

1) Time Domain Analysis

Traditional Statistical Features (TSFs) are fundamental measures in the time domain

derived from vibration or time series data. The formulas and descriptions of TSFs are

presented in Table 5.1 (Liu and Weng, 2019; Pinedo-Sánchez et al., 2020; Shi et al., 2020;

Jain and Bhosle, 2021). These features collectively capture the temporal characteristics of

signals, enabling the examination of behaviour over time. Analysing vibration signals in the

time domain is crucial for understanding signal dynamics and detecting anomalies or faults

(Shi et al., 2020).

Table 5.1: Traditional Statistical Features (TSFs).

Parameter Formula Description

Peak or Max 𝑋𝑚𝑎𝑥
The highest amplitude value is observed within a given signal or

dataset.

Root Mean

Square

(RMS)
√

1

𝑁
∑(𝑥𝑖)2

𝑁

𝑖=1

 Gives a measure of the magnitude of the signal.

Skewness

1
𝑛

∑ (𝑥𝑖 − �̅�)3𝑛
𝑖=1

[
1
𝑛

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1]

3
2

 Measures the asymmetry of the distribution about the mean.

Standard

deviation

(std)
√

1

𝑛
∑(𝑥𝑖)2

𝑛

𝑖=1

The square root of the variance represents the average deviation

from the mean.

Kurtosis

1
𝑁

∑ (𝑥𝑖 − �̅�)4𝑁
𝑖=1

[
1
𝑛

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1]

2
Indicates the “tailedness” of the distribution. A high kurtosis

might indicate the presence of outliers or impulses in the signal.

Crest Factor
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆

The peak amplitude ratio to its RMS value indicates the relative

sharpness of peaks.

Peak to Peak 𝑋𝑚𝑖𝑛 − 𝑋𝑚𝑎𝑥
Difference between the maximum and minimum values of the

signal.

Impulse

Factor

𝑚𝑎𝑥|𝑋𝑖|

1
𝑛

∑ |𝑋𝑖|𝑛
𝑖=1

 Highlights the impulsive behaviours indicative of machinery

faults.

In the table, N is the sample size, 𝑥𝑖 represents individual data points and �̅� is the average data point.

103

2) Frequency Domain Analysis

Extracting features from the frequency domain offers insights into data’s periodic

components and harmonic structures, as represented in Table 5.2 (Kumar et al., 2022; Tian

et al., 2022; Granados-Lieberman et al., 2023).

Table 5.2: Frequency Domain Features.

Parameter Formula Description

H
a
rm

o
n

ic
 F

ea
tu

re
s

THD √
(∑ 𝐴𝑖

2𝑁
𝑖=2)

𝐴𝐼

Frequency domain, measuring the distortion caused

by harmonics in the signal.

S/N 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)

Compares the level of a desired signal to the level of

background noise.

SINAD 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
)

A measure of signal quality compares the level of

desired signal to the level of background noise and

harmonics.

S
p

ec
tr

a
l

F
ea

tu
re

s

Peak

amplitude
|𝑥𝑓−𝑝𝑒𝑎𝑘|

Represents the highest point (or peak) of the signal’s

waveform when viewed in the frequency domain.

Peak

frequency
𝑓 − 𝑝𝑒𝑎𝑘

Corresponds to the frequency component that is

most prominent or dominant in the signal.

Band

power
∑ |𝑥(𝑓)|2

𝑓−𝑒𝑛𝑑

𝑓−𝑠𝑡𝑎𝑟𝑡

Quantifies the total energy within a specific

frequency range, providing insights into the

distribution of signal energy across the spectrum.

In the context of frequency domain analysis, 𝐴𝐼 is the amplitude of the fundamental frequency, and

𝐴𝑖 is the amplitude of the i-th harmonic. For S/N and SINAD calculations, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 is the signal

power, 𝑃𝑛𝑜𝑖𝑠𝑒 is the noise power, and 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is the power of harmonic distortion. Peak amplitude

𝑥𝑓−𝑝𝑒𝑎𝑘 is the frequency domain’s complex value at bin 𝑓 − 𝑝𝑒𝑎𝑘. 𝑥(𝑓) is the complex value at

frequency bin ‘f’, and |𝑥(𝑓)|2 represents its squared magnitude.

Frequency domain analysis of vibration signals involves examining amplitude

variations across different frequencies, contributing to a better understanding of vibration

behaviour (Ahmed and Nandi, 2018; Shi et al., 2020). Frequency domain features such as

Root-Mean-Square Frequency (RMSF), Centre Frequency (CF), and Total Harmonic

Distortion (THD) are vital in analysing a signal’s power distribution and harmonics (Shi et

al., 2020). The Signal-to-Noise Ratio (S/N) and Distortion Ratio (SINAD), expressed in

decibels (dB), merge time, and frequency domain aspects, aid in gearbox fault analysis

(Kumar et al., 2022).

104

On the other hand, spectral feature extraction transforms a signal from the time to the

frequency domain, revealing its frequency content (MathWorks-7, 2024). In rotating

machine fault diagnosis, the Autoregressive (AR) model, especially with the forward–

backwards approach, improves classification over traditional methods (Hu and Zhang, 2019;

Metwally et al., 2020). This model, effective in bearing diagnosis, isolates noise and fault

impulses dependent on the optimal AR order (Djemili et al., 2023). The resulting spectral

features from the AR model, such as peak amplitude, peak frequency, band power, and

formulas and descriptions, are shown in Table 5.2. The AR model denoted as 𝐴𝑅(𝑃), is

formulated as in Equation (5.1) (Hu and Zhang, 2019):

𝑥[𝑛] = ∑ 𝑎𝑝𝑥[𝑛 − 𝑝] + 𝑒[𝑛]

𝑝

𝑝=1

 (5.1)

where 𝑥[𝑛] is the signal’s current value, influenced by its past values 𝑥[𝑛 − 𝑝] and AR

coefficients 𝑎𝑝, with 𝑒[𝑛] as the random noise component (Hu and Zhang, 2019; Silik et al.,

2021).

5.1.2 Customised Load Adaptive Framework for IM Bearings Fault Classification

In Phase 2, this research customises explicitly the methodology for the MFPT bearing

dataset, focusing on Wavelet Transform and load-dependent fault subclasses, as shown in

Figure 5.2. The chapter explored different CWT approaches to find the optimal wavelet

function or mother of wavelets, which was determined using Wavelet Singular Entropy

(WSE), followed by preprocessing and load effect assessment, resulting in the proposed

CLAF. This framework introduced a new dimension to traditional fault classification by

considering load variation dataset customisation, revealing load-dependent fault subclasses’

signatures, which are absent in conventional approaches:

1. CWT signal encoding and optimal technique selection: Various CWT methods are

explored to represent signals concerning fault types, leading to selecting the most

appropriate approach (Amor, Bump, or Morse).

2. CWT energy assessment for each Load Factor (LF) involves preprocessing, health

condition classification, and categorisation into thirteen classes corresponding to

specific load levels. The research calculates WSE and mean energy, providing

insights into fault severity and energy distribution.

105

3. CLAF: the research proposes load-dependent fault subclasses tailored to assess

radial load impact under different conditions, incorporating insights from the

analysis for a customised evaluation.

4. CLAF Validation: we train different classifiers on proposed load-dependent fault

subclasses to examine the classification accuracy of the proposed classes.

 Figure 5.2: Customised Load Adaptive Framework (CLAF).

106

5.1.1 Dataset

This research comprises two phases, each dedicated to investigating the radial effects

of loads under various operational conditions, encompassing both faulty and Normal (fault-

free) or Healthy condition utilising the MFPT bearing dataset. The experimental setup for

the MFPT bearing dataset involved a test rig equipped with a NICE bearing, including a

roller diameter of 0.235 inches, a pitch diameter of 1.245 inches, and eight rolling elements

positioned at a contact angle of zero degrees. This setup allowed vibration data to be collected

under various loading conditions, accurately replicating both bearings with faults and those

without faults for comprehensive fault analysis research. The Normal (fault-free) or Healthy

condition (formerly called ‘baseline’) data were collected under a 270 lb load, with a

sampling rate of 97,656 samples per second (SPS) over 6 s. Simultaneously, fault signals

originating from Inner Race Defect (IRD) or Inner Race Fault (IRF) and Outer Race Defect

(ORD) or Outer Race Fault (ORF) were acquired from the bearing test rig under six different

load conditions, 50, 100, 150, 200, 250, and 300 lbs, all while maintaining a constant speed

of 25 Hz (Bechhoefer, 2013; Bechhoefer, 2016).

An essential aspect of this study involves categorising the severity of load-dependent

fault subclasses within the MFPT bearing dataset. This categorisation is based on changes in

wavelet energy compared to Normal (fault-free) or Healthy condition, with a 20.00%

increase classified as Mild severity, 20.00% to 50.00% as Moderate severity, and anything

exceeding 50.00% as Severe. While acknowledged as an assumption, this categorisation is a

fundamental component of the methodology, ensuring a structured and systematic approach

to assessing fault severity under varying load scenarios. The following section will present

the results obtained from this framework, covering Phase 1 and Phase 2.

5.2 Results and Discussion

5.2.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis

This phase (Phase 1) involves data preprocessing for data preprocessing, general

feature extraction, and segmentation and data segmentation for LF subset creation.

107

5.2.1.1 Step1: Data Preprocessing and General Load-Dependent Feature Extraction

The dataset was categorised for separate analysis to assess the load-dependent impact

in fault scenarios, explicitly focusing on IRF, as presented in Table 5.3, and ORF, as shown

in Table 5.4. This study involved a comparison of six different LFs (50, 100, 150, 200, 250,

and 300 lbs) against the Normal (fault-free) or Healthy condition at LF 270 lbs. The Normal

(fault-free) or Healthy condition dataset served as a baseline for comparative analysis, aiding

in identifying distinctive features that indicate the presence of a fault in both IRF and ORF

datasets.

Table 5.3: IRF Dataset Splitting Per Load.

 Table 5.4: ORF Dataset Splitting Per Load.

• General Load-Dependent Behaviour Analysis

This study conducted general TFD feature extraction, resulting in 13 features for IRF

(Table 5.5) and ORF (Table 5.6). Additionally, spectral features were extracted using an AR

model with an order of 15, focusing on two significant resonant peaks in the frequency

spectrum and providing five additional load-dependent feature patterns, as detailed in Table

5.5. Key findings regarding the impact of changing the radial load on these extracted features

are as follows: Firstly, the Clearance Factor (CF) exhibited a noticeable decrease with

increasing radial loads for both IRF and ORF. Specifically, IRF decreased by 12.10% (from

40.04 at load 50 to 35.24 at load 300), while ORF experienced a decrease of about 68.00%

Inner Race Fault Dataset Code LF(lbs/kg) Sampling Rate(Hz) Duration (s)

baseline_2 data_normal 270/122.47 97,656 6

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3

Outer Race Fault Dataset Code LF(lbs/kg) Sampling Rate(Hz) Duration (s)

baseline_2 data_normal 270/122.47 97,656 6

OuterRaceFault_vload_2 ORF_50 50/22.68 48,828 3

OuterRaceFault_vload_3 ORF_100 100/45.36 48,828 3

OuterRaceFault_vload_4 ORF_150 150/68.04 48,828 3

OuterRaceFault_vload_5 ORF_200 200/90.72 48,828 3

OuterRaceFault_vload_6 ORF_250 250/113.40 48,828 3

OuterRaceFault_vload_7 ORF_300 300/136.08 48,828 3

108

(from 10.26 at LF 50 to 27.18 at LF 300). Secondly, the Crest Factor consistently decreased

with higher radial loads, showing a decrease of approximately 16.00% for IRF (from 15.46

at LF 50 to 12.99 at LF 300) and a comparable reduction of roughly 50.60% for ORF (from

6.39 at LF 50 to 12.92 at LF 300). Mean values significantly increased, with higher radial

loads for IRF and ORF. IRF exhibited an increase of approximately 10.90% in its peak value

(from 23.06 at LF 150 to 25.585 at LF 300), while ORF showed a substantial increase of

about 294.90% in its peak value(from 4.93 at LF 100 to 19.43 at LF 300).

Table 5.5: General Time and Frequency Domain Features (IRF).

L
F

 (
lb

s)

C
F

C
re

st

F
a

ct
o

r

Im
p

u
ls

e

F
a

ct
o

r

K
u

rt
o

si
s

M
ea

n

P
ea

k

V
a

lu
e

R
M

S

S
h

a
p

e

F
a

ct
o

r

S
k

ew
n

es
s

S
td

S
IN

A
D

 *

S
/N

 *

T
H

D
 *

50 40.04 15.46 28.69 27.97 −0.22 27.50 1.78 1.86 0.62 1.76 −21.32 −21.31 −5.36

100 37.30 14.49 26.96 30.53 −0.22 26.59 1.84 1.86 0.87 1.82 −21.05 −21.03 −0.53

150 33.30 13.25 24.31 33.13 −0.22 23.06 1.74 1.84 1.28 1.72 −19.05 −19.05 −10.06

200 38.15 13.54 26.92 37.28 −0.21 27.38 2.02 1.99 1.15 2.01 −18.22 −18.21 −6.31

250 37.52 13.02 26.18 37.49 −0.20 27.14 2.08 2.01 0.72 2.08 −17.70 −17.68 −5.46

300 35.24 12.99 25.17 35.30 −0.19 25.58 1.97 1.94 0.68 1.96 −17.35 −17.34 −8.41

270 ** 7.75 5.230 6.56 3.02 −0.14 4.65 0.89 1.25 0.00 0.88 −23.60 −23.60 −11.39

* Frequency domain features. ** Normal (fault-free) or Healthy condition .

Table 5.6: General Time and Frequency Domain Features (ORF).

L
F

 (
lb

s)

C
F

C
re

st

F
a
ct

o
r

Im
p

u
ls

e

F
a
ct

o
r

K
u

rt
o
si

s

M
ea

n

P
ea

k

V
a
lu

e

R
M

S

S
h

a
p

e

F
a
ct

o
r

S
k

ew
n

es
s

S
td

S
IN

A
D

 *

S
/N

 *

T
H

D
 *

50 10.26 6.39 8.48 5.09 −0.19 6.35 0.99 1.33 0.04 0.98 −14.41 −14.40 −11.97

100 9.15 5.84 7.62 4.40 −0.18 4.93 0.84 1.31 −0.01 0.82 −13.15 −13.12 −9.06

150 9.54 6.10 7.94 4.04 −0.18 5.21 0.85 1.30 −0.04 0.83 −12.59 −12.56 −9.934

200 21.81 12.46 17.67 11.90 −0.17 12.28 0.99 1.42 0.31 0.97 −17.54 −17.52 −5.54

250 15.03 9.07 12.30 6.59 −0.16 8.66 0.96 1.36 0.12 0.94 −16.09 −16.06 −4.92

300 27.18 12.92 20.80 17.69 −0.16 19.43 1.50 1.61 0.27 1.50 −15.10 −15.10 −14.69

270 ** 7.75 5.23 6.56 3.02 −0.14 4.65 0.89 1.25 0.01 0.88 −23.60 −23.60 −11.39

* Frequency domain features. ** Normal (fault-free) or Healthy condition.

109

In Table 5.7, variations in peak amplitudes (PeakAmp1 and PeakAmp2), peak

frequencies (PeakFreq1 and PeakFreq2), and Band Power for both IRF and ORF across a

range of LFs (from 50 to 300 lbs) were observed. Notably, with increasing radial load, IRF

exhibited higher peak amplitudes at 300lbs compared to ORF, while their peak frequencies

tended to converge. Furthermore, Band Power showed a more pronounced rise as LF

increased, especially for IRF, underscoring its sensitivity to LF variations. When compared

to the reference condition at LF of 270, we observed significant differences in peak

amplitudes and frequencies, highlighting the discernible impact of varying loads on fault

characteristics.

Table 5.7: Spectral Features by AR Model (IRF and ORF).

LF PeakAmp1 PeakAmp2 PeakFreq1 PeakFreq2 BandPower

(lbs) IRF ORF IRF ORF IRF ORF IRF ORF IRF ORF

50 0.00034 0.000109 0.00031 0.000093 4363.937 1413.267 13,991.090 14,179.042 1.474 0.454

100 0.00046 0.000075 0.00012 0.000028 4256.059 1379.739 13,968.668 14,258.280 1.476 0.322

150 0.00046 0.000080 0.00005 0.000036 4191.394 1377.111 14,127.206 14,462.995 1.330 0.327

200 0.00031 0.000063 0.00011 0.000058 4025.383 4947.698 10,622.786 1391.188 1.663 0.461

250 0.00061 0.000058 0.00009 0.000049 4124.988 1621.552 10,365.553 5212.034 1.807 0.430

300 0.00077 0.000302 0.00058 0.000296 4081.332 2915.517 748.668 11,675.566 1.618 1.101

Normal

270
0.00003 0.000028 0.00003 0.000028 5490.855 5490.855 14,478.764 14,478.764 0.279 0.302

Further exploration is needed to fully understand the nuanced impact of each LF

through detailed feature extraction, as represented in Table 5.8. Analysing standard deviation

(Std) and range across various features revealed distinctions between IRF and ORF.

In the frequency domain, PeakFreq1 and PeakFreq2 show notable variability, with

IRF having lower variability in PeakFreq1 (510.38 vs. 1788.4) compared to ORF. Regarding

impulse characteristics, IRF exhibits higher variability in ImpulseFactor (7.6174 vs. 5.5733),

indicating diverse impulse characteristics compared to ORF. ClearanceFactor exhibits more

significant variability for IRF (11.237 vs. 7.4289), indicating significant changes in

mechanical conditions. Vibration amplitudes also vary, with IRF showing higher variability

in PeakValue (8.2942 vs. 5.4215). Additionally, IRF features display more pronounced

changes in vibration characteristics compared to ORF, as seen in kurtosis (12.08 vs 5.3444),

Skewness (0.41466 vs 0.13983), Std (0.40479 vs 0.23206), RMS (0.40468 vs 0.22898), and

110

ShapeFactor (0.25877 vs 0.11854). Signal quality parameters (S/N and SINAD) vary more

in ORF, indicating alterations in signal-to-noise characteristics. These insights contribute to

a comprehensive understanding of vibration signals’ dynamic response to IRF and ORF

conditions, aiding condition monitoring and load-dependent behaviour analysis for fault

detection.

Table 5.8: Std and Range of Time And Frequency Domain Extracted Features for IRF and ORF.

Feature IRF ORF

 Std Range Std Range

PeakFreq2 4916.5 13730 5336.1 13088

PeakFreq1 510.38 1465.5 1788.4 4113.7

Kurtosis 12.08 34.47 7.4289 19.431

ClearanceFactor 11.237 32.294 5.5733 14.24

PeakValue 8.2942 22.848 5.4215 14.783

ImpulseFactor 7.6174 22.127 5.3444 14.669

THD 3.5994 10.863 3.7308 11.036

CrestFactor 3.3591 10.232 3.7247 11.013

S/N 2.3024 6.2569 3.5022 9.7777

SINAD 2.2989 6.2471 3.2456 7.6881

Skewness 0.41466 1.2782 0.23206 0.67179

Std 0.40479 1.1962 0.22898 0.66026

RMS 0.40468 1.1953 0.13983 0.3453

ShapeFactor 0.25877 0.75648 0.11854 0.35602

Mean 3.00 x 10-2 8.59 x 10-2 1.73 x 10-2 5.11 x 10-2

PeakAmp1 2.36 x 10-4 7.44 x 10-4 9.63 x 10-5 2.69 x 10-4

PeakAmp2 1.99 x 10-4 5.57 x 10-4 9.15 x 10-5 2.74 x 10-4

5.2.1.2 Step2: Data Segmentation and Load-Dependent Subfile Creation

First, the dataset was categorised by Normal (fault-free) or Healthy condition and

fault types, each corresponding to LF of 50, 100, 150, 200, 250, and 300 lbs. Then, based on

different sampling rates, the Normal (fault-free) or Healthy condition baseline signals were

differentiated from fault signals: IRF and ORF. The Normal (fault-free) or Healthy condition

baseline signals were captured at 97,656 SPS for 6 s, while fault signals were sampled at

48,828 SPS for 3 s. Subfiles were created to enhance statistical robustness, each containing

2,500 vibration data points. This led to 117 subfiles for the Normal (fault-free) or Healthy

condition baseline and 58 for each fault category (IRF and ORF), strengthening the sample

size and signal integrity; see Table 5.9. Such meticulous preparation establishes a solid

foundation for the subsequent one-way ANOVA analysis, enabling the identification of

111

significant variations in vibration signals linked to different LF levels and fault occurrences

(APPENDIX 2).

Table 5.9: Dataset Segmentation and Subfiles Creation Demonstration.

Dataset Segmentation CSV Files Code LF
Subfiles

Count

Example on baseline (Normal (fault-free) or Healthy

condition) with MATLAB code. The segment is based

on ratio, i.e., each segment in IRF and ORF contains

2500 samples, and each sample in Normal conditions

contains 5000 data points.

IRF_50 {‘IRF−50’} 58

IRF_100 {‘IRF−100’} 58

IRF_150 {‘IRF−150’} 58

IRF_200 {‘IRF−200’} 58

IRF_250 {‘IRF−250’} 58

IRF_300 {‘IRF−300’} 58

Normal {‘Normal’} 117

ORF_50 {‘ORF−50’} 58

ORF_100 {‘ORF−100’} 58

ORF_150 {‘ORF−150’} 58

ORF_200 {‘ORF−200’} 58

ORF_250 {‘ORF−250’} 58

ORF_300 {‘ORF−300’} 58

5.2.1.3 Step3: Time and Frequency Domain Feature Extraction from Data Segmentation

Section 5.1.1 discussed the impact of LF variations on features. In this stage, we

generate load-dependent time and frequency features from Table 5.9 subfiles for IRF, ORF,

and Normal (fault-free) or Healthy condition. This allows for detailed analysis and

subsequent one-way ANOVA feature ranking.

First, ten time-domain features, namely, Shape Factor, Peak Value, Clearance Factor,

Impulse Factor, Mean, Crest Factor, Kurtosis, RMS, standard deviation (Std), and Skewness,

were extracted. Second, there were three general frequency domain features: SINAD, S/N,

and THD. Third, AR model estimation was applied to transform the time domain signal into

the frequency domain to extract specific spectral features: peak amplitude, peak frequency,

and Band Power.

This research explored two AR models for spectral feature extraction: one of order

two with a single peak (Figure 5.3a) and another of order fifteen with five peaks (Figure

5.3b). This strategic approach aimed to unravel how the complexity of modelling influences

the representation of frequency components in the signal. The order-two model, being

n

112

simpler, offers a foundational perspective, capturing fundamental frequency components.

These features are extracted within a smaller frequency band of 600–18,000 Hz, excluding

peaks beyond 18,000 Hz. On the other hand, the order-fifteen model, with its higher

complexity, aspires to provide a more detailed and nuanced representation of intricate

frequency variations. Here, feature extraction focuses on a smaller band of frequencies

between 10,000–25,000 Hz, excluding peaks after 25,000 Hz. Five spectral peaks were

extracted for each signal, generating five frequency features for each peak.

(a) (b)

Figure 5.3: AR Model: (a) Order Two and Peak = 1; (b) Order Fifteen and Peak = 5.

The first AR model added three extra features to the 13 TFD features. Conversely,

the second AR model generated a more extensive set of 24 features, including general TFD

features and 11 features derived explicitly from the AR model. The disparity in feature count

resulted primarily from variations in the extracted frequency domain features. When testing

different AR models, the decision to calculate peak amplitude and peak frequency for each

peak aimed to achieve a more detailed and adaptable analysis of the signal’s spectral

characteristics. This approach acknowledges variations in frequency modes captured by

different models, facilitating the identification and individual analysis of each peak.

This exploration assesses the trade-off between model simplicity and accuracy, a

crucial consideration for fault classification. Furthermore, testing different peak

configurations allows for a nuanced understanding of how the chosen models identify and

distinguish peaks in the frequency spectrum. In essence, this approach yields valuable

113

insights into the suitability of various model configurations for capturing the diverse

characteristics of the signal under investigation.

5.2.1.4 Step 4: Significant Load-Dependent Feature Selection and Validation

Diverse classifier algorithms were systematically examined, focusing on optimal

accuracy and minimal confusion. AR models with different peak counts were explored, with

the first model (order two, peak one) and the second model (order fifteen, peak five)

achieving the highest performance. Subsequently, the dataset was split into testing (20.00%),

validation (20.00%), and training (60.00%) subsets, with five-fold cross-validation for test

accuracy comparison. Feature richness varied with peak counts, where the first model

showcased robust performance with a single peak, emphasising the power of a strategically

selected minimal feature. The second model, with five peaks, offered a more detailed

representation of spectral characteristics. Features scoring below 20 one-way ANOVA

scores were excluded, refining the selection based on substantial impact. This step

highlighted load-changing trends on extracted features, providing valuable insights into load

impact during faults. Key steps include feature subset selection, classifier training, and

selecting the highest-performing classifier with the optimal feature set. One-way ANOVA

was employed to determine statistically significant variations in feature values across LF,

aligning with the project’s aim to analyse LF influences comprehensively. ANOVA ranking

was used to systematically rank features based on their significance in distinguishing fault

types. The values associated with ANOVA ranking represent the effectiveness of each

feature in differentiating between groups in vibration signal data.

(a) Autoregressive Model: Order Two, Peak = 1

Features in the first AR model were reduced based on their ANOVA scores, with lower-

scoring features removed first, as shown in Table 5.10. The initial set of the top 13 features

had ANOVA scores higher than 20, forming the baseline for further reduction. From this set,

the top eight features with ANOVA scores greater than 350 were retained, followed by a

subset of the top seven features, each with a score exceeding 370. Additionally, the two

highest-scoring features, with ANOVA scores above 600, were selected. These feature sets

were designed to investigate the impact of various combinations on classification accuracy,

providing insights into the relationship between feature selection and model performance.

However, Table 5.11 explores classifier performance across these different feature selection

114

thresholds, offering notable insights. With the top 13 features (ANOVA scores > 20), the

Boosted Trees classifier demonstrated superior adaptability, achieving the highest accuracy

at 74.10%, highlighting the discriminative power of the selected features. Reducing the

feature set to the top eight (ANOVA scores > 350) and top seven (ANOVA scores > 370)

resulted in a trade-off between feature reduction and accuracy, with Boosted Trees still

maintaining a competitive edge. However, the drastic reduction to only two features

(ANOVA scores > 600) significantly affected accuracy across all classifiers, particularly

impacting the Fine Gaussian Support Vector Machine (SVM). Interestingly, increasing the

feature count to 629 did not proportionally improve performance, suggesting a saturation

point beyond which additional features may introduce noise. These findings highlight the

nuanced relationship between feature selection and classifier performance, with Boosted

Trees exhibiting robustness across various feature sets.

Table 5.10: One-way ANOVA Ranking Including Spectral Features Extracted By AR Model (a)

Order Two, Peak = 1.

Table 5.11: Classifier Performance Across Feature Selection Thresholds For AR Model (a) and

Peak = 1.

(b) Autoregressive Model: Order Fifteen, Peak = 5

In the context of the second AR model, applying the one-way ANOVA Rank generated 24

spectral features, a notable increase from the initial 16; see Table 5.12. These spectral

features, which include time domain features like SINAD and S/N, alongside the frequency

domain feature peakfrequency2, contribute to a comprehensive feature set. The top 19

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score

1. ShapeFactor 638.7770 9. Std 344.1456

2. PeakValue 629.7172 10. BandPower 215.4163

3. ClearanceFactor 583.7172 11. Skewness 61.1082

4. ImpulseFactor 539.9968 12. PeakAmp1 50.9148

5. Mean 451.5449 13. PeakFrequency1 43.5724

6. CrestFactor 380.0333 14. SINAD 19.2070

7. Kurtosis 373.6953 15. S/N 19.1580

8. RMS 345.8699 16. THD 0

No. of Features Used in Classifier Training Classifier Test Accuracy

Top 13 (ANOVA scores > 20) Boosted Trees 74.10%

Top 8 (ANOVA scores > 345) Narrow Neural Network 72.80%

Top 7 (ANOVA scores > 373)
Bi-layered Neural

Network
73.50%

Top 2 (ANOVA scores > 629) Fine Gaussian SVM 59.90%

115

features (ANOVA scores > 20) chosen for classifier training were exported to the

classification learner, reserving 20.00% of the data for testing.

Table 5.12: One-way ANOVA Ranking Including Spectral Features Extracted by AR Model (b)

Order Fifteen, Peak = 5.

The second AR model (Order 15) and peak five features exhibit compelling insights

into classifier performance across distinct feature selection thresholds; see Table 5.13.

Table 5.13: Classifier Performance Across Feature Selection Thresholds for AR Model (b) Order

Fifteen, Peak = 5.

Utilising the top 19 features, Bagged Trees and Cubic Support Vector Machine

(CubicSVM) achieved remarkable accuracy scores of 86.40%, underlining the efficacy of

these classifiers in leveraging a relatively more extensive set of features. The reduction to

the top 14 features (ANOVA scores > 72) maintained high accuracy across all classifiers,

emphasising their robustness. Notably, even with a more stringent selection of 14 features,

all classifiers sustained accuracy levels above 80.00%, indicating resilience to feature

reduction. The decrease to the top 13, 11, and 8 features demonstrated a nuanced trade-off

between feature reduction and accuracy, with Bagged Trees consistently leading in

performance. The findings reinforce the adaptability of the classifiers to varying feature sets,

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score

1.ShapeFactor 638.7770 13. PeakAmp2 129.8349

2. PeakValue 629.7172 14. PeakFreq3 72.5228

3. ClearanceFactor 583.5995 15. PeakAmp3 68.3653

4. ImpulseFactor 539.9968 16. Skewness 61.1082

5. Mean 451.5449 17. PeakAmp5 49.5351

6. CrestFactor 380.0333 18. PeakFreq1 45.4170

7. Kurtosis 373.6953 19. PeakFreq5 38.6599

8. RMS 345.8699 20. SINAD 19.2070

9. Std 344.1456 21. S/N 19.1580

10. BandPower 263.0314 22. PeakFreq2 18.4450

11. PeakAmp1 171.6077 23. PeakAmp4 14.1606

12. PeakFreq4 162.5469 24. THD 0

Number of Selected Features from

ANOVA Ranking
Classifier Test Accuracy

Top 19 (ANOVA scores > 20) Bagged Trees 86.40%

Top 14 (ANOVA scores > 72) CubicSVM 86.40%

Top 13 (ANOVA scores > 129) Quadratic SVM 83.30%

Top 11 (ANOVA scores > 171) Quadratic Discriminant 84.60%

Top 8 (ANOVA scores > 345) Quadratic SVM 76.50%

116

providing valuable insights for future considerations in feature selection strategies for this

AR model and peak feature combination.

The effectiveness of a classifier depends heavily on the chosen features, showing a

delicate balance between feature quantity and classification accuracy. Simply adding more

features can sometimes reduce performance because of overfitting. Therefore, features with

high ANOVA scores are preferable for training a Machine Learning (ML) model, as they are

more likely to enhance accuracy. Moreover, different classifiers exhibit varied sensitivities

to feature selection, with some performing well with a concise set of informative features

while others benefit from a more extensive feature set. In the context of the AR model,

considering the number of peaks proves crucial. Utilising multiple peaks enhances sensitivity

to changes in spectral composition, accommodates the potential introduction of new peaks,

and furnishes a fine-grained feature set that adeptly captures the distinct contribution of each

frequency component.

• Summary of Selected Features

The 86.40% accuracy of the test dataset is credited to 14 features derived from an AR

model (order 15, peak = 5), covering the time domain, frequency domain, and spectral

categories. These features, such as shape factor, peak value, clearance factor, impulse factor,

mean, crest factor, kurtosis, RMS, standard deviation (Std), band power, and various peak

amplitudes and frequencies, are distinctly represented through a histogram colour scheme

(Table 5.14). The LF Colour Code Legend aids in differentiating LF associated with IRF,

ORF, and Normal (fault-free) or Healthy condition. Out of 24 features, these 14 were selected

for their superior class discrimination ability.

The colour coding in the histograms is crucial for demonstrating the distribution of

these features and their impact on the Bagged Trees classifier's accuracy. Specific colours

indicate intense feature discrimination for certain LFs. For example, the shape factor

histogram separates the IRF_300 LF (purple colour), the peak value excels in distinguishing

the IRF_250 class (light green), the clearance factor is more effective for the Normal (fault-

free) or Healthy condition, and the impulse factor better identifies the ORF_150 class. This

indicates the necessity of a collection of features with varied segregation capabilities for

adequate classification.

117

Table 5.12’s one-way ANOVA ranking is essential in this context, pinpointing

features that accurately differentiate between LFs and assisting in selecting an optimal

feature subset for classifier training. This systematic approach is validated by classification

accuracy, confirming the chosen features' ability to identify specific LFs precisely under

various conditions.

Table 5.14: Top 14 Selected Features Distinguishing Load-Dependent Fault Types: A Histogram

Visualisation.

Load Factor Colour Code Legend for the Top 14 Features Ranked by One-Way ANOVA

Feature

(ANOVA Rank)
 Feature Histogram

Feature

(ANOVA

Rank)

 Feature Histogram

1. Shape Factor

2. Peak

Value

3. Clearance

Factor

4. Impulse

Factor

5.Mean

6.Crest

Factor

118

Load Factor Colour Code Legend for the Top 14 Features Ranked by One-Way ANOVA

Feature

(ANOVA Rank)
 Feature Histogram

Feature

(ANOVA

Rank)

 Feature Histogram

7. Kurtosis

8.RMS

9.Standard

deviation

10.Band

Power

11.Peak

Amplitude1

12.Peak

Frequency4

13.Peak

Amplitude 2

14.Peak

Frequency3

119

5.2.2 Customised Load Adaptive Framework for IM Bearings Fault Classification

This phase (Phase 2) delves into time-frequency feature analysis for different fault

types, focusing on the CWT applied to vibration signals with various mother wavelets. The

best wavelet function or mother of wavelets was identified using WSE, which aided in

developing the CLAF for the MFPT bearing dataset.

5.2.2.1 Step1: CWT Signal Encoding and Optimal Technique Selection

This step involved determining the optimal CWT mother wavelet approach for the

MFPT bearing dataset using CWT Time–Frequency Diagrams and WSE, enabling effective

feature extraction, denoising, and pattern recognition.

Time-frequency domain analysis, crucial for understanding non-stationary data,

merges time and frequency data to examine signal frequency over time intervals (He et al.,

2010). Techniques like the Wavelet Transform (WT), using mother wavelets like Amor,

Bump, and Morse, are vital in localising frequency information in time (Zhang et al., 2022c).

The CWT and WSE are especially effective in damage detection. (Silik et al., 2021). CWT

offers a two-dimensional (2D) view of the signal across time and frequency (Kaji et al.,

2020). Meanwhile, WSE, derived from wavelet singular values, quantifies signal complexity

(He et al., 2010; Tian et al., 2022). CWT is mathematically expressed as in Equation (5.2),

with coefficients indicating the wavelet’s scale and position as represented in Equation (5.3)

(Amanollah et al., 2023):

 𝑊𝑇𝑓(𝑎, 𝜏) = (
1

√𝑎
) ∫ 𝑓(𝑡)�̅� (

𝑡−𝜏

𝑎
) 𝑑𝑡, (5.2)

𝑊𝑇𝑓(𝑎, 𝜏)𝑓(𝑡) = 𝑓(𝑡) ∗ 𝜑(𝑎,𝜏)(𝑡), (5.3)

where 𝑊𝑇𝑓(𝑎, 𝜏) denotes the wavelet coefficient at a specific scale, 𝑎, and position, τ. The

term 𝑎 is the scaling factor that instead stretches or compresses the wavelet, while τ is the

translation factor that shifts the wavelet along the signal’s time axis. The function 𝜑

represents the scaled and translated versions of the mother wavelet. Different mother

wavelets yield distinct wavelet coefficients, highlighting varied facets of the signal

(Amanollah et al., 2023).

On the other hand, WSE is calculated based on the singular values obtained from the

WT of the signal. It reflects the uncertainty of the energy distribution of the characteristic

120

mode of the analysed signal. A smaller WSE indicates a more straightforward and

concentrated energy distribution, while a higher WSE suggests a more complex and

dispersed energy distribution. The singular values are non-negative and arranged in

descending order. The WSE can be defined as represented in Equation (5.4) (He et al., 2010):

WSEk = -∑(λi/Σλi) log(λi/Σλi), (5.4)

where λi denotes the i-th singular value from the WT, representing the magnitude of

coefficients in the analysis. The sum Σλi is the total of all singular values, providing a

normalisation factor. The logarithmic component, log(λi/Σλi), calculates the entropy, thus

capturing the distribution complexity of the signal’s energy (Zhang et al., 2022c).

• CWT Vibration Signal Time-Frequency Analysis

The analysis was initiated with the original MFPT bearing dataset and categorised

into IRF, ORF, and Normal (fault-free) or Healthy condition. The objective was to evaluate

the capability of CWT in fault recognition, given its suitability for time-frequency analysis.

CWT generates wavelet scalograms and 2D representations that illustrate the local energy

density across time and frequency, offering insights into system behaviour over time.

Scalograms present time on the x-axis and scale on the y-axis, providing a comprehensive

view of time-frequency domain characteristics compared to one-dimensional (1D) signals.

The CWT filters transient and non-smooth signal segments, as shown in Table 5.15. In Figure

5.4a, 12 impulses in the IRF vibration signal, corresponding to the bearing’s IRF frequency,

are observed. This results in 12 distinct peaks in the 2D time-frequency diagram in Table

5.15, with more apparent patterns produced by the Amor and Morse wavelets. Similarly, in

Figure 5.4b, eight peaks for ORF faults are observed, with the most distinct pattern generated

by Amor wavelets in Table 5.15. In contrast, in Figure 5.4c, a lack of clear patterns or features

is observed in the Normal (fault-free) or Healthy condition signal, regardless of the wavelet

used; refer to Table 5.15. The count of distinct peaks is valuable for distinguishing between

IRF, ORF, and Normal (fault-free) or Healthy condition. The following section will employ

WSE to validate the selection of the optimal mother wavelet quantitatively (APPENDIX 2).

121

(a)

(b)

(c)

Figure 5.4: (a) IRF Signal Trace Peak Count (Represented By Red Boxes) For

Innerracefault_Vload_1 Dataset, (b) ORF Signal Trace Peak Count For Outerracefault_3 Dataset

(Represented By Red Boxes) and (c) Normal (fault-free) or Healthy Condition Signal Trace for

Baseline_1 Dataset, No Peaks.

122

Table 5.15: Comparative Visualisation of Health Condition Signals: 2D Time–Frequency

Diagrams Using Three Types of Mother Wavelet Functions.

Health

State
 IRF ORF Normal

Dataset InnerRaceFault_vload_1 ‘OuterRaceFault_3.mat’ ‘baseline_1.mat’

2D time-frequency diagrams

Bump

Morse

Amor

The colour bar adjacent to the scalogram represents the magnitude of the wavelet coefficients. Colours closer to

red indicate higher values, which may correspond to signal peaks or areas of high power, while colours closer to

blue represent lower values.

• WSE Analysis for Appropriate CWT Selection

A meticulous comparison of WSE scores identified the most suitable mother wavelet

function for fault scenarios. The highest WSE score indicates a more scattered signal with a

less noticeable pattern, likely representing the Normal (fault-free) or Healthy condition; see

Figure 5.4c. WSE is a crucial quantitative measure for CWT, guiding the selection of suitable

wavelet foundations in wavelet analysis. The chosen mother wavelet significantly influences

denoising, signal preservation, and feature extraction, enhancing the frequency spectrum of

the denoised signal (Silik et al., 2021; Guo et al., 2022). Average WSE was subsequently

calculated by selecting the optimal mother wavelet function by comparing WSE scores

123

across different wavelet types (Zhang et al., 2022c). The selection process involves

evaluating (𝑊𝑆𝐸𝑗) scores across various mother wavelet functions in Equation (5.5):

𝑊𝑆𝐸𝑗 = ∑ |𝐶𝑓𝑠(𝑡, 𝑗)|
2

. 𝑙𝑜𝑔 (|𝐶𝑓𝑠(𝑡, 𝑗)|
2

)𝑛
𝑡=1 , (5.5)

where 𝐶𝑓𝑠 is the WT coefficient obtained from W, and fs (Hz) is the sampling frequency

determining the number of samples taken per second. The summation range depends on the

number of wavelet coefficients obtained from the transform and the chosen wavelet scale.

Each coefficient corresponds to a specific scale, j, and time, t, capturing information about

the signal’s frequency content and time location (He et al., 2010; Zhang et al., 2022c).

Afterwards, Mean WSE(𝑊) is calculated in Equation (5.6), where D represents the

dataset (e.g., Normal (fault-free) or Healthy condition, IRF, or ORF), W represents the

wavelet type (e.g., ‘Bump’, ‘Morse’, or ‘Amor’), and N is the total number of datasets.

Subsequently, the average mean WSE score (AvgMean WSE(𝑊)) across all datasets for

specific wavelets is determined in Equation (5.7):

Table 5.16 scores provide valuable insights into energy distribution patterns in

signals under different fault conditions, with two randomly chosen datasets assessed using

WSE (APPENDIX 2):

1) Bump:

The IRF's WSE scores are low (0.017424 and 0.039571), indicating a more concentrated

energy distribution and simpler signals. In contrast, the ORF exhibits higher scores

(2.0282 and 1.7431), suggesting a more complex energy distribution. The scores in

Normal (fault-free) or Healthy condition are relatively low (1.4832 and 1.5995),

indicating a simpler energy distribution.

2) Morse:

In the case of the IRF, low scores (0.011188 and 0.022887) suggest simpler signals.

Conversely, the ORF displays higher scores (2.311 and 2.2253), indicating a more

𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊, 𝐷) =
1

𝑛
∑ 𝑊𝑆𝐸𝑗 ,

𝑛

𝑗=1

 (5.6)

𝐴𝑣𝑔𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊) =
1

𝑁
∑ 𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊, 𝐷),

𝐷
 (5.7)

124

complex energy distribution. The Normal (fault-free) or Healthy condition scores are

relatively low (2.2357 and 2.836), suggesting a simpler energy distribution.

3) Amor:

Low scores (0.0090466 and 0.019031) indicate simpler signals for the IRF. The ORF,

however, shows a positive score (0.61065), suggesting a more dispersed energy

distribution. In the Normal (fault-free) or Healthy condition, higher scores (2.6529,

5.3807, and 15.826) indicate more complex energy distributions.

Table 5.16: WSE Scores Comparison with Three Types Mother of Wavelet Functions.

The mother of wavelet analysis can be summarised in Figure 5.5, where it shows the

visual comparison; the “Amor” wavelet type shows relatively better discrimination between

the Normal (fault-free) or Healthy condition and faulty conditions, as it exhibits lower WSE

scores for the faulty conditions compared to the Normal (fault-free) or Healthy condition.

However, based on the analysis of the WSE scores, three wavelet coefficients were

evaluated: Morse, Bump, and Amor. For the Normal (fault-free) or Healthy condition dataset,

the Morse coefficient had an average WSE score of 2.53585, the Bump coefficient had a

score of 1.54135, and the Amor coefficient had the highest score of 10.60335, indicating a

more dispersed energy distribution. When considering the IRF dataset, the Morse, Bump,

and Amor coefficients had average WSE scores of 0.0170375, 0.0284975, and 0.0140388,

respectively. For the ORF dataset, the average WSE scores were 2.26815, 1.88565, and

1.631775 for the Morse, Bump, and Amor coefficients, respectively. The results show that

the Amor coefficient exhibited the highest average WSE score for the Normal (fault-free) or

Healthy condition dataset, suggesting a distinct energy distribution. Consequently, the Amor

coefficient emerges as a potential candidate for identifying Normal (fault-free) or Healthy

condition in contrast to faulty ones.

Health State Training Set Code Morse Bump Amor

Normal
baseline_1 data_normal 2.236 1.483 5.381

baseline_2 data_normal_2 2.836 1.600 15.830

WSE Avg. for 0.1 s 2.536 1.541 10.603

IRF
InnerRaceFault_vload_1 data_inner 0.011 0.017 0.009

InnerRaceFault_vload_2 data_inner_2 0.023 0.040 0.019

WSE Avg. for 0.1 s 0.017 0.028 0.014

ORF
OuterRaceFault_3 data_outer 2.311 2.028 0.611

OuterRaceFault_1 data_outer_2 2.225 1.743 2.653

WSE Avg. for 0.1 s 2.268 1.886 1.632

125

Figure 5.5: Mean Absolute WSE Values for Different Mothers of Wavelets.

5.2.2.2 Step 2: CWT Energy Assessment for Each Load Factor

This section uses the data segmentation subfiles in Table 5.9 in Section 5.2.1.2. For

further mean energy analysis per LF for IRF and ORF, types per LFi, where ‘i’ indexes the

different LFss.calculate the wavelet energy values using the CWT technique. Let 𝑥𝑖(𝑡)

represent the vibration signal for LFi at time 𝑡. The CWT coefficients are denoted as 𝐶𝑖,𝑗(𝑡),

where j represents the selected wavelet scale (Jayamaha et al., 2019; Silik et al., 2021).

Following these steps:

• Extract the vibration signal for LFi: 𝑥𝑖(𝑡).

• Perform the CWT on the vibration signal: 𝐶𝑖,𝑗(𝑡); see Equation (5.8). The scale used

in this study was 5.

• Calculate the wavelet energy 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

 for each scale j, 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

, in Equation (5.9):

𝐶𝑖,𝑗(𝑡) = 𝐶𝑊𝑇(𝑥𝑖(𝑡), 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑡𝑦𝑝𝑒, 𝑗), (5.8)

𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

= ∑ |𝐶𝑖,𝑗(𝑡)|
2

𝑡
 (5.9)

Hence, the concept of “scale” j is crucial in understanding the CWT technique in

wavelet analysis. The CWT is a method used to examine signals at various scales, allowing

the detection of different frequency components in a signal with varying levels of detail.

Each scale j corresponds to a specific width of the analysing wavelet, a mathematical function

126

used in the transformation process. Smaller scales represent narrower wavelets sensitive to

high-frequency details, enabling the capture of rapid signal variations. Conversely, larger

scales correspond to wider wavelets, capturing lower-frequency signal components with

broader coverage but less fine detail. In equations involving wavelet analysis, such as

|𝐶𝑖,𝑗(𝑡)|
2
, the squared absolute value of wavelet coefficients at a particular scale j and for a

specific LF i is calculated. This squared magnitude is summed across time t, resulting in the

computation of the wavelet energy at that scale j. This energy measure provides valuable

insights into the contribution of different frequency components to the overall energy content

of the signal (Jayamaha et al., 2019).

Subsequently, the mean energy tables for each LFi, covering IRF, ORF and Normal

(fault-free) or Healthy condition, were created by aggregating the calculated wavelet energy

values. Let 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 = [𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
1 , 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖

2 , … , 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑁𝑠𝑐𝑎𝑙𝑒𝑠] be the vector of wavelet energy

values for LF i. Then, calculate the mean wavelet energy wavelet, �̅�𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 for each LF i by

taking the average of the wavelet energy values across all scales, shown in Equation (5.10):

�̅�𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 =
1

𝑁𝑠𝑐𝑎𝑙𝑒𝑠
∑ 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖

𝑗

𝑁𝑠𝑐𝑎𝑙𝑒𝑠

𝑗=1

 (5.10)

Here, building upon the foundation of wavelet energy, the mean wavelet energy �̅�𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 is

computed by averaging energy values over all scales. This metric provides a concise yet

powerful representation of the energy behaviour post-fault for each LF.

• CWT Energy Assessment for Each LF Using Optimal CWT Technique

In the assessment of mean energy values for IRF and ORF with LF 270 as Normal

(fault-free) or Healthy condition shown in Table 5.17, the following observations were made:

For IRF, LF 270 (Normal (fault-free) or Healthy condition) exhibited a mean energy value

of 5.7012, indicating a lower energy content. LF 50, 100, and 150 had mean energy values

ranging from 24.915 to 27.547, indicating a relatively lower energy content. In contrast, LF

200, 250, and 300 showed mean energy values ranging from 32.199 to 36.147, suggesting a

higher energy content and a more pronounced presence of IRFs. Similarly, LF 50, 100, 150,

200, and 250 for ORF bearings had mean energy values ranging from 5.4309 to 7.6992,

indicating a relatively lower energy content than LF 270. LF 270 (Normal (fault-free) or

Healthy condition) had a mean energy value of 5.7012, representing the Normal (fault-free)

127

or Healthy condition with a lower energy content. LF 300 exhibited a mean energy value of

18.612, indicating a substantial 226.88% increase compared to Normal (fault-free) or

Healthy condition.

In summary, ORF and IRF showed notable increases in mean energy with distinct

patterns. ORF exhibited the highest increase at LF 300 (226.88%), while IRF showed higher

increases, with the highest at LF 250 (533.49%). The increased variability ranged from

2.08% to 226.88% for ORF and 337.68% to 533.49% for IRF. IRF generally displayed higher

percentage increases than ORF, providing insights for effective fault detection and system

management. The complete code is in (APPENDIX 2).

Table 5.17: IRF and ORF CWT Mean Energy.

• Two-Sample t-Test for Significance Testing

In this study, a two-sample t-test was conducted using MATLAB R2023a to assess

differences in mean CWT energy between the Normal (fault-free) or Healthy LF condition

(LF 270 lbs) and other LFs (50, 100, 150, 200, 250, and 300 lbs) for IRF in Figure 5.6 and

ORF in Figure 5.7. Individual t-tests for each LF determined whether the mean energy of the

Normal (fault-free) or Healthy condition load differed significantly from other LFs, with a

significance level of 0.05. Results consistently demonstrated a clear and significant

distinction in mean CWT energy between the Normal (fault-free) or Healthy condition and

various loads. The null hypothesis (H0), suggesting no significant difference in CWT mean

energy between LF 270 and other LFs, was rejected in favour of the alternative hypothesis

(H1), indicating a substantial distinction. This finding held for IRF and ORF LFs, with low

p-values, large sample sizes, substantial t-values, and confidence intervals, all supporting the

robustness and reliability of these results.

LF IRF Type ORF Type

(lbs) Mean Energy Mean Energy

 Increase (%)

Mean Energy Mean Energy Increase (%)

50 25.549 347.70% 7.699 35.16%

100 27.547 383.65% 5.431 4.76%

150 24.915 337.68% 5.573 2.08%

200 33.742 491.88% 7.604 33.35%

250 36.147 533.49% 7.178 25.90%

270 5.7012 0% (baseline) 5.701 0% (baseline)

300 32.199 464.25% 18.612 226.88%

128

Figure 5.6: Two Samples’ t-Test Results Compare IRF Load Factors (50, 100, 150, 200, 250, 300)

With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270).

Figure 5.7: Two Samples’ t-Test Results Compare ORF Load Factors (50, 100, 150, 200, 250, 300)

With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270).

5.2.2.3 Step 3: Customised Load Adaptive Framework (CLAF)

The Load Index, developed based on optimal CWT energy to capture the influence

of LF variations during fault occurrences, is a qualitative representation of the effects of

varying LFs on bearing behaviour. Subsequently, bearing faults were categorised into load-

dependent fault subclasses, displaying distinct severity levels: Mild, Moderate, and Severe,

using the CLAF. This comprehensive classification helps explain how varying LFs

contribute to the manifestation and progression of bearing faults by following these steps;

see the full code in (APPENDIX 2):

1. Calculate normalised energy values:

For each LF i, the normalised CWT energy values 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖
𝑗

 were calculated using

min–max scaling. This process ensures that the wavelet energy values𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

 range

between 0 and 1. The normalisation is expressed by Equation (5.11):

 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖
𝑗

=
𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖

𝑗
− 𝑚𝑖𝑛(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡

𝑗
)

𝑚𝑎𝑥(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

) − 𝑚𝑖𝑛(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

)
 , (5.11)

In this normalised range, 0 represents the minimum energy value in the dataset, and 1

represents the maximum energy value in the dataset. Hence, data normalisation helps

improve the performance of ML models by ensuring that all features are on a similar

 LoadFactor Mean StdDev SEMean MeanDiff CI_Lower CI_Upper tValue DF pValue Significant

 50 25.549 80.211 0.20958 19.848 -20.259 -19.437 -94.663 2.923 x105 0 true

 100 27.547 80.949 0.2115 21.846 -22.261 -21.431 -103.25 2.923 x105 0 true

 150 24.915 74.066 0.19352 19.214 -19.594 -18.835 -99.238 2.923 x105 0 true

 200 33.742 109.49 0.28607 28.04 -28.601 -27.48 -97.997 2.923 x105 0 true

 250 36.147 113.29 0.29599 30.445 -31.026 -29.865 -102.84 2.923 x105 0 true

 300 32.199 94.74 0.24753 26.498 -26.983 -26.013 -107.01 2.923 x105 0 true

 LoadFactor Mean StdDev SEMean MeanDiff CI_Lower CI_Upper tValue DF pValue Significant

 50 7.6992 7.3528 0.019211 1.9981 -2.0376 -1.9585 -99.051 2.923 x105 0 true

 100 5.4309 4.0811 0.010663 -0.27028 0.24616 0.29441 21.955 2.923 x105 9.364 x10107 true

 150 5.5728 4.0481 0.010577 -0.12837 0.10439 0.15235 10.491 2.923 x105 9.573 x1026 true

 200 7.6036 14.487 0.037852 1.9024 -1.9776 -1.8273 -49.609 2.923 x105 0 true

 250 7.1779 9.5466 0.024943 1.4767 -1.5271 -1.4264 -57.48 2.923 x105 0 true

 300 18.612 51.481 0.13451 12.911 -13.175 -12.647 -95.882 2.923 x105 0 true

129

scale. This can prevent some features from dominating others and improve the model’s

accuracy (Jang and Cho, 2021). All other energy values are linearly scaled within this

range. Here, min (𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡
𝑗

) represents the minimum wavelet energy value across all LFs

and scales, and max(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

) represents the maximum wavelet energy value across all

LFs and scales.

2. Identify Normal (fault-free) or Healthy condition indices:

𝐼𝑛𝑜𝑟𝑚𝑎𝑙 represents the indices corresponding to the Normal (fault-free) or Healthy

condition. In the analysis context, it refers to the index where the LF is 270, which is

considered the Normal (fault-free) or Healthy condition or baseline. These indices are

used to calculate the deviation from the Normal (fault-free) or Healthy condition for each

LF and wavelet energy value.

In the mathematical notation, 𝐼𝑛𝑜𝑟𝑚𝑎𝑙 is a set of indices i for which the LF is equal to

270; see Equation (5.12):

3. Quantify deviation: calculate deviation from Normal (fault-free) or Healthy condition;

see Equation (5.13):

where deviations 𝐷𝑖
𝑗
 from the Normal (fault-free) or Healthy condition are calculated,

highlighting differences between the normalised energy values and the baseline. When

an LF is not within 𝐼𝑛𝑜𝑟𝑚𝑎𝑙, the corresponding normalised energy value 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖
𝑗

 is

considered. Otherwise, the deviation is set to zero.

4. Severity of changing LF: threshold setting

4.1 Define adjustable severity thresholds

4.2 Categorise the severity 𝑆𝑖
𝑗
 based on the deviation magnitude 𝐷𝑖

𝑗
.and threshold; see

Equation (5.14):

𝐼𝑛𝑜𝑟𝑚𝑎𝑙 = {𝑖|𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 = 270} (5.12)

𝐷𝑖
𝑗

 = {
𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖

𝑗
, 𝑖𝑓 𝑖 ∉ 𝐼𝑛𝑜𝑟𝑚𝑎𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.13)

𝑆𝑖
𝑗

= {

′𝑀𝑖𝑙𝑑′, 𝑖𝑓 𝐷𝑖
𝑗

 ≤ 𝑚𝑖𝑙𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

′𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒′, 𝑖𝑓 𝑚𝑖𝑙𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝐷𝑖
𝑗

 ≤ 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

′𝑆𝑒𝑣𝑒𝑟𝑒′, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.14)

130

Hence, the severity of deviations 𝐷𝑖
𝑗
 is categorised to assess the impact post-fault. Adjustable

severity thresholds differentiate between ‘Mild’, ‘Moderate’ and ‘Severe’ conditions and

store severity as a cell array value. This step is vital in determining the gravity of the

machinery’s response to various fault scenarios, enabling efficient resource allocation and

timely interventions, and preventing potential escalations. In this chapter, the author chose

the following thresholds, which can be adjusted according to the application: mild_threshold

= 0.2; moderate_threshold = 0.5.

