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Abstract: The Atacama Cosmology Telescope Data Release 6 (ACT DR6) power spectrum
is expected to provide state-of-the-art cosmological constraints, with an associated need
for precise error modeling. In this paper we design, and evaluate the performance of, an
analytic covariance matrix prescription for the DR6 power spectrum that sufficiently accounts
for the complicated ACT map properties. We use recent advances in the literature to
handle sharp features in the signal and noise power spectra, and account for the effect of
map-level anisotropies on the covariance matrix. In including inhomogeneous survey depth
information, the resulting covariance matrix prescription is structurally similar to that used
in the Planck Cosmic Microwave Background (CMB) analysis. We quantify the performance
of our prescription using comparisons to Monte Carlo simulations, finding better than 3%
agreement. This represents an improvement from a simpler, pre-existing prescription, which
differs from simulations by ∼ 16%. We develop a new method to correct the analytic
covariance matrix using simulations, after which both prescriptions achieve better than
1% agreement. This correction method outperforms a commonly used alternative, where
the analytic correlation matrix is assumed to be accurate when correcting the covariance.
Beyond its use for ACT, this framework should be applicable for future high resolution CMB
experiments including the Simons Observatory (SO).

Keywords: CMBR experiments, cosmological parameters from CMBR, Statistical sampling
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1 Introduction

The Atacama Cosmology Telescope’s (ACT) [28, 37, 69] sixth data release (DR6) promises
to provide competitive constraints on cosmological models. The measured primary CMB
anisotropy power spectrum will be used to test the ΛCDM model and to look for evidence for
beyond-ΛCDM physics, including for example an early dark energy (EDE) component [38]
or self-interacting neutrinos [45]. The characterization of the power spectrum covariance

– 1 –
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matrix is critical to these efforts. The pseudo-Cℓ Monte Carlo Apodized Spherical Transform
Estimator (MASTER) [39] formalism provides a nearly optimal, unbiased method for power
spectrum reconstruction [24]. A key feature is its ability to correct for a common real-world
systematic effect — the incomplete sky coverage of surveys — via the computation of “mode-
coupling” matrices. Moreover, it is computationally tractable: the computation of these
matrices scales with survey resolution as O(ℓ3

max) [24, 53], the same scaling as the spherical
harmonic transform (SHT) [66]. For these reasons, MASTER has proven versatile, providing
the basis for an array of results from CMB analyses [e.g., 9, 16, 23, 26, 47, 63], as well as
clustering of galaxies and quasars, and weak lensing [e.g., 2, 21, 22, 27, 60]. The ACT DR6
power spectrum pipeline uses the MASTER formalism.

It has long been recognized that a direct calculation of the MASTER covariance is
intractable [see e.g., 11, 14, 24]. In particular, incomplete survey coverage couples to spatial
correlations in the underlying field of interest; a fast approximation (that is, also O(ℓ3

max)
complexity) is only possible assuming the coverage is sufficiently uniform [see e.g., 18,
30]. Analyses utilizing the MASTER formalism have thus investigated the validity of this
assumption for their specific application [e.g., 29, 62]. The community continues to develop
approaches to handle non-uniform survey geometry more robustly [e.g., 12, 59]. The ACT
DR6 data present a new challenge: the atmosphere induces stronger noise correlations than
are present in space-based microwave observatories such as Planck or galaxy surveys with
close-to-Poisson noise. The data are not adequately described by the simple model required
by the MASTER covariance formalism.

In this paper, we investigate the performance of a MASTER-compatible covariance
matrix for the ACT DR6 power spectrum. The covariance structure resembles that of ref. [63]
in including inhomogeneous survey depth, and uses the analytical framework presented in
ref. [59]. We also develop a new method for handling anisotropies introduced in the Fourier-
space filtering of the ACT data. We test this covariance matrix alongside a commonly-used
analytic version that assumes homogeneous survey depth, and find that the former performs
better as measured by agreement with a Monte Carlo covariance matrix. Lastly, we develop
a new procedure using the Monte Carlo covariance to apply a smooth correction to either
matrix version and achieve sub-percent agreement with simulations.

The outline of this paper is as follows: we introduce the ACT DR6 data, and the power
spectrum covariance matrix products, in section 2. In section 3, we discuss the MASTER
framework, focusing on the particular complications of the ACT data. An overview of our
covariance matrix pipeline is provided in section 4, and we assess the results of that pipeline
in section 5. We conclude in section 6.

2 Data and deliverables

Between 2007 and 2022, ACT observed the microwave sky from Cerro Toco in the Atacama
Desert, Chile. ACT DR6 comprises the data collected by the Advanced ACT receiver from
2017 onwards [15, 20, 37, 40, 50]; the power spectrum analysis uses the exclusively-nighttime
data (between 23:00 and 11:00 UTC) from three dichroic, polarization-sensitive detector arrays
abbreviated “PA4,” “PA5,” and “PA6.” Their beam and approximate observed frequencies

— labeled by a frequency “band” — are given in table 1. For each frequency band on each
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Array Band Frequencies Beam
(GHz) (arcmin)

PA4 f150 124–172 1.4
f220 182–277 1.0

PA5 f090 77–112 2.0
f150 124–172 1.4

PA6 f090 77–112 2.0
f150 124–172 1.4

Table 1. Frequency coverage (the 0.5% and 99.5% locations of their cumulative bandpower) and
resolution (beam full-width half-maximum in arcminutes) of the Advanced ACT detector arrays used
in DR6. Reproduced from [7]. The Author(s). CC BY 4.0.
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Figure 1. Blue, Left: the power spectrum pipeline analysis mask for PA6 f150. Blue, Right: the same
mask after including effective noise weights (arbitrarily normalized), described in section 4.1. The
inset provides a zoomed-in view of the point-source holes. The outer mask borders (the point-source
holes) have a 2◦ (0.3◦) cosine apodization. Orange: the outline of the ACT survey footprint. Data
within the orange outline, but not highlighted in blue, are excluded from the analysis.

array, ACT maps four disjoint “splits” of the raw data — formed by separately allocating
each day of observations to a given split — such that the noise in each split is independent.
The maps are produced for each of the Stokes I, Q, and U polarization components in CMB
blackbody temperature units. The power spectrum analysis, including this paper, uses an
updated map version, “dr6.02,” which features lower noise and reduced systematics compared
to the dr6.01 map version used in refs. [7, 19, 65].

Accompanying the data maps are “inverse-variance maps” [see e.g. 1, 56], which give the
white-noise level of the data. In section 4, we use these to derive maps of the white-noise
standard deviation per pixel by taking their inverse square-root. The DR6 power spectrum
pipeline also includes analysis masks which are applied to the maps, with an example shown
in figure 1. The masks have apodized boundaries to limit mode-coupling, and avoid both the
edge of the ACT survey footprint where data are noisiest as well as the plane of the Galaxy
where foregrounds are brightest. The masks also contain ∼ 10, 000 apodized point-source holes
with a diameter of five arcmin. These correspond to a catalog of sources with measured flux
greater than 15 mJy in the 150 GHz channel and detected with a significance greater than 5σ.

As will be described in forthcoming papers, the ACT DR6 power spectrum analysis
includes substantial data validation that took place with blinded results, resulting in the

– 3 –
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removal of PA4 f150 (temperature and polarization) and PA4 f220 polarization from the
analysis. Scale cuts are applied to the remaining data that range from a minimum angular
multipole of 475–975, depending on array and polarization. The maximum multipole is
ℓmax = 8, 500 for all arrays. The spectra are binned following the same schedule as presented
in ref. [16], appendix F. Each polarized cross spectrum contains up to 57 bins, and the
entire data vector including all T , E, and B spectra, has over 3,500 elements. The baseline
DR6 likelihood only uses TT , TE, and EE spectra; after the cuts we use in this paper,
the data vector has 1,763 elements.1

A “first version” covariance matrix for the ACT power spectrum was constructed using
pre-existing tools available in pspy2 and PSpipe.3 We label this matrix the “homogeneous”
matrix for reasons discussed in section 4. In this paper we develop a new covariance matrix;
we label it the “inhomogeneous” matrix. Both versions start with an “analytic” covariance
matrix, which is then corrected using simulations. For clarity, we refer to the post-correction
matrix as the “corrected” or “semi-analytic” matrix. This semi-analytic matrix is the product
used in the likelihood to constrain cosmological models. The homogeneous matrix is the
default version used in the baseline DR6 likelihood, as it was developed earlier, but as we show
in this paper, we find that our new inhomogeneous version requires a smaller simulation-based
correction — in other words, that its analytic prescription better describes the data covariance.

3 Analytical framework

In this section we describe a model for the ACT DR6 data, as well as approximations that
simplify the construction of the power spectrum covariance matrix.

3.1 ACT data model

The ACT data contain several properties that, in principle, are challenging to incorporate
into the MASTER framework. We start by describing a generative model for the ACT data
units: the 20 polarized split maps enumerated in section 2. Most ACT map metadata are
bundled into an “array” label, but for the formalism it is useful to keep the map polarization
and split index separate. Thus, we label a given map, m, as mX

Ii
, where I denotes the

array, i the split index, and X the polarization component. We consider the map to be
a sum of signal and noise components:

mX
Ii

= sX
I + nX

Ii
(3.1)

where the signal does not depend on the map split.4

1Minor revisions were made to the dr6.02 maps, analysis masks, scale cuts, fiducial signal spectra (sec-
tion 4.1.3), and simulations (section 4.2) after the completion of this paper, but should not affect our
conclusions.

2https://github.com/simonsobs/pspy.
3https://github.com/simonsobs/PSpipe.
4This is true insofar as the beam and passband are the same for each split of an array. Beam variations

over split in dr6.02 maps are O(0.1%) at signal-dominated scales and so we neglect them. There is no evidence
for split-dependent passband variations.
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We assume the sky signal to be a realization from a homogeneous, isotropic Gaussian
distribution that is subsequently modified by the instrument.5 Its power spectrum includes
contributions from the primary CMB, as well as secondary effects including CMB lensing, the
thermal and kinetic Sunyaev Zeldovich effects (tSZ and kSZ), the cosmic infrared background
(CIB), unresolved (“point source”) active galactic nuclei (AGN), and dust. The sky signal is
passed through the telescope, receiver optics, and filtering, and is sampled by the detector
arrays at the focal plane. This process integrates the frequency dependence of each component
over each array’s spectral passband and spatially convolves the continuous sky with the
instrumental beam.6 We assume transient instrumental and astrophysical sources can be
modeled by their time-averaged quantities over the course of ACT observations.

Collectively, we have the following model of the signal:

s = YBS
1
2 ηh

s , (3.2)

where we have suppressed the array (I) and polarization (X) labels for simplicity. We
read from right to left, starting with ηh

s , which is a white-noise vector in harmonic space.
Thereafter, each symbol is a linear operator that acts on the vector: S is the power spectrum
of the sky signal with elements that covary over arrays (according to their passbands) and
polarizations,7 B is the isotropic beam transfer function8 for each array and polarization,
and Y is a spherical harmonic transform (SHT) “synthesis” operation (i.e., the matrix that
transforms vectors from harmonic space to map space). Note that both S

1
2 and B are assumed

to be diagonal over spherical harmonic modes, such that this model of the map signal is,
like the underlying sky, homogeneous, isotropic, and Gaussian.

Like the signal, the map-level noise is Gaussian distributed, but is inhomogeneous and
anisotropic: the noise power varies over the sky, and its correlation structure is “stripy.”
Moreover, the noise anisotropy is itself inhomogeneous: the stripy correlation pattern varies
over the sky (see section 3 of ref. [7] for a complete description, and figure 2 for illustration).
These properties are the product of projecting correlated atmospheric noise along the ACT
scanning direction.

We model the noise at the map level (as measured by differences of map splits) following
ref. [7], which describes two models that capture the most relevant features: a “tiled” and
a “directional wavelet” noise model. The tiled model subdivides the map into a set of
interleaved patches (“tiles”) and builds the noise covariance in each tile’s 2D Fourier space.
The wavelet model instead subdivides the Fourier transform of the map into interleaved
patches (“wavelets”) and builds the noise covariance in each wavelet’s map space. These
noise models are not necessarily complete, but simulations drawn from them are sufficiently
accurate for correcting and evaluating the covariance matrix. Figure 2 demonstrates an

5When discussing a field throughout the paper, we take “inhomogeneous” to mean “spatially-dependent
variance over 2D positions in a map” and “anisotropic” to mean “azimuthally-dependent covariance when at a
fixed 2D position in a map.”

6To streamline section 3, we do not discuss other effects in the data, such as calibration and pixel window
functions, here. Those are detailed in appendix A.

