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Abstract — This paper demonstrates the Cardiff behavioral
model based on the large-signal response of a single pole, double
throw switch (SPDT) to realize a tunable reactive termination for
advanced power amplifier architectures operating in the Ka-band
up to 3 watts. The model was developed using a comprehensive
load-pull (LP) characterization dataset comprising 2176 data
points. Subsequently, it was trained to replicate this dataset
with only 44 input data points, achieving an acceptable accuracy
reflected by an NMSE of -33.8 dB.

interpolation Keywords — Cardiff model, Behavioral model,
SPDT, Ka-band, microwave switches.

I. INTRODUCTION

The Orthogonal Load Modulated Balanced Amplifier
(OLMBA) architecture presented by [1], [2] introduces a
reactive component, termed “jX” at the output isolated port.
In the context of an electronically tunable termination, the
jX is employed for active load modulation between the main
signal and the control signal power (CSP) by fine-tuning the
phase and magnitude of the reflected CSP to optimize the
performance.

In the design of an OLMBA, one way of realizing the
tunable reflective termination is to use a switching network that
selects between different reactive components as depicted in
Fig. 1. The characteristics of the switching network, including
the passive and active components, as well as the loaded
reactive component, will determine the final jX termination
introduced to the OLMBA. Hence, an extensive understanding
of the switching cell and its accompanying passive networks
is vital. In literature, the characterization and modeling of
the HEMT devices as switching cells operating at various
frequencies and non-50Ω loads, in linear and compressed
states, has been investigated [3], [4].

Fig. 1. An OLMBA architecture with output isolated port linked to an SPDT
to be introduced to two different reactive components.

This paper, in the first part, describes a high-power,
low-loss Ka-band SPDT designed specifically to realize
a tunable reflective termination for OLMBA applications.
However, the main focus is on extracting a behavioral
model based on LP characterization over input power sweep.
The implemented Cardiff behavioral model mathematics and
further investigation into its interpolation capabilities on
microwave switches demonstrated that a relatively smaller data
set during the measurement could also be sufficient to have a
model with acceptable accuracy below -30 dB.

II. KA-BAND SPDT SWITCH

Various methodologies can be utilized in the design of
SPDT [5], [6]. In this work, a resonating network is designed
to compensate for the degradation of the FET-based switching
devices at the design frequency.

(a)
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Fig. 2. Microphotograph of the fabricated SPDT (a), the schematic of the
same SPDT (only arm1 depicted as it is symmetric design) (b).
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Fig. 3. Characterization of the SPDT in ON and OFF conditions; Small signal
measurement results (b), large signal measurement results at 30.5 GHz (c).

The designed SPDT employs the WIN Semiconductors’
NP12-01 GaN-on-SiC HEMT structured technology as its
switching cells. Due to the absence of a foundry model
for the switching cells, these components were initially
characterized individually, and the extracted measurement data
were subsequently utilized in the SPDT design.

As shown in Fig. 2a, the RF input is a common port
for the two outputs that operate complementarily; while one
port is active, the other is inactive. The main topology is a
reflective shunt design at which the signal entered into the
inactive port will be directed to the ground by HEMT devices
under ON conditions (low impedance). Such a configuration
is expected to enhance low insertion loss behavior. Due to
the switching cells’ limitation at higher frequencies, especially
during the OFF condition, a resonant network is designed
preceding the switching cell in parallel branches. Each branch
employs two switching cells to enhance the device’s isolation
characteristics. Fig. 2b depicts the schematic diagram for one
arm of the SPDT. Due to the symmetry of the design of the
arm1 and arm2, only one arm is depicted in the schematic.

However, each arm has non-symmetrical parallel branches.
Fig. 3a and 3b illustrate the SPDT’s responses under the
small and large signal characterizations. Finally, load-pull
characterization with swept input power was performed to
extract the necessary data for model development.

III. CARDIFF BEHAVIORAL MODEL

The Cardiff behavioral model, derived from load-pull
measurement data at the fundamental frequency, is expressed
in the traveling wave domain and incorporates input power
dependency as detailed below [7].
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While the interpolation capabilities of the Cardiff model
have been explored previously [4], the extent of these
capabilities and their potential to reduce reliance on extensive
datasets during measurements have not been investigated in
microwave switches. Equation 1 highlights the direct influence
of the input components A11 and A21. Hence, the impact of the
reduced number of A21 and A11 for a truncated 5th order model
became our main focus during the modeling of the SPDT.

The reduction in data points was initiated through the
random selection of the phase and magnitude of the input
components (A21 and A11), maintaining consistent indexing
to form different numbers of reflection coefficients while
incorporating all 16 power levels. It is important to note
that, at this stage, the correlation between the selected data
points of the input components (A21 and A11) and the
corresponding reflection coefficient (Γ) locations on the Smith
chart was not considered. The Fig. 4 illustrates the model’s
accuracy, represented by the corresponding NMSE of the B21

component, based on the reduced number of input components,
provide insight into the lower limits for dataset reduction,
establishing 11 load points as a basis for further investigation.