5. Categorise severity 𝑆𝑖
𝑗
 based on the deviation magnitude 𝐷𝑖

𝑗

The normalised energy values allow us to effectively compare the energy levels of different

LFs, as they are all scaled within the same range. However, it is essential to note that the

normalised energy values are not directly related to the severity categorisation (‘Mild’,

‘Moderate’, or ‘Severe’). The severity categorisation is based on the ‘Deviation’ column,

which represents the deviation of each LF’s mean energy from the mean energy of the

Normal (fault-free) or Healthy condition. Following are the IRF and ORF types after the

assessment, as shown in Table 5.18:

Table 5.18: IRF and ORF Load-Dependent Fault Subclasses Through CLAF.

• IRF Customised LF Assessment:

Min-max scaling was employed to normalise the energy values, transforming the

original energy values into a range of [0, 1]. In this normalised range, 0 signifies the

minimum energy value in the dataset, while 1 represents the maximum energy value.

All other energy values are linearly scaled within this range. The ‘Normalised Energy’

column in the provided table reflects the energy values post min-max scaling, where one

corresponds to the maximum energy value. For instance, the energy value of ‘LF’ 250

LF Mean Energy NormalisedEnergy Deviation
Load-Dependent

Subclasses

(lbs) IRF ORF IRF ORF IRF ORF IRF ORF

50 25.549 7.6992 0.14035 0.05758 0.1403 0.05758 {‘Mild’} {‘Mild’}

100 27.547 5.4309 0.15053 0.023062 0.15053 0.023062 {‘Mild’} {‘Mild’}

150 24.915 5.5728 0.14063 0.031372 0.14063 0.031372 {‘Mild’} {‘Mild’}

200 33.742 7.6036 0.28444 0.092816 0.28444 0.092816 {‘Moderate’} {‘Mild’}

250 36.147 7.1779 0.29911 0.061822 0.29911 0.061822 {‘Moderate’} {‘Mild’}

270 5.7012 5.7012 0.00930 0.027659 0 0 {‘Normal’} {‘Normal’}

300 32.199 18.612 0.23412 0.89814 0.23412 0.89814 {‘Moderate’} {‘Severe’}

131

is relatively the highest compared to other LFs in the dataset, as evidenced by its

proximity to 1 in the normalised range.

Conversely, ‘LF’ 50, ‘LF’ 100, and ‘LF’ 150 had normalised energy values around

0.14, indicating that their energy values were closer to the lower end of the normalised

range (0). These LFs exhibited lower energy values compared to others in the dataset.

Notably, the normalised energy values did not directly correspond to the severity

categorisation (‘Mild,’ ‘Moderate,’ or ‘Severe’). The severity categorisation was based

on the ‘Deviation’ column, which represents the deviation of each LF’s mean energy

from the mean energy of the Normal (fault-free) or Healthy condition.

• ORF Customised LF Assessment:

Long-duration operation at higher LFs for the ORF significantly influences

degradation. Across LFs 50, 100, 150, 200, and 250, the mean energy values ranged

from 5.4309 to 7.6992, indicating relatively lower energy content in the vibration signals

compared to LF 270, which represents the Normal (fault-free) or Healthy condition with

a mean energy value of 6.0981. The Normal (fault-free) or Healthy condition exhibited

relatively lower energy levels, as expected. However, LF 300 stood out with a higher

mean energy value of 18.612, suggesting that the associated ORF condition had a

notably higher energy content in the vibration signals than the other LFs. This detailed

energy analysis provides valuable insights into the variations related to different LFs

and fault conditions, enhancing the understanding of the degradation process.

5.2.2.4 Step 4: CLAF Validation

The proposed CLAF is a fault condition monitoring system designed to identify

issues based on load-dependent fault subclasses. In this step, the efficiency of the CLAF is

validated by evaluating time, frequency, and spectral features, which have been ranked using

one-way ANOVA.

In real-world scenarios, not all extracted features are equally important. Some

features are more critical for classification, while others can negatively impact accuracy by

hindering the algorithm's ability to generalise patterns. One-way ANOVA is used to select

the most robust subset of features, addressing the challenge of extracting key components

for damage detection in structural health monitoring (Zhang et al., 2023d). Structural

132

dynamic measurements often exhibit complex, time-varying behaviour, making them

sensitive to changes in time-frequency characteristics (Silik et al., 2021).

Time, frequency, and spectral features were carefully selected and ranked within this

context using one-way ANOVA. Following this, classifiers were trained to determine the

optimal feature set based on accuracy, as detailed in Section 5.2.1.4 (see Table 5.12). The

study generated 24 features within the 2,500–25,000 Hz frequency band, with each signal

contributing five spectral peaks, resulting in five frequency features per peak. Subsequently,

a one-way ANOVA test was conducted on the CLAF load-dependent fault subclasses to

refine feature selection further (see Table 5.19).

Table 5.19: CLAF Load-Dependent Fault Subclasses (One-Way ANOVA Ranking, AR Model

Order Fifteen, Peaks = 5).

Feature Rank One-way ANOVA

Score

Feature Rank One-way ANOVA

Score

1. Mean 316.4447 13. PeakAmp5 84.3280

2. ShapeFactor 288.4202 14. Skewness 73.1278

3. PeakValue 245.4272 15. PeakAmp2 70.5038

4. RMS 240.9294 16. PeakFreq1 69.1381

5. Std 240.2707 17. SINAD 58.7164

6. ClearanceFactor 235.2321 18. S/N 58.6086

7. ImpulseFactor 225.2555 19. PeakAmp4 51.3935

8. Kurtosis 211.9440 20. PeakAm3 38.7712

9. CrestFactor 198.2645 21. PeakFreq4 25.1821

10. PeakAmp1 161.2217 22. PeakFreq2 17.6449

11. BandPower 126.8539 23. PeakFreq5 13.9307

12. PeakFreq3 116.7983 24. THD 0

Features with ANOVA scores below 26 were excluded from further study. This step

aimed to enhance the selection process by concentrating on features that had a more

significant impact. Observing the initial trial’s high accuracy, the author systematically

reduced the number of features, utilising accuracy as a metric for efficient feature reduction.

This reduction process was carried out gradually, guided by accuracy measures.

Subsequently, several classifiers were evaluated in the study, and their performance was

meticulously documented across various feature subsets. The training dataset, comprising

813 subfolders, was divided into 60.00% for training, 20.00% for validation, and 20.00% for

testing.

A five-fold cross-validation was implemented to ensure robust performance

assessment. The feature selection process, guided by one-way ANOVA scores, began with

133

the top 20 features (ANOVA scores > 26) and these were systematically narrowed down to

the top 5 features (ANOVA scores > 240), allowing for refined classifier selection based on

accuracy and efficiency. Table 5.20 shows that the RUSBoostedTrees model, tested with the

top 20 features, achieved an accuracy of 93.80% with a training time of 11.539 s.

Table 5.20: CLAF Load-Dependent Fault Subclasses Classifiers Training on Various Feature

Subsets.

Classifier ANOVA

Ranking

TTime
1

 Test Dataset

(s) VA 2 NA 3 MA 4 MoA 5 SA 6
Overall

Accuracy

RUSBoostedTrees Top 20 >26 11.539 92.60% 100% 92.40% 91.20% 100% 93.80%

Fine Tree Top 17 >58.6 4.393 92.60% 100% 95.70% 82.40% 100% 93.80%

WNN Top 10 >161 18.155 91.20% 100% 97.80% 88.20% 100% 96.30%

CubicSVM Top7 (a) >215 8.1055 93.10% 100% 96.70% 82.40% 100% 94.40%

Medium Gaussian

SVM
Top 7 (b) >215 5.8059 91.60% 100% 96.70% 82.40% 100% 94.40%

Fine Gaussian SVM Top 5 >240 12.711 92.90% 100% 97.80% 82.40% 100% 95.10%

1 TTime is the training time, 2 VA is the validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4 MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, and 6 SA is

the Severe state accuracy.

The Fine Tree model, using 17 features, matched this accuracy but with a shorter

training time of 4.393 s. The Wide Neural Network (WNN), which used the top 10 features

(with ANOVA scores > 161), achieved an accuracy of 96.30% with a standard deviation of

± 0.50% in 18.155 s during five-fold cross-validation. This performance is attributed to the

WNN's single-layer architecture with 100 neurons and a Rectified Linear Unit (ReLU)

activation function without regularisation (Lambda set to 0). The accuracy was determined

by dividing the dataset into five parts, training the model on four parts, and testing the

remaining part. This process was repeated five times, with the ± 0.50% standard deviation

reflecting the variability across the different folds. Cross-validation helps ensure the model

performs consistently on unseen data, reducing the risk of overfitting. The careful selection

of the top 10 features maintained interpretability while achieving a solid testing performance.

Iteration refers to the repeated updates to the model's parameters during training to minimise

the loss function. The network's validation accuracy of 91.00% over 57 iterations further

illustrates its effectiveness. While cross-validation evaluates how well the model generalises

134

to new data, iteration focuses on improving the model's performance during training. The

WNN, known for handling datasets with many input features, is well-suited for tabular or

structured data (MathWorks-3, 2024). All these experiments were conducted using the

Classification Learner application in MATLAB 2023a.

Such a high level of accuracy demonstrates the CLAF's nuanced understanding of

fault patterns and its capability to effectively distinguish between 'Mild,' 'Moderate,' and

'Severe' fault categories under different LFs.

5.3 Summary

This research proposes the CLAF for classifying faults in Induction Motors (IMs)

into load-dependent fault subclasses, namely 'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-

free) or Healthy condition’ categories. The framework provides a comprehensive

understanding of fault severity under varying LFs, offering an insightful method for fault

analysis. Tailored to the MFPT bearing dataset, this research highlights patterns in TFD

features under six different LFs. It demonstrates how fault severity varies across various LF

conditions using an optimal CWT energy approach selected by WSE.

In this research, the CLAF was developed in two phases:

1) Phase 1: Load-dependent patterns in TFD features were explored using one-way

ANOVA ranking, and validation was carried out with bagged tree classifiers. The

findings revealed consistent deviations in key features for both fault types, with IRF

showing more pronounced alterations. The one-way ANOVA test ranked the shape

factor feature as the most significant, followed by peak value, whereas THD was

insignificant. Two AR models were employed in the frequency domain feature

extraction. Subclassification based on these extracted features for each LF revealed

distinct patterns, which helped to identify load-induced patterns and improve

understanding of the relationship between LFs and feature expression in bearing health

assessment. The approach using Bagged Tree classifiers with the top 19 features, as

determined by ANOVA scores, achieved an accuracy of 86.40%.

2) Phase 2: WSE determined ‘Amor’ as the optimal CWT method, surpassing alternatives

such as ‘Bump’ and ‘Morse’ in the Normal (fault-free) or Healthy condition dataset.

This phase highlighted a significant correlation between fault severity and LF,

significantly when loads exceeded 300 lb. Severe ORF faults demonstrated a notable

135

226.88% increase in CWT energy compared to the Normal (fault-free) or Healthy

condition. Similarly, IRFs exhibited significant energy increases at different LF levels,

rising by 491.00%, 533.49%, and 464.25% at 200 lb, 250 lb, and 300 lb, respectively.

A two-sample t-test confirmed the significance of these results. The study defined load-

dependent fault subclasses within the MFPT bearing dataset, establishing specific

thresholds for Mild, Moderate, and Severe fault levels based on the energy deviation

from Normal (fault-free) or Healthy condition. The CLAF framework was validated for

its load-dependent fault subclass creation using TFD features. It achieved 96.30% ±

0.50% standard deviation classification accuracy, reflecting the variability across the

five different folds with a WNN and the top 10 features ranked by ANOVA. It was

particularly effective at classifying Severe faults, achieving 100% accuracy, Moderate

faults at 88.30%, and Mild faults at 97.80%, thereby demonstrating its ability to detect

nuanced fault variations under different LF conditions in IMs. These results underscore

the practical benefits of the CLAF in enhancing fault classification for IMs and its

potential in advancing condition monitoring.

This chapter’s main contributions are as follows:

1. Comprehensive Time and Frequency Analysis: This study conducted a detailed TFD

analysis under six LF conditions, highlighting patterns and variations in fault severity

and providing valuable insights into IM behaviour.

2. Optimal CWT Approach: Selecting an optimal CWT approach using WSE improves

signal processing for TFD feature extraction, denoising, and pattern recognition.

3. Revealing Load-Dependent Fault Subclasses: This research identified and classified

load-dependent fault subclasses, including Mild, Moderate, and Severe, enhancing

the understanding of fault severity in different LF scenarios.

4. Proposing a CLAF: The research introduces a novel CLAF, extending traditional

fault classification methodologies by considering LF variations and dataset

customisation.

136

Chapter 6: A Novel Load-Dependent Multimodal

Vibration Signal Enhancement and Fusion (LD-

MVSEF) for Load-Specific Condition Monitoring

137

6.1 Proposed Methodology

This section outlines the systematic approach of the proposed novel Load-Dependent

Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) for Load-Specific

Condition Monitoring, building upon the Customised Load Adaptive Framework (CLAF)

load-dependent fault subclasses introduced in Chapter 5. The methodology was applied to

the Machinery Failure Prevention Technology (MFPT) bearing dataset. It involves the

independent extraction of features from different data representations within this single data

source, implemented across three separate feature extraction channels. Features extracted

from each channel are then directed to their respective classification modules, where

individual classification decisions are made. Subsequently, a fusion module consolidates

these individual decisions into a unified classification result. The processing for the proposed

methodology was conducted using MATLAB R2023a software. This section provides an

overview of the methodology framework and details of the data used.

6.1.1 Load-Dependent Multimodal Vibration Signal Enhancement and Fusion

The LD-MVSEF framework incorporates multiple data channels and decision fusion

approaches, complemented by the CLAF for creating load-dependent fault subclasses.

Various data sources are integrated, including Gradient Angular Difference Field (GADF)

images, Continuous Wavelet Transform (CWT) images, and features from the time and

frequency domains. These inputs enhance the efficacy of condition monitoring by leveraging

complementary patterns across different modalities for improved fault classification. The

outputs from multiple classifiers are consolidated using decision fusion techniques, ensuring

robust and accurate classification. The methodology includes six detailed steps, as presented

in Figure 6.1:

1. Data Preprocessing with the CLAF:

In this stage, the input data are segmented and prepared for further analysis. The

process begins with splitting the raw MFPT bearing data vibration signals according to

their respective classes— Normal (fault-free) or Healthy condition and fault (Inner Race

Fault (IRF) and Outer Race Fault (ORF). After splitting, the raw vibration signals are

encoded into equivalent image formats.

138

• This multichannel approach is critical for identifying differences in vibration signals

associated with varying Load Factor (LF) conditions and fault types. The structured

preparation of the dataset into load classes (IRF50, IRF100, IRF150, IRF200, IRF250

and IRF300, ORF50, ORF100, ORF150, ORF200, ORF250 and ORF300,

Normal270)is essential for its subsequent application in the CLAF, ensuring that the

framework receives correctly segmented and analysed data for optimal performance.

2. Multichannel Input Preparations:

In this stage, The first phase establishes three distinct data channels for

comprehensive analysis. In Channel 1, raw vibration signals are processed. Channel 2

generates two-dimensional (2D) CWT images from these signals, and Channel 3

produces 2D encoded GADF images. After splitting, the raw vibration signals are

encoded into equivalent image formats:

• Channel 1: Raw vibration signal.

• Channel 2: The class-specific raw vibration signals are encoded into CWT images

using the Amor technique.

• Channel 3: The class-specific raw vibration signals are encoded into 2D GADF

images.

• Applying the CLAF to create load-dependent fault subclasses—'Mild,' 'Moderate,'

'Severe,' and 'Normal (fault-free) or Healthy condition’—tailored to specific

datasets, forming the foundation for subsequent analysis.

3. Feature Extraction and Classifier Selection for Channel 1 (Raw Vibration Signal):

In the third step, the raw vibration signal data (Channel 1) are subject to feature

extraction and subsequent selection through the one-way Analysis of Variance

(ANOVA) ranking method. Various classifiers are employed, and the highest classifier

accuracy for the raw vibration signal subfiles is determined where Channel 1 inputs are

switched from raw vibration signal to (Channel 1): Optimal Time and Frequency Domain

(TFD) feature subset selection.

After that, a data preprocessing step was added to address the data imbalance issue

and link the TFD features with the equivalent GADF and CWT images into a single data

store. This adjustment enhances the dataset by ensuring all classes are balanced before

139

classification. This involved oversampling the minority classes to ensure that each class

had an equal number of samples, matching the class with the highest number of samples.

4. Channels Classification Approaches and Training Methods: Training and Selection

of Classifiers for TFD features, including spectral features using Autoregression

(Channel 1) and CNN Architectures for Channels 2 and 3 (CWT and GADF images):

Step four focuses on the training and selection of classifiers for the different data

channels:

• For Channel 1 (TFD features, including spectral features using Autoregression),

classifiers such as Cubic Support Vector Machine (CubicSVM) and Wide Neural

Network (WNN) are trained on the extracted features. The best-performing model

is selected for further analysis.

• For Channels 2 and 3 (CWT and GADF images), pre-trained Convolutional Neural

Networks (CNNs), such as AlexNet and ResNet-18, originally trained on the

ImageNet dataset, are fine-tuned on the 2D encoded images. The final fully

connected layer of each network is replaced with a new layer containing four output

neurons, where each neuron corresponds to one of the four categories: 'Mild,'

'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy condition’. The images,

including CWT spectrograms and 2D GADF-encoded images, are resized to match

the input dimensions of the CNN architectures: 227 x 227 x 3 for AlexNet and

224 x 224 x 3 for ResNet-18.

5. Single Channel Performance Analysis:

In this step, the performance of classifiers for each of the three channels—raw

vibration signals, CWT images, and GADF images—is analysed. The classifiers are

evaluated on their ability to classify the data into four classes ('Mild,' 'Moderate,' 'Severe,'

and 'Normal (fault-free) or Healthy condition’). For each channel, the classifier with the

highest overall accuracy is selected.

6. Weighted Decision Fusion:

In the final step, two weighting systems are used for decision fusion: Weighting

System 1 (Adaptive Weighting), where weights are dynamically assigned based on the

classifier's performance for specific conditions, and Weighting System 2 (Equal

Weighting), where all channels receive equal weights regardless of their individual

140

performance. Two- and three-channel configurations are evaluated to determine the most

effective fusion model for optimising classification accuracy and robustness.

Figure 6.1: Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF)

Methodology.

141

6.1.2 Dataset

The current study utilises the MFPT bearing dataset obtained from a NICE bearing

test rig. The dataset includes samples representing the Normal (fault-free) or Healthy

condition, ORF, and IRF, as illustrated in Figure 6.2. Key details of the dataset include three

Normal (fault-free) or Healthy condition samples recorded at 97,656 Hz for 6 s each, three

ORF samples at the same frequency (with LF ranging from 25 to 300 lbs), and an additional

seven ORF samples at 48,828 Hz (with LFs varying from 0 to 300 lbs). Furthermore, the

dataset contains IRF samples at 48,828 Hz, with LFs ranging from 0 to 300 lbs. This dataset

serves as a standardised benchmark, providing essential information such as radial LF, shaft

speed, and signal characteristics while maintaining a consistent shaft speed of 1,500 rpm (25

Hz).

This thesis recommends splitting the dataset using a 5,000/97,566 ratio to ensure

consistent and efficient data segmentation while preserving fault classification features. This

interval captures essential characteristics across samples. Consistency ensures

reproducibility for Machine Learning (ML). Each subfile represents the signal’s behaviour

for accurate fault detection within the specified timeframe. Consistency is maintained across

the three channels to avoid bias in training.

 (a) (b)

Figure 6.2: Computer-Aided Drawings of Defects Made on (a) ORF; (b) IRF (Jain and Bhosle,

2022).

6.2 Results and Discussion

This section presents a comprehensive analysis and interpretation of the outcomes

obtained from the experimental study. The focal point of the analysis revolves around the

performance evaluation of various fusion techniques utilised for the classification of LF

conditions. These techniques encompass diverse feature representations and models. The

overarching goal of the current study is to discern effective strategies for enhancing the

accuracy of load index prediction, thereby improving the reliability and robustness of

142

machinery fault classification. Steps 3 and 4 show the three approaches used in the single

channel, starting with TFD extraction features on the original vibration signal, then with pre-

trained CNNs (AlexNet and Residual Network-18 (ResNet-18)) on encoded vibration signals

into two forms: CWT vibration-encoded images and GADF vibration-encoded images.

6.2.1 Data Preparation

This section presents the preprocessing performed on the MFPT bearing dataset,

detailing the process of dividing the data based on LF conditions. This division is crucial for

applying the CLAF to identify LF-dependent patterns that differ from conventional fault

classification methods used in Induction Motor (IM) bearings. The dataset has been

systematically split per the CLAF approach, which marks a significant departure from

traditional fault classification by factoring in LF conditions and adapting the dataset for

specialised analysis, as indicated in Chapter 5. The research includes a comparative study

across six distinct LF conditions (50, 100, 150, 200, 250, and 300 lbs) against a Normal

(fault-free) or Healthy condition LF condition set at 270 lbs. This results in 13 categories:

six each for IRF and ORF under varying LFs and one for Normal (fault-free) or Healthy

condition, as illustrated in Figure 6.3.

Figure 6.3: MFPT Bearing Dataset Load Factor Splitting.

This division evaluates the effect of LF on fault scenarios, emphasising IRF and ORF,

which are detailed in Tables 6.1 and 6.2, respectively.

Table 6.1: IRF Dataset Splitting Per Load Factor.

Inner Fault Dataset Code LF (lbs/kg) Sampling Rate

(Hz)

Duration

(s)

Subfile

Count

baseline_2 data_normal 270/122.47 97,656 6 117

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3 58

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3 58

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3 58

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3 58

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3 58

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3 58

143

Table 6.2: ORF Dataset Splitting Per Load Factor.

Outer Fault Dataset Code LF (lbs/kg)
Sampling Rate

(Hz)

Duration

(s)

Subfile

Count

baseline_2 data_normal 270/122.47 97,656 6 117

OuterRaceFault_vload_2 ORF_50 50/22.68 48,828 3 58

OuterRaceFault_vload_3 ORF_100 100/45.36 48,828 3 58

OuterRaceFault_vload_4 ORF_150 150/68.04 48,828 3 58

OuterRaceFault_vload_5 ORF_200 200/90.72 48,828 3 58

OuterRaceFault_vload_6 ORF_250 250/113.40 48,828 3 58

OuterRaceFault_vload_7 ORF_300 300/136.08 48,828 3 58

As illustrated in Figure 6.4, this segmentation process produced 117 subfiles for the

Normal (fault-free) or Healthy condition baseline and 58 subfiles for each fault category (IRF

and ORF). It also illustrates data segmentation for the Normal (fault-free) or Healthy

condition associated with the MATLAB code. This preparatory phase sets the foundation for

CLAF load-dependent fault subclass division.

Figure 6.4: Dataset Segmentation Example on the Normal (fault-free) or Healthy Condition.

6.2.2 Multichannel Input Preparations

This section outlines the creation of three distinct data channels from the raw vibration

signal for analysis. Channel 1 contains the raw segmented vibration signals, Channel 2

encodes the signals into CWT images, and Channel 3 encodes them into GADF images. The

dataset was analysed using the CLAF, focusing on load-dependent subclasses: Mild,

Moderate, Severe, and Normal (fault-free) or Healthy condition.

To ensure consistency and fairness in classifier performance evaluation, the datasets for

Channels 1, 2, and 3—derived from the same pool of 813 subfiles—were divided in a

uniform manner. Figure 6.5 illustrates the structure of the MATLAB datastore. In this

144

datastore, the Index column, as shown in the attached image, represents the unique subfolder

name used to encode both the CWT images (stored in ImagePath_cwt) and the GADF images

(stored in ImagePath_GADF). This ensures that the files corresponding to each load

condition (e.g., IRF_50) are consistently linked across all three channels.

Figure 6.5: Datastore Structure Linking Raw Vibration Signals with CWT and GADF Images.

As illustrated in Table 6.3, this uniform approach is critical for a thorough and

unbiased evaluation across all three channels. It ensures that the performance of the CNN

models, which are trained on various types of encoded image data such as CWT and GADF

in Channels 2 and 3, and tabular features extracted for each segment in Channel 1, is

evaluated under similar conditions.

Table 6.3: Multichannel Input Preparations.

Subfiles Channel 1

Tabular features

extracted from

the raw vibration

signal

Channel 2

CWT

2D encoded

image

Channel 3

GADF

2D encoded

image

CLAF

Load-dependent

fault subclasses

 The time and

frequency

domain features.

Normal (fault-

free) or Healthy

condition.

6.2.2.1 Channel 1: Raw Tabular Vibration Signal

 Accordingly, the dimensions of each vibration image are set to 227 x 227 x 3 and

224 x 224 x 3. These size specifications align with the input requirements of the AlexNet

and ResNet-18 architectures, respectively. Figure 6.6 visually details the connection between

each channel and outlines the process of creating each channel, starting with the raw vibration

signal. The following subsection provides a comprehensive analysis of each channel.

145

 TFD features, including spectral features using Autoregression will be extracted from

this channel and used as the Channel 1 input in the proposed methodology. The extracted

features are detailed in Section 6.2.3, as shown in Table 6.4.

Figure 6.6: Input Channels General Overview.

6.2.2.2 Channel 2: Continuous Wavelet Transform

Converting vibration signals to scalogram images in MATLAB involves several

systematic steps. The dataset comprises Normal (fault-free) or Healthy condition and IRF

and ORF types and is first partitioned based on distinct LF conditions. Each signal subset is

then processed through a Wavelet Transform (WT) using the CWT method with the ‘Amor’

wavelet. The transformed signals are converted into scalogram images by taking the absolute

values of the CWT coefficients, flipping and scaling them. These images are then colour-

mapped using the ‘jet’ colour map and resized to a uniform size of 224 x 224 pixels for

consistency. The images of some of the generated samples are presented in Figure 6.7.

Each processed signal subset and its corresponding scalogram image are saved as an

image file and a CSV file, categorically organised in folders named after the ensemble types

and indices. This meticulous process is repeated for each subset of the signal, ensuring that

every part of the signal is represented as a distinct image. This approach visualises the time-

frequency information of vibration signals and prepares the data for further analysis, such as

fault detection or ML applications.

146

Figure 6.7: CWT 2D Encoded Image Examples From IRF, ORF and The Normal (fault-free) or

Healthy Condition.

6.2.2.3 Channel 3: Gramian Angular Difference Field (GADF)

Creating GADF images from vibration signals involves several key steps. Initially,

the time series signal is segmented into smaller subsets. For each subset, a Gramian matrix

is computed using the GADF algorithm, which involves calculating the pairwise dot product

of the signal and then manipulating the resulting sine and cosine matrices. The Gramian

matrix is then transformed into a GADF image. This transformation includes scaling the

matrix values to a range between 0 and 1, inverting this scaled matrix and resizing the image

to a specified size. This process is iteratively applied to the entire signal, converting each

segment into a GADF image representing the underlying time series data. This method offers

an alternative way to analyse and interpret vibration signals, facilitating more profound

insights into their characteristics.

GADF encoding produces distinct patterns for various health conditions, which need

further analysis to validate their ability to differentiate between health conditions, as

illustrated in Figure 6.8.

147

Figure 6.8: GADF 2D Encoded Image Examples From IRF, ORF and the Normal (fault-free) or

Healthy Condition.

6.2.3 Feature Extraction and Classifier Selection for Channel 1 (Raw Vibration

Signal):

This section conducts a one-way ANOVA test to rank the extracted general TFD

features. Additionally, spectral features are extracted using an Autoregressive (AR) model

of order 15 and a maximum of 5 peaks, creating 24 features. The selection of features for

data representation plays a crucial role in the model's performance. Choosing the most

relevant features is essential to ensure the model effectively captures the critical information

related to the fault. On the other hand, including irrelevant features can sometimes result in

overfitting or decreased performance (Kareem and Hur, 2022). One-way ANOVA feature

selection involves comparing the means of each feature across different target classes to

determine if there is a statistically significant difference. Features are ranked based on their

p-values from the ANOVA test; the lower the p-value, the more likely the feature is to be

influential in distinguishing between classes. These p-values are often transformed into

148

scores by taking the negative logarithm, with higher scores indicating more significant

features for classification. In Table 6.4, the first column represents the extracted features,

and the second column represents the one-way ANOVA scores, ranked from highest to

lowest significance. Features that scored less than 26 (Peak frequency 4, Peak frequency 2,

Peak frequency 5, and Total Harmonic Distortion (THD)) were not included in the current

study due to their low scores, which could lead to confused training.

Table 6.4: One-way ANOVA Ranking Including Spectral Features Extracted by Autoregressive

(AR) Model (b) Order Fifteen, Peak = 5.

A critical analysis of classifier performance, based on the top 20 feature sets ranked

by the one-way ANOVA score, provides diverse insights, as presented in Table 6.4. Various

classifiers, including Support Vector Machines (SVMs), Neural Networks (NN), and

Ensembles, were employed using MATLAB 2023a (MathWorks-3, 2024). The efficacy of

SVM hinges on how effectively the input data are represented in this new space, a

determination often made through the utilisation of diverse kernels like Linear, Polynomial

(including quadratic and cubic), Gaussian, and others (Khanjani and Ezoji, 2021). The

CubicSVM is a classifier that falls under the umbrella of supervised learning. SVMs are

effective for high-dimensional data and are versatile in handling various structured datasets.

Hence, they are widely used for classification and regression tasks (MathWorks-3, 2024)

The objective was to identify the classifier with the highest accuracy, making it a

strong candidate for the proposed LD-MVSEF for Load-Specific Condition Monitoring. The

training dataset, comprising 813 subfolders, was divided as follows: 60.00% for training,

20.00% for validation, and 20.00% for testing. Five-fold cross-validation was implemented

Feature Rank One-way ANOVA

Score

Feature Rank One-way ANOVA

Score

1. Mean 316.44 13. PeakAmplitude 5 84.33

2. ShapeFactor 288.42 14. Skewness 73.13

3. PeakValue 245.43 15. PeakAmplitude 2 70.50

4. RMS 240.93 16. PeakFreq1 69.14

5. Std 240.27 17. SINAD 58.72

6. ClearanceFactor 235.23 18. S/N 58.61

7. ImpulseFactor 225.26 19. PeakAmplitude 4 51.39

8. Kurtosis 211.94 20. PeakAmplitude 3 38.77

9. CrestFactor 198.26 21. PeakFreq4 25.18

10. PeakAmplitude 1 161.22 22. PeakFreq2 17.64

11. BandPower 126.85 23. PeakFreq5 13.9307

12. PeakFrequency 3 116.80 24. THD 0

149

to ensure a robust performance assessment (see Table 6.5), divided by the load-dependent

fault subclasses.

The Ensemble: The Boosted Trees classifier recorded a notable 94.40% accuracy,

demonstrating its ability to effectively harness a larger feature set. Reducing the feature set

to the top 17 had a minimal effect on accuracy, which consistently remained above 90.00%,

demonstrating the classifiers’ robustness and efficiency with a minor feature set. A further

reduction in the feature set to the top 10, 7, and 5 revealed a nuanced interplay between

feature count and accuracy. The WNN, using the top 10 features, outperformed its

counterparts with a peak accuracy of 92.02%, suggesting its superior capability in working

with a more compact yet pertinent feature set.

Classifier performance exhibited considerable variation in the Mild class, with the

following Ensemble: Boosted Trees classifier’s accuracy ranging from 89.20% with the top

17 features to 95.40% with the top 20 features. The CubicSVM classifier recorded the lowest

accuracy in the Moderate class, scoring 85.70% and 91.40% with the top 7 and 5 feature

subsets, respectively. In contrast, WNN achieved 91.40% with the top 10 feature subset.

Remarkably, the Normal (fault-free) or Healthy condition class maintained a stable 100%

accuracy across all classifiers and feature subsets, underscoring the classifiers’ consistent

ability to identify Normal (fault-free) or Healthy condition accurately. This consistency

indicates a shared strength among the classifiers. At the same time, the variability in the load-

dependent fault subclasses (Mild and Moderate classes) underscores the critical importance

of appropriate feature subset selection for optimal classifier performance.

In a direct comparison, the accuracy of the CubicSVM and the WNN was closely

matched. However, the selection of the top 10 features by one-way ANOVA demonstrated a

well-calibrated compromise between training feature quantity and test dataset accuracy. The

CubicSVM and WNN achieved 94.60% and 93.40% overall testing accuracies, respectively.

Breaking this down further, the CubicSVM recorded 92.50% in the Mild class, 85.70% in

the Moderate class, and 100% in the Severe class. Meanwhile, the WNN scored 90.3% in the

Mild, 91.40% in the Moderate, and 91.70% in the Severe class. Notably, the CubicSVM

outperformed the WNN in the Severe class by 8.30% and the Mild class by 2.20%.

150

Conversely, the WNN outperformed the CubicSVM in the Moderate class by 5.70%.

As a result, these two classifiers were selected as the top performers for Channel 1.

CubicSVM is designated as Channel 1a, while WNN is designated as Channel 1b.

Table 6.5: Classifier Performance on Channel 1 Across Distinct Feature Sets Ranked by One-Way

ANOVA Feature Significance.

Classifier ANOVA

ranking

TTime1

Test Dataset

(s) VA2 NA3 MA4 MoA5 SA 6 Overall

Accuracy

Ensemble:

Boosted Trees

Top 20 >26 114.4 94.50% 100% 95.40% 88.50% 93.50% 94.40%

Ensemble:

Boosted Trees

Top 17

>58.6

16.8 95.10% 100% 89.20% 85.70% 91.70% 91.70%

CubicSVM
Top 10 (a)

>161

5.9 94.30% 100% 92.50% 85.70% 100% 94.60%

WNN
Top 10 (b)

>161

15.7 92.20% 100% 90.30% 91.40% 91.70% 93.40%

CubicSVM Top 7 >215 7.1 93.20% 100% 90.30% 85.70% 100% 94.00%

CubicSVM Top 5>240 9.4 93.70% 100% 90.30% 85.70% 100% 94.00%

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is Normal (fault-free) or Healthy

conditioncondition accuracy, 4MA is Mild state accuracy, 5 MoA is Moderate state accuracy, 6 SA is Severe

state accuracy

6.2.4 . Channels Classification Approaches and Training Methods

This section focuses on balancing the dataset and training each channel separately.

The classifiers were evaluated on the CLAF load-dependent fault subclasses—'Mild,'

'Moderate,' 'Severe,' and ‘Normal (fault-free) or Healthy condition.' A total of 60.00% of the

data was allocated for training, 20.00% for validation, and the remaining 20.00% for testing,

with a Random Seed (S) of 1 set for reproducibility. The results are shown in Table 6.6:

Table 6.6: Dataset Information.

Total Dataset Description Dataset Splitting Count Per Class

Class distribution:

Healthy: 0 464

Mild: 1 464

Moderate: 2 464

Severe : 3 464

Training set class distribution: Counter ({1: 278, 2: 278, 0: 278, 3:

278})

Validation set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3:

92})

Test set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 93})

151

6.2.4.1 Channel 1: CubicSVM and WNN

In this section, the top 10 extracted features from Channel 1—Mean, ShapeFactor,

PeakValue, RMS, Std, ClearanceFactor, ImpulseFactor, Kurtosis, CrestFactor, and

PeakAmplitude 1—were used to train classifiers, specifically the WNN and CubicSVM.

These features, as presented in Table 6.4, were trained using MATLAB's Classification

Learner application. The results, summarised in Table 6.7, indicate that both classifiers

performed well. CubicSVM achieved a slightly higher overall accuracy of 96.28%, while

WNN reached 94.95%. Both classifiers showed perfect accuracy in the Normal (fault-free)

or Healthy condition and Severe states, with CubicSVM displaying superior performance in

the Mild and Moderate states. Despite WNN requiring more time for training (48.63 s

compared to CubicSVM's 26.71 s), both models demonstrated strong classification

capabilities across the load-dependent fault subclasses.

Table 6.7: Channel 1 Classifiers Training.

Classifier

TTime 1 Test Dataset

(s) VA2 NA3 MA4 MoA5 SA 6

Overall

Accuracy

a. CubicSVM 26.71 96.80% 100% 89.36% 95.74% 100% 96.28%

b. WNN 48.63 96.70% 100% 95.74% 84.04% 100% 94.95%
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the

Severe state accuracy.

6.2.4.2 Channels 2 and 3: Pre-trained CNN Selection

In this section, Channel 2 and Channel 3 were utilised to exploit the transfer learning

capabilities of CNNs, training on uniquely encoded images: CWT for Channel 2 and GADF

for Channel 3. AlexNet and ResNet-18, trained initially on the extensive ImageNet dataset

for classifying 1,000 distinct image classes, were repurposed to fit the specific dataset

requirements in the current study. These pre-trained networks were fine-tuned to classify

four distinct load-dependent fault subclasses using a learning rate of 0.0001, a mini-batch

size of 30, and a maximum of 5 epochs, with validation performed every 30 iterations. The

152

effectiveness of these adapted models was then assessed based on their accuracy with the test

dataset.

For both channels, the signal-encoded RGB images, with a resolution of 224 × 224

pixels, required uniform image preprocessing steps before the training of the CNNs could

commence. The images were resized accordingly in the case of AlexNet, which has an

original input dimension of 227 x 227 x 3. Subsequently, the network’s final fully connected

layer was replaced with a new one containing four neurons, corresponding to the categories

of Normal (fault-free) or Healthy condition, Mild, Moderate, and Severe, to adapt to the

classification needs of the study.

Similarly, ResNet-18, initially trained on the ImageNet dataset, required the images

to be adjusted to their input size 224 x 224 x 3. Following the study’s requirements, the last

layer of ResNet-18 was replaced with a 4-neuron layer to fine-tune the model for the CLAF

load-dependent fault subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or

Healthy condition.'.

• Channel 2: CWT-Enhanced Transfer Learning with ResNet-18 and AlexNet in

CNN Models

Table 6.8 compares the performance of ResNet-18 and AlexNet on Channel 2,

focusing on CWT signal-encoded images.

Table 6.8: Pre-trained CNN Performance on Channel 2 (CWT Signal Encoded Images).

ResNet-18 required 17.35 min of training to achieve a validation accuracy of 97.55%

and an overall test accuracy of 98.94%. It performed well across all fault subclasses, reaching

100% accuracy in Normal (fault-free) or Healthy, Moderate, and Severe conditions and

P
re

-t
ra

in
ed

 C
N

N

Validation Test Dataset

T
ra

in
in

g
 T

im
e

(m
in

)

V
a

li
d

a
ti

o
n

A
cc

u
ra

cy

(N
o

rm
a
l)

A
cc

u
ra

cy

(M
il

d
)

A
cc

u
ra

cy

(M
o

d
er

a
te

)

A
cc

u
ra

cy

(S
ev

er
e)

A
cc

u
ra

cy

O
v

er
a
ll

A
cc

u
ra

cy

1. ResNet-18 17.35 97.55% 100% 95.74% 100% 100% 98.94%

2.AlexNet 7.20 97.28% 100% 96.81% 96.81% 100% 98.40%

153

95.74% in the Mild condition. AlexNet, on the other hand, completed training in 7.20 min,

achieving a validation accuracy of 97.28% and a test accuracy of 98.40%. It also maintained

100% accuracy in the Normal (fault-free) or Healthy and Severe conditions, with 96.81%

accuracy in both Mild and Moderate conditions.

Although ResNet-18 had a slight edge in overall test accuracy and performance in

Mild conditions, AlexNet required less than half the training time with only a minimal

difference in accuracy. Considering its efficiency and competitive accuracy, AlexNet has

been chosen to handle CWT signal-encoded images on Channel 2.

• Channel 3: GADF-Enhanced Transfer Learning with Residual Network-18

(ResNet-18) and AlexNet in CNN Models

Table 6.9 compares the performance of two pre-trained CNNs: ResNet-18 and

AlexNet on Channel 3, which encodes images using the GADF signal. Both networks used

a learning rate of 0.0001 and validated every five epochs.

ResNet-18 completed training in 18.5 min, achieving a validation accuracy of 96.47%

and an overall test accuracy of 95.21%. It performed strongly in the Normal (fault-free) or

Healthy and Severe conditions, achieving 100% and 98.94% accuracy, respectively.

However, its performance in the Mild and Moderate conditions was lower, with 89.36%

accuracy in Mild and 92.55% in Moderate conditions.

In contrast, AlexNet completed training in 7.53 min, matching ResNet-18’s

validation accuracy of 96.47%, but outperformed ResNet-18 on the test dataset with an

overall accuracy of 98.67%. AlexNet achieved 100% accuracy in the Normal (fault-free) or

Healthy and Severe conditions, and also showed stronger performance in the Mild and

Moderate conditions, with accuracies of 96.81% and 97.87%, respectively.

Although both models performed well, AlexNet demonstrated a better overall test

performance, particularly in Mild and Moderate conditions, requiring less training time.

Given its balance of efficiency and accuracy, AlexNet is the preferred model for handling

GADF signal-encoded images in Channel 3.

154

Table 6.9: Pre-trained CNN Performance on Channel 3 (GADF Signal Encoded Images).

6.2.5 Single-Channel Performance Analysis

Figure 6.9 presents the load-dependent subclass accuracy assessment for each

channel. All classifiers performed well for the Normal (fault-free) or Healthy and Severe

condition classes, with each achieving 100% accuracy. This high performance, while

expected for these extreme conditions where the patterns are more distinct and more

straightforward to differentiate, could be attributed to the more apparent fault or non-fault

signals in the data. The clear distinction between the Healthy and Severe conditions allowed

the classifiers to identify them without error consistently.

In the Mild condition class, Channel 2, using CWT (AlexNet), showed the best

performance with an accuracy of 96.81%, followed closely by Channel 3 (GADF with

AlexNet) at 95.74%. However, Channels 1a and 1b, which utilise CubicSVM and WNN

classifiers, struggled more in detecting Mild conditions, with accuracies of 89.36% and

84.04%, respectively. This suggests that the Mild class presents more challenges for accurate

classification, likely due to the less distinct signal patterns associated with early or mild

faults.

While performance remained strong for the Moderate condition class, there were

noticeable differences between the channels. Channel 3 (GADF with AlexNet) showed the

highest accuracy at 97.87%, followed by Channel 2 (CWT with AlexNet) at 96.81% and

Channel 1b (WNN) at 95.74%. Channel 1a (CubicSVM) exhibited the lowest performance

in this category, with an accuracy of 84.04%. This indicates that Moderate conditions are

more difficult to classify than extremes as the signal patterns become less clear.

P
re

-t
ra

in
ed

 C
N

N
 Validation Test Dataset

T
ra

in
in

g

T
im

e

(m
in

)

V
a

li
d

a
ti

o
n

A
cc

u
ra

cy

(N
o

rm
a

l)

A
cc

u
ra

cy

(M
il

d
)

A
cc

u
ra

cy

(M
o

d
er

a
te

)

A
cc

u
ra

cy

(S
ev

er
e)

A
cc

u
ra

cy

O
v

er
a

ll

A
cc

u
ra

cy

1. ResNet-18 18.5 96.47% 100% 89.36% 92.55% 98.94% 95.21%

2.AlexNet 7.53 96.47% 100% 96.81% 97.87% 100% 98.67%

155

Figure 6.9: CLAF Load-Dependent Fault Subclass Accuracy Assessment Per Channel Using

Different Approaches.

6.2.6 Decision Fusion

6.2.6.1 Weighted Decision Fusion Approach (Alternative Setting)

This section explores two weighted decision fusion approaches across three distinct

alternatives, each employing two different systems of weight allocation for decision fusion.

In the following alternatives, Weighting System 1 refers to Adaptive Weighting, where

weights are dynamically assigned based on each classifier's accuracy for specific conditions.

Higher-performing channels receive greater weight for the conditions in which they excel.

Meanwhile, Weighting System 2 refers to Equal Weighting, where equal weights are

assigned to all channels across all conditions, ensuring no single classifier dominates the

decision-making process.

In all scenarios, the sum of the weights corresponds to one of the conditions,

maintaining balance in the decision fusion system and ensuring a proportional contribution

from each classifier based on their accuracy. The weight allocation in the decision fusion

systems of the LD-MVSEF approach is justified by the accuracy assessments per channel for

the different load-dependent fault subclasses, as illustrated in Figure 6.9. This chart

highlights the performance of each classifier under Mild, Moderate, and Severe conditions,

directly informing the weight distribution across the systems. Table 6.10 outlines the

alternative setting and decision fusion weighting system :

156

Table 6.10: Alternative Setting and Decision Fusion Weighting System.

1 TFD is the time and frequency domain extracted features

• Alternative 1In Weighting System 1, Channel 1b (WNN with TFD features) is assigned

a weight of 0.5 for the Healthy and Severe conditions, reflecting its accuracy of 100% in

these categories. For the Mild and Moderate conditions, Channel 1b receives lower

weights of 0.4 and 0.3, respectively, corresponding to its accuracies of 95.74% and

84.04%. In comparison, Channel 2 (CWT with AlexNet) performed better in Mild and

Moderate conditions, with accuracies of 96.81% and 97.87%, and is therefore assigned

higher weights of 0.6 and 0.7 in these categories. Both channels receive equal weights of

0.5 for the Healthy and Severe conditions. Under Weighting System 2, equal weights of

0.5 are assigned to both channels across all conditions, ensuring an equal contribution

from WNN and AlexNet.

• Alternative 2: For Weighting System 1, Channel 1a (CubicSVM with TFD features) is

given a weight of 0.5 for the Healthy and Severe conditions due to its 100% accuracy.

For the Mild condition, Channel 1a receives a lower weight of 0.3, based on its accuracy

of 89.36%, while Channel 2 (CWT with AlexNet) achieves a higher accuracy of 96.81%

and is given a weight of 0.7. In the Moderate condition, Channel 1a achieves an accuracy

of 95.74% and is assigned a weight of 0.4, while Channel 2 is given a slightly higher

Channel

No.

Input Classifier Weighting System 1 Weighting System 2

Healthy Mild Moderate Severe Healthy Mild Moderate Severe

Alternative No. 1.1 (TFDb -CWT) 1.2 (TFDb-CWT)

A
lt

er
n

at
iv

e
1

1b TFD WNN 0.5 0.4 0.3 0.5 0.5 0.5 0.5 0.5

2 CWT AlexNet 0.5 0.6 0.7 0.5 0.5 0.5 0.5 0.5

Alternative No. 2.1 (TFDa -CWT) 2.2 (TFDa -CWT)

A
lt

er
n
at

iv
e

2

1a TFD

CubicSVM 0.5 0.3 0.4 0.5 0.5 0.5 0.5 0.5

2 CWT AlexNet 0.5 0.7 0.6 0.5 0.5 0.5 0.5 0.5

Alternative No. 3.1 (TFDa -CWT-GADF) 3.2 (TFDa -CWT-GADF)

A
lt

er
n
at

iv
e

3
 1a TFD CubicSVM 0.33 0.2 0.2 0.33 0.33 0.33 0.33 0.33

2 CWT AlexNet 0.33 0.4 0.4 0.33 0.33 0.33 0.33 0.33

3 GADF AlexNet 0.33 0.4 0.4 0.33 0.33 0.33 0.33 0.33

157

weight of 0.6 due to its accuracy of 96.81%. Under Weighting System 2, both channels

receive equal weights of 0.5 across all conditions, maintaining a balanced approach

between CubicSVM and AlexNet.

• Alternative 3: In Weighting System 1, where three channels are used, weights are

distributed according to each channel’s performance. Channel 1a (CubicSVM with TFD

features) is given a lower weight of 0.2 for the Mild and Moderate conditions, where it

achieved 89.36% and 84.04% accuracy. Channel 2 (CWT with AlexNet) and Channel 3

(GADF with AlexNet) performed better in these categories, with 96.81% and 97.87%

accuracy, and are therefore assigned higher weights of 0.4 each. All three channels

achieved 100% accuracy for the Healthy and Severe conditions and were given equal

weights of 0.33. Under Weighting System 2, all three channels are assigned equal weights

of 0.33 across all conditions, providing a balanced decision-making approach.

6.2.6.2 Choose the Highest-Performing Weighted Decision Fusion Approach

The following outlines the weighing system alternatives. Each alternative within the

weighted decision fusion system was meticulously designed, with weights assigned to each

classifier based on their demonstrated accuracy under specific load-dependent fault

subclasses. This approach helps establish a robust and precise condition-monitoring tool.

Furthermore, the experiment was repeated five times, changing the training, validation, and

test datasets for each run. This required training the selected single models for five runs

across each channel, using a Random Seed (S) for reproducibility, varying from 1 to 12.

• Channel 1:

• a) Cubic Support Vector Machine (CubicSVM)

• b) Wide Neural Network (WNN)

Both classifiers were trained using the top 10 features selected by one-way ANOVA,

explained in section 6.2.4.1. CubicSVM took an average of 15.68 s and achieved an average

accuracy of 96.44%. WNN, on the other hand, required an average training time of 25.18 s

and yielded an average accuracy of 97.50% (as shown in Tables 6.11 and 6.12). Below are

the details of each run.

158

 Table 6.11: a) CubicSVM 5 Runs.

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the

Severe state accuracy.

 Table 6.12: b) Wide Neural Network 5 Runs.

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the

Severe state accuracy.

• Channel 2: AlexNet was trained using the Stochastic Gradient Descent with Momentum

(SGDM) solver with a Learning Rate (LR) of 0.0001, a mini-batch size of 30, and a

maximum of 5 epochs. Validation was performed every 30 iterations to monitor

performance during training. The training was conducted on CWT-encoded images for

five runs, with training times varying across each run. On average, AlexNet took

9.36 min to complete the training and achieved an average accuracy of 97.37%. Below

is the performance breakdown for each run (see Table 6.13).

• Channel 3: AlexNet was trained on GADF-encoded images over five runs with the same

solver settings. The average training time for AlexNet on Channel 3 was 9.47 min, and

the model achieved an average accuracy of 95.49%. Below (Table 6.14) is the

performance breakdown for each run.

Run Classifier
TTime1 Test Dataset Overall

Accuracy
(s) VA2 NA3 MA4 MoA5 SA 6

1, S1 CubicSVM 26.71 96.80% 100% 89.36% 95.74% 100% 96.28%

2, S3 CubicSVM 12.87 95.80% 100% 88.36% 98.94% 100% 96.83%

3, S 6 CubicSVM 11.56 97.50% 100% 91.49% 95.74% 100% 96.81%

4, S9 CubicSVM 10.85 95.50% 100% 89.36% 98.94% 100% 97.08%

5, S12 CubicSVM 16.41 95.90% 100% 95.74% 100% 100% 95.18%

Run Classifier
TTime1

(s)

VA2

Test Dataset Overall

Accuracy
NA3 MA4 MoA5 SA 6

1, S1 WNN 48.63 96.70% 100% 95.74% 84.04% 100% 94.95%

2, S3 WNN 18.74 97.20% 100% 91.49% 100% 100% 97.87%

3, S 6 WNN 16.75 97.50% 100% 94.68% 100% 100% 98.67%

4, S9 WNN 19.75 97.00% 100% 89.36% 98.94% 100% 97.08%

5, S12 WNN 22.07 97.50% 100% 95.74% 100% 100% 98.94%

159

Table 6.13: Accuracy of Channel 2 (AlexNet) Over 5 Runs on CWT Images.

Run
Pre-trained

CNN (CWT)

TTime 1

(min)

VA2

Test Dataset Overall

Accuracy NA3 MA4 MoA5 SA 6

1, S1 AlexNet 7.20 97.28% 100% 96.81% 96.81% 100% 98.41%

2, S3 AlexNet 10.32 96.20% 100% 97.87% 97.87% 100% 98.94%

3, S 6 AlexNet 7.54 97.83% 100% 90.43% 97.87% 100% 97.08%

4, S9 AlexNet 7.34 96.74% 100% 91.49% 91.49% 100% 95.75%

5, S12 AlexNet 12.4 98.64% 100% 94.62% 100% 100% 98.66%
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the

Severe state accuracy.
Table 6.14: Accuracy of Channel 3 (AlexNet) Over 5 Runs on GADF Images.

Run

Pre-trained

CNN (GADF)

TTime 1

Test Dataset

NA3 MA4 MoA5 SA 6
Overall

Accuracy
(min) VA2

1, S1 AlexNet 7.53 96.47% 100% 96.81% 97.87% 100% 98.67%

2, S3 AlexNet 11.49 96.20% 100% 92.55% 95.74% 100% 97.07%

3, S 6 AlexNet 7.56 93.21% 100% 98.94% 80.85% 100% 94.95%

4, S9 AlexNet 8.20 96.20% 100% 91.49% 91.49% 100% 95.75%

5, S12 AlexNet 11.59 95.65% 100% 87.00% 86.17% 100% 93.29%
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the

Severe state accuracy.

Consequently, the results of the five decision fusion runs were meticulously recorded

(see APPENDIX 4), and the derived scores were obtained. The experiment was repeated ten

times, and the outcomes for each class and overall accuracy are discussed below. The

experiment's alternatives are detailed in Table 6.9: 1.1 (TFDb - CWT), 1.2 (TFDb-CWT),

2.1 (TFDa - CWT), 2.2 (TFDa - CWT), 3.1 (TFDa - CWT - GADF), and 3.2 (TFDa - CWT

- GADF).

It was observed that all channels performed well in the Healthy and Severe classes.

However, they encountered challenges in classifying the Mild and Moderate classes. The

analysis conducted across the Mild and Moderate classes on the test dataset revealed the

following :

• Mild Class: Alternative 3.1 (TFDa - CWT - GADF) demonstrated the highest average

accuracy of 97.02%, while Alternative 1.2 (TFDb - CWT) had a lower average accuracy

of 94.25%. Although all alternatives performed reasonably well, there were noticeable

160

variations in the classification of the Mild class, which often presents more subtle patterns

that can be challenging to detect (see Table 6.15).

• Moderate Class: Alternative 3.1 again delivered consistent results, with an average

accuracy of 99.15%. Alternative 1.1 (TFDb - CWT) showed high consistency, achieving

100% accuracy across all five runs. However, Alternative 3.2 (TFDa - CWT - GADF)

recorded an average accuracy of 98.01%, with some fluctuations in performance. This

suggests that while all alternatives were effective, there were slight variations in handling

the Moderate class, where the signal patterns are less distinct (see Table 6.16).

Table 6.15: Decision Fusion Mild Class Analysis on Test Accuracy Over the 5 Runs.

Alternatives 1 2 3 4 5 Min Max Avg.

1.1 (TFDb -CWT) 94.68% 95.74% 95.74% 94.68% 96.81% 94.68% 96.81% 95.53%

1.2 (TFDb-CWT) 95.74% 90.43% 94.68% 94.68% 95.74% 90.43% 95.74% 94.25%

2.1 (TFDa -CWT) 95.74% 96.81% 90.43% 95.74% 93.62% 90.43% 96.81% 94.47%

2.2 (TFDa -CWT) 96.81% 96.81% 92.55% 95.74% 94.68% 92.55% 96.81% 95.32%

3.1 (TFDa -CWT-GADF) 95.74% 95.74% 98.94% 95.74% 98.94% 95.74% 98.94% 97.02%

3.2 (TFDa -CWT-GADF) 95.74% 95.74% 96.81% 95.74% 97.87% 95.74% 97.87% 96.38%

Table 6.16: Decision Fusion Moderate Class Analysis on Test Accuracy Over the 5 Runs.

Alternatives 1 2 3 4 5 Min Max Avg.

1.1 (TFDb -CWT) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

1.2 (TFDb-CWT) 100.00% 97.87% 100.00% 100.00% 100.00% 97.87% 100.00% 99.57%

2.1 (TFDa -CWT) 97.87% 97.87% 95.74% 98.94% 100.00% 95.74% 100.00% 98.08%

2.2 (TFDa -CWT) 97.87% 98.94% 95.74% 98.94% 100.00% 95.74% 100.00% 98.30%

3.1 (TFDa -CWT-GADF) 98.94% 100.00% 98.94% 100.00% 97.87% 97.87% 100.00% 99.15%

3.2 (TFDa -CWT-GADF) 97.87% 94.29% 98.94% 100.00% 98.94% 94.29% 100.00% 98.01%

The overall test accuracy for each run, along with the corresponding averages for the

six decision fusion alternatives and training times, are shown in Table 6.17, where the

training time of each alternative is shown in Table 6.18:

1.1 (TFDb - CWT): Accuracies ranged from 98.67% to 99.07%, with an average

accuracy of 98.86%. The average training time for this alternative was 9 min 23 s.

2.1 (TFDa - CWT): Accuracies spanned from 97.08% to 98.94%, resulting in an average

accuracy of 98.40%. The average training time was also 9 min 23 s.

2.2 (TFDa - CWT): Accuracies ranged from 97.07% to 98.94%, averaging 98.46%. The

average training time for this alternative was also 9 min 13 s.