7The matrix exponent ensures that S
1
2 ηh

s is a sample of spherical harmonic coefficients whose covariance is
the power spectrum.

8We do not measure significant beam anisotropy in DR6 and do not account for any in this paper.
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Figure 2. First and second rows: the noise in the first temperature split map for PA5 f090 measured
in a 900 deg2 well-cross-linked region of the ACT scan strategy. The second row shows a region with
less cross-linking where scans only move in the vertical (Dec.-only) direction. Third and fourth rows,
left: 2D Fourier noise power spectra of the first temperature split map for PA5 f090. The average radial
profiles of the power spectra have been divided-out to better highlight their anisotropic patterns. The
third row is measured in the well-cross-linked region, where crossing scans induce the “x-like” bars in the
power spectrum. The fourth row is measured in the poorly-cross-linked region, where the Dec.-aligned
scans induce vertical noise stripes in the maps that appear as a horizontal bar in the power spectrum.
Center and right: 2D power spectra from noise simulations following ref. [7] (drawn from the tiled and
directional wavelet models). The tiled model has a bandlimit of ℓmax = 10, 800; the wavelet model has
ℓmax = 5, 400, visible as a hard edge in 2D Fourier space. Adapted from [7]. The Author(s). CC BY 4.0.
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example of the efficacy of each model at reproducing the spatially-varying noise stripiness in
the data. We are agnostic as to which model performs best; rather, their existence allows us
to assess robustness of the covariance matrix to the assumed noise model. Time-domain-based
simulations, a possible alternative, are too computationally expensive to be practical.

As described in [7] and appendix C, samples drawn from either model follow similar
prescriptions:

ni = σiYN
1
2
i Y†Ω(T †

b F†N
1
2

i )ηT f
n,i (Tiled)

ni = σiYN
1
2
i Y†Ω(F†T †

b FN
1
2

i )ηT w
n,i , (Dir. Wavelet)

(3.3)

where, again, we have suppressed the array (I) and polarization (X) labels for simplicity.
Reading from right to left, η

T {f,w}
n is a white-noise vector in either tiled 2D Fourier space or

wavelet map space, N is the noise covariance in the same space, F is the unitary Discrete
Fourier Transform (DFT), and Tb is the “backward tiling transform” that reverts the map
or Fourier space subdivision (for the tiled model or directional wavelet model, respectively;
see ref. [7] for more technical detail). The terms in parentheses are the defining feature of
either noise model: they are what introduce the spatially-varying noise anisotropy. The
sample then undergoes spherical harmonic “analysis” (i.e., from map to harmonic space),
denoted by Y†Ω, where Ω is a diagonal matrix in map space containing spherical harmonics
analysis quadrature weights that approximately equal the area of each pixel. Finally, N is
the estimated noise power spectrum, and σ contains the per-pixel noise standard deviations
from section 2.9 The noise realization, n, as well as components of the noise model, depend
on the map split i. We emphasize that a realistic model of the ACT map noise, compared to
the signal model in equation (3.2), is inhomogeneous and anisotropic.

Two steps in the ACT DR6 analysis that affect the data model are the application of
a Fourier-space filter and an apodized analysis mask to the data maps. Fourier modes are
removed from the maps for which |ℓx| ≤ 90 and |ℓy| ≤ 50; this is the same filter as in ACT
DR3 [54] and DR4 [16]. This filter removes pickup at large scales in the horizontal (R.A.-
aligned) direction, and noise-dominated modes at large scales in the vertical (Dec.-aligned)
direction. This filter introduces anisotropy to the signal component of the maps, while
adding to the preexisting map noise anisotropy. The analysis masks described in section 2
are applied after the Fourier-space filter.

Combining these processes with equations (3.1), (3.2), and (3.3) yields the following data
model for the masked maps (e.g., in the case of the “tiled” noise model):

m̃i ≡ WF†Xf Fmi = WF†Xf FYBS
1
2 ηh

s

+ WF†Xf FσiYN
1
2
i Y†ΩT †F†N

1
2

i ηT f
n,i ,

(3.4)

where Xf denotes the Fourier-space filter (which is diagonal in Fourier space), and W denotes
the analysis mask (which is diagonal in map space). While realistic, this inhomogeneous
and anisotropic data model is not amenable to the MASTER framework: as we describe in
section 3.2, the MASTER framework assumes a data model consisting of an analysis mask,
W, and otherwise statistically homogeneous and isotropic fields.

9The noise power spectrum, N, is estimated after normalizing the maps by σ.
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Figure 3. Signal and noise power spectra compared to the power spectra for their effective masks
(for PA6 f150, first split). The difference between the signal and noise effective masks is shown in
figure 1: the effective mask for the noise includes the inhomogeneous survey depth and so has more
structure than the signal mask, as reflected in its wider mask power spectrum. For both the signal
and noise, the power spectrum of the mask does not appear to be significantly more compact, or steep,
than the power spectrum of the field itself, calling the NKA into question for ACT. All power spectra
are normalized at ℓ = 2, 000.

3.2 Covariance matrices in MASTER

The MASTER method includes the computation of both a power spectrum estimator, Ĉℓ,
and a pseudospectrum covariance matrix, Σ̃ℓℓ′ . For a data model consisting of an isotropic,
scalar Gaussian field, a, sampled from the power spectrum Cℓ, and masked by an analysis
window w at sky positions x with

ã(x) ≡ w(x)a(x), (3.5)

the MASTER power spectrum estimator is given10 by:

Ĉℓ =
∑
ℓ1

M−1
ℓℓ1

ˆ̃Cℓ1

Mℓℓ1 ≡ (2ℓ1 + 1)Ξℓℓ1(w, w)

ˆ̃Cℓ ≡ 1
2ℓ + 1

ℓ∑
m=−ℓ

ãℓmã∗
ℓm,

(3.6)

[e.g., 18, 24, 30], where Mℓℓ1 is the mode-coupling matrix, Ξℓℓ1 is the symmetric coupling
matrix [24], which we refer to as the “coupling,” ˆ̃Cℓ is the pseudospectrum estimate, and
ãℓm is the SHT of ã(x). The coupling is only a function of the analysis mask via its power
spectrum [39], Wℓ ≡ 1/(2ℓ + 1) ∑

m wℓmw∗
ℓm. Under the data model of equation (3.5), the

power spectrum estimator in equation (3.6) is exact and calculable in O(ℓ3
max)-time.

Unfortunately, there is no known analytical expression for the covariance of the pseu-
dospectrum estimator that is also calculable in O(ℓ3

max)-time. A naive computation leads
to an expression whose complexity is O(ℓ6

max) [14]. Recently, ref. [12] derived an algorithm
10This paper, and the standard MASTER framework, assume that the window w is not correlated with under-

lying field. Recent work by ref. [68] has derived modifications to the framework when this assumption is invalid.
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with O(ℓ5
max) complexity. Instead, many analyses [see e.g., 22, 31, 62, 63] have employed a

pseudospectrum covariance matrix with the following form:

Σ̃ℓℓ′ ≡ ⟨( ˆ̃Cℓ − ⟨ ˆ̃Cℓ⟩)( ˆ̃Cℓ′ − ⟨ ˆ̃Cℓ′⟩)⟩ ≈ 2C2
(ℓ,ℓ′)Ξℓℓ′(w2, w2), (3.7)

where the (ℓ, ℓ′) subscript denotes some symmetric function of Cℓ and Cℓ′ . As it uses
the coupling matrix from equation (3.6), this expression is also calculable in O(ℓ3

max)-time;
however, it requires invoking the “narrow kernel approximation” [NKA, see 30], which states
that the power spectrum of the mask, Wℓ, is significantly more compact in ℓ than that of
the underlying field. For the mask, signal, and noise power spectra in ACT, it is not clear
whether this approximation is valid (see figure 3).

Furthermore, regardless of the NKA, the MASTER formalism requires a simple data
model like that in equation (3.5). Expressed in the symbolic formalism of section 3.1, this
model looks like:

a = WYC
1
2 ηh, (3.8)

where C is a diagonal matrix whose elements are given by Cℓ. As defined in equation (3.4),
ACT’s signal field differs from this simpler model due to the Fourier-space filter, while the
noise field also differs due to its intrinsically inhomogeneous and anisotropic structure. Thus,
in order to work with MASTER methods, we need an approximate data model whose signal
and noise better resemble equation (3.8), at the cost of reduced realism.

3.3 Approximate data model

Our covariance matrix can only involve analysis masks and isotropic power spectra as inputs
(as in equation (3.8)). Here, we describe the approximations to equation (3.4) that enable this.

Because the MASTER data model does not permit intrinsic inhomogeneity nor anisotropy,
we construct an isotropic and homogeneous expression for the noise by eliminating the
anisotropic operations from equation (3.4). Doing so for either noise model yields:

ni = σiYN
1
2
i Y†Ωηm

n,i, (3.9)

where ηm
n is a white-noise vector in map space. As we show in appendix A, this noise model

is approximately equal to the following expression:

ni = σiΩ
1
2 YN

1
2
i ηh

n,i (Approximate) (3.10)

where, again, ηh
n is instead a white-noise vector in harmonic space. This noise model states

that we draw a Gaussian realization from an isotropic noise power spectrum, and then weight
each pixel by the square-root of its area and its noise standard deviation. While incurring
a “data model error,” its ingredients are now identical in form to those of the signal, where
σiΩ

1
2 is an effective noise-weight mask.
The Fourier-space filter also introduces anisotropy to both the signal and noise. Unlike

the intrinsic noise anisotropies, the anisotropy due to the filter is too large to be neglected
and must be accounted for analytically. The core of the approximation is treating the filter in
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harmonic space, rather than Fourier space. We give further detail on the exact approximation
we use in section 4 and appendix B.2; for the purposes of this section, we absorb the filter
into the definition of the signal and noise power spectra as an isotropic transfer function, Tα,
in equations (3.6) and (3.7), where α is an exponent that helps control the function shape,
and T is diagonal over ℓ (i.e., its diagonal is tα

ℓ ). While similar to ref. [16], the treatment
of T in this paper does not assume that it enters those equations with fixed exponents, but
rather we find these exponents are functions of other inputs, predominantly the filter itself.

Taken together, we have the following approximate data model for the ACT DR6 maps:

m̃i = WYB(TαS)
1
2 ηh

s + WσiΩ
1
2 Y(TαNi)

1
2 ηh

n,i. (3.11)

This simplified model is compatible with the MASTER formalism in analogy with equa-
tion (3.8). To be clear, we do not expect equation (3.11) to correctly model the anisotropic
ACT data at the map level. Rather, it is an attempt to preserve as much of the data realism
as possible while still permitting the use of the MASTER covariance framework.

As discussed in the next section, the form of the covariance matrix that results from
equation (3.11) closely resembles that in ref. [62]. Unlike for Planck, however, it requires
assuming the approximate ACT data model is sufficiently accurate at the level of the
power spectrum covariance matrix. We investigate the validity of both the NKA and the
approximate data model in section 5.

We emphasize that the need for such an investigation is not abstract. Because equa-
tion (3.11) is incorrect for the ACT data, the covariance estimate derived from it in the next
section is biased. This bias is analogous to the “noise bias” occurring in power spectrum
estimates from maps with correlated noise. Unlike the noise bias for the power spectrum esti-
mator, which can be circumvented through the use of cross-spectra [64, 70], this “covariance
bias” is unavoidable and its size must be checked empirically.

4 Covariance matrix pipeline

In this section, we describe how we construct the inhomogeneous ACT DR6 power spec-
trum covariance matrix. First, we assemble the analytic part, assuming the NKA and
the approximate data model in equation (3.11) (section 4.1). In parallel, we construct an
ensemble of simulations following the ACT DR6 data model of equation (3.4) (section 4.2).
Lastly, we use the Monte Carlo covariance matrix formed by the simulations to correct
approximation-induced errors in the analytic matrix (section 4.3). This matrix is only the
disconnected, Gaussian part of the covariance; beam measurement uncertainty, and the
subdominant non-Gaussian contributions to the covariance from CMB lensing, clusters, and
point sources will be discussed in the ACT DR6 power spectrum paper.

4.1 Analytic covariance matrix

We generalize the MASTER pseudospectrum covariance in equation (3.7) to the case of
multiple fields and datasets. We write equation (3.11) in the form of equation (3.5), including
all metadata labels:

mX
Ii

(x) = wX
I (x)sX

I (x) + wX
I (x)σX

Ii
(x)Ω

1
2 (x)nX

Ii
(x)

≡ uX
I (x)sX

I (x) + vX
Ii

(x)nX
Ii

(x),
(4.1)
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where we have defined the effective signal and noise masks (u and v), sX
I (x) is the realization

from the isotropic signal power spectrum including the beam (SXY
IJ,ℓ), and nX

Ii
(x) is the

realization from the isotropic noise power spectrum (NXY
IiJj ,ℓ). We have assumed that the

analysis masks (w) and signal realizations do not depend on the split (i). Thus, the map
pseudospectra carry a pair of metadata labels, and the covariance carries two pairs.