The reduction of power levels was incorporated as an
additional variable to further minimize the input components

Fig. 4. Accuracy comparison of modeled B21 variable demonstrated by
NMSE parameter over the full data set (red) and minimized data sets of;
21 points (blue), 15 points (green), 11 points (brown) and 9 points (navy).



(a) (b)
Fig. 5. NMSE dependency on input components incorporating 4 power levels;
not-distributed A11 component (a), selectively distributed A21 component (b).

while monitoring the resulting NMSE. Fig. 5a illustrates the
use of A11 to represent the reduced power levels, their
arrangement, and the corresponding extracted NMSE.

Upon observing A21 with the same arrangement previously
applied, it was realized that the random phase selection did
not necessarily span the entire dataset. Consequently, the data
points were selectively chosen to ensure broader coverage
across the data sets lead to an NMSE improvement from
-27 dB in Fig. 5a to -33 dB in Fig. 5b.

It is important to note that the applied random selection
worked experimentally in this case, but there is not enough
data to predict if it would work in general on other switches
or other DUTs. For amplifier transistors, selection methods of
“A” patterns have been proven [8]. However, those methods
were not used in our work as they require setting the waves,
which is not possible with the passive load-pull system
available. Moreover, While modeling time savings were not
quantified directly, the reduced number of measurement points
significantly contributes to actual time savings during the
measurement phase.

Satisfied with the extracted enhanced NMSE, the final
model was extended within the same environment to include
the input and output reflection coefficients (ΓIn and ΓL) as
the primary parameters for the tunable reflective termination
application. Fig. 6 illustrates the measured data for the full
data set (136 loads at 16 power levels) depicted in red squares.
The localized model is derived from a minimized data set of 44
points, consisting of 11 loads across 4 power levels shown with
black squares. The trained model, represented by blue squares,
is based on the same 44-point data set but interpolates to 136
loads at 16 power levels, replicating a total of 2176 data points
within the extraction domain.

The selectively distributed phase of the A21 and A11

components led to more diverse reflection coefficients (Γ)
across the Smith chart, as represented by the black squares
in Fig. 6a and Fig. 6b. Additionally, the corresponding model
points (blue squares) exhibit reduced error compared to the
random selection approach which validates the enhanced
NMSE from -27 dB to -33 dB. This highlights a critical insight:
defining measurement loads in advance to cover different
regions of the Smith chart, even with a reduced dataset, can

(a) (b)
Fig. 6. Comparison of the measured data set (red) versus localized model
(black) and trained model (blue); output reflection coefficients (ΓL) (a), input
reflection coefficients (ΓIN) (b).

yield a model with comparable accuracy. Such an approach
significantly improves the process by reducing measurement
time, cost, and post-processing requirements.

In Fig. 6a, the measured data exhibit small deviations,
particularly near the boundaries where |Γ| = 1, likely
attributable to measurement system limitations. On the other
hand, Fig. 6b reveals a convergence-like behavior of ΓIn toward
its own center on the Smith chart. This tendency can be
associated with the inherent losses of the switching cells
and SPDT’s passive networks. Additionally, ΓIn displays a
consistent shift toward the short-circuit point, which may be
influenced by the electrical length of the trace connecting the
common point to the RF input pad. This behavior suggests
that the trace length exerts a notable reactive impact on the
impedance transformation within the switch.

In the context of the tunable reflective termination, it is
important to note that the common RF input will always
interact with the jX of the active output of the SPDT.
Consequently, modeling the inactive output is unnecessary as
long as its isolation remains sufficient. Therefore, the modeling
of inactive output is not addressed in Fig. 6a. Accordingly, the
analysis of the power gain variable was conducted exclusively
at the active output by comparing the measured data with both
the localized model and the trained model at 50Ω, as depicted
in Fig. 7.

Fig. 7. Comparison of measured power gain (red) from the SPDT in its
active mode at the ΓL = 50Ω with the corresponding values predicted by the
localized model (black) and the trained model (blue).



IV. CONCLUSION

The behavioral model of a fabricated Ka-band SPDT
switch, designed to handle power levels up to 3 Watts, has been
effectively trained using a substantially minimized dataset.
The resulting model demonstrates high accuracy, achieving
an NMSE of -33.8 dB while utilizing only 11 distinct load
conditions across four power levels. This corresponds to 2%
of the original measurement dataset and enables interpolation
to a dataset comprising 2176 points. This can be attributed
to the fact that the operation of interest for the SPDT switch
occurs under linear conditions, which likely facilitates more
accurate predictions in the behavioral model.

In future work, this approach could be applied during the
measurement process to enhance efficiency by fewer data point
to measure and support further model feature development,
such as extrapolation.
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