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Abstract
Product spaces with Lorentzian structure are of great importance as they

have been shown that they admit a very well-behaving causal picture,
avoiding general pathologies of causal relations (such as spaces manifesting
causal bubbling) and they also constitute a set of models upon which, many
physical cosmological models are built. This study focuses on the
emergence of causal structure stemming from a warped product space
geometry, where the base is a non-regular Lorentzian length space of any
dimension. We prove that such spaces can provide an analogue of length
spaces for Lorentzian geometry and that they also manifest the nice-to-have
properties of Lorentzian warped product spaces with one-dimensional base.
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1
Introduction

Although Lorentzian geometry has been the subject of constant
development for more than a century now, we remain far from the point of
a complete understanding of its scope. Much of the interest in the
development of Lorentzian geometry is intertwined with open problems
related to the content and structure of spacetimes that are frequently
encountered in Physics. Such systems are those that describe massive stars,
systems of stars or black holes (at least outside of the event horizon) and in
some cases even the flat vacuum spacetime, i.e the Minkowski spacetime.
This latter case is the one that we will invoke several times in this work to
help us understand the more general picture. Despite the contribution
General Relativity has made to the evolution of Lorentzian geometry (with
the relation following the opposite direction in the beginning of General
relativity, when a lot of inspiration was drawn by the tools of Lorentzian
geometry in order for the basic tools of General Relativity to be
conceptualized), there are still a lot of grey areas in its edifice.

In particular, the non-regularity of spacetimes are cases that are
frequently encountered in the universe. Examples of physical systems
wherein such problems manifest are in the study of the interiors of stars,
where different types of matter are mixed, like neutron stars. Another area
where low regularity poses an obstacle is cosmic strings. In some cases,
even the very existence of any form of metric, that can be used to produce
the causal structure is not possible. An approach to this kind of problems
through the creation of a Lorentzian version of a length space, has been
proven to be able to resolve some of them.

Another class of low regularity problems, where a length space
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perspective has led to generalisations of a few very important results of
Physics are those that are related to singularities. In particular, as is shown
in [KSSV14], for C1,1 regularity class (i.e spacetime metrics with locally
Lipschitz continuous first derivatives), there is a generalisation of Hawking’s
singularity theorem. Similar generalisations for singularity theorems are
also shown in [AGKS19].

A very particular subclass of Lorentzian geometry is that of product
spaces and in particular warped product spaces. Product spaces in
Lorentzian geometry offer a very fertile ground for exploration, mainly due
to the frequency that they appear in a large spectrum of General Relativity
problems. From the Schwarzschild spacetime toy model to the n+1 (local)
decomposition of spacetimes (where this is applicable, meaning the local
decomposition of a spacetime M to a product space of the form R×X,
with X an n-dimensional length space, which is spacelike wrt the inner
product defined on the original manifold M), product spaces emerge in
many tools we use to understand gravity and spacetime structure. In
addition, as it was shown in [AGKS19], a particular subclass of product
spaces, i.e the generalized cones, which are of great importance as they offer
a generalization of frequently encountered cosmological models, have been
shown to have a lot of the major causal structure properties of their smooth
setting counterparts. Therefore, delving more into the different classes of
product spaces one could expect to find the most general geometric
characteristics of such spaces that preserve the key properties of the
generalised cones and hence provide a general class of geometries with
explicit physical importance.

To this end, a few important pieces of work are given in [AGKS19]
(wherein a comprehensive study of warped products with one dimensional
base is attempted), as well as [AB04], [AB15] and [AB98] (which instigated
the establishment of the one-dimensional base Lorentzian warped product
space). To the best of our knowledge, there haven’t been any papers that
provide a structured and methodical attempt to describe the causal
structure of general warped product spaces. Hence, in this thesis, we were
interested in the general properties the warped product spaces are required
to possess with respect to their causal structure.

Despite the great importance of understanding product Lorentzian length
spaces (LLS) due to their relevance to Physics, there is another factor that
dictates this approach from a mathematical point of view. In particular, for
the spacetimes where the analytical properties of the metric are absent, or
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even the metric itself is ill-defined we require alternative tools that are able
to replace the Einstein equations. In the language of metric space geometry
(a detailed study of which is given in [BBI01]), a very interesting subclass
of spaces is that of those admitting a curvature function which obeys
certain convexity properties, an approach known as synthetic curvature.
For this approach, the warped product spaces provide a less demanding
setting on which to study synthetic curvature, e.g when we have
information about the curvature bounds or the specific symmetries that the
two spaces giving the warped product space possess. This was recognized
by Alexander and Bishop, who provided a very detailed research of the
synthetic curvature bounds in warped product metric spaces [AB04].
Therefore, motivated by these simplicities offered in studying synthetic
curvature for warped product metric spaces, it is natural to ask for a
framework capable to generalise into the Lorentzian setting the warped
product metric spaces structure, with the anticipation that these spaces
could also serve as a less demanding case study for a Lorentzian synthetic
curvature (bounds) theory, that could potentially further our current
knowledge of the topic ([AGKS19], [BS22], [CM20], [KS17], [MS18]).

Product spaces are of central importance from another mathematical
point of view. In particular, they provide a very easy way of composing
new spacetime geometries. From this point of view one might be interested
in finding the general properties a Lorentzian and a metric space need to
have, in order to synthesise a product space, which reduces down to a
Lorentzian manifold in the smooth setting, but also provides a framework
for causal structure in cases of lower regularity.

An obstacle of vital importance in providing a Lorentzian analogue of
metric spaces has been that the Lorentz distance doesn’t lead to a metric
structure, as it is described in [V21]. An attempt to resolve this problem for
a manifold was attempted in [SV15], where the notion of the null distance
was established. However, this attempt later expanded into a lower
regularity setting and within the context of a general Lorentzian length
space in [KS21], wherein it was shown that warped product spaces with one
dimensional base can admit an induced metric through their naturally
occurring time function T : (t, x) 7→ t. Therefore, warped product spaces,
which are of great importance to Physics and hence of practical interest,
produce another case where the Lorentzian length space analogue of metric
spaces can be meaningfully constructed.
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1.1 Main open problems and developments in LLS

The motivation described above for the development of tools that could
allow us to access spacetimes of low regularity has led to the direction of
Lorentzian length spaces, as they were first introduced in [KS17]. However,
to this date (despite the numerous efforts of researchers across the scientific
community) there are still a lot of open problems in the field, most of which
classify in one or more of the following categories:

• [AGKS19]: The development of warped product spaces of
one-dimensional base, namely generalized cones, which is of particular
importance to Physics, as there are several known cosmological
models that follow this geometry.

• [CM20]: Introduces optimal transport methods in Lorentzian length
spaces, defines timelike Ricci curvature bounds via suitable entropy
conditions and gives applications to general relativity (synthetic
singularity theorems).

• [SV15]: In here it was introduced for the first time the notion of the
null distance, with the intention to create a notion of metric for a
Lorentzian length space. This idea was fruther developed in [KS21],
where authors studied Gromov-Hausdorff convergence, establishing
first compatibility results with respect to curvature bounds.

• [BGH21]: This research attempted the study of existence of time
functions in Lorentzian legth spaces.

• [KOV22]: This research studies the notion of distributional curvature
bounds, generalising the theory of distributional curvature on
manifolds as it was first developed in [LM07].

• [HPS20]: Attempts a generalisation of causal ladder for Lorentzian
length spaces which was originally introduced in [KS17].

1.2 Results and structure

In section 1.3, we give an introduction to the theory of Lorentzian length
spaces and lay down the motivation to pursue research on a more general
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structure of Lorentzian warped product spaces, by giving the example of
the toy model of the Schwarzschild metric.

In section 2 we provide the geometrical tools for measuring lengths in our
space and give some of its equivalent formulas that allow us access to more
local features of the length-measuring formula in the absence of an analytic
metric. Furthermore, in the same section, we give the description of the
timelike and causal future/past for points in our space and we prove that
the timelike future possesses the push-up property. Finally, we show that
the “nice-to-have” properties for the one dimensional generalised cones of
[AGKS19] generalise for a higher dimensional base.

Finally, in section 3 we expand our conversation to show that our
structure of choice yields a Lorentzian length space.

1.3 Basics of Lorentzian length spaces

In order to be assisted in the understanding of the broader context under
which the spaces studied in the rest of the thesis are important, we give
here a very brief introduction to the theory of Lorentzian length spaces.

Before we introduce any kind of Lorentzian structure, we start by
determining a topology on which to build our space. For the purposes of
the spaces studied in this thesis, there are two natural choices of topologies.
Before we introduce them though, along the lines of [KS17], Definition 2.4,
we need to introduce another primary feature of the Lorentzian structure,
i.e the ordering of points in the space. This is done through the relations
between points (Definition 2.1, [KS17]):

Definition 1.3.1. Let (Y , ≤, ≪) be a tuple, where Y is a set endowed with
a reflexive and transitive relation ≤ (pre-order) and a transitive relation ≪
contained in ≤. Then (Y , ≤, ≪) is called a causal space. If x, y ∈ Y and
x ≪ y or x ≤ y, we call x and y timelike or causally related, respectively.

From Definition 1.3.1, we can now give the two natural topologies in a
causal space that were mentioned above, as they are defined in [KS17],
Definition 2.4. First we set that:

Definition 1.3.2. For Y a causal space and p ∈ Y :

• J+(p) = {q ∈ Y : p ≤ q} and J−(p) = {q ∈ Y : q ≤ p}

• I+(p) = {q ∈ Y : p ≪ q} and I−(p) = {q ∈ Y : q ≪ p}
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and from the sets J±, I± the two topologies are given to be:

Definition 1.3.3. Let (Y , ≤, ≪) be a causal space. Then:

1. Define a topology A on Y by using S := {I+(p)∩ I−(q); p, q ∈ Y } as a
subbase. We name this the Alexandrov topology on Y wrt ≪.

2. Define a topology I on Y by using P := {I±(p); p ∈ Y } as a subbase.
We name this the chronological topology on Y .

In what follows though, we want to use the metric topology (D). This
approach requires the use of a metric that serves as the means to distinguish
points in the space. The use of the metric is not important and it can be
freely chosen, as long as it describes a space that is topologically equivalent
to the causal space Y we want to study. Further below, we will see the
extent of agreement between one or more of the topologies introduced
above and what kind of structure emerges when certain topologies agree.

So far, we have set after describing the global structure of a Lorentzian
space. The features of causal relations and the topology are two of the most
fundamental characteristics of such a space. But they are not the only ones
(Definition 2.8, [KS17]).

Definition 1.3.4. If Y is a causal space that is equipped with a metric d
and a lower semicontinuous map τ : Y × Y → [0,∞) ∪ {∞} that satisfies
the reverse triangle inequality:

τ(x, z) ≥ τ(x, y) + τ(y, z)

(for x ≤ y ≤ z), as well as τ(x, y) = 0 if x ≰ y and τ(x, y) > 0 ⇔ x ≪ y,
then (Y, d,≪,≤, τ) is called a Lorentzian pre-length space and τ is called
the time separation function (or Lorentzian distance) of Y .

Due to [KS17], Example 2.11, any smooth spacetime is a Lorentzian
pre-length space (where the distance metric is induced by some Riemannian
background metric, used only to describe the topological properties of the
space).

With the Lorentzian pre-length spaces we basically give the global
structure of a space, part of which global structure are the causal relations
that were defined above. Therefore, with these relations in hand, it is only
natural to ask for a definition of causal paths between points. As we would



1.3. BASICS OF LORENTZIAN LENGTH SPACES 7

expect, all (topological) curves in a Lorentzian pre-length space are
classified into two different categories wrt the relations of Definition 1.3.2:
causal and non-causal. The former are defined as follows (Definition 2.18 in
[KS17]):

Definition 1.3.5. Let (Y, d,≪,≤, τ) be a Lorentzian pre-length space: a
locally Lipschitz curve γ : [a, b] → Y is called future-directed causal, if
γ(s) ≤ γ(t) for all s, t ∈ [a, b], s < t. Past-directed curves are defined
analogously.

Causal curves are further classified in null and timelike (in analogy to
manifolds). Specifically, if all pairs of points γ(s), γ(t), with s < t, comply
with the relation γ(s) ≪ γ(t), then the curve is called future-directed
timelike (analogously for past-directed timelike). If a causal curve has no
pair of points related with ≪-relation, then the curve is called null.
In comparison to the theory of length spaces, an equivalent notion of an

intrinsic Lorentzian structure is not very easily established. With the causal
curves defined the next step in the creation of an analogue of an intrinsic
Lorentzian space is the use of a length-measuring formula for Lorentzian
pre-length spaces. Using the time separation function, we can define such a
formula, which we call the τ -length of a causal curve (Definition 2.24,
[KS17]):

Definition 1.3.6. For γ : [a, b] → Y future-directed causal we define the
τ -length of a curve:

Lτ (γ) = inf{
N−1∑
i=0

τ(γ(ti), γ(ti+1)): a = t0 < t1 < ... < tN = b}

From the τ -length, in analogy with intrinsic metric spaces, we can
provide an intrinsic time separation function:

T (p, q) = sup{Lτ (γ) : γ future directed causal from p to q in Y } (1.3.1)

Before, we proceed further, in order to understand the meaning and
importance of the τ -length formula and connect it with the case of
Lorentzian manifolds, we need to consider [KS17], Proposition 2.32,
wherein it is stated that for any smooth, strongly causal spacetime (M),
the time separation function between two points p, q ∈ M stems from the
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length-measuring formula occurring from the metric, for the causally
related points, i.e

τ(p = γ(a), q = γ(b)) = sup
γ
{Lg(γ); Lg(γ) =

∫ b

a

gµνu
µuνds, ∀ causal

curve γ from p to q} (1.3.2)

where gµν is the metric, γ : [a, b] → M a causal curve and uµ the tangent
vector of γ. If σ is a maximal curve (i.e a geodesic) in M , then:

τ(σ(a), σ(b)) = Lg(σ)

which is an equality that follows from Definition 2.33 in [KS17]:

Definition 1.3.7. Let (Y, d,≪,≤, τ) be a Lorentzian pre-length space. A
future-directed causal curve γ : [a, b] → Y is maximal if
Lτ (γ) = τ(γ(a), γ(b)), and analogously for past-directed causal curves.

The maximality of causal curves is a particularly significant constituent
of a length space. Two more important constituents that are related to
particular properties of causal relations and causal curves in Y are the
causal path connectedness and causal closure of a space. On one hand, the
importance of causal path connectedness lies in the general property of
Lorentzian manifolds to always admit continuous paths between pairs of
causally related points. Along these lines, for the causal path
connectedness, we have from Definition 3.1 in [KS17]:

Definition 1.3.8. A Lorentzian pre-length space (Y, d,≪,≤, τ) is called
causally path-connected if for all x, y ∈ Y with x ≪ y, there is a
future-directed timelike curve from x to y and for x ≤ y there is a
future-directed causal curve from x to y.

On the other hand, the causal closure is an important property that gives
us the continuity of the causal relations, which will be shown to be rather
useful on many occasions, when trying to deal with particular sequences of
curves, while it is also a very useful property of a space, when demanding a
local structure of a space close to that of a Lorentzian manifold. Therefore,
from Definition 3.4 in [KS17]:
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Definition 1.3.9. Let (Y, d,≪,≤, τ) be a Lorentzian pre-length space and
let x ∈ Y . A neighbourhood U of x is called causally closed if ≤ is closed in
Ū × Ū , i.e., if pn, qn ∈ U with pn ≤ qn for all n ∈ N and pn → p ∈ Ū ,
qn → q ∈ Ū , then p ≤ q. A Lorentzian pre-length space (Y, d,≪,≤, τ) is
called locally causally closed if every point has a causally closed
neighbourhood.

At this point and before we conclude this section negotiating the global
structure of a causal space, we give a much-coveted property for a
Lorentzian space/manifold that is related to the exclusion of the unwanted
phenomenon of causal bubbling, whereby there are causally related points
in the interior of the region J(p) \ I(p). This is called the push-up property
and it is described in the following way ([KS17], Lemma 2.10):

Definition 1.3.10. For a causal space (Y,≪,≤) if for p ≪ q ≤ z or
p ≤ q ≪ z we get p ≪ z, then we say that Y has the push-up property.

With all the definitions that preceded we have introduced the basic
global causal structure of a space, that we called a Lorentzian pre-length
space. Essentially, these are the necessary global features that can be used
to generalise a Lorentzian manifold. In order to sum up the global structure
of such a generalised space, we use the background metric d that describes
the topology and we define a quantity named the d-arclength of a causal
curve γ, which is denoted as
Ld(γ) = sup{

∑N−1
i=0 d(α(ti), α(ti+1)): a = t0 < t1 < ... < tn = b} and we use

it, in order to restrict the topology of a Lorentzian pre-length space in such
a way that we retrieve some very frequently encountered properties of
Lorentzian manifolds ([KS17], Definition 2.35):

Definition 1.3.11. Let Y be a causal space. Then Y is:

• non-totally imprisoning if for every compact set K ⋐ Y there is a
C > 0 such that the d-arclength of all causal curves contained in K is
bounded by C,

• strongly causal if the Alexandrov topology A agrees with the metric
topology D (and hence also with the chronological topology I), and

• globally hyperbolic if (Y, d,≪,≤, τ) is non-totally imprisoning and for
every p, q ∈ Y the set J+(p) ∩ J−(q) is compact in Y .
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With Definition 1.3.11, we conclude the main aspects of the global causal
structure of a space that generalises the main and fundamental properties
of Lorentzian length spaces, which we want to provide a generalisation of
the corresponding manifolds. In order though to properly perform this
generalisation, we need to establish some very particular local structure. In
order to do so, we need to establish the notion of localisability of a
Lorentzian pre-length space ([KS17], Definition 3.16):

Definition 1.3.12. A Lorentzian pre-length space (Y, d,≪,≤, τ) is called
localisable if ∀x ∈ Y there is an open neighbourhood Ωx of x in Y with the
following properties:

1. There is a C > 0 such that Ld(γ) ≤ C for all causal curves γ
contained in Ωx (Y is d-compatible).

2. There is a continuous map ωx : Ωx × Ωx → [0,∞), such that
(Ωx, dΩx×Ωx ,≪Ωx×Ωx ,≤Ωx×Ωx , ωx) is a Lorentzian pre-length space with
the following non-triviality condition: For every y ∈ Ωx we have
I±(y) ∩ Ωx ̸= ∅.