Assuming the signal and noise are uncorrelated, we obtain for the pseudospectrum
covariance matrix:

Σ̃W X,Y Z
IiJj ,PpQq ,ℓℓ′ = SW Y

IP,(ℓ,ℓ′)S
XZ
JQ,(ℓ,ℓ′)Ξ

β(W Y,XZ)
ℓℓ′ (uW

I uY
P , uX

J uZ
Q)

+ SW Y
IP,(ℓ,ℓ′)N

XZ
JjQq ,(ℓ,ℓ′)Ξ

β(W Y,XZ)
ℓℓ′ (uW

I uY
P , vX

Jj
vZ

Qq
)

+ NW Y
IiPp,(ℓ,ℓ′)S

XZ
JQ,(ℓ,ℓ′)Ξ

β(W Y,XZ)
ℓℓ′ (vW

Ii
vY

Pp
, uX

J uZ
Q)

+ NW Y
IiPp,(ℓ,ℓ′)N

XZ
JjQq ,(ℓ,ℓ′)Ξ

β(W Y,XZ)
ℓℓ′ (vW

Ii
vY

Pp
, vX

Jj
vZ

Qq
)

+ (Y, Pp) ↔ (Z, Qq),

(4.2)

where we introduce the coupling “spin”, β, which can be one of “00,” “0+”, “++”, or
“−−” [11]. The dependence of β on the four input polarizations is given in appendix B.1.
The argument of the coupling denotes the cross-power spectrum of a pair of “masks” that are
each a product of two effective signal or noise masks. The arrow indicates that the rest of the
expression is formed by the interchange of the third and fourth fields. We derive this result in
appendix B.1, although it is also presented implicitly in ref. [62] and ref. [59]. The analogous
expression for a single field (e.g., the “signal-only” covariance), or for the special case that
the effective signal and noise masks are all equivalent (u = v), is a standard result in the
literature [see e.g., 11, 18, 25, 30, and also our discussion in section 4.1.6]. Besides the coupling
spin, there is no fundamental difference between equations (3.7) and (4.2) — the complication
is just in the (expansive) bookkeeping of signal, noise, array, polarization, and split.

We use a modified version of the traditional NKA — the “improved” NKA [INKA, 59] —
in light of the steepness of the CMB and ACT noise spectra in figure 3. Here, each power
spectrum in equation (4.2) is replaced by a normalized pseudospectrum:

CXY
IJ,ℓ → C̃XY

IJ,ℓ/w2(wX
I , wY

J ), (4.3)

where C is either S or N , wX
I and wY

J are the effective masks for arrays (polarizations) I

and J (X and Y ), and w2(a, b) = ∑
x a(x)b(x)Ω(x)/4π. The pseudospectra are related to the

power spectra via the MASTER mode-coupling matrices: the expressions are a standard
result in the literature [e.g., 3, 44]. Generalizing equation (3.6), the mode-coupling matrices
are a function of the cross-power spectrum of wX

I and wY
J . Ref. [59] found the INKA improves

the accuracy of analytic MASTER covariance matrices when applied to galaxy weak lensing,
and argued for its superiority in all cases. It has seen increasing uptake in (for example)
refs. [22, 27, 34, 71], but to our knowledge has not yet been used in a CMB analysis.

As in ref. [59], we choose to use the arithmetic mean to define the symmetric function
C(ℓ,ℓ′) ≡ (Cℓ + Cℓ′)/2, where, again, C is either S or N . Ref. [29] argues that this choice is
best motivated under the NKA, and also has the advantage of avoiding numerical issues for
cross-spectra that can be negative (e.g., as is the case for the geometric mean and the TE

spectrum). We combine this with equation (4.3) when substituting spectra into equation (4.2).
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The preceding prescription defines the following required inputs:

• Couplings for each spin and combination of four effective masks (for the pseudospectrum
covariance matrix).

• Couplings for each spin and combination of two effective masks (for the INKA mode-
coupling matrices).

• w2 factors for each combination of two effective masks (for the INKA).

• Fiducial signal and noise power spectra.

We briefly elaborate on these elements in the following.

4.1.1 Coupling matrices

We calculate all unique couplings required for the pseudospectrum covariance, as described
above. While the combinatorics for the two-mask couplings are manageable, they become
prohibitive for the four-mask couplings if computed naively, with almost 2 million possible
combinations. To conserve resources, we tabulate the number of unique couplings (e.g., given
that the DR6 analysis masks do not depend on polarization). Then, we discard couplings
that would correspond to a cross-split noise power spectrum in equation (4.2): since we
assume splits have independent noise, these terms would be zero regardless of the coupling.
This results in only 3,062 couplings to compute. Finally, we accelerate computation by
using the Toeplitz approximation with the same default parameters as ref. [53]. We find
errors incurred by this approximation are sub-percent. In parallel, we calculate all required
w2 factors at negligible cost.

4.1.2 Fourier-space filter treatment

As discussed in section 3.3, we model the O(1) effect of the Fourier-space filter on the power
spectrum covariance. We do this by applying an isotropic transfer function, tα

ℓ , to the
fiducial signal and noise power spectra (equation (3.11)). The filter has a different effect
depending on whether the fiducial spectrum appears in the power spectrum estimator or the
pseudospectrum covariance matrix, which we model by an isotropic transfer function with
different shapes. We capture the different shapes by modifying the exponent of the transfer
function, α. In other words, when the filtered power spectrum appears in the MASTER
pseudospectrum estimator, we multiply it by the “two-point” transfer function given by
t
α2pt

ℓ . When the filtered power spectrum appears as part of the NKA (or INKA) in the
covariance matrix, we multiply it by the “four-point” transfer function, t

α4pt

ℓ . In this section,
we summarize how we determine each component of this model: tℓ, α2pt, and α4pt. A detailed
description of each step is given in appendix B.2.

We first obtain the transfer function template, tℓ, by applying the Fourier filter to a
small number (50) of full-sky, white-noise simulations. Because the power spectrum for this
field is a known constant, any observed deviations in the power spectra of the simulations
are due to the filter, independent of any masking. We apply a fourth-order Savitzky-Golay
filter to the simulated spectra to construct a smooth template.
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Figure 4. The “two-point” and “four-point” Fourier-space filter transfer functions have different
shapes. Comparing our new method as part of the inhomogeneous matrix to the homogeneous matrix
approach, the two methods agree on the two-point transfer functions to < 1% but disagree on the
four-point transfer functions on medium and large scales. The homogeneous matrix transfer function
is determined by bin rather than by ℓ. This figure shows the temperature case.

Next, we fit for the two-point (α2pt) and four-point (α4pt) shape exponent. We do so by
running a larger number (500) of simulations, which are realizations from a mock, noise-like
power spectrum (one for temperature and one for polarization). These simulations are
filtered, and their pseudospectra measured using a representative, average effective mask.
In the two-point case, we fit for α2pt by forward modeling the observed pseudospectra as
C̃ℓ(α2pt) = ∑

ℓ1 Mℓℓ1t
α2pt

ℓ1
Cℓ1 , and analogously for α4pt by forward modeling C̃ℓ(α4pt) in an

expression for the power spectrum covariance matrix (see appendix B.2). Our choice to use a
mock power spectrum, and single representative effective mask, is justified by our finding
that both α2pt and α4pt are largely independent of the mask and power spectrum; instead,
they are mainly a function of the actual Fourier-filter. Thus, we can reuse the model for
both signal and noise, as well as across arrays and splits. This feature drastically limits the
computational cost of these dedicated simulations in comparison to the full-dataset ensemble
in section 4.2. Results of this process are shown in figure 4 for the temperature case.

The ACT DR4 analysis [16] also used simulations to determine the approximate two-point
transfer function from the Fourier-filter, although the specific implementation differed from
this paper. However, as roughly mapped onto our method, ref. [16] used the fixed relation
α4pt = 0.75α2pt. While a reasonable approximation for our specific Fourier-filter, we find this
relation does not generally hold. A comparison of our new model to that of ref. [16] (which
is also used in the homogeneous matrix) is shown in figure 4, where the difference can be
seen on large scales for the four-point transfer function (note, 0.75α2pt = 0.595, whereas we
find α4pt = 0.504). Because the covariance matrix is quadratic in the power spectra, our
new method increases the analytic covariance of each spectrum by ∼ 5% at ℓ = 500. In
either case, inaccuracies in the Fourier-filter treatment are corrected using the Monte Carlo
covariance matrix discussed in section 4.2.
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Finally, we note that our procedure for fitting α2pt and α4pt does not exclusively capture
the effect of the Fourier-space filter. Rather, it can capture any deviations from the expected
covariance under the MASTER framework. Thus, while targeting the anisotropic Fourier-
filter, the model may also capture deviations due to a breakdown of the NKA. It is important
to bear this in mind when we evaluate the performance of the “analytic” covariance matrix:
any purely NKA-induced errors may be suppressed by the Fourier-filter correction.

4.1.3 Fiducial signal power spectra

We use a fiducial signal power spectrum including the CMB, extragalactic foregrounds, and
dust, following the cosmology and foreground model of ref. [16]. Thus, the signal cross-power
spectrum of a given pair of arrays is a function of the array passbands (which we take to be
fixed) and the spectral energy distributions (SEDs) of each component. The parameters of
the model used in this paper are given in table 3 in appendix B.3. Following refs. [13, 63], we
assume the fiducial signal power spectra are sufficiently close to the true power spectra that
the ACT DR6 cosmological results are unbiased. We then apply the beam transfer functions
for each array, and, following section 4.1.2, we account for the four-point effect of the Fourier-
space filter by applying t

α4pt

ℓ . Finally, following the INKA, we convert the power spectra into
pseudospectra using the mode-coupling matrix for the two arrays’ effective signal masks.

4.1.4 Fiducial noise power spectra

We measure the noise spectra directly from the data. Following ref. [7], we assume uncorrelated
noise between maps from different physical detector wafers, but possibly correlated noise
between frequency channels on the same wafer. For example, we take PA5 f090 noise to be
independent from PA6 f090 noise, but not from PA5 f150 noise. We perform the following
steps for each detector wafer, and for each frequency-polarization pair on that wafer. First,
we compute the average pseudospectrum over pairs of different map splits (for four splits,
there are 12 such pairs).11 Because the ACT DR6 map splits contain independent noise, this
average represents an unbiased signal-only model. We then compute the pseudospectrum
for each map split paired with itself (i.e., an “auto-split” pseudospectrum). This second
quantity contains the same signal as the first average in expectation, but with an additive
noise bias equal to the noise power spectrum in that split. Subtracting the signal-only
model from the “auto-split” pseudospectrum results in a measurement of the noise-only
model. We then reduce statistical scatter by filtering the measured noise pseudospectra
with a fourth-order Savitzky-Golay filter.

Because the data from which we measure the noise pseudospectra have been filtered with
the Fourier-space filter, they represent mode-coupled noise power spectra after applying the
two-point Fourier-filter transfer function. However, following section 4.1.2, the covariance
matrix recipe calls for mode-coupled noise power spectra after applying the four-point Fourier-
filter transfer function. Thus, we first apply the inverse of the mode-coupling matrix for
the two arrays’ and splits’ effective noise masks and then divide-out t

α2pt

ℓ to get “unfiltered”
11The average over 12 pairs is correct regardless of whether the frequency-polarization legs in the pair are

different or the same. In the latter case, it is true that we double computation, but our code is simpler and
easier to read.
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noise power spectra. Then, like the signal spectra, we apply t
α4pt

ℓ and convert back into noise
pseudospectra using the same mode-coupling matrix.