161

3.1 (TFDa - CWT - GADF): This alternative recorded accuracies ranging from 98.67%

to 99.47%, with an average of 99.04%. The training time was longer, averaging 18 min

30 s.

3.2 (TFDa - CWT - GADF): The minimum accuracy recorded was 97.51%, the maximum

was 99.20%, and the average accuracy was 98.60%. The average training time for this

alternative was also 18 min 30 s.

Table 6.17: Decision Fusion Overall Test Accuracy Over the 5 Runs.

Table 6.18: Decision Fusion Overall Training Time Over the 5 Runs.

Based on these observations, Alternative 3.1 (TFDa - CWT - GADF) consistently

offers strong performance, making it a reliable and effective option for condition monitoring

across various severity levels. It achieved the highest overall average accuracy of 99.04% ±

0.22%, based on five runs, with an average training time of 18 min 30 s. The uncertainty

reflects the minor variability observed in these runs. Its robust performance in the Mild class,

with an average testing accuracy of 97.20% ± 1.75%, and 99.15% ± 0.89% testing accuracy

in the Moderate class, demonstrates its suitability for load-specific condition monitoring and

precise fault classification under different LF conditions.

6.3 Summary

This chapter introduced the LD-MVSEF framework, designed to enhance load-

specific condition monitoring using the MFPT bearing dataset. The LD-MVSEF framework

Alternatives 1 2 3 4 5 Avg.

1.1 (TFDb -CWT) 98.67% 98.94% 98.94% 98.67% 99.07% 98.86%

1.2 (TFDb-CWT) 98.94% 97.08% 98.67% 98.67% 98.67% 98.40%

2.1 (TFDa -CWT) 98.40% 98.67% 96.54% 98.67% 98.54% 98.16%

2.2 (TFDa -CWT) 98.67% 98.94% 97.07% 98.67% 98.94% 98.46%

3.1 (TFDa -CWT-GADF) 98.67% 98.94% 99.47% 98.94% 99.20% 99.04%

3.2 (TFDa - CWT - GADF) 98.40% 97.51% 98.94% 98.94% 99.20% 98.60%

Alternatives 1 2 3 4 5 Avg.

1.1 (TFDb -CWT) 0:08:01 0:10:38 0:07:49 0:07:40 0:12:47 0:09:23

1.2 (TFDb-CWT) 0:08:01 0:10:38 0:07:49 0:07:40 0:12:47 0:09:23

2.1 (TFDa -CWT) 0:07:39 0:10:32 0:07:44 0:07:31 0:12:41 0:09:13

2.2 (TFDa -CWT) 0:07:39 0:10:32 0:07:44 0:07:31 0:12:41 0:09:13

3.1 (TFDa -CWT-GADF) 0:15:11 0:22:01 0:15:18 0:15:43 0:24:16 0:18:30

3.2 (TFDa - CWT - GADF) 0:15:11 0:22:01 0:15:18 0:15:43 0:24:16 0:18:30

162

incorporates load-dependent fault subclasses derived from the CLAF, shifting the focus from

traditional fault classification to a load-specific approach. It integrates three distinct channels

for analysis: Channel 1 extracts TFD features, including spectral features using

Autoregression; Channel 2 converts vibration signals into CWT images; and Channel 3

encodes the signals into GADF 2D images.

Each channel was trained over five separate runs, and the best-performing classifiers

were selected based on their accuracy in classifying four load-dependent fault subclasses:

Healthy, Mild, Moderate, and Severe. In Channel 1, CubicSVM and WNN classifiers

achieved average accuracies of 96.43% ± 0.76% and 97.50% ± 1.60%, respectively. For

Channels 2 and 3, pre-trained AlexNet and ResNet-18 models were used, with AlexNet

performing the best, achieving accuracies of 97.76% ± 1.33% on Channel 2 (CWT images)

and 95.95% ± 2.05% on Channel 3 (GADF images).

One of the main challenges observed was the classification of the Mild and Moderate

fault subclasses, which presented subtler signal variations compared to the Healthy and

Severe conditions. The LD-MVSEF framework addressed these challenges by employing a

weighted decision fusion approach, where decisions were tailored according to the strengths

of each channel for specific fault subclasses. For instance, Channel 2 (CWT with AlexNet)

performed well in classifying the Moderate class, while Channel 3 (GADF with AlexNet)

showed high accuracy in both the Mild and Moderate conditions. By assigning dynamic

weights to each classifier based on their strengths, the LD-MVSEF framework improved the

classification of these more challenging subclasses.

The proposed weighted decision fusion approach demonstrated excellent

performance across all fault conditions. Alternative 3.1 (TFDa - CWT - GADF) achieved the

highest overall accuracy of 99.04% ± 0.22% across five runs, with an average training time

of 18 min 30 s. This approach minimised the limitations of individual classifiers and

effectively handled load-specific fault classification.

The contribution of this chapter has been to propose a novel LD-MVSEF method for

load-specific condition monitoring, which encompasses the following sub-contributions:

1) Multimodal fusion and decision fusion: The LD-MVSEF framework combines

features from GADF, CWT, and TFD data to enhance the Load-Dependent Fault

Classification builds on the CLAF. By integrating these complementary patterns and

163

using a weighted decision fusion approach, the framework assigns classifier weights

based on performance, helping to improve accuracy, particularly in the more

challenging Mild and Moderate fault subclasses.

2) Comprehensive data integration: Insights from both 1D vibration signals and 2D

RGB images (CWT and GADF) were combined to capture complementary patterns,

enhancing the classification.

164

Chapter 7: Hybrid Graph-CNN Decision Fusion

(HG-CDF) for Load-Dependent Fault Classification

165

7.1 Proposed Methodology

The proposed methodology of Hybrid Graph-CNN Decision Fusion (HG-CDF) for

Load-Dependent Fault Classification builds on the Customised Load Adaptive Framework

(CLAF) to enhance fault classification for the Machinery Failure Prevention Technology

(MFPT) bearing dataset introduced in Chapter 5. This approach utilises Graph Convolutional

Networks (GCNs) to transform tabular vibration signal data into graph structures, allowing

for more effective load-specific condition monitoring. The methodology involves three key

stages: First, the tabular vibration data are preprocessed to reflect different load conditions,

and the k-Nearest Neighbour Graphs (k-NNGs) method is employed to convert the data into

graph form, where nodes represent time-series points and edges are based on signal

similarity. Second, the GCN model is optimised through the Taguchi Design of Experiments

(DOE), where different configurations are tested to determine the optimal parameters,

including the number of epochs, learning rate, and k-value. Lastly, recognising the

limitations of GCNs in handling certain fault classes, particularly the Mild class, a hybrid

approach is introduced, integrating One-Dimensional Convolutional Neural Networks (1D-

CNNs) with a GCN in a decision fusion mechanism to further improve classification

accuracy across all fault subclasses. Google Colab was used to implement the proposed

methodology. For the full code, see (APPENDIX 4).

7.1.1 Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification

The HG-CDF for Load-Dependent Fault Classification for Transforming Tabular

Data into Graph Structures methodology involves three main steps. These are presented in

Figure 7.1 and described in detail below:

1. Step 1: Dataset Introduction and Preprocessing:

The research was initiated by preprocessing the MFPT bearing dataset

utilising the CLAF to create load-dependent fault subclasses—'Mild,' 'Moderate,'

'Severe,' and 'Normal (fault-free) or Healthy condition'—tailored to specific datasets,

forming the foundation for subsequent analysis. Essential steps included the

following:

166

1.1. Input Dataset Preparation: The MFPT bearing dataset was preprocessed with

the CLAF methodology to refine the input data to create load-dependent fault

subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy

condition'—tailored to specific datasets, forming the foundation for subsequent

analysis.

1.2. Feature Extraction and Selection: Through the CLAF, critical Time and

Frequency Domain (TFD) features were extracted and selected to serve as robust

inputs for the model.

1.3. Dataset Cleaning and Splitting: The dataset underwent cleaning and was

stratified into training (60.00%), validation (20.00%), and testing (20.00%) sets to

ensure a balanced representation of classes across each dataset.

2. Step 2: Deep Learning Model Preparation:

The model development phase is divided into two distinct paths. Path 2.1 (refer

to Figure 7.1) involves constructing GCN models using a Taguchi L09 matrix to

optimise hyperparameters methodically. Path 2.2 (refer to Figure 7.1) retains the

tabular dataset for formulating the 1D-CNN model. For the GCN pathway, a detailed

preparation process includes variable k-Nearest Neighbours (kNN) settings for

producing graphs and the creation of masks for training, validation, and testing

inputs. The GCN models are diligently built and subjected to a stringent training and

validation routine, fostering iterative enhancements from the feedback. The Taguchi

method refines the model configurations, precipitating a re-evaluation of experiments

to delineate and endorse the most efficacious GCN strategy. Conversely, Path 2.2

transforms tabular data into tensors and advances with the training of 1D-CNNs,

guided by the optimal epochs and Learning Rates (LRs) derived from the Taguchi

experiments. The following concerns the branching for the GCN and the 1D-CNN:

2.1 Graph Convolutional Network (GCN): This branch has two main sub-stages.

The first sub-stage, detailed in pathway 2.1.1 (refer to Figure 7.1), relates to

Taguchi's Design of Experiments (DOE) and parameter configurations. The second

sub-stage, described in pathway 2.1.2 (refer to Figure 7.1), involves building the

GCN model.

167

2.1.1. Taguchi Method Preparation (L09) Matrix: In this step, Taguchi's design of

the experimental approach was implemented using three control factors: k-

NNG number of neighbours, number of epochs, and LR. The first factor

involves three steps:

• Nodes were created to represent each dataset instance.

• Edges were established using the kNN approach with k set to 3, 4, and 5.

• Masks were generated to demarcate training, validation, and test sets.

2.1.2. GCN Model building: GCN models were formulated.

2.2 One-Dimensional Convolutional Neural Network (1D-CNN): This is the

second branch, and it focuses on building the 1D-CNN architecture.

2.2.1. 1D-CNN Model Formulation:

• Data were prepared as tensors, facilitating subsequent Data Loader object

creation in PyTorch.

• 1D-CNN models were developed and then trained and validated.

3. Step 3: Comparative Model Evaluation and Fusion Approach:

The methodology encompassed a robust comparative analysis of models based

on the test dataset:

3.1. Convolutional Network (GCN) Design of Experiment using Taguchi

Method and Signal-to-Noise (S/N) Ratio: Multiple GCN configurations are tested

and optimised using the Taguchi Method and S/N ratio to enhance classification

accuracy and minimise noise.

3.2. One-Dimensional Convolutional Neural Network (1D-CNN) Training,

Validation and Testing: A 1D-CNN model is trained on the vibration data to

capture sequential patterns, providing an alternative classification method that

complements the GCN’s structure-based approach.

3.3. Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent

Fault Classification: The GCN and 1D-CNN models are combined using a

decision fusion mechanism, leveraging their complementary strengths to improve

accuracy for challenging classes.

168

Figure 7.1: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification.

169

7.1.2 Dataset

The chapter utilises the MFPT bearing dataset, previously described in Section 6.1.2,

which includes Normal (fault-free) or Healthy condition, Outer Race Fault (ORF), and Inner

Race Fault (IRF) samples recorded at different frequencies and Load Factors (LFs). The

dataset serves as a benchmark, providing essential information such as radial LFs, shaft

speed, and signal characteristics. A 5,000/97,566 split ratio is recommended to ensure

consistent data segmentation and maintain reproducibility for accurate fault classification

across the three channels.

7.2 Results and Discussion

7.2.1 Dataset Introduction and Preprocessing

7.2.1.1 Input Dataset Preparations

The MFPT bearing dataset is pre-processed using the CLAF methodology. The

methodology was initiated by importing the MFPT bearing dataset into MATLAB 2023a and

applying the CLAF. This pivotal step differentiated the dataset into new, load-dependent

fault subclasses whilst extracting crucial TFD features, diverging from traditional fault

classification approaches in Induction Motor (IM) bearings. By adhering to the CLAF’s

principles, introduced in Chapter 5, the data were systematically segmented based on LF

conditions, setting the stage for analysis that is fine-tuned to load-specific patterns and

establishing a departure from conventional classification methods.

7.2.1.2 Feature Extraction and Selection

Building on the CLAF, the top 20 features were selected based on their one-way

Analysis of Variance (ANOVA) rankings, as detailed in Chapter 6 (see Table 6.4). These

features include Mean, ShapeFactor, PeakValue, Root Mean Square (RMS), standard

deviation (Std), ClearanceFactor, ImpulseFactor, Kurtosis, CrestFactor, PeakAmplitude,

Band Power, and several PeakFrequency and PeakAmplitude measures. One-way ANOVA

was instrumental in identifying the significance of these features, using p-values to rank their

discriminative power, with lower values indicating greater relevance. These p-values were

transformed into scores by taking the negative logarithm to further assess their importance

for classification, culminating in a ranked list (see Table 7.1). Consequently, these top 20

170

features were utilised in the current research for graph representation, leveraging relational

dynamics often overlooked by conventional analytical methods. Consequently, these features

were captured for all data points corresponding to each severity class (see APPENDIX 4).

Table 7.1: One-way ANOVA Ranking Including Spectral Features Extracted by Autoregressive

(AR) Model; Order Fifteen, Peak = 5 (Top 20 Features).

7.2.1.3 Dataset Cleaning and Splitting

The MFPT bearing dataset was processed using the CLAF methodology presented in

Chapter 5. The classes were encoded as follows: Class 0 for 'Normal (fault-free) or Healthy

condition', Class 1 for 'Mild', Class 2 for 'Moderate', and Class 3 for 'Severe,' representing

1,856 data points with balanced class distribution (see Table 7.2).

Table 7.2: Dataset Information.

In the preprocessing phase of the current study, the dataset was cleansed of any

missing values by substituting them with zeros, thereby ensuring data integrity and

facilitating computational efficiency. Following this initial step, the categorical labels

indicating health status ('Healthy,' 'Mild,' 'Moderate,' and 'Severe') located in the first column

of the dataset were transformed from their categorical format into a numeric format using a

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score

1. Mean 316.44 11. BandPower 126.85

2. ShapeFactor 288.42 12. PeakFrequency 3 116.80

3. PeakValue 245.43 13. PeakAmplitude 5 84.33

4. RMS 240.93 14. Skewness 73.13

5. Std 240.27 15. PeakAmplitude 2 70.50

6. ClearanceFactor 235.23 16. PeakFreq1 69.14

7. ImpulseFactor 225.26 17. SINAD 58.72

8. Kurtosis 211.94 18. S/N 58.61

9. CrestFactor 198.26 19. PeakAmplitude 4 51.39

10. PeakAmplitude 161.22 20. PeakAmplitude 3 38.77

Total Dataset Description Dataset Splitting Count Per Class

Class distribution:

Healthy: 0 464

Mild: 1 464

Moderate: 2 464

Severe : 3 464

Training set class distribution: Counter ({1: 278, 2: 278, 0: 278, 3:

278})

Validation set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3:

93})

Test set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 93})

171

label encoding technique. This numeric conversion is crucial because it allows compatibility

with Machine Learning (ML) algorithms requiring numerical inputs.

Subsequently, these numeric labels were converted into a one-hot encoded format to

more effectively address the requirements of multi-class classification tasks utilised in the

neural network models. Specifically, one-hot encoding transforms each numeric label into a

binary vector representing all possible categories, with '1' indicating the presence of the

category and '0' indicating the absence of the category. For example, the categories would be

encoded as follows:

• 'Normal (fault-free) or Healthy condition': [1, 0, 0, 0]

• 'Mild': [0, 1, 0, 0]

• 'Moderate': [0, 0, 1, 0]

• 'Severe': [0, 0, 0, 1]

This encoding method ensures that each category is distinctly represented without

any ordinal relationships implied, which is crucial for the unbiased functioning of the neural

network in classifying these health statuses. Furthermore, the input features (X), excluding

the label column, were isolated from the dataset and converted into a NumPy array. This

transformation is essential because NumPy arrays are particularly well-suited to handle large

data volumes efficiently, thus optimising the algorithm's performance during training. By

ensuring that the features are in the appropriate format, the data are rendered ready for

effective analysis and processing through advanced ML algorithms in subsequent stages.

7.2.2 Deep Learning Model Preparation

7.2.2.1 Graph Convolutional Network (GCN): Background and Formulation

This section discusses the steps of the GCN’s formulation, beginning with the

Taguchi method to propose the optimal GCN factors, followed by an overview of the

GCN model’s background and construction.

1) Taguchi Method Preparation (L09) Matrix

The Taguchi method was used here to propose the optimal GCN factors.

Taguchi L09 was selected because there were three factors with three levels. The

application of the Taguchi method in the current study provides an efficient strategy

for optimising the performance of the GCN. Using the L09 orthogonal array, suitable

172

for evaluating three factors at three levels, the study effectively reduced the number

of necessary experiments from 27 to 9 while still gathering comprehensive data

regarding each factor’s impact. The choice of factors and their specific levels in

applying the Taguchi method for this study was driven by the objective of optimising

the GCN for fault classification. The factors under consideration include the

following:

1. Factor A: Graph Creation:

• Level 1: k-Nearest Neighbour Graph (k-NNG) with k =3

• Level 2: k-NNG with k =4

• Level 3: k-NNG with k =5

The kNN algorithm classifies a new data point based on the labels of its closest

neighbours. The number of neighbours, represented by “k,” determines how many

nearby points influence the classification. For example, if k =3, the new point is

classified by considering the three nearest neighbours within a defined proximity.

Increasing k smooths the decision boundary, making the model more robust but less

sensitive to local variations. When k is very high, the classification might lean towards

the majority class, potentially overlooking more minor yet significant patterns (Naman

et al., 2020).

The selection of k in constructing a k-NNG is critical, impacting the graph’s

accuracy, efficiency, recall, and scalability. Optimising k requires a balance of these

factors, tailored to the application’s specific needs and computational resources. A

higher k value enhances accuracy by considering more neighbours, better capturing

the local data structure but increasing computational complexity and memory usage.

Conversely, a lower k value speeds up computation but may overlook critical data

connections, losing detail in the graph structure. Therefore, choosing k involves a

trade-off between accuracy and computational speed, with higher values improving

graph quality at the expense of efficiency and lower values boosting speed at the cost

of accuracy (Dong et al., 2011; Yingfan et al., 2021).

Thus, the kNN algorithm is fundamental in graph-based learning because it

defines the graph structure by connecting each node with its closest points. The chosen

levels represent a range that allows the model to capture varying degrees of locality

173

and globality in the data. Thus, k =3 represents a tighter, more local neighbourhood

which could capture fine-grained patterns, whereas k =5 expands the scope to more

global structures, potentially capturing broader trends in the data. k =4 offers a mid-

point that balances local detail with global context.

GCNs have been recognised for their ability to extract insight from data

structured in graph form. The current study extends its application to tabular datasets

in fault classification. A methodological transformation is proposed whereby

traditional row-and-column data are envisioned as interconnected nodes. This section

elaborates on the methodology employed to convert tabular data into graphs. Edges

are drawn between nodes to represent relationships, with the kNN algorithm being

utilised, setting k to 3, 4, and 5 to define these connections.

The following subsections outline the step-by-step process, starting with

feature representation and concluding with graph construction. The use of the kNN

function from scikit-learn to establish edges based on the chosen settings is detailed.

This transformation encodes the latent relational information within the dataset into a

graph structure, facilitating analysis by the GCN. Each kNN configuration is explored

to reveal different connectivity patterns within the data, which is crucial for capturing

the complex, nonlinear relationships characteristic of fault patterns.

Hence, this section delineates the conversion of tabular datasets into graph

structures, an integral process for applying the GCN. Each instance in the dataset is

treated as a node, with features as node attributes.

• Graph Construction

Graphs are constructed by defining edges that represent relationships

between instances. The kneighbours_graph from the scikit-learn library was

employed to determine these connections based on the kNN algorithm, which

is executed as follows:

• Distance Calculation: Distances between instances are computed using

the Euclidean metric.

• Neighbour Selection: The ‘k’ nearest instances are identified for each

node.

174

• Edge Creation: Edges are created between each node and its ‘k’ nearest

neighbours, resulting in a sparse adjacency matrix representation.

• Sparse Matrix Representation

The sparse matrix efficiently encodes the graph, mainly when the number

of actual edges is much lower than the total possible number of edges, as is

common in k-NNGs. The output is typically a sparse adjacency matrix, which

efficiently represents the graph. This is beneficial when the graph is large, but

the number of edges is relatively small compared to the number of possible

edges (as is the case in a k-NNG). This matrix is then converted into a format

(e.g., COO format) suitable for constructing a data object in PyTorch

Geometric or for visualisation with libraries like NetworkX.

In PyTorch Geometric, the graph is encapsulated in a data object containing

the following:

• x: Node feature matrix.

• edge_index: Graph connectivity in COO format.

• y: Labels for nodes (if applicable).

• Graph Visualisation

For visualisation, the NetworkX library is employed, translating the sparse

matrix into a graphical format, which helps in understanding the graph’s

structure and node interconnectivity.

The lines or edges connecting the circles represent the ‘nearest neighbour’

relationships between records. An edge is drawn between two nodes if one of

the nodes is among the ‘k’ nearest neighbours of the other based on their

features. In this graph, settings of v=3 were selected, meaning that each node

is connected to its three closest neighbours. These edges help to highlight the

local structure of the data because nodes with numerous shared connections

are likely to belong to the same or similar classes.

This graph visualisation represents a dataset transformed into a k-NNG.

Figure 7.2 illustrates the graph visualisation when v=3, Figure 7.3 when k =4,

and Figure 7.4 when k =5. In these graphs, nodes correspond to individual

records, and edges reflect their proximity based on feature similarities. Each

175

node is colour-coded to indicate its class, creating a visual distribution of the

various categories: 'Normal (fault-free) or Healthy condition' (blue), 'Mild'

(green), 'Moderate' (purple), and 'Severe' (red).

The distribution of colours throughout the graph suggests that certain

classes tend to cluster together, as seen with several densely connected nodes

of the same colour. This indicates that records within the same class share

more substantial similarities than records of different classes. Notably, there

are regions where different classes intermingle, such as the interface between

the ‘Mild’ and ‘Moderate’ clusters, thereby implying that these classes share

overlapping characteristics that are less distinguishable.

Furthermore, the visualisation highlights that 'Normal (fault-free) or

Healthy condition' instances are relatively well-separated from other classes,

indicating distinct features that can be leveraged for classification tasks.

However, ‘Severe’ cases appear less numerous and somewhat interspersed

within clusters of different classes, suggesting a more challenging

classification scenario for these instances.

This graph provides valuable insights into the data structure, revealing

patterns and relationships that can inform the development and refinement of

predictive models. Understanding these visual cues is critical, especially in

complex datasets that aim to discern intricate patterns that can improve model

accuracy and interpretability.

The nodes (circles) and edges (lines) represent the data, reflecting the

feature-based similarities among individual records and the broader structure

of the dataset’s classes. The visualisation thus serves as a tool for exploring

and understanding complex relationships within the data, which can be

particularly useful for tasks such as classification, clustering, and anomaly

detection.

176

Figure 7.2: Graph Visualisation (k = 3).

Figure 7.3: Graph Visualisation (k = 4).

177

2. Factor B: Number of Epochs:

• Level 1: 200

• Level 2: 300

• Level 3: 400

The number of epochs determines how often the model is exposed to the

training dataset. Two hundred epochs ensure sufficient training without overfitting

for simpler models; 300 epochs cater to more complex models, which may require

additional training; and 400 epochs test the threshold for diminishing returns on

model performance.

3. Factor C: Learning Rate:

• Level 1: 0.0001

• Level 2: 0.0005

• Level3: 0.0009

The Learning Rate (LR) controls the step size in the optimisation algorithm,

affecting the convergence speed and stability. The learning rates 0.0001, 0.0005,

and 0.0009 were chosen with a linear increase of 0.0004 to allow controlled

Figure 7.4: Graph Visualisation (k = 5).

178

exploration. Small learning rates ensure stable convergence in complex models

like Graph Neural Networks (GNNs), preventing instability and overfitting by

updating weights more cautiously.

2) GCN Model Building

A GCN is a neural network designed for graph-structured data, extending the

convolution concept from traditional Convolutional Neural Networks (CNNs) to graphs.

GCNs are ideal for analysing data represented as graphs, such as social networks, citation

networks, and molecular structures (Wei et al., 2020). The typical inputs for a GCN include

the following:

• Adjacency Matrix (A): This matrix captures the graph's structure by detailing

connections between nodes, allowing the GCN to learn from the graph's architecture

(Niu et al., 2021; Yang, 2024)

• Node Feature Matrix (X): This matrix contains feature representations for each node,

such as attributes or embeddings, enabling the GCN to learn about individual node

characteristics (Yang, 2024).

Additional inputs may include edge features (e.g., edge weights) and node-level

labels for tasks like node classification (Taslimipoor et al., 2019; Wang et al., 2023a).

The core components of a GCN include the following:

• Graph Convolution Layer: This layer performs spectral convolution operations on the

graph, aggregating features from a node’s neighbours to capture structural details

(Niu et al., 2021).

• Multilayer Structure: GCNs typically consist of multiple graph convolution layers,

allowing the network to learn local and global graph structures (Zhang et al., 2021b).

• Nonlinear Activation: Functions, like Rectified Linear Unit (ReLU), follow each

convolution layer, introducing nonlinearity to help the network learn complex

patterns (Zhang et al., 2021b).

• Input and Output: A GCN typically takes an adjacency matrix, representing the

graph’s structure, and a node feature matrix detailing information on each node.

Outputs can include node-level predictions like classification, edge-level predictions

such as link prediction, or graph-level predictions like graph classification (Wang et

al., 2023a).

179

This chapter defines a GNN model with two GCN convolutional layers for

graph data and trained using 5-fold cross-validation. A brief overview of the steps

follows:

1. Initialising Masks: Boolean masks are created for the training, validation,

and test sets. These masks indicate which indices belong to each split. Masks

are typically Boolean arrays (or tensors) where each element corresponds to

a node in the dataset:

• True (1): If the element is True, the corresponding node is included in the

operation (like training or evaluation).

• False (0): If the element is False, the corresponding node is excluded from

the operation.

For example, if the dataset has 820 nodes divided into 60.00% training,

20.00% validation, and 20.00% testing, the training mask would be an array

with indices of training elements set to True and the rest to False. The test

mask and validation mask would be similar.

2. Data Masking: These masks are attached to the data object and will help

select the correct data subsets during training, validation, and testing.

3. GCN Model Definition: A simple GCN model with two GCNConv layers is

defined. The model takes the number of input features and the number of

output classes as arguments. The architecture of the GCN is designed to

capture the complex relationships between nodes in the graph by leveraging

adjacency information. The model consists of the following layers:

1. Input Layer:

The input to the GCN model consists of node features and edge

indices, represented as data.x and data.edge_index, respectively. These

inputs encode the graph structure and node attributes essential for learning

node representations. In the described methodology for applying GCNs to

tabular datasets for fault classification, the input type used primarily

includes the following components:

2. Feature Matrix (X):

180

• The top 20 features were selected through the CLAF based on their

one-way ANOVA rankings. These features include various statistical

and frequency domain features such as the Mean, ShapeFactor,

PeakValue, RMS, standard deviation (Std), ClearanceFactor,

ImpulseFactor, Kurtosis, CrestFactor, PeakAmplitude, Band Power,

and several PeakFrequency and PeakAmplitude measures.

• This matrix encapsulates the essential attributes of each node (data

instance) in the graph, which are critical for the model to learn the

patterns associated with fault classification.

3. Graph Structure: The adjacency matrix, crucial for a GCN, is created

using the kNN algorithm to define the edges between nodes based on

their proximity in the feature space. Nodes are connected if they are

among the 'k' nearest neighbours of each other, and this matrix is

derived from the distances between these nodes. This structure is

essential for a GCN because it effectively aggregates and learns from

the neighbourhood features. The following section provides

information about the GCN structure:

3.1 Graph Convolution Layers: The self.conv1 =

GCNConv(num_features, 16) and self.conv2 = GCNConv(16,

num_classes) in the code are graph convolution layers. These

layers perform the core function of aggregating information from

neighbouring nodes, applying the graph convolution operation to

the input data. Each layer processes the node features, with conv1

transforming the input features to an intermediate dimension (16)

and conv2 transforming these intermediate features to the final

output size corresponding to the number of classes.

3.2 Activation Function: F.relu(self.conv1(x, edge_index)) applies

the ReLU activation function after the first convolutional layer,

introducing non-linearity to the network. This is crucial to help

the network learn complex patterns.

181

3.3 Normalisation and Regularisation: While specific normalisation

such as L2 or Batch Normalisation (BN) is not applied here,

dropout (F.dropout(x, training=self.training)) is used to prevent

overfitting. This is especially useful in deep learning (DL)

models like GCNs, where the model might learn too well from

the training data at the expense of generalising it to new data.

3.4 Aggregation Function: The aggregation function is implicitly

handled by the GCNConv layer itself, which defines how the

features of the node and its neighbours are aggregated. While the

aggregation function is not explicitly customised in this snippet,

GCNConv typically uses a mean aggregator to combine node

features based on the graph structure.

3.5 Output Layer: Return F.log_softmax(x, dim=1) serves as the

output layer where the log softmax function is applied to the

outputs from the last convolutional layer (conv2). This step

converts the raw outputs to log probabilities essential for

classification tasks, ensuring that the outputs are normalised and

interpretable as probabilities. The final output of the model is

obtained by applying a softmax function to the output features

of the second graph convolutional layer. This step converts the

features into log probabilities for each class, which are used for

classification tasks.

4. Node Labels (Y) (for supervised learning): Each node is associated with a

label indicating the class (types of faults).

5. Model Training: The model is trained and validated using 5-fold cross-

validation under different Taguchi experiment configurations and the

Adaptive Moment Estimation (Adam) optimiser. Appropriate data subsets are

used for training, validation, and testing.

182

7.2.2.2 One-Dimensional Convolutional Neural Network (1D-CNN) Model: Background

and Formulation

1D-CNNs are a specific type of neural network crafted to handle one-dimensional

(1D) data, such as time series, signals, or sequential data. They are especially effective for

applications such as fault detection, structural health monitoring, and various other pattern

recognition tasks that involve sequential or time-series data (Camacho-Bello et al., 2022;

Zhang et al., 2023c; Ahmadzadeh et al., 2024). 1D-CNN is a specialised neural network for

handling 1D data such as time series, speech, or vibration signals. This architecture is a

variation of the Two-Dimensional Convolutional Neural Network (2D-CNN), frequently

used in image recognition tasks. Like its two-dimensional (2D) counterpart, the 1D-CNN

architecture comprises 1D, activation, pooling, and fully connected layers. The convolutional

layer utilises a set of learnable filters to process the input data and extract features. An

activation layer follows, applying a nonlinear function to introduce non-linearity to the

model. The pooling layer then reduces the data’s spatial dimensions, helping to decrease the

model’s complexity and prevent overfitting. The fully connected layer finally projects the

processed features into the desired output space (Qazi et al., 2022).

The 1D-CNN has found applications in various fields, including network intrusion

detection, signal processing, and speech recognition. Specifically, the 1D-CNN effectively

extracts features from time-series data and classifies signals in Vibration Signal Analysis

(VSA). For instance, it can detect anomalies in vibration signals, potentially indicating faults

in machinery. It is suitable for processing data such as sequences or signals and is relatively

easy to train (Huang and Li, 2021).

Applying 1D-CNNs in fault detection is a prominent area of research in various

fields. Researchers have utilised 1D-CNNs for fault diagnosis and detection in different

domains, leveraging the unique capabilities of 1D-CNNs for processing time-series data

efficiently. The following are some of the 1D-CNN applications in fault detection:

1) Aircraft Engine Fault Diagnosis: Wang et al. proposed a novel method that combines

features from multiple sensors using 1D-CNNs for predicting bearing faults in

aircraft engines (Wu et al., 2024).

183

2) Damage Detection: Abdeljaber et al. adopted a 1D-CNN for damage detection,

showcasing its effectiveness in identifying structural damage (Chen et al., 2022b).

3) Unbalanced Data Fault Diagnosis: Researchers have developed new fault diagnosis

methods for unbalanced data, utilising improved 1D-CNNs and the L2-Support

Vector Machine (L2-SVM). The L2-SVM specifically uses the L2-norm of the error

vector for regularisation in the loss function, effectively addressing the challenges

posed by imbalanced datasets in fault detection (Hu et al., 2022).

4) Rolling Bearing Fault Diagnosis: The use of a 1D-CNN with demodulated frequency

features has been explored for fault diagnosis of rolling bearings under time-varying

speed conditions, highlighting the versatility of 1D-CNNs in detecting faults in

mechanical systems (Lu et al., 2022).

5) Bearing Fault Diagnosis: An end-to-end intelligent fault diagnosis method for

bearings combining 1D-CNN with Long Short-Term Memory (LSTM) networks has

been proposed, demonstrating the effectiveness of 1D-CNNs in diagnosing bearing

faults (Sun and Zhao, 2021).

These applications underscore the significance of 1D-CNNs in fault detection across

various industries, showcasing its ability to process time-series data effectively and extract

meaningful features for fault diagnosis and maintenance assurance.

• 1D-CNN Model Architecture Formulation

The comparison between the established 1D-CNNs and the proposed GNNs in the current

study is pivotal for benchmarking the innovative graph approach against a recognised

standard in sequence data analysis. This comparison highlights the GCN’s enhanced

capability for relational data processing. It comprehensively evaluates its performance in

handling tabular data for fault classification, a domain traditionally dominated by CNNs.

The Simple 1D-CNN is a custom CNN that processes 1D input data. It is implemented

using PyTorch’s neural network module, nn.Module. The architecture of this model is

specifically tailored to applications where the input features are 1D, making it suitable for

time series, sequence data or flattened representations of tabular data.

• Key Components:

Convolutional Layers: The model consists of two 1D convolutional layers. The first

convolutional layer (conv1) has a single input channel and 16 output channels with a

184

kernel size of 3, a stride of 1, and a padding of 1. The second convolutional layer (conv2)

increases the depth from 16 to 32 output channels with the same kernel size, stride, and

padding. These layers extract hierarchical features from the input data (see Table 7.3).

Table 7.3: 1D-CNN Model Summary.

• Pooling Layer: A max pooling layer (pool) with a kernel size of 2 and a stride of

2 follows each convolutional layer. Pooling layers reduce the dimensionality of

the data by taking the maximum value over the window defined by the kernel

size, helping to make the representation smaller and more manageable.

• Flattening: After the convolution and pooling layers series, a flattening operation

(flatten) is applied to transform the multi-dimensional output into a 1D vector.

This step is necessary to transition from convolutional layers to fully connected

layers.

• Fully Connected Layers: The network transitions to dense layers by introducing

two fully connected layers (fc1 and fc2). The first fully connected layer

dynamically calculates its input size based on the output from the preceding

pooling layer and connects to 120 units. The second fully connected layer (fc2)

maps these 120 units to the number of classes (num_classes) in the dataset,

serving as the output layer of the model.

• Dynamic Initialisation:

An innovative aspect of this model is its dynamic calculation of the input size for the

first fully connected layer (fc1). This feature is implemented in the _init_fc1 method,

which simulates a forward pass through the convolutional and pooling layers with a

dummy input to determine the correct input size for fc1. This approach ensures that the

model can adapt to different sizes of input features without manual adjustment.

Layer Type Output Shape Param #

Conv1d 16, L 64

MaxPool1d Variable 0

Conv1d 32, L 1,568

Flatten Variable 0

Linear 120 96,120

Linear 4 484

Total Params: 98,236

185

• Forward Pass:

The forward method defines the data flow through the network. Input data are first

unsqueezed to add a channel dimension, then sequentially passed through the

convolutional, pooling, and fully connected layers. Activation functions (ReLU) are

applied after each convolutional and the first fully connected layer to introduce non-

linearities into the model, thereby enabling it to learn complex patterns in the data.

• Training Preparation:

The model is moved to the appropriate device for training in Google Colab. The

number of input features (num_features) and classes (num_classes) are specified based

on the dataset's characteristics. A custom function reset_weights is also defined to

reinitialise the model’s weights, ensuring that each training session or cross-validation

fold starts with a fresh model. Both models (GCN and CNN) are trained using 5 cross-

validation to ensure the robustness of the results.

• Input Preparation (Tabular Dataset Format as Tensors):

• Regular Grid or Sequence: CNNs, especially 1D-CNNs designed for tabular

data, expect data that can be interpreted as a regular grid or sequence. In the

case of tabular data, each row (data point) can be seen as a sequence of

features.

• No Explicit Graph Structure: Unlike GCNs, CNNs for tabular data do not use

an edge index or any graph connectivity information. They treat each dataset

row independently, assuming that any relationships between features are

captured through convolutional processing.

• Batch Processing: While both models can use batch processing, how batches

are prepared and fed into the model may differ. CNNs do not require masks

to separate training, validation, and testing data within a graph structure.

Instead, the dataset is split into separate tensors, or a Data Loader is used to

manage batches and splits.

186

7.2.3 Comparative Model Evaluation and Fusion Approach

7.2.3.1 Graph Convolutional Network (GCN) Design of Experiment using Taguchi Method

and Signal-to-Noise (S/N) Ratio

The Taguchi method, developed by Genichi Taguchi, aims to enhance the quality of

products or processes by increasing their robustness to external variations. This is achieved

through orthogonal arrays, which allow for the efficient analysis of multiple variables with

relatively few experiments. Both methods improve decision-making and process

optimisation across manufacturing, marketing, and quality control (de Oliveira et al., 2023).

This section will use the Taguchi method to design this chapter’s experiments.

The Taguchi method and the Signal-to-Noise (S/N) ratio are pivotal concepts in

quality engineering and the DOE. Developed in the 1940s and 1950s by Genichi Taguchi, a

prominent Japanese engineer, the Taguchi method streamlines product and process design

optimisation. It focuses on pinpointing essential factors that influence quality and mitigates

the effects of factors beyond control. This method employs orthogonal arrays for

experimental design, facilitating the efficient examination of multiple variables at various

levels (Pal and Gauri, 2017; Rathore, 2017).

The S/N ratio, integral to the Taguchi method, quantifies the robustness of a design

by comparing the desired output (signal) to the variability caused by uncontrollable factors

(noise). A higher S/N ratio denotes a design that effectively withstands variability, enhancing

its robustness. In the context of alternative analysis, the S/N ratio helps assess the efficacy

of various design alternatives or configurations. By evaluating the S/N ratio, engineers can

discern the most impactful factors on performance and refine the design to optimise

outcomes. The general formula for the S/N ratio in the Taguchi method is shown in Equation

(7.1) (Bisht et al., 2013):

S/N = −10 log (𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑀𝑆𝐷)) (7.1)

The Taguchi method recognises three types of S/N ratios:

1. Smaller-the-better: This is used when the objective is to minimise a response

variable, aiming to reduce process variability, for example. The S/N ratio

increases as observed values decrease. It is calculated using the formula for

187

MSD: 𝑀𝑆𝐷 = ∑(𝑦2)/𝑛 where y represents the observed data and n is the

number of observations (Yang et al., 2023c).

2. Nominal-the-best: This targets a specific value, such as achieving a precise

dimension. The formula applied is 𝑀𝑆𝐷 = ∑(𝑦 − 𝑚)2/𝑛 , where 𝑚m is the

target value, and 𝑛 is the number of observations. Higher S/N ratios

correspond to values closer to the target, facilitating the optimisation towards

desired outcomes (Bisht et al., 2013; Yang et al., 2023c).

3. Larger-the-better: The goal here is to maximise response, such as enhancing

the strength of a material. The mean square deviation is calculated as 𝑀𝑆𝐷 =

∑ (
1

𝑦2) /𝑛, with larger observed values yielding higher S/N ratios (Yang et

al., 2023c).

The Taguchi method is a systematic approach to optimise products or processes by

minimising output variation and is applicable across various systems, including ML

algorithms. In one instance, the Taguchi method optimises ML parameters for predicting

turning precision and identifying key influential factors. This methodology trains three

models, enhancing the best-performing model, XGBoost, with techniques like Synthetic

Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) and

various optimisation algorithms, such as Centre Particle Swarm Optimisation (CPSO) (Wang

et al., 2022).

In another example, the Taguchi method is employed to refine hyperparameters in a

Back Propagation Neural Network (BPNN) to predict plastic injection moulding outcomes.

It identifies critical hyperparameters and optimises them using the Taguchi orthogonal

approach to enhance prediction accuracy (Jong et al., 2020). Furthermore, the Taguchi

method optimises rotor barrier designs in PM-assisted Synchronous Reluctance Machines

(SynRMs). It identifies key factors affecting Power Factor (PF) and torque ripple, using these

insights to refine rotor barrier designs through a Taguchi experimental approach (Naseh et

al., 2022).

In the evaluation phase, a 10-fold cross-validation strategy was employed to ensure

the robustness of the models. For each fold, the model was trained on nine parts of the data

and validated on the remaining part. This process was repeated ten times, and each part was

188

used once for validation. The test dataset, which was held constant across all folds, was used

to evaluate the model post-training, as shown in Table 7.1.

The S/N, in the context of the Taguchi method, is a metric used to measure the quality

characteristic of a process. The S/N combines both the mean and the variability into a single

statistic. When maximising the performance characteristic (the Overall Test Accuracy), the

larger-the-better type of S/N is used, as indicated in the last column of Table 7.1. The Taguchi

Approach Summary: S/N by Factor Levels is presented in Table 7.2. The formula for the

larger-the-better S/N is given in Equation (7.2):

 S/N=−10 log10 (
1

𝑛
∑

1

𝑦𝑖
2

𝑛
𝑖=1)

(7.2)

where n is the number of observations (or trials), 𝑦𝑖 is the value of the performance

characteristic for the 𝑖-th observation, and log10 represents the logarithm to base 10 (also

known as the common logarithm).

In this chapter’s Taguchi experiment, as shown in Table 7.4, each experiment is

conducted only once (n= 1). Therefore, the S/N formula is simplified as shown in Equation

(7.3):

The negative sign is used because higher S/Ns are typically considered to be better,

and a larger 𝑦 (which is better for larger-the-better quality characteristics) will yield a smaller

one, that is, log10(
1

𝑦2) (hence the need to take the negative to make the S/N larger for better

outcomes). These S/N values are in negative decibels (dB) because the reciprocal of a number

less than 1 (when converted from a percentage) is greater than 1, and taking a log of a number

greater than one yields a positive number. Because the S/N formula includes a negative sign,

this results in negative values for the S/N.

Each S/N value is calculated for the overall test accuracy of each experiment, and the

mean S/N is then computed for each level of each factor. The level with the highest mean

S/N is considered the most robust setting for that factor because it offers the highest quality

with the slightest variation, as shown in Table 7.4. In this study, the overall accuracy of the

GCN was assessed across nine experiments using the Taguchi design, emphasising the

importance of fine-tuning model parameters for optimal performance and reducing the

number of potential combinations. The mean accuracy was approximately 89.01%, with a

S/N=−10 log10 (
1

𝑦2) (7.3)

189

standard deviation of ±1.25%, reflecting the variability observed across the experiments,

where each experiment takes around 28 s.

Table 7.4: Taguchi-Derived GCN Model Performance Evaluation.

1 VA is validation accuracy, 2 MA is the Mild state accuracy, 3 MoA is the Moderate state accuracy,4 SA is the Severe state

accuracy, 5 NA is the Normal (fault-free) or Healthy condition accuracy.

For factor level analysis, the higher (less negative) the S/N, the better the

performance. Therefore the highest S/N value should be targeted. Experiment 6 scores the

least negative S/N, indicating the most robust performance. Further insights about S/N ratios

are summarised in Table 7.5:

Table 7.5: Taguchi Approach Summary: Signal-to-Noise Ratio by Factor Levels.

Control

 Factor

Control Factor

Levels

Avg S/N for

each factor

A

GCN with k =3 -0.98

GCN with k =4 -0.95

GCN with k =5 -1.10

B
200 -1.14

300 -0.96

400 -0.94

C
0.0001 -0.93

0.0005 -1.01

0.0009 -1.10

No.

Control Factors

VA1

Testing S/N Ratio

A
.

G
ra

p
h

B
.E

p
o

ch
s

C
.L

R

M
A

2

M
o

A
3

S
A

4

N
A

5

O
v

er
a

ll

A
cc

u
ra

cy

o
n

O
v

er
a

ll

T
es

t

A
cc

u
ra

cy

1 GCN with k =3 200 0.0001 89.80% 60.22% 98.92% 97.85% 98.92% 88.98% -1.01

2 GCN with k =3 300 0.0005 90.02% 62.37% 97.85% 100% 100% 90.06% -0.91

3 GCN with k =3 400 0.0009 89.42% 59.14% 98.92% 98.92% 98.92% 88.98% -1.02

4 GCN with k =4 200 0.0005 88.04% 59.14% 97.85% 95.70% 100% 88.17% -1.09

5 GCN with k =4 300 0.0009 89.58% 61.29% 96.77% 98.92% 100% 89.25% -0.99

6 GCN with k =4 400 0.0001 92.28% 66.67% 98.92% 100% 100% 91.40% -0.78

7 GCN with k =5 200 0.0009 88.03% 59.14% 93.55% 91.40% 100% 86.02% -1.31

8 GCN with k =5 300 0.0001 90.10% 62.37% 95.70% 98.92% 100% 89.25% -0.99

9 GCN with k =5 400 0.0005 90.31% 60.22% 96.77% 98.92% 100% 88.98% -1.01

190

To enhance the clarity of the analysis, each factor was represented in a separate figure

along with its corresponding levels. Factor A, involving Graph Creation using the k-NNG

with three levels of the k factor, is shown in Figure 7.5. Factor B, representing Epochs, is

depicted in Figure 7.6, while Factor C, representing the Learning Rate (LR), is illustrated in

Figure 7.7.

Figure 7.5: Levels of Control Factor A, S/N Ratio, and Test Accuracy.

Figure 7.6: Levels of Control Factor B, S/N Ratio, and Test Accuracy.

191

Figure 7.7: Levels of Control Factor C, S/N Ratio, and Test Accuracy.

From the S/N ratio analysis, it can be observed that the negative values of S/N may

appear counterintuitive, but they result from the calculation method whereby performance

characteristics are converted into a noise metric;the larger the S/N ratio the smaller the

variation and therefore larger S/N results are selected.Experiment 6, which corresponds to a

GCN with k =4, 400 epochs, and aLR of 0.0001, resulted in the highest overall accuracy and

the largestS/N, thereby suggesting that it is the best performer among all of the tested

experiments.

While the GCN, leveraging the k-NNG approach, presents a novel and powerful

method for detecting faults in complex systems, it displayed a notable limitation in the Mild

fault class. Despite excelling in the Moderate (98.92%), Severe (100%), and Normal (fault-

free) or Healthy condition (100%) classes, its accuracy in the Mild class was significantly

lower at 66.67%. This discrepancy can be attributed to the sparse distribution of Mild class

samples within the graph structure, as depicted in the graph visualisation (Figure 7.3). The

Mild fault samples were scattered and less connected, making it difficult for the GCN to

exploit neighbourhood signals fully. Consequently, this led to misclassification, mainly due

to an overlap with the Moderate and Normal (fault-free) or Healthy condition classes,

limiting the GCN's ability to distinguish between them accurately. This observation

underscores the need for further refinement and opens the path for improvement through the

proposed hybrid approach.

192

7.2.3.2 Proposed GCN using Taguchi with Selective Weighted Loss (SWL) Method

for Refining Mild Class Performance

To refine the GCN model, particularly in the Mild class, after selecting the optimal

Taguchi parameters, a weighted loss function approach was implemented to address the

observed 33.33% misclassification rate in the Mild class. While the dataset was balanced,

the lower accuracy for the Mild class could be attributed to its representation within the k-

NNG structure, which created challenges for the GCN in correctly classifying this class. To

mitigate this, a custom weighting scheme was applied based on the optimal Taguchi factors

from Experiment 6, which corresponds to a GCN with k =4, 400 epochs, and an LR of 0.0001

(Table 7.4). The loss function was adjusted during training by assigning a higher weight to

the Mild class. Specifically, the weight for the Mild class was doubled relative to the other

classes, with the following weight vector: [1.0, 2.0, 1.0, 1.0]. This adjustment was

incorporated using the torch.nn.CrossEntropyLoss function in PyTorch, allowing the model

to focus more on correctly classifying the Mild class without sacrificing performance in the

other classes.

This adjustment aimed to improve the model's sensitivity to the Mild class, reducing

its misclassification rate while maintaining overall accuracy across all classes. The training

was repeated five times, and the results showed an improvement in Mild class accuracy,

increasing from 66.67% to 84.52% ± 1.96%. Meanwhile, the overall testing accuracy

remained almost the same, at 90.70% ± 0.15%, compared to the 91.40% achieved in

Experiment 6 (Table 7.4), while maintaining the same training time of 28 s. However, while

the model's performance in the Mild class improved, there was a slight compromise in its

ability to classify the Moderate class accurately, with the accuracy dropping from 98.92% in

Table 7.4 to 78.82% ± 2.33%. This supports the idea that the model was previously

"confused" or was misallocating resources between these classes.

This demonstrates the importance of SWL in addressing class-specific performance

gaps, mainly when certain classes, like the Mild class, are harder to classify due to sparse

graph connections or overlapping features. The SWL method effectively reallocated the

model’s focus, allowing it to improve its performance in underperforming classes.

193

Table 7.6: GCN using Taguchi with Selective Weighted Loss (SWL) Trials for Mild Class

Performance Improvement.

7.2.3.3 One-Dimensional Convolutional Neural Network (1D-CNN) Compared with

Proposed GCNs

1D-CNNs and GNNs differ in the types of data they handle, their feature extraction

mechanisms, and their areas of strength. 1D-CNNs are well-suited for detecting sequential

patterns in structured, grid-like data, such as time series, where local dependencies and

patterns can be effectively captured through convolutional layers. In contrast, GNNs, which

include models like GCNs, excel at capturing relationships in irregular, graph-structured

data, where the connections between data points are crucial for learning complex

interdependencies in tasks such as fault classification in systems with complex data

structures.

This section explores the potential of 1D-CNNs in handling CLAF load-dependent

fault subclasses. The training, validation, and test datasets used here are similar to those

previously employed in the GCN model. The data were transformed into tensors to train the

1D-CNNs, using an LR of 0.005 over 300 epochs, as shown in Table 7.6. The table compares

the proposed GCN using Taguchi, presented earlier in Table 7.4 (Experiment 6), with the

1D-CNN. Furthermore, it compares the proposed GCN with SWL (Table 7.7) to the 1D-

CNN.

Training

Runs

Validation

Accuracy

Mild

Accuracy

Moderate

Accuracy

Severe

Accuracy

Normal

Accuracy

Overall

Test

Accuracy

1 89.53% 84.95% 77.42% 100% 100% 90.59%

2 91.60% 81.72% 81.72% 100% 100% 90.86%

3 90.60% 83.87% 78.49% 100% 100% 90.59%

4 90.59% 84.95% 78.49% 100% 100% 90.86%

5 90.58% 87.10% 75.27% 100% 100% 90.59%

Avg. 90.58% 84.52% 78.28% 100% 100% 90.70%

194

Table 7.7: 1D-CNN and Proposed GCN Configurations Performance Evaluation.

Training Model Training

Time

Validation

Accuracy

Mild

Accuracy

Moderate

Accuracy

Severe

Accuracy

Normal

Accuracy

Overall Test

Accuracy

1D-CNN 3. min =

180 sec
95.31% 97.85% 92.47% 100% 100% 97.58%

Proposed GCN

using Taguchi
28 sec 92.28% 66.67% 98.92% 100% 100% 91.40%

Proposed GCN

with SWL
28 sec 90.58% 84.52% 78.28% 100% 100% 90.70%

Comparison Summary from Table 7.7:

• 1D-CNN compared to proposed GCN using Taguchi

The 1D-CNN model performed exceptionally well in the Mild class, achieving an

impressive accuracy of 97.85%. The 1D-CNN also showed a strong overall test performance,

with an overall accuracy of 97.58%, which is higher than the proposed GCN's 91.40%, as

shown in Table 7.4 (Experiment 6). However, the 1D-CNN faced challenges in classifying

the Moderate class, achieving an accuracy of 92.47%, whereas the GCN excelled in this class

with 98.92%.

• 1D-CNN compared to proposed GCN using Taguchi with SWL

When comparing the 1D-CNN and the proposed SWL method, it is clear that both

approaches offer distinct advantages in handling the Mild class. The 1D-CNN achieved an

impressive 97.85% accuracy for the Mild class, significantly outperforming the proposed

SWL, which improved the Mild class accuracy to 84.52%. Additionally, the 1D-CNN

maintained a high overall test accuracy of 97.58%, compared to 90.70% for the SWL method.

However, SWL achieved these results with the same computational efficiency as the original

GCN model (28 s), whereas the 1D-CNN required more training time (180 s). Despite the

computational advantage of SWL, its moderate performance and the drop in accuracy for the

Moderate class make it less suited for inclusion in the hybrid approach, which aims to balance

class performance optimally.

195

7.2.3.4 Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification

Although the proposed GCN using Taguchi with SWL proved helpful in refining

class-specific accuracy, the hybrid method is specifically designed to leverage the individual

strengths of the GCN and the 1D-CNN without compromising performance in any class. In

this setup, the GCN retains its strength in the Moderate class, while the 1D-CNN provides

robustness in the Mild class, thereby avoiding the trade-offs introduced by SWL. The hybrid

approach ensures better class performance across all fault types without needing selective

loss weighting for balance.

The GCN demonstrated significant strengths in capturing complex relationships,

particularly excelling in the Moderate (98.92% accuracy), Normal (fault-free) or Healthy

condition (100% accuracy), and Severe (100% accuracy) fault classes. One key advantage

of the GCN is its ability to handle complex and large datasets efficiently, with experiments

completed in approximately 28 s. However, its performance in the Mild class was limited,

achieving only 66.67% accuracy due to sparse node connectivity and overlap with other

classes, as shown in the graph visualisation (Figure 7.3). Despite these limitations, the k-

NNG approach employed by the GCN offers a robust method for fault classification in

complex systems, mainly when modelling tabular vibration signals. To address the

performance gap in the Mild class, the HG-CDF approach was proposed, combining the

strengths of both the GCN and the 1D-CNN to ensure enhanced performance across all fault

classes. The findings from the decision fusion approach are outlined in Table 7.8.

Table 7.8 shows an optimised weighting system can significantly improve

classification performance, particularly in the Moderate class. Two systems were evaluated:

Equal Weighting and the Adaptive Weighting System. The Equal Weighting system,

assigning equal weights (0.5) to both the GCN and the 1D-CNN for all classes, achieved a

solid overall test accuracy of 98.66%. However, the Moderate class performed slightly below

expectations at 95.70%, despite the GCN's inherent strengths in this class. In terms of training

time, the GCN took only 28 s to complete training, while the 1D-CNN required around 3

min.

196

When considering the total training time for the hybrid approach, the combined

training time for both models amounts to approximately 3 min 28 s. This highlights the

efficiency of the GCN in delivering high-accuracy results quickly and the role of the 1D-

CNN in complementing areas where the GCN struggles, such as the Mild class.

In contrast, the Adaptive Weighting System, which gave a higher weight to the 1D-

CNN for the Mild class (0.7) and to the GCN for the Moderate class (0.6), led to a marked

improvement. The overall test accuracy rose to 99.19%, with the Moderate class improving

from 95.70% to 97.85%. This result demonstrates that leveraging the unique capabilities of

both models—the GCN for complex graph-structured data and the 1D-CNN for sequential

patterns—can enhance classification performance. Both systems maintained perfect

accuracy in the Severe and Normal (fault-free) or Healthy condition classes, highlighting

their robustness for these fault types.

Table 7.8: Hybrid Graph-CNN Decision Fusion (HG-CDF) Weighting Systems and Performance

Comparison.

Weighting

system

Alternatives

Class Proposed

GCN

using

Taguchi

1D-CNN

Weight

Testing

Accuracy

Overall

Test

Accuracy

Notes

1. Equal

Weighting

Mild 0.5 0.5 98.92%

98.66%

Basic equal

weighting for

all classes.
Moderate 0.5 0.5 95.70%

Severe 0.5 0.5 100%

 Normal 0.5 0.5 100%

2. Adaptive

Weighting

Mild 0.3 0.7 98.92%

97.85%

100%

100%

99.19%

Higher CNN

weight for

Mild, higher

GCN weight

for Moderate

Moderate 0.6 0.4

Severe 0.5 0.5

Normal 0.5 0.5

7.2.4 Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7) in Mild and

Moderate Class Fault Detection

Comparing the performance of the Load-Dependent Multimodal Vibration Signal

Enhancement and Fusion (LD-MVSEF) method from Chapter 6 and the HG-CDF approach

197

from Chapter 7, we can see that both methods demonstrate strong classification capabilities

for the Mild and Moderate fault subclasses, as presented in Table 7.9. Both models achieved

100% accuracy in the Normal and Severe fault classes. LD-MVSEF achieved a test accuracy

of 97.20% for the Mild class and 99.15% for the Moderate class but required a training time

of 18 min 30 s. In contrast, HG-CDF slightly outperformed LD-MVSEF in the Mild class

with a test accuracy of 98.92%, though it achieved a slightly lower accuracy of 97.85% in

the Moderate class. What sets HG-CDF apart is its efficiency, completing the training in just

3 min 28 s—considerably faster than LD-MVSEF. This comparison shows that while LD-

MVSEF excels in Moderate class accuracy, HG-CDF offers a more efficient solution with

competitive accuracy, particularly in the Mild class, suggesting its potential for faster, less

complex condition monitoring.