3. For all p, q ∈ Ωx with p ≤ q, there is a future-directed causal curve
γ[p,q] from p to q that is maximal in Ωx and satisfies:

Lτ (γ[p,q]) = ωx(p, q) ≤ τ(p, q) (1.3.3)

(The curve γ[p,q] being maximal in Ωx means that for every other
future-directed causal curve λ, connecting p and q with image contained in
Ωx, we have that Lτ (γ[p,q]) ≥ Lτ (λ).)

If we combine now, the definitions 1.3.11 and 1.3.12, as long as the
definition for the τ -length, we obtain the following proposition ([KS17],
Proposition 3.17):

Proposition 1.3.13. Let (Y, d,≪,≤, τ) be a strongly causal and localizable
Lorentzian pre-length space. Then, Lτ is upper semicontinuous, i.e., if
(γn)n : [a, b] → Y is a sequence of future-directed causal curves, converging
uniformly to a future-directed causal curve γ : [a, b] → Y , then:

Lτ (γ) ≥ lim sup
n

Lτ (γn) (1.3.4)
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Relying on the definitions above concerning the causal path
connectedness and closure, along with the localisability, we can give the
definition of a Lorentzian length space as in [KS17]:

Definition 1.3.14. If (Y, d,≪,≤, τ) is a Lorentzian pre-length space and
additionally:

• locally causally closed

• causally path connected

• localisable

• and T (p, q) = τ(p, q)

then Y is a Lorentzian length space.

Definition 1.3.14 offers an analogue of length spaces in metric geometry.
From (1.3.1) we see that (considering that the time separation function
plays the role of the metric function in metric geometry) the internal
geometry of the space Y is connected to the equivalent of the metric in the
Lorentzian setting. In addition, from (1.3.1) we see that the existence of
Lorentzian length spaces is interconnected to the notion of maximal curves.
This implies that even in the case that they don’t exist directly in the
space, they serve as a limit for the length of causal curves in it. In the case
they do exist, we get the equivalent notion of geodesic for a Lorentzian
length space:

Definition 1.3.15. A Lorentzian pre-length space (Y, d,≪,≤, τ) is called
geodesic if for all x, y ∈ Y with x ≤ y there is a future-directed causal curve
γ from x to y with τ(x, y) = Lτ (γ) (hence maximizing).

The existence of geodesics in a length space can be associated with global
hyperbolicity ([KS17], Theorem 3.30), which is an important constituent of
any space the geometry of which is of physical meaning, since global
hyperbolicity in its turn is associated with the existence of temporal
functions.

The main topic of study in this thesis is the warped product spaces. As it
was mentioned earlier, a seminal piece of work for these spaces is [AGKS19].
One of the most important results in it is that there are no pathologies in
the causal structure of warped product spaces with one dimensional base
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and in particular they exhibit the push-up property, which leads in its turn
to a strong causally connected space. Moreover, these spaces are shown in
[AGKS19] to have global hyperbolicity. Spacetimes of low regularity (below
Lipschitz) can exhibit the phenomenon of causal bubbling, as shown in
[CG11] for spacetimes with continuous metrics. However, the additional
structure of a warped product space excludes such pathology.

1.4 The Schwarzschild metric

Before any definitions for the geometrical description of our warped
product space, it is useful to understand the motivation that led to such a
consideration of space construction. Such a motivation is provided by the
product spaces with one-dimensional base (cones) on metric spaces. These
spaces have a lot of interest, as several of their features and properties are
expected to be similar or require similar treatment to Lorentzian product
spaces with one-dimensional base. In chapter 2 of [AGKS19], we see such
an example, where the Minkowski cone is introduced through a quotient
space structure of [0,∞)×X, resulting from identifying all points of the
form (0, p). This cone, denoted as Y = Cone(X), is also equipped with the
cone metric dc as in [BBI01], Def. 3.6.16. This structure, following the
steps of chapter 2 in [AGKS19], is shown to be capable to describe a 1 + n
dimensional spacetime, with the one-dimensional base corresponding to the
time component and thus the overall space being capable to support causal
structure, alongside an appropriate time separation function (equation (1),
[AGKS19]). However, the Minkowski cone is a very simple and special case
of our physical world. There are other metrics in the neighbourhoods of the
universe that have a more rich content, first and foremost in the presence of
gravitational field. A very well-known and established toy model for a
spacetime with gravity is that of Schwarzschild spacetime, i.e the spacetime
the metric of which describes the presence of a gravitational field with a
rotational symmetry in the vacuum spacetime:

−dτ 2 = −(1− rS
r
)dt2 +

1

1− rS
r

dr2 + r2dΩ2 (1.4.1)

where the metric is taken in the usual Schwarzschild coordinates t, r, θ, ϕ
and dΩ2 = dθ2 + sin2 θdϕ2. In what follows, we will focus only on the
Schwarzschild spacetime for r > rS. This subspace of the Schwarzschild
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spacetime can be considered as a subspace of:

Z = R× (0,∞)× S2 (1.4.2)

with S2 being the 2-sphere, R the set of real numbers corresponding to the
coordinate of time and (0,∞) stands for the set where the radial coordinate
takes its values. Now, having identified the split in (1.4.2), we want to
consider the other equivalent decomposition of the Schwarzschild spacetime,
meaning as a spacetime with one dimensional base in the form of R×X ′,
so that we take advantage of the (variational) length-measuring formula
suggested in Definition 3.9, [AGKS19] and motivate the discussion of the
creation of a corresponding (variational) length-measuring formula for the
case of a base with more structure.

From the split in (1.4.2), by identifying the base B with R× (0,∞), we
can obtain the time separation function for it, denoted as τb, which will
essentially correspond to:

τb = Lg(σ) (1.4.3)

where σ : [a, b] → R× (0,∞) is a geodesic in B = R× (0,∞), defined on
the interval [a, b] and Lg is given by:

Lg(σ) =

∫ b

a

√
gµνuµuνds (1.4.4)

with gµν the metric on B, µ, ν = 0, 1 and uµ the tangent vector on the
curve σ. Now, for a general causal curve γ = (α, β) : [a, b] → Z, where α is
the projection of γ to B and β the projection of γ to S2, by setting dΩ as
the metric on S2, dS2(β(s), β(s′)) = dΩ2 and using also (1.4.3), we get the
expression:

Πγ(γ(s), γ(s
′)) := τ 2b (α(s), α(s

′))− r2md
2
S2(β(s), β(s′)) (1.4.5)

where rm = min(r(s) : s ∈ [a, b]) and s, s′ ∈ [a, b] ⊂ R and the components
(α, β) are also described by the corresponding coordinates in the
Schwarzschild space, given by α(s) = (t, r), β(s) = (θ, ϕ). However, from
(1.4.2) we see that Schwarzschild spacetime for r > rS is a subspace of Z,
which can also be interpreted as a Lorentzian space with one dimensional
base R and a fibre X ′ = (0,∞)× S2, which has a metric dX′ that can be
given (in infinitesimal form) by:

dl2 =
1

1− rS
r

dr2 + r2dΩ2 (1.4.6)



1.4. THE SCHWARZSCHILD METRIC 14

Therefore, by setting β′ = (r, β) : [a′, b′] → X ′, we reparametrise γ as
γ′ = (h, β′) : [a′, b′] → Z and we choose:

h(ρ) :=

∫ ρ

a′

√
(1− rS

r(ρ̃)
)
dt

dρ̃
dρ̃ (1.4.7)

Consequently, this way, we have managed to view the original space Z as a
Lorentzian space with one-dimensional base and thus we can use the
(variational) length-measuring tool in [AGKS19] (subroot expression in
Definition 3.9):

Π′
γ(γ

′(ρ), γ′(ρ′)) := (h(ρ′)− h(ρ))2 − d2X′(β′(ρ), β′(ρ′))

Hence, by taking two appropriate values for each parametrisation γ, γ′, i.e
s, s′ and ρ, ρ′, we can write:√

Πγ(γ(s), γ(s′)) =
√
Π′

γ(γ
′(ρ), γ′(ρ′)) (1.4.8)

where ρ, ρ′, ρ̃ ∈ [a′, b′] ⊂ R (here we note that negative values of h
correspond to past points in time and a negative derivative of h implies
past-directed curve, while a positive derivative of h implies a
future-directed curve). From Lemma 3.11 of [AGKS19], we know that the
right hand side of (1.4.8) obeys the main properties of the time separation
function (in that it complies with the reverse triangle inequality and it is
non-negative), which leads the left hand side to comply with the same
properties (later we will prove this in detail and show these properties for
the left hand side by employing a similar concept in creating comparison
triangles between a general spacetime and a model space). Moreover, the
right hand side of (1.4.8) is used in [AGKS19] to obtain a variational length
formula for an 1-dimensional base Lorentzian space, which is also shown in
Proposition 3.14 to agree with the actual length of the curve. Hence, we are
motivated here to consider an expression of the form given in (1.4.5) in
order to derive a length-measuring formula for the case that our space has a
higher dimensional base.



2
Warped product pre-length space

2.1 Outline of the new space: Topology and lengths

The formula given in (1.4.5), which is introduced as a measuring tool for
the Schwarzschild spacetime, motivates us to generalize its use as a
measuring tool for a more general structure of a warped product space. The
first step in understanding this space is to specify its topology. In this
research we are interested in obtaining a length space analogue for the
warped product geometry that comes from (1.4.5). Basically this implies
that we want to abandon the condition of smoothness of our spacetime. In
such cases of low-regularity, the product topology remains the same.
Consequently, from the product split of the Schwarzschild spacetime it is
natural to consider a generalized base for the new space that we want to
construct in the form of a Lorentzian length space and similarly for the
fibre we initially allow it to be merely a metric space, with the intention to
investigate what further properties are required for these two constituent
spaces. In what follows these notions, along with the ones explicitly
associated with the existence of such spaces, will be used repeatedly.

Since there are a few notions that are used in several parts throughout
the following sections, before we introduce the topology of the new space,
we begin by introducing some notation that should be considered to have
global effect in anything that follows. In particular, we denote the base of
the new space with (B, dB,≪,≤, τb), where B is for a Lorentzian length
space that has a metric (dB) describing its topology, a pre-order ≤ and a

15
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transitive relation ≪⊂≤, which describe the causal relations between any
two pairs of points in B. Moreover, the space B has a time separation
function denoted as τb. Similarly for the fibre, we have a space X, that will
always be assumed to be at least a metric space, with the metric being
denoted as dX . Moreover, when we define a function f , we will write I for
the interval where f is valued, meaning I = (0,+∞), unless stated
otherwise. Finally, when we want to refer to the causal future/past of a
point p̄ ∈ B we write J±

B (p̄), whereas for the timelike future/past we write
I±B (p̄).
Having established a given notation and by having motivated the use of

our selected topology for the new space, we define the following:

Definition 2.1.1. For (X, dX) a metric space and (B, dB,≪,≤, τb) a
Lorentzian length space, Y := B ×X is defined to be the product space with
the metric:

d(x, x′) =
√

dB(x̄, x̄′)2 + dX(x̃, x̃′)2 (2.1.1)

for x = (x̄, x̃), x′ = (x̄′, x̃′) ∈ Y

Adding a few extra notations to the globally used ones, as introduced
above, from now on any time we write Y , we imply a product space given
by the Definition 2.1.1. Moreover, any point p ∈ Y will have a projection p̄
on B and p̃ on X and will be written as p = (p̄, p̃). Additionally, in what
follows we will very often require the projection of the curve γ onto the base
B and the fibre X. For this purpose we introduce here two more functions
that project the curve to the corresponding spaces and in what follows,
their operation shall be implied whenever a projection of a curve in Y to
either B or X is mentioned. Specifically, we have that a curve γ is projected
to B via the function πB, or onto X via the function πX and we write that:

πB ◦ γ = α,

πX ◦ γ = β

The definition of the above topology serves as the instigating factor to
establish a measuring tool for this kind of topology and which encapsulates
the equation for the Schwarzschild metric as a special case. In order to
attain this, we reckon with the equivalent reasoning behind the simple and
well-known smooth spacetime models for warped product spaces, like the
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FRWL spacetime or like models with lower regularity as in [AGKS19]. In
both cases the main idea remains the same: construct a space admitting
the topology B ×X, with B a Lorentzian length space of dimension n ≥ 1
and X a metric space of dimension m ≥ 1. This kind of structure, for
m,n ≥ 2 resembles the Schwarzschild metric split described above.
Therefore, an intutitive first step towards generalising the (smooth)
Schwarzschild case is to allow the base to be a Lorentzian length space and
the fibre a general metric space. In this case, the tools that become
immediately available are the time separation function for the base, the
warping function f and the metric for the fibre. Hence, combining these
three, for two points γ(s1), γ(s2) on a curve γ : [a, b] → B ×X, for
s1, s2 ∈ [a, b] and by denoting as ms1,s2 the minimum value of f ◦ α in the
interval [s1, s2] ⊆ [a, b], we introduce the following expression:

Ψγ(γ(s1), γ(s2)) := τb(α(s1), α(s2))
2 −m2

s1,s2
d2X(β(s1), β(s2)) (2.1.2)

From the form of relation (2.1.2), we see that it serves as a generalization of
(1.4.5), under the assumption that the base and the fibre need not be
smooth spaces any more. However, in (1.4.5) (as it corresponds to the
metric of Lorentzian length space) there is a certain causal structure that
needs to be respected in defining a length measuring formula for the new
topology given in Definition 2.1.1. To do so we use the following definition:

Definition 2.1.2. For (X, dX) a metric space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y a space that has the product topology defined in
2.1.1 and a function f : B → (0,+∞), a curve γ : [a, b] → Y , s.t the
projection of γ to B is a causal curve α and the projection to the fibre a
curve β, there is a function P , which is defined to be the map:

P : γ[s1,s2] → R (2.1.3)

which for two points γ(s1), γ(s2), with s1, s2 ∈ [a, b] and α(s1) ≤ α(s2), P is
given by:

P (γ(s1), γ(s2)) =

{√
Ψγ(γ(s1), γ(s2)) if Ψγ(γ(s1), γ(s2)) ≥ 0

C if Ψγ(γ(s1), γ(s2)) < 0
(2.1.4)

where C < 0.
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In what follows, whenever we refer to P we imply that P is specifically
defined for a given curve γ in Y , as it is established by Definition 2.1.2.
Later on, when we will have described the geometrical structure of our
space and we will have constructed a generalised warped product space,
equation (2.1.4) can be applied to any pair of points in Y , not necessarily
on a causal curve.

In building a length-measuring formula for space Y , we have to
reproduce the basic local properties of relation (1.4.5) for the Schwarzschild
spacetime. A main property that we need to reckon with is that all points
that are space-like related to each other have a negative value of (1.4.5) (in
what follows these are termed as non-causal). The form of (2.1.4) gives us a
good reason to perceive it as a tool similar to the local length for a curve γ
in Y , as it seems to differentiate points with negative and positive values of
it and it provides a direct analogy of (1.4.5) in the case Ψγ is differentiable
and f is constant. However, in a case of non-differentiability,
P (γ(s1), γ(s2)) would need to be calculated using an alternative way.
Hence, the only method that we can naturally assume, in complete analogy
to the metric case, is by considering a partition of γ : [a, b] → B ×X in
smaller intervals and taking the infimum of P over all these possible
partitions (hereafter any given partition of γ implies
{s0, s1, s2, ..., sN ; si ∈ [a, b], i = 0, 1, 2, ..., N}). Hence, using the tools that
we have at our disposal, meaning the time separation function τb, the metric
dX , the function f and the Definition 2.1.4 that occurs from them, we get
that the most general form for the length measuring formula could be:

Definition 2.1.3. Let there be a metric space (X,dX) and a Lorentzian
length space (B, dB,≪,≤, τb). Let there also be a space Y , with the product
topology B ×X, as well as a continuous function f : B → I = (0,∞).
Then, for a curve γ = (α, β) : [a, b] → Y , such that for si, si+1 ∈ [a, b],
i ∈ [0, N − 1] ⊂ N and α a causal curve with α(si) ≤ α(si+1), the
variational length functional of γ is defined as:

Lvar(γ) = inf{
N−1∑
i=0

P (γ(si), γ(si+1)) } (2.1.5)

This formula is an analogue of the τ -length and the notion of rectifiability
it entrains for the causal curves. However, a distinction needs be
established at this point in that the rectifiability of our curve is wrt the
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P (γ(si), γ(si+1)) expression in (2.1.5), which looks into the rectifiability of
the projection of the curve into the base and the fibre separately. It is not a
rectifiability wrt a time separation function in Y , which is the usual
meaning of rectifiability for causal curves, as described in Definition 2.24,
[KS17] and which is the direct and closest analogue of rectifiability of
metric geometry. The only case where any notion of rectifiability wrt
P (γ(si), γ(si+1)) is redundant is if α is a null curve, in which case though
we know that the length of the curve is 0 if γ projects to a point in X and
C if any section of γ projects to a curve is X.