4.1.5 Pseudospectrum to power spectrum covariance

The preceding ingredients produce pseudospectrum covariance matrix blocks at the array,
split, and polarization level via equation (4.2). To convert to the power spectrum covariance
matrix, we apply the matrix operation that transforms from pseudospectra to power spectra.
For a given measured pair of arrays (IJ) and polarizations (XY ), the power spectrum
estimator (in symbolic form) is given by:

D̂XY
IJ = UXY

IJ PM−1,XY
IJ

1
N{ij}

∑
{ij}

ˆ̃CXY
IiJj

≡ QXY
IJ

∑
{ij}

ˆ̃CXY
IiJj

.
(4.4)

Reading from right to left, ˆ̃CXY
IiJj

is the vector over ℓ of the pseudospectrum for the split-pair
ij, and the sum is over the N{ij} = 12 split-pairs for which i ̸= j. As in section 4.1.4,
this aspect of the power spectrum pipeline ensures the estimator contains no noise bias,
regardless of the noise model [64, 70]. The matrix QXY

IJ is composed12 of the inverse mode-
coupling matrix, M−1,XY

IJ , a “weighting-binning” matrix, P, which transforms Cℓ → Dℓ, with
Dℓ ≡ ℓ(ℓ + 1)/(2π)Cℓ and bins the resulting D vector over ℓ, and UXY

IJ , which is the power
spectrum pipeline’s implementation of the two-point Fourier-filter correction. This correction
is more precise than that described in section 4.1.2: it is based on more simulations and
occurs at the binned power spectrum level, as opposed to the unbinned power spectrum
level. We calculate Q explicitly. Because the covariance is bilinear, we have for a block of
the binned power spectrum covariance matrix, Σbb′ :

ΣW X,Y Z
IJ,P Q,bb′ =

∑
ℓ

Qbℓ

∑
ℓ′

Qb′ℓ′
∑
{ij}

∑
{pq}

Σ̃W X,Y Z
IiJj ,PpQq ,ℓℓ′ . (4.5)

Equation (4.5) defines our “analytic” covariance matrix.
For convenience, we briefly define a more-compact notation of a covariance matrix block.

We combine the polarization pair WX and array pair IJ defining the block of the power
spectrum vector into one index, β. Thus, we may also refer to any element of the binned
covariance matrix as Σββ′,bb′ . We define the block-wise matrix diagonal to be the set of
matrix blocks β′ = β for any bins, and the bin-wise matrix diagonal to be the bins b′ = b

for any block; the main matrix diagonal is the set of elements for which β′ = β and b′ = b.
We may also identify series of off-diagonal blocks (e.g., β′ = β + 1) and off-diagonal bins
(e.g., b′ = b + 1) explicitly.

4.1.6 Comparison to previous methods

This analytic covariance is closely related to previous analyses’ prescriptions. The analytic
part of the “homogeneous” ACT matrix uses the public power spectrum covariance matrix

12Q nearly exactly reproduces the ACT DR6 power spectrum pipeline. It omits, however, some small,
additive corrections made to the power spectrum that cannot be easily incorporated into Q, see section 4.2.
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code pspy, that like NaMaster13 provides convenient functions that assume homogeneous noise
weighting (i.e., v(x) ≡ w(x) in equation (4.1)). Ref. [51] found that neglecting survey depth in
the effective noise masks underestimates Planck covariance matrices by ∼ 10%, while ref. [7]
found such prescriptions underestimate ACT DR6 covariance matrices by up to ∼ 20%. In
addition to assuming homogeneous survey depth, the homogeneous matrix uses the standard
NKA, the ACT DR4-style Fourier-space filter correction (see the discussion in section 4.1.2),
a simpler fiducial noise power spectrum pipeline that averages the spectra over split-crosses
and uses binning instead of an ℓ-dependent filter to smooth the measurements, and it sets
cross-array noise spectra to be positive and cross-polarization noise spectra to be 0. Further
implementation details for the homogeneous matrix are available in the pspy documentation.14

The closest analytic covariance prescription to our “inhomogeneous” matrix is in ref. [62],
where the inhomogeneous survey depth is accounted for in the effective noise masks, and
thus the distinct signal and noise coupling terms are included as in equation (4.2). For
treating the signal spectra, ref. [62] used the traditional NKA; for the noise, an “approximate”
treatment of its non-white character is noted. Close inspection of ref. [61] and ref. [62] shows
this treatment was equivalent to the INKA, and thus no more approximate than their signal
treatment under a MASTER-like data model. Finally, that analysis uses a mix of arithmetic
and geometric symmetry of spectra, unlike our use of only arithmetic symmetry, although this
difference is minor. The main difference between ref. [62] and this paper are in the properties
of the ACT data in comparison to Planck. The Planck noise power spectra, though not
perfectly white, are broadly smooth and within ∼ 30% of white for scales smaller than ℓ ∼
500 (200) for temperature (polarization) [51, 62]. Due to the atmosphere, the ACT noise
power spectra are steeper, and their 1/f character persists to smaller scales, especially in
temperature. Additionally, Planck noise adheres more closely to the MASTER data model,
lacking the spatially-dependent stripy noise patterns that are prominent in ACT [see e.g., 58].

4.2 Simulations

We complement the analytic power spectrum covariance matrix of section 4.1 with a Monte
Carlo covariance made from a full-dataset simulation ensemble. We generate this ensemble
of simulations following the full ACT data model of equation (3.4) and appendix A. This
Monte Carlo covariance serves as a noisy estimate of an unbiased covariance matrix that
incorporates the full data realism.

The signal components of the simulations are drawn from the same fixed signal model as
in section 4.1. The processing of the signal components includes an additive correction for
TE power spectra due to the Fourier-filter that cannot be incorporated into the U matrices
from section 4.1.5. As a baseline, we draw the noise components from the tiled noise model
(see equation (3.3)). Between the directional wavelet model and the tiled model, only the
tiled model supports simulations beyond the smallest scale of the DR6 power spectrum
(ℓmax = 8, 500). In particular, the noise simulations are drawn at half the resolution of the
data — 1 arcmin pixels — supporting scales as small as ℓmax = 10, 800. Further details
are provided in appendix C and ref. [7].

13https://github.com/LSSTDESC/NaMaster.
14https://pspy.readthedocs.io/en/latest/scientific_doc.pdf.
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Including signal and noise, in our baseline ensemble we draw 1,600 realizations of
each array, polarization, and split. Each simulation is passed through the power spectrum
reconstruction pipeline, and we use the ensemble of simulated spectra to construct the Monte
Carlo covariance. We note that the simulations do not include two small corrections made to
the data: beam leakage, because its uncertainty is propagated into the covariance analytically;
and aberration due to Earth’s motion with respect to the CMB rest frame, because this is
a second-order effect at the covariance level. This ensemble is sufficient to constrain each
element of the covariance matrix to ≲ 3.5%; nevertheless, drawing enough simulations to
ensure a well-conditioned, non-singular Monte Carlo matrix is not feasible.

4.3 Simulation-based correction

The goal of the covariance pipeline is to produce an accurate, yet tractable, covariance matrix
for the ACT DR6 power spectrum. While the Monte Carlo matrix is not limited by the
approximations of the analytic matrix, drawing enough simulations to reach convergence is
prohibitively expensive. Thus, we start by assuming the analytic matrix is a good, if slightly
biased, estimate of the true covariance matrix. Then, we use the Monte Carlo matrix to correct
the analytic matrix where they measurably differ. This procedure — optimizing between a
biased, analytic covariance estimate and a noisy, unbiased Monte Carlo covariance estimate —
is referred to as matrix “shrinkage” or “conditioning” and is a well-studied problem in applied
statistics [see e.g., 48, 49, 67]. Recently, ref. [8] and ref. [52] reviewed several covariance matrix
shrinkage methods for cosmology. In this paper, we opt for a new, simple shrinkage method.

Our method relies on two core assumptions: the eigenbases of the analytic and Monte
Carlo covariances are close, and the ratio of their eigenspectra are smooth. Defining the
matrix exponent of the covariance as:

Σp ≡ OEpOT , (4.6)

where O is orthogonal and E is diagonal, we can construct a rotated Monte Carlo covari-
ance matrix:

ΣR ≡ Σ− 1
2

A ΣM (Σ− 1
2

A )T

= OAE− 1
2

A (OT
AOM )EM (OT

M OA)E− 1
2

A OT
A

≈ OA(EM E−1
A )OT

A,

(4.7)

where M (A) denotes the Monte Carlo (analytic) matrix, and we have used OA ≈ OM .
Then, EM E−1

A is a diagonal matrix populated by the ratio of the Monte Carlo and analytic
eigenspectra. If this ratio is approximately flat, then ΣR is close to diagonal, and its elements
preserve the original ordering of the data vector.

We find these approximations perform well, but are not exact. Specifically, while ΣR

is diagonally-dominant with diagonal values of O(1), the bin-wise diagonals (b′ = b) of its
off-diagonal blocks (β′ ̸= β) are non-zero at the few-percent level. This motivates the following
correction procedure: for each block (i.e., for each ββ′ pair), we extract the corresponding
bin-wise diagonal of ΣR and smooth it using a Gaussian process with a radial basis function
(RBF) kernel. The fit involves optimizing two hyper-parameters of the Gaussian process —
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Figure 5. Top: the main diagonal of the ΣR matrix defined in equation (4.7), for the PA5 f090 x PA5
f090 EE block. If the analytic and Monte Carlo covariance matrices are sufficiently close, this is approx-
imately the ratio of the eigenvalues of the two matrices. Bottom: the bin-wise diagonal of the covariance
between the PA5 f090 x PA5 f090 EE and PA5 f090 x PA5 f150 EE blocks. In both cases, the 1σ scat-
ter of the Monte Carlo estimates are shown, with a Gaussian process fit using data above the scale-cut,
indicated by the grey region. The Gaussian processes do not account for correlations between bins.

the characteristic amplitude and length scale of any coherent features in the data — given the
observed data and its errors. In this case, “data” refers to the values of the ΣR diagonal, and
Gaussian errors on ΣR are estimated directly from the scatter of the simulations. Example
Gaussian process fits are shown in figure 5. We only perform the fit over ℓ-bins preserved by our
pre-unblinding scale cuts, discussed in section 2.15 Finally, for each block, we set all bin-wise
off-diagonal elements (b′ ̸= b) to zero. This procedure yields the “corrected” matrix, ΣR,corr.
Finally, we rotate back to the original basis, yielding the final corrected covariance matrix:

Σcorr ≡ Σ
1
2
AΣR,corr(Σ

1
2
A)T . (4.8)

This procedure has no free parameters and is fast to compute.
15The noise simulations entering the Monte Carlo covariance matrix have excess power at scales larger than

the scale cuts, leading to the discrepant large values at low ℓ in figure 5, that would otherwise bias the fits.
Also see the discussion in section 5.2.
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Figure 6. Below-left of main diagonal: the correlation matrix for the Monte Carlo covariance. Most
elements are zero-mean statistical noise. Above-right of main diagonal: the correlation matrix for the
corrected analytic covariance from the inhomogeneous prescription. We apply the data and scale cuts
from section 2, and restrict to the TT , TE, and EE polarization pairs that enter the DR6 likelihood.
As noted in the text, additional correlation from non-Gaussian sky components and beam uncertainty
are discussed in the ACT DR6 power spectrum paper and are not plotted here.

5 Results

Our semi-analytic covariance matrix relies on several approximations unique to the ACT
DR6 data. In this section, we evaluate the accuracy of the pipeline by comparison to the
Monte Carlo covariance matrix. Since we take the Monte Carlo matrix to be an unbiased
estimate of the true covariance, we also probe its internal robustness.

5.1 Covariance matrix pipeline validation

Here we show that the semi-analytic covariance matrix achieves excellent agreement with the
Monte Carlo matrix, and that the size of the corrections applied in section 4.3 are small.

The structures of both the Monte Carlo matrix and the semi-analytic covariance matrix
are dominated by the bin-wise diagonals (b′ = b) across all diagonal and off-diagonal blocks
(all ββ′ pairs). We demonstrate this visually by plotting the correlation matrix of both
matrices in figure 6. For a generic covariance matrix Σij with elements indexed by ij, the
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Figure 7. First row: main diagonal (β′ = β, b′ = b) of the EE part of the covariance matrix, Σ.
The data and scale cuts from section 2 result in 10 EE array-pairs, or blocks, each containing 49
bins. The boundaries of these blocks along the main diagonal are denoted by the alternating grey and
white bands. Second row: the bin-wise diagonal (b′ = b) of the first off-diagonal blocks (β′ = β + 1) of
the EE part of the correlation matrix, ρ. There are only 9 such blocks. In both cases, the matrix
contains significant structure and dynamic range. Bottom left: the correlation matrix after averaging
over all 100 blocks of the EE part of the covariance matrix. As in figure 6, below-left of the main
diagonal shows the Monte Carlo values, and above-right shows the semi-analytic, inhomogeneous
matrix result. The diagonal of the correlation matrix has been set to zero to enhance visibility of the
off-diagonal elements. Bottom right: a direct comparison of the first off-diagonal bins (b′ = b + 1) in
the average correlation matrix reveals ∼ 5%-level correlations in the simulations that are captured by
the semi-analytic covariance.
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Figure 8. Ratios of the diagonal of the Monte Carlo covariance to the diagonal of the inhomogeneous
analytic covariance, for a selection of array and polarization spectra. The PA5 f090 x PA6 f090
TT spectra are the most signal-dominated; the PA6 f150 x PA6 f150 EE spectra are the most
noise-dominated. The grey shaded regions represent data not included in the likelihood from the scale
cuts. The grey dashed line represents the amount of the observed excess Monte Carlo variance due to
excess noise power in the simulations rather than a deficiency of the analytic covariance pipeline. It
is an inhomogeneous analytic covariance matrix, but substitutes the data with a simulation when
measuring the fiducial noise power spectra (see the discussion in section 5.2).

correlation matrix is defined as:

ρij ≡ Σij/
√

ΣiiΣjj . (5.1)

Figure 6 shows the similarity between the off-diagonal structures of the Monte Carlo and
semi-analytic correlation matrices. We can easily discern the blocks associated with the 15
TT , 16 TE, and 10 EE cross-array spectra in the data vector by their prominent bin-wise
diagonals for each block.