Table 7.9: Accuracy Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7) Across

Fault Subclasses.

Proposed

Methodology

Training

Time

Mild

Accuracy

Moderate

Accuracy

Severe

Accuracy

Normal

Accuracy

Overall

Test

Accuracy

LD-MVSEF

(Chapter 6)

18 min 30 s

97.20% 99.15% 100% 100% 99.04%

 HG-CDF

(Chapter 7)
3 min 28 s 98.92% 97.85% 100% 100% 99.19%

7.3 Summary

This chapter presented a novel approach for load-dependent fault classification by

applying GCNs to transform tabular vibration signal data into graph structures using k-NNG

method. Through the Taguchi DOE, nine GCN configurations were tested, achieving a mean

accuracy of 89.01% ± 1.25%, with a strong performance in the Moderate (98.92%), Severe

(100%), and Normal (fault-free) or Healthy condition (100%) classes. However, the GCN

encountered limitations in the Mild class, with accuracy reaching only 66.67% due to sparse

node connectivity and class overlap.

To address this limitation, the chapter first introduced the Selective Weighted Loss

(SWL) method as an attempt to improve the Mild class accuracy by adjusting the loss

function to focus more on this underperforming class. While the SWL method successfully

198

raised the Mild class accuracy to 84.52% ± 1.96%, it resulted in a drop in the Moderate class

accuracy, showing a trade-off between classes that limited its overall effectiveness.

Recognising the need for a more balanced solution, the HG-CDF method was

proposed, integrating the GCN with a 1D-CNN. This hybrid approach leveraged the GCN's

ability to model complex relationships and the 1D-CNN's strength in detecting sequential

patterns. The HG-CDF method significantly improved performance, particularly in the Mild

class, while maintaining perfect accuracy in the Severe and Normal (fault-free) or Healthy

condition classes. Furthermore, the hybrid model demonstrated computational efficiency,

completing training in just 3 min 28 s—combining the GCN's 28-second speed with the 1D-

CNN's 3-minute training time, and achieving a high testing accuracy of 99.19%.

This chapter contributes to the field by validating the GCN's effectiveness for fault

classification, exploring the use of SWL for class-specific improvement, and introducing a

hybrid model that overcomes identified limitations, enhancing performance across all CLAF

load-dependent fault subclasses. The main contributions of the current chapter are as follows

1. Proposed GCN using Taguchi: Explored and validated the use of GNNs within the

CLAF, using TFD features, including spectral features extracted via Autoregression instead

of raw vibration signals. The k-NN algorithm was applied to represent extracted tabular data

as k-NNGs, which were then used as inputs for the GCN. Optimal configurations for the

GCN were selected based on Taguchi experiments.

2. GCN using Taguchi with Selective Weighted Loss (SWL): Introduced the SWL method

to improve class-specific accuracy, particularly targeting the Mild class. The SWL method

allowed the model to reallocate focus and improve the accuracy of the Mild class, while still

maintaining a strong performance across other classes.

3. Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault

Classification: Developed the HG-CDF approach, combining the strengths of the GCN and

the 1D-CNN for load-dependent fault classification. This hybrid model significantly

improved performance across all fault classes, especially in the Mild class, while maintaining

high computational efficiency with a total training time of 3.28 min.

199

Chapter 8: Conclusion

200

8.1 Conclusion

In the rapidly evolving fields of Machine Learning (ML) and Deep Learning (DL),

innovative applications are continually being developed to address complex problems across

various industries. These technologies have proven especially transformative in industrial

machinery maintenance, enhancing fault classification accuracy and operational efficiency.

This thesis has contributed to this transformative wave by advancing Induction Motor (IM)

bearings fault classification through innovative methodologies that leverage multimodal

data, Artificial Intelligence (AI), and adaptive techniques.

The research has focused on multimodal data preprocessing for IM fault

classification, proposing a methodology that combines multi-sensor images into a single

Stitched Multimodal Image, which is then processed using pre-trained Convolutional Neural

Networks (CNNs), specifically SqueezeNet and Residual Network-18 (ResNet-18). This

study first assessed the classification accuracy of compromised-quality thermal images.

Then, this was enhanced through multimodal preprocessing by integrating Continuous

Wavelet Transform (CWT)-encoded vibration signals with the original thermal images and

applying the Gramian Angular Field (GAF) technique. The results demonstrate that the

images stitched with GAF achieved an overall mean accuracy of 98.39% ± 1.07%, while

those using CWT recorded 96.89% ± 1.38%. The proposed image fusion preprocessing

approach, utilising the GAF signal encoding technique, improved classification accuracy by

12.5%, achieving 99.1% ± 0.5% accuracy when using both ResNet-18 and SqueezeNet,

compared to the 87.96% accuracy achieved with compromised thermal images alone.

Recognising the importance of thermal images, this research has explored generating

artificial thermal images using Wasserstein Generative Adversarial Networks withGradient

Penalty (WGAN-GP) and conditional Wasserstein Generative Adversarial Networks with

Gradient Penalty (cWGAN-GP). A three-level evaluation approach has been applied to

ensure that the generated images for IM bearing faults closely resembled real images

collected in the lab. This included visual and qualitative assessments, quantitative metrics

such as Earth Mover’s Distance (EMD) and Maximum Mean Discrepancy (MMD), and

classification accuracy using a pre-trained AlexNet model. The cWGAN-GP, which

incorporates class information based on the bearing health conditions used as classes,

demonstrated further improvements in image generation. While WGAN-GP slightly

201

outperformed in EMD, cWGAN-GP-generated images exhibited a closer statistical

resemblance to real images with a lower MMD score. The cWGAN-GP dataset achieved

98.41% accuracy on unseen real images, with the entire training process completed in just

7.5 hours for all classes, compared to the 18-37 hours required by WGAN-GP for each class.

This evaluation has demonstrated that the cWGAN-GP approach effectively generates

artificial thermal images that resemble real images. Thus, this evaluation indicates that the

cWGAN-GP approach is suitable for generating artificial thermal images that resemble real

ones, making them effective for more accurate fault classification in IM bearings.

Furthermore, this study has proposed a Customised Load Adaptive Framework

(CLAF) to address the literature's rarely discussed impact of Load Factors (LFs). The CLAF's

first phase has revealed load-dependent patterns using wavelet energy, while the second

phase has dealt with tailored methodologies specifically for the Machinery Failure

Prevention Technology (MFPT) bearing dataset, identifying new load-dependent fault

subclasses: Mild, Moderate, Severe, and Normal (fault-free) or Healthy condition'. The

CLAF has demonstrated its ability to detect nuanced fault variations under various LF

conditions, achieving 96.30% ± 0.50% accuracy in 18.155 s during five-fold cross-validation

with a Wide Neural Network (WNN). Building on CLAF, two methodologies for Load-

Dependent Fault Classification have been proposed: the Load-Dependent Multimodal

Vibration Signal Enhancement and Fusion (LD-MVSEF) method and the Hybrid Graph-

CNN Decision Fusion (HG-CDF) method.

The LD-MVSEF method has been used to effectively integrate diverse machine

learning models to optimise CLAF load-dependent fault subclass classification. It extracts

features independently from multiple data representations within a single source, utilising

three distinct feature extraction channels. A fusion module has been used to consolidate these

individual decisions into a unified classification result. LD-MVSEF utilises three channels:

Channel 1 extracts features from the time and frequency domains, Channel 2 converts raw

vibration signals into wavelet scalograms, and Channel 3 uses the Gramian Angular

Difference Field (GADF) to generate two-dimensional (2D) images. Each channel was

trained using different classifiers, with the most accurate being selected for all CLAF load-

dependent fault subclasses. Using top-performing models like CubicSVM and AlexNet

202

across these input channels, LD-MVSEF achieved an overall accuracy of 99.04% ± 0.22%,

based on five runs, confirming its efficacy and stability across multiple trials.

Furthermore, this thesis has explored the potential of Graph Convolutional Networks

(GCNs) for condition monitoring, focusing on fast model training and accurate fault

categorisation. The study began with the GCN using Taguchi, which transformed tabular

data into graph structures using the k-Nearest Neighbours (kNN) method, demonstrating

strong performance in load-dependent fault classification with a mean accuracy of 89.01% ±

1.25% across nine experiments. The GCN performed exceptionally well in the Moderate

(98.92%), Severe (100%), and Normal (fault-free) or Healthy condition (100%) classes,

while showing room for improvement in the Mild class, achieving 66.67% accuracy. To

address this, the GCN using Taguchi with Selective Weighted Loss (SWL) was introduced,

enhancing class-specific accuracy and improving the Mild class performance from 66.67%

to 84.52% ± 1.96% over five runs. This improvement was achieved while maintaining overall

model robustness, with accuracy at 90.70% ± 0.15%. Finally, the HG-CDF method was

developed to further enhance overall accuracy across all classes. By combining the GCN's

ability to capture complex relationships with the 1D-CNN's strength in detecting sequential

patterns, this hybrid approach resulted in an impressive overall accuracy of 99.19%, while

maintaining computational efficiency with a total training time of just 3.28 min.

LD-MVSEF and HG-CDF methodologies have demonstrated strong classification

capabilities for the Mild and Moderate fault subclasses. LD-MVSEF achieved higher

accuracy in the Moderate class (99.15%) than HG-CDF (97.85%). Still, HG-CDF

outperformed LD-MVSEF in the Mild class (98.92%) and completed training in significantly

less time—3 min 28 s compared to LD-MVSEF's 18 min 30 s. This comparison suggests that

while LD-MVSEF excels in accuracy for Moderate conditions, HG-CDF offers a faster, more

efficient solution with a competitive performance, making it a promising approach for

condition monitoring.

The methodologies developed in this thesis have the potential to be generalised for

broader applications. This research lays the groundwork for advancing condition monitoring

systems, providing a framework that could significantly enhance fault classification in future

machinery maintenance and monitoring innovations.

203

8.2 Contributions to Knowledge

This thesis has made significant strides in advancing fault classification technologies

for IMs, aligning closely with the structured research questions designed and presented in

Section 1.3 to probe various aspects of this field. The following clarifies how each

contribution addresses the corresponding research question:

1. Novel Multimodal Data Preprocessing for IM Fault Classification: This contribution

addresses the first research question, demonstrating how integrating thermal and

vibration data in a multimodal system enhances fault detection capabilities.

2. Conditional Wasserstein Generative Adversarial Network with Gradient Penalty

(cWGAN-GP) for Generating Artificial Thermal Images of Motor Faults: This

technique relates to the second research question by demonstrating the use of

Generative Adversarial Networks (GANs) to create a new dataset of artificial thermal

images. It illustrates how these images are able to replicate various health conditions

of IMs and discusses methods for effectively assessing their similarity to real images.

3. Customised Load Adaptive Framework (CLAF) for Fault Classification: This

framework supports the third research question by developing an innovative

methodology to identify and classify new load-dependent fault subclasses using

advanced techniques, thus enhancing fault classification precision.

4. Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-

MVSEF) for Load-Specific Condition Monitoring: This contribution is linked to the

fourth research question. It explains how the three-channel fusion technique can be

optimised to improve the health assessment of machinery, focusing primarily on load-

dependent fault subclasses in industrial settings.

5. Graph Convolutional Network (GCN) and Hybrid Graph-CNN Decision Fusion

(HG-CDF) for Load-Dependent Fault Classification: This final contribution

addresses the fifth research question, demonstrating how Graph Neural Networks

(GNNs) effectively classify faults using tabular vibration signals by transforming

them into graph structures through the k-Nearest Neighbour Graph (k-NNG) method.

The introduction of the HG-CDF method, which integrates GCNs with 1D-CNNs,

resolves classification limitations, enhancing performance across all CLAF load-

dependent subclasses while maintaining computational efficiency.

204

8.3 Study Limitations

The current study was conducted using Google Colab's GPU resources and

MATLAB software to manage computational demands. Notably, creating artificial images

required significant computational capabilities, highlighting the need for robust processing

environments. The current research utilised the MFPT bearing dataset, widely recognised as

a standard dataset in this field, thereby helping to ensure the relevance and comparability of

the findings. The artificial images were also generated based on data collected in a suitable

environment at Cardiff University's laboratory. This controlled setting helped to maintain

consistent conditions during image capture but may also have the effect of limiting the

generalisability of the results to less controlled environments. Such factors should be

considered when interpreting the outcomes and applicability of this research.

8.4 Future Work

Building on the achievements of this thesis, future research should focus on

expanding the integration of additional sensory data, such as Acoustic Emission (AE) sensing

and electrical signals, to enrich multimodal datasets for enhanced fault detection accuracy.

Optimising models for real-time data processing and employing edge computing is critical

to ensure that the methodologies developed are viable in operational environments. There is

a significant opportunity to investigate advanced neural network structures, including further

exploration of GNNs, to enhance model robustness and efficiency across various types of

machinery. Developing algorithms that predict mechanical failures before they occur could

significantly reduce maintenance costs and downtime, making fault classification more

proactive. Further work is needed to make artificial image creation using the cWGAN-GP

more successful and to test this approach on different datasets and potentially make these

datasets available online for organisations concerned with data privacy.

Additionally, exploring different data representations and developing more

sophisticated decision fusion techniques could enhance algorithm decision accuracy,

including utilising data augmentation techniques to handle anomalies in thermal images.

Continuing to create the CLAF will enable deeper exploration into load-dependent fault

classification, fostering a more customised approach that accommodates operational

variances. Lastly, given the promising results in minimising training times and converting

205

tabular data into graphical structures, future research should extend the use of GNNs within

industrial condition monitoring, potentially establishing GNNs as a cornerstone in future

fault classification technologies. By prioritising these areas, future research will extend the

theoretical advances made and focus on practical applications and real-world deployment,

ensuring that the next generation of fault classification tools is innovative and directly

applicable to the needs of the industry.

206

References

Abdel-Jaber, H., Devassy, D., Al Salam, A., Hidaytallah, L. and El-Amir, M. 2022. A

Review of Deep Learning Algorithms and Their Applications in Healthcare. Algorithms

15(2). doi: 10.3390/a15020071.

Abdelrazik, M.A., Zekry, A. and Mohamed, W.A. 2023. Efficient Deep Learning Algorithm

for Egyptian Sign Language Recognition. In: 2023 33rd Conference of Open Innovations

Association (FRUCT). IEEE, pp. 3–8. Available at:

https://ieeexplore.ieee.org/document/10142991/.

Ahmadzadeh, M., Zahrai, S.M. and Bitaraf, M. 2024. An integrated deep neural network

model combining 1D CNN and LSTM for structural health monitoring utilizing multisensor

time-series data. Structural Health Monitoring (3). Available at:

https://journals.sagepub.com/doi/10.1177/14759217241239041.

Ahmed, H. and Nandi, A.K. 2018. Compressive Sampling and Feature Ranking Framework

for Bearing Fault Classification With Vibration Signals. IEEE Access 6, pp. 44731–44746.

doi: 10.1109/ACCESS.2018.2865116.

Ahmed, H.O.A. and Nandi, A.K. 2022. Vibration Image Representations for Fault Diagnosis

of Rotating Machines: A Review. Machines 10(12), pp. 1–36. doi:

10.3390/machines10121113.

Al-Musawi, A.K., Anayi, F. and Packianather, M. 2020. Three-phase induction motor fault

detection based on thermal image segmentation. Infrared Physics & Technology 104, p.

103140. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1350449519304207.

Al-Qerem, A., Alsalman, Y.S. and Mansour, K. 2019. Image generation using different

models of generative adversarial network. Proceedings - 2019 International Arab

Conference on Information Technology, ACIT 2019 , pp. 241–245. doi:

10.1109/ACIT47987.2019.8991120.

Alharbi, A.H., Towfek, S.K., Abdelhamid, A.A., Ibrahim, A., Eid, M.M., Khafaga, D.S.,

207

Khodadadi, N., Abualigah, L. and Saber, M. 2023. Diagnosis of Monkeypox Disease Using

Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm.

Biomimetics 8, 313(3), pp. 1–21. doi: 10.3390/biomimetics8030313.

Alotaibi, A. 2020. Deep generative adversarial networks for image-to-image translation: A

review. Symmetry 12(10), pp. 1–26. doi: 10.3390/sym12101705.

Alotaibi, M., Asli, B.H.S. and Khan, M. 2021. Non-invasive inspections: A review on

methods and tools. Sensors 21(24). doi: 10.3390/s21248474.

Alqahtani, H., Kavakli-Thorne, M. and Kumar, G. 2019. An Analysis of Evaluation Metrics

of GANs. International Conference on Information Technology and Applications 7(July)

Alqahtani, H., Kavakli-Thorne, M. and Kumar, G. 2021. Applications of Generative

Adversarial Networks (GANs): An Updated Review. Archives of Computational Methods in

Engineering 28(2), pp. 525–552. Available at: https://doi.org/10.1007/s11831-019-09388-y.

Alrashedy, H.H.N., Almansour, A.F., Ibrahim, D.M. and Hammoudeh, M.A.A. 2022.

BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN

Architectures and CNN Models. Sensors 22(11). doi: 10.3390/s22114297.

Alvarado-Hernandez, A.I., Zamudio-Ramirez, I., Jaen-Cuellar, A.Y., Osornio-Rios, R.A.,

Donderis-Quiles, V. and Antonino-Daviu, J.A. 2022. Infrared Thermography Smart Sensor

for the Condition Monitoring of Gearbox and Bearings Faults in Induction Motors. Sensors

22(16). doi: 10.3390/s22166075.

Alzubaidi, L., Duan, Y., Al-Dujaili, A., Ibraheem, I.K., Alkenani, A.H., Santamaria, J.,

Fadhel, M.A., Al-Shamma, O. and Zhang, J. 2021. Deepening into the suitability of using

pre-trained models of ImageNet against a lightweight convolutional neural network in

medical imaging: an experimental study. PeerJ Computer Science 7, pp. 1–27. doi:

10.7717/peerj-cs.715.

Amanollah, H., Asghari, A. and Mashayekhi, M. 2023. Damage detection of structures based

on wavelet analysis using improved AlexNet. Structures 56(May), p. 105019. Available at:

https://doi.org/10.1016/j.istruc.2023.105019.

208

Ambrożkiewicz, B., Syta, A., Georgiadis, A., Gassner, A., Litak, G. and Meier, N. 2023.

Intelligent Diagnostics of Radial Internal Clearance in Ball Bearings with Machine Learning

Methods. Sensors 23, 5875(13). doi: 10.3390/s23135875.

Arellano-Espitia, F., Delgado-Prieto, M., Martinez-Viol, V., Saucedo-Dorantes, J.J. and

Osornio-Rios, R.A. 2020. Deep-Learning-Based Methodology for Fault Diagnosis in

Electromechanical Systems. Sensors 20(14), p. 3949. Available at:

https://www.mdpi.com/1424-8220/20/14/3949.

Arjovsky, M., Chintala, S. and Bottou, L. 2017a. Wasserstein GAN. Available at:

http://arxiv.org/abs/1701.07875.

Arjovsky, M., Chintala, S. and Bottou, L. 2017b. Wasserstein generative adversarial

networks. 34th International Conference on Machine Learning, ICML 2017 1, pp. 298–321.

Asutkar, S. and Tallur, S. 2023. Deep transfer learning strategy for efficient domain

generalisation in machine fault diagnosis. Scientific Reports 13(1), pp. 1–9. Available at:

https://doi.org/10.1038/s41598-023-33887-5.

Bai, H., Yan, H., Zhan, X., Wen, L. and Jia, X. 2022. Fault Diagnosis Method of Planetary

Gearbox Based on Compressed Sensing and Transfer Learning. Electronics 11(11), p. 1708.

Available at: https://www.mdpi.com/2079-9292/11/11/1708.

Barrera-Llanga, K., Burriel-Valencia, J., Sapena-Bañó, Á. and Martínez-Román, J. 2023. A

Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for

Fault Diagnosis of Broken Rotor Bars in Induction Motors. Sensors 23(19). doi:

10.3390/s23198196.

Bechhoefer, E. 2013. Condition Based Maintenance Fault Database for Testing of Diagnostic

and Prognostics Algorithms. Available at: https://www.mfpt.org/fault-data-sets/ [Accessed:

10 October 2023].

Bechhoefer, E. 2016. A Quick Introduction to Bearing Envelope Analysis. Journal of

Chemical Information and Modeling 53(802), pp. 1–10. Available at:

https://www.mfpt.org/wp-content/uploads/2018/03/MFPT-Bearing-Envelope-Analysis.pdf.

209

Bisht, B., Vimal, J. and Chaturvedi, V. 2013. Parametric Optimization of Electrochemical

Machining Using Signal-To-Noise (S / N) Ratio. International Journal of Modern

Engineering Research 3(4), pp. 1999–2006.

Bodo, R., Bertocco, M. and Bianchi, A. 2021. Cost-Sensitive Fault Identification in

Predictive Maintenance Applications: a Case Study. In: 2021 IEEE International

Instrumentation and Measurement Technology Conference (I2MTC). IEEE, pp. 1–6.

Available at: https://ieeexplore.ieee.org/document/9459829/.

Borga, M. and Carlsson, T. 1992. A Survey of Current Techniques for Reinforcement

Learning. Linköping University, Department of Electrical Engineering. Available at:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1631.

Borghi, P.H., Zakordonets, O. and Teixeira, J.P. 2021. A COVID-19 time series forecasting

model based on MLP ANN. Procedia Computer Science 181(2019), pp. 940–947. Available

at: https://doi.org/10.1016/j.procs.2021.01.250.

Borji, A. 2019. Pros and cons of GAN evaluation measures. Computer Vision and Image

Understanding 179, pp. 41–65. doi: 10.1016/j.cviu.2018.10.009.

Boudiaf, R., Abdelkarim, B. and Issam, H. 2024. Bearing fault diagnosis in induction motor

using continuous wavelet transform and convolutional neural networks. International

Journal of Power Electronics and Drive Systems 15(1), pp. 591–602. doi:

10.11591/ijpeds.v15.i1.pp591-602.

Camacho-Bello, C.J., Gutiérrez-Lazcano, L. and Ortega-Mendoza, R.M. 2022. Rotation-

invariant image classification using a novel 1D CNN and Multichannel Accurate Bessel-

Fourier moments. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI

10(Especial3), pp. 1–4. Available at:

https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/8874.

Cao, P., Zhu, Z., Wang, Z., Zhu, Y. and Niu, Q. 2022. Applications of graph convolutional

networks in computer vision. Neural Computing and Applications 34(16), pp. 13387–13405.

Available at: https://doi.org/10.1007/s00521-022-07368-1.

210

Castro-Ospina, A.E., Solarte-Sanchez, M.A., Vega-Escobar, L.S., Isaza, C. and Martínez-

Vargas, J.D. 2024. Graph-Based Audio Classification Using Pre-Trained Models and Graph

Neural Networks. Sensors 24(7), pp. 1–12. doi: 10.3390/s24072106.

Chandaliya, R., Timilsina, M., Breslin, J. and Serrano, M. 2023. Towards Graph-Based

Semi-Supervised Learning on Audio Embeddings for Label Classification. In: 2023

International Conference on Machine Learning and Applications (ICMLA). IEEE, pp. 1385–

1391. Available at: https://ieeexplore.ieee.org/document/10459852/.

Chandran, L.R., Jayagopal, N., Lal, L.S., Narayanan, C., Deepak, S. and Harikrishnan, V.

2021. Residential Load Time Series Forecasting using ANN and Classical Methods.

Proceedings of the 6th International Conference on Communication and Electronics

Systems, ICCES 2021 , pp. 1508–1515. doi: 10.1109/ICCES51350.2021.9488969.

Chang, H.C., Wang, Y.C., Shih, Y.Y. and Kuo, C.C. 2022. Fault Diagnosis of Induction

Motors with Imbalanced Data Using Deep Convolutional Generative Adversarial Network.

Applied Sciences (Switzerland) 12(8). doi: 10.3390/app12084080.

Chang, M., Yao, D. and Yang, J. 2023. Intelligent Fault Diagnosis of Rolling Bearings Using

Efficient and Lightweight ResNet Networks Based on an Attention Mechanism. IEEE

Sensors Journal 23(9), pp. 9136–9145. doi: 10.1109/JSEN.2023.3251654.

Chao, M.A., Kulkarni, C., Goebel, K. and Fink, O. 2019. Hybrid deep fault detection and

isolation: Combining deep neural networks and system performance models. International

Journal of Prognostics and Health Management 10(4). doi:

10.36001/ijphm.2019.v10i4.2621.

Chen, B., Zhu, D., Wang, Y. and Zhang, P. 2022a. An Approach to Combine the Power of

Deep Reinforcement Learning with a Graph Neural Network for Routing Optimization.

Electronics (Switzerland) 11(3). doi: 10.3390/electronics11030368.

Chen, R., Huang, W., Huang, B., Sun, F. and Fang, B. 2020a. Reusing Discriminators for

Encoding: Towards Unsupervised Image-To-Image Translation. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition , pp. 8165–8174.

211

doi: 10.1109/CVPR42600.2020.00819.

Chen, S.-H., Kuo, Y. and Lin, J.-K. 2021. Using Mahalanobis distance and decision tree to

analyze abnormal patterns of behavior in a maintenance outsourcing process-a case study.

Journal of Quality in Maintenance Engineering 27(2), pp. 253–263. Available at:

https://www.emerald.com/insight/content/doi/10.1108/JQME-04-2019-0037/full/html.

Chen, S., Yu, J. and Wang, S. 2022b. One-dimensional convolutional neural network-based

active feature extraction for fault detection and diagnosis of industrial processes and its

understanding via visualization. ISA Transactions 122, pp. 424–443. Available at:

https://doi.org/10.1016/j.isatra.2021.04.042.

Chen, Y., Xu, X. and Jia, J. 2020b. Domain Adaptive Image-to-Image Translation. In: 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp.

5273–5282. Available at: https://ieeexplore.ieee.org/document/9156656/.

Choudhary, A., Mian, T. and Fatima, S. 2021. Convolutional neural network based bearing

fault diagnosis of rotating machine using thermal images. Measurement 176(February), p.

109196. Available at: https://doi.org/10.1016/j.measurement.2021.109196.

Cinar, E. 2022. A Sensor Fusion Method using Deep Transfer Learning for Fault Detection

in Equipment Condition Monitoring. In: 2022 International Conference on INnovations in

Intelligent SysTems and Applications (INISTA). Biarritz, France, 8–12 August: IEEE, pp. 1–

6. Available at: https://ieeexplore.ieee.org/document/9894141/.

Cui, J., Zhong, Q., Zheng, S., Peng, L. and Wen, J. 2022. A Lightweight Model for Bearing

Fault Diagnosis Based on Gramian Angular Field and Coordinate Attention. Machines 10(4),

p. 282. Available at: https://www.mdpi.com/2075-1702/10/4/282.

Debie, E., Fernandez Rojas, R., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt,

M. and Abbass, H.A. 2021. Multimodal Fusion for Objective Assessment of Cognitive

Workload: A Review. IEEE Transactions on Cybernetics 51(3), pp. 1542–1555. doi:

10.1109/TCYB.2019.2939399.

Delgoshaei, P., Heidarinejad, M. and Austin, M.A. 2022. A Semantic Approach for Building

212

System Operations: Knowledge Representation and Reasoning. Sustainability 14(10), p.

5810. Available at: https://www.mdpi.com/2071-1050/14/10/5810.

Deng, A. and Hooi, B. 2021. Graph Neural Network-Based Anomaly Detection in

Multivariate Time Series. 35th AAAI Conference on Artificial Intelligence, AAAI 2021 5A,

pp. 4027–4035. doi: 10.1609/aaai.v35i5.16523.

Diao, Y. and Zhang, Q. 2021. Optimization of Management Mode of Small- and Medium-

Sized Enterprises Based on Decision Tree Model. Chen, M. ed. Journal of Mathematics

2021, pp. 1–9. Available at: https://www.hindawi.com/journals/jmath/2021/2815086/.

Divya, P. and Devi, B.A. 2021. Epileptic EEG Signal Denoising Enhancement Using

Improved Threshold Based Wavelet Method. In: 2021 International Conference on System,

Computation, Automation and Networking (ICSCAN). IEEE, pp. 1–4. Available at:

https://ieeexplore.ieee.org/document/9526343/.

Djemili, I., Medoued, A. and Soufi, Y. 2023. A Wind Turbine Bearing Fault Detection

Method Based on Improved CEEMDAN and AR-MEDA. Journal of Vibration Engineering

& Technologies (0123456789), pp. 1–22. Available at:

https://link.springer.com/10.1007/s42417-023-01117-x.

Dong, W., Moses, C. and Li, K. 2011. Efficient k-nearest neighbor graph construction for

generic similarity measures. In: Proceedings of the 20th international conference on World

wide web. New York, NY, USA: ACM, pp. 577–586. Available at:

https://dl.acm.org/doi/10.1145/1963405.1963487.

Du, B., Huang, J., Barton, R., Sam, S., Yuan, C., Galloway, G. and Tutar, I. 2023. Enhancing

Catalog Relationship Problems with Heterogeneous Graphs and Graph Neural Networks

Distillation. International Conference on Information and Knowledge Management,

Proceedings , pp. 4545–4551. doi: 10.1145/3583780.3615472.

Du, Y., Zhang, W., Wang, J. and Wu, H. 2019. DCGAN based data generation for process

monitoring. Proceedings of 2019 IEEE 8th Data Driven Control and Learning Systems

Conference, DDCLS 2019 , pp. 410–415. doi: 10.1109/DDCLS.2019.8908922.

213

Edeh, M.O., Khalaf, O.I., Tavera, C.A., Tayeb, S., Ghouali, S., Abdulsahib, G.M., Richard-

Nnabu, N.E. and Louni, A. 2022. A Classification Algorithm-Based Hybrid Diabetes

Prediction Model. Frontiers in Public Health 10(March), pp. 1–7. Available at:

https://www.frontiersin.org/articles/10.3389/fpubh.2022.829519/full.

Elshenawy, L.M., Chakour, C. and Mahmoud, T.A. 2022. Fault detection and diagnosis

strategy based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial

processes. Journal of the Franklin Institute 359(13), pp. 7115–7139. Available at:

https://doi.org/10.1016/j.jfranklin.2022.06.022.

Emem Patrick Ekpo and James Eke 2024. An intelligent control for reducing third-party

interference in oil and gas pipeline using Deep Q-Networks (DQN). Global Journal of

Engineering and Technology Advances 18(3), pp. 075–081. doi:

10.30574/gjeta.2024.18.3.0233.

Engelmann, J. and Lessmann, S. 2021. Conditional Wasserstein GAN-based oversampling

of tabular data for imbalanced learning. Expert Systems with Applications 174(Ml). doi:

10.1016/j.eswa.2021.114582.

Fan, H., Ma, J., Zhang, X., Xue, C., Yan, Y. and Ma, N. 2022. Intelligent data expansion

approach of vibration gray texture images of rolling bearing based on improved WGAN-GP.

Advances in Mechanical Engineering 14(3), pp. 1–11. doi: 10.1177/16878132221086132.

Fatima Ezzahra, K., Najat, R. and Jaafar, A. 2023. Comparative Analysis of Transfer

Learning-Based CNN Approaches for Recognition of Traffic Signs in Autonomous Vehicles.

Bourekkadi, S. et al. eds. E3S Web of Conferences 412, p. 01096. Available at:

https://www.e3s-conferences.org/10.1051/e3sconf/202341201096.

Fazel, M., Ge, R., Kakade, S.M. and Mesbahi, M. 2018. Global Convergence of Policy

Gradient Methods for the Linear Quadratic Regulator. 35th International Conference on

Machine Learning, ICML 2018 4, pp. 2385–2413.

Fei, Z., Guo, J., Gong, H., Ye, L., Attahi, E. and Huang, B. 2023. A GNN Architecture With

Local and Global-Attention Feature for Image Classification. IEEE Access 11(October), pp.

214

110221–110233. Available at: https://ieeexplore.ieee.org/document/10148955/.

Ferraro, A., Galli, A., Moscato, V. and Sperli, G. 2020. A novel approach for predictive

maintenance combining GAF encoding strategies and deep networks. In: 2020 IEEE 6th

International Conference on Dependability in Sensor, Cloud and Big Data Systems and

Application (DependSys). IEEE, pp. 127–132. Available at:

https://ieeexplore.ieee.org/document/9356422/.

Frosini, L. and Bassi, E. 2010. Stator Current and Motor Efficiency as Indicators for

Different Types of Bearing Faults in Induction Motors. IEEE Transactions on Industrial

Electronics 57(1), pp. 244–251. Available at: http://ieeexplore.ieee.org/document/5166499/.

Ganapathy, S., Mallidi, S.H. and Hermansky, H. 2014. Robust feature extraction using

modulation filtering of autoregressive models. IEEE Transactions on Audio, Speech and

Language Processing 22(8), pp. 1285–1295. doi: 10.1109/taslp.2014.2329190.

Gangsar, P. and Tiwari, R. 2020. Signal based condition monitoring techniques for fault

detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems

and Signal Processing 144, p. 106908. Available at:

https://doi.org/10.1016/j.ymssp.2020.106908.

Gao, X., Deng, F. and Yue, X. 2020. Data augmentation in fault diagnosis based on the

Wasserstein generative adversarial network with gradient penalty. Neurocomputing

396(xxxx), pp. 487–494. Available at:

https://linkinghub.elsevier.com/retrieve/pii/S0925231219304953.

Gao, Y., Chai, C., Li, H. and Fu, W. 2023. A Deep Learning Framework for Intelligent Fault

Diagnosis Using AutoML-CNN and Image-like Data Fusion. Machines 11(10), p. 932.

Available at: https://www.mdpi.com/2075-1702/11/10/932.

Grabowski, N., Kremser, R., Düssel, R., Mulder, A. and Tutsch, D. 2023. Information

Extraction from Industrial Sensor Data Using Time Series Meta-Features. Applied Sciences

(Switzerland) 13(12), pp. 1–11. doi: 10.3390/app13127065.

Granados-Lieberman, D., Huerta-Rosales, J.R., Gonzalez-Cordoba, J.L., Amezquita-

215

Sanchez, J.P., Valtierra-Rodriguez, M. and Camarena-Martinez, D. 2023. Time-Frequency

Analysis and Neural Networks for Detecting Short-Circuited Turns in Transformers in Both

Transient and Steady-State Regimes Using Vibration Signals. Applied Sciences 13(22), p.

12218. doi: 10.3390/app132212218.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. 2017. Improved

Training of Wasserstein GANs. Available at: http://arxiv.org/abs/1704.00028.

Guney, G., Yigin, B.O., Guven, N., Alici, Y.H., Colak, B., Erzin, G. and Saygili, G. 2021.

An overview of deep learning algorithms and their applications in neuropsychiatry. Clinical

Psychopharmacology and Neuroscience 19(2), pp. 206–219. doi:

10.9758/cpn.2021.19.2.206.

Guo, T., Zhang, T., Lim, E., Lopez-Benitez, M., Ma, F. and Yu, L. 2022. A Review of

Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEE Access 10, pp.

58869–58903. doi: 10.1109/ACCESS.2022.3179517.

Gupta, P., Malhotra, P., Vig, L. and Shroff, G. 2018. Using features from pre-trained timenet

for clinical predictions. CEUR Workshop Proceedings 2148, pp. 38–44.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. 2018. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. 35th International

Conference on Machine Learning, ICML 2018 5, pp. 2976–2989.

Hakim, M., Omran, A.A.B., Ahmed, A.N., Al-Waily, M. and Abdellatif, A. 2023. A

systematic review of rolling bearing fault diagnoses based on deep learning and transfer

learning: Taxonomy, overview, application, open challenges, weaknesses and

recommendations. Ain Shams Engineering Journal 14(4), p. 101945. Available at:

https://doi.org/10.1016/j.asej.2022.101945.

Han, B., Jia, S., Liu, G. and Wang, J. 2020. Imbalanced Fault Classification of Bearing via

Wasserstein Generative Adversarial Networks with Gradient Penalty. Shock and Vibration

2020. doi: 10.1155/2020/8836477.

Han, B., Zhang, H., Sun, M. and Wu, F. 2021a. A New Bearing Fault Diagnosis Method

216

Based on Capsule Network and Markov Transition Field/Gramian Angular Field. Sensors

21(22), p. 7762. Available at: https://www.mdpi.com/1424-8220/21/22/7762.

Han, T., Zhang, L., Yin, Z. and Tan, A.C.C. 2021b. Rolling bearing fault diagnosis with

combined convolutional neural networks and support vector machine. Measurement:

Journal of the International Measurement Confederation 177(February), p. 109022.

Available at: https://doi.org/10.1016/j.measurement.2021.109022.

Hassanpour, M. and Malek, H. 2019. Document Image Classification using SqueezeNet

Convolutional Neural Network. 5th Iranian Conference on Signal Processing and Intelligent

Systems, ICSPIS 2019 (December), pp. 1–4. doi: 10.1109/ICSPIS48872.2019.9066032.

He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep Residual Learning for Image Recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp.

770–778. Available at: http://ieeexplore.ieee.org/document/7780459/.

He, X., Chang, Z., Zhang, L., Xu, H., Chen, H. and Luo, Z. 2022. A Survey of Defect

Detection Applications Based on Generative Adversarial Networks. IEEE Access

10(September), pp. 113493–113512. doi: 10.1109/ACCESS.2022.3217227.

He, Y., Tang, H., Ren, Y. and Kumar, A. 2021. A semi-supervised fault diagnosis method

for axial piston pump bearings based on DCGAN. Measurement Science and Technology

32(12), p. 125104. Available at: https://iopscience.iop.org/article/10.1088/1361-

6501/ac1fbe.

He, Z., Fu, L., Lin, S. and Bo, Z. 2010. Fault detection and classification in EHV transmission

line based on wavelet singular entropy. IEEE Transactions on Power Delivery 25(4), pp.

2156–2163. doi: 10.1109/TPWRD.2010.2042624.

Hejazi, S., Packianather, M. and Liu, Y. 2022. Novel Preprocessing of Multimodal Condition

Monitoring Data for Classifying Induction Motor Faults Using Deep Learning Methods. In:

2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and

Cyber Security (iSSSC). Gunupur Odisha, India, 15–17 December 2022: IEEE, pp. 1–6.

Available at: https://ieeexplore.ieee.org/document/10051321/.

217

Hejazi, S., Packianather, M. and Liu, Y. 2023. A Novel approach using WGAN-GP and

Conditional WGAN-GP for Generating Artificial Thermal Images of Induction Motor Faults.

Procedia Computer Science 225, pp. 3681–3691. Available at:

https://doi.org/10.1016/j.procs.2023.10.363.

Hejazi, S.Z., Packianather, M. and Liu, Y. 2024. A Novel Customised Load Adaptive

Framework for Induction Motor Fault Classification Utilising MFPT Bearing Dataset.

Machines 12(1), p. 44. Available at: https://www.mdpi.com/2075-1702/12/1/44.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S. 2017. GANs

Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Advances

in Neural Information Processing Systems 2017-Decem(Nips), pp. 6627–6638. Available at:

http://arxiv.org/abs/1706.08500.

Hu, B., Liu, J., Zhao, R., Xu, Y. and Huo, T. 2022. A New Fault Diagnosis Method for

Unbalanced Data Based on 1DCNN and L2-SVM. Applied Sciences (Switzerland) 12(19).

doi: 10.3390/app12199880.

Hu, L. and Zhang, Z. 2019. EEG Signal Processing and Feature Extraction. Hu, L. and

Zhang, Z. eds. Singapore: Springer Singapore. Available at:

http://link.springer.com/10.1007/978-981-13-9113-2.

Huang, M.-L. and Li, Y.-Z. 2021. Use of Machine Learning and Deep Learning to Predict

the Outcomes of Major League Baseball Matches. Applied Sciences 11(10), p. 4499.

Available at: https://www.mdpi.com/2076-3417/11/10/4499.

Huang, X., Han, K., Yang, Y., Bao, D., Tao, Q., Chai, Z. and Zhu, Q. 2024. Can GNN be

Good Adapter for LLMs? Available at: http://arxiv.org/abs/2402.12984.

Hussain, M., Bird, J.J. and Faria, D.R. 2019. A Study on CNN Transfer Learning for Image

Classification. In: Advances in Intelligent Systems and Computing., pp. 191–202. Available

at: http://link.springer.com/10.1007/978-3-319-97982-3_16.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. 2016a.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.

218

Available at: http://arxiv.org/abs/1602.07360.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. 2016b.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.

(December), pp. 0–13. Available at: http://arxiv.org/abs/1602.07360.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. 2016c.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.,

pp. 1–13. Available at: http://arxiv.org/abs/1602.07360.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. 2017. 50

X Fewer Parameters and < 0 . 5Mb Model Size. Iclr (April 2016), pp. 1–13.

Jain, P.H. and Bhosle, S.P. 2021. Study of effects of radial load on vibration of bearing using

time-Domain statistical parameters. IOP Conference Series: Materials Science and

Engineering 1070(1), p. 012130. doi: 10.1088/1757-899x/1070/1/012130.

Jain, P.H. and Bhosle, S.P. 2022. Analysis of vibration signals caused by ball bearing defects

using time-domain statistical indicators. International Journal of Advanced Technology and

Engineering Exploration 9(90), pp. 700–715. doi: 10.19101/IJATEE.2021.875416.

Jang, G.-B. and Cho, S.-B. 2021. Feature Space Transformation for Fault Diagnosis of

Rotating Machinery under Different Working Conditions. Sensors 21(4), p. 1417. Available

at: https://www.mdpi.com/1424-8220/21/4/1417.

Jayamaha, D.K.J.S., Lidula, N.W.A. and Rajapakse, A.D. 2019. Wavelet-Multi Resolution

Analysis Based ANN Architecture for Fault Detection and Localization in DC Microgrids.

IEEE Access 7, pp. 145371–145384. doi: 10.1109/ACCESS.2019.2945397.

Jia, Z., Liu, Z., Vong, C.M. and Pecht, M. 2019. A Rotating Machinery Fault Diagnosis

Method Based on Feature Learning of Thermal Images. IEEE Access 7, pp. 12348–12359.

doi: 10.1109/ACCESS.2019.2893331.

Jong, W.R., Huang, Y.M., Lin, Y.Z., Chen, S.C. and Chen, Y.W. 2020. Integrating Taguchi

method and artificial neural network to explore machine learning of computer aided

219

engineering. Journal of the Chinese Institute of Engineers, Transactions of the Chinese

Institute of Engineers,Series A 43(4), pp. 346–356. Available at:

https://doi.org/10.1080/02533839.2019.1708804.

Jose, J.P., Ananthan, T. and Prakash, N.K. 2022. Ensemble Learning Methods for Machine

Fault Diagnosis. In: 2022 Third International Conference on Intelligent Computing

Instrumentation and Control Technologies (ICICICT). IEEE, pp. 1127–1134. Available at:

https://ieeexplore.ieee.org/document/9917966/.

Kadam, V., Kumar, S., Bongale, A., Wazarkar, S., Kamat, P. and Patil, S. 2021. Enhancing

Surface Fault Detection Using Machine Learning for 3D Printed Products. Applied System

Innovation 4(2), p. 34. Available at: https://www.mdpi.com/2571-5577/4/2/34.

Kaji, M., Parvizian, J. and van de Venn, H.W. 2020. Constructing a Reliable Health Indicator

for Bearings Using Convolutional Autoencoder and Continuous Wavelet Transform. Applied

Sciences 10(24), p. 8948. Available at: https://www.mdpi.com/2076-3417/10/24/8948.

Kareem, A.B. and Hur, J.-W. 2022. Towards Data-Driven Fault Diagnostics Framework for

SMPS-AEC Using Supervised Learning Algorithms. Electronics 11(16), p. 2492. Available

at: https://www.mdpi.com/2079-9292/11/16/2492.

Khanjani, M. and Ezoji, M. 2021. Electrical fault detection in three-phase induction motor

using deep network-based features of thermograms. Measurement 173(July 2020), p.

108622. Available at: https://doi.org/10.1016/j.measurement.2020.108622.

Koehler, F., Mehta, V., Zhou, C. and Risteski, A. 2021. Variational autoencoders in the

presence of low-dimensional data: landscape and implicit bias., pp. 1–21. Available at:

http://arxiv.org/abs/2112.06868.

Kou, R., Lian, S., Xie, N., Lu, B. and Liu, X. 2022. Image-based tool condition monitoring

based on convolution neural network in turning process. The International Journal of

Advanced Manufacturing Technology 119(5–6), pp. 3279–3291. Available at:

https://link.springer.com/10.1007/s00170-021-08282-x.

Krizhevsky, A., Sutskever, I. and Hinton, G.E.H. 2007. Handbook of Approximation

220

Algorithms and Metaheuristics. Gonzalez, T. F. ed. Lake Tahoe, Nevada: Chapman and

Hall/CRC. Available at: https://www.taylorfrancis.com/books/9781420010749.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. 2017. ImageNet classification with deep

convolutional neural networks. Communications of the ACM 60(6), pp. 84–90. doi:

10.1145/3065386.

Kufel, J., Bargieł-Łączek, K., Kocot, S., Koźlik, M., Bartnikowska, W., Janik, M., Czogalik,

Ł., Dudek, P., Magiera, M., Lis, A., Paszkiewicz, I., Nawrat, Z., Cebula, M. and

Gruszczyńska, K. 2023. What Is Machine Learning, Artificial Neural Networks and Deep

Learning?—Examples of Practical Applications in Medicine. Diagnostics 13(15), p. 2582.

Available at: https://www.mdpi.com/2075-4418/13/15/2582.

Kullu, O. and Cinar, E. 2022. A Deep-Learning-Based Multi-Modal Sensor Fusion Approach

for Detection of Equipment Faults. Machines 10(11), p. 1105. doi:

10.3390/machines10111105.

Kumar, V., Mukherjee, S., Verma, A.K. and Sarangi, S. 2022. An AI-Based Nonparametric

Filter Approach for Gearbox Fault Diagnosis. IEEE Transactions on Instrumentation and

Measurement 71, 351661, pp. 1–11. doi: 10.1109/TIM.2022.3186700.

Kuncan, M., Kaplan, K., Mi̇naz, M.R., Kaya, Y. and Ertunç, H.M. 2020. A novel feature

extraction method for bearing fault classification with one dimensional ternary patterns. ISA

Transactions 100, pp. 346–357. doi: 10.1016/j.isatra.2019.11.006.

Kusiak, A. 2020. Convolutional and generative adversarial neural networks in

manufacturing. International Journal of Production Research 58(5), pp. 1594–1604. doi:

10.1080/00207543.2019.1662133.

Latha, R.S., Sreekanth, G.R., Suganthe, R.C., Geetha, M., Selvaraj, R.E., Balaji, S., Harini,

K.R. and Ponnusamy, P.P. 2022. Stock Movement Prediction using KNN Machine Learning

Algorithm. 2022 International Conference on Computer Communication and Informatics,

ICCCI 2022 , pp. 0–4. doi: 10.1109/ICCCI54379.2022.9740781.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning applied to

221

document recognition. Proceedings of the IEEE 86(11), pp. 2278–2323. doi:

10.1109/5.726791.

Lee, G. and Kim, J. 2023. MTGEA: A Multimodal Two-Stream GNN Framework for

Efficient Point Cloud and Skeleton Data Alignment. Sensors 23(5), p. 2787. Available at:

https://www.mdpi.com/1424-8220/23/5/2787.

Lee, H., Han, S.-Y. and Park, K.-J. 2020. Generative Adversarial Network-based Missing

Data Handling and Remaining Useful Life Estimation for Smart Train Control and

Monitoring Systems. Routil, L. ed. Journal of Advanced Transportation 2020, pp. 1–15.

Available at: https://www.hindawi.com/journals/jat/2020/8861942/.

Lee, S.Y., Bu, F., Yoo, J. and Shin, K. 2023. Towards Deep Attention in Graph Neural

Networks: Problems and Remedies. Proceedings of Machine Learning Research 202, pp.

18733–18773.

Lee, Y.O., Jo, J. and Hwang, J. 2017. Application of deep neural network and generative

adversarial network to industrial maintenance: A case study of induction motor fault

detection. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE, pp. 3248–

3253. Available at: http://ieeexplore.ieee.org/document/8258307/.

Li, B., Xian, Y., Zhang, D., Su, J., Hu, X. and Guo, W. 2021. Multi-Sensor Image Fusion: A

Survey of the State of the Art. Journal of Computer and Communications 09(06), pp. 73–

108. doi: 10.4236/jcc.2021.96005.

Li, D., Cao, M., Deng, T. and Zhang, S. 2019a. Wavelet packet singular entropy-based

method for damage identification in curved continuous girder bridges under seismic

excitations. Sensors (Switzerland) 19, 4272(19). doi: 10.3390/s19194272.

Li, J., Ying, Y., Ren, Y., Xu, S., Bi, D., Chen, X. and Xu, Y. 2019b. Research on rolling

bearing fault diagnosis based on multi-dimensional feature extraction and evidence fusion

theory. Royal Society Open Science 6(2), p. 181488. Available at:

https://royalsocietypublishing.org/doi/10.1098/rsos.181488.

Li, S., Mao, J., Gong, X. and Li, Z. 2023a. A novel lidar signal noise reduction algorithm

222

based on improved deep belief network A novel lidar signal noise reduction algorithm based

on improved deep belief network.

Li, X., Xu, L., Guo, H. and Yang, L. 2023b. Application of Graph Convolutional Neural

Networks Combined with Single-Model Decision-Making Fusion Neural Networks in

Structural Damage Recognition. Sensors 23(23), p. 9327. Available at:

https://www.mdpi.com/1424-8220/23/23/9327.

Lin, C.-H., Lin, Y.-C., Wu, Y.-J., Chung, W.-H. and Lee, T.-S. 2021. A Survey on Deep

Learning-Based Vehicular Communication Applications. Journal of Signal Processing

Systems 93(4), pp. 369–388. Available at: https://link.springer.com/10.1007/s11265-020-

01587-2.

Liu, L. and Si, Y.-W. 2022. 1D convolutional neural networks for chart pattern classification

in financial time series. The Journal of Supercomputing 78(12), pp. 14191–14214. Available

at: https://doi.org/10.1007/s11227-022-04431-5.

Liu, M.K. and Weng, P.Y. 2019. Fault diagnosis of ball bearing elements: A generic

procedure based on time-frequency analysis. Measurement Science Review 19(4), pp. 185–

194. doi: 10.2478/msr-2019-0024.

Liu, X., Li, T., Zhang, R., Wu, D., Liu, Y. and Yang, Z. 2021. A GAN and Feature Selection-

Based Oversampling Technique for Intrusion Detection. Security and Communication

Networks 2021. doi: 10.1155/2021/9947059.

Lorenz, A., Siewertsen, B., Kyhe Clemmensen, V., Blaamann Petersen, J., Friederich, J. and

Lazarova-Molnar, S. 2022. Vibration Data Analysis for Fault Detection in Manufacturing

Systems - A Systematic Literature Review. In: 2022 IEEE 17th Conference on Industrial

Electronics and Applications (ICIEA). IEEE, pp. 851–857. Available at:

https://ieeexplore.ieee.org/document/10006127/.

Lu, F., Tong, Q., Feng, Z., Wan, Q., An, G., Li, Y., Wang, M., Cao, J. and Guo, T. 2022.

Explainable 1DCNN with demodulated frequency features method for fault diagnosis of

rolling bearing under time-varying speed conditions. Measurement Science and Technology

223

33(9), p. 095022. Available at: https://iopscience.iop.org/article/10.1088/1361-6501/ac78c5.

Lu, T., Yu, F., Han, B. and Wang, J. 2020. A generic intelligent bearing fault diagnosis

system using convolutional neural networks with transfer learning. IEEE Access 8, pp.

164807–164814. doi: 10.1109/ACCESS.2020.3022840.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.-W. and Precup, D. 2022.

Revisiting Heterophily For Graph Neural Networks. In: 36th Conference on Neural

Information Processing Systems., pp. 1–38. Available at: http://arxiv.org/abs/2210.07606.

Łuczak, D. 2024. Machine Fault Diagnosis through Vibration Analysis: Continuous Wavelet

Transform with Complex Morlet Wavelet and Time–Frequency RGB Image Recognition via

Convolutional Neural Network. Electronics (Switzerland) 13(2). doi:

10.3390/electronics13020452.

Lupea, I. and Lupea, M. 2022. Machine Learning Techniques for Multi-Fault Analysis and

Detection on a Rotating Test Rig Using Vibration Signal. Symmetry 15(1), p. 86. Available

at: https://www.mdpi.com/2073-8994/15/1/86.

Lyu, J. and Yu, Y. 2021. Potential Practical Applications of Basic Neural Networks. In: 2021

2nd International Conference on Intelligent Computing and Human-Computer Interaction

(ICHCI). IEEE, pp. 91–94. Available at: https://ieeexplore.ieee.org/document/9708622/.

Ma, J., Jiang, X., Han, B., Wang, J., Zhang, Z. and Bao, H., 2023. Dynamic simulation

model-driven fault diagnosis method for bearing under missing fault-type samples. Applied

Sciences, 13(5), p.2857.

Ma, Y., Ren, H., Khailany, B., Sikka, H., Luo, L., Natarajan, K. and Yu, B. 2019. High

Performance Graph Convolutional Networks with Applications in Testability Analysis. In:

Proceedings of the 56th Annual Design Automation Conference 2019. New York, NY, USA:

ACM, pp. 1–6. Available at: https://dl.acm.org/doi/10.1145/3316781.3317838.

Ma, Y., Wen, G., Cheng, S., He, X. and Mei, S. 2022. Multimodal Convolutional Neural

Network Model With Information Fusion for Intelligent Fault Diagnosis in Rotating

Machinery. Measurement Science and Technology . doi: 10.1088/1361-6501/ac7eb0.

224

Mahesh, A., Aadhavan, B.A., Meenaa, V.V., Omar, M.B., Ibrahim, R. Bin, Salehuddin, N.F.

and Sujatha, R. 2022. Employment of ANN for Predictive Motor Maintenance and Bearing

Fault Detection Using Park’s Vector Analysis. In: 2022 IEEE 5th International Symposium

in Robotics and Manufacturing Automation (ROMA). IEEE, pp. 1–6. Available at:

https://ieeexplore.ieee.org/document/9915683/.

Martin, S.S. 2021. Precision Medicine in Cardiovascular Disease Prevention. Martin, S. S.

ed. Cham: Springer International Publishing. Available at:

https://link.springer.com/10.1007/978-3-030-75055-8.

Martinez-Herrera, A.L., Ferrucho-Alvarez, E.R., Ledesma-Carrillo, L.M., Mata-Chavez,

R.I., Lopez-Ramirez, M. and Cabal-Yepez, E. 2022. Multiple Fault Detection in Induction

Motors through Homogeneity and Kurtosis Computation. Energies 15, 1541(4). doi:

10.3390/en15041541.

Masud, M.A., Rahman, M.M., Bhadra, S. and Saha, S. 2019. Improved k-means algorithm

using density estimation. 2019 International Conference on Sustainable Technologies for

Industry 4.0, STI 2019 0, pp. 1–6. doi: 10.1109/STI47673.2019.9068033.

Mathur, B. and Kaushik, M. 2018. In Object-Oriented Software Framework Improving

Maintenance Exercises Through K-Means Clustering Approach. In: 2018 3rd International

Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU). IEEE, pp. 1–7.

Available at: https://ieeexplore.ieee.org/document/8519897/.

MathWorks-3 2024. Choose Classifier Options. Available at:

https://www.mathworks.com/help/stats/choose-a-classifier.html [Accessed: 23 January

2024].

MathWorks-4 2023. squeezenet. Available at:

https://www.mathworks.com/help/deeplearning/ref/squeezenet.html [Accessed: 8 February

2024].

MathWorks-5 2023. Pretrained Deep Neural Networks. Available at:

https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-

225

networks.html [Accessed: 18 September 2022].

MathWorks-6 2024. Neural Network Structure. Available at:

https://www.mathworks.com/help/stats/fitcnet.html#mw_a9fa4524-aecf-4d9b-95ef-

58914f7780f3 [Accessed: 15 May 2024].

