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Abstract
Current models for detecting defects on steel surfaces struggle to fully utilize potential positional and semantic information.
Usually, these models merely combine high-level and low-level features in a straightforward manner, leading to an increase
in redundant information. To address this challenge, this study presents an aggregated multi-level feature interaction fusion
network (AMFNet). Specifically, theAMFNet incorporates a branch interactionmodule (BIM) that branches and fuses features
channel-wise to facilitate feature interaction. Moreover, it also includes a dilated context module (DCM) that expands the
receptive field to capture contextual information across various scales effectively. In addition, we propose a spatial correlation
module (SCM) that is designed to recognize spatial dependencies between adjacent feature maps and generate attention
weights.Our performance evaluations on theNEU-DETandGC10-DETdataset reveal that our proposedAMFNet significantly
outperforms classical object detectors in terms of mean average precision (mAP). Moreover, it also demonstrates a modest
improvement over the advanced methods recently introduced by other researchers.

Keywords Surface defect detection · Vision inspection · Deep learning · Multi-scale fusion

Introduction

Surface defect detection plays a pivotal role in object
detection, focusing on accurately localizing and identifying
defects within images. In automated production lines, the
efficient and precise detection of defects is essential, as it
directly impacts the safety and quality of manufacturing pro-
cesses. However, surface defects in real-world production
settings are often complex and varied. For example, on steel
surfaces, commondefects such as cracks, inclusions, patches,
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pitting, rolled-in scale, scratches, and other imperfections can
be particularly challenging to detect. Traditional inspection
methods typically rely on manual visual inspection, which is
inefficient, time-consuming, and labor-intensive. Addition-
ally, human fatigue andoversight can lead tomissed detection
of small defects. In contrast, automated visual inspection
offers significant advantages over manual approaches by
enabling continuous operationwhile enhancing accuracy and
efficiency. Consequently, the demand for efficient and high-
quality visual inspection methods tailored to steel surface
defect detection has spurred numerous research efforts.

Over the past two decades, advancements in machine
vision technologyhavedriven rapid progress in visual inspec-
tion. Traditional methods, originally dependent on manually
set parameters, have been adapted for detecting surface
defects in products. Early approaches typically framed defect
detection as a texture analysis problem, using strategies to
extract texture information, such as the grayscale covariance
matrix (Asha et al., 2011), entropy (Nand et al., 2014), and
uniformity. However, these solutions are often highly sensi-
tive to image characteristics, making them less effective in
real industrial environments marked by noise and variability.
To address these challenges, researchers have proposed alter-
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native techniques, including gradient histograms (Halfawy&
Hengmeechai, 2014), local binary patterns (Fekri-Ershad &
Tajeripour, 2012), and Gabor filter features (Ma et al., 2018).
Nonetheless, achieving accurate defect detection typically
requires the manual design of features by experienced tech-
nicians, highlighting the need for more advanced automated
detection methods capable of handling the complexities of
industrial environments.

Machine learning techniques have also been applied
to surface defect detection, often relying on manually
extracted defect features processed by rule-based or learning-
based classifiers, such as support vector machines (Zhou
et al., 2016), decision trees (Aghdam et al., 2012), ran-
dom forests (Song et al., 2016), and conditional random
fields (Yang & Yang, 2016). The performance of these
methods largely depends on the accuracy of feature repre-
sentation, which must be meticulously designed for each
specific application (Usamentiaga et al., 2022). However,
modern manufacturing demands detection algorithms that
are not only accurate but also timely and robust. For more
complex defects, traditional machine learning models often
require significant development time and may not generalize
well across different defect types.