We provide a more detailed view of the matrix structure in figure 7. The main diagonal
of the EE blocks of Σ shows considerable dynamic range in simulations, spanning three
orders of magnitude. Likewise, the bin-wise diagonals (b′ = b) of the first off-diagonal EE

blocks (β′ = β + 1) of the correlation matrix also vary from ∼ 80% to near-zero correlation
depending on the bin. In either case, the structures are well-modeled by the semi-analytic
covariance. Finally, we average over all 100 EE blocks in the covariance, elucidating that

– 21 –



J
C
A
P
0
5
(
2
0
2
5
)
0
1
5

1600 1700 1800 1900 2000 2100 2200 2300
2

Analytic Covariance

Inhom., 2 = 1812.8 ± 1.5
Homog., 2 = 2039.0 ± 1.7
Expected distribution, 2(df = 1763)

1600 1700 1800 1900
2

Semi-Analytic Covariance

Inhom., 2 = 1764.7 ± 2.3
Homog., 2 = 1767.3 ± 2.3
Expected distribution, 2(df = 1763)

2 Distribution of Simulations (TT, TE, EE)

Figure 9. Distributions of the d2
sim (equation (5.3)) statistic for the simulated data vectors using

different covariance matrices, after applying scale cuts and restricting to TT , TE, and EE spectra.
Left: using the inhomogeneous and the homogeneous uncorrected analytic covariance matrices, and
evaluating all 1,600 simulations in our ensemble. Right: after the simulation-based correction (based on
1,000 simulations), and evaluating d2

sim using the remaining 600 simulations. In both cases, the black line
gives the expected distribution given the number of degrees-of-freedom (the length of the data vectors).

adjacent bins (b′ = b + 1) are also correlated, though only at the few-percent level. Otherwise,
farther bin-wise off-diagonals (|b′ − b| ≥ 2) are broadly consistent with noise for all blocks.
We quantify that assessment as follows. Assuming zero population correlation, the variance
of the Monte Carlo estimator for ρij is:

⟨ρ2
ij⟩ ≈ 1/nsim (5.2)

in the limit of a large number of simulations, nsim [41].16 For nsim = 1, 600, we would expect
ρ̄ij = 0 and σ(ρij) = 2.5%. We find ρ̄ij = −0.01% and σ(ρij) = 2.50% (rounded to two
decimals) for the |b′ −b| ≥ 2 off-diagonals of the entire correlation matrix (figure 6), consistent
with statistical scatter about zero correlation. Accordingly, the semi-analytic matrix predicts
negligible correlation for these elements. In summary, the structures of the Monte Carlo
and semi-analytic covariance matrices are consistent.

In addition to their off-diagonals, we compare a subset of the Monte Carlo and analytic
matrix diagonals in figure 8. Here we are evaluating the uncorrected, inhomogeneous analytic
covariance that results from section 4.1 alone. We do so to check the magnitude of any pipeline
approximations breaking down, before the simulations correct for those approximations. As in
figure 7, we again find percent-level agreement with the Monte Carlo matrix within the DR6
scale cuts. This finding holds across high and low signal-to-noise array-crosses (PA5 f090 x
PA6 f090 vs. PA6 f150 x PA6 f150) and polarizations. In comparison to Planck [see appendix

16While the Monte Carlo covariance is Wishart distributed, the Monte Carlo correlation is more complicated.
However, in this limit, they give the same result.
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C.1.4 of 62], we do not find clear evidence for coherent ∼ 10%-level NKA violations; however,
our bin resolution makes this determination difficult. The most significant deviations are seen
at large scales in low signal-to-noise polarization blocks. As noted in section 4.3, however,
these are due to excess power in the simulations entering the Monte Carlo matrix, not a
breakdown of the analytic matrix pipeline. We discuss this aspect of the noise simulations
further in section 5.2 and appendix C.1. Otherwise, we conclude that the Monte Carlo and
analytic matrix diagonals are consistent at the percent-level even prior to the simulation-based
correction. For example, of the diagonals shown in figure 8, the largest mean difference
between the Monte Carlo and analytic covariance is 2.6% (PA6 f150 EE), of which 0.6%
is due to excess power in the simulations.

Lastly, we test the uncorrected and corrected analytic covariance matrix by aggregating
the χ2 distribution of realistic simulations. For each simulation in the ensemble, we compute
the squared Mahalanobis distance [55] of each simulation:

d2
sim ≡ (Ĉsim − Cth)T Σ−1(Ĉsim − Cth), (5.3)

where Ĉsim are the reconstructed data vectors of the simulation, Cth are the theoretical data
vectors assuming the fiducial signal spectra of section 4.1.3, and Σ is the trial covariance
matrix. If the Ĉsim are normally distributed with mean Cth and covariance Σ, then d2

sim are χ2

distributed with degrees-of-freedom given by the size of the vector. This test is comprehensive
as d2

sim is sensitive to the entire covariance, and Ĉsim is free from analytic approximations.
Results are shown in figure 9. For the uncorrected analytic covariance, we find our new
inhomogeneous matrix leads to a simulation χ2 distribution that is ∼ 2.8% greater than
nominal. In other words, on average the uncorrected analytic covariance underestimates
the error-bar of simulations by only ∼ 1.4%. This is a significant finding: despite the ways
in which the DR6 data and processing break the assumptions of the MASTER covariance
framework discussed in section 3, an approximate, MASTER-compatible prescription can
limit bias to the percent-level. Consistent with the findings of ref. [7], the homogeneous matrix
is ∼ 15.7% discrepant with simulations. Importantly, after applying the simulation-based
correction of section 4.3 to each matrix, the resulting χ2 distributions become consistent
with the expected distribution at the ∼ 0.3%-level.17 Thus, our simulation-based correction
method is effective, even for ∼ 16%-level mismodeling of the input analytic covariance.
We conclude that the semi-analytic covariance matrix for ACT DR6, whether using the
inhomogeneous or homogeneous prescription, achieves satisfactory performance in the context
of the challenging DR6 data properties.

5.2 Monte Carlo matrix validation

The results of section 5.1 assume the Monte Carlo covariance represents an unbiased estimate
of the true covariance. Here, we investigate the validity of this assumption, focusing on the
accuracy of the noise contribution. We briefly compared the recovered noise power spectra

17To obtain unbiased distributions, the covariance matrix and simulations in equation (5.3) must be
statistically independent. We achieve this for the semi-analytic covariance matrices by using only 1,000
simulations to correct the covariance, and the remaining 600 to evaluate the d2

sim statistics. We confirmed
that the simulation-based correction is converged for the reduced number of simulations.
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between simulations and the data in figures 5 and 8, noting that the large-scale, polarized
noise power spectra in simulations tend to be larger than those of the data. The effect on the
covariance is captured by the grey dashed line in figure 8, showing the uncorrected analytic
covariance where, rather than measuring the fiducial noise power spectrum from the data, we
replace the data with a noise simulation in section 4.1.4. This accounts for the mismatch
between the Monte Carlo and analytic matrix that is due only to the simulation noise power
spectra not matching that of the data, rather than due to a breakdown of the covariance
pipeline approximations. We see that most of the low-ℓ Monte Carlo excess is due to this issue
in the noise simulations, and is larger for covariance blocks that are more noise-dominated.
This bias has a negligible effect given the DR6 scale cuts; at most, the error-bars of the ∼3
largest-scale EE bins above the scale cuts are ∼ 1 − 2% inflated. We discuss the origin of
this issue in appendix C.1, and note it can be improved at larger scales for future analyses.

To attempt to quantify the importance of the spatially-varying anisotropy pattern, which
cannot be easily accommodated in the MASTER covariance framework, we compare Monte
Carlo matrices constructed from both ACT noise models. This test is well-motivated: the
tiled model assumes the noise is diagonal in 2D Fourier space (such that the noise is close to
diagonal in spherical harmonic space), whereas the directional wavelet noise model assumes
long-range correlations in 2D Fourier space [for more detail, see 7]. We draw an ensemble of
600 directional wavelet-based simulations, and evaluate their χ2 distribution against the tile-
based semi-analytic covariance matrix, finding good agreement: the wavelet-based ensemble
is only ∼ 0.7% different for the TT , TE, and EE spectra. A stronger test selects only for the
TB, EB, and BB spectra, since these spectra are noise-dominated. Notably, we find a similar
level of agreement: ∼ 0.6%.18 Thus, we cannot detect any significant change in the Monte
Carlo covariance, even when allowing for long-range noise correlations over angular scales.

5.3 Discussion of semi-analytic matrix performance

Here, we discuss why both the homogeneous and inhomogeneous prescriptions capture the
covariance equally well after applying the simulation-based correction. The right panel
of figure 9 suggests that the assumptions of our simulation-based correction method are
reasonably met in both cases: that a rotated Monte Carlo covariance matrix, ΣR (as defined
in equation (4.7)), is approximately diagonal, and that its diagonal is approximately smooth.
We test these predictions in figure 10. As expected from figure 9, the inhomogeneous analytic
prescription underestimates the approximate Monte Carlo eigenspectrum by a few percent,
as measured by the main diagonal of ΣR, and in a smooth fashion easily handled by the
simulation-based correction. The homogeneous analytic prescription underestimates the
approximate Monte Carlo eigenspectrum by ∼ 10 − 20%, although with some prominent
features extending as high as ∼ 30%. Evidently, these features are still easily smoothed
by the Gaussian processes in section 4.3.

As discussed in section 4.3, figure 10 reveals ΣR is not perfectly diagonal within statistical
scatter: its off-diagonal blocks (β′ ≠ β) contain percent-level correlations along their bin-wise

18In both these cases, we apply the lower bandlimit (ℓmax = 5, 400) of the directional wavelet model to both
the simulations and the covariance matrix. Doing so to a set of tiled simulations yields the same ∼ 0.7%
(for T T , T E, and EE) and ∼ 0.6% (for T B, EB, and BB) difference, indicating that even these small
discrepancies are due to the bandlimit, not the noise model.
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Figure 10. Top: comparison of the rotated Monte Carlo matrices, ΣR (equation (4.7)), when
using the inhomogeneous (blue) or homogeneous (orange) analytic covariance matrices to perform
the rotation. The covariance main diagonal elements are close to one, while the correlation bin-wise
diagonals are small, but nonzero, for off-diagonal blocks. The matrix values can be directly compared
to the first two rows of figure 7, showing the suppressed structure and dynamic range of ΣR relative
to Σ. Bottom left: the correlation matrix after averaging over all 100 blocks of the EE part of ΣR.
Below-left (above-right) of the main diagonal shows the result using the homogeneous (inhomogeneous)
analytic matrix. The diagonal of the correlation matrix has been set to zero. Bottom right: the first
off-diagonal bins (b′ = b + 1) in the average ΣR EE correlation matrix are consistent with each other
and with zero for each analytic prescription, also unlike in figure 7.
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diagonals (b′ = b). As expected, these off-diagonals are slightly more pronounced for the
homogeneous matrix prescription, although still small. In either case, they are very smooth,
and are thus easily fit by a Gaussian process (we explore the importance of accounting for these
small off-diagonals in appendix D). Most importantly, for either analytic prescription, ΣR

contains significantly less structure and dynamic range than the raw covariance or correlation
matrices in figure 7. Moreover, the bin-wise off-diagonal (b′ = b + 1) correlations, which are
present at the ∼ 5%-level in the raw correlation matrix in figure 7, are absent for ΣR, again
regardless of the analytic prescription. Therefore, while the core assumptions motivating ΣR

are not perfect, they are good enough to enable our simple simulation-based correction scheme.
Nevertheless, a covariance structure dominated by block-diagonals does not guarantee

satisfactory performance when applying any simulation-based matrix correction. For example,
a conceptually similar simulation-based correction method to that presented in section 4.3
is to assume that the Monte Carlo and analytic matrices share correlation matrices (ρij)
rather than eigenbases. The correction then takes the form of reweighting the analytic
matrix diagonal using the Monte Carlo matrix while preserving its correlation matrix. Such
a scheme was used in WMAP [72] and was suggested by ref. [35]. We also tested this
method, where we performed the reweighting of the matrix diagonal using the same Gaussian
process smoothing as we developed in section 4.3. We found this simulation-based correction
method did not perform as well. Using our inhomogeneous analytic covariance, the corrected
matrix resulted in a χ2 distribution of simulations (as in the right panel of figure 9) that
remained ∼ 1.7% too high, while using the homogeneous analytic covariance resulted in a
distribution that remained ∼ 4.9% too high. Therefore, we conclude that the Monte Carlo
and analytic covariance do not share exact correlation structures; rather, the assumption
of a shared eigenbasis is more robust.