MathWorks-7 2024. Analyze and Select Features for Pump Diagnostics. Available at:

https://www.mathworks.com/help/predmaint/ug/analyze-and-select-features-for-pump-

diagnostics.html [Accessed: 27 November 2023].

McGhan, F. 2020a. Transfer Learning for Induction Motor Fault Diagnosis. Cardiff

University.

McGhan, F. 2020b. Transfer Learning for Induction Motor Fault Diagnosis. Available at:

https://github.com/frasermcghan/Year3Project [Accessed: 24 September 2022].

McGhan, F. and Feayherston, C. 2020. Transfer Learning for Induction Motor Fault

Diagnosis Fraser McGhan. Cardiff University.

Mehmood, R. and Selwal, A. 2020. Fingerprint Biometric Template Security Schemes:

Attacks and Countermeasures. In: Lecture Notes in Electrical Engineering., pp. 455–467.

Available at: http://link.springer.com/10.1007/978-3-030-29407-6_33.

Metwally, M., Hassan, M.M. and Hassaan, G. 2020. Diagnosis of Rotating Machines Faults

Using Artificial Intelligence Based on Preprocessing for Input Data. In: In Proceedings of

the 26th IEEE Conference of Open Innovations Association FRUCT (FRUCT26), Yaroslavl,

Russia, 23–25 April 2020.

Miikkulainen, R. 2023. Evolution of Neural Networks. In: Proceedings of the Companion

Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, pp.

1008–1025. Available at: https://dl.acm.org/doi/10.1145/3583133.3595036.

Mo, H., Peng, Y., Wei, W., Xi, W. and Cai, T. 2023. SR-GNN Based Fault Classification

and Location in Power Distribution Network. Energies 16(1). doi: 10.3390/en16010433.

226

Moreno-Gutierrez, S.S. and Garcia-Lopez, M. 2023. PREVENTION STRATEGY OF

MAIN NON-COMMUNICABLE DISEASES USING ARTIFICIAL NEURAL

NETWORKS. DYNA NEW TECHNOLOGIES 10(1), p. [10P.]-[10P.]. Available at:

http://www.dyna-newtech.com/Articulos/Ficha.aspx?IdMenu=84f599bc-033c-4468-ae4e-

43e44d36138f&Cod=10765&Idioma=en-GB.

Mustaqim, A.Z., Fadil, N.A. and Tyas, D.A. 2023. Artificial Neural Network for

Classification Task in Tabular Datasets and Image Processing: A Systematic Literature

Review. Jurnal Online Informatika 8(2), pp. 158–168. Available at:

https://join.if.uinsgd.ac.id/index.php/join/article/view/1002.

Najwaini, E., Tarigan, T.E. and Putra, F.P. 2023. Application of the K-Nearest Neighbors

(KNN) Algorithm on the Brain Tumor Dataset. … of Artificial Intelligence in … 1(1), pp.

18–26. Available at: https://www.jurnal.yoctobrain.org/index.php/ijaimi/article/view/85.

Naman, S., Bhattacharyya, S. and Saha, T. 2020. Remote Sensing and Advanced Encryption

Standard Using 256-Bit Key. doi: 10.1007/978-981-13-7403-6_18.

Napoletano, P., Piccoli, F. and Schettini, R. 2018. Anomaly detection in nanofibrous

materials by CNN-based self-similarity. Sensors (Switzerland) 18(1). doi:

10.3390/s18010209.

Narayan, Y. 2021. Hb vsEMG signal classification with time domain and Frequency domain

features using LDA and ANN classifier Materials Today : Proceedings Hb vsEMG signal

classification with time domain and Frequency domain features using LDA and ANN

classifier. Materials Today: Proceedings 37(October 2020), pp. 3226–3230. Available at:

https://doi.org/10.1016/j.matpr.2020.09.091.

Naresh, M., Saxena, P. and Gupta, M. 2023. PPO-ABR: Proximal Policy Optimization based

Deep Reinforcement Learning for Adaptive BitRate streaming. 2023 International Wireless

Communications and Mobile Computing, IWCMC 2023 , pp. 199–204. doi:

10.1109/IWCMC58020.2023.10182379.

Naseh, M., Hasanzadeh, S., Dehghan, S.M., Rezaei, H. and Al-Sumaiti, A.S. 2022.

227

Optimized Design of Rotor Barriers in PM-Assisted Synchronous Reluctance Machines

With Taguchi Method. IEEE Access 10, pp. 38165–38173. doi:

10.1109/ACCESS.2022.3165549.

Nayana, B.R. and Geethanjali, P. 2020. Improved Identification of Various Conditions of

Induction Motor Bearing Faults. IEEE Transactions on Instrumentation and Measurement

69(5), pp. 1908–1919. doi: 10.1109/TIM.2019.2917981.

Nemani, V., Bray, A., Thelen, A., Hu, C. and Daining, S. 2022. Health index construction

with feature fusion optimization for predictive maintenance of physical systems. Structural

and Multidisciplinary Optimization 65, 349(12), pp. 1–23. Available at:

https://doi.org/10.1007/s00158-022-03437-0.

Nguyen, C.D., Ahmad, Z. and Kim, J. 2021. Gearbox Fault Identification Framework Based

on Novel Localized Adaptive Denoising Technique, Wavelet-Based Vibration Imaging, and

Deep Convolutional Neural Network. Applied Sciences 11(16), p. 7575. Available at:

https://www.mdpi.com/2076-3417/11/16/7575.

Nishat Toma, R., Kim, C.-H. and Kim, J.-M. 2021. Bearing Fault Classification Using

Ensemble Empirical Mode Decomposition and Convolutional Neural Network. Electronics

10(11), p. 1248. Available at: https://www.mdpi.com/2079-9292/10/11/1248.

Nishat Toma, R. and Kim, J.-M. 2020. Bearing Fault Classification of Induction Motors

Using Discrete Wavelet Transform and Ensemble Machine Learning Algorithms. Applied

Sciences 10(15), p. 5251. Available at: https://www.mdpi.com/2076-3417/10/15/5251.

Niu, J., Yang, R., Guan, W. and Xie, Z. 2021. Spatial-Temporal Graph Convolutional

Networks for Action Recognition with Adjacency Matrix Generation Network. In: 2021 2nd

International Conference on Electronics, Communications and Information Technology

(CECIT). IEEE, pp. 1150–1154. Available at:

https://ieeexplore.ieee.org/document/9742187/.

Niu, S., Li, B., Wang, X. and Lin, H. 2020. Defect Image Sample Generation With GAN for

Improving Defect Recognition. IEEE Transactions on Automation Science and Engineering

228

17(3), pp. 1–12. Available at: https://ieeexplore.ieee.org/document/9000806/.

Niu, Y., Pu, Y., Yang, Z., Li, X., Zhou, T., Ren, J., Hu, S., Li, H. and Liu, Y. 2023. LightZero:

A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision

Scenarios. (NeurIPS). Available at: http://arxiv.org/abs/2310.08348.

Njoku, O. 2019. Decision Trees and Their Application for Classification and Regression

Problems. MSU Graduate Theses

de Oliveira, A.F.M., Magalhães, E. dos S., Paes, L.E. do. S., Pereira, M. and da Silva, L.R.R.

2023. A Thermal Analysis of LASER Beam Welding Using Statistical Approaches.

Processes 11(7). doi: 10.3390/pr11072023.

Ozaltin, O. and Yeniay, O. 2023. A novel proposed CNN–SVM architecture for ECG

scalograms classification. Soft Computing 27(8), pp. 4639–4658. Available at:

https://doi.org/10.1007/s00500-022-07729-x.

Packianather, M.S., Al-Musawi, A.K. and Anayi, F. 2019. Bee for mining (B4M) – A novel

rule discovery method using the Bees algorithm with quality-weight and coverage-weight.

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science 233(14), pp. 5101–5112. Available at:

http://journals.sagepub.com/doi/10.1177/0954406219833719.

Pal, S. and Gauri, S.K. 2017. Optimization of multi-response dynamic systems integrating

multiple regression and Taguchi’s dynamic signal-to-noise ratio concept. International

Journal of Engineering, Science and Technology 9(1), pp. 16–33. Available at:

https://www.ajol.info/index.php/ijest/article/view/154706.

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F. and Zheng, Y. 2019. Recent Progress on

Generative Adversarial Networks (GANs): A Survey. IEEE Access 7, pp. 36322–36333. doi:

10.1109/ACCESS.2019.2905015.

Pan, Z., Zhang, Z., Meng, Z. and Wang, Y. 2023. A novel fault classification feature

extraction method for rolling bearing based on multi-sensor fusion technology and EB-1D-

TP encoding algorithm. ISA Transactions 142, pp. 427–444. Available at:

229

https://doi.org/10.1016/j.isatra.2023.07.015.

Pandey, G.K. and Srivastava, S. 2023. ResNet-18 comparative analysis of various activation

functions for image classification. 6th International Conference on Inventive Computation

Technologies, ICICT 2023 - Proceedings (Icict), pp. 595–601. doi:

10.1109/ICICT57646.2023.10134464.

Pang, Y., Lin, J., Qin, T. and Chen, Z. 2022. Image-to-Image Translation: Methods and

Applications. IEEE Transactions on Multimedia 24, pp. 3859–3881. doi:

10.1109/TMM.2021.3109419.

Pinedo-Sánchez, L.A., Mercado-Ravell, D.A. and Carballo-Monsivais, C.A. 2020. Vibration

analysis in bearings for failure prevention using CNN. Journal of the Brazilian Society of

Mechanical Sciences and Engineering 42, 628(12), pp. 1–16. doi: 10.1007/s40430-020-

02711-w.

Prabha, D. 2022. A Survey on Alleviating the Naive Bayes Conditional Independence

Assumption., pp. 2022–2025. doi: 10.1109/ICAISS55157.2022.10011103.

Qazi, E.U.H., Almorjan, A. and Zia, T. 2022. A One-Dimensional Convolutional Neural

Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection. Applied

Sciences (Switzerland) 12(16), pp. 4–17. doi: 10.3390/app12167986.

Qiu, S., Cui, X., Ping, Z., Shan, N., Li, Z., Bao, X. and Xu, X. 2023. Deep Learning

Techniques in Intelligent Fault Diagnosis and Prognosis for Industrial Systems: A Review.

Sensors 23(3), p. 1305. Available at: https://www.mdpi.com/1424-8220/23/3/1305.

Radtke, M.-P., Huber, M. and Bock, J. 2023. Increasing Robustness of Data-Driven Fault

Diagnostics with Knowledge Graphs. Annual Conference of the PHM Society 15(1), pp. 1–

9. Available at: https://papers.phmsociety.org/index.php/phmconf/article/view/3552.

Rahmawan, H.A., Widjianto, B.L., Indrawati, K. and Ariefianto, R.M. 2023. Advancing

Fault Diagnosis for Parallel Misalignment Detection in Induction Motors Based on

Convolutional Neural Networks. Jurnal EECCIS (Electrics, Electronics, Communications,

Controls, Informatics, Systems) 17(2), pp. 66–71. Available at:

230

https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/1655.

Ramzan, F., Khan, M.U.G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A. and Mehmood, Z.

2020. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification

of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural Networks.

Journal of Medical Systems 44(2). doi: 10.1007/s10916-019-1475-2.

Rangel-Rodriguez, A.H., Granados-Lieberman, D., Amezquita-Sanchez, J.P., Bueno-Lopez,

M. and Valtierra-Rodriguez, M. 2023. Analysis of Vibration Signals Based on Machine

Learning for Crack Detection in a Low-Power Wind Turbine. Entropy 25(8), p. 1188.

Available at: https://www.mdpi.com/1099-4300/25/8/1188.

Rathore, A. 2017. DEFECTS ANALYSIS AND OPTIMIZATION OF PROCESS

PARAMETERS USING TAGUCHI DoE TECHNIQUE FOR SAND CASTING.

International Research Journal of Engineering and Technology (IRJET) 4(8), pp. 432–437.

Available at: https://irjet.net/archives/V4/i8/IRJET-V4I877.pdf.

Refinetti, M. and Goldt, S. 2022. The dynamics of representation learning in shallow, non-

linear autoencoders. Available at: http://arxiv.org/abs/2201.02115.

Ren, Z., Tang, Y. and Zhang, W. 2021. Quality-related fault diagnosis based on k -nearest

neighbor rule for non-linear industrial processes. International Journal of Distributed Sensor

Networks 17(11), p. 155014772110559. Available at:

http://journals.sagepub.com/doi/10.1177/15501477211055931.

Resendiz-Ochoa, E., Osornio-Rios, R.A., Benitez-Rangel, J.P., Romero-Troncoso, R.D.J.

and Morales-Hernandez, L.A. 2018. Induction Motor Failure Analysis: An Automatic

Methodology Based on Infrared Imaging. IEEE Access 6, pp. 76993–77003. doi:

10.1109/ACCESS.2018.2883988.

Reshadi, M., Zarft, N., Terheide, A. and Dick, S. 2023. Condition Monitoring and Fault

Detection in Small Induction Motors Using Machine Learning Algorithms.

Salehi, A.W., Khan, S., Gupta, G., Alabduallah, B.I. and Almjally, A. 2023. Cnn1.Pdf.

231

Sauer, A., Chitta, K., Müller, J. and Geiger, A. 2021. Projected GANs Converge Faster.

Advances in Neural Information Processing Systems 21(NeurIPS), pp. 17480–17492.

Available at: http://arxiv.org/abs/2111.01007.

Sawant, Y.S. and Agashe, S.D. 2022. Fault Identification in Investment Casting Process

Using Naive Bayes Method. International Journal of Engineering Sciences 15(1). Available

at: https://www.scmrglobal.org/pdfs/Issue 15-1/ES150102 - Yatish sawant 9 - 16.pdf.

Sayyad, S., Kumar, S., Bongale, A., Kamat, P., Patil, S. and Kotecha, K. 2021. Data-Driven

Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and

Future Directions. IEEE Access 9, pp. 110255–110286. Available at:

https://ieeexplore.ieee.org/document/9502093/.

Sewak, M., Sahay, S.K. and Rathore, H. 2020. An Overview of Deep Learning Architecture

of Deep Neural Networks and Autoencoders. Journal of Computational and Theoretical

Nanoscience 17(1), pp. 182–188. Available at:

https://www.ingentaconnect.com/content/10.1166/jctn.2020.8648.

Shamsin, M., Krilova, N., Bazhanova, M., Kazantsev, V., Makarov, V.A. and Lobov, S.

2018. Supervised and unsupervised learning in processing myographic patterns. Journal of

Physics: Conference Series 1117(1), p. 012008. Available at:

https://iopscience.iop.org/article/10.1088/1742-6596/1117/1/012008.

Shao, H., Xia, M., Han, G., Zhang, Y. and Wan, J. 2021. Intelligent Fault Diagnosis of Rotor-

Bearing System under Varying Working Conditions with Modified Transfer Convolutional

Neural Network and Thermal Images. IEEE Transactions on Industrial Informatics 17(5),

pp. 3488–3496. doi: 10.1109/TII.2020.3005965.

Shao, H., Li, W., Cai, B., Wan, J., Xiao, Y. and Yan, S., 2023. Dual-threshold attention-

guided GAN and limited infrared thermal images for rotating machinery fault diagnosis

under speed fluctuation. IEEE Transactions on Industrial Informatics, 19(9), pp.9933-9942.

Shao, S., Yan, R., Lu, Y., Wang, P. and Gao, R.X. 2020. DCNN-Based Multi-Signal

Induction Motor Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement

232

69(6), pp. 2658–2669. Available at: https://ieeexplore.ieee.org/document/8751989/.

Sheinker, A. and Moldwin, M.B. 2016. Magnetic anomaly detection (MAD) of

ferromagnetic pipelines using principal component analysis (PCA). Measurement Science

and Technology 27(4), p. 045104. Available at:

https://iopscience.iop.org/article/10.1088/0957-0233/27/4/045104.

Shi, Z., Li, Y. and Liu, S. 2020. A review of fault diagnosis methods for rotating machinery.

In: 2020 IEEE 16th International Conference on Control & Automation (ICCA). Singapore,

9–11 October 2020: IEEE, pp. 1618–1623. Available at:

https://ieeexplore.ieee.org/document/9264309/.

Sihag, N. and Sangwan, K.S. 2020. A systematic literature review on machine tool energy

consumption. Journal of Cleaner Production 275, p. 123125. Available at:

https://doi.org/10.1016/j.jclepro.2020.123125.

Silik, A., Noori, M., Altabey, W.A., Ghiasi, R. and Wu, Z. 2021. Comparative analysis of

wavelet transform for time-frequency analysis and transient localization in structural health

monitoring. SDHM Structural Durability and Health Monitoring 15(1), pp. 1–22. doi:

10.32604/sdhm.2021.012751.

Singh, P.K. and Susan, S. 2023. Transfer Learning using Very Deep Pre-Trained Models for

Food Image Classification. 2023 14th International Conference on Computing

Communication and Networking Technologies, ICCCNT 2023 , pp. 1–6. doi:

10.1109/ICCCNT56998.2023.10307479.

Sinitsin, V., Ibryaeva, O., Sakovskaya, V. and Eremeeva, V. 2022. Intelligent bearing fault

diagnosis method combining mixed input and hybrid CNN-MLP model. Mechanical Systems

and Signal Processing 180(June), p. 109454. Available at:

https://doi.org/10.1016/j.ymssp.2022.109454.

Skowron, M., Wolkiewicz, M. and Tarchała, G. 2020. Stator winding fault diagnosis of

induction motor operating under the field-oriented control with convolutional neural

networks. Bulletin of the Polish Academy of Sciences Technical Sciences 68(4), pp. 1039–

233

1048. Available at:

https://journals.pan.pl/dlibra/publication/134660/edition/117693/content.

Souza, G.B., Santos, D.F.S., Pires, R.G., Marana, A.N. and Papa, J.P. 2017. Deep Boltzmann

machines for robust fingerprint spoofing attack detection. In: 2017 International Joint

Conference on Neural Networks (IJCNN). IEEE, pp. 1863–1870. Available at:

http://ieeexplore.ieee.org/document/7966077/.

Speck, C. and Bucci, D.J. 2018. Distributed UAV Swarm Formation Control via Object-

Focused, Multi-Objective SARSA. Proceedings of the American Control Conference 2018-

June, pp. 6596–6601. doi: 10.23919/ACC.2018.8430773.

Su, Y., Huang, J., Yao, H., Guan, L., Guo, M. and Zhong, Z. 2021. Multi-task Transient

Contingency Screening with Temporal Graph Convolutional Network in Power Systems.

Journal of Physics: Conference Series 2095(1). doi: 10.1088/1742-6596/2095/1/012027.

Sun, H. and Zhao, S. 2021. Fault Diagnosis for Bearing Based on 1DCNN and LSTM. Qin,

Y. ed. Shock and Vibration 2021, pp. 1–17. Available at:

https://www.hindawi.com/journals/sv/2021/1221462/.

Sun, M. 2020. A method for determining parameter weight early warning model based on

reinforcement learning. Computer Communications 157(2018), pp. 417–422. Available at:

https://doi.org/10.1016/j.comcom.2020.04.044.

Suresh, S. and Naidu, V.P.S. 2022. Mahalanobis-ANOVA criterion for optimum feature

subset selection in multi-class planetary gear fault diagnosis. JVC/Journal of Vibration and

Control 28(21–22), pp. 3257–3268. doi: 10.1177/10775463211029153.

Tangirala, S. 2020. Evaluating the Impact of GINI Index and Information Gain on

Classification using Decision Tree Classifier Algorithm *. 11(2), pp. 612–619.

Taniguchi, S., Suzuki, M., Iwasawa, Y. and Matsuo, Y. 2023. End-to-end Training of Deep

Boltzmann Machines by Unbiased Contrastive Divergence with Local Mode Initialization.

Available at: http://arxiv.org/abs/2305.19684.

234

Taslimipoor, S., Rohanian, O. and Može, S. 2019. GCN-Sem at SemEval-2019 Task 1:

Semantic Parsing using Graph Convolutional and Recurrent Neural Networks. In:

Proceedings of the 13th International Workshop on Semantic Evaluation. Stroudsburg, PA,

USA: Association for Computational Linguistics, pp. 102–106. Available at:

https://www.aclweb.org/anthology/S19-2014.

Tepe, E. and Bilgin, G. 2022. Graph Neural Networks for Colorectal Histopathological

Image Classification. In: 2022 Medical Technologies Congress (TIPTEKNO). IEEE, pp. 1–

4. Available at: https://ieeexplore.ieee.org/document/9960184/.

Thaipisutikul, T., Chen, Y.C., Hui, L., Chen, S.C., Mongkolwat, P. and Shih, T.K. 2019. The

matter of deep reinforcement learning towards practical ai applications. Proceedings - 2019

12th International Conference on Ubi-Media Computing, Ubi-Media 2019 , pp. 24–29. doi:

10.1109/Ubi-Media.2019.00014.

Thalagala, S. and Walgampaya, C. 2021. Application of AlexNet convolutional neural

network architecture-based transfer learning for automated recognition of casting surface

defects. In: 2021 International Research Conference on Smart Computing and Systems

Engineering (SCSE). IEEE, pp. 129–136. Available at:

https://ieeexplore.ieee.org/document/9568315/.

Tian, B., Fan, X., Xu, Z., Wang, Z. and Du, H. 2022. Finite Element Simulation on

Transformer Vibration Characteristics under Typical Mechanical Faults. In: Proceedings of

the 9th International Conference on Power Electronics Systems and Applications, (PESA

2022). Hong Kong, China, 20–22 September 2022: IEEE, pp. 1–4. doi:

10.1109/PESA55501.2022.10038342.

Toma, R.N., Prosvirin, A.E. and Kim, J.-M. 2020. Bearing Fault Diagnosis of Induction

Motors Using a Genetic Algorithm and Machine Learning Classifiers. Sensors 20(7), p.

1884. Available at: https://www.mdpi.com/1424-8220/20/7/1884.

Toma, R.N., Toma, F.H. and Kim, J. 2021. Comparative Analysis of Continuous Wavelet

Transforms on Vibration signal in Bearing Fault Diagnosis of Induction Motor. In: 2021

International Conference on Electronics, Communications and Information Technology

235

(ICECIT). Khulna, Bangladesh, 14–16 September 2021: IEEE, pp. 1–4. Available at:

https://ieeexplore.ieee.org/document/9641199/.

Toma, R.N., Piltan, F., Im, K., Shon, D., Yoon, T.H., Yoo, D. and Kim, J. 2022a. A Bearing

Fault Classification Framework Based on Image Encoding Techniques and a Convolutional

Neural Network under Different Operating Conditions. Sensors 22(13), p. 4881. Available

at: https://www.mdpi.com/1424-8220/22/13/4881.

Toma, R.N., Gao, Y., Piltan, F., Im, K., Shon, D., Yoon, T.H., Yoo, D.-S. and Kim, J.-M.

2022b. Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet

Scattering Transform-Based Features. Sensors 22(22), p. 8958. Available at:

https://www.mdpi.com/1424-8220/22/22/8958.

Tran, V.-L., Vo, T.-C. and Nguyen, T.-Q. 2024. One-dimensional convolutional neural

network for damage detection of structures using time series data. Asian Journal of Civil

Engineering 25(1), pp. 827–860. Available at: https://doi.org/10.1007/s42107-023-00816-w.

Vaibhaw, Sarraf, J. and Pattnaik, P.K. 2020. Brain–computer interfaces and their

applications. In: An Industrial IoT Approach for Pharmaceutical Industry Growth. Elsevier,

pp. 31–54. Available at:

https://linkinghub.elsevier.com/retrieve/pii/B9780128213261000024.

Ve, I.V.T., Karpov, P., Theis, F. and Goos, G. 2019. and Machine Learning – ICANN 2019

Lecture Notes in Computer Science. Available at: http://dx.doi.org/10.1007/978-3-030-

30484-3_22.

Wang, C.C., Kuo, P.H. and Chen, G.Y. 2022. Machine Learning Prediction of Turning

Precision Using Optimized XGBoost Model. Applied Sciences (Switzerland) 12(15). doi:

10.3390/app12157739.

Wang, H., Yang, W., Ouyang, R., Hu, R., Li, K. and Li, K. 2023a. A Heterogeneous Parallel

Computing Approach Optimizing SpTTM on CPU-GPU via GCN. ACM Transactions on

Parallel Computing 10(2). doi: 10.1145/3584373.

Wang, J.-T. and Wang, C. 2019. High Performance WGAN-GP based Multiple-category

236

Network Anomaly Classification System. In: 2019 International Conference on Cyber

Security for Emerging Technologies (CSET). Doha, Qatar: IEEE, pp. 1–7. Available at:

https://ieeexplore.ieee.org/document/8904890/.

Wang, L. and Sng, D. 2015. Deep Learning Algorithms with Applications to Video Analytics

for A Smart City: A Survey., pp. 1–8. Available at: http://arxiv.org/abs/1512.03131.

Wang, R., Zhang, S., Chen, Z. and Li, W. 2021a. Enhanced generative adversarial network

for extremely imbalanced fault diagnosis of rotating machine. Measurement: Journal of the

International Measurement Confederation 180(April), p. 109467. Available at:

https://doi.org/10.1016/j.measurement.2021.109467.

Wang, S.H., Xing, S.B., Lei, Y.G., Lu, N. and Li, N.P. 2021b. Vibration indicator-based

graph convolutional network for semi-supervised bearing fault diagnosis. IOP Conference

Series: Materials Science and Engineering 1043(5), p. 052026. Available at:

https://iopscience.iop.org/article/10.1088/1757-899X/1043/5/052026.

Wang, X., Li, A. and Han, G. 2023b. applied sciences A Deep-Learning-Based Fault

Diagnosis Method of Industrial Bearings Using Multi-Source Information., pp. 1–26.

Wang, Z., She, Q. and Ward, T.E. 2021c. Generative Adversarial Networks in Computer

Vision: A Survey and Taxonomy. ACM Computing Surveys 54(2). doi: 10.1145/3439723.

Wang, Z. and Oates, T. 2015. Imaging time-series to improve classification and imputation.

IJCAI International Joint Conference on Artificial Intelligence 2015-Janua, pp. 3939–3945.

Wei, H., Zhang, Q., Shang, M. and Gu, Y. 2021. Extreme learning Machine-based classifier

for fault diagnosis of rotating Machinery using a residual network and continuous wavelet

transform. 183(April). doi: 10.1016/j.measurement.2021.109864.

Wei, X., Yu, R. and Sun, J. 2020. View-GCN: View-Based Graph Convolutional Network

for 3D Shape Analysis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, pp. 1847–1856. Available at:

https://ieeexplore.ieee.org/document/9156567/.

237

Wodecki, J. and Michalak, A. 2021. Fault-related impulsive component detection for

vibration-based diagnostics in the presence of random impulsive noise. IOP Conference

Series: Earth and Environmental Science 942(1). doi: 10.1088/1755-1315/942/1/012016.

Woodward, K., Kanjo, E. and Tsanas, A. 2024. Combining Deep Learning with Signal-image

Encoding for Multi-Modal Mental Wellbeing Classification. ACM Transactions on

Computing for Healthcare 5(1), pp. 1–23. Available at:

https://dl.acm.org/doi/10.1145/3631618.

Wu, C., Yang, K., Ni, J., Lu, S., Yao, L. and Li, X. 2023a. Investigations for vibration and

friction torque behaviors of thrust ball bearing with self-driven textured guiding surface.

Friction 11(6), pp. 894–910.

Wu, G., Ji, X., Yang, G., Jia, Y. and Cao, C. 2023b. Signal-to-Image: Rolling Bearing Fault

Diagnosis Using ResNet Family Deep-Learning Models. Processes 11(5). doi:

10.3390/pr11051527.

Wu, J., Kong, L., Kang, S., Zuo, H., Yang, Y. and Cheng, Z. 2024. Aircraft Engine Fault

Diagnosis Model Based on 1DCNN-BiLSTM with CBAM. Sensors 24(3), p. 780. Available

at: https://www.mdpi.com/1424-8220/24/3/780.

Wu, W., Cao, K., Li, C., Qian, C., Change, C. and Reed, L. 2019. TransGaGa : Geometry-

Aware Unsupervised Image-to-Image Translation.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. 2021. A Comprehensive Survey

on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems

32(1), pp. 4–24. Available at: https://ieeexplore.ieee.org/document/9046288/.

Xiang, X. and Foo, S. 2021. Recent Advances in Deep Reinforcement Learning Applications

for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—

Fundamentals and Applications in Games, Robotics and Natural Language Processing.

Machine Learning and Knowledge Extraction 3(3), pp. 554–581. doi:

10.3390/make3030029.

Xiao, D., Chen, Y. and Li, D.D. 2021a. One-dimensional deep learning architecture for fast

238

fluorescence lifetime imaging. IEEE Journal of Selected Topics in Quantum Electronics

27(4), pp. 1–10.

Xiao, R., Zhang, Z., Wu, Y., Jiang, P. and Deng, J. 2021b. Multi-scale information fusion

model for feature extraction of converter transformer vibration signal. Measurement: Journal

of the International Measurement Confederation 180(May), p. 109555. Available at:

https://doi.org/10.1016/j.measurement.2021.109555.

Xie, F., Li, G., Fan, Q., Xiao, Q. and Zhou, S. 2023. Optimizing and Analyzing Performance

of Motor Fault Diagnosis Algorithms for Autonomous Vehicles via Cross-Domain Data

Fusion. Processes 11(10), p. 2862. Available at: https://www.mdpi.com/2227-

9717/11/10/2862.

Xu, S., Cui, Y., Yang, C., Wei, S., Dong, W., Huang, L., Liu, C., Ren, Z. and Wang, W.

2021. The fuzzy comprehensive evaluation (FCE) and the principal component analysis

(PCA) model simulation and its applications in water quality assessment of Nansi lake basin,

China. Environmental Engineering Research 26(2), pp. 0–2. doi: 10.4491/eer.2020.022.

Xue, J., Hu, X., Chen, H. and Zhou, G. 2022. Research on LSTM-XGBoost Integrated Model

of Photovoltaic Power Forecasting System. In: 2022 14th International Conference on

Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, pp. 22–25. Available

at: https://ieeexplore.ieee.org/document/9903235/.

Yang, D., Karimi, H.R. and Gelman, L. 2022. A Fuzzy Fusion Rotating Machinery Fault

Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks.,

pp. 1–15.

Yang, F., Song, M., Ma, X., Guo, N. and Xue, Y. 2023a. Research on H7006C Angular

Contact Ball Bearing Slipping Behavior under Operating Conditions. Lubricants 11, 298(7),

pp. 1–14. doi: 10.3390/lubricants11070298.

Yang, F. 2024. Learning-Based Hierarchical Decision-Making Framework for Automatic

Driving in Incompletely Connected Traffic Scenarios.

Yang, Q., Tang, B., Shen, Y. and Li, Q. 2023b. Self-Attention Parallel Fusion Network for

239

Wind Turbine Gearboxes Fault Diagnosis. IEEE Sensors Journal 23(19), pp. 23210–23220.

Available at: https://ieeexplore.ieee.org/document/10236986/.

Yang, S., Zhu, H., Pang, S., Ruan, Z., Lin, S., Ding, Y., Cao, P. and Shen, Z. 2023c.

Preparation a High-Performance of Gangue-Based Geopolymer Backfill Material: Recipes

Optimization Using the Taguchi Method. Materials 16(15), p. 5360. Available at:

https://www.mdpi.com/1996-1944/16/15/5360.

Ye, L., Ma, X. and Wen, C. 2021. Rotating machinery fault diagnosis method by combining

time-frequency domain features and cnn knowledge transfer. Sensors 21, 8168(24). doi:

10.3390/s21248168.

Ye, Q., Liu, S. and Liu, C. 2020. A Deep Learning Model for Fault Diagnosis with a Deep

Neural Network and Feature Fusion on Multi-Channel Sensory Signals. Sensors 20(15), p.

4300. Available at: https://www.mdpi.com/1424-8220/20/15/4300.

Ye, Z. and Yu, J. 2022. Multi-level features fusion network-based feature learning for

machinery fault diagnosis. Applied Soft Computing 122, p. 108900. Available at:

https://doi.org/10.1016/j.asoc.2022.108900.

Yingfan, L., Hong, C. and Jiangtao, C. 2021. Revisiting k-Nearest Neighbor Graph

Construction on High-Dimensional Data : Experiments and Analyses., pp. 1–16. Available

at: http://arxiv.org/abs/2112.02234.

You, Z., Wang, X. and Xu, B. 2013. Investigation of deep Boltzmann machines for phone

recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing. IEEE, pp. 7600–7603. Available at:

http://ieeexplore.ieee.org/document/6639141/.

Yousuf, M., Alsuwian, T., Amin, A.A., Fareed, S. and Hamza, M. 2024. IoT-based health

monitoring and fault detection of industrial AC induction motor for efficient predictive

maintenance. Measurement and Control . Available at:

http://journals.sagepub.com/doi/10.1177/00202940241231473.

Yu, X., Fan, Z., Jamil, M., Aziz, M.Z., Hou, Y., Li, H. and Lv, J. 2021. Transacting Multiple

240

Mother Wavelets in Continuous Wavelet Transform for Epilepsy EEG Classification via

CNN. 2021 IEEE 9th International Conference on Information, Communication and

Networks, ICICN 2021 (January 2022), pp. 76–80. doi:

10.1109/ICICN52636.2021.9673990.

Yuan, L., Lian, D., Kang, X., Chen, Y. and Zhai, K. 2020. Rolling Bearing Fault Diagnosis

Based on Convolutional Neural Network and Support Vector Machine. IEEE Access 8, pp.

137395–137406. doi: 10.1109/ACCESS.2020.3012053.

Zambra, M., Testolin, A. and Zorzi, M. 2023. A Developmental Approach for Training Deep

Belief Networks. Cognitive Computation 15(1), pp. 103–120. Available at:

http://arxiv.org/abs/2207.05473.

Zeng, M., Wang, H., Cheng, Y. and Wei, J. 2024. A compound fault diagnosis model for

gearboxes using correlation information between single faults. Measurement Science and

Technology 35(3), p. 036202. Available at: https://iopscience.iop.org/article/10.1088/1361-

6501/ad1312.

Zhang, B., Pang, X., Zhao, P. and Lu, K. 2023a. A New Method Based on Encoding Data

Probability Density and Convolutional Neural Network for Rotating Machinery Fault

Diagnosis. IEEE Access 11(February), pp. 26099–26113. doi:

10.1109/ACCESS.2023.3257041.

Zhang, C., Geng, T., Guo, A., Tian, J., Herbordt, M., Li, A. and Tao, D. 2022a. H-GCN: A

Graph Convolutional Network Accelerator on Versal ACAP Architecture. In: 2022 32nd

International Conference on Field-Programmable Logic and Applications (FPL). IEEE, pp.

200–208. Available at: https://ieeexplore.ieee.org/document/10035160/.

Zhang, H., Borghesani, P., Randall, R.B. and Peng, Z. 2022b. A benchmark of measurement

approaches to track the natural evolution of spall severity in rolling element bearings.

Mechanical Systems and Signal Processing 166(September 2021), p. 108466. Available at:

https://doi.org/10.1016/j.ymssp.2021.108466.

Zhang, H., Zhang, S., Qiu, L., Zhang, Y., Wang, Y., Wang, Z. and Yang, G. 2022c. A

241

remaining useful life prediction method based on time–frequency images of the mechanical

vibration signals. Scientific Reports 12, 17887(1). doi: 10.1038/s41598-022-22941-3.

Zhang, R., Song, Y., Chen, P., Li, X., Chen, J. and Liu, Z. 2023b. A Novel Multi-Scale

Neural Transformation Graph Method for Micro-Service System Fault Multi-Classification.

In: 2023 2nd International Conference on Machine Learning, Control, and Robotics

(MLCR). IEEE, pp. 7–12. Available at: https://ieeexplore.ieee.org/document/10475450/.

Zhang, S., Zhang, S., Wang, B. and Habetler, T.G. 2020. Deep Learning Algorithms for

Bearing Fault Diagnostics—A Comprehensive Review. IEEE Access 8, pp. 29857–29881.

Available at: https://ieeexplore.ieee.org/document/8988271/.

Zhang, S., Wei, H.L. and Ding, J. 2023c. An effective zero-shot learning approach for

intelligent fault detection using 1D CNN. Applied Intelligence 53(12), pp. 16041–16058. doi:

10.1007/s10489-022-04342-1.

Zhang, X., Zhao, B. and Lin, Y. 2021a. Machine Learning Based Bearing Fault Diagnosis

Using the Case Western Reserve University Data: A Review. IEEE Access 9, pp. 155598–

155608. doi: 10.1109/ACCESS.2021.3128669.

Zhang, X., Wang, J., Wu, L., Meng, F., Wang, L. and Liu, Z. 2022d. Wavelet sparsity

enhancement for extracting transient vibration signatures of bearing structural damages.

Structural Health Monitoring , p. 147592172211171. Available at:

http://journals.sagepub.com/doi/10.1177/14759217221117101.

Zhang, Y., Ren, H., Ye, J., Gao, X., Wang, Y., Ye, K. and Xu, C.-Z. 2021b. AOAM:

Automatic Optimization of Adjacency Matrix for Graph Convolutional Network. In: 2020

25th International Conference on Pattern Recognition (ICPR). IEEE, pp. 5130–5136.

Available at: https://ieeexplore.ieee.org/document/9412046/.

Zhang, Y., Guo, H., Zhou, Y., Xu, C. and Liao, Y. 2023d. Recognising drivers’ mental

fatigue based on EEG multi-dimensional feature selection and fusion. Biomedical Signal

Processing and Control 79(P2), p. 104237. Available at:

https://doi.org/10.1016/j.bspc.2022.104237.

242

Zheng, T., Li, J., Tian, H. and Wu, Q. 2023. The Process Analysis Method of SAR Target

Recognition in Pre-Trained CNN Models. Sensors 23(14). doi: 10.3390/s23146461.

Zhong, H., Yu, S., Trinh, H., Lv, Y., Yuan, R. and Wang, Y. 2023. Fine-tuning Transfer

Learning based on DCGAN Integrated with Self-attention and Spectral Normalization for

Bearing Fault Diagnosis. Measurement 210(January), p. 112421. Available at:

https://doi.org/10.1016/j.measurement.2022.112421.

Zhou, Y., Long, X., Sun, M. and Chen, Z. 2022. Bearing fault diagnosis based on Gramian

angular field and DenseNet. Mathematical Biosciences and Engineering 19(12), pp. 14086–

14101. doi: 10.3934/mbe.2022656.

Zhou, Z., Li, Z., Cai, Z. and Wang, P. 2019. Fault Identification Using Fast k-Nearest

Neighbor Reconstruction. Processes 7(6), p. 340. Available at: https://www.mdpi.com/2227-

9717/7/6/340.

Zhu, B., Dang, M. and Grover, A. 2023a. Scaling Pareto-Efficient Decision Making Via

Offline Multi-Objective RL., pp. 1–18. Available at: http://arxiv.org/abs/2305.00567.

Zhu, Z., Lei, Y., Qi, G., Chai, Y., Mazur, N., An, Y. and Huang, X. 2023b. A review of the

application of deep learning in intelligent fault diagnosis of rotating machinery.

Measurement 206(June 2022), p. 112346. Available at:

https://doi.org/10.1016/j.measurement.2022.112346.

243

Appendix 1: Pythons Codes in Jupyter Notebook

244

1.1. Chapter3: Thermal Images Extraction from Cardiff University File

 import pandas as pd

import numpy as np

import os

from shutil import copyfile

data_dir = r'C:\Users\Shahd\OneDrive - Cardiff University\Cardiff\Phd\Year2\RawMotorData/'

new_dir = r'C:\Users\Shahd\OneDrive - Cardiff University\Cardiff\Phd\Year2\MotorData26/'

for adir in os.listdir(data_dir):

 newadir = new_dir + adir

 print(f"Processing {adir}...")

 if not os.path.exists(newadir):

 os.mkdir(newadir)

 if not adir.startswith('.'):

 bdir = data_dir + f'{adir}/'

 for cdir in os.listdir(bdir):

 if not cdir.startswith('.'):

 ddir = bdir + f'{cdir}/'

 for afile in os.listdir(ddir):

 if afile.endswith('.csv') and 'vibration' in afile:

 filepath = ddir + afile

 data = pd.read_csv(filepath)

 vib_data = data.loc[0:7000000:26, :]

 print(vib_data)

 vib_list = np.array_split(vib_data[' vibration'], 120)

 for i, v in enumerate(vib_list):

 vib_df = pd.DataFrame(data={"vibration": v})

 vib_df.to_csv(newadir + f"/{adir}_{cdir}_vibration_{i}.csv", index=False)

 if afile.endswith('.csv') and 'current' in afile:

 filepath = ddir + afile

 data2= pd.read_csv(filepath)

 cur_data = data2.loc[0:7000000:26, :]

245

 cur_list = np.array_split(cur_data[' phase1'], 120)

 for i, c in enumerate(cur_list):

 cur_df = pd.DataFrame(data={"current1": c})

 cur_df.to_csv(newadir + f"/{adir}_{cdir}_current_{i}.csv", index=False)

 if afile.endswith('.png'):

 filepath = ddir + afile

 new_path = newadir + f"/{adir}_{cdir}_{afile}"

 copyfile(filepath, new_path)

1.2. Chapter3: Thermal Images Preprocessing (Jupyter Notebook)

yyfrom pathlib import Path

import cv2

import os

import numpy as np

import random

from shutil import copyfile

pip install pillow

thermal_path = r'C:\Users\Shahd\OneDrive - Cardiff

University\Cardiff\Phd\Year2\MotorData26\Thermal_Resized_split'

newadir = r'C:\Users\Shahd\OneDrive - Cardiff

University\Cardiff\Phd\Year2\MotorData26\median_thermal/'

#brightness

def brightness(img, low, high):

 value = random.uniform(low, high)

 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

 hsv = np.array(hsv, dtype = np.float64)

 hsv[:,:,1] = hsv[:,:,1]*value

 hsv[:,:,1][hsv[:,:,1]>255] = 255

 hsv[:,:,2] = hsv[:,:,2]*value

 hsv[:,:,2][hsv[:,:,2]>255] = 255

246

 hsv = np.array(hsv, dtype = np.uint8)

 img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

 return img

#rotation

def rotation(img, angle):

 angle = int(random.uniform(-angle, angle))

 h, w = img.shape[:2]

 M = cv2.getRotationMatrix2D((int(w/2), int(h/2)), angle, 1)

 img = cv2.warpAffine(img, M, (w, h))

 return img

#zoom

import cv2

import random

img = cv2.imread('arc_de_triomphe.jpg')

def fill(img, h, w):

 img = cv2.resize(img, (h, w), cv2.INTER_CUBIC)

 return img

def zoom(img, value):

 if value > 1 or value < 0:

 print('Value for zoom should be less than 1 and greater than 0')

 return img

 value = random.uniform(value, 1)

 h, w = img.shape[:2]

 h_taken = int(value*h)

 w_taken = int(value*w)

 h_start = random.randint(0, h-h_taken)

 w_start = random.randint(0, w-w_taken)

 img = img[h_start:h_start+h_taken, w_start:w_start+w_taken, :]

 img = fill(img, h, w)

 return img

for adir in os.listdir(thermal_path):

 newdir = newadir + adir

 print(f"Processing {adir}...")

247

 if not os.path.exists(newdir):

 os.mkdir(newdir)

 if not adir.startswith('.'):

 bdir = thermal_path + f'/{adir}/'

 print(bdir)

 bnewdir = newadir + f'/{adir}/'

 print(bnewdir)

 for cdir in os.listdir(bdir):

 cnewdir = bnewdir + cdir

 if not os.path.exists(cnewdir):

 os.mkdir(cnewdir) #print faults type

 if not cdir.startswith('.'):

 ddir = bdir + f'/{cdir}/'

 for afile in os.listdir(ddir):

 v_path = Path(afile)

 img1 = ddir + afile

 img1= cv2.imread(img1)

 median = cv2.medianBlur(img1,9)

 median = brightness(median, 1, 2)

 median= rotation(median, 40)

 median = zoom(median, 0.4)

 #cv2.imshow("median", median)

 filepath = ddir + afile

 new_path = cnewdir + f"/{v_path}"

 cv2.imwrite(new_path, median)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

1.3. Chapter 3: Preprocessing For Image Fusion

248

for index in data2.index:

#Image new directory is merge_GADF_GADF_thermal

#dirname = os.path.abspath(GADF_GADF_Thermal)

#dirname= r'C:\Users\Shahd\OneDrive - Cardiff

University\Cardiff\Phd\Year2\MotorData26\GADF_GADF_Thermal'

 #assign columns using index

 c= data2['current'][index]

 v= data2['vibration'][index]

 t= data2['thermal'][index]

 fault = data2['Fault'][index]

 dest_directory = merge_GADF_GADF_thermal + f"/{fault}/"

 if not os.path.exists(dest_directory):

 os.mkdir(dest_directory)

 #reading pictures

 c_im=cv2.imread(c)

 v_im=cv2.imread(v)

 t_im=cv2.imread(t)

 #split channels for each feature

 b1, g1, r1 = cv2.split(c_im)

 b2, g2, r2 = cv2.split(v_im)

 b3, g3, r3 = cv2.split(t_im)

 #merge channels

 blue_merge = cv2.merge((b1,b2,b3))

 green_merge = cv2.merge((g1,g2,g3))

 red_merge = cv2.merge((r1,r2,r3))

 #total image

 total = blue_merge+green_merge+red_merge

 # Using cv2.imwrite() method Saving the image

 cv2.imwrite(os.path.join(dest_directory, f'{fault}_GADF_GADF_therm_{index}'+'.JPEG'),

cv2.cvtColor(total, cv2.COLOR_BGR2RGB))

249

Appendix 2: MATLAB Code

250

2.1 Chapter 3: MFPT Files Spitting, CSV. Files Creation, Scalograms Images

(CWT images) Creation and Saving as JPG.

Scalogram of Bearing Data Visualisation

data_inner = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'InnerRaceFault_vload_1.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(data_inner)

% Import data with ORF

data_outer = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'test_data', 'OuterRaceFault_3.mat'));

% Plot original signal and its scalogram

plotBearingSignalAndScalogram(data_outer)

% Import normal bearing data

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'baseline_1.mat'));

% Plot original signal and its scalogram

plotBearingSignalAndScalogram(data_normal)

Prepare Training Data

Unzip the downloaded file.

if exist('RollingElementBearingFaultDiagnosis-Data-master.zip', 'file')

 unzip('RollingElementBearingFaultDiagnosis-Data-master.zip')

end

fileLocation =

'C:\Users\Shahd\Documents\MATLAB\Examples\R2022a\predmaint_deeplearning\Rol

lingElementBearingFaultDiagnosisUsingDeepLearningExample\RollingElementBearin

gFaultDiagnosis-Data-master\train_data'

ensembleTrain = fileEnsembleDatastore(fileLocation, fileExtension)

251

ensembleTrain.ReadFcn = @readMFPTBearing;

ensembleTrain.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF"];

ensembleTrain.ConditionVariables = ["Label", "FileName"];

ensembleTrain.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF", "Label", "FileName"]

% Wavelet scalograms creation

reset(ensembleTrain)

while hasdata(ensembleTrain)

 folderName = 'train_image';

 convertSignalToScalogram(ensembleTrain,folderName);

end

% Create image datastore to store all training images

path = fullfile('.', folderName);

imds = imageDatastore(path, ...

 'IncludeSubfolders',true,'LabelSource','foldernames');

% Use 20% training data as validation set

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize');

Helper Functions

function plotBearingSignalAndScalogram(data)

% Convert 1-D bearing signals to scalograms through wavelet transform

fs = data.bearing.sr;

t_total = 0.1; % seconds

n = round(t_total*fs);

bearing = data.bearing.gs(1:n);

[cfs,frq] = cwt(bearing,'amor', fs);

% Plot the original signal and its scalogram

figure

subplot(2,1,1)

plot(0:1/fs:(n-1)/fs,bearing)

xlim([0,0.1])

252

title('Vibration Signal')

xlabel('Time (s)')

ylabel('Amplitude')

subplot(2,1,2)

surface(0:1/fs:(n-1)/fs,frq,abs(cfs))

shading flat

xlim([0,0.1])

ylim([0,max(frq)])

title('Scalogram')

xlabel('Time (s)')

ylabel('Frequency (Hz)')

end

function convertSignalToScalogram(ensemble,folderName)

% Convert 1-D signals to scalograms and save scalograms as images

data = read(ensemble);

fs = data.sr

x = data.gs{:};

label = char(data.Label);

fname = char(data.FileName);

ratio = 5000/97656;

interval = ratio*fs

N = floor(numel(x)/interval);

% Create folder to save images

path = fullfile('.',folderName,label);

if ~exist(path,'dir')

 mkdir(path);

end

%new added

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1');

if ~exist(path_numerical,'dir')

 mkdir(path_numerical);

253

end

for idx = 1:N

 sig = envelope(x(interval*(idx-1)+1:interval*idx));

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added)

 writematrix(sig,file_path); %new

 %like we are creating subfolders based on the interval equal data ineach

 %file not using envelop transform

 cfs = cwt(sig,'amor', seconds(1/fs));

 cfs = abs(cfs);

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320));

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']);

 imwrite(imresize(img,[224,224]),outfname);

end

end

2.2 Chapter 5: Phase 1: Step1: Data Preprocessing and General Load-Dependent

Feature Extraction, and Phase 2: Step 3: CLAF

Normal Dataset

% Import normal bearing data

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'test_data', 'baseline_2.mat'));

Inner load comparison

IRF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_2.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_50)

IRF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_3.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_100)

IRF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

254

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_4.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_150)

IRF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_5.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_200)

IRF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_6.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_250)

IRF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_7.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(IRF_300)

Create Inner Load ensemble

The code calculates the minimum length of the bearing signal data across all load factors before

creating the ensemble. The subsequent extraction of the bearing signal data is limited to this

minimum length, ensuring that all ensembles have the same number of entries because the

baseline is 6 seconds while others are only 3 seconds; now they are the same.