Recent advancements in computer performance have
accelerated the development of deep learning-based meth-
ods for defect detection, with multi-scale feature fusion and
attention mechanisms emerging as critical techniques for
enhancing accuracy. Since defects of varying scales often
coexist in defect detection tasks, the extraction and fusion
of multi-scale features have become essential. Deep learn-
ing models, such as the feature pyramid network (FPN) (Lin
et al., 2017a) and bidirectional feature pyramid network
(BiFPN) (Tan et al., 2020), have been introduced to improve
detection precision by integrating rich semantic and detailed
features at different levels, significantly enhancing the detec-
tion of small and complex defects. Additionally, attention
mechanisms, such as channel attention (CAM) (Hu et al.,
2018) and spatial attention (SAM) (Woo et al., 2018), further
boostmodel performance by enabling the network to focus on
important regions, thereby improving accuracy, particularly
in the presence of complex backgrounds or small defects.

Deep learning algorithms offer significant advantages
in addressing these challenges due to their strong gener-
alization abilities, leading to notable advancements in the
field. For example, the Surface Defect Detection Network
(SDDNet) proposed by (Cui et al., 2021) is a fast and accu-
rate approach that incorporates a feature retention block
and a skip dense connection module to enhance detection
performance, particularly for small and complex defects.
Despite these advancements, existing methods still strug-
gle to balance real-time processing with high precision,
especially for defects with diverse textures and sizes. Atten-
tion mechanisms have been increasingly integrated into

deep learning models to further boost performance. For
instance, the work by (Song et al., 2020) introduced attention
mechanisms within an encoder-decoder residual network to
accelerate model convergence and improve the detection of
salient objects. However, challenges remain in preserving
fine boundary details, particularly in complex backgrounds.
The retinal network proposed by (Luo et al., 2019) utilized
differential channel attention and adaptive spatial feature
fusion to achieve better segmentation accuracy, yet the trade-
off between model size and computational cost still presents
challenges for real-time applications. Similarly, the method
introduced by (Yu et al., 2021) incorporated channel attention
and bi-directional feature fusion in a fully convolutional first-
order network to enhance feature representation for surface
defect detection, but the handling of large-scale industrial
data with high variability in defect types continues to be
a challenge. Additionally, the work by (Zhou et al., 2021)
proposed an end-to-end dense attention-guided cascade net-
work that integrates multi-scale depth features to improve
defect detection accuracy. However, their approach still faces
difficulties in detecting low-contrast defects in highly clut-
tered environments. The work (Xi et al., 2023) introduced
YDRSNet, which integrates multi-path fusion with Mask
R-CNN, achieving improvements in detection accuracy and
efficiency. Yet, a perfect balance between speed and accuracy
across varying operational environments remains an ongoing
challenge. Similarly, the study (Ren et al., 2024) incorpo-
rates deformable convolution (DCNv2) for better detection
of irregular defects. It combines the ECA attention mech-
anism to enhance the weight of important features, and the
computational complexity is reduced by replacing the Spatial
Pyramid Pooling (SPPF) with SimSPPF, while the bounding
box regression is optimized using the SIoU loss function.

Despite significant advancements, current object detection
methods for detecting steel surface defects still have limita-
tions and fail to fully leverage available information. One key
issue is that they often neglect to prioritize the rich seman-
tic information of defect features during extraction in the
backbone network, which is critical for improving recogni-
tion accuracy (Peng et al., 2024). Many existing approaches
attempt to integrate contextual information for multi-feature
fusion by linking high-level and low-level features. However,
this simplistic fusion can introduce redundant or noisy infor-
mation, potentially undermining detection performance. For
instance, the study (Zhao et al., 2024) proposed a Multi-
Scale Adaptive Fusion (MSAF) method based on YOLOv8n
for detecting steel surface defects in complex backgrounds.
This approach incorporates multi-scale feature extraction,
a lightweight detection head, and enhanced loss functions
to improve both detection accuracy and efficiency. How-
ever, challenges remain, including false positives and missed
detections in complex backgrounds, and the use of MSAF
exclusively in the neck does not fully capture the fusion of
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high-level semantic information with low-level detailed fea-
tures. Similarly, the study (Li et al., 2024b) introduced a deep
learning-based model for steel surface defect detection with
improved feature extraction and fusion capabilities. Spe-
cially, it incorporates multi-scale feature extraction (MSFE)
and efficient feature fusion (EFF) modules to enhance detec-
tion accuracy while reducing the number of parameters.
However, the EFF module primarily performs feature fusion
between the backbone and neck networks, which may over-
look deeper feature interactions, thus limiting the adequacy
of feature fusion. Overall, current object detection methods
for steel surface defect detection often fall short in han-
dling complex, low-contrast tasks in real-world applications.
These challenges highlight the need for continued research
and innovation to developmore robust and efficient detection
methods capable of addressing the complexities inherent in
such tasks.