One more reason that motivates the use of τb in the proposed measuring
formula is that since the base is a Lorentzian space, we want a function
that in case the curve γ is reduced to the base, the measuring tool
adequately describes the causal relations. For this reason the time
separation function is the only pre-existing tool and thus serves as an
obvious candidate to be involved somewhere in the definition of a
measuring tool. However, the question is whether to use the lengths (or
τ -lengths) of curves that project to the base or just simply the time
separation function. For simplicity, we consider the latter, however as we
will show later (with the different equivalent length-measuring formulas) it
doesn’t affect the theory, as basically the additional extent of accuracy in
measuring a length is rendered redundant by the nature of the formula.
Therefore, we conclude that by taking the time separation function for the
base and the metric distance for the fibre X, we can construct a measuring
tool for the lengths of curves in a space Y . The exact structure and
geometrical properties of this space will only become apparent later in this
thesis, but the only way to fathom it for now, is that with this space Y
(with the topology given in 2.1.1 and the formula (2.1.5), that calculates
lengths in it) we intend to provide a generalization of the Schwarzschild
spacetime to encapsulate the cases the base B and the fibre X, or one of
them, need not be regular, or if the space has no Lorentzian metric.

We continue our analysis by checking some basic properties for P (p, q; γ)
in (2.1.4), that provide an interpretation of function P (p, q) as the
equivalent to the distance function of a metric space. In particular, we have
the following lemma:

Lemma 2.1.4. Let γ = (α, β) be a curve defined on the interval [a, b] → Y ,
with Y having the topology of B ×X, α : [a, b] → B and β : [a, b] → X.
Then for s1 < s2 < s3 ∈ [a, b] and for three points γ(s1), γ(s2), γ(s3), that
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satisfy α(s1) ≤ α(s2) ≤ α(s3), we get that:

P (γ(s1), γ(s3)) ≥ P (γ(s1), γ(s2)) + P (γ(s2), γ(s3)) (2.1.6)

Proof. Before we start proving the claim, in order to be assisted in the
analysis below, we choose a more simplified notation. Specifically, we set
γ(s1), γ(s2), γ(s3) = r, q, z, respectively and r = (α(s1) = r̄, β(s1) = r̃), q =
(α(s2) = q̄, β(s2) = q̃), z = (α(s3) = z̄, β(s3) = z̃).

From the Definition 2.1.2 above, we imply that (2.1.6) is considered for a
given curve, on which we choose the points r, q, z. This fact facilitates us in
handling the minimum of the warping function f along the interval [s1, s3].
If for this curve we have:

τb(r̄, z̄) = τb(r̄, q̄) + τb(q̄, z̄) (2.1.7)

then this is called a maximal curve in the base according to Definition 2.33,
[KS17]. In this case the proof for the reverse triangle inequality is the same
as in the one dimensional case Lemma 3.11 of [AGKS19] and which is a
subcase of the method we use below.

For the general case we are not on a maximizer in B, we proceed in a
different manner, similar to the corresponding case in Lemma 3.11,
[AGKS19]. First, we consider the Minkowski spacetime (M2), its metric:

−ds2 = −dt2 + dx2 (2.1.8)

and three points in it R̄, Q̄, Z̄. Then we take a comparison triangle △R̄,Q̄,Z̄

in M2 for r̄, q̄, z̄ ∈ B, s.t τb(r̄, q̄) = τ(R̄, Q̄), τb(q̄, z̄) = τ(Q̄, Z̄),
τb(r̄, z̄) = τ(R̄, Z̄), where we denote the time separation function on M
(which coincides with the timelike part of the metric for a Minkowski
spacetime) as τ . Additionally, we set that t(r̄, q̄) = τb(r̄, z̄)− τb(q̄, z̄), while
also c = min(mr̄,q̄,mq̄,z̄). We then take the 2-dimensional Euclidean space
(R2) and a comparison triangle △R̃,Q̃,Z̃ in it for r̃, q̃, z̃ ∈ X, s.t

dX(r̃, q̃) = dR2(R̃, Q̃), dX(q̃, z̃) = dR2(Q̃, Z̃), dX(r̃, z̃) = dR2(R̃, Z̃), where
R̃, Q̃, Z̃ ∈ R2. From the two comparison spaces, we can construct a new
warped product space M2 ×c R

2. This space is an anisotropic FLRW-like
spacetime, which is explained more in [MS11]. However, M2 can be split
into the space I1 × I2 and hence the space M2 ×c R

2 is isomorphic to the
total space I1 × (I2 ×c R

2), which from Corollary 4.9 of [AGKS19] is a
Lorentzian length space. The time separation function T for I1 × (I2 ×c R

2)
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is given by the timelike part of the warped product metric (as the latter is
introduced in equation (2.3) of [MS11]). Therefore, taking two points
Π ∈ Y , Π′ ∈ I1 × (I2 ×c R

2) and considering that there is a mapping H:

H : Π = (Π̄, Π̃) → Π′ = (t, Π̃′) = (t, x, y, z) (2.1.9)

with t, x, y, z having the usual meaning of the coordinates of each point in
I1 × (I2 ×c R

2), the time separation function in I1 × (I2 ×c R
2) will be:

T (Π′
i,Π

′
j) =

√
∆t2 − (∆x2 + c2(∆y2 +∆z2)) (2.1.10)

where Π′
i,Π

′
j = (R̄′, R̃′), (Q̄′, Q̃′), (Z̄ ′, Z̃ ′) ∈ I1 × (I2 ×c R

2) and
(∆t,∆x,∆y,∆z) = H(Πj)−H(Πi).

Reckoning with the triangle inequality for M2 ×c R
2, we have that:√

τb(r̄, q̄)2 −m2
r̄,q̄d

2
X(r̃, q̃) +

√
τb(q̄, z̄)2 −m2

q̄,z̄d
2
X(q̃, z̃)

≤
√

τb(r̄, q̄)2 −m2
r̄,q̄d

2
X(r̃, q̃) +

√
t(q̄, z̄)2 −m2

q̄,z̄d
2
X(q̃, z̃)

≤
√

τb(r̄, q̄)2 − c2d2X(r̃, q̃) +
√
t(q̄, z̄)2 − c2d2X(q̃, z̃)

=T (R′, Q′) + T (Q′, Z ′) ≤ T (R′, Z ′) =
√

τb(r̄, z̄)2 −m2
r̄,z̄d

2
X(r̃, z̃) (2.1.11)

therefore we have proven (2.1.6).

In what we have described above as a measuring formula for the lengths
of curves in Y , we required of course a given parametrization for the curve.
Hence, before proceeding further, we could probe a bit more the extent of
flexibility around the parametrization of the curve, so that our formula
(2.1.5) remains invariant. Specifically, we see that:

Proposition 2.1.5. The variational length Lvar is reparametrization
invariant, i.e., if we have a curve γ = (α, β) : S = [a, b] → Y and in
addition, ϕ : S ′ → S is strictly monotonically increasing and such that ϕ
and ϕ−1 are continuous, then Lvar(γ ◦ ϕ) = Lvar(γ).

Proof. Let γ = (α, β) : S = [a, b] → Y and σ : S ′ = [a′, b′] → Y , with σ
being the reparametrization of γ through ϕ : S ′ → S, i.e σ = γ ◦ ϕ. Then we
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have that the partition {s′0, s′1, s′2, ..., s′N ; s′i ∈ [a′, b′], i = 0, 1, 2, ..., N − 1} will
be mapped to {s0, s1, s2, ..., sN ; si ∈ [a, b], i = 0, 1, 2, ..., N − 1}. This gives:

Lvar(σ) ≤
N−1∑
i=0

P (σ(s′i), σ(s
′
i+1))

=
N−1∑
i=0

P (γ(ϕ(s′i)), γ(ϕ(s
′
i+1)))

=
N−1∑
i=0

P (γ(si), γ(si+1)) (2.1.12)

If we take the infimum over both sides of the above equation we get that
L(σ) ≤ Lvar(γ). If we start with the length of γ instead, the same
arguments as in the above equation give us that Lvar(γ) ≤ Lvar(σ), hence
Lvar(σ) = Lvar(γ).

After having defined a formula for measuring the lengths of a curve and a
given topology for our space, the next step is to check its compatibility
with known special cases that it describes. Specifically, our proposed
length-measuring formula, provides a general tool for spaces that are either
regular (smooth) or non-regular. Hence, it is necessary for the validity of
our measuring tool that it is compatible with the case of smooth base and
fibre spaces, where there is a natural length-measuring formula from the
metric occurring in a smooth space(time). Therefore, we proceed by
considering (2.1.5) inside a smooth warped product space Y ′, comprised of
a smooth Lorentzian base, B′, a smooth metric space X ′ as fibre and a
smooth warping function f ′ : B′ → I ⊆ R+, as Y ′ = B′ ×f ′ X ′. We will
check whether the variational length introduced in (2.1.5) equals the
normal formula of integration for the length of an absolutely continuous
curve in Y ′. In these spaces the time separation function reduces to the
usual notion of the length of a geodesic and the latter is differentiable. This
fact furnishes the existence of a Lorentz structure function for a curve
γ′ = (α′, β′) as follows:

g = τ̇b
2 − f ′ ◦ α′(s)2u2

β′ (2.1.13)

where τ̇b =
dτb(s)
ds

and uβ′ = dX(β′(s),β′(s+ds))
ds

, meaning the derivatives of the
time separation function (τb) and the metric (dX). In its turn, the structure
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function g gives rise to a formula for the length of γ′ inside the space Y ′:

L =

∫ s1

s0

√
τ̇b

2(s)− f ′2(s)u2
β′(s)ds (2.1.14)

From equation (2.1.14), we can prove now the equivalence of the L(γ) and
Lvar(γ) in the following proposition:

Proposition 2.1.6. Let (B, dB,≪,≤, τb) be a smooth Lorentzian manifold
and (X, dX) a Riemannian manifold. Then the variational length Lvar for
an absolutely continuous causal curve γ ∈ Y is equal to its length L.

Proof. Take an absolutely continuous curve γ′ = (α′, β′) ∈ Y and its length
for S ′ = [a′, b′] being given from (2.1.14). Since, as shown in Corollary 3.7
of [AGKS19] this formula for the length, as well as the formula from (2.1.5)
are reparametrization invariant, we can consider an appropriate map
ϕ : S ′ → S = [a, b], as described in Proposition 3.34 of [KS17] such that
τ̇b = 1 (this curve, with τ̇b > 0, for the purposes of this proof - without loss
of generality - will be called future directed causal curve) and that
γ′ = γ ◦ ϕ. By utilising the reasoning of the proof for Proposition 3.14 of
[AGKS19] we get the following inequality:

L(γ) =

∫ b′

a′

√
τ̇b

2 − (f ◦ α′)2u2
β′ ds

′ =

∫ b

a

√
1− (f ◦ α)2u2

β ds

=
N−1∑
i=0

∫ si+1

si

√
τ̇b

2 − f 2u2
β ds

≤
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
dX(β(si), β(si+1))2 (2.1.15)

where we assumed above that s0 = a, sN = b. By taking the infimum over
both the last line and the L(γ), we have that: L(γ) ≤ Lvar. Next, we write
the derivatives inside the integral into a variational form, in order to take
advantage locally of the inequality written above between L(γ) and Lvar.
Hence, we use the fact that Lvar ≤

∑N−1
i=0 Pγ(γ(si), γ(si+1)). In addition, we

consider that ∃ϵ s.t 0 < ϵ < b− a and we set b′ = b− ϵ > a, h = b′−a
N

, with
h ≤ ϵ and si = a+ ih, for i = 0, 1, 2, ...., N . Then for a value s ∈ [a, b′],
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√
h2 −m2

s,s+hdX(β(s), β(s+ h))2 ≥ 0. Consequently:∫ sN

s0

√
τ̇b

2 − f 2u2
β ds = lim

h→0

1

h

∫ sN

s0

√
h2 −m2

s,s+hdX(β(s), β(s+ h))2 ds

= lim
h→0

1

h

N−1∑
i=0

∫ si+1

si

√
h2 −m2

s,s+hdX(β(s), β(s+ h))2 ds

(2.1.16)

Now, we make the substitution s → si + s′, with s′ ∈ [0, h] and thus:∫ sN

s0

√
τ̇b

2 − f 2u2
β ds = lim

h→0

1

h

N−1∑
i=0

∫ si+1

si

√
h2 −m2

s,s+hdX(β(s), β(s+ h))2 ds

= lim
h→0

1

h

∫ h

0

N−1∑
i=0

[h2 −m2
si+s,si+1+s

× dX(β(si + s), β(si+1 + s))2]
1
2 ds

≥ lim
h→0

1

h

∫ h

0

Lvar(γ[α+s,b′+s])ds

= lim
h→0

1

h

∫ h

0

Lvar(γ)− Lvar(γ[a,a+s])− Lvar(γ[b′+s,b])ds

≥ lim
h→0

1

h

∫ h

0

Lvar(γ)− Lvar(γ[a,a+h])− Lvar(γ[b−h,b])ds

≥ Lvar(γ)−
√
ϵ2 −m2

b−ϵ,bdX(β(b− ϵ), β(b))2 (2.1.17)

Now, by taking the limit of ϵ → 0 we get that L(γ) ≥ Lvar. Therefore, since
L(γ) ≥ Lvar ≥ L(γ), we have that Lvar = L(γ) for our suggested length
measuring formula (2.1.5).

2.2 Causal curves

Having defined a measuring tool for the lengths of curves in Y , the next
step is to use it in order to define the causal curves in it, along the lines of
the smooth Lorentzian geometry. In the smooth setting, where τb is given
by the metric of the smooth spacetime that constitutes the base, which
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metric is also differentiable with derivative τ̇b and where the metric of the
fibre is differentiable, with derivative vβ, we have from Definition 2.1.3 and
the formula (2.1.5), that a causal curve is:

timelike

null if − τ̇b
2 + (f ◦ α)2v2β

causal


< 0

= 0

≤ 0

(2.2.1)

Therefore, as a first step towards defining the causal curves in the space Y ,
we need to be able to match the picture from (2.2.1) in the non-smooth
(length space analogue) setting. To this end, we assume that if there is a
curve γ : [a, b] → B ×X, then by using the formula for Lvar(γ), the
following definition is given:

Definition 2.2.1. Let (B, dB,≪,≤, τb) be a Lorentzian length space,
(X, dX) a metric space, f : B → I a continuous function in B and
γ : [a, b] → B ×X be a curve, such that its length is given by (2.1.5). Then
for all s ∈ [a, b] and for ϵ ∈ R+, so that b− s > ϵ, if we denote the section
of the curve from γ(s) to γ(s+ ϵ) as γ[s,s+ϵ], we classify γ as:

timelike

null if Lvar(γ[s,s+ϵ])

causal


> 0

= 0

≥ 0

(2.2.2)

In what follows when we refer to a causal curve, we imply the causality
given by the Definition 2.2.1. This definition just indicates that on a given
curve γ, as defined above, any two ”neighbouring” points have to be
connected with a segment of the curve that has length greater than zero if
the curve is timelike, or greater or equal to zero if the curve is causal. This
classification of causal curves allows us to connect it with the local
behaviour of the expression for P (and its equivalents as shown below) and
then reach to some clear connections between causal curves and ordering
relations of points in Y .

Moreover, from the definition above we can try to make more detailed
connections of causal curves with the length measuring formula for our
space Y . Hence, the following lemma ensues:
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Corollary 2.2.2. Given a Lorentzian length space (B, dB,≪,≤, τb), a
metric space (X, dX), a space Y := B ×X with length in it given by (2.1.5)
and a curve γ : [a, b] → Y , then γ is causal if and only if P (γ(c), γ(d)) ≥ 0
∀c, d ∈ [a, b], such that a ≤ c < d ≤ b and α(a) ≤ α(c) ≤ α(d) ≤ α(d).

Proof. We start by considering γ to be a causal curve. In order to be
assisted in the analysis of our arguments here, we denote γ(c) = p = (p̄, p̃),
γ(d) = q = (q̄, q̃) and for the section of the causal curve γ from p to q, we
write γ[p,q]. By definition, Lvar(γ[p,q]) is greater or equal to zero. Having
determined the notation, we proceed by considering a partition
{ti : ti ∈ [c, d], i = 1, ..., N ; t1 = c, tN = d} of γ. If the γ[p,q] section of the γ
partition gives that P (p, q) < 0, because of the relation:

P (p, q) = inf{P (p, q)} ≥ inf{P (p, z) + P (z, q);∀z ∈ γ[p,q]} (2.2.3)

which for the partition {ti : ti ∈ [c, d], i = 1, ..., N ; t1 = c, tN = d} of γ
means that:

P (p, q) ≥ inf{
N−1∑
i=0

P (γ(ti), γ(ti+1))} (2.2.4)

we get that L(γ[p,q]) < 0 as the infimum of the partition, which is a
contradiction to the causal character of γ. Note here that if there are any
two points that give a negative value for P (p, q), then the correspondence
with L(γ) in the smooth setting is lost.

Remark 2.2.3. From the Corollary 2.2.2 we see that we can capture all
causal curves with P (p, q) ≥ 0, for p, q on a causal curve γ. Therefore, in
order to simplify our analysis of causal curves wrt Definition 2.2.1, we can
go back to Definition 2.1.2 and equation (2.1.4) and set C = −∞ when
Ψγ(γ(s1), γ(s2)) < 0.