% Load dataset of different Inner load factors and corresponding variable names

load_factors = [50, 100, 150, 200, 250, 270, 300];

variable_names = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250',

'data_normal','IRF_300'};

% Initialize an empty ensemble with two columns

ensemble = table();

% Find the minimum length of bearing signal data across all load factors

min_length = Inf; % Initialize with infinity

for i = 1:length(load_factors)

255

 % Construct the variable name

 variable_name = variable_names{i};

 if strcmp(variable_name, 'data_normal')

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = data_normal.bearing.sr;

 t_total = 3; % seconds

 n = round(t_total * fs);

 bearing_data = data_normal.bearing.gs(1:n);

 else

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = eval([variable_name '.bearing.sr']);

 t_total = 3; % seconds

 n = round(t_total * fs);

 bearing_data = eval([variable_name '.bearing.gs(1:n)']);

 end

 % Update the minimum length

 min_length = min(min_length, length(bearing_data));

end

for i = 1:length(load_factors)

 % Construct the variable name

 variable_name = variable_names{i};

 if strcmp(variable_name, 'data_normal')

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = data_normal.bearing.sr;

 bearing_data = data_normal.bearing.gs(1:min_length);

 else

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = eval([variable_name '.bearing.sr']);

 bearing_data = eval([variable_name '.bearing.gs(1:min_length)']);

 end

 % Create a timetable for the current variable

256

 timetable_data = timetable(seconds(0:1/fs:(length(bearing_data)-1)/fs)', bearing_data);

 % Add the timetable and load factor as rows to the ensemble

 ensemble = [ensemble; {timetable_data, load_factors(i)}];

end

% Rename the columns of the ensemble

ensemble.Properties.VariableNames = {'Timetable', 'LoadFactor'};

% Display the resulting ensemble

disp(ensemble);

%use the table in diagnosticFeatureDesigner the results are in the word

%file then generate features after that do the ranking

Features Ranking

% Load the provided table load (INNERONLY_feature extraction_Phase1_thesis)

% Exclude the 'LoadFactor' and 'BandPower' columns

features = FeatureTable1_1(:, 2:end-1);

% Calculate the standard deviation for each feature

stdValues = varfun(@std, features);

% Calculate the range for each feature

rangeValues = varfun(@(x) max(x) - min(x), features);

% Get the feature names

featureNames = cellfun(@(x) x(strfind(x, '/')+1:end), features.Properties.VariableNames,

'UniformOutput', false);

% Create a ranking table with feature names, std, and range

rankingTable = table(featureNames', stdValues.Variables', rangeValues.Variables',

'VariableNames', {'Feature', 'Std', 'Range'});

% Sort the ranking table based on the desired metric (e.g., std or range)

sortedTable = sortrows(rankingTable, 'Std', 'descend'); % Change 'Std' to 'Range' if you want to

rank by range

% Display the sorted table

disp(sortedTable);

%use the table in diagnosticFeatureDesigner the results are in the word

%file then generate features after that do the ranking

diagnosticFeatureDesigner

%saved in

257

%C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearing

FaultDiagnosisExample\enessemble_inner

%enessemble as variable (enessemble_inner_Full) in the same extenstion

Use CWT "Amor" in finding the energy of each load and proof the difference

% Define the wavelet type and parameters

wavelet_type = 'amor';

num_scales = 5;

% Initialize empty cell arrays to store load factors and energies

load_factors = ensemble.LoadFactor;

energies = cell(length(load_factors), 1);

% Calculate wavelet energy for each load

for i = 1:length(load_factors)

 % Extract the timetable data for the current load

 timetable_data = ensemble.Timetable{i};

 % Get the vibration signal from the timetable data

 vibration_signal = timetable_data.Variables;

 % Adjust the length of the vibration signal for load 270 if necessary

 if strcmp(load_factors(i), 270)

 target_length = length(vibration_signal) - (length(vibration_signal) -

length(ensemble.Timetable{1}.Variables));

 vibration_signal = vibration_signal(1:target_length);

 end

 % Perform wavelet transform

 [cfs, ~] = cwt(vibration_signal, wavelet_type, num_scales);

 % Calculate wavelet energy as the squared absolute values of coefficients

 wse = sum(abs(cfs).^2, 1);

 % Store the energy

 energies{i} = wse;

end

% Create separate tables for each load factor

tables = cell(length(load_factors), 1);

for i = 1:length(load_factors)

258

 tables{i} = table(repmat(load_factors(i), size(energies{i})), energies{i}, 'VariableNames',

{'LoadFactor', 'WaveletEnergy'});

end

% Concatenate the tables into a single table

energy_table = vertcat(tables{:});

% Display the energy table

disp(energy_table);

% Sort the energy_table based on LoadFactor

energy_table_sorted = sortrows(energy_table, 'LoadFactor');

% Find unique load factors and create group indices

[unique_load_factors, ~, load_factor_group_indices] =

unique(energy_table_sorted.LoadFactor);

% Calculate mean energy using loop and if condition

mean_energy = NaN(size(unique_load_factors)); % Initialize mean energy vector

for i = 1:length(unique_load_factors)

 idx = (load_factor_group_indices == i);

 mean_energy(i) = mean(energy_table_sorted.WaveletEnergy(idx));

end

% Create a new table to store the results

mean_energy_table_inner = table(unique_load_factors, mean_energy, 'VariableNames',

{'LoadFactor', 'MeanEnergy'});

% Display the mean energy table

disp(mean_energy_table_inner);

% Extract data for the normal load (270)

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270);

% Loop through each load and perform the t-test

for load = unique(energy_table.LoadFactor)'

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load);

 % Perform the t-test

 [h, p, ci, stats] = ttest2(data_normal, data_current);

 % Display results

 fprintf('\nLoad Factor %d vs. Normal (270):\n', load);

259

 fprintf('p-value: %f\n', p);

 % Check for significance

 if h

 fprintf('Significant difference\n');

 else

 fprintf('No significant difference\n');

 end

 % Display confidence intervals if needed

 fprintf('Confidence Interval: [%f, %f]\n', ci(1), ci(2));

 % Display t-test statistics if needed

 disp(stats);

 end

end

Significance

% Initialize variables to store results

loadFactors = unique(energy_table.LoadFactor)';

numLoads = numel(loadFactors);

meanValues = zeros(numLoads, 1);

stdValues = zeros(numLoads, 1);

seValues = zeros(numLoads, 1);

meanDiffValues = zeros(numLoads, 1);

ciValues = zeros(numLoads, 2);

tValues = zeros(numLoads, 1);

dfValues = zeros(numLoads, 1);

pValues = zeros(numLoads, 1);

% Extract data for the normal load (270)

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270);

% Loop through each load and perform the t-test

for i = 1:numLoads

 load = loadFactors(i);

260

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load);

 % Perform the t-test

 [h, p, ci, stats] = ttest2(data_normal, data_current);

 % Store results

 meanValues(i) = mean(data_current);

 stdValues(i) = std(data_current);

 seValues(i) = std(data_current) / sqrt(length(data_current));

 meanDiffValues(i) = mean(data_current) - mean(data_normal);

 ciValues(i, :) = ci;

 tValues(i) = stats.tstat;

 dfValues(i) = stats.df;

 pValues(i) = p;

 % Display results

 fprintf('\nLoad Factor %d vs. Normal (270):\n', load);

 fprintf('Number of Samples: %d\n', length(data_current));

 fprintf('Mean: %f\n', meanValues(i));

 fprintf('Standard Deviation: %f\n', stdValues(i));

 fprintf('Standard Error of the Mean: %f\n', seValues(i));

 fprintf('Mean Difference: %f\n', meanDiffValues(i));

 fprintf('95%% Confidence Interval: [%f, %f]\n', ciValues(i, 1), ciValues(i, 2));

 fprintf('t-test Value: %f\n', tValues(i));

 fprintf('Degrees of Freedom: %f\n', dfValues(i));

 fprintf('p-value: %f\n', pValues(i));

 % Check for significance

 if h

 fprintf('Significant difference\n');

 else

 fprintf('No significant difference\n');

 end

 end

end

% Initialize variables to store results

261

loadFactors = unique(energy_table.LoadFactor)';

numLoads = numel(loadFactors);

resultsTable = table('Size', [numLoads, 11], 'VariableTypes', {'double', 'double', 'double',

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 'VariableNames',

{'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 'CI_Lower', 'CI_Upper',

'tValue', 'DF', 'Significant'});

% Extract data for the normal load (270)

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270);

% Loop through each load and perform the t-test

for i = 1:numLoads

 load = loadFactors(i);

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load);

 % Perform the t-test

 [h, ~, ci, stats] = ttest2(data_normal, data_current);

 % Store results in the table

 resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current),

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1),

ci(2), stats.tstat, stats.df, h};

 end

end

% Display the results table

disp(resultsTable);

% Initialize variables to store results

loadFactors = unique(energy_table.LoadFactor)';

numLoads = numel(loadFactors);

resultsTable = table('Size', [numLoads, 12], 'VariableTypes', {'double', 'double', 'double',

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'},

'VariableNames', {'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff',

'CI_Lower', 'CI_Upper', 'tValue', 'DF', 'pValue', 'Significant'});

% Extract data for the normal load (270)

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270);

262

% Loop through each load and perform the t-test

for i = 1:numLoads

 load = loadFactors(i);

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load);

 % Perform the t-test

 [h, p, ci, stats] = ttest2(data_normal, data_current)

 % Store results in the table

 resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current),

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1),

ci(2), stats.tstat, stats.df, p, h};

 end

end

% Display the results table

disp(resultsTable);

% Bar plot of mean energy

figure;

bar(mean_energy_table_inner.LoadFactor, mean_energy_table_inner.MeanEnergy);

xlabel('Load Factor');

ylabel('Mean Energy');

title('Mean Energy vs. Load Factor (Inner Fault)');

xlim({"50","300"})

colorbar

ylim([0.0 40.0])

set(gca,"XGrid","off","YGrid","on")

colorbar

Load Index

% Calculate the energy values for each load factor

load_factors = energy_table.LoadFactor;

wavelet_energies = energy_table.WaveletEnergy;

263

% Normalize the energy values using min-max scaling

min_energy = min(wavelet_energies);

max_energy = max(wavelet_energies);

normalized_energies = (wavelet_energies - min_energy) / (max_energy - min_energy);

% Find the indices corresponding to the normal condition (load factor 270)

normal_indices = find(load_factors == 270);

% Calculate the deviation from the normal condition

deviation = normalized_energies;

deviation(normal_indices) = 0;

% Define severity thresholds

mild_threshold = 0.2; % Adjust according to your application

moderate_threshold = 0.5; % Adjust according to your application

% Categorize the severity based on deviation magnitude

severity = cell(size(normalized_energies));

severity(deviation < mild_threshold) = {'Mild'};

severity(deviation >= mild_threshold & deviation < moderate_threshold) = {'Moderate'};

severity(deviation >= moderate_threshold) = {'Severe'};

% Determine the number of elements to keep

num_elements = min([numel(load_factors), numel(normalized_energies), numel(deviation),

numel(severity)]);

% Print out the sizes of the arrays for debugging

fprintf('Size of load_factors: %d\n', numel(load_factors));

fprintf('Size of normalized_energies: %d\n', numel(normalized_energies));

fprintf('Size of deviation: %d\n', numel(deviation));

fprintf('Size of severity: %d\n', numel(severity));

fprintf('Number of elements to keep: %d\n', num_elements);

% Truncate the arrays to the common size

load_factors = load_factors(1:num_elements);

deviation = deviation(1:num_elements);

severity = severity(1:num_elements);

% Truncate the normalized_energies array separately

normalized_energies = normalized_energies(1:numel(load_factors));

264

% Reshape the arrays to have the same dimensions

load_factors = reshape(load_factors, [], 1);

normalized_energies = reshape(normalized_energies, [], 1);

deviation = reshape(deviation, [], 1);

severity = reshape(severity, [], 1);

% Create a table to store the results

degradation_table_inner = table(load_factors, mean_energy, normalized_energies, deviation,

severity, 'VariableNames', {'LoadFactor', 'MeanEnergy', 'Normalized Energy','Deviation from

Normal','Severity of Changing Load'});

% Display the degradation table

disp(degradation_table_inner);

Outer Load Comparison

ORF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_2.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_50)

ORF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_3.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_100)

ORF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_4.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_150)

ORF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_5.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_200)

ORF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

265

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_6.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_250)

ORF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_7.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(ORF_200)

Outer ensemble

% Load dataset of different Inner load factors and corresponding variable names

load_factors = [50, 100, 150, 200, 250, 270, 300];

variable_names = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'data_normal',

'ORF_300'};

% Initialize an empty ensemble with two columns

ensemble_outer = table();

% Find the minimum length of bearing signal data across all load factors

min_length = Inf; % Initialize with infinity

for i = 1:length(load_factors)

 % Construct the variable name

 variable_name = variable_names{i};

 if strcmp(variable_name, 'data_normal')

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = data_normal.bearing.sr;

 t_total = 3; % seconds

 n = round(t_total * fs);

 bearing_data = data_normal.bearing.gs(1:n);

 else

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = eval([variable_name '.bearing.sr']);

266

 t_total = 3; % seconds

 n = round(t_total * fs);

 bearing_data = eval([variable_name '.bearing.gs(1:n)']);

 end

 % Update the minimum length

 min_length = min(min_length, length(bearing_data));

end

for i = 1:length(load_factors)

 % Construct the variable name

 variable_name = variable_names{i};

 if strcmp(variable_name, 'data_normal')

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = data_normal.bearing.sr;

 bearing_data = data_normal.bearing.gs(1:min_length);

 else

 % Extract the desired portion of the bearing signal from the loaded dataset

 fs = eval([variable_name '.bearing.sr']);

 bearing_data = eval([variable_name '.bearing.gs(1:min_length)']);

 end

 % Create a timetable for the current variable

 timetable_data = timetable(seconds(0:1/fs:(length(bearing_data)-1)/fs)', bearing_data);

 % Add the timetable and load factor as rows to the ensemble

 ensemble_outer = [ensemble_outer; {timetable_data, load_factors(i)}];

end

% Rename the columns of the ensemble

ensemble_outer.Properties.VariableNames = {'Timetable', 'LoadFactor'};

% Display the resulting ensemble

disp(ensemble_outer);

Use CWT "Amor" in finding the energy of each load and proof the difference

% Define the wavelet type and parameters

wavelet_type = 'amor';

num_scales = 5;

267

% Initialize empty cell arrays to store load factors and energies

load_factors = ensemble_outer.LoadFactor;

energies = cell(length(load_factors), 1);

% Calculate wavelet energy for each load

for i = 1:length(load_factors)

 % Extract the timetable data for the current load

 timetable_data = ensemble_outer.Timetable{i};

 % Get the vibration signal from the timetable data

 vibration_signal = timetable_data.Variables;

 % Adjust the length of the vibration signal for load 270 if necessary

 if strcmp(load_factors(i), 270)

 target_length = length(vibration_signal) - (length(vibration_signal) -

length(ensemble_outer).Timetable{1}.Variables);

 vibration_signal = vibration_signal(1:target_length);

 end

 % Perform wavelet transform

 [cfs, ~] = cwt(vibration_signal, wavelet_type, num_scales);

 % Calculate wavelet energy as the squared absolute values of coefficients

 wse = sum(abs(cfs).^2, 1);

 % Store the energy

 energies{i} = wse;

end

% Create separate tables for each load factor

tables = cell(length(load_factors), 1);

for i = 1:length(load_factors)

 tables{i} = table(repmat(load_factors(i), size(energies{i})), energies{i}, 'VariableNames',

{'LoadFactor', 'WaveletEnergy'});

end

% Concatenate the tables into a single table

energy_table_outer = vertcat(tables{:});

% Display the energy table

disp(energy_table_outer);

268

% Find unique load factors and create group indices

[unique_load_factors, ~, load_factor_group_indices] = unique(energy_table_outer.LoadFactor);

% Calculate mean energy using loop and if condition

mean_energy = NaN(size(unique_load_factors)); % Initialize mean energy vector

for i = 1:length(unique_load_factors) % organised by numbers orders

 idx = (load_factor_group_indices == i); % Find indices for current load factor group

 mean_energy(i) = mean(energy_table_outer.WaveletEnergy(idx)); % Calculate mean energy

end

% Create a new table to store the results

mean_energy_table_outer = table(unique_load_factors, mean_energy, 'VariableNames',

{'LoadFactor', 'MeanEnergy'});

 Display the mean energy table

disp(mean_energy_table_outer);

%information

whos ensemble_outer

head(ensemble_outer)

ensemble_outer.Properties.VariableNames

properties(ensemble_outer{1, 1}{1})

ensemble_outer(1:5, :)

ensemble_outer.Properties.VariableNames

summary(ensemble_outer{1, 1}{1})

% Bar plot of mean energy

figure;

bar(mean_energy_table_outer.LoadFactor, mean_energy_table_outer.MeanEnergy);

xlabel('Load Factor');

ylabel('Mean Energy');

title('Mean Energy vs. Load Factor (Outer Fault)');

xlim({"50","300"})

colorbar

colorbar

269

ylim([0.0 40.0])

set(gca,"XGrid","off","YGrid","on")

colorbar

Load Index

% Calculate the energy values for each load factor

load_factors = energy_table_outer.LoadFactor;

wavelet_energies = energy_table_outer.WaveletEnergy;

% Normalize the energy values using min-max scaling

min_energy = min(wavelet_energies);

max_energy = max(wavelet_energies);

normalized_energies = (wavelet_energies - min_energy) / (max_energy - min_energy);

% Find the indices corresponding to the normal condition (load factor 270)

normal_indices = find(load_factors == 270);

% Calculate the deviation from the normal condition

deviation = normalized_energies;

deviation(normal_indices) = 0;

% Define severity thresholds

mild_threshold = 0.2; % Adjust according to your application

moderate_threshold = 0.5; % Adjust according to your application

% Categorize the severity based on deviation magnitude

severity = cell(size(normalized_energies));

severity(deviation < mild_threshold) = {'Mild'};

severity(deviation >= mild_threshold & deviation < moderate_threshold) = {'Moderate'};

severity(deviation >= moderate_threshold) = {'Severe'};

% Determine the number of elements to keep

num_elements = min([numel(load_factors), numel(normalized_energies), numel(deviation),

numel(severity)]);

% Print out the sizes of the arrays for debugging

fprintf('Size of load_factors: %d\n', numel(load_factors));

fprintf('Size of normalized_energies: %d\n', numel(normalized_energies));

fprintf('Size of deviation: %d\n', numel(deviation));

fprintf('Size of severity: %d\n', numel(severity));

270

fprintf('Number of elements to keep: %d\n', num_elements);

% Truncate the arrays to the common size

load_factors = load_factors(1:num_elements);

deviation = deviation(1:num_elements);

severity = severity(1:num_elements);

% Truncate the normalized_energies array separately

normalized_energies = normalized_energies(1:numel(load_factors));

% Reshape the arrays to have the same dimensions

load_factors = reshape(load_factors, [], 1);

normalized_energies = reshape(normalized_energies, [], 1);

deviation = reshape(deviation, [], 1);

severity = reshape(severity, [], 1);

% Create a table to store the results

degradation_table_outer = table(load_factors, mean_energy, normalized_energies, deviation,

severity, 'VariableNames', {'LoadFactor', 'MeanEnergy', 'Normalized

Energy','Deviation','Severity of Changing Load'});

% Display the degradation table

disp(degradation_table_outer);

Significance

% Initialize variables to store results

loadFactors = unique(degradation_table_outer.LoadFactor)';

numLoads = numel(loadFactors);

meanValues = zeros(numLoads, 1);

stdValues = zeros(numLoads, 1);

seValues = zeros(numLoads, 1);

meanDiffValues = zeros(numLoads, 1);

ciValues = zeros(numLoads, 2);

tValues = zeros(numLoads, 1);

dfValues = zeros(numLoads, 1);

pValues = zeros(numLoads, 1);

% Extract data for the normal load (270)

data_normal = energy_table_outer.WaveletEnergy(degradation_table_outer.LoadFactor ==

270);

% Loop through each load and perform the t-test

271

for i = 1:numLoads

 load = loadFactors(i);

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load);

 % Perform the t-test

 [h, p, ci, stats] = ttest2(data_normal, data_current);

 % Store results

 meanValues(i) = mean(data_current);

 stdValues(i) = std(data_current);

 seValues(i) = std(data_current) / sqrt(length(data_current));

 meanDiffValues(i) = mean(data_current) - mean(data_normal);

 ciValues(i, :) = ci;

 tValues(i) = stats.tstat;

 dfValues(i) = stats.df;

 pValues(i) = p;

 % Display results

 fprintf('\nLoad Factor %d vs. Normal (270):\n', load);

 fprintf('Number of Samples: %d\n', length(data_current));

 fprintf('Mean: %f\n', meanValues(i));

 fprintf('Standard Deviation: %f\n', stdValues(i));

 fprintf('Standard Error of the Mean: %f\n', seValues(i));

 fprintf('Mean Difference: %f\n', meanDiffValues(i));

 fprintf('95%% Confidence Interval: [%f, %f]\n', ciValues(i, 1), ciValues(i, 2));

 fprintf('t-test Value: %f\n', tValues(i));

 fprintf('Degrees of Freedom: %f\n', dfValues(i));

 fprintf('p-value: %f\n', pValues(i));

 % Check for significance

 if h

 fprintf('Significant difference\n');

 else

 fprintf('No significant difference\n');

 end

 end

272

end

% Initialize variables to store results

loadFactors = unique(energy_table_outer.LoadFactor)';

numLoads = numel(loadFactors);

resultsTable = table('Size', [numLoads, 11], 'VariableTypes', {'double', 'double', 'double',

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 'VariableNames',

{'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 'CI_Lower', 'CI_Upper',

'tValue', 'DF', 'Significant'});

% Extract data for the normal load (270)

data_normal = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == 270);

% Loop through each load and perform the t-test

for i = 1:numLoads

 load = loadFactors(i);

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load);

 % Perform the t-test

 [h, ~, ci, stats] = ttest2(data_normal, data_current);

 % Store results in the table

 resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current),

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1),

ci(2), stats.tstat, stats.df, h};

 end

end

% Display the results table

disp(resultsTable);

% Initialize variables to store results

loadFactors = unique(energy_table_outer.LoadFactor)';

numLoads = numel(loadFactors);

resultsTable = table('Size', [numLoads, 12], 'VariableTypes', {'double', 'double', 'double',

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'},

273

'VariableNames', {'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff',

'CI_Lower', 'CI_Upper', 'tValue', 'DF', 'pValue', 'Significant'});

% Extract data for the normal load (270)

data_normal = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == 270);

% Loop through each load and perform the t-test

for i = 1:numLoads

 load = loadFactors(i);

 if load ~= 270

 % Extract data for the current load

 data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load);

 % Perform the t-test

 [h, p, ci, stats] = ttest2(data_normal, data_current)

 % Store results in the table

 resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current),

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1),

ci(2), stats.tstat, stats.df, p, h};

 end

end

% Display the results table

disp(resultsTable);

SPLITTING

diagnosticFeatureDesigner

Features Ranking

% Load the provided table

% Load the provided table load (OuterONLY_feature extraction_Phase1_thesis)

% Exclude the 'LoadFactor' and 'BandPower' columns

features = FeatureTable1_3(:, 2:end-1);

% Calculate the standard deviation for each feature

stdValues = varfun(@std, features);

% Calculate the range for each feature

rangeValues = varfun(@(x) max(x) - min(x), features);

274

% Get the feature names

featureNames = cellfun(@(x) x(strfind(x, '/')+1:end), features.Properties.VariableNames,

'UniformOutput', false);

% Create a ranking table with feature names, std, and range

rankingTable = table(featureNames', stdValues.Variables', rangeValues.Variables',

'VariableNames', {'Feature', 'Std', 'Range'});

% Sort the ranking table based on the desired metric (e.g., std or range)

sortedTable = sortrows(rankingTable, 'Std', 'descend'); % Change 'Std' to 'Range' if you want to

rank by range

% Display the sorted table

disp(sortedTable);

tableHeadings_o = FeatureTable1_3.Properties.VariableNames;

Wavelet coefficents comparison (Inner)

plotWaveletCoefficients(IRF_50);

plotWaveletCoefficients(IRF_100);

plotWaveletCoefficients(IRF_150);

plotWaveletCoefficients(IRF_200);

plotWaveletCoefficients(IRF_250);

plotWaveletCoefficients(IRF_300);

Wavelet coefficents comparison (Outer)

plotWaveletCoefficients(ORF_50);

plotWaveletCoefficients(ORF_100);

plotWaveletCoefficients(ORF_150);

plotWaveletCoefficients(ORF_200);

plotWaveletCoefficients(ORF_250);

plotWaveletCoefficients(ORF_300);

Scores (Import 2xeach heath condition then compute the average)

%im here I need to modify

wavelet_type = {'amor'};

%inner

 wse_IRF_50 = calculateWaveletSingularEntropy(IRF_50, wavelet_type)

 wse_IRF_100 = calculateWaveletSingularEntropy(IRF_100, wavelet_type)

 wse_IRF_150 = calculateWaveletSingularEntropy(IRF_150, wavelet_type)

 wse_IRF_200 = calculateWaveletSingularEntropy(IRF_200, wavelet_type)

275

 wse_IRF_250 = calculateWaveletSingularEntropy(IRF_250, wavelet_type)

 wse_IRF_300 = calculateWaveletSingularEntropy(IRF_300, wavelet_type)

 %outer

 wse_ORF_50 = calculateWaveletSingularEntropy(IRF_50, wavelet_type)

 wse_ORF_100 = calculateWaveletSingularEntropy(ORF_100, wavelet_type)

 wse_ORF_150 = calculateWaveletSingularEntropy(ORF_150, wavelet_type)

 wse_ORF_200 = calculateWaveletSingularEntropy(ORF_200, wavelet_type)

 wse_ORF_250 = calculateWaveletSingularEntropy(ORF_250, wavelet_type)

 wse_ORF_300 = calculateWaveletSingularEntropy(ORF_300, wavelet_type)

 %healthy

 wse_data_normal_270 = calculateWaveletSingularEntropy(data_normal, wavelet_type)

Average WSE scores

% Calculate the average WSE score Inner

avgScore_IRF_50 = calculateWaveletSingularEntropy(IRF_50, 'amor');

avgScore_IRF_100 = calculateWaveletSingularEntropy(IRF_100, 'amor');

avgScore_IRF_150 = calculateWaveletSingularEntropy(IRF_150, 'amor');

avgScore_IRF_200 = calculateWaveletSingularEntropy(IRF_200, 'amor');

avgScore_IRF_250 = calculateWaveletSingularEntropy(IRF_250, 'amor');

avgScore_IRF_300 = calculateWaveletSingularEntropy(IRF_300, 'amor');

%mean

avgScore_IRF_50 = mean(abs(avgScore_IRF_50));

avgScore_IRF_100 = mean(abs(avgScore_IRF_100));

avgScore_IRF_150 = mean(abs(avgScore_IRF_150));

avgScore_IRF_200 = mean(abs(avgScore_IRF_200));

avgScore_IRF_250 = mean(abs(avgScore_IRF_250));

avgScore_IRF_300 = mean(abs(avgScore_IRF_300));

% Display the average score with the variable name

disp(['Average score for IRF_50: ' num2str(avgScore_IRF_50)]);

disp(['Average score for IRF_100: ' num2str(avgScore_IRF_100)]);

disp(['Average score for IRF_150: ' num2str(avgScore_IRF_150)]);

disp(['Average score for IRF_200: ' num2str(avgScore_IRF_200)]);

disp(['Average score for IRF_250: ' num2str(avgScore_IRF_250)]);

disp(['Average score for IRF_300: ' num2str(avgScore_IRF_300)]);

276

diagnosticFeatureDesigner

% Create a table of the scores

scores_table = array2table(scores, 'VariableNames', dataset_names, 'RowNames',

wavelet_types);

disp(scores_table);

wavelet_types = {'bump', 'morse', 'amor'};

health_datasets = {'data_normal', 'data_normal2', 'data_inner', 'data_inner2', 'data_outer',

'data_outer2'};

mean_wse_values = zeros(length(wavelet_types), length(health_datasets));

for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 fprintf('Wavelet Type: %s\n', wavelet_type);

 for j = 1:length(health_datasets)

 dataset_name = health_datasets{j};

 dataset = eval(dataset_name); % Evaluate the dataset variable using its name

 wse = calculateWaveletSingularEntropy(dataset, wavelet_type);

 mean_wse = mean(abs(wse)); % Calculate mean of absolute WSE values

 mean_wse_values(i, j) = mean_wse;

 end

end

% Plot the mean absolute WSE values

figure

bar(mean_wse_values)

xticks(1:length(wavelet_types))

xticklabels(wavelet_types)

legend(health_datasets)

title('Mean Absolute WSE Values')

xlabel('Wavelet Type')

ylabel('Mean Absolute WSE')

set(gca,"XGrid","off","YGrid","on")

277

convertSignalToScalogram_spliiting(ensemble)

Helper Functions

function plotBearingSignalAndScalogram(data)

% Convert 1-D bearing signals to scalograms through wavelet transform

fs = data.bearing.sr;

t_total = 0.1; % seconds

n = round(t_total*fs);

bearing = data.bearing.gs(1:n);

[cfs,frq] = cwt(bearing,'amor', fs);

% Plot the original signal and its scalogram

figure

subplot(2,1,1)

plot(0:1/fs:(n-1)/fs,bearing)

xlim([0,0.1])

title(['Vibration Signal - ' inputname(1)])

xlabel('Time (s)')

ylabel('Amplitude')

subplot(2,1,2)

surface(0:1/fs:(n-1)/fs,frq,abs(cfs))

shading flat

xlim([0,0.1])

ylim([0,max(frq)])

title(['Scalogram - ' inputname(1)])

xlabel('Time (s)')

ylabel('Frequency (Hz)')

end

function convertSignalToScalogram(ensemble,folderName)

% Convert 1-D signals to scalograms and save scalograms as images

data = read(ensemble);

fs = data.sr;

x = data.gs{:};

label = char(data.Label);

fname = char(data.FileName);

278

ratio = 5000/97656;

interval = ratio*fs; % i want part of the data not all and morese uses fs as the space equal space

but based on the frequency to capture the knowledge

N = floor(numel(x)/interval);

% Create folder to save images

path = fullfile('.',folderName,label);

if ~exist(path,'dir')

 mkdir(path);

end

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1');

if ~exist(path_numerical,'dir')

 mkdir(path_numerical);

end

for idx = 1:N

 sig = envelope(x(interval*(idx-1)+1:interval*idx));

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added)

 writematrix(sig,file_path); %new

 %like we are creating subfolders based on the interval equal data ineach

 %file not using envelop transform

 cfs = cwt(sig,'amor', seconds(1/fs));

 cfs = abs(cfs);

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320));

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']);

 imwrite(imresize(img,[224,224]),outfname);

end

end

%new

function plotBearingSignalAndWaveletCoefficient(data)

 % Convert 1-D bearing signals to wavelet coefficients through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

279

 % Choose wavelet types

 wavelet_types = {'bump', 'morse', 'amor'};

 % Plot the original signal and its wavelet coefficients for each wavelet type

 figure

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, ~] = cwt(bearing, wavelet_type, fs);

 subplot(length(wavelet_types), 1, i)

 plot(0:1/fs:(n-1)/fs, bearing)

 hold on

 plot(0:1/fs:(n-1)/fs, abs(cfs))

 hold off

 xlim([0, 0.1])

 title(sprintf('Wavelet Coefficient (%s)', upper(wavelet_type)))

 xlabel('Time (s)')

 ylabel('Magnitude')

 legend('Vibration Signal', 'Wavelet Coefficient')

 end

end

function wse = calculateWaveletSingularEntropy(data, wavelet_type)

 % Convert 1-D bearing signals to scalograms through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Perform wavelet transform

 [cfs, ~] = cwt(bearing, wavelet_type, fs);

 % Calculate the WSE

 wse = sum(abs(cfs).^2 .* log(abs(cfs).^2), 1);

 % Normalize the WSE values between 0 and 1

 wse = wse / max(wse);

280

end

function plotWaveletCoefficients(data)

 % Convert 1-D bearing signals to scalograms through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Choose wavelet types

 wavelet_types = {'amor'};

 % Plot the time-frequency diagrams for each wavelet type

 figure

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, frq] = cwt(bearing, wavelet_type, fs);

 subplot(length(wavelet_types), 1, i)

 plot(0:1/fs:(n-1)/fs, bearing, 'b')

 hold on

 surface(0:1/fs:(n-1)/fs, frq, abs(cfs), 'FaceColor', 'texturemap', 'EdgeColor', 'none')

 colormap(jet)

 view(2)

 xlim([0, 0.1])

 ylim([0, max(frq)])

 title([upper(wavelet_type), ' Wavelet Coefficients - ', inputname(1)])

 xlabel('Time (s)')

 ylabel('Frequency (Hz)')

 colorbar

 end

 sgtitle('Scalograms with Wavelet Coefficients')

end

function plotScalogramsWithWavelets(data)

 % Convert 1-D bearing signals to scalograms through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

281

 bearing = data.bearing.gs(1:n);

 % Choose wavelet types

 wavelet_types = {'bump', 'morse', 'amor'};

 % Plot the time-frequency diagrams for each wavelet type

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, frq] = cwt(bearing, wavelet_type, fs);

 figure

 imagesc(1/fs:(n-1)/fs, frq, abs(cfs))

 set(gca, 'YDir', 'normal')

 colormap(jet)

 colorbar

 title(sprintf('2D Time-Frequency Diagram (%s)', upper(wavelet_type)))

 xlabel('Time (s)')

 ylabel('Frequency (Hz)')

 end

end

%Splitting

function convertSignalToScalogram_spliiting(ensemble, FileName)

 % Convert 1-D signals to scalograms and save scalograms as images

 data = read(ensemble);

 fs = data.sr;

 x = data.gs{:};

 label = char(data.Label);

 fname = char(data.FileName);

 ratio = 5000/97656;

 interval = ratio * fs; % Interval based on the specified ratio

 % Calculate the number of splits

 N = floor(numel(x) / interval);

282

 % Create folder to save images

 path = fullfile('.', folderName, label);

 if ~exist(path, 'dir')

 mkdir(path);

 end

 for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Perform wavelet transform

 cfs = cwt(sig, 'amor', seconds(1/fs));

 cfs = abs(cfs);

 img = ind2rgb(round(rescale(flip(cfs), 0, 255)), jet(320));

 % Save the image

 outfname = fullfile(path, [fname '-' num2str(idx) '.jpg']);

 imwrite(imresize(img, [224, 224]), outfname);

 end

end

function stats = summary_stats(x)

 stats.MeanEnergy = mean(x);

 stats.MedianEnergy = median(x);

 stats.MinEnergy = min(x);

 stats.MaxEnergy = max(x);

end

2.3 Chapter 5: Phase 1: Step2: Data Segmentation and Load-Dependent Subfile

Creation

These folders were arranged manually after they were extractted from

LoadSplitandScholograms_P4

Now we want to upload these split to diagnosis feature designer

283

Load DataSets (split files & add the sevierity we created before

Normal Dataset

% Import normal bearing data

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'baseline_1.mat'));

signal = data_normal.bearing.gs;

signal_length = length(signal)

window = hamming(signal_length)

windowed_signal = signal .* window

Inner load comparison

IRF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_2.mat'));

IRF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_3.mat'));

IRF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_4.mat'));

IRF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_5.mat'));

IRF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_6.mat'));

IRF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_inner_load', 'InnerRaceFault_vload_7.mat'));

Outer Load Comparison

ORF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_2.mat'));

284

ORF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_3.mat'));

ORF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_4.mat'));

ORF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_5.mat'));

ORF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_6.mat'));

ORF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data_outer_load', 'OuterRaceFault_vload_7.mat'));

inner_fault_datasets = {ORF_50, ORF_100, ORF_150, ORF_200, ORF_250, ORF_300};

for i = 1:length(inner_fault_datasets)

 ensemble_inner = inner_fault_datasets{i};

 ensemble_inner.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];

 ensemble_inner.ConditionVariables = ["Label", "FileName"];

 ensemble_inner.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF", "Label", "FileName"];

end

outer_fault_datasets = {ORF_50, ORF_100, ORF_150, ORF_200, ORF_250, ORF_300};

for i = 1:length(outer_fault_datasets)

 ensemble_outer = outer_fault_datasets{i};

 ensemble_outer.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];

 ensemble_outer.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF", "Label", "FileName"];

end

Normal_dataset = {data_normal}

for i = 1:length(Normal_dataset)

285

 ensemble_normal = Normal_dataset{i};

 ensemble_normal.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF"];

 ensemble_normal.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF",

"BSF", "Label", "FileName"];

end

% Process inner fault datasets

for i = 1:numel(inner_fault_datasets)

 ensemble = inner_fault_datasets{i};

 data = ensemble.bearing;

 fs = data.sr;

 x = data.gs;

 ensemble_name = sprintf('IRF_%d', i*50); % Generate ensemble name based on index

 ratio = 5000/97656;

 interval = ratio * fs; % Interval based on the specified ratio

 % Calculate the number of splits

 N = floor(numel(x) / interval);

 % Create a folder to save the tables for the current ensemble

 folder_path = fullfile('.', 'tables', ensemble_name);

 if ~exist(folder_path, 'dir')

 mkdir(folder_path);

 end

 for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the current subset

 time = (subset_start:subset_end)' / fs;

 load_type = repmat(ensemble_name, numel(time), 1);

 subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'});

 % Save the table as a MAT file under the ensemble folder

 filename = sprintf('subset_%d.mat', idx);

 save(fullfile(folder_path, filename), 'subset_table');

286

 end

end

% Process outer fault datasets

for i = 1:numel(outer_fault_datasets)

 ensemble = outer_fault_datasets{i};

 data = ensemble.bearing;

 fs = data.sr;

 x = data.gs;

 ensemble_name = sprintf('ORF_%d', i*50); % Generate ensemble name based on index

 ratio = 5000/48828;

 interval = ratio * fs; % Interval based on the specified ratio

 % Calculate the number of splits

 N = floor(numel(x) / interval);

 % Create a folder to save the tables for the current ensemble

 folder_path = fullfile('.', 'tables', ensemble_name);

 if ~exist(folder_path, 'dir')

 mkdir(folder_path);

 end

 for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the current subset

 time = (subset_start:subset_end)' / fs;

 load_type = repmat(ensemble_name, numel(time), 1);

 subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'});

 % Save the table as a MAT file under the ensemble folder

 filename = sprintf('subset_%d.mat', idx);

 save(fullfile(folder_path, filename), 'subset_table');

 end

end

% Process normal dataset

287

ensemble = Normal_dataset{1}; % Assuming there is only one ensemble in the normal dataset

data = ensemble.bearing;

fs = data.sr;

x = data.gs;

ensemble_name = 'Normal'; % Ensemble name for the normal dataset

ratio = 5000/97656;

interval = ratio * fs; % Interval based on the specified ratio

% Calculate the number of splits

N = floor(numel(x) / interval);

% Create a folder to save the tables for the normal dataset

folder_path = fullfile('.', 'tables', ensemble_name);

if ~exist(folder_path, 'dir')

 mkdir(folder_path);

end

for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the current subset

 time = (subset_start:subset_end)' / fs;

 load_type = repmat(ensemble_name, numel(time), 1);

 subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'});

 % Save the table as a MAT file under the ensemble folder

 filename = sprintf('subset_%d.mat', idx);

 save(fullfile(folder_path, filename), 'subset_table');

end

Create splits and save as ensemble for all loads

% Create an empty cell array to store the ensemble tables

ensemble_tables = cell(0, 2);

% Process inner fault datasets

288

for i = 1:numel(inner_fault_datasets)

 ensemble = inner_fault_datasets{i};

 data = ensemble.bearing;

 fs = data.sr;

 x = data.gs;

 ensemble_name = sprintf('IRF_%d', i*50); % Generate ensemble name based on index

 ratio = 5000/97656;

 interval = ratio * fs; % Interval based on the specified ratio

 % Calculate the number of splits

 N = floor(numel(x) / interval);

 for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the subset with vibration signal

 subset_table = table(sig, 'VariableNames', {'Signal'});

 % Append the subset table and ensemble name to the ensemble tables

 ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}];

 end

end

% Process outer fault datasets

for i = 1:numel(outer_fault_datasets)

 ensemble = outer_fault_datasets{i};

 data = ensemble.bearing;

 fs = data.sr;

 x = data.gs;

 ensemble_name = sprintf('ORF_%d', i*50); % Generate ensemble name based on index

 ratio = 5000/97656;

 interval = ratio * fs; % Interval based on the specified ratio

 % Calculate the number of splits

 N = floor(numel(x) / interval);

 for idx = 1:N

 % Split the signal into subsets based on the interval

289

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the subset with vibration signal

 subset_table = table(sig, 'VariableNames', {'Signal'});

 % Append the subset table and ensemble name to the ensemble tables

 ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}];

 end

end

% Process normal dataset

ensemble_name = 'Normal';

data = data_normal.bearing;

fs = data.sr;

x = data.gs;

ratio = 5000/97656;

interval = ratio * fs; % Interval based on the specified ratio

% Calculate the number of splits

N = floor(numel(x) / interval);

for idx = 1:N

 % Split the signal into subsets based on the interval

 subset_start = round(interval * (idx - 1)) + 1;

 subset_end = round(interval * idx);

 sig = x(subset_start:subset_end);

 % Create a table for the subset with vibration signal

 subset_table = table(sig, 'VariableNames', {'Signal'});

 % Append the subset table and ensemble name to the ensemble tables

 ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}];

end

% Create the ensemble table with headers

ensemble = table(ensemble_tables(:,1), ensemble_tables(:,2), 'VariableNames', {'Timetable',

'LoadFactor'});

% Display the resulting ensemble table (here it is a table)

disp(ensemble);

% Create the ensemble table with headers

290

ensemble = table(ensemble_tables(:,1), ensemble_tables(:,2), 'VariableNames', {'Timetable',

'LoadFactor'});

% Calculate the row counts for each load factor

row_counts = grpstats(ensemble, 'LoadFactor', 'numel');

% Display the row counts

disp(row_counts);

% Assuming you have a table called "ensemble" with 813 rows and 2 columns

for i = 1:size(ensemble, 1)

 % Get the table from the cell in the first column

 cellData = ensemble{i, 1};

 % Access the table within the cell

 tableData = cellData{1};

 % Get the signal data from the table

 signalData = tableData.Signal;

 % Get the load factor from the second column of the ensemble

 loadFactor = ensemble{i, 2};

 % Set the time step based on the load factor

 if strcmp(loadFactor, 'Normal')

 % Normal load with time step 97656 Hz

 timeStep = seconds(1 / 97656);

 else

 % Inner or outer load with time step 48828 Hz

 timeStep = seconds(1 / 48828);

 end

 % Create a time vector for the signal

 time = (0:length(signalData)-1) * timeStep;

 % Convert the signal to a time series

 timeSeriesData = timetable(time', signalData);

 % Replace the cell in the first column with the time series

 ensemble{i, 1} = {timeSeriesData};

end

diagnosticFeatureDesigner

291

Load Index Severity (4 classes)

Create a severity array corresponding to the load types: (6 load types per fault)

inner_faults = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250', 'IRF_300'};

outer_faults = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'ORF_300'};

normal_load = {'Normal'};

inner_severity = ["Mild", "Mild", "Mild", "Moderate", "Moderate", "Moderate"];

outer_severity = ["Mild", "Mild", "Mild", "Mild", "Mild", "Severe", "Mild"];

normal_severity = ["Helthy"];

2. Iterate over the ensemble and add the severity column based on the load type:

% Initialize an empty array to store the severity values

severity = strings(size(ensemble, 1), 1);

for i = 1:size(ensemble, 1)

 % Get the type of fault and load from the ensemble

 fault_load = ensemble{i, 2};

 % Check if it belongs to inner faults

 if ismember(fault_load, inner_faults)

 severity(i) = inner_severity(ismember(inner_faults, fault_load));

 % Check if it belongs to outer faults

 elseif ismember(fault_load, outer_faults)

 severity(i) = outer_severity(ismember(outer_faults, fault_load));

 % Otherwise, it belongs to normal

 else

 severity(i) = normal_severity;

 end

end

% Add the severity column to the ensemble

ensemble.Severity = severity;

disp(ensemble)

Normal Fault classification 3 classes

inner_faults = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250', 'IRF_300'};

outer_faults = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'ORF_300'};

normal_load = {'Normal'};

292

inner = ["Inner", "Inner", "Inner", "Inner", "Inner", "Inner"];

outer = ["Outer", "Outer", "Outer", "Outer", "Outer", "Outer", "Outer"];

normal_severity = ["Helthy"];

for i = 1:size(ensemble, 1)

 % Get the type of fault and load from the ensemble

 fault_load = ensemble{i, 2};

 % Check if it belongs to inner faults

 if ismember(fault_load, inner_faults)

 severity(i) = inner_severity(ismember(inner_faults, fault_load));

 % Check if it belongs to outer faults

 elseif ismember(fault_load, outer_faults)

 severity(i) = outer_severity(ismember(outer_faults, fault_load));

 % Otherwise, it belongs to normal

 else

 severity(i) = normal_severity;

 end

end

% Add the severity column to the ensemble

ensemble.Severity = severity;

disp(ensemble)

2.4 Chapter5 : Phase2: Step1: CWT Signal Encoding and Optimal Technique

Selection and Phase 2: Step 2: CWT Energy Assessment for Each Load Factor

Scalogram of Bearing Data

The two dimensions in a scalogram image represent time and frequency. To visualise the

relationship between a scalogram and its original vibration signal, plot the vibration signal with

an IRF against its scalogram.

% Import data with IRF

data_inner = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'InnerRaceFault_vload_1.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(data_inner)

293

% for WSE

data_inner2 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'InnerRaceFault_vload_2.mat'));

% Plot bearing signal and scalogram

plotBearingSignalAndScalogram(data_inner2)

During the 0.1 seconds shown in the plot, the vibration signal contains 12 impulses because the

tested bearing's BPFI is 118.875 Hz. Accordingly, the scalogram shows 12 distinct peaks that

align with the impulses in the vibration signal. Next, visualise scalograms for the ORF.

% Import data with ORF

data_outer = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'test_data', 'OuterRaceFault_3.mat'));

% Plot original signal and its scalogram

plotBearingSignalAndScalogram(data_outer)

The scalogram of the ORF fault shows 8 distinct peaks during the first 0.1 seconds, which is

consistent with the ballpass frequencies. Because the impulses in the time-domain signal is not

as dominant as in the IRF case, the distinct peaks in the scalogram show less contrast with the

background. The scalogram of the normal condition does not show dominant distinct peaks.

% Import normal bearing data

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'baseline_1.mat'));

% Plot original signal and its scalogram

plotBearingSignalAndScalogram(data_normal)

% Import normal bearing data

data_normal2 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ...

 'predmaintdemos', 'bearingFaultDiagnosis', ...

 'train_data', 'baseline_2.mat'));

% Plot original signal and its scalogram

plotBearingSignalAndScalogram(data_normal2)

The number of distinct peaks is a good feature to differentiate between IRFs, ORFs, and normal

conditions. Therefore, a scalogram can be a good candidate for classifying bearing faults. In

294

this example, all bearing signal measurements come from tests using the same shaft speed. To

apply this example to bearing signals under different shaft speeds, the data needs to be

normalized by shaft speed. Otherwise, the number of "pillars" in the scalogram will be wrong.

CWT Signal Encoding and Optimal Technique Selection

plotWaveletCoefficients(data_inner);

plotWaveletCoefficients(data_normal);

plotWaveletCoefficients(data_outer);

% Plot for IRF condition

plotBearingSignalAndWaveletCoefficient(data_normal);

WSE Analysis for Appropriate CWT Selection

%im here I need to modify

wavelet_types = {'bump', 'morse', 'amor'};

for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type)

 wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type)

 wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type)

 wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type)

 wse_normal = calculateWaveletSingularEntropy(data_normal, wavelet_type)

 wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type)

 % Do further analysis or visualization with the WSE values

 % ...

end

wavelet_types = {'bump', 'morse', 'amor'};

for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type);

 wse_inner_mean = mean(abs(wse_inner)); % Calculate mean of absolute WSE values for

data_inner

 wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type);

 wse_inner2_mean = mean(abs(wse_inner2)); % Calculate mean of absolute WSE values for

data_inner2

295

 wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type);

 wse_outer_mean = mean(abs(wse_outer)); % Calculate mean of absolute WSE values for

data_outer

 wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type);

 wse_outer2_mean = mean(abs(wse_outer2)); % Calculate mean of absolute WSE values for

data_outer2

 wse_normal = calculateWaveletSingularEntropy(data_normal2, wavelet_type);

 wse_normal_mean = mean(abs(wse_normal)); % Calculate mean of absolute WSE values for

data_normal

 wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type);

 wse_normal2_mean = mean(abs(wse_normal2)); % Calculate mean of absolute WSE values

for data_normal2

end

Scores

wavelet_types = {'bump', 'morse', 'amor'};

for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 fprintf('Wavelet Type: %s\n', wavelet_type);

 wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type);

 wse_inner_mean = mean(abs(wse_inner)) % Calculate mean of absolute WSE values for

data_inner

 wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type);

 wse_inner2_mean = mean(abs(wse_inner2)) % Calculate mean of absolute WSE values for

data_inner2

 wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type);

 wse_outer_mean = mean(abs(wse_outer)) % Calculate mean of absolute WSE values for

data_outer

 wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type);

296

 wse_outer2_mean = mean(abs(wse_outer2)) % Calculate mean of absolute WSE values for

data_outer2

 wse_normal = calculateWaveletSingularEntropy(data_normal, wavelet_type);

 wse_normal_mean = mean(abs(wse_normal)) % Calculate mean of absolute WSE values for

data_normal

 wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type);

 wse_normal2_mean = mean(abs(wse_normal2)) % Calculate mean of absolute WSE values

for data_normal2

 % Do further analysis or visualization with the mean absolute WSE values

 % ...

end

% Create a table of the scores

scores_table = array2table(scores, 'VariableNames', dataset_names, 'RowNames',

wavelet_types);

disp(scores_table);

wavelet_types = {'bump', 'morse', 'amor'};

health_datasets = {'data_normal', 'data_normal2', 'data_inner', 'data_inner2', 'data_outer',

'data_outer2'};

mean_wse_values = zeros(length(wavelet_types), length(health_datasets));

for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 fprintf('Wavelet Type: %s\n', wavelet_type);

 for j = 1:length(health_datasets)

 dataset_name = health_datasets{j};

 dataset = eval(dataset_name); % Evaluate the dataset variable using its name

 wse = calculateWaveletSingularEntropy(dataset, wavelet_type);

 mean_wse = mean(abs(wse)); % Calculate mean of absolute WSE values

 mean_wse_values(i, j) = mean_wse;

 end

end

% Plot the mean absolute WSE values

297

figure

bar(mean_wse_values)

xticks(1:length(wavelet_types))

xticklabels(wavelet_types)

legend(health_datasets)

title('Mean Absolute WSE Values')

xlabel('Wavelet Type')

ylabel('Mean Absolute WSE')

set(gca,"XGrid","off","YGrid","on")

Helper Functions

function plotBearingSignalAndScalogram(data)

% Convert 1-D bearing signals to scalograms through wavelet transform

fs = data.bearing.sr;

t_total = 0.1; % seconds

n = round(t_total*fs);

bearing = data.bearing.gs(1:n);

[cfs,frq] = cwt(bearing,'amor', fs);

% Plot the original signal and its scalogram

figure

subplot(2,1,1)

plot(0:1/fs:(n-1)/fs,bearing)

xlim([0,0.1])

title('Vibration Signal')

xlabel('Time (s)')

ylabel('Amplitude')

subplot(2,1,2)

surface(0:1/fs:(n-1)/fs,frq,abs(cfs))

shading flat

xlim([0,0.1])

ylim([0,max(frq)])

title('Scalogram')

xlabel('Time (s)')

ylabel('Frequency (Hz)')

end

298

function convertSignalToScalogram(ensemble,folderName)

% Convert 1-D signals to scalograms and save scalograms as images

data = read(ensemble);

fs = data.sr;

x = data.gs{:};

label = char(data.Label);

fname = char(data.FileName);

ratio = 5000/97656;

interval = ratio*fs;

N = floor(numel(x)/interval);

% Create folder to save images

path = fullfile('.',folderName,label);

if ~exist(path,'dir')

 mkdir(path);

end

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1');

if ~exist(path_numerical,'dir')

 mkdir(path_numerical);

end

for idx = 1:N

 sig = envelope(x(interval*(idx-1)+1:interval*idx));

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added)

 writematrix(sig,file_path); %new

 %like we are creating subfolders based on the interval equal data ineach

 %file not using envelop transform

 cfs = cwt(sig,'amor', seconds(1/fs));

 cfs = abs(cfs);

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320));

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']);

 imwrite(imresize(img,[224,224]),outfname);

end

end

%new

function plotBearingSignalAndWaveletCoefficient(data)

299

 % Convert 1-D bearing signals to wavelet coefficients through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Choose wavelet types

 wavelet_types = {'bump', 'morse', 'amor'};

 % Plot the original signal and its wavelet coefficients for each wavelet type

 figure

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, ~] = cwt(bearing, wavelet_type, fs);

 subplot(length(wavelet_types), 1, i)

 plot(0:1/fs:(n-1)/fs, bearing)

 hold on

 plot(0:1/fs:(n-1)/fs, abs(cfs))

 hold off

 xlim([0, 0.1])

 title(sprintf('Wavelet Coefficient (%s)', upper(wavelet_type)))

 xlabel('Time (s)')

 ylabel('Magnitude')

 legend('Vibration Signal', 'Wavelet Coefficient')

 end

end

function wse = calculateWaveletSingularEntropy(data, wavelet_type)

 % Convert 1-D bearing signals to scalograms through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Perform wavelet transform

 [cfs, ~] = cwt(bearing, wavelet_type, fs);

 % Calculate the WSE

300

 wse = sum(abs(cfs).^2 .* log(abs(cfs).^2), 1); % Updated to calculate along columns

 % Normalize the WSE values between 0 and 1

 wse = wse / max(wse);

end

function plotWaveletCoefficients(data)

 % Convert 1-D bearing signals to scalograms through wavelet transform

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Choose wavelet types

 wavelet_types = {'bump', 'morse', 'amor'};

 % Plot the time-frequency diagrams for each wavelet type

 figure

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, frq] = cwt(bearing, wavelet_type, fs);

 subplot(length(wavelet_types), 1, i)

 plot(0:1/fs:(n-1)/fs, bearing, 'b')

 hold on

 surface(0:1/fs:(n-1)/fs, frq, abs(cfs), 'FaceColor', 'texturemap', 'EdgeColor', 'none')

 colormap(jet)

 view(2)

 xlim([0, 0.1])

 ylim([0, max(frq)])

 title(upper(wavelet_type))

 xlabel('Time (s)')

 ylabel('Frequency (Hz)')

 colorbar

 end

 sgtitle('Scalograms with Wavelet Coefficients')

end

function plotScalogramsWithWavelets(data)

 % Convert 1-D bearing signals to scalograms through wavelet transform

301

 fs = data.bearing.sr;

 t_total = 0.1; % seconds

 n = round(t_total * fs);

 bearing = data.bearing.gs(1:n);

 % Choose wavelet types

 wavelet_types = {'bump', 'morse', 'amor'};

 % Plot the time-frequency diagrams for each wavelet type

 for i = 1:length(wavelet_types)

 wavelet_type = wavelet_types{i};

 [cfs, frq] = cwt(bearing, wavelet_type, fs);

 figure

 imagesc(1/fs:(n-1)/fs, frq, abs(cfs))

 set(gca, 'YDir', 'normal')

 colormap(jet)

 colorbar

 title(sprintf('2D Time-Frequency Diagram (%s)', upper(wavelet_type)))

 xlabel('Time (s)')

 ylabel('Frequency (Hz)')

 end

end

2.5 Chapter 6: Full Code

1. Same dataset used previously for training the ALexNet (CWT)

rng(15); % Set the random seed (you change every time you repeat the experiment) use

(1,3,6,9,12,15,21,24,27,30) for reproducibility

% Specify the path to your images folder

ImagesPath_CWTFLI =

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\CWT_LoadIndexSplit_1';

% Load and preprocess your dataset with resized images (according to the

% CNN size)

inputSize = [227, 227, 3];

generatedImages = imageDatastore(ImagesPath_CWTFLI, ...

302

 'IncludeSubfolders', true, ...

 'LabelSource', 'foldernames', ...

 'ReadFcn', @(filename) imresize(imread(filename), inputSize(1:2)));

% Split the dataset into training, validation, and testing datastores

rng(30); % Set the random seed for reproducibility

[trainImages_CWTLI, valImages_CWTLI, testImages_CWTLI] =

splitEachLabel(generatedImages, 0.6, 0.2, 0.2, 'randomized');

% Display the number of images in each split

numTrainImagesCWTLI = numel(trainImages_CWTLI.Files);

numValImagesCWTLI = numel(valImages_CWTLI.Files);

numTestImagesCWTLI = numel(testImages_CWTLI.Files);

disp(['Number of training images: ', num2str(numTrainImagesCWTLI)]);

disp(['Number of validation images: ', num2str(numValImagesCWTLI)]);

disp(['Number of testing images: ', num2str(numTestImagesCWTLI)]);

trainingLabels_CWTLI = countEachLabel(trainImages_CWTLI)

validationLabels_CWTLI= countEachLabel(valImages_CWTLI)

testLabels_CWTLI= countEachLabel(testImages_CWTLI)

% Specify the path to your images folder

ImagesPath_GADFLI =

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\GADF_LoadIndexSplit_1';

% Load and preprocess your dataset with resized images (according to the

% CNN size)

inputSize = [227, 227, 3];

generatedImages_GADF = imageDatastore(ImagesPath_GADFLI, ...

 'IncludeSubfolders', true, ...

 'LabelSource', 'foldernames', ...

 'ReadFcn', @(filename) imresize(imread(filename), inputSize(1:2)));

% Split the dataset into training, validation, and testing datastores

% (images label stats with healthy, mild, moderate then severe)

rng(30); % Set the random seed for reproducibility

[trainImages_GADFLI, valImages_GADFLI, testImages_GADFLI] =

splitEachLabel(generatedImages_GADF, 0.6, 0.2, 0.2, 'randomized');

303

% Display the number of images in each split

numTrainImagesGADFLI = numel(trainImages_GADFLI.Files);

numValImagesGADFLI = numel(valImages_GADFLI.Files);

numTestImagesGADFLI = numel(testImages_GADFLI.Files);

disp(['Number of training images: ', num2str(numTrainImagesGADFLI)]);

disp(['Number of validation images: ', num2str(numValImagesGADFLI)]);

disp(['Number of testing images: ', num2str(numTestImagesGADFLI)]);

trainingLabels_GADFLI = countEachLabel(trainImages_GADFLI)

validationLabels_GADFLI= countEachLabel(valImages_GADFLI)

testLabels_GADFLI= countEachLabel(testImages_GADFLI)

2. Load(ensemble _MFPT_subfiles_SeverityAdded)just click will show ensemble

% Assuming your ensemble is stored in a table or a timetable called ' ensemble '

%add an index column

ensemble.Index = (1:size(ensemble, 1))';

%change this because I have spilling mistake

% Assuming your ensemble is stored in a table or a timetable called 'ensemble'

% Correct the spelling mistake in the 'Severity' column

ensemble.Severity = strrep(ensemble.Severity, 'Helthy', 'Healthy');

%sort the ensemble by severity (open the ensemble variable and sort it

%manually ascending order) this is because the FeatureTable1_2 was but

%based on the original order but we will convert it this way to march CWT

%and GADF order

%in the following section we will add the image path column similar to the

%datastore

Load (LI_20Features_table_p4.mat)just click will show FeatureTable1_2

fix spelling mistake in healthy

FeatureTable1_2.Severity = strrep(ensemble.Severity, 'Helthy', 'Healthy');

3. upload the ensemble with LI severity and add images path

% Specify the path to your images folder

CWTImagesPath =

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\CWT_Images';

% Assuming 'ensemble' contains the ensemble with the added LoadFactor column

num_samples = height(ensemble);

304

imagePaths = cell(num_samples, 1);

% Create the image paths and add them to the ensemble table

folder_indices = containers.Map(); % To keep track of the current index for each folder

for i = 1:num_samples

 load_factor = ensemble.LoadFactor{i};

 if ~isKey(folder_indices, load_factor)

 folder_indices(load_factor) = 1;

 end

 current_index = folder_indices(load_factor);

 img_folder = fullfile(CWTImagesPath, load_factor);

 img_name = [load_factor, '-', num2str(current_index), '.jpg'];

 img_path = fullfile(img_folder, img_name);

 imagePaths{i} = img_path;

 % Update the index for the current folder

 folder_indices(load_factor) = current_index + 1;

end

% Add the 'ImagePath' column to the ensemble table (on the enesemble)

ensemble.ImagePath = imagePaths;

4. Splitting Consistensy

% because we splitting from the datastore arranges as (healthy, mild,

% moderate and severe) now we are taking the exact paths

trainImagePaths_CWTLI = trainImages_CWTLI.Files;

valImagePaths_CWTLI = valImages_CWTLI.Files;

testImagePaths_CWTLI = testImages_CWTLI.Files;

• Adding the 'ImagePath' column from the ensemble table to FeatureTable1_2 and then using

it for splitting will ensure that you're matching the images consistently between your CWT

dataset and the feature dataset.