To address these challenges, this paper proposesAMFNet,
an advanced model that incorporates several key compo-
nents to improve feature extraction and interaction. AMFNet
addresses the difficulties in detecting small, low-contrast
defects and enhances feature perception through three pri-
mary innovations:

• BIM (Branch InteractionModule): The BIM enhances
feature fusion by processing andmergingmulti-scale and
multi-level features, thereby improving the model’s abil-
ity to perceive the input image effectively.

• DCM (Dilated Context Module): This module uses
convolutions with different expansion rates to capture
contextual information at varying scales, thereby improv-
ing feature extraction and the model’s robustness to
diverse defect types.

• SCM(Spatial CorrelationModule): The SCMcaptures
spatial dependencies between neighboring feature maps
and generates attention weights to highlight important
regions, ensuring that critical information is emphasized
during defect detection.

In summary, the main contributions of this paper are as
follows: AMFNet effectively detects small and low-contrast
defects on steel surfaces, addressing the unique challenges of
industrial environments. The BIM module enhances feature
perception by seamlessly fusing multi-scale and multi-level
information. The DCM module improves the extraction of
contextual information across different scales, while the
SCMmodule generates spatial attention, focusing on regions
rich in relevant information to enhance detection accuracy.
The proposed AMFNet is evaluated on the NEU-DET and
GC10-DET datasets. Experimental results demonstrate that
AMFNet outperforms state-of-the-art (SOTA)models in both
accuracy and computational efficiency.

Related work

Deep learning-based defect detection

Object detection is a major challenge in computer vision,
involving both the identification of objects and their precise
localization within an image. Recent advancements in deep
learning have led to significant progress in object detection,
resulting in the development of numerous CNN-based detec-
tors, particularly for defect detection tasks. These detectors
are generally classified into two categories: one-stage and
two-stage object detectors.

One-stage methods have gained prominence due to their
computational efficiency, leveraging CNNs for end-to-end
processing to simultaneously predict bounding boxes and
classification probabilities. For instance, the Single Shot
MultiBox Detector (SSD) (Liu et al., 2016) employs anchors
and multi-scale features to enhance small object detection,
while YOLOv3 (Redmon et al., 2016) integrates three fea-
ture pyramid networks (FPNs) to address objects across
various scales. Despite their speed, one-stage methods
often compromise on accuracy, limiting their suitability for
precision-demanding defect detection tasks.Recent advance-
ments, such as the work by Zhao et al. (2024), introduced
the MSAF-YOLOv8n model, which enhances one-stage
detection through multi-scale adaptive fusion blocks and
innovative loss functions like normalized weighted distance
(NWD) and weighted intersection over union (WIoU). This
approach improves both accuracy and efficiency, though
challenges persist in complex environments with noise and
illumination variations.