From the Remark 2.2.3 and the Corollary 2.2.2 we see that we can
capture some connection between the causal character of a curve and the
local variational behaviour of the length-measuring formula in (2.1.5) (i.e
P (p, q)). This connection though is attained through this given formula
(2.1.5), the choice of which is assumed based on some reasonable
assumptions that we motivated above and moreover, in order to get P (p, q)
we use the minimum of f ◦ α. Therefore, the use of P (p, q) in order to
derive any further information for the local causal character of the curve is
not possible. However, as we show later, the causal curves classification wrt
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Definition 2.2.1 agrees with the causal curves wrt to Definition 1.3.5. This
implies that although we build a length-measuring formula following natural
some assumptions (i.e the choice of the particular form for P (p, q)), we end
up with a formula that accurately captures causal relations in our space.

Null curves

As we will see later, there is a second route we can take to define null
curves, but for now we focus on the one given in our Definition 2.2.1.
According to it, null curves are those that have an Lvar equal to zero.
Before we proceed to check some basic properties of null curves, we give the
following definition:

Definition 2.2.4. Let (B, dB,≪,≤, τb) be a Lorentzian length space,
(X, dX) a length space, Y := B ×X, f : B → (0,+∞) a continuous
function in B and γ = (α, β) : [a, b] → Y a causal curve, with L being the
dX-arclength of β, L(β[t1,t2]) > 0 ∀t1 ≤ t2 ∈ [a, b] and t1 = t′0, t2 = t′M .
Then, there is a function τγ : γ[t1,t2] → R≥0, which is given by:

τγ(γ; t1, t2) = sup{
M−1∑
k=0

mt′k,t
′
k+1

dX(β(t
′
k), β(t

′
k+1))} (2.2.5)

In what follows, unless there is a need to specify, we adopt the notation
τγ(t1, t2), meaning τγ(γ; t1, t2).

Corollary 2.2.5. τγ(t1, t2) is additive, meaning that for
t1 < t2 < t3 ∈ [a, b], we have:

τγ(t1, t3) = τγ(t1, t2) + τγ(t2, t3) (2.2.6)

Proof. Take a c ∈ (a, b). Then we know from Definition 2.2.4 that there is
one set of partitions for [a, c], that we call W[a,c] and another for [c, b], that
we call W[c,b] the union of which is a subset or equal to the set of partitions
in [a, b], which we denote as W[a,b]. Hence, for an arbitrarily small ϵ > 0 and
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tn = c:

τγ(a, b) + ϵ ≥
n∑

i=0

mti,ti+1
dX(β(ti), β(ti+1)) +

ϵ

2

+
N−1∑
i=n

mti,ti+1
dX(β(ti), β(ti+1)) +

ϵ

2

>τγ(a, c) + τγ(c, b) (2.2.7)

Moreover
N−1∑
i=0

mti,ti+1
dX(β(ti), β(ti+1)) ≤ τγ(a, c) + τγ(c, b) (2.2.8)

which if we take the supremum of both sides in (2.2.8) becomes:

τγ(a, b)− ϵ < τγ(a, c) + τγ(c, b) (2.2.9)

and therefore:

τγ(a, b)− ϵ < τγ(a, c) + τγ(c, b) < τγ(a, b) + ϵ (2.2.10)

which gives that:
τγ(a, b) = τγ(a, c) + τγ(c, b) (2.2.11)

since ϵ is arbitrarily small.

An additional step that is needed before the discussion about null curves
is the following two equivalent formulas for (2.1.5):

Corollary 2.2.6. For (X, dX) a length space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y := B ×X, in which lengths of curves are given
by (2.1.5), a continuous function f : B → (0,+∞) and Ψγ ≥ 0, the length
of a causal curve γ : [a, b] → Y is also equal to:

L(γ) = inf{
N−1∑
i=0

√
Lτb(α[ti,ti+1])

2 −m2
ti,ti+1

dX(β(ti), β(ti+1))2} (2.2.12)

where N ∈ N, i ∈ [0, N − 1], ti, ti+1 ∈ {a = t0 < t1 < · · · < tN = b}.
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Proof. We take the length formula given in (2.1.5). Moreover, we take a
partition ζ of every interval [ti, ti+1]:
ζ = {t′i,k : ti = ti,0 < ti,1 < · · · < ti,M = ti+1;M ∈ N, k ∈ [0,M − 1]}. We
know from the Definition 1.3.6 (see also 2.24 in [KS17]) that there is always
a partition with given M,N for which we can have a value ϵi > 0, arbitrarily
small, s.t Lτb(α[ti,ti+1]) + ϵi > τb(α(ti), α(ti+1)) >

∑M−1
k=0 τb(α(t

′
i,k), α(t

′
i,k+1)).

Therefore, taking also into account that P (γ(ti), γ(ti+1)) > 0, we get:

L(γ) = inf{
N−1∑
i=0

√
τb(α(ti), α(ti+1))2 −m2

ti,ti+1
dX(β(ti), β(i+1))2}

≥ inf{
N−1∑
i=0

[
M−1∑
k=0

τb(α(t
′
i,k), α(t

′
i,k+1)) ]2 −m2

ti,ti+1

× dX(β(ti), β(ti+1))
2 ]

1
2}

=L(γ)L (2.2.13)

Moreover:

L(γ) = inf{
N−1∑
i=0

√
τb(α(ti), α(ti+1))2 −m2

ti,ti+1
dX(β(ti), β(i+1))2}

≤ inf{
N−1∑
i=0

√
(Lτb(α[ti,ti+1]) + ϵi)2 − [mti,ti+1

dX(β(ti), β(ti))]2}

=L(γ)U (2.2.14)

However:

L(γ)U = inf{
N−1∑
i=0

√
(Lτb(α[ti,ti+1]) + ϵi)2 − [mti,ti+1

dX(β(ti), β(ti))]2}

= inf{
N−1∑
i=0

[
M−1∑
k=0

τb(α(t
′
i,k), α(t

′
i,k+1)) ]2 −m2

ti,ti+1

× dX(β(ti), β(ti+1))
2 ]

1
2}

=L(γ)L (2.2.15)

Consequently, since L(γ)U = L(γ)L:

L(γ) = inf{
N−1∑
i=0

√
Lτb(α[ti,ti+1])

2 −m2
ti,ti+1

dX(β(ti), β(ti+1))2} (2.2.16)
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and thus we have proven the claim.

As an immediate consequence of Corollary 2.2.6, we get the following
formula that is also equivalent to (2.1.5):

Corollary 2.2.7. For (X, dX) a length space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y := B ×X, in which lengths of curves are given
by (2.1.5), a continuous function f : B → (0,+∞) and Ψγ ≥ 0, the length
of a causal curve γ : [a, b] → Y is given by:

L(γ) = inf{
N−1∑
i=0

√√√√Lτb(α[ti,ti+1])
2 − sup{

M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β(t′i,k), β(t
′
i,k+1))}2 }

(2.2.17)

where

N,M ∈ N, i ∈ [0, N − 1], k ∈ [0,M − 1],

ti, ti+1 ∈ {a = t0 < t1 < · · · < tN = b},
t′i,k, t

′
i,k+1 ∈ {ti = ti,0 < ti,1 < · · · < ti,M = ti+1}

Proof. The proof is exactly the same as in Corollary 2.2.6, so here we will
give the outline of it. Specifically, we know that there is always a partition
with given M,N for which we can have a value ϵi > 0, arbitrarily small, s.t
sup{

∑M−1
k=0 mt′i,k,t

′
i,k+1

dX(β(t
′
i,k), β(t

′
i,k+1))} − ϵi < mti,ti+1

dX(β(ti), β(ti+1)) <∑M−1
k=0 mt′i,k,t

′
i,k+1

dX(β(t
′
i,k), β(t

′
i,k+1)). From this point onwards we proceed

as in Corollary 2.2.6

If we take a null curve n : [a, b] → Y , then from general relativity for
warped product spaces, like the FRWL spacetime, or a generalisation of it
in the case of generalized cones presented in [AGKS19], we know that the
time it takes (the time separation function for one dimensional base) to
traverse a curve in the fibre is bounded from below, meaning that we can
never take less time than light to go between two points in the fibre,
respecting thus the fundamental principle of causality. By following this
fundamental axiom in our generalised case of having a base that is not one
dimensional, we can provide a bound on the time separation function
between points in the base. This is done through the following Proposition:
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Proposition 2.2.8. Let (B, dB,≪,≤, τb) be a Lorentzian length space,
(X, dX) a length space, f : B → I a continuous function in B and
γ = (α, β) : [a, b] → Y a causal curve, with L(β[t1,t2]) ̸= 0 ∀t1 < t2 ∈ [a, b].
Then, for t1 = t′1,0, t2 = t′1,M , γ is a null curve if and only if:

Lτb(α[t1,t2]) = sup{
M−1∑
k=1

mt′1,k,t
′
1,k+1

dX(β(t
′
1,k), β(t

′
1,k+1))} (2.2.18)

Proof. We consider a partition of γ as {ti ∈ [a, b] : i ∈ [0, N − 1] ⊂ N} and
we take the case that Lτb = sup{

∑M−1
k=0 mt′i,k,t

′
i,k+1

dX(β(t
′
i,k), β(t

′
i,k+1))}. In

this case, from Corollary 2.2.7, we see that L(γ[t1,t2]) = 0 ∀t1, t2 ∈ [a, b] and
hence γ is a null curve.

In contrast we want to show that if (2.2.18) doesn’t hold, then γ can’t be
null. We assume instead, that γ ∈ Y is null and it doesn’t comply with
(2.2.18). We have:

Lτb(α[ti,ti+1]) = sup{
M−1∑
k=1

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}+ δi (2.2.19)

where δi > 0, L(γ) = 0 and for N = 1 in the partition {ti} of γ, δ0 = δ.
Now, we can use the additivity of Lτb and τγ from Definition 2.2.4, together
with three points t1 < t2 < t3 ∈ [a, b], in order to get:

Lτb(α[t1,t3]) =Lτb(α[t1,t2]) + Lτb(α[t2,t3]) (2.2.20)

and

sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t1,t3] =

sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t1,t2]

+sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t2,t3] (2.2.21)
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and thus from (2.2.19), (2.2.20), (2.2.21) we get:

sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t1,t2] + δ1 =

sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t1,t2] + δ2

+sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}[t2,t3] + δ3 (2.2.22)

which gives

δ1 = δ2 + δ3 (2.2.23)

Hence, by using (2.2.19) in (2.2.17), together with (2.2.23), we get that:

L(γ) =

= inf{
N−1∑
i=0

√√√√Lτb(α[ti,ti+1])
2 − sup{

M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β′(t′i,k), β
′(t′i,k+1))}2 }

= inf{
N−1∑
i=0

[(sup{
M−1∑
k=1

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}+ δi)
2

− sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β
′(t′i,k), β

′(t′i,k+1))}2]
1
2 }

= inf{
N−1∑
i=0

√√√√2δi sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

dX(β′(t′i,k), β
′(t′i,k+1))}+ δ2i }

≥ inf{
N−1∑
i=0

√
δ2i }

= inf{
N−1∑
i=0

δi } (2.2.24)

From (2.2.23) L(γ) ≥ inf{
∑N−1

i=0 δi} = δ > 0 and hence γ is not null, which
is a contradiction. For δi < 0, we would get a complex number in the
subroot for any ti, ti+1 and hence it would be not a causal curve.
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Remark 2.2.9. If we choose a reparametrisation of γ, s.t for a continuous
and monotonically increasing map Φ : [a, b] → [c, d], γ = n ◦ Φ(·), then from
Proposition 2.1.5, if n is a null curve, so is γ.

Null curves, and the limits that they pose in the causal relations between
points in Y will be a focal point later in our work, when we try to negotiate
the relations between points in the space Y .

2.3 Speed bounds for causal curves

With the definition of the causal curves in hand, we need to delve a bit
more into the matter of continuity for the curves in Y , whose lengths are
given by (2.1.5). In particular, from the smooth Lorentzian geometric
spaces we know that the speed on a given curve can never be greater than
the speed of light. This restriction translates to the condition of Definition
2.18 in [KS17] for causal curves being locally Lipschitz continuous with
respect to the background metric d. In the construction of Y though, we
have chosen a Lorentzian length space (B) as the base and from Definition
2.1.2 we know that the projection of any curve to B will also be causal and
hence from Definition 2.18, in [KS17] will always be Lipschitz continuous
with respect to the background metric of the base (dB). Therefore, we are
left to ask whether there is such a parametrisation that the corresponding
projection to the fibre is also Lipschitz continuous.

In what follows, we need to distinguish between three cases. Specifically,
we might have causal curves that move on both the space and the fibre and
causal curves that have a non-constant projection only to the base. The
additional case of a curve that has a curve projection on the fibre, but
projects only to a point in the base is not a causal case, as we can see from
Proposition 2.2.8. Therefore, we can treat the first two cases separately, as
in the case that a curve constitutes a combination of the two we can choose
different reparametrisations for each one of them. Hence, for any
continuous curve (wrt d), we get the following proposition:

Proposition 2.3.1. Let there be a metric space (X, dX) and
(B, dB,≪,≤, τb) a Lorentzian length space, while also Y := B ×X. In
addition, f : B → I is a continuous function. Then, for a future-directed
causal curve α, every curve γ = (α, β) : [a, b] → Y has a reparametrization
that is locally Lipschitz continuous.
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Proof. We want to show that a causal curve γ ∈ Y (i.e for γ s.t
Lvar(γ) ≥ 0) is locally Lipschitz continuous (i.e in a compact interval [a, b]),
for at least one parametrisation. Thus, we need to show that if s ∈ [a, b] is
the parameter in the original parametrisation, then there is at least one
Φ : [a, b] → [c, d] that is continuous and monotonically increasing (according
to Definition 2.26, in [KS17]), s.t for s < t:

d(γ(t), γ(s))

Φ(t)− Φ(s)
≤ K (2.3.1)

where d(γ(t), γ(s)) =
√

d2B(α(s), α(t)) + d2X(β(s), β(t)) and K ≥ 0. For
s < t ∈ [a, b] we know that:

dX(β(s), β(t)) ≤ LdX (β[s,t]) (2.3.2)

dB(α(s), α(t)) ≤ LdB(α[s,t]) (2.3.3)

where LdX (β[s,t]) = LdX (β[a,t])− LdX (β[a,s]) and
LdB(α[s,t]) = LdB(α[a,t])− LdB(α[a,s]) are the lengths of the sections of β, α
respectively from s to t and thus LdX (β[a,x]), LdB(α[a,x]) are both continuous
wrt x ∈ [a, b] (additivity). Because of (2.3.2) and (2.3.3) we get that α, β
are of course Lipschitz continuous wrt the dB, dX-arclength respectively.
Now, we consider a reparametrisation of γ as γ = γ′ ◦ Φ (along the lines

of Definition 2.26, in [KS17]) s.t Φ : [a, b] → [a′, b′] and γ′ = (λ, σ). The
reparametrisation is chosen to be the following:

Φ(s) = LdX (β[a,s]) + LdB(α[a,s]) + s (2.3.4)

which is continuous and monotonically increasing. Thus, from the
additivity of LdB(α[a,s]), LdX (β[a,s]):

dX(σ(Φ(s)), σ(Φ(t)))

(Φ(t)− Φ(s))
=

dX(σ(Φ(s)), σ(Φ(t)))

LdB(α[s,t]) + LdX (β[s,t]) + s

≤dX(σ(Φ(s)), σ(Φ(t)))

LdX (β[s,t])

≤Ca,b (2.3.5)

with Ca,b = max({lim supt→s
dX(σ(s),σ(t))
LdX

(β[s,t])
;∀ s ∈ [a, b]}) ∈ (0, 1]. In the same



2.4. UPPER SEMICONTINUITY OF LENGTH FORMULA 35

context:

dB(λ(Φ(s)), λ(Φ(t)))

(Φ(t)− Φ(s))
=

dB(λ(Φ(s)), λ(Φ(t)))

LdB(α[s,t]) + LdX (β[s,t]) + s

≤dB(λ(Φ(s)), λ(Φ(t)))

LdB(α[s,t])

≤C ′
a,b (2.3.6)

with C ′
a,b = max({lim supt→s

dB(λ(s),λ(t))
LdB

(β[s,t])
;∀ s ∈ [si, si+1]}) ∈ (0, 1].

Consequently, (w.l.o.g) for s, t ∈ [a, b], from (2.3.5) and (2.3.6) we get:

d(γ′(Φ(u)), γ′(Φ(s))) =
√
d2B(λ(Φ(s)), λ(Φ(u))) + d2X(σ(Φ(s)), σ(Φ(u)))

≤max(Ca,b, C
′
a,b, 1)(Φ(u)− Φ(s) ) (2.3.7)

and thus we have shown that with our chosen reparametrisation γ′ is
locally Lipschitz continuous.

So far we have given the topology of a space Y and we have proposed a
formula for measuring lengths in it, with the proof that this formula is
equivalent with the lengths of curves in smooth spaces and that it satisfies
some of the basic properties of Lorentzian pre-length spaces (section 2.3,
[KS17]). Our aim going forward, is to show that there is a Lorentzian
pre-length space lying behind the defined topology and the designated
length formula in (2.1.5). Before we proceed to further establishing the
geometrical picture for our space, we need to check whether our
length-measuring formula is upper semicontinuous, as it is a requirement
for Lorentzian pre-length spaces, analogously to the length-measuring
formulas for Riemannian length spaces.

2.4 Upper semicontinuity of length formula

An important element of metric geometry is that given a metric dX for a
length space X, the length functional of a dX-rectifiable curve β is a lower
semicontinuous function. The nature of this kind of semicontinuity is to be
ascribed to the use of sup for the dX-functional that provides the length of
β and the triangle inequality. However, due to the use of inf in the length
functional for causal curves and the inverse triangle inequality for points on
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them, we want our particular length functional to be an upper
semicontinuous function. Before we proceed to this proof, we define C(I, Y )
to be the space of causal curves in Y , with Y having the topology, length
formula and properties as described so far.