While not critical to our covariance validation, for the interested reader we also investigate
the effect of point-source holes in the analysis mask (see figure 1) on the covariance matrix
in appendix E.

6 Conclusion

We have developed a new power spectrum covariance matrix pipeline for the ACT DR6 data
in response to the challenge the data pose to the MASTER covariance framework. While the
resulting inhomogeneous prescription is similar to that presented in Planck [61, 62], unlike
Planck the ACT data do not conform to the data model required in MASTER. Through our
use of different effective spatial weights for signal and noise, we also depart from existing public
covariance implementations. We find that our pipeline yields an analytic covariance matrix
for the ACT DR6 data that is accurate to within ∼ 3% of a Monte Carlo covariance that
incorporates realistic properties of the ACT data. While we observe ∼ 16%-level differences
between an analogous homogeneous matrix and the Monte Carlo matrix, both analytic
matrices achieve sub-percent agreement with the Monte Carlo covariance after applying a new
simulation-based correction method. In comparison, a common correction method assuming
that the analytic correlation matrix is accurate, while only correcting the covariance diagonal,
results in biases as large as ∼ 5%. Our central result is that a semi-analytic covariance using
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our simulation-based correction and either the inhomogeneous or homogeneous prescriptions
is well-suited for use in the ACT DR6 likelihood.

This work has clarified the mechanisms behind the ∼ 16%-level discrepancies between
the Monte Carlo and the homogeneous analytic covariance matrix. Accepting simulation-
based corrections of that magnitude, without understanding what is driving them, may
have limited our confidence in the final covariance matrix. Instead, we understand most of
the salient features of the simulations at the covariance level: by making a set of a priori
well-motivated changes to the pipeline, summarized in section 4.1.6, we achieve a discrepancy
between the analytic and Monte Carlo covariance of less than 3%. This gives us sufficient
confidence in the simulations to condition the homogeneous analytic covariance, even for
corrections as large as ∼ 16%.

This work has implications for future large-aperture CMB experiments, such as the Simons
Observatory (SO). A change to the map-based noise properties, or a change in power spectrum
bin size, could result in a noticeable difference in performance between the homogeneous and
inhomogeneous prescriptions, even after attempts at matrix conditioning. The homogeneous
prescription is also more reliant on a well-converged Monte Carlo covariance, so this new
prescription may allow for a smaller simulation ensemble. Between this new analytic prescrip-
tion and continued simulation development, we anticipate this power spectrum covariance
matrix will continue to meet requirements for next-generation CMB science programs.
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northern Atacama, and the local indigenous Licanantay communities whom we follow in
observing and learning from the night sky.

Some of the results in this paper have been derived using the healpy and HEALPix
package [33, 74]. Other software used in this paper include the following: astropy [4–
6], cython [10], ducc (https://gitlab.mpcdf.mpg.de/mtr/ducc), h5py [17], libsharp [66],
matplotlib [42], mnms [7], numba [46], numpy [36], pyfftw [32], pyyaml (https://pyyaml.org/),
and scipy [73].

A More details on data model

We presented the ACT data model in section 3.1; for brevity, we omitted some pieces that
we document here. These pieces do not fundamentally change the data description, but do
complicate our map-level simulation somewhat beyond what is prescribed in equation (3.4).
The simulations in section 4.2 follow the additional steps of this section.

The beam-convolved sky signal defined in equation (3.2) does not exactly correspond to
the signal in the ACT maps. Instead, optical and readout inefficiencies result in an overall
calibration error in the maps, and the map digitization — or “mapmaking” — introduces
a pixel window function:

s = AF†XpFYBS
1
2 ηh

s , (A.1)

where F†XpF applies a pixel window function matrix Xp, which is diagonal Fourier space, to
the maps, and A is a diagonal matrix containing the observational efficiency factor for each
array and polarization. We account for the map noise “as is,” in that equation (3.3) models the
noise in the map products themselves, and so it is arbitrary whether we include the calibration
or pixel window in the noise model as long as we are consistent. We opt to exclude them.

As discussed in section 3.1, after the ACT maps are made, they are further processed as
part of the power spectrum estimation pipeline (the ACT DR6 power spectrum paper will
provide a more detailed explanation). In section 3.1, we omitted two steps in that processing.
Firstly, measurement of the ACT observational efficiency in both temperature and polarization
is made through spectrum-level comparisons against Planck. These corrections are defined
and applied at the map level. In terms of our data model from section 3.1, this looks like
constructing A−1 and applying it to m: A−1m. Next, the pixel window function is divided
out in Fourier space. In fact, because both the pixel window function and the Fourier filter are
diagonal in Fourier space, both steps are performed simultaneously. Importantly, since these
operations are slightly non-local in map space, prior to performing them the maps are masked
with a broad, apodized sky mask which eliminates bright galactic regions and noisy pixels near
the edge of the ACT footprint. Altogether, this applies the following matrix to our calibrated
map model: F†Xf X−1

p FWk. Here, Wk is the sky mask applied before the Fourier operations,
Xp is the pixel window function, and Xf is the pickup filter in Fourier space. Together with
applying the analysis mask (W) as discussed in section 3.1, we have the following data model
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of the processed ACT maps (again, in the case of the “tiled” noise model):

mi → WF†Xf X−1
p FWkA−1mi

= WF†Xf X−1
p FWkF†XpFYBS

1
2 ηh

s

+ WF†Xf X−1
p FWkA−1σiYN

1
2
i Y†ΩT †F†N

1
2

i ηT f
n,i .

(A.2)

This is the full forward model for the DR6 simulated maps discussed in section 4.2.
In practice, equation (A.2) is too cumbersome to work with for the analytic covariance

matrix, so we make further simplifying assumptions. We discussed one in section 3.3: the
approximate noise model (equation (3.10)). Furthermore, since the isotropic noise power
spectrum is measured from the data (see section 4.1.4), we can absorb the map calibration
operation, A−1, into it. Then, for both the signal and noise terms, we assume that after
applying the analysis mask, W, edge effects from the Fourier operations on the Wk-masked
data are indeed negligible, such that we can eliminate Wk from equation (3.4). Finally,
since the pixel window function (and its inverse), Xp, is almost isotropic, and the noise is
already highly anisotropic, we also absorb X−1

p into the isotropic noise power spectrum of the
approximate noise model. In other words, neglecting the anisotropy of X−1

p is a negligible
addition to the data model error already incurred by the approximate noise model. Cancelling
terms leads to the following simplified data model of the processed maps:

mi = W(F†Xf F)YBS
1
2 ηh

s + W(F†Xf F)σiΩ
1
2 YN

1
2
i ηT f

n,i , (A.3)

where Ni is measured after the map processing, and we have placed in parentheses the Fourier-
space pickup filter (the F†Xf F operator). Replacing the Fourier-space pickup filter with an
effective transfer function in harmonic space, as described in section 3.3, yields equation (3.11).

We also show the origin of the Ω
1
2 factor in the effective noise weight when going from

equation (3.9) to equation (3.10). The factor appears in the literature as early as ref. [24],
and recurs throughout the Planck covariance matrices, but its whereabouts have not been
explicitly discussed. A field that follows the model of equation (3.9) has zero mean and is
Gaussian, so its statistics are fully specified by its covariance. This is given by:

⟨nin†
i ⟩ = σiYN

1
2
i Y†Ω⟨ηm

n,iη
m,†
n,i ⟩ΩY(N

1
2
i )T Y†σi

= σiYN
1
2
i Y†Ω2Y(N

1
2
i )T Y†σi

≈ σiΩ
1
2 YN

1
2
i (Y†ΩY)(N

1
2
i )T Y†Ω

1
2 σi

= σiΩ
1
2 YNiY†Ω

1
2 σi,

(A.4)

where the following definitions and properties were used: that ηm
n,i is a white-noise vector in

map space, that Ω
1
2 is a smooth map that nearly commutes with the harmonic operations

in terms like YN
1
2
i Y†, and that Y†ΩY is the identity. The covariance in the last line of

equation (A.4) is the same as that for a field following the model of equation (3.10). Therefore,
fields following equations (3.9) and (3.10) are nearly identically distributed.

– 29 –



J
C
A
P
0
5
(
2
0
2
5
)
0
1
5

B Analytical pseudospectrum covariance matrices

In this section, we derive equation (4.2) and give our expressions for the coupling “spin,” β.
We also motivate our use of an isotropic transfer function to approximately model the Fourier-
space filter, as described in section 4.1.2, and the steps to measure each of its components.

B.1 Covariance matrices

The structure of the pseudospectrum covariance matrix term in equation (4.2) is similar to
that of ref. [62] and ref. [59], but here we provide an explicit derivation for reference. We
work in the temperature-only case, but the derivation is analogous for polarization [see e.g.,
11, 12, 14, 18, for the appropriate substitutions].

We start by defining a few mathematical tools. First, we can write equation (3.5) in
harmonic space as [see e.g., 39]:

ãℓm =
∑
ℓ′m′

Kℓm,ℓ′m′(w)aℓ′m′ , (B.1)

where

Kℓm,ℓ′m′(w) ≡
∫

dxYℓ′m′(x)w(x)Y ∗
ℓm(x). (B.2)

The K matrices have the following property [see e.g., 18]:

Kℓ1m1,ℓ2m2(yz) =
∑

ℓ3m3

Kℓ1m1,ℓ3m3(y)Kℓ3m3,ℓ2m2(z) =
∑

ℓ3m3

Kℓ1m1,ℓ3m3(y)K∗
ℓ2m2,ℓ3m3(z),

(B.3)
where yz is the product of the two masks y and z in map space. Finally, we need the definition
of the coupling matrices, Ξℓℓ′(y, z), from equation (3.6):

Ξℓℓ′(y, z) ≡ 1
2ℓ + 1

1
2ℓ′ + 1

∑
mm′

Kℓm,ℓ′m′(y)K∗
ℓm,ℓ′m′(z). (B.4)

As noted in ref. [39], equation (B.4) can be calculated in terms of the cross-power spectrum
of the masks y and z and the Wigner 3-j symbols in O(ℓ3

max)-time.
Next, consider four instances of an isotropic field, a, and mask, w, that follow the model

of equation (3.8). We label each instance i, j, p, and q. The fields are fully specified by
their cross-power spectra, Cyz

ℓ , where yz is a pair of labels:

⟨ay
ℓmaz

ℓ′m′⟩s = Cyz
ℓ δℓℓ′δmm′ . (B.5)

The pseudospectrum estimator for a pair of these fields (equation (3.6)) is ˆ̃Cyz
ℓ , and the

covariance of i, j, p, and q is:

Σ̃i,j,p,q
ℓℓ′ ≡ ⟨ ˆ̃Cij

ℓ
ˆ̃Cpq

ℓ′ ⟩ − ⟨ ˆ̃Cij
ℓ ⟩⟨ ˆ̃Cpq

ℓ ⟩

= 1
2ℓ + 1

1
2ℓ′ + 1

∑
m,m′

⟨ãi
ℓmãj∗

ℓmãp
ℓ′m′ ã

q∗
ℓ′m′⟩ − ⟨ãi

ℓmãj∗
ℓm⟩⟨ãp

ℓ′m′ ã
q∗
ℓ′m′⟩.