% Create a list of image file names for training, validation, and testing

% datasets of CWT images

%here you can see the images names used for train valid and test

trainImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x),

trainImages_CWTLI.Files, 'UniformOutput', false);

valImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x), valImages_CWTLI.Files,

'UniformOutput', false);

305

testImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x), testImages_CWTLI.Files,

'UniformOutput', false);

% Add the 'ImageName' column from ensemble to FeatureTable1_2

FeatureTable1_2.ImageName = cellfun(@(x) getFileNameFromPath(x), ensemble.ImagePath,

'UniformOutput', false);

% Split FeatureTable1_2 into matching datasets based on image file names

% 3 columns were added here (image full path, index and image name)

matchingTrainData_FeatureTable1_2 =

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, trainImageNames_CWTLI), :);

matchingValData_FeatureTable1_2 =

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, valImageNames_CWTLI), :);

matchingTestData_FeatureTable1_2 =

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, testImageNames_CWTLI), :);

%sort ascending (important)

Now you have to make sure that the order in time and frequency domain features lables match

the CWT and GADF image datastore as they are organised byfolder name which means (all

healthy files first, all mild, all moderate, aalll severe) grouped by LI

testing_withGADF = horzcat(testImages_GADFLI.Labels,

categorical(matchingTestData_FeatureTable1_2.Severity))

testing_withCWT = horzcat(testImages_CWTLI.Labels,

categorical(matchingTestData_FeatureTable1_2.Severity))

%for classification learner combine training and validation

WNNTrainValData_FeatureTable1_2 = [matchingTrainData_FeatureTable1_2;

matchingValData_FeatureTable1_2];

% i got these two functions CubicSVM_4.12 and WideNeuralNetwork_4.29

5. Load pre trained models

%seed 1

%load functions from classification learner

load('CubicSVM_4.12.mat') %function named CubicSVM_412 was traned on all 20 features

load('WideNeuralNetwork_4.29.mat')%function named WNN_429 was traned on all 10

features

% Step 1: Load the pre-trained AlexNet network and the WNN model (if not already loaded)

load('LI_ALEXNET_CWT.mat'); % will load trainedNetwork_3

306

%load GADF Alexnet (low accuracy do not load)

load('LI_ALEXNET_GADF.mat'); % will load trainedNetwork_4

%load GADF Alexnet (7/3/2024) will load trainedNetwork_AlexNEWGADF

load('LI_trained_ALexNet_March24.mat')

%load CWT AlexNet (12/2/2024)will load trainedNetwork_AlexNEWCWT

load('LI_ALexNet_CWT_March24.mat')

%seed 3

load('WNN_seed3.mat')

load('CubicSVM_seed3.mat')

%Alexnet

load('AlexNet_CWT_seed3.mat') % will load AlexNet_CWT_seed3

load('AlexNet_GADF_seed3.mat') % will load AlexNet_GADF_seed3

% seed 6

load('WNN_seed6.mat')

load('CubicSVM_seed6.mat')

%Alexnet

load('AlexNet_CWT_seed6.mat') % will load AlexNet_CWT_seed6

load('AlexNet_GADF_seed6.mat') % will load AlexNet_GADF_seed6

% seed 9

load('WNN_seed9.mat')

load('CubicSVM_seed9.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed9.mat') % will load AlexNet_CWT_seed9

load('AlexNet_GADF_seed9.mat') % will load AlexNet_GADF_seed9

% seed 12

load('WNN_seed12.mat')

load('CubicSVM_seed12.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed12.mat') % will load AlexNet_CWT_seed12

load('AlexNet_GADF_seed12.mat') % will load AlexNet_GADF_seed12

% seed 15

load('WNN_seed15.mat')

load('CubicSVM_seed15.mat')

%I'm here training the CWT

307

load('AlexNet_CWT_seed15.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed15.mat') % will load AlexNet_GADF_seed15

%seed 18 (here)I dud cnn not good do not include

load('WNN_seed18.mat')

load('CubicSVM_seed18.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed18.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed18.mat') % will load AlexNet_GADF_seed15

%seed 21

load('WNN_seed21.mat')

load('CubicSVM_seed21.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed21.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed21.mat') % will load AlexNet_GADF_seed15

%seed 24

load('WNN_seed24.mat')

load('CubicSVM_seed24.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed24.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed24.mat') % will load AlexNet_GADF_seed15

%seed 27

load('WNN_seed27.mat')

load('CubicSVM_seed27.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed27.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed27.mat') % will load AlexNet_GADF_seed15

%seed 30

load('WNN_seed30.mat')

load('CubicSVM_seed30.mat')

%I'm here training the CWT

load('AlexNet_CWT_seed30.mat') % will load AlexNet_CWT_seed15

load('AlexNet_GADF_seed30.mat') % will load AlexNet_GADF_seed15

6. Predections (single chanel)

308

%CWT (AlexNet)(change function name per seed function)

cwt_predictions_train = classify(AlexNet_CWT_seed30, trainImages_CWTLI);

cwt_predictions_val = classify(AlexNet_CWT_seed30, valImages_CWTLI);

cwt_predictions_test = classify(AlexNet_CWT_seed30, testImages_CWTLI);

cwt_scores_train = predict(AlexNet_CWT_seed30, trainImages_CWTLI);

cwt_scores_val = predict(AlexNet_CWT_seed30, valImages_CWTLI);

cwt_scores_test = predict(AlexNet_CWT_seed30, testImages_CWTLI);

%GADF (AlexNet)

GADF_predictions_train = classify(AlexNet_GADF_seed30, trainImages_GADFLI);

GADF_predictions_val = classify(AlexNet_GADF_seed30, valImages_GADFLI);

GADF_predictions_test = classify(AlexNet_GADF_seed30, testImages_GADFLI);

GADF_scores_train = predict(AlexNet_GADF_seed30,trainImages_GADFLI);

GADF_scores_val = predict(AlexNet_GADF_seed30, valImages_GADFLI);

GADF_scores_test = predict(AlexNet_GADF_seed30, testImages_GADFLI)

%For time and frequency domain features (CubicSVM) (change function name per seed

function):

[yfit_CubicSVM_train, CubicSVM_scores_train] =

CubicSVM_seed30.predictFcn(matchingTrainData_FeatureTable1_2(:, 1:end-1));

[yfit_CubicSVM_val, CubicSVM_scores_val] =

CubicSVM_seed30.predictFcn(matchingValData_FeatureTable1_2(:, 1:end-1));

[yfit_CubicSVM_test, CubicSVM_scores_test] =

CubicSVM_seed30.predictFcn(matchingTestData_FeatureTable1_2(:, 1:end-1));

%% For time and frequency domain features (WNN):(change function name per seed function):

% because it should matches the classification learner input)

%exclude the last added one columns for linking

[yfit_WNN_train, WNN_scores_train] =

WNN_seed30.predictFcn(matchingTrainData_FeatureTable1_2(:, 1:end-1));

[yfit_WNN_val, WNN_scores_val] =

WNN_seed30.predictFcn(matchingValData_FeatureTable1_2(:, 1:end-1));

[yfit_WNN_test, WNN_scores_test] =

WNN_seed30.predictFcn(matchingTestData_FeatureTable1_2(:, 1:end-1));

diagnosticFeatureDesigner

7. Testing (single Channel)

• CWT (AlexNet) single on testing dataset

309

YPred = cwt_predictions_test;

YTest = testImages_CWTLI.Labels;

% Calculate overall accuracy

accuracy = sum(YPred == YTest) / numel(YTest) * 100;

fprintf('Overall Accuracy: %.2f%%\n', accuracy);

% Calculate accuracy per fault type

faultTypes = unique(YTest);

numFaultTypes = numel(faultTypes);

accuracyPerFaultType = zeros(numFaultTypes, 1);

for i = 1:numFaultTypes

 currentFaultType = faultTypes(i);

 indices = YTest == currentFaultType;

 accuracyPerFaultType(i) = sum(YPred(indices) == currentFaultType) / sum(indices) * 100;

 fprintf('Accuracy for Fault Type %s: %.2f%%\n', currentFaultType,

accuracyPerFaultType(i));

end

% Calculate precision, recall, and F1-score

cm = confusionchart(YTest, YPred);

cm.ColumnSummary = 'column-normalized';

cm.RowSummary = 'row-normalized';

cm.Title = 'Confusion Matrix CWT_AlexNet_seed30)';

• GADF (AlexNet)

YPred = GADF_predictions_test;

YTest = testImages_GADFLI.Labels;

% Correct the spelling mistake in the predicted labels(essential)

Ypred_CubicSVM_corrected = strrep(YPred, 'Helthy', 'Healthy');

% Calculate overall accuracy

accuracy = sum(Ypred_CubicSVM_corrected == YTest) / numel(YTest) * 100;

fprintf('Overall Accuracy: %.2f%%\n', accuracy);

% Calculate accuracy per fault type

faultTypes = unique(YTest);

numFaultTypes = numel(faultTypes);

310

accuracyPerFaultType = zeros(numFaultTypes, 1);

for i = 1:numFaultTypes

 currentFaultType = faultTypes(i);

 indices = YTest == currentFaultType;

 accuracyPerFaultType(i) = sum(Ypred_CubicSVM_corrected(indices) == currentFaultType) /

sum(indices) * 100;

 fprintf('Accuracy for Fault Type %s: %.2f%%\n', currentFaultType,

accuracyPerFaultType(i));

end

% Calculate precision, recall, and F1-score

cm = confusionchart(YTest, Ypred_CubicSVM_corrected);

cm.ColumnSummary = 'column-normalized';

cm.RowSummary = 'row-normalized';

cm.Title = 'Confusion Matrix GADF_ AlexNet_seed30';

• WNN Features

Ypred_WNN= yfit_WNN_test;

% Correct the spelling mistake in the predicted labels(essential)

Ypred_WNN_corrected = strrep(Ypred_WNN, 'Helthy', 'Healthy');

YTest_WNN = matchingTestData_FeatureTable1_2.Severity; %arranged with healthy first

% Calculate overall accuracy

accuracy = sum(Ypred_WNN_corrected == YTest_WNN) / numel(YTest_WNN) * 100;

fprintf('Overall Accuracy WNN: %.2f%%\n', accuracy);

% Calculate accuracy per fault type

faultTypes = unique(YTest_WNN);

numFaultTypes = numel(faultTypes);

accuracyPerFaultType = zeros(numFaultTypes, 1);

for i = 1:numFaultTypes

 currentFaultType = faultTypes(i);

 indices = YTest_WNN == currentFaultType;

 accuracyPerFaultType(i) = sum(Ypred_WNN_corrected(indices) == currentFaultType) /

sum(indices) * 100;

311

 fprintf('Accuracy for Fault Type WNN %s: %.2f%%\n', currentFaultType,

accuracyPerFaultType(i));

end

%here i want to make sure the testing label of the images from the datastore

%and for WNN is the same

testing = horzcat(YTest, categorical(YTest_WNN))

• CubicSVM Features

Ypred_CubicSVM= yfit_CubicSVM_test;

Ypred_WNN_corrected = strrep(Ypred_CubicSVM, 'Helthy', 'Healthy');

YTest_CubicSVM = matchingTestData_FeatureTable1_2.Severity;

% Calculate overall accuracy

accuracy = sum(Ypred_WNN_corrected == YTest_CubicSVM) / numel(YTest_CubicSVM) *

100;

fprintf('Overall Accuracy CubicSVM: %.2f%%\n', accuracy);

% Calculate accuracy per fault type

faultTypes = unique(YTest_CubicSVM);

numFaultTypes = numel(faultTypes);

accuracyPerFaultType = zeros(numFaultTypes, 1);

for i = 1:numFaultTypes

 currentFaultType = faultTypes(i);

 indices = YTest_CubicSVM == currentFaultType;

 accuracyPerFaultType(i) = sum(Ypred_WNN_corrected(indices) == currentFaultType) /

sum(indices) * 100;

 fprintf('Accuracy for Fault Type CubicSVM %s: %.2f%%\n', currentFaultType,

accuracyPerFaultType(i));

end

%testing (should match)

testing = horzcat(YTest, categorical(YTest_CubicSVM))

8. Decsion Fusion Altenatives

1. Alternative 1: CWT(AlexNet)-WNN4.29 (change this)

%1.1% Define the weight factors for each model's predictions(1.2)

time_freq_weight_mild = 0.1;

time_freq_weight_moderate = 0.9; % Adjust this weight as needed

312

time_freq_weight_severe = 0.1; % Adjust this weight as needed

CWT_weight_mild = 0.9; % Weight for CWT AlexNet's predictions for Mild Load Index

CWT_weight_moderate = 0.1; % Adjust this weight as needed

CWT_weight_severe = 0.9; % Weight for CWT AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 CWT_weight = CWT_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 CWT_weight = CWT_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 CWT_weight = CWT_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 CWT_weight = 0; % No contribution from CWT for Healthy

 end

313

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * WNN_scores_test(i, :) ...

 + CWT_weight * cwt_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

%1.2% Define the weight factors for each model's predictions(1.2)

time_freq_weight_mild = 0.5;

time_freq_weight_moderate = 0.5; % Adjust this weight as needed

time_freq_weight_severe = 0.5; % Adjust this weight as needed

CWT_weight_mild = 0.5; % Weight for CWT AlexNet's predictions for Mild Load Index

CWT_weight_moderate = 0.5; % Adjust this weight as needed

CWT_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 CWT_weight = CWT_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 CWT_weight = CWT_weight_moderate;

314

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 CWT_weight = CWT_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 WNN_weight = 0; % No contribution from CWT for Healthy

 end

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * WNN_scores_test(i, :) ...

 + CWT_weight * cwt_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

2.Alternative 2: CWT(AlexNet)-CubicSVM4.29 (change this)

%2.1 Define the weight factors for each model's predictions

time_freq_weight_mild = 0.1;

time_freq_weight_moderate = 0.1; % Adjust this weight as needed

time_freq_weight_severe = 0.9; % Adjust this weight as needed

cwt_weight_mild = 0.9; % Weight for CWT AlexNet's predictions for Mild Load Index

cwt_weight_moderate = 0.9; % Adjust this weight as needed

cwt_weight_severe = 0.1; % Weight for CWT AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

315

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 cwt_weight = cwt_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 cwt_weight = cwt_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 cwt_weight = cwt_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 cwt_weight = 0; % No contribution from CWT for Healthy

 end

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ...

 + cwt_weight * cwt_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

% 2.2Define the weight factors for each model's predictions

time_freq_weight_mild = 0.5;

time_freq_weight_moderate = 0.5; % Adjust this weight as needed

time_freq_weight_severe = 0.5; % Adjust this weight as needed

cwt_weight_mild = 0.5; % Weight for CWT AlexNet's predictions for Mild Load Index

cwt_weight_moderate = 0.5; % Adjust this weight as needed

cwt_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index

num_classes = 4;

316

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 cwt_weight = cwt_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 cwt_weight = cwt_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 cwt_weight = cwt_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 cwt_weight = 0; % No contribution from CWT for Healthy

 end

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ...

 + cwt_weight * cwt_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

317

%Extra to handel severe

% Define the weight factors for each model's predictions

time_freq_weight_mild = 0.1;

time_freq_weight_moderate = 0.1; % Adjust this weight as needed

time_freq_weight_severe = 0.5; % Adjust this weight as needed

cwt_weight_mild = 0.9; % Weight for CWT AlexNet's predictions for Mild Load Index

cwt_weight_moderate = 0.9; % Adjust this weight as needed

cwt_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 cwt_weight = cwt_weight_mild;

 gadf_weight = gadf_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 cwt_weight = cwt_weight_moderate;

 gadf_weight = gadf_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 cwt_weight = cwt_weight_severe;

 gadf_weight = gadf_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

318

 time_freq_weight = 1;

 cwt_weight = 0; % No contribution from CWT for Healthy

 gadf_weight = 0; % No contribution from GADF for Healthy

 end

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ...

 + cwt_weight * cwt_scores_test(i, :) ...

 ;

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

3. GADF, CWT and CubicSVM

%3.1

% Define the weight factors for each model's predictions

time_freq_weight_mild = 0.1;

time_freq_weight_moderate = 0.1; % Adjust this weight as needed

time_freq_weight_severe = 0.8; % Adjust this weight as needed

cwt_weight_mild = 0.8; % Weight for CWT AlexNet's predictions for Mild Load Index

cwt_weight_moderate = 0.1; % Adjust this weight as needed

cwt_weight_severe = 0.1; % Weight for CWT AlexNet's predictions for Severe Load Index

gadf_weight_mild = 0.1; % Weight for GADF AlexNet's predictions for Mild Load Index

gadf_weight_moderate =0.8; % Adjust this weight as needed

gadf_weight_severe =0.1; % Weight for GADF AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

319

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 cwt_weight = cwt_weight_mild;

 gadf_weight = gadf_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 cwt_weight = cwt_weight_moderate;

 gadf_weight = gadf_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 cwt_weight = cwt_weight_severe;

 gadf_weight = gadf_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 cwt_weight = 0; % No contribution from CWT for Healthy

 gadf_weight = 0; % No contribution from GADF for Healthy

 end

 % Calculate the fused score using adjusted weights

 fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ...

 + cwt_weight * cwt_scores_test(i, :) ...

 + gadf_weight * GADF_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

%3.2

% Define the weight factors for each model's predictions

time_freq_weight_mild = 0.33;

time_freq_weight_moderate = 0.33; % Adjust this weight as needed

time_freq_weight_severe = 0.33; % Adjust this weight as needed

cwt_weight_mild = 0.33; % Weight for CWT AlexNet's predictions for Mild Load Index

cwt_weight_moderate = 0.33; % Adjust this weight as needed

cwt_weight_severe = 0.33; % Weight for CWT AlexNet's predictions for Severe Load Index

320

gadf_weight_mild = 0.33; % Weight for GADF AlexNet's predictions for Mild Load Index

gadf_weight_moderate =0.33; % Adjust this weight as needed

gadf_weight_severe =0.33; % Weight for GADF AlexNet's predictions for Severe Load Index

num_classes = 4;

% Get the labels for the testing dataset

test_labels = matchingTestData_FeatureTable1_2.Severity;

% Initialize an array to store the fused scores

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of

classes

% Iterate through each sample and apply fusion based on class

for i = 1:length(test_labels)

 % Get the Load Index label for the current sample

 load_index_label = char(test_labels(i));

 % Assign weights based on the Load Index label

 if strcmp(load_index_label, 'Mild')

 time_freq_weight = time_freq_weight_mild;

 cwt_weight = cwt_weight_mild;

 gadf_weight = gadf_weight_mild;

 elseif strcmp(load_index_label, 'Moderate')

 time_freq_weight = time_freq_weight_moderate;

 cwt_weight = cwt_weight_moderate;

 gadf_weight = gadf_weight_moderate;

 elseif strcmp(load_index_label, 'Severe')

 time_freq_weight = time_freq_weight_severe;

 cwt_weight = cwt_weight_severe;

 gadf_weight = gadf_weight_severe;

 else % Healthy named in the enesemble helthy that is why it is zero

 time_freq_weight = 1;

 cwt_weight = 0; % No contribution from CWT for Healthy

 gadf_weight = 0; % No contribution from GADF for Healthy

 end

 % Calculate the fused score using adjusted weights

321

 fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ...

 + cwt_weight * cwt_scores_test(i, :) ...

 + gadf_weight * GADF_scores_test(i, :);

end

% Get the final predicted labels based on the highest score for each sample

[~, final_predictions_test] = max(fused_scores_test, [], 2);

YPred_fused = final_predictions_test; % Use the fused predictions here

YTest = categorical(matchingTestData_FeatureTable1_2.Severity); % Convert YTest to

categorical

% Convert indices to categorical labels

YPred_fused = categorical(faultTypes(YPred_fused), faultTypes);

% Calculate overall accuracy

accuracy_fused = sum(YPred_fused == YTest) / numel(YTest) * 100;

fprintf('Overall Accuracy with Decision Fusion: %.2f%%\n', accuracy_fused);

% Calculate accuracy per fault type

faultTypes = unique(YTest);

numFaultTypes = numel(faultTypes);

accuracyPerFaultType_fused = zeros(numFaultTypes, 1);

for i = 1:numFaultTypes

 currentFaultType = faultTypes(i);

 indices = YTest == currentFaultType;

 accuracyPerFaultType_fused(i) = sum(YPred_fused(indices) == currentFaultType) /

sum(indices) * 100;

 fprintf('Accuracy for Fault Type %s with Decision Fusion: %.2f%%\n', currentFaultType,

accuracyPerFaultType_fused(i));

end

% Create a confusion chart

cm = confusionchart(YTest, YPred_fused);

cm.Normalization = 'row-normalized'; % Set the normalization to row-normalized

cm.Title = 'Confusion Matrix with Decision Fusion 3.2';

Functions

% Function to extract file name from full path (because in the enesemble

% the full path not similar it is better to use image name)

322

function fileName = getFileNameFromPath(fullPath)

 [~, fileName, ~] = fileparts(fullPath);

end

323

Appendix 3: Google Colab Codes

324

3.1 Chapter 4: DCGAN

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

#to know the used GPU

import torch

if torch.cuda.is_available():

 device = torch.cuda.get_device_name(0)

 print(f'Using GPU: {device}')

else:

 print('GPU is not available. Using CPU instead.')

Using GPU: Tesla T4

##Import libraries + dataLoaders

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.utils import to_categorical

import numpy as np

from tensorflow.keras.models import Sequential

Define the data generator for preprocessing and data augmentation

data_generator = ImageDataGenerator(

 rescale=1./255, # normalize pixel values between 0 and 1

)

Load the images from the directory

train_dir =

'/content/drive/MyDrive/MyResearch/GAN_Trials_March23/MotorImage_train'

train_generator = data_generator.flow_from_directory(

 train_dir,

 target_size=(224, 224),

 batch_size=32,

 classes=['inner'],

 class_mode='binary',

325

)

print(train_generator[0][0].shape)

Found 288 images belonging to 1 classes.

(32, 224, 224, 3)

from keras.layers import Input, Dense, Reshape, Flatten, Dropout,

BatchNormalization, Activation, ZeroPadding2D

from keras.layers.convolutional import UpSampling2D, Conv2D

from keras.models import Sequential, Model

from keras.optimisers import Adam

from keras.preprocessing.image import ImageDataGenerator

import tensorflow as tf

from keras.layers import LeakyReLU

from keras import layers

import numpy as np

import os

import matplotlib.pyplot as plt

import argparse

##Build Models

Define the Generator Model

def build_generator():

 model = Sequential()

 model.add(Dense(128 * 56 * 56, activation="relu", input_dim=100))

 model.add(Reshape((56, 56, 128)))

 model.add(UpSampling2D())

 model.add(Conv2D(64, kernel_size=3, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(32, kernel_size=3, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

326

 model.add(Conv2D(3, kernel_size=3, padding="same"))

 model.add(Activation("tanh"))

 noise = Input(shape=(100,))

 img = model(noise)

 return Model(noise, img)

Define the Discriminator Model

def build_discriminator():

 model = Sequential()

 model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=(224, 224, 3),

padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 img = Input(shape=(224, 224, 3))

 validity = model(img)

 return Model(img, validity)

327

Define the Adversarial Model

def build_adversarial(generator, discriminator):

 optimiser = Adam(0.0001, 0.5)

 discriminator.trainable = False

 gan_input = Input(shape=(100,))

 fake_image = generator(gan_input)

 validity = discriminator(fake_image)

 gan = Model(gan_input, validity)

 metrics = ['accuracy']

 gan.compile(loss='binary_crossentropy', optimiser=optimiser, metrics = metrics)

 return gan

Set up the DCGAN

generator = build_generator()

discriminator = build_discriminator()

adversarial = build_adversarial(generator, discriminator)

discriminator.trainable = False

#The first thing to do is set trainable to false on our discriminator. This will prevent it

from updating its weights independently. This does not mean that the discriminator will

not learn though. We are going to add the discriminator and generator to another

network as components. Our discriminator will be able to update its weights in the

context of the GAN network, while the generator will be updated independently. This

will allow us to use the generator outside the context of the GAN to actually produce

synthetic samples.

generator.compile(loss='binary_crossentropy',

optimiser=tf.keras.optimisers.Adam(0.0001, 0.5))

Compile the model discr

from keras.optimisers import Adam

optimiser = Adam(learning_rate=0.0001, beta_1=0.5)

loss_function = 'binary_crossentropy'

discriminator.compile(optimiser=optimiser, loss=loss_function, metrics=['accuracy'])

328

#compile

Compile the model with the custom metric

from tensorflow.keras.optimisers import Adam

optimiser = Adam(learning_rate=0.0001, beta_1=0.5)

metrics = ['accuracy']

adversarial.compile(loss='binary_crossentropy', optimiser= optimiser, metrics =

metrics)

#summary

generator.summary()

discriminator.summary()

adversarial.summary()

##Model training

#where to save generated image s

save_path =

'/content/drive/MyDrive/MyResearch/GAN_Trials_March23/Inner_L0.0001'

import os

os.makedirs(save_path, exist_ok=True)

import numpy as np

import matplotlib.pyplot as plt

epochs = 50 # (changable)

batch_size = 32 #better to match the datagenerator batch_size

num_training_images = 288

save_interval = 9 #In this example, the generator model is saved and the generated

images are displayed every 27 epochs.

#288 // 32 = 9. So, a good choice for save_interval would be a multiple of 9, such as 9,

18, 27, 36, etc.

gen_loss = []

disc_loss = []

channels = 3

for epoch in range(epochs):

329

 for i in range(int(num_training_images/batch_size)):

 # Get batch of real images

 real_images, _ = train_generator.next()

 # Generate batch of fake images

 fake_images = generator.predict(np.random.normal(0, 1, (batch_size, 100)))

 # Train the discriminator

 discriminator_loss_real = discriminator.train_on_batch(real_images,

np.ones((batch_size, 1)))

 discriminator_loss_fake = discriminator.train_on_batch(fake_images,

np.zeros((batch_size, 1)))

 discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)

 # Train the generator

 gan_loss = adversarial.train_on_batch(np.random.normal(0, 1, (batch_size, 100)),

np.ones((batch_size, 1)))

 # Print the progress

 print("Epoch %d/%d [D loss: %s] [G loss: %s]" % (epoch+1, epochs,

discriminator_loss, gan_loss))

 # Append the losses to the corresponding lists

 gen_loss.append(gan_loss)

 disc_loss.append(discriminator_loss)

 # Show and save generated images every "save_interval" epochs

 if (epoch + 1) % save_interval == 0:

 save = True

 else:

 save = False

 show_images(generator, noise, epoch=epoch+1, save=save, save_path=save_path,

channels=channels)

Save the generator model

generator.save(os.path.join(save_path,'Exp1_generator_model.h5'))

discriminator.save(os.path.join(save_path,'Exp1_discriminator_model.h5'))

330

3.2 Chapter 4: WGAN-GP and cWGAN-GP:

In thesis supplementary material file. complex file with nested structure.

3.3 Chapter 7: Full Code

from google.colab import drive

drive.mount('/content/drive')

!pip install torch-geometric

Import necessary libraries

from google.colab import drive

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten

import numpy as np

from scipy.spatial.distance import cdist

import networkx as nx

import torch

from torch_geometric.utils.convert import from_networkx

Mount Google Drive

drive.mount('/content/drive')

Load dataset

dataset_path = '/content/drive/MyDrive/GNN Classification Task/FeatureTable1_2.xlsx'

df = pd.read_excel(dataset_path)

Preprocess dataset

df.fillna(0, inplace=True)

label_encoder = LabelEncoder()

encoded_labels = label_encoder.fit_transform(df.iloc[:, 0].values)

331

y = to_categorical(encoded_labels)

X = df.iloc[:, 1:].values

balance the dataset classes per class without biase, then reassign variable

(encoded_labels, y and X)

from imblearn.over_sampling import SMOTE

Apply SMOTE to balance the dataset

smote = SMOTE(random_state=42)

X, encoded_labels = smote.fit_resample(X, encoded_labels)

Convert labels to categorical

y = to_categorical(encoded_labels)

print(pd.Series(encoded_labels).value_counts())

#Create a new DataFrame with the balanced data

df = pd.DataFrame(data=X, columns=df.columns[1:])

df['Label'] = [np.argmax(row) for row in y]

Get the encoded labels from the balanced dataset

encoded_labels = df['Label'].values

print("New encoded labels after balancing:", encoded_labels)

2. Set Random Seeds

import random

import numpy as np

import torch

Set the random seed for reproducibility

seed_value = 42

random.seed(seed_value)

np.random.seed(seed_value)

torch.manual_seed(seed_value)

if torch.cuda.is_available():

332

 torch.cuda.manual_seed_all(seed_value)

 torch.backends.cudnn.deterministic = True

 torch.backends.cudnn.benchmark = False

print(df.columns)

!pip install --upgrade networkx

Dataset Preperation for CNN

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.optim import Adam

from sklearn.model_selection import train_test_split

import numpy as np

Dataset Splitting

from sklearn.model_selection import train_test_split

Set random seeds for reproducibility

seed = 42

np.random.seed(seed)

torch.manual_seed(seed)

if torch.cuda.is_available():

 torch.cuda.manual_seed_all(seed)

Assuming 'encoded_labels' is your array of labels for the dataset (Same indeces will be

used in GNN and CNN for train, valid and test)

Split indices to maintain stratification

train_indices, temp_indices, y_train, y_temp = train_test_split(

 range(len(encoded_labels)), encoded_labels, stratify=encoded_labels, test_size=0.4,

random_state=seed)

val_indices, test_indices, y_val, y_test = train_test_split(

 temp_indices, y_temp, stratify=y_temp, test_size=0.5, random_state=seed)

from collections import Counter

333

Check the distribution of classes in each set

print('Training set class distribution:', Counter(y_train))

print('Validation set class distribution:', Counter(y_val))

print('Test set class distribution:', Counter(y_test))

print(y_test)

print(test_indices)

import numpy as np

Assuming y_test is a numpy array of your test labels

unique, counts = np.unique(y_test, return_counts=True)

test_class_distribution = dict(zip(unique, counts))

print(test_class_distribution)

Dataset Preparation for CNN

#Step 1: Create Tensors for CNN

#First, ensure your feature matrix X and encoded_labels are converted to tensors, just like

you did previously. Then, use the indices to create tensors for training, validation, and

testing sets:

#here we add train dataset because we are not using graph and masks

X_tensor = torch.tensor(X, dtype=torch.float)

y_tensor = torch.tensor(encoded_labels, dtype=torch.long)

X_train, y_train = X_tensor[train_indices], y_tensor[train_indices]

X_val, y_val = X_tensor[val_indices], y_tensor[val_indices]

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices]

#Step 2: Create DataLoaders for CNN

X_tensor = torch.tensor(X, dtype=torch.float)

y_tensor = torch.tensor(encoded_labels, dtype=torch.long)

X_train, y_train = X_tensor[train_indices], y_tensor[train_indices]

X_val, y_val = X_tensor[val_indices], y_tensor[val_indices]

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices]

print(y_test)

334

how testing dataset is arranged for the cnn? is it arranged by test_indices?

Yes, the testing dataset for the CNN is arranged by the test_indices.

This ensures that the same data points are used for testing in both CNN and GNN models.

Here's how the test dataset is created:

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices]

X_test contains the features for the test dataset,

and y_test contains the corresponding labels.

The order of data points in X_test and y_test is determined by the test_indices.

#GNN (K=3):

Dataset preperation for GNN

We need to create fraph and masks

import matplotlib.pyplot as plt

import networkx as nx

from torch_geometric.utils import to_networkx

from sklearn.neighbours import kneighbours_graph

import torch

from torch_geometric.data import Data

Necessary imports for converting sparse matrix

from scipy.sparse import coo_matrix

Step 1: Graph Construction

Convert features X into a graph

A = kneighbours_graph(X, n_neighbours=3, include_self=True) # Adjust n_neighbours

based on your dataset

Convert the adjacency matrix to COO format

A_coo = coo_matrix(A)

Now, use the row and col attributes from the COO matrix

edge_index = torch.tensor([A_coo.row, A_coo.col], dtype=torch.long)

Create a PyTorch Geometric data object

335

data = Data(x=torch.tensor(X, dtype=torch.float), edge_index=edge_index,

y=torch.tensor(encoded_labels, dtype=torch.long))

from torch_geometric.utils import to_networkx

Assuming 'data' is your PyTorch Geometric data object and it has 'y' for labels

G = to_networkx(data, to_undirected=True)

plt.figure(figsize=(15, 15)) # Increase figure size for better visibility

pos = nx.spring_layout(G, seed=42) # Layout for better node distribution

Get unique classes and assign a distinct color to each class

classes = np.unique(data.y.cpu().numpy())

colors = plt.cm.rainbow(np.linspace(0, 1, len(classes)))

Create a color map for nodes

class_color_map = {cls: colors[i] for i, cls in enumerate(classes)}

node_colors = [class_color_map[data.y[i].item()] for i in range(len(G))]

Draw nodes with class-based color

nx.draw_networkx_nodes(G, pos, node_size=50, node_color=node_colors, alpha=0.8)

Draw edges

nx.draw_networkx_edges(G, pos, alpha=0.1, edge_color="gray")

Optionally, draw node labels for a subset or specific nodes for clarity

For better clarity, consider labeling nodes of interest only

subset_labels = {i: str(i) for i in subset_nodes}

nx.draw_networkx_labels(G, pos, labels=subset_labels, font_size=8)

plt.title("Graph Visualization with Class Colors (KNN =3)")

plt.axis('off') # Turn off the axis

plt.show()

#Create Masks

How Masks Work

Masks are typically boolean arrays (or tensors) where each element corresponds to a node

in your dataset:

336

True (1): If the element is True, the corresponding node is included in the operation (like

training or evaluation).

False (0): If the element is False, the corresponding node is excluded from the operation.

For example, if you have a dataset with 100 nodes, and you want to train on the first 80 and

test on the remaining 20, your training mask would be an array with the first 80 elements

set to True and the rest set to False. The test mask would be the opposite.

#Masks creation For GNN

Initialize all masks to False initially

train_mask = torch.zeros(len(encoded_labels), dtype=torch.bool)

val_mask = torch.zeros(len(encoded_labels), dtype=torch.bool)

test_mask = torch.zeros(len(encoded_labels), dtype=torch.bool)

Set True for indices belonging to each split

train_mask[train_indices] = True

val_mask[val_indices] = True

test_mask[test_indices] = True

print(test_indices)

Attach masks to your data object

data.train_mask = train_mask

data.val_mask = val_mask

data.test_mask = test_mask

print(f"Training mask count: {train_mask.sum().item()}, Expected: {len(train_indices)}")

print(f"Validation mask count: {val_mask.sum().item()}, Expected: {len(val_indices)}")

print(f"Test mask count: {test_mask.sum().item()}, Expected: {len(test_indices)}")

data.y[data.test_mask]

print(data.y[data.test_mask])

Assuming 'label_encoder' is your LabelEncoder instance

original_class_labels = label_encoder.classes_

Print the mapping of encoded labels to original class labels

337

for encoded_label, original_label in enumerate(original_class_labels):

 print(f"Encoded label {encoded_label} stands for {original_label}")

#Define the GNN Model

import torch.nn.functional as F

from torch_geometric.nn import GCNConv

Set a fixed random seed for reproducibility

seed = 42

np.random.seed(seed)

torch.manual_seed(seed)

if torch.cuda.is_available():

 torch.cuda.manual_seed_all(seed)

class GCN(torch.nn.Module):

 def __init__(self, num_features, num_classes):

 super(GCN, self).__init__()

 self.conv1 = GCNConv(num_features, 16)

 self.conv2 = GCNConv(16, num_classes)

 def forward(self, data):

 x, edge_index = data.x, data.edge_index

 x = F.relu(self.conv1(x, edge_index))

 x = F.dropout(x, training=self.training)

 x = self.conv2(x, edge_index)

 return F.log_softmax(x, dim=1)

model = GCN(num_features=data.num_features, num_classes=4)

Assigning to a new variable name

GNN_k3 = model

#Train the Model

Actual Trainig With 5 cross validation (200 epochs, LR = 0.001, Adam optimiser)

import matplotlib.pyplot as plt

338

import torch

from torch_geometric.data import Data

from torch_geometric.nn import GCNConv

import torch.nn.functional as F

from torch.optim import Adam

import numpy as np

from sklearn.model_selection import train_test_split

#same for both

#Here Just check on the masks and ensure initial training results

from torch.optim import Adam

Set a fixed random seed for reproducibility

seed = 40

np.random.seed(seed)

torch.manual_seed(seed)

if torch.cuda.is_available():

 torch.cuda.manual_seed_all(seed)

optimiser = Adam(model.parameters(), lr=0.0009, weight_decay=5e-4)

criterion = torch.nn.CrossEntropyLoss()

##GNN Training (K=3)

Within the evaluate function, log the number of correct predictions and total number of

predictions (Same for GNN k =3 and k =4) Before training each I will change its name and

train it according to the K and save it again

def evaluate(mask):

 model.eval()

 with torch.no_grad():

 logits = model(data)

 preds = logits[mask].max(1)[1]

 correct = preds.eq(data.y[mask]).sum().item()

339

 total = mask.sum().item()

 acc = correct / total

 print(f"Correct: {correct}, Total: {total}, Mask sum: {mask.sum().item()}")

 return acc

#Training

from sklearn.model_selection import KFold

import random

def set_seed(seed_value):

 random.seed(seed_value) # Python's built-in random module

 np.random.seed(seed_value) # NumPy's random module

 torch.manual_seed(seed_value) # PyTorch's random number generator

 if torch.cuda.is_available():

 torch.cuda.manual_seed(seed_value) # CUDA's random number generator

 torch.cuda.manual_seed_all(seed_value) # If you are using multi-GPU

 torch.backends.cudnn.deterministic = True # To ensure that CUDA's convolution

operations are deterministic

 torch.backends.cudnn.benchmark = False # If your input sizes do not vary, setting

this to False can improve reproducibility

Set a seed for reproducibility

set_seed(seed_value=39)

Define the number of folds for cross-validation

num_folds = 5

kf = KFold(n_splits=num_folds, shuffle=True, random_state=42)

Convert the dataset to a PyTorch tensor

X_tensor = torch.tensor(X, dtype=torch.float)

y_tensor = torch.tensor(encoded_labels, dtype=torch.long)

Lists to store performance metrics

train_losses = []

train_accuracies = []

340

val_accuracies = []

num_epochs = len(train_accuracies) # The number of epochs training was run

Lists to store performance metrics for each fold

fold_train_losses = []

fold_train_accuracies = []

fold_val_accuracies = []

for fold, (train_index, val_index) in enumerate(kf.split(X_tensor)):

 # Split the data into training and validation sets for the current fold

 X_train, X_val = X_tensor[train_index], X_tensor[val_index]

 y_train, y_val = y_tensor[train_index], y_tensor[val_index]

 # Create PyTorch Geometric data objects for training and validation

 train_data = Data(x=X_train, y=y_train)

 val_data = Data(x=X_val, y=y_val)

 # Initialize your GNN model (Change here)

 optimizer = Adam(GNN_k3.parameters(), lr=0.0009, weight_decay=5e-4)

 # Train the model using the training data for the current fold

 for epoch in range(400):

 GNN_k3.train()

 optimizer.zero_grad()

 out = GNN_k3(data)

 loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])

 loss.backward()

 optimizer.step()

 # Evaluate the model using the validation data for the current fold

 train_acc = evaluate(data.train_mask)

 val_acc = evaluate(data.val_mask)

 # Store the results

 # Append training and validation accuracy to their respective lists

341

 train_accuracies.append(train_acc)

 val_accuracies.append(val_acc)

 fold_train_losses.append(loss.item())

 fold_train_accuracies.append(train_acc)

 fold_val_accuracies.append(val_acc)

 print(f'Fold: {fold}, Epoch: {epoch}, Loss: {loss.item():.4f}, Train Acc:

{train_acc:.4f}, Val Acc: {val_acc:.4f}')

 # Here you can add code to reset the model, if needed, for the next fold

Calculate and print the average performance across all folds

average_train_loss = sum(fold_train_losses) / len(fold_train_losses)

average_train_accuracy = sum(fold_train_accuracies) / len(fold_train_accuracies)

average_val_accuracy = sum(fold_val_accuracies) / len(fold_val_accuracies)

print(f'Average Train Loss: {average_train_loss:.4f}')

print(f'Average Train Accuracy: {average_train_accuracy:.4f}')

print(f'Average Validation Accuracy: {average_val_accuracy:.4f}')

Plotting training and validation accuracy

plt.figure(figsize=(10, 6))

Make sure to use the correct range based on the number of epochs trained

plt.plot(range(1, len(train_accuracies) + 1), train_accuracies, label='Training Accuracy')

plt.plot(range(1, len(val_accuracies) + 1), val_accuracies, label='Validation Accuracy')

plt.title('Training and Validation Accuracy over Epochs ')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

test_acc = evaluate(data.test_mask)

test_acc = evaluate(data.test_mask)

print(f'Test Accuracy: {test_acc:.4f}')

print(data.y[data.test_mask])

342

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

GNN_k3.eval()

total_correct = 0

total_samples = 0

with torch.no_grad():

 logits = GNN_k3(data) # Forward pass

 predictions = logits[data.test_mask].max(1)[1] # Get predicted classes

 true_labels = data.y[data.test_mask] # True labels

 total_correct = (predictions == true_labels).sum().item()

 total_samples = data.test_mask.sum().item()

Initialize a dictionary to store accuracy for each class

accuracy_per_class = {}

Loop through each class

for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]):

 # Indices of true labels for the current class

 true_class_indices = (true_labels == class_index)

 # Total number of samples in the current class

 total_class_samples = true_class_indices.sum().item()

 if total_class_samples > 0:

 # Correct predictions for the current class

 correct_class_predictions = (predictions[true_class_indices] ==

true_labels[true_class_indices]).sum().item()

 class_accuracy = correct_class_predictions / total_class_samples

 accuracy_per_class[class_name] = class_accuracy

 else:

 accuracy_per_class[class_name] = None # No samples for this class in the test set

343

Calculate overall accuracy

overall_accuracy = total_correct / total_samples

Print the accuracy for each class

for class_name, class_accuracy in accuracy_per_class.items():

 if class_accuracy is not None:

 print(f"Accuracy for {class_name}: {class_accuracy:.4f}")

 else:

 print(f"No samples for class {class_name} in the test set.")

Print overall accuracy

print(f"Overall Accuracy: {overall_accuracy:.4f}")

#Saving the Best perforning model after testing

model_save_path = '/content/drive/MyDrive/GNN Classification Task/GNN_k3.pth'

Save the model state dictionary

torch.save(GNN_k3.state_dict(), 'GNN_k3.pt')

#verify it was saved

Load the state dictionary

GNN_k3.load_state_dict(torch.load('/content/drive/MyDrive/GNN Classification

Task/GNN_k3.pth'))

#Same training for GNN (K=4 and K=5)

1D-CNN:

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.optim import Adam

from torch.utils.data import DataLoader, TensorDataset

from sklearn.model_selection import KFold

import numpy as np

import matplotlib.pyplot as plt

344

import random

from sklearn.model_selection import KFold

from sklearn.model_selection import KFold

Define the number of folds and create the KFold instance

num_folds = 5

kf = KFold(n_splits=num_folds, shuffle=True, random_state=42)

Set random seeds for reproducibility

seed = 42

np.random.seed(seed)

torch.manual_seed(seed)

if torch.cuda.is_available():

 torch.cuda.manual_seed_all(seed)

Define the model

class Simple1DCNN(nn.Module):

 def __init__(self, num_features, num_classes):

 super(Simple1DCNN, self).__init__()

 self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1,

padding=1)

 self.pool = nn.MaxPool1d(kernel_size=2, stride=2)

 self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1,

padding=1)

 self.flatten = nn.Flatten()

 # Temporarily set a placeholder value for the number of input features to fc1

 self.fc1 = nn.Linear(1, 120) # Placeholder, will be updated dynamically

 self.fc2 = nn.Linear(120, num_classes)

 # Dynamically calculate the correct input size for fc1

 self._init_fc1(num_features)

 def _init_fc1(self, num_features):

345

 dummy_input = torch.zeros((1, num_features), dtype=torch.float)

 output = self.pool(F.relu(self.conv1(dummy_input.unsqueeze(1))))

 output = self.pool(F.relu(self.conv2(output)))

 output_size = output.view(-1).size(0)

 self.fc1 = nn.Linear(output_size, 120)

 def forward(self, x):

 x = x.unsqueeze(1) # Add a channel dimension

 x = F.relu(self.conv1(x))

 x = self.pool(x)

 x = F.relu(self.conv2(x))

 x = self.pool(x)

 x = self.flatten(x)

 x = F.relu(self.fc1(x))

 x = self.fc2(x)

 return x

Function to reset model weights

def reset_weights(m):

 if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear):

 m.reset_parameters()

Prepare for training

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

num_features = X_tensor.shape[1]

num_classes = 4

CNN_model = Simple1DCNN(num_features=num_features, num_classes=num_classes)

CNN_model.to(device)

Load the saved model state dictionary

model_state_dict = torch.load('/content/drive/MyDrive/GNN Classification

Task/CNN_model.pth')# Load the state dictionary into the model

346

CNN_model.load_state_dict(model_state_dict)

import torch

import torch.nn as nn

Assuming CNN_model is your model instance

CNN_model = Simple1DCNN(num_features=100, num_classes=4) # Adjust num_features

accordingly

def print_model_summary(CNN_model):

 print("Model Summary:\n")

 print("{:<25} {:<25} {:<15}".format("Layer Type", "Output Shape", "Param #"))

 print("="*65)

 total_params = 0

 for layer in CNN_model.modules():

 # Skip the overall model container

 if isinstance(layer, nn.Module) and not isinstance(layer, nn.Sequential) and not

isinstance(layer, Simple1DCNN):

 layer_str = str(layer)

 layer_type = layer_str.split('(')[0]

 param_count = sum([p.numel() for p in layer.parameters()])

 total_params += param_count

 # For Conv1d and Linear layers, you can directly calculate the output shape

 # For other types of layers, you may need to adjust this logic

 if hasattr(layer, 'out_channels') and hasattr(layer, 'kernel_size'):

 output_shape = f"{layer.out_channels}, L" # L needs to be calculated based on your

model's architecture

 elif isinstance(layer, nn.Linear):

 output_shape = str(layer.out_features)

 else:

 output_shape = "Variable"

347

 print("{:<25} {:<25} {:<15}".format(layer_type, output_shape, param_count))

 print("="*65)

 print(f"Total Params: {total_params}")

print_model_summary(CNN_model)

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

Ensure that your test data is a torch Tensor

X_test = torch.tensor(X[test_indices], dtype=torch.float)

y_test = torch.tensor(encoded_labels[test_indices], dtype=torch.long)

Now use X_test and y_test to create your test_dataset and test_loader

Convert your test set to a TensorDataset

test_dataset = TensorDataset(X_test, y_test)

Create a DataLoader for your test set

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

print(y_test)

import matplotlib.pyplot as plt

import numpy as np

Initialize lists to hold the accuracies for all folds and epochs

all_folds_train_accuracies = []

all_folds_val_accuracies = []

Cross-validation loop

for fold, (train_index, val_index) in enumerate(kf.split(X_tensor)):

 print(f'Starting fold {fold+1}')

 CNN_model.apply(reset_weights) # Reset model weights

348

 # Create separate datasets for training and validation

 X_train_fold, X_val_fold = X_tensor[train_index], X_tensor[val_index]

 y_train_fold, y_val_fold = y_tensor[train_index], y_tensor[val_index]

 # DataLoader setup for training and validation

 train_loader = DataLoader(TensorDataset(X_train_fold, y_train_fold), batch_size=64,

shuffle=True)

 val_loader = DataLoader(TensorDataset(X_val_fold, y_val_fold), batch_size=64)

 # Prepare for training

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 num_features = X_tensor.shape[1]

 num_classes = 4

 CNN_model= Simple1DCNN(num_features=num_features, num_classes=num_classes)

 CNN_model.to(device)

import numpy as np

import matplotlib.pyplot as plt

from torch.optim import Adam

import torch.nn as nn

Assuming CNN_model, train_loader, val_loader, and device are already defined

Optimiser and criterion

optimiser = Adam(CNN_model.parameters(), lr=0.005)

criterion = nn.CrossEntropyLoss()

Lists to store metrics for all folds

all_folds_train_accuracies = []

all_folds_val_accuracies = []

Assuming num_folds and fold are defined, and the training/validation loop is part of a

larger cross-validation loop

for fold in range(num_folds):

 # Lists to store metrics for the current fold

349

 fold_train_accuracies = []

 fold_val_accuracies = []

 # Training loop for current fold

 for epoch in range(300): # Adjusted to match the loop range with the defined number of

epochs

 # Training phase

 CNN_model.train()

 train_loss, train_correct, train_total = 0, 0, 0

 for X_batch, y_batch in train_loader:

 X_batch, y_batch = X_batch.to(device), y_batch.to(device)

 optimiser.zero_grad()

 outputs = CNN_model(X_batch)

 loss = criterion(outputs, y_batch)

 loss.backward()

 optimiser.step()

 _, predicted = torch.max(outputs.data, 1)

 train_total += y_batch.size(0)

 train_correct += (predicted == y_batch).sum().item()

 train_loss += loss.item()

 # Calculate training accuracy for the current epoch

 train_accuracy = train_correct / train_total

 fold_train_accuracies.append(train_accuracy)

 # Validation phase

 CNN_model.eval()

 val_loss, val_correct, val_total = 0, 0, 0

 with torch.no_grad():

 for X_batch, y_batch in val_loader:

 X_batch, y_batch = X_batch.to(device), y_batch.to(device)

350

 outputs = CNN_model(X_batch)

 _, predicted = torch.max(outputs, 1)

 val_total += y_batch.size(0)

 val_correct += (predicted == y_batch).sum().item()

 # Calculate validation accuracy for the current epoch

 val_accuracy = val_correct / val_total

 fold_val_accuracies.append(val_accuracy)

 # Output the results

 print(f'Fold: {fold+1}, Epoch: {epoch+1}, Loss: {train_loss / len(train_loader):.4f},

Train Acc: {train_accuracy:.4f}, Val Acc: {val_accuracy:.4f}')

 # Store the accuracies for the current fold

 all_folds_train_accuracies.append(fold_train_accuracies)

 all_folds_val_accuracies.append(fold_val_accuracies)

Convert lists of lists to a NumPy array for easier handling

all_folds_train_accuracies = np.array(all_folds_train_accuracies)

all_folds_val_accuracies = np.array(all_folds_val_accuracies)

Plot training and validation accuracies for each epoch and fold

for fold in range(num_folds):

 plt.figure(figsize=(10, 6))

 epochs_range = range(1, 301) # Corrected to match the actual range of epochs

 plt.plot(epochs_range, all_folds_train_accuracies[fold], label='Training Accuracy - Fold

{}'.format(fold+1))

 plt.plot(epochs_range, all_folds_val_accuracies[fold], label='Validation Accuracy - Fold

{}'.format(fold+1))

 plt.title(f'Training and Validation Accuracy over Epochs - Fold {fold+1}')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend()

351

 plt.show()

Convert lists of lists to a NumPy array for easier handling

all_folds_train_accuracies = np.array(all_folds_train_accuracies)

all_folds_val_accuracies = np.array(all_folds_val_accuracies)

Calculate the mean accuracies across folds for each epoch

mean_train_accuracies = all_folds_train_accuracies.mean(axis=0)

mean_val_accuracies = all_folds_val_accuracies.mean(axis=0)

Calculate the overall average validation accuracy

overall_average_val_accuracy = mean_val_accuracies.mean()

Print the overall average validation accuracy

print(f"Overall Average Validation Accuracy: {overall_average_val_accuracy:.4f}")

import matplotlib.pyplot as plt

import numpy as np

Assuming 'all_folds_train_accuracies' and 'all_folds_val_accuracies' are lists of lists,

where each sublist contains accuracies for one fold, and each fold has data for 300

epochs.

Convert lists of lists to a NumPy array for easier handling

all_folds_train_accuracies = np.array(all_folds_train_accuracies)

all_folds_val_accuracies = np.array(all_folds_val_accuracies)

Calculate the mean accuracies across folds for each epoch

mean_train_accuracies = all_folds_train_accuracies.mean(axis=0)

mean_val_accuracies = all_folds_val_accuracies.mean(axis=0)

Plot training and validation accuracies for each epoch

plt.figure(figsize=(12, 6))

Adjusting the range to 301 because Python ranges are exclusive at the upper bound, and

we're counting from 1

352

plt.plot(range(1, 301), mean_train_accuracies, label='Average Training Accuracy')

plt.plot(range(1, 301), mean_val_accuracies, label='Average Validation Accuracy')

plt.title('Average Training and Validation Accuracy over Epochs for All Folds')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

testing dataset accuracy arranged by test_indeces similar to GNN and accuracy per class#

Assuming CNN_model, X_test, y_test, and test_loader are already defined# Evaluate the

model on the test set

CNN_model.eval()

with torch.no_grad():

 test_loss = 0

 test_correct = 0

 test_total = 0

 for X_batch, y_batch in test_loader:

 X_batch, y_batch = X_batch.to(device), y_batch.to(device)

 outputs = CNN_model(X_batch)

 loss = criterion(outputs, y_batch)

 test_loss += loss.item()

 _, predicted = torch.max(outputs.data, 1)

 test_total += y_batch.size(0)

 test_correct += (predicted == y_batch).sum().item()

 # Calculate test accuracy

 test_accuracy = test_correct / test_total

 print(f'Test Accuracy: {test_accuracy:.4f}')

353

 # Get predictions for the entire test set

 outputs = CNN_model(X_test.to(device))

 _, predicted = torch.max(outputs.data, 1)

 # Calculate confusion matrix

 cm = confusion_matrix(y_test.cpu().numpy(), predicted.cpu().numpy())

 sns.heatmap(cm, annot=True, fmt='d')

 plt.xlabel('Predicted')

 plt.ylabel('True')

 plt.title('Confusion Matrix')

 plt.show()

 # Calculate accuracy per class

 accuracy_per_class = {}

 for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]):

 true_class_indices = (y_test == class_index)

 total_class_samples = true_class_indices.sum().item()

 if total_class_samples > 0:

 correct_class_predictions = predicted[true_class_indices] ==

y_test[true_class_indices]

 class_accuracy = correct_class_predictions.sum().item() / total_class_samples

 accuracy_per_class[class_name] = class_accuracy

 else:

 accuracy_per_class[class_name] = None # No samples for this class in the test set

model_save_path_cnn = '/content/drive/MyDrive/GNN Classification

Task/CNN_model.pth'

354

Save the model state dictionary

#torch.save(CNN_model.state_dict(), model_save_path_cnn)

Load the state dictionary to verify it was saved correctly

#CNN_model.load_state_dict(torch.load(model_save_path_cnn))

#print("Model saved and loaded successfully.")

#Hybrid CNN and GNN with optimal GNN Configuration using Taguchi

prompt: Now on testing dataset compare GCN output (the model name is model) and

CNN (the model name is CNN_model) output

Assuming you have your GCN model and CNN model loaded and ready to use

Get predictions from the GCN model

model.eval()

with torch.no_grad():

 gcn_logits = model(data)

 gcn_test_logits = gcn_logits[data.test_mask]

 gcn_preds = gcn_test_logits.max(1)[1]

Get predictions from the CNN model

CNN_model.eval()

with torch.no_grad():

 cnn_outputs = CNN_model(X_test.to(device))

 _, cnn_predicted = torch.max(cnn_outputs.data, 1)

Compare the predictions

print("GCN Predictions:", gcn_preds)

print("CNN Predictions:", cnn_predicted)

355

Calculate the number of matching predictions

matching_predictions = (gcn_preds.cpu().numpy() == cnn_predicted.cpu().numpy()).sum()

print("Number of matching predictions:", matching_predictions)

Calculate the number of differing predictions

differing_predictions = (gcn_preds.cpu().numpy() != cnn_predicted.cpu().numpy()).sum()

print("Number of differing predictions:", differing_predictions)

print("True labels:", true_labels)

Assuming CNN_model, model, X_test, y_test, and test_loader are already defined

Evaluate the model on the test set

CNN_model.eval()

model.eval()

with torch.no_grad():

 test_loss = 0

 test_correct = 0

 test_total = 0

 for X_batch, y_batch in test_loader:

 X_batch, y_batch = X_batch.to(device), y_batch.to(device)

 outputs = CNN_model(X_batch)

 loss = criterion(outputs, y_batch)

 test_loss += loss.item()

 _, predicted = torch.max(outputs.data, 1)

 test_total += y_batch.size(0)

 test_correct += (predicted == y_batch).sum().item()

356

 # Get predictions for the entire test set

 cnn_outputs = CNN_model(X_test.to(device))

 _, cnn_predicted = torch.max(cnn_outputs.data, 1)

 # Get predictions from the GCN model

 gcn_logits = model(data)

 gcn_test_logits = gcn_logits[data.test_mask]

 gcn_preds = gcn_test_logits.max(1)[1]

 # Calculate the weighted sum of predictions

 # Define weights for each class in CNN and GCN models

 gcn_weights_per_class = [0.5, 0.5, 0.5, 0.5] # Example weights for each class in GCN

 cnn_weights_per_class = [0.5, 0.5, 0.5, 0.5] # Example weights for each class in CNN

 # Apply weights to the logits

 weighted_cnn_outputs = cnn_outputs * torch.tensor(cnn_weights_per_class).to(device)

 weighted_gcn_test_logits = gcn_test_logits *

torch.tensor(gcn_weights_per_class).to(device)

 # Fuse the logits

 fused_logits = weighted_cnn_outputs + weighted_gcn_test_logits

 # Get the predicted classes from the fused logits

 _, fused_predictions = torch.max(fused_logits.data, 1)

 # Calculate the confusion matrix

 cm = confusion_matrix(y_test.cpu().numpy(), fused_predictions.cpu().numpy())

357

 sns.heatmap(cm, annot=True, fmt='d')

 plt.xlabel('Predicted')

 plt.ylabel('True')

 plt.title('Confusion Matrix (Decision Fusion-Equal weights)')

 plt.show()

 # Calculate accuracy per class

 accuracy_per_class = {}

 for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]):

 true_class_indices = (y_test == class_index)

 total_class_samples = true_class_indices.sum().item()

 if total_class_samples > 0:

 correct_class_predictions = fused_predictions[true_class_indices] ==

y_test[true_class_indices]

 class_accuracy = correct_class_predictions.sum().item() / total_class_samples

 accuracy_per_class[class_name] = class_accuracy

 else:

 accuracy_per_class[class_name] = None # No samples for this class in the test set

 # Print the accuracy for each class

 for class_name, class_accuracy in accuracy_per_class.items():

 if class_accuracy is not None:

 print(f"Accuracy for {class_name}: {class_accuracy:.4f}")

 else:

 print(f"No samples for class {class_name} in the test set.")