Proposition 2.4.1. If (B, dB,≪,≤, τb) is a Lorentzian length space,
(X, dX) is a metric space and γn, γ ∈ C(I, Y ), s.t γn → γ pointwise, then:

lim sup
n

L(γn) ≤ L(γ) (2.4.1)

Proof. We have that γn = (αn, βn) : [a, b] → Y and γ = (α, β) : [a, b] → Y ,
for which we have a projection π = (πB, πX) such that α = πB ◦ γ ∈ B and
β = πX ◦ γ ∈ X. In addition, f is taken to be an everywhere continuous
function in its domain. We are going to show here that the equivalent
length formulas we have derived in (2.1.5), (2.2.12) and (2.2.17) are both
upper semicontinuous. We first show the upper semicontinuity for (2.1.5),
where in general, the time separation function for the base is a lower
semicontinuous function. However, the space B is Lorentzian and hence we
have that there is always a neighbourhood U , where the time separation
function is locally continuous ([KS17], Definition 3.16), meaning that the
existence of a local maximal length for any curve between two points in a
neighbourhood U , gives rise to a different local time separation function,
which is given by a mapping τb,U : U × U 7→ R and is in general locally
continuous. Therefore, we consider again the causal curve
γ = (α, β) ∈ C(I, Y ) and we take a partition
σ = {ti : ti ∈ [a, b], i = 1, ..., N}. Then we consider that since B is
Lorentzian, there is always a neighbourhood Vi such that any two points on
α, namely α(ti), α(ti+1) will be connected via a locally maximal curve
λ[ti,ti+1], which has a length equal to τb,Vi

(α(ti), α(ti+1)), since, as mentioned
above, there is always a locally continuous function τb,Vi

: (Vi, Vi) → R,
defined in Vi with the property τb,Vi

(α(ti), α(ti+1)) ≤ τb(α(ti), α(ti+1)). Due
to that last property, if we substitute τb,Vi

in (2.1.4) and set:

PVi
(γ(ti), γ(ti+1)) =

√
τb,Vi

(α(ti), α(ti+1))2 −m2
ti,ti+1

d2X(β(ti), β(ti+1)),
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we have that:

A =
N−1∑
i=1

P (γ(ti), γ(ti+1))

≥
N−1∑
i=1

PVi
(γ(ti), γ(ti+1)) (2.4.2)

Next, we consider a sequence of causal curves (γn)n that is pointwise
convergent to the causal curve γ. From the fact that τb,Vi

is continuous in
Vi, we can find a value n0 for n such that ñ ∈ {∀n ≥ n0} and a given
partition {ti : for i ∈ [1, N ] ⊂ N} of [a, b], every pair of points
(γñ(ti), γñ(ti+1)) will be inside Vi and the same is true for γ. In addition:

|PVi
(γ(ti), γ(ti+1))− PVi

(γñ(ti), γñ(ti+1))| < ϵi =
ϵ

N
(2.4.3)

for all i and ϵ > 0. Therefore, since PVi
(γñ(ti)) is continuous, ∃N s.t:

N−1∑
i=1

PVi
(γ(ti), γ(ti+1)) ≥

N−1∑
i=1

PVi
(γñ(ti), γñ(ti+1))− ϵi (2.4.4)

and because of (2.4.2):

N−1∑
i=1

P (γ(ti), γ(ti+1)) ≥
N−1∑
i=1

PVi
(γñ(ti), γñ(ti+1))− ϵi (2.4.5)

By taking the infimum over both sides of (2.4.5), we get that:

L(γ) ≥ L(γñ)− ϵ (2.4.6)

which shows that L(γ) is an upper semicontinuous function.
In case of (2.2.12), Lτb is upper semicontinuous and so if we consider

C(I, Y ) in Y and take a given partition σ = {ti : ti ∈ [a, b], i = 1, ..., N} of γ
the mapping T : C(I, Y ) → R, that is provided by the following expression:

T (γ) =
N−1∑
i=0

√
τb,U(α(si), α(si+1))2 −m2

si,si+1
d2X(β(si), β(si+1)) (2.4.7)
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will also be upper semicontinuous with respect to pointwise convergence.
Therefore, the infimum of this function is an upper semicontinuous
function, as the infimum of a sequence of upper semicontinuous functions
(cf., e.g., [AB06], Lem. 2.41).

Finally, the case of (2.2.17) is a combination of the above two cases and
can be easily shown to be upper semicontinuous.

With the proof for upper semicontinuity, we have established so far that
should (2.1.5) be used to define a tool for measuring lengths, inside the
space Y , and for the causal curve as designated in Definition 2.2.1, it
reproduces basic properties of a length functional for a Lorentzian
pre-length space. However, in order to infer that Y is itself actually a
Lorentzian pre-length space, we need to have a time separation function,
that explicitly depicts the causal structure.

Causal character with respect to pointwise convergence

An important question that we want to answer in order to be used in
what follows is related to what kind of causal behaviour we expect to see
wrt pointwise convergence. In particular, we consider that we have a
sequence of causal curves (wrt 2.2.1) γn = (αn, βn) : [a, b] → Y , for n ∈ N.
Then, if we consider a curve γ and allow the sequence γn to converge
pointwise to γ, in the sense that for s ∈ [a, b] limn→∞ γn(s) = γ(s), we can
deduce the causal character of γ from the following proposition:

Proposition 2.4.2. Let (B, dB,≪,≤, τb) be a Lorentzian length space,
(X, dX) a length space, f : B → (0,∞) a continuous function in B and
γn = (αn, βn) : [a, b] → Y a future directed causal curve, with n ∈ N. Then,
if limn→∞ γn(s) = γ(s), for s ∈ [a, b], γ is also a future directed causal curve
in [a, b]. The same applies for past-directed causal curves.

Proof. Take a ≤ s < t ≤ b. Thus, from (2.4.1) we have that if γn(s) → γ(s)
when n → ∞ and γn are causal then:

L(γ[s,t]) ≥ 0 , ∀s < t ∈ [a, b] (2.4.8)

Consequently, γ will also be a causal curve.

The limit curve causal character is an important result that we will
invoke several times in what follows. Most notably, is a result that we will
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rely upon in order to prove the validity of our definition of causal character
for curves, for which (up until now) all we know about is that it is
dependent on the length-measuring formula for our space.

2.5 The time separation function

In equation (2.1.5), we have defined the variational formula for the length
of a space following the topology in 2.1.1. In Proposition 2.1.6, we have also
shown the equivalence of the variational length of (2.1.5) with the length of
an absolute continuous curve in a smooth spacetime. Therefore, using
(2.1.5), we can define the time separation function as:

Definition 2.5.1. Let γ be a causal curve wrt Definition 2.2.1. Then, if:

Γ = {L(γ) : γ future directed causal curve from p to q} (2.5.1)

the time separation function τ : Y × Y → [0,∞) ∪ {∞} is defined as:

τ(p, q) :=

{
supΓ if Γ is non-empty

0 if Γ is empty
(2.5.2)

The time separation function constitutes a fundamental part for a
Lorentzian pre-Length space, according to Definition 2.8 in [KS17].

2.6 Causal relations between points

The final step before providing a Lorentzian pre-length space is to ordain
the causal relations for the space Y . In order to do it, we proceed
analogously to (Definition 3.18, [AGKS19]):

Definition 2.6.1. Let p, q ∈ Y , then p and q are chronologically related,
denoted by p ≪ q, if there exists a future directed timelike curve from p to
q. Moreover, p and q are causally related, denoted by p ≤ q if there exists a
future directed causal curve from p to q or p = q. Moreover, we define the
chronological and causal future and past of a point as:

I+(p) = {q ∈ Y : p ≪ q} , I−(p) = {q ∈ Y : q ≪ p} (2.6.1)

J+(p) = {q ∈ Y : p ≤ q} , J−(p) = {q ∈ Y : q ≤ p} (2.6.2)
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From this definition and the Definition 2.2.1 we can also get another
important set of properties with regard to the use of the time separation
function for defining the causal relations between points in Y :

τ(p̄, q̄) > 0 if p̄ ≪ q̄ (2.6.3)

τ(p̄, q̄) = 0 if p̄ ̸≥ q̄ (2.6.4)

τ(p̄, q̄) = 0 if (p̄, q̄) on a null curve (2.6.5)

Lemma 2.6.2. The relations ≪ and ≤ are transitive and ≤ is reflexive
too, with ≪⊆≤.

Proof. Along the lines of Lemma 3.19 in [AGKS19], the proof for reflexivity
and the relations hierarchy is given by Definition 2.6.1, while the
transitivity is easily shown by concatenating curves.

With the definition of causal relations in place, we can revisit the time
separation function to show one very fundamental property, that of the
reverse triangle inequality.

Lemma 2.6.3. Let (B, dB,≪,≤, τb) be a Lorentzian length space and
(X, dX) a metric space, while also Y := B ×X and f : B → (0,+∞) a
continuous function in B. Moreover, curves in Y have their lengths given
by (2.1.5) and the time separation function for Y is given by (2.5.2). Then
for three points p ≤ q ≤ z on a causal curve γ in Y , the time separation
function τ satisfies:

τ(p, z) ≥ τ(p, q) + τ(q, z) (2.6.6)

Proof. Reverse triangle inequality for τ follows naturally from its definition
as the supremum over a set of lengths. First we consider that the points
p, q, z belong on a segment of the causal curve γ, namely γp,z. Then, we
assume that γp,q, γq,z connect p with q and q with z respectively. Using
these curve segments and comparing them with τ , since the latter is the
supremum of the set in (2.5.2), there is always an ϵ > 0 such that
τ(p, q)− ϵ

2
< L(γp,q) and τ(q, z)− ϵ

2
< L(γq,z). Therefore, from the

additivity of lengths for the segments of a curve we get that:

τ(p, q) + τ(q, z) < L(γp,q) + L(γq,z) + ϵ = L(γp,z) + ϵ ≤ τ(p, z) + ϵ (2.6.7)

which proves the case, when we have a non-empty Γ. If an empty Γ was to
be considered, then τ(p, z) = τ(p, q) = τ(q, z) = 0 and hence the equality is
trivially satisfied.
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In Definition 2.2.1 we have given the notion of a causal curve, which is
later used to define the causal relations between points in Y , as the latter
are given in Definition 2.6.1. Now, we try to delve into the set of points
possessing chronological and causal relations in Y and see the kind of
structure that emerges from them. In order to populate the sets of
I±(timelike causally related points) and J±(causally related points) we will
use null curves to obtain values for the Lτb between the points they
connect. In order to do that, we define a function χα, which gives an upper
bound for the dX-arclength, when traversing a potential geodesic in X.

Definition 2.6.4. For B a Lorentzian length space, a pair of points
p, q ∈ B, an integrable function f ◦ α(u) and a curve α from p to q, the
mapping χ is given by:

χ(α; ρ(z), δ) =

∫ δ+ρ

δ

f ◦ α(u)ρ̇du (2.6.8)

where ρ : [0, 1] → R>0 monotonically increasing and δ > 0 determine the
integration interval.

For simplicity, from now on, whenever χ is used, we write χα(ρ; δ), with the
appropriate subscript indicating the curve used. Additionally, wherever
δ = 0, we write χα(ρ). Making use of the Definition 2.6.4, we additionally
define the following set:

Definition 2.6.5. Let (B, dB,≪,≤, τb) be a Lorentzian length space,
(X, dX) be a length space and p = (p̄, p̃) ∈ Y . Let also I+B (p̄) be the set of
future timelike-related points with p̄. Then, the following set for p is defined:

G+(p) := {q = (q̄, q̃) ∈ Y : q̄ ∈ I+B (p̄); ∃α from p̄ to q̄ s.t Lτb(α) < b ,

bp̃ = χ−1
α (b) , dX(p̃, q̃) < bp̃ ; ∀ z̄, w̄ ∈ α , ∃ z̃, w̃ ∈ X,

Lτb(α[z̄,w̄]) > χα( dX(z̃, w̃) )} (2.6.9)

where l = dX(p̃, q̃) + ϵ. G−(p), corresponding to timelike points in the past
of p, is defined analogously.

Making use of Definition 2.6.5, we associate the timelike future of a point p
in Y with the length functional through the following Lemma:



2.6. CAUSAL RELATIONS BETWEEN POINTS 42

Lemma 2.6.6. Let p = (p̄, p̃), q = (q̄, q̃) ∈ Y . Then p ≪ q if and only if
there exists a future directed causal curve from p to q of positive length.
Moreover, I+(p) is given by:

I+(p) = G+(p) (2.6.10)

Same for I−(p).

Proof. Firstly we show that if q ∈ G+(p), then it is timelike connected to p.
We start the negotiation of the proof by considering any of the curves
α(u) : [0, L] → B in G+(p), that connect p to q. Upon this, we seek to find
if there exists a curve in X from p̃ to q̃, which if passed in τγ, the latter will
be less than the Lτb(a), so that from Proposition 2.2.8 we get the condition
of Definition 2.2.1 for a timelike curve between p, q. This is done through
an almost minimizing curve unit speed curve λβ,am : [0, dX(p̃, q̃) + ϵ] → X,
where LdX ((λβ,am)[p̃,q̃]) = d(p̃, q̃) + ϵ. Next, we take two values s, s′ and a
constant c > 0, s.t:

1. r, z ∈ [0, 1]

2. w = zd(p̃, q̃)

3. s = z(d(p̃, q̃) + ϵ)

4. s′ = χ−1
α ( rχα(dX(p̃, q̃) + ϵ+ c) )

5. bp̃ > dX(p̃, q̃) + ϵ+ c

Moreover, we use that f ◦ α is continuous and hence integrable, while in
addition that for ηs > 0, dX(λβ,am(s), λβ,am(s+ ds)) = LdX (λβ,am)dz − ηsdz
and thus:

χα(s) = sup{
M−1∑
k=0

msk,sk+1
dX(λβ,am(sk), λβ,am(sk+1))}

≥ inf
λβ,am

{ sup{
M−1∑
k=0

msk,sk+1
dX(λβ,am(sk), λβ,am(sk+1))} }

=χα(w) (2.6.11)

where in the last line of (2.6.11) we used the fact the infimum is obtained
for ηs → 0. From (2.6.11) we see that there is always an ϵ and hence an
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appropriately chosen λβ,am, which gives a τγ value arbitrarily close to
χα(w), unless X is geodesic, where there is a curve λβ,am, that realises the
infimum. In order to take advantage of the inequalities in (2.6.11) we need
to set (without loss of generality) p̄ = α(0) and that:

Lτb(α) =χα(dX(p̃, q̃) + ϵ+ c) (2.6.12)

Taking advantage of (2.6.12) and by requiring that Lτb(α[0,s′]) ≥ rLτb(α), in

order to relate χα(s
′) to Lτb(s

′), we set s′ = ϕ(s) = s+ δ(s)
dX(p̃,q̃)+ϵ

and

δ(s) > 0, δ(dX(p̃, q̃) + ϵ) = c(dX(p̃, q̃) + ϵ) to get:

Lτb(α[0,s′]) ≥χα(s
′) (2.6.13)

Thus, we have created a curve γ = (α ◦ ϕ, λβ,am), which from Corollary
2.2.7 gives:

L(γ) = inf{
N−1∑
i=0

[Lτb(α[ϕ(si),ϕ(si+1)])
2− sup{

M−1∑
k=0

msi,k,si,k+1

× dX(λβ,am(si,k), λβ,am(si,k+1))}2]
1
2 }

(2.6.14)

In order to simplify the notation, we write:

nα = α ◦ ϕ (2.6.15)

and we also use the fact from Definition 2.6.8, that:

χ(α; s′, 0) = χ(nα;ϕ(s), 0) (2.6.16)

to get χα(s
′) = χnα(ϕ(s)). Therefore, from (2.6.11) and (2.6.13), as well as

from reparametrisation invariance of Lτb :

Lτb(α[s′,s′+∆s′]) =Lτb((nα)[s,s+∆s])

≥χnα(∆ϕ(s);ϕ(s) )

>χnα(∆s; s )

=τγ(s, s+∆s) (2.6.17)
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Thus, equation (2.6.17) together with (2.6.11), (2.6.16) and the definition of
ϕ give:

Lτb(α[s′,s′+∆s′]) ≥ χα(∆s′; s′)

> χα(∆s; s)

= τγ(γ; s, s+∆s)

≥ χα(∆w;w) (2.6.18)

Consequently, for every curve connecting p, q (satisfying the above
conditions), there is always an ϵ′ and hence a λβ,am, s.t γ = (nα, λβ,am) is a
timelike curve connecting p, q:

L(γ) = inf{
N−1∑
i=0

[τb(nα(si), nα(si+1))
2 −m2

si,si+1

× dX(λβ,am(si), λβ,am(si+1))
2]

1
2 }

= inf{
N−1∑
i=0

[Lτb((nα)[si,si+1])
2 −m2

si,si+1

× dX(λβ,am(si), λβ,am(si+1))
2]

1
2}

> inf{
N−1∑
i=0

[τγ(γ; si, si+1)
2 −m2

si,si+1

× dX(λβ,am(si), λβ,am(si+1))
2]

1
2}

=0 (2.6.19)

where in the final line the equality comes from the second line of (2.6.11),
together with the equivalence of (2.2.12) and (2.2.17). Hence, from
Definitions 2.2.1 and 2.6.1, q will be part of the set of points that are
<<-connected with p, i.e G(p) ⊆ I+(p).
Similarly, we proceed to show that if q /∈ G+(p), then we don’t have a

causal curve of positive length connecting the two points p, q. We proceed
by considering that such a curve exists and we call it
γ′
ϵ = (α′