(B.6)
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Because ã is Gaussian, we expand the product of four fields using Wick’s theorem. Also
using the reality of the fields, equation (B.6) becomes:

Σ̃i,j,p,q
ℓℓ′ = 1

2ℓ + 1
1

2ℓ′ + 1
∑

m,m′

⟨ãi
ℓmãp∗

ℓ′m′⟩⟨ãj∗
ℓmãq

ℓ′m′⟩ + ⟨ãi
ℓmãq∗

ℓ′m′⟩⟨ãj∗
ℓmãp

ℓ′m′⟩. (B.7)

Combining with equations (B.1) and (B.5), we get:

Σ̃i,j,p,q
ℓℓ′ = 1

2ℓ+1
1

2ℓ′+1
∑

m,m′

∑
ℓ1m1

Kℓm,ℓ1m1(wi)K∗
ℓ′m′,ℓ1m1

(wp)Cip
ℓ1

∑
ℓ3m3

K∗
ℓm,ℓ3m3

(wj)Kℓ′m′,ℓ3m3(wq)Cjq
ℓ3

+
∑
ℓ1m1

Kℓm,ℓ1m1(wi)K∗
ℓ′m′,ℓ1m1

(wq)Ciq
ℓ1

∑
ℓ3m3

K∗
ℓm,ℓ3m3

(wj)Kℓ′m′,ℓ3m3(wp)Cjp
ℓ3

. (B.8)

Each term like ∑
ℓ1m1 Kℓm,ℓ1m1(wi)K∗

ℓ′m′,ℓ1m1
(wp)Cip

ℓ1
is difficult to compute directly, but if

we assume the NKA, then we can move Cip
ℓ1

out of the sum over ℓ1, yielding:∑
ℓ1m1

Kℓm,ℓ1m1(wi)K∗
ℓ′m′,ℓ1m1(wp)Cip

ℓ1
→ Cip

(ℓ,ℓ′)
∑

ℓ1m1

Kℓm,ℓ1m1(wi)K∗
ℓ′m′,ℓ1m1(wp), (B.9)

where (ℓ, ℓ′) denotes some symmetric function of ℓ and ℓ′ [24]. Finally, combining equa-
tions (B.3), (B.4), (B.8), and (B.9) yields:

Σ̃i,j,p,q
ℓℓ′ = Cip

(ℓ,ℓ′)C
jq
(ℓ,ℓ′)Ξℓℓ′(wiwp, wjwq) + Ciq

(ℓ,ℓ′)C
jp
(ℓ,ℓ′)Ξℓℓ′(wiwq, wjwp). (B.10)

In the case of equation (4.1), we have additive signal (fields s, masks u, and power spectra
S) and noise (fields n, masks v, and power spectra N) that are uncorrelated. Substituting
equation (4.1) for ã in equation (B.7), and expanding into signal and noise, would yield 16
(ip, jq) signal-noise cross terms and 16 (iq, jp) signal-noise cross terms, but assuming the
signal and noise are uncorrelated reduces this to four of each term, in particular:

Σ̃i,j,p,q
ℓℓ′ = Sip

(ℓ,ℓ′)S
jq
(ℓ,ℓ′)Ξℓℓ′(uiup, ujuq) + Sip

(ℓ,ℓ′)N
jq
(ℓ,ℓ′)Ξℓℓ′(uiup, vjvq)

+ N ip
(ℓ,ℓ′)S

jq
(ℓ,ℓ′)Ξℓℓ′(vivp, ujuq) + N ip

(ℓ,ℓ′)N
jq
(ℓ,ℓ′)Ξℓℓ′(vivp, vjvq)

+ Siq
(ℓ,ℓ′)S

jp
(ℓ,ℓ′)Ξℓℓ′(uiuq, ujup) + Siq

(ℓ,ℓ′)N
jp
(ℓ,ℓ′)Ξℓℓ′(uiuq, vjvp)

+ N iq
(ℓ,ℓ′)S

jp
(ℓ,ℓ′)Ξℓℓ′(vivq, ujup) + N iq

(ℓ,ℓ′)N
jp
(ℓ,ℓ′)Ξℓℓ′(vivq, vjvp),

(B.11)

which is equivalent to equation (4.2).
To fully specify our covariance matrix prescription in equation (4.2), we provide the β

mapping from field polarizations to coupling spins in table 2. This follows from the INKA, as
well as the assumption that mask gradients can be neglected [18], such that “−−” couplings
are small compared to “++” couplings.

B.2 More details on Fourier filter

In this section, we first examine the effect of a Fourier-space filter analytically by considering
it in harmonic space, and then discuss how we construct our approximation for the Fourier-
space filter described in section 4.1.2.
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β(AB, CD) AB, CD

00
TT, TT
TT, TP + three permutations
TP, TP + three permutations

0+ TT, PP + one permutation
TP, PP + 3 permutations

++ PP, PP
−− Not used

Table 2. Coupling spins as a function of input field polarizations. P refers to either E or B. Note,
there are 16 possible polarization permutations, and in no case do we use the −− coupling.

A filter applied to fields in Fourier (or harmonic) space has analogous effects on the
power spectrum and covariance matrix as a mask applied in map space. For example, the
different manifestation of the mask at the spectrum (two-point) level and covariance (four-
point) level results in the factor of the mask sky fraction, fsky, in the denominator of the
leading-order power spectrum covariance matrix [43]. To derive a similar effect for a filter,
first consider a filter applied to fields in harmonic space in the absence of any mask. The
field has the following data model:

ãℓm = fℓmC
1
2
ℓ ηℓm, (B.12)

where the filter fℓm can be anisotropic (m-dependent). In expectation, the “pseudospectrum”
of ã is then related to the power spectrum Cℓ as:

⟨ ˆ̃Cℓ⟩ = 1
2ℓ + 1

ℓ∑
m=−ℓ

⟨ãℓmã∗
ℓm⟩ = 1

2ℓ + 1

ℓ∑
m=−ℓ

f2
ℓmCℓ ≡ tℓ,2ptCℓ, (B.13)

where we have defined the two-point isotropic transfer function:

tℓ,2pt ≡ 1
2ℓ + 1

ℓ∑
m=−ℓ

f2
ℓm. (B.14)

The covariance of the pseudospectrum is given by equation (B.7):

Σ̃ℓℓ′ ≡ 2
(2ℓ+1)(2ℓ′ +1)

∑
m,m′

⟨|ãℓmã∗
ℓ′m′ |2⟩ = 2

(2ℓ+1)(2ℓ′ +1)
∑

m,m′

|fℓmfℓ′m′C
1
2
ℓ C

1
2
ℓ′ ⟨δℓℓ′δmm′⟩|2

= 2δℓℓ′

(2ℓ+1)2

∑
m

f4
ℓmC2

ℓ (B.15)

≡ 2tℓ,4ptC
2
ℓ δℓℓ′

2ℓ+1 ,

where we have defined the four-point isotropic transfer function:

tℓ,4pt ≡ 1
2ℓ + 1

ℓ∑
m=−ℓ

f4
ℓm. (B.16)
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Then the covariance matrix of the power spectrum is given by:

Σℓℓ′ = 1
tℓ,2pttℓ′,2pt

Σ̃ℓℓ′ = 2tℓ,4ptC
2
ℓ δℓℓ′

t2
ℓ,2pt(2ℓ + 1) . (B.17)

The filter factor tℓ,4pt/t2
ℓ,2pt has non-trivial behavior depending on the character of fℓm. If

fℓm is actually isotropic — with no m-dependence, like a beam — then tℓ,4pt/t2
ℓ,2pt = 1. If

fℓm is binary — equal only to 0 or 1 — then tℓ,4pt = tℓ,2pt ≡ tℓ and tℓ,4pt/t2
ℓ,2pt = 1/tℓ, where

tℓ ≡ 1/(2ℓ+1) ∑
m fℓm is the average value of fℓm over m. If fℓm has any anisotropy, then it is

less than 1. In this case, we see an analogy to a mask: the covariance matrix increases as 1/tℓ.
When there is a mask in addition to a harmonic-space filter, these expressions become

inexact. The pseudospectrum is then related to the power spectrum as:

⟨ ˆ̃Cℓ⟩ = 1
2ℓ + 1

∑
ℓ′

Cℓ′
∑
mm′

Kℓm,ℓ′m′(w)K∗
ℓm,ℓ′m′(w)f2

ℓ′m′ . (B.18)

Ordinarily, at this point, the MASTER formalism would use equation (B.4), but if fℓm is
anisotropic, this simplification is no longer possible. To recover the MASTER formalism, we
approximate f2

ℓm as being equal to its isotropic average, raised to some exponent, α2pt:∑
mm′

Kℓm,ℓ′m′(w)K∗
ℓm,ℓ′m′(w)f2

ℓ′m′ → t
α2pt

ℓ

∑
mm′

Kℓm,ℓ′m′(w)K∗
ℓm,ℓ′m′(w), (B.19)

where:

tℓ ≡ 1
2l + 1

∑
m

f2
ℓm. (B.20)

To be sure, the substitution in equation (B.19) is an ansatz meant to approximately capture
the actual expression. The ansatz assumes the effect of the harmonic-space filter is entirely
imparted on the underlying power spectrum of the filtered field, with no effect on the mode-
coupling matrix Mℓℓ′ . Overall, we find this ansatz works quite well, and is independent of
whether equation (B.20) is binned, indicating that there are not significant changes to the
mode-coupling structure. We then have the following for the pseudospectrum:

⟨ ˆ̃Cℓ⟩ =
∑
ℓ′

Mℓℓ′t
α2pt

ℓ Cℓ′ , (B.21)

as discussed in section 4.1.2.
For the pseudospectrum covariance, we go back to equation (B.9), which in the presence

of a harmonic-space filter becomes:∑
ℓ1m1

Kℓm,ℓ1m1(w)K∗
ℓ′m′,ℓ1m1(w)f2

ℓ1m1Cℓ1 → (tα4ptC)(ℓ,ℓ′)
∑

ℓ1m1

Kℓm,ℓ1m1(w)K∗
ℓ′m′,ℓ1m1(w),

(B.22)
where we have made a similar ansatz as equation (B.19), but as it involves a different sum
(over ℓ and m, not just over m), we assign a different exponent to tℓ — α4pt — and we
still use the NKA: (tα4ptC)(ℓ,ℓ′) denotes a symmetric function of t

α4pt

ℓ Cℓ and t
α4pt

ℓ′ Cℓ′ . The
pseudospectrum covariance matrix (equation (B.10)) then becomes:

Σ̃ℓℓ′ = 2(tα4ptC)2
(ℓ,ℓ′)Ξℓℓ′(w2, w2). (B.23)
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Figure 11. Left: fitting the model of equation (B.21) to simulated pseudospectra by optimizing
α2pt. Right: fitting the model of equation (B.24) to simulated Monte Carlo covariance diagonals by
optimizing α4pt. In both cases, the fits are performed (and plotted) after normalizing the model by
the case of α = 0. The model is denoted by f , and the normalized model is denoted by y. Bottom
panels give the residuals relative to the fitted model. The fit only uses scales where tℓ > 0.5; the
excluded large-scales are shaded in grey.

We have made the same assumption that the effect of the harmonic-space filter is only on
the underlying power spectrum and not on the coupling matrix. We find that this ansatz
performs reasonably well, but unlike equation (B.21), we find the binning does matter, and
also find the preferred value of α4pt changes when using an expression for the binned power
spectrum covariance matrix:

Σbb′ =
∑

ℓ

Qbℓ

∑
ℓ′

Qb′ℓ′Σ̃ℓℓ′ = 2
∑

ℓ

Qbℓ

∑
ℓ′

Qb′ℓ′(tα4ptC)2
(ℓ,ℓ′)Ξℓℓ′(w2, w2), (B.24)

where, unlike equation (4.4), here we use a simplified, diagonal U matrix with diagonal equal
to 1/t

α2pt

ℓ , following equation (B.21). These findings indicate that this ansatz is not optimal,
but given our simulation-based correction, it is sufficient.

In reality, our filter lives in Fourier space, not harmonic space, but we follow the setup of
the preceding discussion regardless in building a MASTER-compatible filter approximation.
Since our analysis includes a mask, we fit for each quantity of interest — tℓ, α2pt, and α4pt —
using simulations. We first draw 50 full-sky, white-noise simulations, filter them in Fourier
space, and measure the transfer function template, tℓ, directly via equation (B.13). We have
a prior assumption that tℓ should be smooth, so we can low-pass filter the noisy Monte Carlo
estimate of tℓ to get a better measurement. We use a Savitzky-Golay filter (implemented
in scipy.signal.savgol_filter) with a window length of 100 and a polynomial order of
4. As the basis of our fit for α2pt and α4pt, we next draw an ensemble of 500 simulations
that include masking. These simulations are drawn according to the following data model
for a single scalar field:

a = W(F†Xf F)WkYBC
1
2 ηh, (B.25)
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which, compared to equation (A.2), omits all anisotropic features other than the Fourier
filter (i.e., instrinsic noise anisotropies and the pixel window), but is otherwise realistic. As
mentioned in section 4.1.2, we use a single representative sky mask W (and pre-filter mask
Wk), and only one representative power spectrum C for each of temperature and polarization.
The sky mask W is the average of all effective-noise-weight masks vX

Ii
(defined in section 4.1)

in DR6; the pre-filter mask Wk is the average of all pre-filter masks (one for each array)
in DR6; the power spectra are defined by:

Cℓ =

(ℓ/ℓknee)p + 1 ℓ ≥ ℓcap

(ℓcap/ℓknee)p + 1 ℓ < ℓcap

, (B.26)

where for temperature ℓknee = 3, 000, ℓcap = 300, and p = −4, and for polarization ℓknee = 300,
ℓcap = 100, and p = −4. These spectra were chosen because they roughly resemble the
observed noise power spectra without the Fourier filter. We measure the pseudospectra
and Monte Carlo covariance matrix of the simulation ensemble. To fit for α2pt, we use
our measured tℓ template and optimize equation (B.21), where the mode-coupling matrix
is built using the representative sky mask, against the mean and scatter of the simulated
pseudospectra. To fit for α4pt, we use tℓ and optimize equation (B.24) against the mean and
scatter of the simulated Monte Carlo covariance matrix diagonals. Within equation (B.24),
we use the INKA approximation with arithmetic symmetry (defined in section 4.1), where the
mode-coupling matrix and coupling are both built using the representative sky mask. Results
of those fits for the polarization case are shown in figure 11. The fit for the pseudospectra
(α2pt = 0.792) is excellent, with errors at the sub-percent level. The fit for the binned
power spectrum covariance (α4pt = 0.469) appears consistent given the noisier Monte Carlo
estimates. When the final filter transfer functions — t

α2pt

ℓ and t
α4pt

ℓ — are applied to the
fiducial signal and noise spectra in section 4.1, in cases of polarization cross-spectra, we use
the geometric mean of the temperature and polarization transfer function.