 # Calculate the average test accuracy

total_accuracy = 0

for class_name, class_accuracy in accuracy_per_class.items():

 if class_accuracy is not None:

358

 total_accuracy += class_accuracy

average_test_accuracy = total_accuracy / len(accuracy_per_class)

print(f"Average Test Accuracy: {average_test_accuracy:.4f}")

Evaluate the model on the test set

CNN_model.eval()

model.eval()

with torch.no_grad():

 test_loss = 0

 test_correct = 0

 test_total = 0

 for X_batch, y_batch in test_loader:

 X_batch, y_batch = X_batch.to(device), y_batch.to(device)

 outputs = CNN_model(X_batch)

 loss = criterion(outputs, y_batch)

 test_loss += loss.item()

 _, predicted = torch.max(outputs.data, 1)

 test_total += y_batch.size(0)

 test_correct += (predicted == y_batch).sum().item()

 # Get predictions for the entire test set

 cnn_outputs = CNN_model(X_test.to(device))

 _, cnn_predicted = torch.max(cnn_outputs.data, 1)

 # Get predictions from the GCN model

 gcn_logits = model(data)

 gcn_test_logits = gcn_logits[data.test_mask]

359

 gcn_preds = gcn_test_logits.max(1)[1]

 # Calculate the weighted sum of predictions

 # Define weights for each class in CNN and GCN models

 gcn_weights_per_class = [0.3, 0.6, 0.5, 0.5] # Example weights for each class in GCN

 cnn_weights_per_class = [0.7, 0.4, 0.5, 0.5] # Example weights for each class in CNN

 # Apply weights to the logits

 weighted_cnn_outputs = cnn_outputs * torch.tensor(cnn_weights_per_class).to(device)

 weighted_gcn_test_logits = gcn_test_logits *

torch.tensor(gcn_weights_per_class).to(device)

 # Fuse the logits

 fused_logits = weighted_cnn_outputs + weighted_gcn_test_logits

 # Get the predicted classes from the fused logits

 _, fused_predictions = torch.max(fused_logits.data, 1)

 # Calculate the confusion matrix

 cm = confusion_matrix(y_test.cpu().numpy(), fused_predictions.cpu().numpy())

 sns.heatmap(cm, annot=True, fmt='d')

 plt.xlabel('Predicted')

 plt.ylabel('True')

 plt.title('Confusion Matrix (Decision Fusion)')

 plt.show()

 # Calculate accuracy per class

 accuracy_per_class = {}

360

 for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]):

 true_class_indices = (y_test == class_index)

 total_class_samples = true_class_indices.sum().item()

 if total_class_samples > 0:

 correct_class_predictions = fused_predictions[true_class_indices] ==

y_test[true_class_indices]

 class_accuracy = correct_class_predictions.sum().item() / total_class_samples

 accuracy_per_class[class_name] = class_accuracy

 else:

 accuracy_per_class[class_name] = None # No samples for this class in the test set

 # Print the accuracy for each class

 for class_name, class_accuracy in accuracy_per_class.items():

 if class_accuracy is not None:

 print(f"Accuracy for {class_name}: {class_accuracy:.4f}")

 else:

 print(f"No samples for class {class_name} in the test set.")

Calculate the average test accuracy

total_accuracy = 0

for class_name, class_accuracy in accuracy_per_class.items():

 if class_accuracy is not None:

 total_accuracy += class_accuracy

average_test_accuracy = total_accuracy / len(accuracy_per_class)

print(f"Average Test Accuracy: {average_test_accuracy:.4f}")

361

Appendix 4: Chapter 6 Extra Results

362

4.1 Chapter 6: Results of Decision Fusion Experiments Over the Five Runs.

 Training Time

Alternatives
No. of

Channels

TFD

a.CubicSVM

b.WNN

(S)

CWT

AlexNet

(min)

GADF

AlexNet

 (min)

Healthy Mild Moderate Severe
Overall

Accuracy

Total

Training

Time

Run 1 Seed 1

1.1 (TFDb -CWT) 2 48.63 7.2 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:08:01

1.2 (TFDb-CWT) 2 48.63 7.2 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:08:01

2.1 (TFDa -CWT) 2 26.71 7.2 0 100.00% 95.74% 97.87% 100.00% 98.40% 0:07:39

2.2 (TFDa -CWT) 2 26.71 7.2 0 100.00% 96.81% 97.87% 100.00% 98.67% 0:07:39

3.1 (TFDa -CWT-

GADF)
3 26.71 7.2 7.53 100.00% 95.74% 98.94% 100.00% 98.67%

0:15:11

3.2 (TFDa -CWT-

GADF)
3 26.71 7.2 7.53 100.00% 95.74% 97.87% 100.00% 98.40%

0:15:11

Run 2 Seed 3

1.1 (TFDb -CWT) 2 18.74 10.32 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:10:38

1.2 (TFDb-CWT) 2 18.74 10.32 0 100.00% 90.43% 97.87% 100.00% 97.08% 0:10:38

2.1 (TFDa -CWT) 2 12.87 10.32 0 100.00% 96.81% 97.87% 100.00% 98.67% 0:10:32

2.2 (TFDa -CWT) 2 12.87 10.32 0 100.00% 96.81% 98.94% 100.00% 98.94% 0:10:32

3.1 (TFDa -CWT-

GADF)
3 12.87 10.32 11.49 100.00% 95.74% 100.00% 100.00% 98.94%

0:22:01

3.2 (TFDa -CWT-

GADF)
3 12.87 10.32 11.49 100.00% 95.74% 94.29% 100.00% 97.51%

0:22:01

Run 3 Seed 6

1.1 (TFDb -CWT) 2 16.75 7.54 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:07:49

1.2 (TFDb-CWT) 2 16.75 7.54 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:49

2.1 (TFDa -CWT) 2 11.56 7.54 0 100.00% 90.43% 95.74% 100.00% 96.54% 0:07:44

2.2 (TFDa -CWT) 2 11.56 7.54 0 100.00% 92.55% 95.74% 100.00% 97.07% 0:07:44

3.1 (TFDa -CWT-

GADF)
3 11.56 7.54 7.56 100.00% 98.94% 98.94% 100.00% 99.47%

0:15:18

3.2 (TFDa -CWT-

GADF)
3 11.56 7.54 7.56 100.00% 96.81% 98.94% 100.00% 98.94%

0:15:18

Run 4 Seed 9

1.1 (TFDb -CWT) 2 19.75 7.34 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:40

1.2 (TFDb-CWT) 2 19.75 7.34 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:40

2.1 (TFDa -CWT) 2 10.85 7.34 0 100.00% 95.74% 98.94% 100.00% 98.67% 0:07:31

2.2 (TFDa -CWT) 2 10.85 7.34 0 100.00% 95.74% 98.94% 100.00% 98.67% 0:07:31

3.1 (TFDa -CWT-

GADF)
3 10.85 7.34 8.2 100.00% 95.74% 100.00% 100.00% 98.94%

0:15:43

3.2 (TFDa -CWT-

GADF)
3 10.85 7.34 8.2 100.00% 95.74% 100.00% 100.00% 98.94%

0:15:43

Run 5 Seed 12

1.1 (TFDb -CWT) 2 22.07 12.41 0 100.00% 96.81% 100.00% 100.00% 99.07% 0:12:47

1.2 (TFDb-CWT) 2 22.07 12.41 0 100.00% 95.74% 100.00% 100.00% 98.67% 0:12:47

2.1 (TFDa -CWT) 2 16.41 12.41 0 100.00% 93.62% 100.00% 100.00% 98.54% 0:12:41

2.2 (TFDa -CWT) 2 16.41 12.41 0 100.00% 94.68% 100.00% 100.00% 98.94% 0:12:41

3.1 (TFDa -CWT-

GADF)
3 16.41 12.41 11.59 100.00% 98.94% 97.87% 100.00% 99.20%

0:24:16

3.2 (TFDa -CWT-

GADF)
3 16.41 12.41 11.59 100.00% 97.87% 98.94% 100.00% 99.20%

0:24:16

363

4.2 Chapter 7: Feature Extraction and Selection for Data Points

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 22.99 8.66 16.1 19.29
-

0.23
17.24 1.99 -10.3

-

10.27
1.86

-

0.02
1.98 1.81 4E-04 3E-04 3E-04 1E-04 1E-05 1.E+04 4476.56

Mild 27.36 10.84 19.75 27.36
-

0.23
18.94 1.75

-

14.25

-

14.14
1.82 0.28 1.73 1.21 5E-04 3E-04 2E-04 2E-05 1E-05 4.E+03 9289.82

Mild 28.49 10.72 20.45 29.5
-

0.22
19 1.77 -8.17 -8.17 1.91 0.35 1.76 1.37 8E-04 3E-04 1E-04 1E-05

9.E+03 14127.26

Mild 25.31 10.17 18.29 22.75
-

0.22
16.28 1.6

-

13.02

-

12.79
1.8 0.36 1.59 1.18 3E-04 2E-04 1E-04 2E-05 9E-06 1.E+04 4509.91

Mild 19.36 7.71 13.77 17.41
-

0.22
14.65 1.9 -8.77 -8.77 1.79 0.73 1.89 1.5 7E-04 3E-04 2E-04 1E-05 6E-06 4.E+03 13891.02

Mild 23.14 9.95 17.19 23.94
-

0.24
15.53 1.56

-

12.38

-

12.34
1.73 0.96 1.54 0.95 4E-04 1E-04 7E-05 9E-06 7E-06 4.E+03 9298.51

Mild 25.72 9.88 18.47 29.52
-

0.23
17.18 1.74

-

10.79

-

10.79
1.87 0.69 1.72 1.39 5E-04 3E-04 2E-04 1E-05 1E-05 9.E+03 4249

Mild 18.07 7.81 13.33 16.37
-

0.22
11.81 1.51 -12.5 -12.5 1.71

-

0.01
1.5 1.04 3E-04 2E-04 1E-04 2E-05 1E-05 1.E+04 8894.99

Mild 22.59 9.02 16.12 18.72
-

0.25
17.81 1.97

-

11.54
-11.5 1.79 0.57 1.96 1.49 8E-04 3E-04 1E-04 1E-05 1E-05 4.E+03 9355.02

Mild 29.84 11.87 21.71 34.27
-

0.22
19.35 1.63

-

12.36

-

12.35
1.83 1.93 1.62 1.17 4E-04 3E-04 2E-04 1E-05 9E-06 1.E+04 9509.94

Mild 27.02 9.87 19.1 26.99
-

0.23
18.41 1.86

-

11.74

-

11.74
1.93 0.18 1.85 1.65 7E-04 4E-04 8E-05 3E-05 7E-06 1.E+04 4654.49

Mild 19.12 8.4 14.25 18.78
-

0.22
12.45 1.48

-

12.46

-

12.46
1.7 0.38 1.47 0.95 6E-04 1E-04 1E-04 1E-05 8E-06 5.E+03 14070.07

Mild 25.35 9.04 17.48 21.74
-

0.22
20.02 2.21

-

11.29

-

11.25
1.93 0.59 2.2 2 7E-04 5E-04 2E-04 3E-05

4.E+03 14024.68

Mild 36.16 13.96 26.1 39.14
-

0.23
23.1 1.65

-

10.25

-

10.25
1.87

-

0.12
1.64 1.27 4E-04 2E-04 1E-04 1E-05 9E-06 9.E+03 3990.37

Mild 22.76 9.77 16.78 19.55
-

0.22
14.15 1.45

-

10.22

-

10.22
1.72 0.48 1.43 0.93 2E-04 2E-04 8E-05 1E-05 8E-06 5.E+03 9666.18

364

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 23.94 10.29 17.62 22.18
-

0.23
15.91 1.55

-

11.59

-

11.49
1.71 0.82 1.53 0.94 4E-04 1E-04 9E-05 1E-05 9E-06 4.E+03 9210.33

Mild 24.63 9.19 17.28 23.15
-

0.23
18.39 2

-

11.29

-

11.22
1.88 1.08 1.99 1.67 7E-04 4E-04 1E-04 1E-05 9E-06 1.E+04 9521.39

Mild 29.71 10.84 20.85 31.2
-

0.21
21.19 1.95

-

11.83

-

11.83
1.92 0.09 1.94 1.83 7E-04 2E-04 2E-04 1E-04 1E-05 1.E+04 4793.69

Mild 18.52 8.25 13.8 17.17
-

0.19
12.25 1.48

-

11.94

-

11.94
1.67 0.65 1.47 0.91 4E-04 2E-04 5E-05 1E-05

4.E+03 9163.66

Mild 29.54 10.17 20.27 28.5 -0.2 21.21 2.09 -8.06 -8.05 1.99 0.66 2.08 1.87 7E-04 5E-04 1E-04 2E-05 1E-05 4.E+03 13820.42

Mild 23.29 9.07 16.58 23.34
-

0.24
16.74 1.85

-

11.45

-

11.45
1.83 0.44 1.83 1.29 5E-04 2E-04 1E-04 2E-05 9E-06 1.E+04 4676.62

Mild 24.77 9.78 17.9 25.46
-

0.22
15.84 1.62 -3.85 -3.78 1.83 0.1 1.6 1.16 5E-04 3E-04 1E-04 2E-05

5.E+03 8703.19

Mild 22.13 8.65 15.92 23.18
-

0.23
15.11 1.75

-

12.53

-

12.44
1.84 0.33 1.73 1.25 4E-04 3E-04 2E-04 1E-05

4.E+03 14050.28

Mild 25.21 9.11 17.75 26.74
-

0.23
19.01 2.09

-

10.06

-

10.02
1.95 0.19 2.07 1.91 5E-04 4E-04 3E-04 3E-05 2E-05 1.E+04 3879.38

Mild 26.49 11.07 19.28 20.82
-

0.22
17.4 1.57

-

13.28

-

13.22
1.74

-

0.64
1.56 1.12 2E-04 2E-04 2E-04 3E-05 2E-05 9.E+03 4603.16

Mild 21.1 9.39 15.84 22.37
-

0.21
13.57 1.45 -5.13 -5.11 1.69 0.89 1.43 0.81 4E-04 2E-04 3E-05 8E-06 8E-06 4.E+03 9761.09

Mild 26.03 9.61 18.29 24.74
-

0.21
17.85 1.86

-

10.93

-

10.91
1.9 0.47 1.85 1.46 6E-04 3E-04 1E-04 2E-05 2E-05 4.E+03 8671.56

Mild 36.16 12.74 24.93 31.5
-

0.21
27.5 2.16

-

12.24

-

12.06
1.96 1.24 2.15 2.16 8E-04 3E-04 3E-04 1E-04 1E-05 1.E+04 9298

Mild 19.52 8.77 14.72 19.67
-

0.22
11.79 1.34

-

10.45

-

10.44
1.68 0.76 1.33 0.74 4E-04 2E-04 3E-05 1E-05 7E-06 4.E+03 9021.95

Mild 23.88 9.63 17.59 30.59
-

0.22
15.24 1.58 -10.3

-

10.27
1.83 0.75 1.57 0.95 4E-04 2E-04 6E-05 1E-05

4.E+03 9562.65

Mild 30.78 11.34 21.49 28.31
-

0.24
22.02 1.94

-

12.25

-

12.17
1.89 0.71 1.93 1.7 6E-04 4E-04 2E-04 2E-05 2E-05 1.E+04 4059.22

Mild 22.79 8.52 15.95 21.87
-

0.23
17.17 2.02

-

11.76

-

11.76
1.87 0.48 2 1.87 8E-04 5E-04 1E-04 2E-05 2E-05 1.E+04 9054.48

Mild 23.24 9.55 17.03 26.79
-

0.22
14.76 1.54

-

11.21

-

11.17
1.78 0.66 1.53 0.92 4E-04 3E-04 4E-05 1E-05 9E-06 4.E+03 9543.52

365

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 27.79 10.75 20.11 30.49
-

0.23
18.13 1.69

-

11.96

-

11.94
1.87 1.03 1.67 1.18 4E-04 3E-04 3E-04 3E-05 2E-05 1.E+04 4207.65

Mild 28.93 10.44 20.11 27.7
-

0.22
21.27 2.04

-

11.56

-

11.51
1.93

-

0.05
2.03 1.94 3E-04 3E-04 3E-04 5E-05 1E-05 4.E+03 9925.67

Mild 24.53 10.36 18.01 22.97
-

0.24
16.93 1.63

-

10.22

-

10.22
1.74 0.84 1.62 1.11 3E-04 3E-04 9E-05 2E-05 2E-05 4.E+03 8659.79

Mild 25.77 10.21 18.71 30.41
-

0.24
17.4 1.7

-

10.19
-10.1 1.83 0.82 1.69 1.16 6E-04 3E-04 1E-04 1E-05 1E-05 4.E+03 9417.1

Mild 29.89 10.53 20.88 31.73
-

0.23
19.38 1.84 -9.05 -9 1.98 1.24 1.83 1.56 3E-04 3E-04 3E-04 1E-05 1E-05 1.E+04 4276.45

Mild 23.55 8.58 16.32 21.36
-

0.23
16.62 1.94

-

11.25

-

11.25
1.9 0.28 1.92 1.69 4E-04 4E-04 2E-04 1E-04 1E-05 1.E+04 9180.71

Mild 24.85 9.56 17.89 27.82
-

0.23
17.04 1.78 -10.4

-

10.36
1.87 0.8 1.77 1.29 6E-04 2E-04 9E-05 2E-05

4.E+03 9675.36

Mild 27.15 9.62 19.19 32.83
-

0.21
17.83 1.85

-

12.82

-

12.76
1.99 0.35 1.84 1.51 3E-04 3E-04 3E-04 5E-05 1E-05 1.E+04 9085.96

Mild 27.79 11.29 20.21 27.15
-

0.23
18.18 1.61

-

11.75

-

11.75
1.79 0 1.59 1.19 5E-04 1E-04 6E-05 2E-05 1E-05 1.E+04 9110.88

Mild 24.49 9.81 17.65 23.45
-

0.24
18.11 1.85

-

12.65

-

12.64
1.8 0.93 1.83 1.32 7E-04 3E-04 6E-05 2E-05

4.E+03 9429.12

Mild 29.01 11.49 21.17 33.4
-

0.23
19.62 1.71 -6.89 -6.89 1.84 1.5 1.69 1.19 4E-04 3E-04 3E-04 2E-05 1E-05 1.E+04 9453.65

Mild 37.95 14.88 27.6 45.79
-

0.22
24.4 1.64

-

10.89

-

10.84
1.86 2.16 1.63 1.21 3E-04 2E-04 2E-04 1E-05 6E-06 9.E+03 13476.58

Mild 26.95 9.81 18.74 23.22
-

0.23
20.66 2.11 -9.21 -9.21 1.91 0.12 2.09 2.02 5E-04 4E-04 3E-04 4E-05 1E-05 1.E+04 9731.73

Mild 27.48 11.5 20.25 26.42
-

0.23
20.91 1.82

-

14.34
-14.1 1.76 0.82 1.8 1.29 6E-04 3E-04 1E-04 2E-05 2E-05 4.E+03 9363.83

Mild 36.17 13.34 25.95 45.8
-

0.22
22.71 1.7

-

12.12

-

12.12
1.95 0.88 1.69 1.29 3E-04 3E-04 2E-04 2E-05 9E-06 9.E+03 13789.04

Mild 31.65 11.87 22.43 28.38 -0.2 20.26 1.71 -9.42 -9.42 1.89 0.46 1.69 1.36 3E-04 3E-04 1E-04 1E-04 9E-06 9.E+03 18776.66

Mild 22.84 8.67 15.99 18.75
-

0.22
16.86 1.94 -10.3

-

10.26
1.84 0.58 1.93 1.54 8E-04 2E-04 8E-05 2E-05

4.E+03 9417.52

Mild 27.52 10.03 19.52 32.67
-

0.23
18.89 1.88

-

14.66

-

14.57
1.95 0.34 1.87 1.53 3E-04 3E-04 3E-04 4E-05 2E-05 9.E+03 4076.22

366

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 25.92 11 19.12 26.24
-

0.21
16.95 1.54

-

15.82

-

15.82
1.74 0.19 1.53 1.08 2E-04 2E-04 8E-05 2E-05 1E-05 1.E+04 9087.04

Mild 22.37 9.82 16.62 18.67
-

0.23
14.31 1.46

-

11.22

-

11.22
1.69 0.33 1.44 0.95 3E-04 2E-04 5E-05 5E-05 1E-05 1.E+04 11383.15

Mild 26.36 9.53 18.25 23.8
-

0.22
20.66 2.17 -10.2

-

10.19
1.92 1.17 2.16 1.89 9E-04 3E-04 2E-04 3E-05

4.E+03 9255.58

Mild 39.69 14.76 28.56 47.9
-

0.22
26.94 1.83

-

12.16

-

12.16
1.94 1.98 1.81 1.55 4E-04 3E-04 2E-04 1E-05 9E-06 9.E+03 4080.93

Mild 22.64 9.16 16.37 20.34
-

0.22
14.88 1.62

-

11.88

-

11.88
1.79

-

0.11
1.61 1.23 5E-04 1E-04 1E-04 1E-04 2E-05 1.E+04 18973.78

Mild 23.79 10.91 18.1 23.77
-

0.22
15.57 1.43

-

13.13

-

13.06
1.66 0.92 1.41 0.83 3E-04 2E-04 6E-05 1E-05 1E-05 4.E+03 9376.53

Mild 23.12 8.23 16 23.57
-

0.21
17.64 2.14

-

12.92

-

12.88
1.94 0.78 2.13 1.89 9E-04 3E-04 2E-04 3E-05 2E-05 4.E+03 9403.18

Mild 24.01 9.22 17.13 24.33 -0.2 19.83 2.15
-

10.18

-

10.11
1.86 1.3 2.14 1.27 7E-04 9E-05 6E-05 9E-06 6E-06 4.E+03 13985.58

Mild 25.53 10.33 18.82 30.6
-

0.22
17.37 1.68 -4.64 -4.58 1.82 0.09 1.67 1.08 4E-04 2E-04 4E-05 2E-05

5.E+03 13615.64

Mild 22.95 9.18 16.58 22.72
-

0.22
15.67 1.71

-

13.21
-13.2 1.81 0.3 1.69 1.34 4E-04 2E-04 1E-04 9E-05

4.E+03 9683.75

Mild 24.91 9.2 17.57 26.04
-

0.19
18.64 2.03 -4.65 -4.62 1.91 1.46 2.02 1.39 8E-04 1E-04 9E-05 1E-05

4.E+03 9677.05

Mild 23.21 10.3 17.49 23.04
-

0.26
18.61 1.81 -8.79 -8.69 1.7 0.47 1.79 0.87 4E-04 6E-05 3E-05 2E-05 1E-05 4.E+03 13046.08

Mild 25.93 10.62 19.07 28.15
-

0.22
16.95 1.6

-

10.88

-

10.83
1.79 0.66 1.58 1.12 4E-04 2E-04 7E-05 3E-05

4.E+03 10034.1

Mild 35.73 15.13 26.62 38.45
-

0.24
22.93 1.52 -8.8 -8.77 1.76

-

1.16
1.5 0.95 3E-04 1E-04 5E-05 2E-05

4.E+03 9013.55

Mild 22.71 8.4 15.99 23.87
-

0.22
18.11 2.16 -8.38 -8.33 1.9 1.24 2.15 1.31 7E-04 1E-04 4E-05 3E-05 2E-05 4.E+03 13777.56

Mild 28.36 12.67 21.39 28.23
-

0.22
19.53 1.54

-

12.11

-

11.99
1.69 1.32 1.53 0.94 3E-04 9E-05 5E-05 4E-05

5.E+03 9731.03

Mild 40.58 16 29.8 50.12
-

0.21
26.59 1.66

-

11.07

-

10.96
1.86

-

1.12
1.65 1.25 4E-04 2E-04 1E-04 5E-05

4.E+03 10114.97

367

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 28.25 11.22 20.69 34.61
-

0.21
19.75 1.76

-

11.09

-

11.07
1.84 1.42 1.75 1.09 4E-04 1E-04 8E-05 1E-05 6E-06 4.E+03 14060.37

Mild 23.49 8.45 16.22 22.11
-

0.22
18.88 2.23 -8.35 -8.33 1.92 0.78 2.22 1.63 8E-04 2E-04 7E-05 1E-05

4.E+03 13836.48

Mild 29.18 12.3 21.68 28.55
-

0.22
20.06 1.63

-

12.02

-

12.01
1.76

-

0.66
1.62 1.2 4E-04 2E-04 1E-04 2E-05

4.E+03 10072.31

Mild 23.58 10.06 17.57 26.79
-

0.24
15.6 1.55 -6.98 -6.98 1.75 0.96 1.53 0.85 3E-04 7E-05 6E-05 1E-05

4.E+03 13974.33

Mild 27.18 10.72 19.66 29.77
-

0.21
19.75 1.84 -8.02 -7.94 1.83 1.42 1.83 1 4E-04 8E-05 4E-05 2E-05 7E-06 4.E+03 13745.25

Mild 28.11 10.42 19.71 26.04
-

0.21
22.97 2.2 -8.29 -8.24 1.89 0.75 2.19 1.89 4E-04 3E-04 2E-04 1E-05 8E-06 4.E+03 9488.63

Mild 36.51 15.22 27.16 40.13
-

0.21
24.29 1.6

-

11.14

-

11.11
1.78

-

0.86
1.58 1.08 3E-04 2E-04 6E-05 1E-05

4.E+03 9190.11

Mild 29.21 11.26 21.22 36.86
-

0.23
19.07 1.69 -7.8 -7.77 1.88 1.62 1.68 0.83 5E-04 6E-05 2E-05 7E-06 7E-06 4.E+03 14143.46

Mild 26.02 10.4 19.02 29.78
-

0.22
18.61 1.79 -11.2

-

11.19
1.83 1.42 1.78 1.1 4E-04 7E-05 5E-05 1E-05

4.E+03 9806.64

Mild 33.69 12.32 23.63 32.81
-

0.21
25.61 2.08 -9.97 -9.96 1.92 0.24 2.07 1.92 5E-04 3E-04 2E-04 4E-05

4.E+03 10141.35

Mild 27.77 10.46 20.04 36
-

0.21
18.36 1.75 -7.82 -7.66 1.92 1.5 1.74 1.09 5E-04 1E-04 1E-04 1E-05

4.E+03 14030.82

Mild 26.83 10.35 19.49 33.14 -0.2 17.74 1.71 -6.19 -6.09 1.88 0.76 1.7 0.78 4E-04 3E-05 3E-05 1E-05 1E-05 4.E+03 13781.5

Mild 25.91 9.69 18.24 24.15
-

0.22
19.28 1.99

-

11.53

-

11.33
1.88 0.43 1.98 1.68 7E-04 2E-04 2E-04 2E-05

4.E+03 14242.86

Mild 26.52 10.52 19.04 22.74
-

0.22
18.63 1.77

-

10.17

-

10.14
1.81 1.14 1.76 1.19 4E-04 1E-04 9E-05 3E-05

4.E+03 14053

Mild 27.34 10.57 19.9 36.15
-

0.23
18.34 1.73 -1.33 -1.09 1.88 1.24 1.72 0.8 5E-04 4E-05 3E-05 1E-05 6E-06 4.E+03 10255.49

Mild 23.8 9.83 17.53 27.23
-

0.22
16.89 1.72 -4.91 -4.83 1.78 1.14 1.7 1.01 5E-04 6E-05 5E-05 3E-05 1E-05 4.E+03 9942.34

Mild 22.9 8.78 16.19 21.08
-

0.21
18.29 2.08

-

10.85

-

10.78
1.84 0.09 2.07 1.85 4E-04 2E-04 2E-04 7E-05

4.E+03 14232.88

Mild 25.99 10.56 19.06 31.83
-

0.24
18.26 1.73 -14.5 -14.4 1.8 1.47 1.71 0.88 4E-04 6E-05 5E-05 9E-06 7E-06 4.E+03 14050.82

368

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 27.44 11.12 20.3 35.63
-

0.23
18.4 1.66 -2.93 -2.33 1.83 1.47 1.64 0.8 4E-04 6E-05 5E-05 3E-05 2E-05 4.E+03 9575.19

Mild 32.95 12.06 23.2 30.6
-

0.22
24.79 2.06 -9.7 -9.68 1.92 0.59 2.04 1.9 6E-04 4E-04 8E-05 5E-05

4.E+03 10244.51

Mild 25.18 10.25 18.59 34.46
-

0.21
17.97 1.75 -7.12 -6.99 1.81 1.53 1.74 1.05 4E-04 9E-05 7E-05 9E-06 9E-06 4.E+03 13971.07

Mild 26.48 10.28 19.45 37.69
-

0.21
17.28 1.68

-

13.93
-13.9 1.89 1.25 1.67 0.76 4E-04 5E-05 4E-05 1E-05 9E-06 4.E+03 9880.1

Mild 24.67 10.3 18.25 25.81
-

0.24
16.43 1.6 -8.94 -8.93 1.77 0.87 1.58 1 4E-04 1E-04 4E-05 3E-05

4.E+03 9752.1

Mild 27.12 9.85 18.86 25.04
-

0.22
20.96 2.13 -7.67 -7.59 1.91 0.54 2.12 1.91 8E-04 3E-04 2E-04 3E-05

4.E+03 9630.74

Mild 23.63 9.59 17.39 29.02
-

0.23
18 1.88 -9.14 -8.9 1.81 0.9 1.86 0.95 5E-04 5E-05 4E-05 1E-05 7E-06 4.E+03 14126.93

Mild 26.16 10.14 18.96 29.35
-

0.22
17.96 1.77

-

10.77

-

10.73
1.87 0.83 1.76 1.18 5E-04 1E-04 7E-05 4E-05

4.E+03 13786.4

Mild 27.8 9.88 19.31 27.99
-

0.23
20.32 2.06

-

13.58

-

13.55
1.95 0.73 2.04 1.99 5E-04 5E-04 2E-04 3E-05

4.E+03 9968.38

Mild 22.87 8.51 16.1 23.45
-

0.23
17.65 2.07 -8.43 -8.41 1.89 1.07 2.06 1.42 7E-04 1E-04 1E-04 1E-05

4.E+03 9574.28

Mild 26.35 11.12 19.71 31.38 -0.2 18.72 1.68
-

10.94

-

10.81
1.77 1.36 1.67 0.83 4E-04 6E-05 3E-05 2E-05 1E-05 4.E+03 13796.14

Mild 33.67 13.17 24.38 35.44
-

0.24
22.71 1.72

-

13.34
-13.3 1.85 0.92 1.71 1.29 3E-04 2E-04 8E-05 2E-05

4.E+03 9659.96

Mild 33.81 13.76 24.8 36.03
-

0.23
22.32 1.62

-

10.47

-

10.43
1.8

-

0.53
1.61 1.17 3E-04 2E-04 8E-05 2E-05

4.E+03 9407.36

Mild 27.8 9.96 19.39 26.67
-

0.22
22.2 2.23 -9.4 -9.37 1.95 1.44 2.22 1.41 9E-04 1E-04 4E-05 1E-05 1E-05 4.E+03 13837.04

Mild 29.66 12.73 22.19 32.49
-

0.21
20.1 1.58 -7.63 -7.62 1.74 1.68 1.57 0.98 3E-04 1E-04 5E-05 2E-05

4.E+03 10315.4

Mild 30.95 12.16 22.55 37.47
-

0.23
20.7 1.7

-

11.72

-

11.59
1.85

-

0.35
1.69 1.32 5E-04 3E-04 1E-04 2E-05

4.E+03 9797.73

Mild 31.89 12.58 23.39 41.88
-

0.21
20.96 1.67

-

11.06

-

10.93
1.86 1.48 1.65 1.04 4E-04 1E-04 7E-05 1E-05 7E-06 4.E+03 14103.82

369

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 21.45 7.96 15.09 23.27
-

0.23
17.97 2.26 -9.34 -9.28 1.9 1.2 2.25 1.44 8E-04 7E-05 3E-05 2E-05 1E-05 4.E+03 13657.55

Mild 27.36 10.82 19.89 29.04
-

0.24
18.47 1.71

-

11.77

-

11.75
1.84 0.05 1.69 1.31 3E-04 2E-04 1E-04 2E-05

4.E+03 9714.83

Mild 29.37 12.29 21.93 34.7
-

0.22
18.79 1.53 -10.3

-

10.15
1.78 0.78 1.51 0.93 4E-04 1E-04 7E-05 1E-05 7E-06 4.E+03 9667.49

Mild 25.31 9.88 18.37 31.02
-

0.23
18.2 1.84

-

11.58
-11.5 1.86 1.2 1.83 1.01 5E-04 1E-04 5E-05 1E-05 1E-05 4.E+03 13217.09

Mild 28.06 10.29 19.62 23.7 -0.2 22.3 2.17 -6.58 -6.57 1.91 0.86 2.16 1.72 6E-04 2E-04 1E-04 1E-05

4.E+03 9702.59

Mild 28.72 12.33 21.33 26.93
-

0.22
18.98 1.54 -9.81 -9.76 1.73

-

0.26
1.52 1.03 4E-04 2E-04 5E-05 2E-05

4.E+03 9920.3

Mild 26.75 10.4 19.54 35.48
-

0.25
17.68 1.7 -6.05 -5.95 1.88 1.48 1.68 0.88 4E-04 7E-05 6E-05 7E-06 6E-06 4.E+03 14390.74

Mild 29.45 11.05 21.07 28.79
-

0.19
22.98 2.08 -4.35 -4.32 1.91 1.71 2.07 1.36 5E-04 2E-04 8E-05 1E-05

4.E+03 9844.67

Mild 32.72 13.65 24.18 32.68
-

0.26
23.66 1.73 -6.34 -6.33 1.77

-

1.01
1.71 1.27 5E-04 2E-04 8E-05 5E-05

4.E+03 10055.4

Mild 30.35 11.88 22.28 44.91
-

0.25
19.29 1.62 -7.37 -7.36 1.88 1.7 1.6 0.91 4E-04 7E-05 6E-05 8E-06 6E-06 4.E+03 13952.63

Mild 24.92 9.42 17.9 28.34
-

0.22
18.48 1.96 -7.66 -7.58 1.9 1 1.95 1.18 5E-04 2E-04 5E-05 2E-05 2E-05 4.E+03 13502.67

Mild 26.66 10 18.83 23.18
-

0.23
21.24 2.12

-

11.61

-

11.56
1.88 0.85 2.11 1.88 7E-04 2E-04 2E-04 4E-05

4.E+03 9893.51

Mild 25.63 10.59 18.86 26.58
-

0.21
17.32 1.64

-

10.86

-

10.69
1.78 0.68 1.62 1.04 4E-04 2E-04 6E-05 1E-05

4.E+03 9195.72

Mild 26.44 11.14 19.73 34.83
-

0.21
17.61 1.58 -6.94 -6.93 1.77 1.7 1.57 0.85 4E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7694.86

Mild 27.65 11.93 20.71 27.08
-

0.22
17.49 1.47

-

13.22

-

13.22
1.74

-

0.67
1.45 0.89 4E-04 9E-05 6E-05 1E-05

4.E+03 14324.11

Mild 22.87 9.83 17.08 26.68
-

0.26
14.74 1.5 -10.1

-

10.08
1.74

-

0.64
1.48 0.74 2E-04 8E-05 6E-05 8E-06 6E-06 4.E+03 14276.16

Mild 25.9 9.33 18.3 30.51
-

0.19
20.73 2.22 -5.42 -5.39 1.96 2.05 2.22 1.15 8E-04 4E-05 3E-05 2E-05 8E-06 4.E+03 10370.56

Mild 21.16 9.13 15.74 20.84
-

0.22
14.16 1.55

-

10.19

-

10.19
1.72 0.02 1.53 0.97 2E-04 1E-04 5E-05 5E-05 3E-05 4.E+03 13806.27

370

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 25.05 11.24 18.94 26.38
-

0.21
16.25 1.45

-

14.69

-

14.62
1.69 0.82 1.43 0.83 2E-04 6E-05 5E-05 4E-05

4.E+03 14351.87

Mild 28.18 9.67 19.47 29.27
-

0.24
21.59 2.23

-

11.53

-

11.53
2.01 1.81 2.22 1.35 0.001 6E-05 5E-05 2E-05 1E-05 4.E+03 13972.65

Mild 20.1 9.28 15.2 19.07
-

0.19
14.22 1.53

-

10.47

-

10.11
1.64 0.72 1.52 0.83 2E-04 6E-05 3E-05 1E-05 1E-05 4.E+03 10852.39

Mild 26.99 11.82 20.14 24.12
-

0.21
17.05 1.44 -8.77 -8.72 1.7

-

0.47
1.43 0.87 3E-04 7E-05 4E-05 1E-05

4.E+03 10554.66

Mild 25.53 10.75 18.9 28.56
-

0.22
16.46 1.53

-

11.16

-

10.89
1.76 0.62 1.51 0.69 2E-04 5E-05 5E-05 4E-05 1E-05 4.E+03 14293.73

Mild 25.8 9.23 18.01 28.9
-

0.24
20.44 2.22

-

12.84

-

12.83
1.95 1.73 2.2 1.44 0.001 7E-05 5E-05 2E-05 1E-05 4.E+03 13628.64

Mild 22.18 9.44 16.43 21.91
-

0.22
15.2 1.61 -8.73 -8.72 1.74 -0.2 1.6 1.11 7E-04 7E-05 6E-05 2E-05

4.E+03 10777.2

Mild 25.53 11.71 19.49 26.53
-

0.21
16.33 1.39 -7.49 -7.47 1.66 0.09 1.38 0.61 2E-04 7E-05 6E-05 3E-05 1E-05 4.E+03 10556.12

Mild 30.74 11.44 22.07 38.7
-

0.21
21.22 1.86 -3.87 -3.78 1.93 1.83 1.84 0.91 6E-04 3E-05 2E-05 2E-05 9E-06 4.E+03 13813.08

Mild 27.33 10.38 19.26 25.14
-

0.22
20.15 1.94

-

14.38

-

14.37
1.86 1.39 1.93 1.33 9E-04 6E-05 4E-05 2E-05

4.E+03 10169.82

Mild 26.35 11.69 19.98 31.77
-

0.24
18.17 1.55

-

11.13

-

11.11
1.71 0.83 1.54 0.94 2E-04 1E-04 1E-04 9E-06 8E-06 4.E+03 14376.16

Mild 33.07 12.49 24 41.94
-

0.22
21.43 1.72 -8.43 -8.33 1.92 1.85 1.7 0.78 6E-04 3E-05 2E-05 9E-06 6E-06 4.E+03 14220.81

Mild 30.1 11.61 21.86 38.2
-

0.21
20.92 1.8

-

13.54

-

13.48
1.88 1.98 1.79 1.05 5E-04 5E-05 3E-05 3E-05 1E-05 4.E+03 10918.77

Mild 20.19 8.48 14.69 18.18
-

0.23
15.81 1.86 -8.41 -8.39 1.73 0.34 1.85 1.39 4E-04 2E-04 1E-04 3E-05

4.E+03 13849.06

Mild 29.95 12.15 22.14 33.9
-

0.22
19.07 1.57 -5.97 -5.7 1.82 0.95 1.56 0.69 3E-04 5E-05 5E-05 3E-05 1E-05 4.E+03 14220.85

Mild 31.75 11.6 22.9 44.77
-

0.22
20.71 1.79

-

10.04
-9.85 1.98 2.26 1.77 0.92 7E-04 3E-05 3E-05 1E-05 7E-06 4.E+03 10149.67

Mild 27.42 11.26 20.09 25.86 -0.2 20.25 1.8
-

16.13

-

16.13
1.78 0.11 1.79 1.26 6E-04 1E-04 1E-04 4E-05 1E-05 4.E+03 10755.87

371

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 22.14 9.66 16.4 20.66
-

0.22
15.49 1.6

-

10.25

-

10.25
1.7 0.17 1.59 0.82 3E-04 5E-05 5E-05 4E-05 1E-05 4.E+03 14239.18

Mild 31.26 11.12 22.28 43.18
-

0.22
20.11 1.81 -3.35 -3.15 2 1.98 1.8 0.88 6E-04 5E-05 3E-05 1E-05

4.E+03 10187.44

Mild 26.42 10.69 19.42 36.13
-

0.22
16.97 1.59 -8.08 -8 1.82 1.88 1.57 0.83 4E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7591.86

Mild 22.74 9.16 16.46 21.56
-

0.21
17.22 1.88

-

13.46
-13.4 1.8 0.54 1.87 1.39 6E-04 2E-04 1E-04 5E-05

4.E+03 10314.21

Mild 30.46 11.63 22.01 38.55
-

0.21
20.94 1.8

-

13.09

-

13.07
1.89 1.89 1.79 0.91 5E-04 5E-05 3E-05 3E-05 1E-05 4.E+03 14126.95

Mild 32.35 12.23 23.66 50.71
-

0.21
20.19 1.65 -1.07 -1.07 1.93 2.83 1.64 0.84 5E-04 3E-05 3E-05 1E-05 8E-06 4.E+03 10387.05

Mild 17.97 7.62 13.14 16.54
-

0.22
13.18 1.73

-

12.15

-

12.14
1.73

-

0.19
1.72 1.23 3E-04 1E-04 9E-05 7E-05

4.E+03 11004.11

Mild 25.31 10.11 18.36 26.47
-

0.21
19.66 1.94

-

11.67

-

11.67
1.82 1.46 1.93 1.1 5E-04 5E-05 5E-05 4E-05

4.E+03 14125.27

Mild 29.63 11.13 21.46 40.31
-

0.22
20.14 1.81

-

13.73
-13.7 1.93 2.09 1.8 0.95 6E-04 4E-05 4E-05 8E-06 7E-06 4.E+03 10366.47

Mild 22.72 10.2 17.17 25.31
-

0.22
14.5 1.42 -3.8 -3.34 1.68 1.35 1.4 0.67 2E-04 5E-05 3E-05 2E-05 2E-05 4.E+03 11086.8

Mild 22.76 8.84 16.21 22.71
-

0.23
16.2 1.83 -8.69 -8.6 1.83 0.01 1.82 1.17 5E-04 1E-04 5E-05 2E-05

4.E+03 10266.61

Mild 27.43 10.92 20.03 34.74
-

0.22
21.26 1.95 -7.87 -7.83 1.83 2.04 1.93 1.07 5E-04 6E-05 4E-05 4E-05 1E-05 4.E+03 14011.75

Mild 26.09 11.17 19.54 29.33
-

0.21
17.26 1.55 -9.33 -9.33 1.75 1.4 1.53 0.76 3E-04 4E-05 3E-05 2E-05 1E-05 4.E+03 7163.69

Mild 29.06 12.13 21.58 32.1
-

0.23
18.94 1.56

-

10.52

-

10.52
1.78

-

0.73
1.54 1.07 5E-04 1E-04 7E-05 2E-05

4.E+03 14329.17

Mild 26.84 9.67 18.77 29.79
-

0.23
20.17 2.09 -8.97 -8.93 1.94 1.53 2.07 1.21 8E-04 9E-05 3E-05 1E-05 1E-05 4.E+03 14229.56

Mild 27.07 11.49 20.36 35.63
-

0.23
19.48 1.7 -8.08 -8.07 1.77 1.67 1.68 0.89 5E-04 4E-05 3E-05 3E-05 1E-05 4.E+03 10455.12

Mild 22.39 9.77 16.77 23.39
-

0.22
14.4 1.47

-

10.36

-

10.34
1.72

-

0.22
1.46 0.88 3E-04 1E-04 8E-05 3E-05 2E-05 4.E+03 11044.96

372

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 27.31 11.87 20.66 32.28
-

0.23
17.39 1.47

-

12.47

-

12.33
1.74 1.05 1.45 0.8 2E-04 9E-05 6E-05 9E-06 7E-06 4.E+03 14193.32

Mild 26.54 9.3 18.43 29.35
-

0.21
21.44 2.31 -8.34 -8.15 1.98 2 2.3 1.44 0.001 5E-05 3E-05 1E-05 1E-05 4.E+03 13864.18

Mild 20.82 10.05 16.06 21.2
-

0.23
14.01 1.39

-

11.25

-

11.24
1.6 1.14 1.38 0.65 2E-04 5E-05 3E-05 1E-05 9E-06 4.E+03 11591.56

Mild 22.6 9.89 16.89 20.82
-

0.21
14.47 1.46

-

13.93

-

13.91
1.71

-

0.14
1.45 0.88 2E-04 1E-04 8E-05 2E-05

4.E+03 13778.8

Mild 26.71 11.11 19.8 31.52
-

0.23
17.77 1.6 -8.84 -8.77 1.78 0.94 1.58 0.74 3E-04 6E-05 5E-05 3E-05 8E-06 4.E+03 14439.77

Mild 25.93 9.54 18.26 26.32
-

0.22
21.32 2.23

-

11.19

-

11.13
1.91 1.65 2.22 1.34 8E-04 6E-05 4E-05 2E-05 1E-05 4.E+03 10191.3

Mild 31.44 13.65 23.4 32.68
-

0.22
20.63 1.51 -8.79 -8.77 1.71

-

0.49
1.5 0.98 5E-04 1E-04 7E-05 2E-05

4.E+03 10957.99

Mild 25.2 11.11 18.94 28.42
-

0.22
16.2 1.46 -9.22 -9.08 1.7 0.69 1.44 0.66 2E-04 8E-05 8E-05 8E-06 6E-06 4.E+03 14376.71

Mild 32.34 12.05 23.29 41.86
-

0.21
22.76 1.89 -9.21 -9.16 1.93 2.13 1.88 1.02 6E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7679.91

Mild 22.02 8.73 15.84 21.59 -0.2 16.87 1.93 -8.95 -8.85 1.81 0.87 1.92 1.26 8E-04 7E-05 5E-05 2E-05

4.E+03 10507.6

Mild 23.74 10.46 18.01 29.89
-

0.23
14.85 1.42

-

13.33

-

13.33
1.72 0.26 1.4 0.73 2E-04 9E-05 8E-05 8E-06 7E-06 4.E+03 14488.55

Mild 32.92 11.99 23.68 45.95
-

0.21
20.48 1.71 -8.34 -8.31 1.97 2.38 1.7 0.77 6E-04 3E-05 2E-05 8E-06 5E-06 4.E+03 14060.55

Mild 29.91 11.44 21.59 33.99
-

0.21
21.57 1.88 -8.92 -8.91 1.89 1.57 1.87 1.08 7E-04 4E-05 4E-05 3E-05 2E-05 4.E+03 10578.78

Mild 21.27 9.17 15.72 19.45
-

0.21
15.62 1.7 -7.72 -7.67 1.71 0.32 1.69 1.1 4E-04 6E-05 4E-05 2E-05

4.E+03 14030.92

Mild 32.56 12.59 23.77 42.25
-

0.21
21.03 1.67 -7.01 -6.72 1.89 1.95 1.66 0.83 5E-04 7E-05 3E-05 3E-05 1E-05 4.E+03 14152.76

Mild 32.94 11.89 23.44 39.66
-

0.22
23.06 1.94 -8.77 -8.66 1.97 2.15 1.93 1.06 7E-04 5E-05 3E-05 1E-05 7E-06 4.E+03 13854.27

Mild 23.33 9.66 16.95 21.12
-

0.21
17.59 1.82

-

14.93

-

14.89
1.75 0.2 1.81 1.26 3E-04 1E-04 1E-04 1E-05

4.E+03 10191.87

Mild 27.4 11.54 20.22 26.92
-

0.22
19.18 1.66

-

11.63

-

11.63
1.75 0.85 1.65 0.85 4E-04 7E-05 5E-05 4E-05 1E-05 4.E+03 14482.37

373

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Mild 34.13 12 24.33 44.91
-

0.21
23 1.92 -2.19 -2.01 2.03 2.33 1.9 0.99 8E-04 4E-05 3E-05 1E-05 7E-06 4.E+03 9875.45

Moderate 26.27 10.89 19.72 34.67 -0.2 16.86 1.55
-

11.84

-

11.82
1.81 1.85 1.54 0.73 4E-04 3E-05 3E-05 2E-05

4.E+03 13961.3

Moderate 26.6 11.9 20.11 26.48
-

0.22
16.48 1.39

-

13.63

-

13.57
1.69

-

0.24
1.37 0.77 1E-04 9E-05 4E-05 1E-05

4.E+03 14581.48

Moderate 26.57 8.08 17.28 24.42
-

0.21
22.71 2.81 -7.2 -7.18 2.14 0.81 2.8 2.14 5E-04 4E-04 2E-04 8E-05 4E-05 4.E+03 6955.8

Moderate 30.3 12.14 22.2 32.4
-

0.23
22.88 1.88

-

10.78

-

10.72
1.83 1.35 1.87 1.06 4E-04 5E-05 3E-05 2E-05

4.E+03 13565.91

Moderate 18.85 8.49 14.21 21.15
-

0.22
11.94 1.41

-

11.65

-

11.64
1.67 0.22 1.39 0.76 3E-04 1E-04 5E-05 3E-05 2E-05 4.E+03 11019.3

Moderate 29.29 11.84 21.52 32.54
-

0.22
19.84 1.68 -9.79 -9.62 1.82 1 1.66 0.98 2E-04 1E-04 1E-04 6E-05 2E-05 3.E+03 10552.02

Moderate 25.93 8.15 17.05 24.64
-

0.22
23.38 2.87 -10.9

-

10.86
2.09 0.7 2.86 2.1 6E-04 2E-04 2E-04 1E-04 4E-05 4.E+03 10383.41

Moderate 22.21 10.3 16.93 23.92 -0.2 14.75 1.43
-

10.78

-

10.77
1.64 1.38 1.42 0.71 3E-04 4E-05 2E-05 2E-05

4.E+03 10208.15

Moderate 29.86 12.35 21.96 30.63 -0.2 19.64 1.59
-

13.44
-13.3 1.78 1.09 1.58 1 2E-04 1E-04 7E-05 4E-05 2E-05 4.E+03 6999.45

Moderate 33.37 10.53 22.79 40.93
-

0.23
23.73 2.25 -8.42 -8.4 2.16 0.49 2.24 1.34 2E-04 2E-04 2E-04 6E-05 4E-05 4.E+03 10457.26

Moderate 26.01 8.84 17.7 26.48
-

0.21
22 2.49

-

13.79
-13.7 2 1.38 2.48 1.67 7E-04 9E-05 9E-05 5E-05 2E-05 4.E+03 6883.98

Moderate 22.65 10.14 17.13 26.29 -0.2 14.78 1.46
-

11.15

-

11.15
1.69 0.99 1.44 0.85 3E-04 8E-05 4E-05 2E-05

4.E+03 14410.52

Moderate 30.47 10.49 21.62 44.47
-

0.22
20.94 2 -2.61 -2.43 2.06 0.87 1.98 1.14 2E-04 2E-04 1E-04 4E-05 2E-05 3.E+03 6812.82

Moderate 29.47 9.69 20.13 33.59
-

0.21
21.87 2.26

-

12.99

-

12.89
2.08 1.17 2.25 1.3 4E-04 9E-05 3E-05 2E-05

4.E+03 13857.25

Moderate 24.87 9.81 17.94 24.34
-

0.19
18.51 1.89

-

13.24
-13.2 1.83 1.08 1.88 1.18 4E-04 1E-04 1E-04 4E-05 3E-05 4.E+03 11281.35

Moderate 31.75 11.81 23 39.2
-

0.19
20.99 1.78 -6.49 -6.43 1.95 0.97 1.77 1 2E-04 1E-04 1E-04 5E-05 2E-05 4.E+03 6856.87

Moderate 39.27 11.96 26.52 43.05 -0.2 27.38 2.29 -2.92 -2.76 2.22 1.16 2.28 1.44 3E-04 2E-04 9E-05 6E-05 5E-05 4.E+03 6584.92

374

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Moderate 30.38 11.12 21.48 33.47
-

0.19
22.15 1.99

-

10.83

-

10.79
1.93 1.37 1.98 1.26 5E-04 9E-05 8E-05 6E-05 2E-05 4.E+03 14235.88

Moderate 27.85 11.24 20.16 25.96
-

0.22
20.51 1.83

-

11.87

-

11.85
1.79 1 1.81 1.14 2E-04 1E-04 1E-04 4E-05 3E-05 4.E+03 10851.47

Moderate 32.7 10.04 22.08 40.97
-

0.21
23 2.29 -1.08 -0.85 2.2 0.94 2.28 1.35 3E-04 2E-04 1E-04 8E-05 4E-05 4.E+03 6632.07

Moderate 31.91 10.85 22.43 41.08
-

0.22
22.1 2.04 -9.3 -9.24 2.07 1.57 2.02 1.14 4E-04 7E-05 6E-05 3E-05 3E-05 4.E+03 6880.93

Moderate 29.7 11.93 21.44 24.9
-

0.21
23.23 1.95

-

10.24

-

10.24
1.8 0.84 1.94 1.45 3E-04 1E-04 6E-05 4E-05

4.E+03 14356.77

Moderate 31.61 10.81 22.11 37.87
-

0.22
23.77 2.2

-

15.15

-

15.15
2.05 0.85 2.19 1.28 3E-04 2E-04 1E-04 6E-05 4E-05 4.E+03 10525.23

Moderate 33.73 10.96 23.29 40.18
-

0.22
22.96 2.1 -0.85 -0.59 2.13 1.37 2.08 1.11 4E-04 9E-05 5E-05 4E-05 2E-05 4.E+03 10479.41

Moderate 27.88 11.37 20.43 30.79
-

0.19
18.61 1.64 -9.65 -9.52 1.8 1.48 1.63 0.91 3E-04 5E-05 4E-05 2E-05

4.E+03 8956.02

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Healthy 5.89 4.01 5.01 2.98
-

0.14
3.54 0.88

-

15.16

-

15.16
1.25

-

0.06
0.87 0.28 3E-05 2E-05

6.E+03

Healthy 5.48 3.7 4.65 3.08
-

0.13
3.36 0.91 -13.8

-

13.75
1.26 0.08 0.9 0.28 3E-05 3E-05

1.E+04

Healthy 5.5 3.76 4.69 2.94
-

0.13
3.34 0.89

-

14.75

-

14.73
1.25

-

0.02
0.88 0.27 3E-05 3E-05

5.E+03

Healthy 5.81 3.91 4.91 3.05
-

0.14
3.52 0.9

-

13.96

-

13.96
1.26 0.04 0.89 0.28 3E-05 3E-05 5E-06

6.E+03 22953

Healthy 5.46 3.69 4.62 2.92
-

0.13
3.21 0.87 -14.5

-

14.47
1.25 0.04 0.86 0.26 3E-05 2E-05

6.E+03

Healthy 5.17 3.48 4.37 2.92
-

0.15
3.15 0.91

-

11.66

-

11.65
1.26

-

0.02
0.89 0.29 3E-05 3E-05

6.E+03

Healthy 5.65 3.85 4.8 3
-

0.13
3.41 0.89

-

14.26

-

14.26
1.25 0 0.88 0.28 4E-05 3E-05 5E-06

1.E+04 21997.51

Healthy 6.29 4.24 5.32 3
-

0.13
3.86 0.91 -15.8 -15.8 1.26

-

0.04
0.9 0.29 3E-05 3E-05

1.E+04

Healthy 7.03 4.71 5.93 3.11
-

0.12
4.19 0.89

-

14.23

-

14.18
1.26

-

0.08
0.88 0.28 3E-05 3E-05

6.E+03

375

S
ev

erity

C
F

C
rest F

acto
r

Im
p

u
lse F

acto
r

K
u

rto
sis

M
ean

P
eak

 V
alu

e

R
M

S

S
IN

A
D

S
/N

S
h

ap
e F

acto
r

S
k

ew
n

ess

S
td

B
an

d
 P

o
w

er

P
eak

 A
m

p
1

P
eak

 A
m

p
2

P
eak

 A
m

p
3

P
eak

 A
m

p
4

P
eak

 A
m

p
5

P
eak

 F
req

1

P
eak

 F
req

3

Healthy 5.47 3.72 4.65 2.98
-

0.13
3.44 0.93

-

14.02

-

13.99
1.25 0 0.92 0.3 3E-05 3E-05

5.E+03

Healthy 5.94 4.02 5.03 2.99
-

0.14
3.64 0.9

-

15.24

-

15.22
1.25

-

0.02
0.89 0.29 3E-05 3E-05

5.E+03

Healthy 5.84 3.96 4.95 2.95
-

0.13
3.53 0.89

-

10.86

-

10.85
1.25 0.02 0.88 0.28 3E-05 2E-05

5.E+03

Healthy 5.96 4.02 5.03 3
-

0.15
3.63 0.9

-

13.75

-

13.75
1.25 0.02 0.89 0.28 3E-05 3E-05

1.E+04