ϵ, β
′
ϵ) : [0, d(p̄, q̄) + ϵ] → Y . From this point there are two different

cases that lead a point outside of G+(p) and a third one that is a
combination of the other two. Hence, it suffices to show the first two cases
only. On the first one of these cases, we consider a point q such that for
α′
ϵ(0) = p̄ and α′

ϵ(t) = q̄, Lτb(α
′
ϵ) ≤ χα(d(p̃, q̃)). Since χα is a continuous and
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monotonically increasing function in its domain, we can consider an
appropriately chosen curve nb = λβ,am ◦ χ−1

α (u) : [0, Lτb((α
′
ϵ)[a,b])] → X, s.t

n = (ᾱϵ, nb) ∈ Y is a null curve, where λβ,am goes again from p̃ to q̃.
Additionally, we need:

L(γ′
ϵ) > 0 (2.6.20)

because γϵ is set to be causal with positive length. Then:

L(γ′
ϵ) = inf{

N−1∑
i=0

[Lτb((α
′
ϵ)[ti,ti+1])

2 − sup{
M−1∑
k=0

mt′i,k,t
′
i,k+1

× dX(β
′
ϵ(t

′
i,k), β

′
ϵ(t

′
i,k+1))}2 ]

1
2 }

≤ inf{
N−1∑
i=0

[χα(ti+1 − ti; ti)
2 − sup{

M−1∑
k=0

mt′i,k,t
′
i,k+1

× dX(β
′
ϵ(t

′
i,k), β

′
ϵ(t

′
i,k+1))}2 ]

1
2 } (2.6.21)

Thus:

L(γ′
ϵ) ≤ inf{

N−1∑
i=0

[χα(ti+1 − ti; ti)
2 − sup{

M−1∑
k=0

mt′i,k,t
′
i,k+1

× dX(β
′
ϵ(t

′
i,k), β

′
ϵ(t

′
i,k+1))}2 ]

1
2 }

≤ inf{
N−1∑
i=0

[χα(ti+1 − ti; ti)
2 − sup{

M−1∑
k=0

mt′i,k,t
′
i,k+1

× dX(nb(t
′
i,k), nb(t

′
i,k+1))}2 ]

1
2 }

=0 (2.6.22)

and hence from (2.6.20) and (2.6.21):

L(γ′
ϵ) = 0 (2.6.23)

meaning that L(γ′
ϵ) isn’t a timilike curve for the case Lτb(α

′
ϵ) ≤ χα(d(p̃, q̃))

and hence it doesn’t belong to I+(p).
The other case that we need to prove is that dX(p̃, q̃) ≥ bp̃. As we did for

the previous case, we assume that γ = (α, β) ∈ Y is a causal curve
connecting the two points (p, q) ∈ Y . Since Lτb(α) < b and
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lims→bp̄ χα(s) → b we can choose ϵ > 0 and a point x = (x̄, x̃) on γ, as well
as γ′

ϵ = γ[p,x] connecting p, x, such that Lτb(α
′
ϵ) ≤ χα(bp̄ − ϵ) = χα(d(p̃, x̃))

and thus dX(p̃, x̃) < bp̃. Therefore, from this point onwards the proof
proceeds as in the case above, where Lτb(α

′
ϵ) ≤ χα(d(p̃, q̃)), through which

we get that p, x are not timelike related and hence the curve with points
p, x, q is not timelike, according to Definition 2.2.1.

Remark 2.6.7. Lemma 2.6.6 implies that I±(p) has the push-up property,
Definition 1.3.10.

Now, in order to transition to the case of J±, we want to add to the
picture above for I± those points p = (p̄, p̃), q = (q̄, q̃), which are connected
via curves γ = (α, β) that have Lτb(α[s1,s2]) = τγ(s1, s2), i.e null curves.
Hence, in order to obtain the complete causal picture we need to add the
points of the null curves in those of I±. To do so, we first define that:

Definition 2.6.8. Let (B, dB,≪,≤, τb) be a Lorentzian length space and
(X, dX) be a length space. If p = (p̄, p̃) ∈ Y , it is defined that:

J +(p) := G+(p) ∪ {q = (q̄, q̃) ∈ Y : ∃ a causal curve α from p̄ to q̄

and a minimizing curve β from p̃ to q̃, s.t dX(p̃, q̃) < bp̃,

∀ z̄, w̄ ∈ α , ∃ z̃, w̃ ∈ β, Lτb(α[z̄,w̄]) = χα( dX(z̃, w̃) ) } (2.6.24)

Analogously for J −(p).

Making use of Definition 2.6.8, we can give the following Corollary:

Proposition 2.6.9. If (X, dX) is a length space, (B, dB,≪,≤, τb) is a
Lorentzian length space and p = (p̄, p̃) ∈ Y , then:

J+(p) = J +(p) (2.6.25)

J−(p) is defined analogously.

Proof. First we show that if a point belongs in J +(p), then it belongs to
J+(p). In the case that a point belongs to I+(p), it is timelike connected to
p, as we have shown in Lemma 2.6.6. Moreover, if a point belongs to the set:

R+(p) = {q = (q̄, q̃) ∈ Y : ∃ a causal curve α from p̄ to q̄

and a minimizing curve β from p̃ to q̃, s.t dX(p̃, q̃) < bp̃,

Lτb(α) = χα(dX(p̃, q̃))} (2.6.26)
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then for γ = (α, β), τγ(γ; 0, kdX(p̃, q̃)) = χα(kdX(p̃, q̃)), with k ∈ [0, 1] and
thus from Proposition 2.2.8 we know that it will be null-connected to p,
hence J +(p) ⊆ J+(p).

Next is to show that the curve β needs to be minimizing. The reason is
that if a point q belongs to J +(p) it is causally related to p as we have
shown above, but if it doesn’t belong in I+(p), then it must be null related
to p. Therefore, the causal curve γ from p to q must have L(γ) = 0 and γ
must be a maximizer. If β : [0, L] → X, parametrised by its arclength is not
a minimizer, then there is a curve β′ : [0, L] → X, parametrised
proportianally to arclength, with arclength strictly less than β and so there
will be s1, s2 in the common parametrisation which give a curve γ′ = (α, β′)
connecting p and q s.t:

Lτb(α[s1,s2]) = χα(s2 − s1; s1) = τγ(γ; s1, s2) > τγ(γ
′; s1, s2) (2.6.27)

and therefore γ′ has positive length. However, no pair of null-related points
can have a non-negative length for their connecting curve. Hence, β is
minimizing.

Finally, we can use the same arguments as above in proving that a point
which doesn’t belong to G+(p) can’t be connected to a causal curve of
positive length with p, to show that when a point doesn’t belong to the set
J +(p) then it won’t be causally related to p. Hence, J +(p) is equal to
J+(p).

Corollary 2.6.10. If (B, dB,≪,≤, τb) is a globally hyperbolic Lorentzian
length space and (X, dX) is a geodesic length space then J(p) in Proposition
2.6.9 is closed.

Proof. In order to show that J(p) is closed, we need to show that any
sequence of points {qn} inside it converges to a point q that is also inside
J(q). This is true for any point apart from the ones for which dX(p̄, q̄) = bp̃.
However, in this case, for aqn being the curve connecting the points p, qn,
we get that Lτb(aqn) = χα(dX(p̄, q̄n)) and for qn → q, we get
limq̄n→q̄ χα(dX(p̄, q̄n)) = χα(dX(p̄, q̄)) = b, but we have chosen Lτb(a) < b
and hence it is a contradiction.

2.7 The time separation function - revisited

Having introduced the time separation function above, we have also
shown that our Definition 2.5.1 yields the required reverse triangle property,
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that any time separation needs to obey as a constituent of a Lorentzian
pre-length space. However, as we mentioned therein, we need the property
of lower semicontinuity for our formula (2.5.2) to be considered as a time
separation function in a Lorentzian pre-length space. To accomplish this,
we use the proof from [AGKS19], where the same arguments apply here,
since we have the openness of I+ and the reverse triangle inequality.

Lemma 2.7.1. Let (B, dB,≪,≤, τb) be a Lorentzian length space, (X, dX)
be a length space and f : B → (0,∞) a continuous function in B. Moreover,
there is a space Y that admits the product topology as in Definition 2.1.1
and in which lengths are given via (2.1.5). Then the time separation
function τ is lower semi-continuous (with respect to the metric d).

Proof. The proof proceeds similarly to Lemma 3.25, in [AGKS19], but for
simplicity we reproduce here. Let p = (p̄, p̃), q = (q̄, q̃) be two points in Y
and τ such that τ(p, q) > ϵ > 0. By definition of τ there is a curve γ, such
that L(γ) ≥ τ(p, q)− ϵ

2
. We choose two points z1 = (z̄1, z̃1), z2 = (z̄2, z̃2) on

γ, such that, if γ : [a, b] → Y and a < t1 < t2 < b, γ(t1) = z1 and γ(t2) = z2.
Moreover, we set 0 ≤ L(γ[a,t1]) <

ϵ
4
, 0 ≤ L(γ[t2,b]) <

ϵ
4
. Due to τ(p, q) > 0, γ

is timelike and thus τ(p, z1) ≥ L(γ[a,t1]) > 0, τ(z2, q) ≥ L(γ[t2,b]) > 0.
Therefore, if U := I−(z1) and V := I+(z2), p ∈ U and q ∈ V . Now if
U, V ⊂ Y and r ∈ U , r′ ∈ V , then due to the reverse triangle inequality of τ
and the fact that there is a causal curve connecting p, z1, z2, q in pairs, it
occurs:

τ(r, r′) ≥ τ(r, z1) + τ(z1, z2) + τ(z2, r
′)

≥ τ(z1, z2)

≥ L(γ[t1,t2])

= L(γ)− L(γ[a,t1])− L(γ[t2,b])

≥ τ(p, q)− ϵ

2
− ϵ

4
− ϵ

4
(2.7.1)

⇒ τ(r, r′) ≥ τ(p, q)− ϵ (2.7.2)

The above constructions also covers the case that τ(p, q) = ∞.

Therefore, having shown the lower semicontinuity for our formula in
(2.5.2), we have a time separation function for the space we introduced in
Definition 2.1.1, for which we have given a length-measuring formula in
(2.1.5).
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2.8 Warped product space as a Lorentzian

pre-length space

Therefore, taking into account the properties for our variational length
and its relevance in describing the causal relations of the spacetime it
pertains to, as well as the time separation function we introduced in (2.5.2),
including the Definition 2.6.1, the following definition can be given:

Definition 2.8.1. Let (B,≪,≤, d, τb, dB) be a Lorentzian length space,
(X, dX) a length space and f : B → (0,∞) be continuous. Then the space Y
with the product topology B ×X, the time separation function τ from
Definition 2.5.1 and ≪,≤ from Definition 2.6.1 is defined to be the warped
product space of B with X and it is denoted as B ×f X. B is called the base
of the warped product space, f is called the warping function and X is
called the fibre.

In practical terms, the way to fathom the meaning of Definition 2.8.1 is
in the context of the example of the Schwarzschild metric, given in (1.4.1).
In particular, in the context of the (almost) smooth manifold described by
the Schwarzschild metric of 2.8.1, our base B is the space R× (0,∞) and X
is the S2.

Proposition 2.8.2. Under the assumptions of 2.8.1, the warped product
space Y = B ×f X is a Lorentzian pre-length space.

Proof From the formula in (2.1.5) we get a measuring tool for the lengths
in the space Y , which leads to a definition of causal curves in Definition
2.2.1 and then in the Definition 2.6.1 that renders Y a causal space.
Moreover, from (2.5.2) we get the time separation function τ , which is
proven in Lemma 2.6.3 that satisfies the triangle inequality and from
Lemma 2.7.1 it is proven to be lower semicontinuous. In addition, from
(2.6.3) and (2.6.4) we see that the time separation function satisfies the
required properties for the causal relations between points in Y and by
taking into account 2.6.9, we see that Y is a Lorentzian pre-length space.

2.9 Fibre independence

So far we have worked with fibres that are length spaces. On this
particular case, the fibre doesn’t need to have a minimal length-realising
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curve. However, from the point of view of the base, the equivalent notion of
minimisers (in the case of LLS it becomes a maximal curve) is always
guaranteed at least locally. In what concerns Y , the existence of maximal
curves (i.e curves with maximum length) will play a pivotal role in what
follows to lift Y into a LLS, which are spaces of much greater importance,
especially for Physics.

In the case that the space Y does have maximal curves connecting two
points and if X is geodesic, then we get an important result regarding the
connection between the geometry of the fibre and that of the warped
product space. Specifically, one of the latent properties in our warped
product space is the independence of our structure from the fibre. The
following proposition analyses this very topic.

Proposition 2.9.1. Consider (B, dB,≪,≤, τb) to be a Lorentzian length
space, (X, dX) a geodesic length space, f : B → (0,∞) a continuous
function in B, Y = B ×f X and γ = (α, β) : [a, b] → Y a future directed
causal and unique maximal curve in [a, b]. Then:

1. The fibre component β is minimizing

2. the base component α is independent of β. Specifically, let (X ′, dX′) be
another geodesic length space, β′ : [a, b] → X ′ minimizing in X ′ with
LdX′ (β

′) = LdX (β) and for any si = s′i,1, si+1 = s′i,M ∈ [a, b],

sup{
∑M−1

k=1 ms′i,k,s
′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))} =

sup{
∑M−1

k=1 ms′i,k,s
′
i,k+1

dX′(β′(s′i,k), β
′(s′i,k+1))}. Then, γ = (α, β′) is a

future directed maximal causal curve in Y ′ = B ×f X
′.

Proof.

1. We assume that β is not minimizing and that there is such a curve β′,
for which we get a curve γ′ = (α, β′) : [a, b] → Y . Hence, from
Corollary A.4.1, we have that:

L(γ′) = inf{
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
d2X(β

′(si), β′(si+1)) }

= inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2−

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))}2 )

1
2} (2.9.1)
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Now, we take an ϵi > 0, s.t
∑N−1

i=0 ϵi = ϵ and we can write
LdX (β

′
[si,si+1]

) = LdX (β[si,si+1]) + ϵi = dX(β(si), β(si+1)) + ϵi. Thus, we
have:

L(γ′) = inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2

− sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX(β
′(s′i,k), β

′(s′i,k+1))}2 )
1
2}

= inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2

− sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

(dX(β(si), β(si+1)) + ϵi)}2 ]
1
2}

= inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(si), β(si+1)) +
M−1∑
k=1

ms′i,k,s
′
i,k+1

ϵi}2 ]
1
2} (2.9.2)

Now, if we consider that
∑M−1

k=1 ms′i,k,s
′
i,k+1

ϵi > ma,b

∑M−1
k=1 ϵi = ma,bϵ

and we Taylor-expand, we get:

L(γ′) = inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(si), β(si+1)) +
M−1∑
k=1

ms′i,k,s
′
i,k+1

ϵi}2 ]
1
2}

≤ inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − (sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(si), β(si+1))}+ma,bϵ)
2 ]

1
2}

< inf{
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
d2X(β(si), β(si)) }

=L(γ) (2.9.3)
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and thus L(γ′) < L(γ), which is a contradiction to the maximality of
γ′ and hence β is minimizing.

2. We consider a curve β′ in the space Y ′ = B ×f X
′, defined on [a, b],

such that LdX′ (β
′) = LdX (β) and for any si = s′i,1, si+1 = s′i,M ∈ [a, b],

sup{
∑M−1

k=1 ms′i,k,s
′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))}. Set

γ′ = (α, β′) : [a, b] → Y ′. Then γ′ is future directed causal and we
have that:

L(γ′) = inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2−

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX′(β′(s′i,k), β
′(s′i,k+1))}2 )

1
2}

= inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2−

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))}2 )

1
2}

=L(γ) (2.9.4)

Moreover, γ′ will be maximal. If it wasn’t, there would exist a curve
γ̃ = (α̃, β̃) that would have a length greater than γ′ in Y ′. However,
in that case LdX (β̃[a,b]) > LdX′ (β

′
[a,b]), from β̃(a) = β′(a) to

β̃(b) = β′(b). Therefore, by denoting γ̄ = (α̃, β′), it occurs:

L(γ̄) = inf{
N−1∑
i=0

(τb(α̃(si), α̃(si+1))
2−

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX′(β′(s′i,k), β
′(s′i,k+1))}2 )

1
2}

≥ inf{
N−1∑
i=0

(τb(α̃(si), α̃(si+1))
2−

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX′(β̃(s′i,k), β̃(s
′
i,k+1))}2 )

1
2}

=L(γ̃) (2.9.5)
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and because:

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX′(β′(s′i,k), β
′(s′i,k+1))} = (2.9.6)

sup{
M−1∑
k=1

ms′i,k,s
′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))} (2.9.7)

L((α̃, β)) = L((α̃, β′)) = L(γ̄). Hence, we get that
L((α̃, β)) = L(γ̄) ≥ L(γ̃) ≥ L(γ′) ≥ L(γ), which means that there is a
curve (α̃, β) ∈ Y that contradicts either the maximality or the
uniqueness of γ.



3
Warped product spaces as

Lorentzian length spaces

So far we have shown that if we start with two length spaces (one of
which is Lorentzian) and construct a space following the product topology,
followed by a formula for the measurement of lengths in this space, i.e
equation (2.1.5), we can construct a Lorentzian pre-length space. However,
Lorentzian pre-length spaces are not of as great importance as Lorentzian
length space, since the latter have a greater extent of applicability, and
their existence is imperative for Physics. Hence, in the section that follows
we try to go a step further and decide about the conditions our structure
needs to obey in order for it to yield a Lorentzian length space.