We reiterate our finding that the fits are nearly independent of the mask or power
spectrum used in the simulations. This is why we can use a “representative” mask and
power spectra for all of DR6, and why the simulations ran here add negligible computational
cost compared to the full simulation ensemble in section 4.2. Nevertheless, the procedure
is ad-hoc and could be improved in the future.

B.3 Parameters for fiducial signal spectra

The fiducial signal power spectra used in the analytic covariance matrix (section 4.1.3) and
the simulations (section 4.2) follow the cosmology and likelihood foreground model of ref. [16]
with model parameters given in table 3. Unlike ref. [16], we convert the frequency-dependent
model components into power spectra for each frequency band in DR6 by integrating over
the full array passband rather than using effective frequencies.

C Updates for mnms noise simulations

In this section, we state changes to the noise model implementations of ref. [7] that were
necessary for the dr6.02 maps. A more complete account of the dr6.02 noise properties and
models will be made available with the release of the maps.
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Parameter Description Value
log(1010As) Amplitude of primordial matter power spectrum 3.044
ns Power-law index of primordial matter power spectrum 0.9649
100θMC Acoustic scale 1.04085
Ωbh

2 Physical baryon density 0.02237
Ωch

2 Physical cold dark matter density 0.12
τ Optical depth to reionization 0.0544
AtSZ Amplitude of tSZ power spectrum 2.971
AkSZ Amplitude of kSZ power spectrum 1.6
Ap Amplitude of CIB Poisson power spectrum 7.614
βp Spectral index of CIB Poisson power spectrum 2.2
Ac Amplitude of CIB clustered power spectrum 2.755
βc Spectral index of CIB clustered power spectrum 2.2
Tc Temperature of CIB modified blackbody 9.6 K
ξ tSZ and CIB clustered correlation 0.1
As Amplitude of point source power spectrum 3.700
βs Spectral index of point sources -2.5
AT T

d Amplitude of dust in TT power spectrum 8.83
αT T

d Power-law index of dust in TT power spectrum -0.6
AT E

d Amplitude of dust in TE power spectrum 0.43
αT E

d Power-law index of dust in TE power spectrum -0.4
AEE

d Amplitude of dust in EE power spectrum 0.165
αEE

d Power-law index of dust in EE power spectrum -0.4
AT B

d Amplitude of dust in TB power spectrum 0.012
αT B

d Power-law index of dust in TB power spectrum -0.4
ABB

d Amplitude of dust in BB power spectrum 0.116
αBB

d Power-law index of dust in BB power spectrum -0.4
βd Spectral index of dust power spectrum 1.5
Td Temperature of dust modified blackbody 19.6 K

Table 3. Parameters for the cosmology and likelihood foreground model of ref. [16], which is specified
in terms of Dℓ. The six cosmological parameters above the solid line have a flat frequency dependence.
The foreground parameters below the solid line correspond to a model normalized at 150 GHz and
ℓ = 3, 000 for each component, and are rounded to three decimal places. There are no nuisance
parameters in our model.

In short, there are three main changes with respect to ref. [7]. Firstly, because of a
change to the map pixel window in dr6.02 [see 57], the noise at the edge of the map footprint
increased compared to dr6.01. Thus, in addition to masking observed pixels and pixels with
near-zero crosslinking, we also mask the 10 arcmin bordering the footprint edge, and do not
include them in noise models or simulations. Secondly, as is evident in equation (3.3), the
directional wavelet noise model includes the per-pixel noise standard deviations σi, whereas
these were excluded in ref. [7] for this model. Lastly, we found the PA6 inverse-variance maps
to contain more arcminute-scale structure compared to PA4 or PA5. When used in either
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Figure 12. Ratio of polarization noise pseudospectra between simulations and data for PA6 f150. In
the case of no Fourier-space filter being applied to the simulations or data, the ratio is consistent with
unity to degree scales. Application of the Fourier-space filter to the simulations and data induces a
large noise power excess in the simulations for scales larger than ℓ ≈ 500.

the tiled or directional wavelet noise models, these inverse-variance maps induced broadband
mode-coupling that led to a percent-level but coherent noise power deficit across nearly all
angular scales. We found that smoothing the PA6 inverse-variance maps with a two-arcminute
Gaussian kernel eliminated the mode-coupling with no measurable unwanted side effects.

C.1 Excess large-scale polarization noise power in simulations

The origin of the excess large scale noise power in the simulations is due to the strong noise
anisotropy pattern and the sharpness of the Fourier-space filter. To see how, we start by
noting that in the absence of the Fourier-space filter, the simulated noise spectra agree much
more closely with the data spectra, as is apparent in figure 12. The noise power is greatest
in the poorly cross-linked regions of the ACT scan strategy. As shown in figure 2, in these
regions, the noise power is especially concentrated along the horizontal axis of 2D Fourier
space. The Fourier-filter intentionally masks these modes: this more-optimally weights the
data by cutting out a large fraction of the noise power but only a small fraction of the signal.
However, this feature of the spatially-varying noise anisotropy is difficult to exactly reproduce
in the simulations. If the simulations do not recover the exact noise anisotropy pattern,
then after applying the filter, more noise power may persist in the unmasked modes in the
simulations than in the data. In other words, application of the Fourier-space filter in this
setting induces a mismatch in the per-ℓ average noise power between the simulations and
the data where there was none before. Indeed, we find this to be the case for both noise
models; figure 12 shows the result for the tiled simulations entering the baseline Monte Carlo
covariance. In future work, we will optimize the noise modeling and the Fourier-space filter
to enable accurate Monte Carlo covariance matrices to larger scales than those used in DR6.

D Effect of smoothing diagonals of β ̸= β′ blocks of ΣR

We demonstrate the importance of including the percent-level ΣR off-diagonals in the
simulation-based correction of section 4.3. Specifically, we examine the bin-wise diagonals
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Figure 13. Ratios between the bin-wise diagonal of the Monte Carlo covariance matrix and the
inhomogeneous and homogeneous semi-analytic covariances matrices, for the PA6 f150 x PA6 f150 TE

block-diagonal. Left: in the case that the simulation-based correction only smooths the main diagonal
of ΣR. Right: in the nominal case, where all the bin-wise diagonals of ΣR are smoothed, including
the off-diagonal (β′ ̸= β) blocks.

(b′ = b) of its off-diagonal blocks (β′ ̸= β). The primary effect of neglecting these small
correlations — by erroneously setting them to zero — is shown in figure 13: the amplitudes
of the semi-analytic covariance bin-wise diagonals are too large compared to the Monte
Carlo covariance. Notably, this has only a minor effect on the d2

sim distributions of figure 9:
the distributions have means of 1757.8 ± 2.3 and 1755.7 ± 2.3 for the inhomogeneous and
homogeneous semi-analytic matrices, respectively. Both distribution means are within 0.5%
of the theoretical value of 1763. Nevertheless, large biases in the covariance matrix elements
themselves can be problematic for subsequent analyses that manipulate the data vector
and covariance, for example, by coadding them. Fortunately, figure 13 demonstrates that
accounting for these small off-diagonals in our simulation-based correction results in good
agreement between the Monte Carlo and semi-analytic covariance matrices for both the
inhomogeneous and homogeneous analytic prescriptions.

E Effect of point-source holes on the covariance matrix

Although the results of section 5 suggest that the NKA does not play a significant role in
the ACT DR6 covariance, it is interesting to consider its effect regardless. For instance,
the literature has long recognized the questionable validity of the NKA [e.g., 11, 14, 24],
especially due to analysis mask point-source holes [e.g., 12, 62]. To measure the effect of
the point-source holes, we compare an analytic covariance matrix built using analysis masks
that lack the holes to a matrix using the nominal masks (see figure 1). We do not apply the
Fourier-space filter to the simulations or the data, and thus include no filter-correction transfer
functions. This avoids two complications: as discussed in section 4.1.2, the filter-correction
can inadvertently absorb biases due to the NKA, and the noise simulations do not exhibit a
large power excess at low-ℓ. Compared to the filtered data, however, this does result in an
overall steepening of the polarization noise power spectrum at low-ℓ. Thus, this comparison
provides an upper-bound on the impact of the NKA on the DR6 covariance.
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point-source holes to an analysis mask without point-source holes. For each polarization combination,
the power spectrum variance increases when point-source holes are added to the mask, as expected.

We first confirm our basic intuition that, due to the broadening of the mask power
spectrum, an analysis including point-source holes increases the overall covariance magnitude
in figure 14. The increase is most prominent in large-scale polarization. We then assess how the
performance of uncorrected analytic covariance matrices, as measured against corresponding
simulations, changes due to point-source holes in figure 15. In each case — with and without
point-source holes — we construct a Monte Carlo covariance from the same 600 tile-based
simulations. Thus, as is evident in figure 15, both cases share the same statistical fluctuations,
further facilitating a direct comparison. For the signal part of the covariance, the point-
source holes induce effectively no change in the performance of the analytic matrix: the
holes and no-holes cases are indistinguishable, and both exhibit percent-level agreement
between simulations and the analytic matrix. As discussed in section 5.1, this contrasts with
Planck [51, 62]; however, this is likely due to a combination of the ACT bin-width, the smaller
angular scales probed, and use of the INKA for the signal rather than the traditional NKA.

The point-source holes have their largest effect on analytic matrix performance in the
noise part of the covariance, especially large-scale polarization. We see the Monte Carlo
covariance switches from being greater than, to being less than, the analytic covariance after
adding point-source holes to the analysis mask. Neither effect is obvious in the right column
of figure 8; the only difference with respect to the “holes” case here being the averaging of
signal and noise, and the Fourier-filter. Thus, it is likely that a combination of the shallower
polarization noise power spectra, as well as the Fourier-filter correction’s ability to absorb
NKA-related biases, is operative in the baseline covariance matrix.

Interestingly, for large-scale polarization, even the no-holes case exhibits ∼ 30%-level
discrepancies between the Monte Carlo and analytic matrix, in spite of its smooth analysis
mask. Coupled with the fact that, whether or not we apply the Fourier-space filter, the
polarization noise power spectra are shallower than either temperature noise or signal power
spectra suggests that the approximate noise model of equation (3.10) is breaking down in this
regime in addition to the NKA. We note that the noise anisotropy pattern in polarization is at
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Figure 15. Ratios of Monte Carlo covariance matrix diagonals to analytic covariance matrix diagonals
in the cases of an analysis mask with and without point-source holes. The format is analogous to
figure 8. All results are for PA6 f150. With the exception of large-scale polarization covariance
blocks, the addition of point-source holes to the analysis mask does not significantly downgrade the
performance of the analytic covariance matrix.

least as strong as temperature in the poorly-crosslinked region. As we have shown in the case
of the Fourier-filter, sharp anisotropies in 2D Fourier space can induce non-trivial effects at
the covariance-level, regardless of their source (intrinsic to the noise, or introduced in the map
processing). Further investigation is required to discern to what extent this effect could be
present in the baseline covariance — that is, when including the Fourier-filter. The practical
result of this study is that since future large-aperture surveys, such as SO, will contend with
similar noise properties as ACT, either more work is needed to better analytically account
for the effect of stripy noise properties at the covariance level, or analyses will remain reliant
on Monte Carlo covariance matrices for large-scale polarization.
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