The direction we need to follow in order to decide about the conditions
our structure needs to obey for it to be rendered a Lorentzian length space
is given by Definition 3.22, [KS17]. The first step in this direction concerns
our topological properties and in particular the question regarding the
causal closure of neighbourhoods in our space, as described in Definition
3.4, [KS17]. These neighbourhoods come in the form of what is called the
causal diamond, which is defined to be J(p, q) = J+(p) ∩ J−(q), for two
points p ≤ q in the warped product space Y .

Before we proceed in the rest of the analysis in this section, we introduce
a couple of tools that will be useful in what follows. First and foremost, we
introduce Bd

δ (z) = {w ∈ S : 0 ≤ d(z, w) ≤ δ} to be the closed ball of radius
δ, for a space S with metric d and two points z, w ∈ S. Moreover, as a
continuation of the statement 2. in Definition 1.3.12, we set ωb to be a local
time separation function for neighbourhoods ΩB of B, with the properties

54
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of localisability mentioned in Definition 1.3.12.

3.1 Causal diamond

Therefore, having defined the causal diamond, we give the following
proposition that provides a closed boundary for any causal diamond in our
space:

Proposition 3.1.1. If (B, dB,≪,≤, τb) is a Lorentzian length space,
(X, dX) is a length space, f : B → (c,+∞) is a continuous function, with
c ∈ R+ and p = (p̄, p̃), q = (q̄, q̃) ∈ Y , JB(p̄, q̄) = J+

B (p̄) ∩ J−
B (q̄),

M = inf({f : x̄ ∈ JB(p̄, q̄)}) and A is a set given by:

A(p, q) = {r = (r̄, r̃) ∈ Y :r̄ ∈ JB(p̄, q̄) ⊆ ΩB,

r̃ ∈ BdX
ωb(p̄,r̄)

M

(p̃) ∩BdX
ωb(r̄,q̄)

M

(q̃)} (3.1.1)

then for the causal diamond J(p, q) we get that:

J(p, q) ⊆ A(p, q) (3.1.2)

Proof. To begin with, the projection of J(p, q) will belong to JB(p̄, q̄).
Moreover, since B is a LLS (for brevity, we refer to Lorentzian length
spaces as LLS), from Definition 1.3.12, there is always a neighbourhood ΩB,
s.t renders JB(p̄, q̄) bounded, while there is also a local time separation ωb

valued in [0,∞). In addition, from Proposition 2.2.8 we have
Lτb(α[p̄,r̄]) ≥ mp̄,r̄dX(p̃, r̃) for any causal curve α[p̄,r̄] ⊂ JB(p̄, q̄) ⊂ ΩB and
from Definition 1.3.12 ωb(p̄, r̄) ≥ Lτb(α[p̄,r̄]). Hence we get that:

ωb(p̄, r̄) ≥ mp̄,r̄dX(p̃, r̃) (3.1.3)

Moreover, for any pair of point r ∈ J+(p) ∩ J−(q), we have from
Proposition 2.6.9 that p ≤ r ≤ q and in addition there is a causal curve



3.1. CAUSAL DIAMOND 56

γ = (α, β) : [a, b] → Y connecting them in pairs, s.t from Corollary 2.2.6:

L(γ[p,r]) = inf{
N−1∑
i=0

√
Lτb(α[si,si+1])

2 −m2
si,si+1

dX(β(si), β(si+1))2 }

≤
N−1∑
i=0

√
Lτb(α[si,si+1])

2 −m2
si,si+1

dX(β(si), β(si+1))2

≤
N−1∑
i=0

√
Lτb(α[si,si+1])

2 −M2dX(β(si), β(si+1))2

≤
√
Lτb(α[p̄,r̄])2 −M2dX(β[p̃,r̃])2

≤
√
ωb(p̄, r̄)2 −M2dX(p̃, r̃)2 (3.1.4)

From the last line in (3.1.4) we get an upper limit for the length of any
causal curve connecting p, r. Hence, it occurs that the biggest
neighbourhood in the fibre that can lift the pairs of points p̄, r̄ to pairs of
causally related points in Y will be: BdX

ωb(p̄,r̄)

M

. Therefore, by making the

same consideration for the past causal curve from q, we end up with the
neighbourhood BdX

ωb(r̄,q̄)

M

and thus, by taking their intersection and by taking

the neighbourhood ΩB ×BdX
ωb(p̄,r̄)

M

(p̃) ∩BdX
ωb(r̄,q̄)

M

(q̃), we prove the claim.

Remark 3.1.2. Proposition 3.1.1 also holds if B is a globally hyperbolic
Lorentzian length space and f : B → (0,+∞), because in this case JB(p̄, q̄)
is closed and compact and thus we can set M = min({f : x̄ ∈ JB(p̄, q̄)}),
which is always positive.

From the causal picture above, we get the following lemma describing the
convexity of causal neighbourhoods:

Lemma 3.1.3. If (B, dB,≪,≤, τb) is a strongly causal Lorentzian length
space, (X, dX) is a length space and f : B → (c,+∞) is a continuous
function, with c ∈ R+, then any p = (p̄, p̃) ∈ Y has a basis of open, causally
convex neighbourhoods, i.e., neighbourhoods such that any causal curve with
endpoints in that neighbourhood is contained in it.

Proof. Let a triplet of points p = (p̄, p̃), p−ϵ = (p̄−ϵ, p̃−ϵ), p+ϵ = (p̄+ϵ, p̃+ϵ),
such that p−ϵ ≤ p+ϵ are on a causal curve γ = (α, β) : [a, b] → U ⊂ Y and in
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addition p, p−ϵ, p+ϵ ∈ F(p−ϵ, p+ϵ), where:

F(p−ϵ, p+ϵ) = {r = (r̄, r̃) :r̄ ∈ JB(p̄, q̄),

r̃ ∈ B̄dX
ωb(p̄+ϵ,p̄)

M

(p̃+ϵ) ∩ B̄dX
ωb(p̄,p̄−ϵ)

M

(p̃−ϵ)}ϵ>0 (3.1.5)

Then, if γ(s1) = p−ϵ, γ(s2) = p+ϵ and γ(s) = p, from the fact that γ is a
causal curve, p ∈ J(p−ϵ, p+ϵ) = J+(p−ϵ) ∩ J−(p+ϵ) and we have that
ωb(α(s1), α(s)) ≥ ms1,s2dX(β(s1), β(s)) and
ωb(α(s), α(s2)) ≥ ms1,s2dX(β(s), β(s2)). Therefore, for a neighbourhood UX

in space X, given by the set of points
UX = BdX

ωb(α(s1),α(s))

ms1,s2

(p−ϵ) ∩BdX
ωb(α(s),α(s2))

ms1,s2

(p+ϵ) and for a neighbourhood UB, s.t

JB(p̄, q̄) ⊆ UB, we get a d-neighbourhood U in Y , such that
p ∈ U = UB × UX . Thus we have that any point on the causal curve
connecting p−ϵ, p+ϵ will be inside the set A(p−ϵ, p+ϵ) from Proposition 3.1.1
and hence inside U , which is a subset of F(p−ϵ, p+ϵ) in (3.1.5) and hence
the neighbourhood F(p−ϵ, p+ϵ) is convex.
For the proof now that the neighbourhoods F(p−ϵ, p+ϵ) constitute a

basis, we have to observe that if we use as ms1,s above a minimum
corresponding to a given causal curve α, connecting points p̄−ϵ, p̄+ϵ, then
the neighbourhoods U , as described above, would be dependant on the
curve α. Hence, if we consider that f is continuous and finite over the set of
admissible causal curves from p̄−ϵ, p̄+ϵ, valued in (c,+∞), with c ∈ R+, then
we understand that f obtains a finite value for its infimum in UB, which we
call M . Thus, if we substitute ms1,s2 with M in UX above, the set
F(p−ϵ, p−ϵ) will always contain J(p−ϵ, p−ϵ) and any set of F(p−ϵ, p−ϵ) can
be written as a union of sets belonging to a subfamily, hence proving the
claim.

From the proof of the Lemma 3.1.3 we can also get another important
property of causality. Specifically, we see that the two different topologies
(according to Definition 2.4, [KS17]) match. Hence, this shows that:

Lemma 3.1.4. If Y = B ×f X is a Lorentzian pre-length space, with
(B, dB,≪,≤, τb) a strongly causal Lorentzian length space and (X, dX) a
length space, then Y is strongly causal.

Proof. As in the proof above, if we have a triplet of points p = (p̄, p̃),
p−ϵ = (p̄−ϵ, p̃−ϵ), p+ϵ = (p̄+ϵ, p̃+ϵ), such that p−ϵ ≪ p+ϵ are on a causal curve
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γ = (α, β) : [a, b] → U ⊂ Y and that p ∈ I(p−ϵ, p+ϵ) = I+(p−ϵ) ∩ I−(p+ϵ),
then from the push-up property of Lemma 2.6.9 we get that any causal
(timelike in specific) curve connecting p−ϵ, p+ϵ will be entirely in
∈ I(p−ϵ, p+ϵ), as p+ϵ ∈ I+(p−ϵ) and p−ϵ ∈ I−(p+ϵ). Therefore, I(p−ϵ, p+ϵ)
agrees with F(p−ϵ, p+ϵ) and therefore could be used as a family of open sets
that could constitute a basis for the topology, meaning that the warped
product Lorentzian pre-length space Y = B ×f X is strongly causal.

3.2 Causal curves - revisited

The notion of the causal curves for a general warped product space (as
the latter is introduced in Definition 2.8.1) are given in 2.2.1. From that
definition and the Lemma 2.6.6 we can get a connection between the
timelike curves and all the timelike related points in the neighbourhood of a
point in Y . However, the restriction imposed to the reasoning that has
been followed in order to obtain this particular result is that it is all
dependent on Lvar and therefore dependent on relation (2.1.5).

From Definition 2.18 of [KS17] though, we have the general definition of
a causal curve, that is not dependent on any particular length-measuring
formula and hence it serves as a more general definition. To the best of our
knowledge, at the moment of conducting this research, this is the most
general definition of a causal curve in the (published) literature.
Nevertheless, we are in position to know that there are attempts for this
definition to be amended. Hence, we need to show that our definition of
causal curves, emerging from the length-measuring formula in (2.1.5), is
compliant with the more general Definition 2.18 of [KS17]. This is achieved
in our setting via the following Lemma:

Lemma 3.2.1. The notion of causal curves wrt to the causal relation ≤, as
given in Definition 2.18 in [KS17] agrees with the notion of causal curves
for a warped product space from Definition 2.2.1, for B being a strongly
causal Lorentzian length space.

Proof. The proof is along the lines of Lemma 4.4, [AGKS19]. Let’s take a
curve γ, such that γ = (α, β) : [a, b] → Y = B ×f X. From the causal
relations given in (2.6.1) and from the structure of J+(p) in 2.6.9, we have
that if γ is future-directed causal in the warped product space Y = B ×f X,
it has L(γ[s,s+ϵ]) ≥ 0 and it is contained in J+(p). Since all the ≤-related
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points are in J+(p), then we have that all causal curves wrt Definition 2.2.1
agree with the definition wrt ≤ relation. The same logic applies to
past-directed causal curves leading to the same equivalence.

For the converse case, if γ is a future directed causal curve wrt ≤ causal
relations (the same arguments apply to a past directed causal curve) then
∀a ≤ s < t ≤ b, γ(s) ≤ γ(t). Since, γ(s), γ(t) are ≤-related, from Definition
2.6.1 there is a curve γ′ and a section γ′

s,t of it, with the property that
L(γ′

s,t) ≥ 0, which in general does not need necessarily to coincide with γ.
This coincidence is what we will try to show below.

Therefore, utilizing this fact, we partition the interval [a, b] into smaller
subintervals [ti, ti+1], for which [a, b] =

⋃
i[ti, ti+1], with t0 = a and tN = b.

For each [ti, ti+1] there is a causal curve, as described by Definition 2.2.1,
connecting γ(ti), γ(ti+1). Now we want to take the concatenation of these
locally causal curves and see that they converge pointwise to γ. Indeed by
taking a partition of [a, b], corresponding to N causal segments γ′

ti,ti+1
, we

get γN = γ′
[a,t1]

∗ γ′
[t1,t2]

· · · ∗γ′
[tN−1,b]

. Let σN be a sequence of such partitions,
whose norms tend to zero as N → ∞. Now, we consider a neighbourhood
U of a point γti , that can be convex from the Lemma 3.1.3. This means
that any causal curve with endpoints on a segment of γ and inside U will
have points that remain in U. Moreover, from Proposition 2.3.1, we know
that γ will have a reparametrization that renders it locally Lipschitz
continuous and hence all segments of the curve in the given partition inside
U will be uniformly Lipschitz continuous too. By allowing N → ∞ and
thus shrinking these U neighbourhoods across γ, we get a pointwise
convergence of γN to γ and thus, from Proposition 2.4.2, the sequence
converges to a causal curve that is causal wrt ≤ causal relations (i.e
Definition 2.18 of [KS17]).

From the Lemma 3.2.1 we also get as immediate consequence of it and
Definition 3.1 in [KS17] that:

Lemma 3.2.2. Let (B, dB,≪,≤, τ) a Lorentzian length space and (X, dX)
be a length space. Then the warped product space Y = B ×f X is a causally
path connected Lorentzian pre-length space.

Proof. The proof is straightforward as for any pair of points p, q ∈ Y that
are ≤-related, there is a causal curve (in the sense of the Definition 2.2.1)
that is inside J(p, q).
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3.3 Warped product space as Lorentzian length space

Before proceeding to the discussion of Lorentzian length space structure
for Y , another property that is found in our given structure so far, is that
our space is locally d-compatible.

Lemma 3.3.1. Every warped product space Y = B ×f X, with
f : B → (c,+∞) and c ∈ R+ has the property that for every point x ∈ Y
there is a neighbourhood U of x and a constant C > 0 such that the
d-arclength of every causal curve which is contained in U is bounded by C,
i.e., Ld(γ) ≤ C.

Proof. As we did in the proof for Proposition 3.1.1, from Proposition 2.2.8,
Definition 1.3.12 and (3.1.4), we have that dX is bounded for every pair of
points p, q ∈ Y . If we substitute M , in (2.2.17) and because
ωb(p̄, q̄) ≥ Lτb(α[p̄,q̄]), we get that:

ωb(p̄, q̄)

M
≥ sup{

M−1∑
k=0

dX(β(tk), β(tk+1))} = LdX (β[p̃,q̃]) (3.3.1)

and hence the dX-arclength between p̃, q̃ will be bounded too, by a constant
CX . Moreover, since B is a LLS, we get that any curve connecting p̄, q̄ will
have dB-arclength that is bounded by a constant CB. Therefore, for any
curve γ : [a, b] → Y , with s1, s2 ∈ [a, b], we get:

d(γ(s1), γ(s2)) =
√

d2B(α(s1), α(s2)) + d2X(β(s1), β(s2))

≤
√
L2
dB
(α[s1,s2]) + L2

dX
(β[s1,s2])

≤LdB(α[s1,s2]) + LdX (β[s1,s2]) (3.3.2)

which leads to:

Ld(γ[p,q]) = sup{
N−1∑
i=0

d(γ(si), γ(si+1))}

≤ sup{
N−1∑
i=0

LdB(α[si,si+1]) + LdX (β[si,si+1])}

=LdB(α[p̄,q̄]) + LdX (β[p̃,q̃])

≤CB + CX (3.3.3)
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and hence the d-arclength of any curve γ will also be bounded from above
by a constant.

The arguments of the proof above can be used to handle another basic
property of the warped product spaces; the existence of maximal causal
curves.

Proposition 3.3.2. Let (B, dB,≪,≤, τb) be a globally hyperbolic
Lorentzian length space and (X, dX) be a locally compact metric space.
Then every point in Y = I ×f X has a neighborhood U such that any two
causally related points in U can be connected by a maximal causal curve.

Proof. First thing is to create neighbourhoods of points. For that, we need
to focus on the base, as the overall neighbourhood is defined as in the one
dimensional case. Therefore, considered a neighbourhood U = V ×W in Y ,
such that V ⊂ B and W ⊂ X, we get a neighbourhood U ′ s.t U ′ ⊆ U , as
well as causally closed and convex. So for the base, there is the metric,
which can be used to parametrize a curve α, using the dB-length. Since, the
curve is causal it will be Lipschitz continuous, i.e its dB-length will be
bounded by a constant C. Therefore for any point p = (p̄, p̃), with p̄ ∈ V ,
any other point q = (q̄, q̃) that belongs in U ′ is causally connected with p
through a causal curve, which abides by the convexity lemma and thus lives
inside U ′. Take also γn : [a, b] → Y to be a sequence of future directed
causal curves from p to q, such that L(γn) → τ(p, q). Since γn are causal
curves connecting p, q they live inside U ′. From reparametrization
invariance in Proposition 2.1.5, we see that we can use Φ(s) from
Proposition 2.3.1 to reparametrize γn as γn = λn ◦ Φ, without changes to
their lengths and causal character and thus obtain a reparametrization that
is Lipschitz continuous. Thus from the theorem of Arzela-Ascoli, obtained
is a subsequence γ̃n′ of γ̃n that convergences uniformly to a Lipschitz curve
γ from p to q. Since the latter is a curve that is non-constant, connecting
the causally related points p, q, it must be causal and inside U ′. Therefore,
we get that:

L(γ) ≤ τ(p, q) = lim
n→∞

L(γn′) ≤ L(γ) (3.3.4)

and therefore there exists a maximal curve in U ′.

The above reasoning also indicates that Y is locally causally closed (as local
closeness is defined in Definition 1.3.9):
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Lemma 3.3.3. Let Y = B ×f X be a warped product space, with
(B, dB,≪≤, τb) a globally hyperbolic Lorentzian length space. Moreover,
(X, d) is a locally compact length space and f : (c,+∞) → R+. Then, every
point in Y has a neighbourhood U such that for any yn, zn ∈ Y with yn → y
∈ U , zn → z ∈ U and yn ≤ zn for all n ∈ N , it follows that y ≤ z.

Proof. The proof makes use of the same pointwise convergence arguments
that we used above, in Proposition 3.3.2, to prove the existence of maximal
curves.

Next thing to establish is the relation between the length of a curve and
the τ -length (calculated via the time separation function). From
Proposition 4.7 of [AGKS19] we get the identification of the two and so for
our case of warped product spaces:

Proposition 3.3.4. Let (B, dB,≪,≤, τb) is a Lorentzian length space and
(X, dX) is a metric space. If γ : [a, b] → Y is a future directed causal curve,
then L(γ) = Lτ (γ):

L(γ) = Lτ = inf{
N−1∑
i=0

τ(α(si), α(si+1)): a = t0 < t1 < ... < tn = b} (3.3.5)

From this proposition, together with (Lemma 3.2.1) and by further
probing the localisability of neighbourhoods U of Y , we can argue about
the classification of our warped product space as a Lorentzian length space.
Starting with the latter we get:

Lemma 3.3.5. Any warped product space Y = B ×f X, with
(B, dB,≪,≤, τb) a globally hyperbolic Lorentzian length space and (X, dX) a
locally compact length space, is localisable in the sense that every point p
has a neighbourhood U such that:

• Ld(γ) ≤ C for some C > 0 and all causal curves γ contained in U .

• there is a continuous ω : U × U → [0,∞) such that
(U, dU×U ,≪U×U ≤U×U , ω) is a Lorentzian pre-length space with
I±(q) ∩ U ̸= ⊘, for all q ∈ U

• for all pairs of points q ≤ q′ in U , there is a causal curve γ from q to
q′ that is maximal and for which L(γ) = ω(q, q′) ≤ τ(q, q′).
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Proof. The first point concerning bounds of Ld is proven in Lemma 3.3.1.
For the second point, the specific case of warped product space in the

form of the generalized cone with the one dimensional base in [AGKS19]
offers knowledge regarding the localisability of open neighbourhoods U of Y
that is also transferable to our case of warped product space. Hence,
following a similar series of arguments, we can consider a neighbourhood U ,
s.t besides the requirement for Ld(γ) ≤ C above, it also belongs to the
causally convex neighbourhoods of 3.1.3, while it is also set to be a
neighbourhood where all points in it can be connected with maximal
curves. In addition, we define ω =: τ |U×U , which τ |U×U is given by
Definition 2.5.1, for curves in U and thus it is finite inside it. Moreover,
τ |U×U is lower semicontinuous and therefore so is ω. In addition, from
Proposition 3.3.2, we know that inside U there are always maximal causal
curves between any pair of points and so there is a causal curve in U with
length that realises τ |U×U . But since the length is shown in Proposition
2.4.1 to be upper semicontinuous, then τ |U×U has to be too. Consequently,
ω must be continuous inside U and reckoning with the local existence of
maximal causal curves, our space Y is shown to be localisable.

Having proven localisability of Y , we are ready to argue about the latter
being classified as Lorentzian length space:

Proposition 3.3.6. Any warped product space Y = B ×f X, with
(B, dB,≪≤, τb) a globally hyperbolic Lorentzian length space and (X, dX) a
locally compact length space, is a Lorentzian length space.

Proof. By Proposition 2.8.2 and Lemma 3.3.3 Y is a locally causally closed
Lorentzian pre-length space. Moreover, from Lemma 3.2.2, it is also
causally path connected.

From equation (1.3.1), Proposition 3.3.4 and the equivalence in the
notion of causal curves from Lemma 3.2.1 we directly obtain that τ = T .
Finally, from Lemma 3.3.5 we have that Y is localisable and hence it is
proven to be a Lorentzian length space.

Remark 3.3.7. Any Lorentzian warped product space Y = B ×f X in the
sense of Proposition 3.3.6 automatically implies Y being strongly causal,
from the fact that any globally hyperbolic LLS is strongly causal (Theorem
3.26-iv in [KS17]), as well as the convexity of Lemma 3.1.3, Definition
2.35-iv, and Theorem 3.26-iv in [KS17].
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Having given the conditions of closure of causal diamond
J±(p, q) for p, q ∈ Y in 2.6.9 and for a globally hyperbolic LLS B, we infer
that:

Proposition 3.3.8. If Y = B ×f X is a warped product space with
(B, dB,≪,≤, τb) a globally hyperbolic Lorentzian length space and (X, dX) a
geodesic length space that is also proper metric space, then Y is a globally
hyperbolic space.

Proof. From Proposition 3.3.6 we know that Y is a strongly causal
Lorentzian length space and hence non-totally imprisoning by Theorem.
3.26-iii, [KS17]. Therefore, from Proposition 2.6.9, where we see that J±(p)
is closed and from 3.1.1 that the causal diamond J(p, q) is contained within
a closed set. Therefore, since B is globally hyperbolic, every JB(p, q) is
compact and so J(p, q) is compact too. Consequently, from Definition
2.35-v, [KS17] it is globally hyperbolic.



4
Discussion

Our purpose in what has preceded was to establish the geometrical
foundations for a generalisation of warped product spaces and generalised
cones (see [AGKS19]). In doing so, we showed that by choosing a formula
for the lengths of causal curves in a space of product topology Y := B ×X,
our formula satisfies the properties required for a length-measuring formula.
In addition, in Proposition 2.1.6, we showed that this formula is equivalent
to the length measuring formula in the smooth setting.

Moreover, in corollaries 2.2.7 and 2.2.6, we showed that there are
alternative formulas to (2.1.5), that are also useful in providing a more local
picture of the causal character of curves in the absence of curves, as proven
in Proposition 2.2.8.

In addition, we showed in Proposition 2.8.2, that the geometrical
structure we have chosen, with the given length-measuring formulas, the
time separation function and the set of causally related points, constitute a
Lorentzian pre-length space and the properties shown to be present in the
case of the generalised cones of [AGKS19] and those known for smooth
spacetimes, do generalise in the case of higher dimension for the base B.
Finally, in section 3, we showed that our structure further satisfies the
conditions of Definition 1.3.14, rendering it thus a Lorentzian length space.

Having provided the casual picture for a generalised warped product
space, we see that the structure of these spaces lacks general pathologies,
frequently encountered in the causal structure of spacetimes, like causal
bubbling (as an example see Example 1.11 of [CG11]).

As an immediate next step in the work done here, would be the study of
curvature bounds. Due to the further complexity of the generalised warped
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product spaces studied here, in comparison to the generalised cones
(product spaces with one dimensional base) the study of curvature bounds,
requires some further treatment that is still not properly structured. For
example, if someone was to choose the route of [AB04] in showing the
curvature bounds of a structure like the one shown here, the absence of an
equivalent of the gluing theorem for metric spaces as well as the meagre
knowledge on hyperbolic angles and spaces of directions would be the main
obstacles of such an endeavour. Therefore, an attempt to bridge these gaps
should help propel the knowledge established on this thesis on warped
product spaces and help to further advance the wider scope of
understanding on Lorentzian geometry.



APPENDIX



A
Appendix

A.1 Non-constant f and connections to P

We assume that we have a Lorentzian length space (B, dB,≪,≤, τb), a
metric space (X, dX), a space Y the topology of which is given by
Definition 2.1.1 and a curve γ : [a, b] → Y , along with two points on it,
γ(c), γ(d), such that a ≤ c < d ≤ b and α(a) ≤ α(c) ≤ α(d) ≤ α(d). From
Definition 2.1.2 and Remark 2.2.3 we have that:

P (γ(s1), γ(s2)) =
√

Ψγ(γ(s1), γ(s2)) (A.1.1)

when Ψγ(γ(s1), γ(s2)) ≥ 0. Moreover, from Corollary 2.2.2, we have that
P (γ(s1), γ(s2)) ≥ 0. An implicit assumption of this condition is that the
time separation function in B, τb, is actually bounded for a curve to be
causal, as it would be naturally expected. In order to take the actual
bounds of this function, we need to consider what happens in the case that
P (γ(s1), γ(s2)) = 0 and hence τb(α(s1), α(s2)) = ms1,s2dX(β(s1), β(s2))
∀si ∈ [a, b].

In the case that f is a constant function in [a, b] on γ, then the bounds
on τb are set indeed by taking the case that P (γ(s1), γ(s2)) = 0. Same
reasoning also applies in the case that τb, dX are differentiable. However, in
the case that f is not constant in [a, b] we need to follow a different
reasoning. Hence, in what follows we assume that ms1,s2 < ms2,s3 and we
consider the following cases, with any other possible case pertaining to one
of those listed below:
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P (γ(si), γ(sj)) = 0 , ∀si, sj ∈ [a, b], i, j ∈ N:

τb(α(s1), α(s2)) =ms1,s2dX(β(s1), β(s2))

τb(α(s2), α(s3)) =ms2,s3dX(β(s2), β(s3)),

τb(α(s1), α(s3)) =ms1,s3dX(β(s1), β(s3)) (A.1.2)

for s1, s2, s3 ∈ [a, b]. Hence, we get:

dX(β(s1), β(s2)) + dX(β(s2), β(s3)) ≥ dX(β(s1), β(s3)) (A.1.3)

⇒ ms1,s3dX(β(s1), β(s2)) +ms1,s3dX(β(s2), β(s3)) = ms1,s2dX(β(s1), β(s2))

+ms1,s3dX(β(s2), β(s3)) ≥ ms1,s3dX(β(s1), β(s3)) (A.1.4)

where in the last step we used (w.l.o.g) that ms1,s2 = min{ms1,s2 ,ms2,s3}
and that ms1,s2 = ms1,s3 . Consequently:

ms1,s2dX(β(s1), β(s2)) +ms1,s3dX(β(s2), β(s3)) ≥ ms1,s3dX(β(s1), β(s3))

⇒ ms1,s2dX(β(s1), β(s2)) +ms2,s3dX(β(s2), β(s3)) > ms1,s3dX(β(s1), β(s3))

⇒ τb(α(s1), α(s2)) + τb(α(s2), α(s3)) > τb(α(s1), α(s3)) (A.1.5)

which is a contradiction.

P (γ(s1), γ(s3)) = 0 , P (γ(s1), γ(s2)) > 0 , P (γ(s2), γ(s3)) > 0:

From (A.1.3), (A.1.4) and the reasoning of (A.1.5) we are led to another
contradiction.

P (γ(s1), γ(s3)) , P (γ(s1), γ(s2)) , P (γ(s2), γ(s3)) > 0:

This is the only case in which we don’t end up back to (A.1.5) and hence it
is admissible.

Therefore, we end up with the fact that P (γ(s), γ(t)) > 0, ∀s, t ∈ [a, b],
for the case that f is a monotonically increasing in [a, b]. With similar
arguments we get the same result when f is monotonically decreasing in
[a, b].
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A.2 Alternative formula for Corollary 2.2.6

Corollary A.2.1. For (X, dX) a length space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y a space that has the product topology defined in
2.1.1, a continuous function f : B → (0,+∞) and Ψγ ≥ 0, the length of a
causal curve γ : [a, b] → Y is given by:

L(γ) = inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 ]

1
2} (A.2.1)

where M ∈ N, i ∈ [0, N − 1], k ∈ [0,M − 1], si+1 ∈ (a = s0, b = sN ] and
s′i,k+1 ∈ (si = s′i,0, si+1 = s′i,M ].

Proof. We take the length formula given in (2.1.5). We know that there is
always a partition with given M,N for which we can have a value ϵi > 0,
arbitrarily small, s.t
sup{

∑M−1
k=1 ms′i,k,s

′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))} − ϵi < msi,si+1

dX(β(si), β(si+1)).

Therefore, taking also into account that P (γ(si), γ(si+1)) > 0, we get:

L(γ) = inf{
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
dX(β(si), β(si+1))2}

= inf{
N−1∑
i=0

[τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 − ϵi]

1
2}

= inf{
N−1∑
i=0

[τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2]

1
2

× [ 1− ϵi

τb(α(si), α(si+1))2 − sup{
∑M−1

k=1 ms′i,k,s
′
i,k+1

dX(β(s′i,k), β(s
′
i,k+1))}2

]
1
2}

= inf{
N−1∑
i=0

[τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2]

×
√
1− ϵ′i} (A.2.2)
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where we have set ϵ′i =
ϵi

τb(α(si),α(si+1))2−sup{
∑M−1

k=1 ms′
i,k

,s′
i,k+1

dX(β(s′i,k),β(s
′
i,k+1))}2

.

Next, we consider the Taylor expansion of the second factor in the last line
of (A.2.2) and we get:

L(γ) = inf{
N−1∑
i=0

[τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2]

1
2

√
1− ϵ′i}

= inf{
N−1∑
i=0

[τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2]

1
2 (1− 1

2
ϵ′i +O(ϵ′i))} (A.2.3)

As we make the partition denser in the subroot expression of (A.2.3), we
allow ϵ′ → 0. Consequently:

lim
ϵ′→0

L(γ) = inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2)

1
2 × (1− 1

2
ϵ′i +O(ϵ′i))}

= inf{
N−1∑
i=0

(τb(α(si), α(si+1))
2 − sup{

M−1∑
k=1

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2)

1
2} (A.2.4)

and thus we have proven the claim.
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A.3 Alternative proof for Corollary 2.2.6

Corollary A.3.1. For (X, dX) a length space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y a space that has the product topology defined in
2.1.1, a continuous function f : B → (0,+∞) and Ψγ ≥ 0, the length of a
causal curve γ : [a, b] → Y is given by:

L(γ) = inf{
N−1∑
i=0

√√√√Lτb(α[si,si+1])
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

dX(β(s′i,k), β(s
′
i,k+1))}2 }

(A.3.1)

where M ∈ N, i ∈ [0, N − 1], k ∈ [0,M − 1], si+1 ∈ (a = s0, b = sN ] and
s′i,k+1 ∈ (si, si+1], with si = s′i,0, si+1 = s′i,M = s′i+1,0.

Proof. The proof is exactly the same as in Corollary A.2.1, so here we will
give the outline of it. Specifically, we know that there is always a partition
with given M,N for which we can have a value ϵi > 0, arbitrarily small, s.t
sup{

∑M−1
k=0 ms′i,k,s

′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))} − ϵi < msi,sidX(β(si), β(si)).

Therefore:

inf{
N−1∑
i=0

[ [ inf{
M−1∑
k=0

τb(α(s
′
i,k), α(s

′
i,k+1))}+ ϵi ]

2 − sup{
M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 ]

1
2}

= inf{
N−1∑
i=0

√√√√Lτb(α[si,si+1])
2 + ϵ′i − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

dX(β(s′i,k), β(s
′
i,k+1))}2 }

= inf{
N−1∑
i=0

√√√√Lτb(α[si,si+1])
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

dX(β(s′i,k), β(s
′
i,k+1))}2

×
√
1 + ϵ′′i } (A.3.2)

where we set

ϵ′i =
2ϵi

Lτb(α[si,si+1])
+

ϵ2i
Lτb(α[si,si+1])

2
<< 1

and also made the substitution

ϵ′′i =
ϵ′i

τb(α(si), α(si+1))2 − sup{
∑M−1

k=1 ms′i,k,s
′
i,k+1

dX(β(s′i,k), β(s
′
i,k+1))}2

<< 1
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Hence, from here the proof proceeds as in Corollary A.2.1 and we get:

L(γ) = inf{
N−1∑
i=0

[ Lτb(α[si,si+1])
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 ]

1
2} (A.3.3)
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A.4 Alternative formula for Lvar

Corollary A.4.1. For (X, dX) a length space, (B, dB,≪,≤, τb) a
Lorentzian length space, Y a space that has the product topology defined in
2.1.1, a continuous function f : B → (0,+∞) and Ψγ ≥ 0, the length of a
causal curve γ : [a, b] → Y is given by:

L(γ) = inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 ]

1
2} (A.4.1)

where M ∈ N, i ∈ [0, N − 1], k ∈ [0,M − 1], si+1 ∈ (a = s0, b = sN ] and
s′i,k+1 ∈ (si, si+1], with si = s′i,0, si+1 = s′i,M = s′i+1,0.

Proof. We take the length formula given in (2.1.5). We know that there is
always a partition with given M,N for which we can have a value ϵi > 0,
arbitrarily small, s.t sup{

∑M−1
k=0 ms′i,k,s

′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1))} − ϵi <

msi,si+1
dX(β(si), β(si+1)) <

∑M−1
k=0 ms′i,k,s

′
i,k+1

dX(β(s
′
i,k), β(s

′
i,k+1)).

Therefore, taking also into account that P (γ(si), γ(si+1)) > 0, we get:

L(γ) = inf{
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
dX(β(si), β(si+1))2}

≤ inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − [ sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))} − ϵi ]2 ]

1
2}

=L(γ)U (A.4.2)

Moreover:

L(γ) = inf{
N−1∑
i=0

√
τb(α(si), α(si+1))2 −m2

si,si+1
dX(β(si), β(si+1))2}

≥ inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − [

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1)) ]2 ]

1
2}

=L(γ)L (A.4.3)
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However:

L(γ)U = inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − [

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1)) ]2 ]

1
2}

= inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − [ sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))} − ϵi ]2 ]

1
2}

=L(γ)L (A.4.4)

Consequently, since L(γ)U = L(γ)L:

L(γ) = inf{
N−1∑
i=0

[ τb(α(si), α(si+1))
2 − sup{

M−1∑
k=0

ms′i,k,s
′
i,k+1

× dX(β(s
′
i,k), β(s

′
i,k+1))}2 ]

1
2} (A.4.5)

and thus we have proven the claim.
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