In contrast, two-stage methods are among the earliest
approaches to object detection, involving two steps: gener-
ating region proposals and then classifying these proposals.
A notable example is the R-CNN family of algorithms. R-
CNN (Girshick et al., 2014) first generates candidate regions
using techniques like Selective Search, followed by CNN-
based feature extraction and classification for each region.
Although effective, R-CNN algorithms are slow and ineffi-
cient. To overcome these limitations, Faster R-CNN (Ren
et al., 2016) introduced RoI Pooling (Region of Interest
Pooling) for shared feature extraction, improving both speed
and performance. Building on Faster R-CNN, Mask R-
CNN (He et al., 2020) adds instance segmentation, allowing
it to perform pixel-level segmentation for each detected
object. Additionally, Cascade R-CNN (Cai & Vasconcelos,
2019) improves detection accuracy by using multiple cas-
cading detectors. Each stage refines the candidate regions,
progressively filtering out less plausible detections, making
the detection process more robust. While two-stage object
detection algorithms can offer higher accuracy compared to
single-stage ones, existing models still have significant room
for improvement and hold potential for further enhancement.
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In recent years, object detection techniques have contin-
ued to evolve, leading to the development of hybrid methods
like RetinaNet (Lin et al., 2017b), which combines the
strengths of both two-stage and single-stage approaches.
Additionally, the Transformer architecture (Vaswani et al.,
2017), originally designed for natural language processing
tasks, has been adapted for object detection. This adapta-
tion has given rise to Transformer-based models such as
DETR (Carion et al., 2020), known for their strong gener-
alization capabilities and faster processing speeds.

Steel surface defect detection

With the rapid development of deep learning in recent years,
CNNs have been successfully applied to various steel sur-
face defect detection tasks. To enhance the efficiency and
accuracy of steel surface defect detection, (Damacharla et
al., 2021) proposed a transfer learning-based U-Net (TLU-
Net) framework utilizing ResNet and DenseNet encoders
pretrained on the ImageNet dataset. While this framework
improves performance, its primary limitation is the reliance
on annotated data. Preparing such training data is costly and
time-consuming, especially for defect segmentation tasks
that require pixel-level annotations. As a result, a novel net-
work architecture, DEA_RetinaNet (Cheng & Yu, 2020),
was specifically designed to improve surface defect detec-
tion in industrial products. By integrating optimized anchors,
a channel attentionAmechanism, and adaptive spatial feature
fusion, it achieves remarkable performance gains. Although
DEA_RetinaNet improves detection accuracy by addressing
class imbalance and enhancing feature fusion, it still suffers
from incomplete feature fusion, particularly in deeper layers.
The study (Jain et al., 2022) employed Generative Adver-
sarial Networks (GANs) for data augmentation to enhance
the performance of steel surface defect detection and clas-
sification. By simulating the distribution of training data,
additional synthetic data is generated, augmenting the train-
ing of real data. To further improve detection capabilities
for defects of various sizes, the work (Hao et al., 2021) pro-
posed a steel surface defect inspection model named defect
inspection network (DIN) for smart industrial monitoring.
This model combines a deformable convolution-enhanced
backbone network with a balanced feature pyramid. While
the deformable convolutional backbone and balanced fea-
ture pyramid improve defect detection, the DIN model can
be computationally expensive due to its complex architec-
ture.

Since the methods mentioned above do not fully consider
the efficiency of themodels or the characterization of defects,
some scholars have focused on ensuringmodel detection per-
formance while accounting for efficiency. The work (Yeung
& Lam, 2022) introduced a fused-attention network (FANet)
specifically designed for detecting steel surface defects. This

framework utilizes a fused-attention mechanism applied to
a single balanced feature map, optimizing both accuracy
and detection speed. Additionally, it introduces the adap-
tively balanced feature fusion (ABFF) method, which fuses
features with appropriate weights to enhance discrimina-
tive power. The fused-attention module (FAM) module is
proposed to handle shape variations in defects, improving
both localization and classification. To address the chal-
lenges posed by steel plate surface defects such as diverse
types, complex and irregular shapes, and a wide scale range,
the work (Song et al., 2023) proposed a detection method
based on deformable convolution and background suppres-
sion. This method incorporates an improved Faster RCNN
with deformable convolution and region-of-interest (ROI)
alignment to enhance detection performance for large-scale
defects with complex and irregular shapes. Additionally, the
study (Gao et al., 2023) introduced a method that includes
feature alignment to map unrecognizable defects so as to rec-
ognizable areas. The method employs a hierarchical training
strategy to integrate this feature alignment into the training
process. While these methods demonstrate strong perfor-
mance on specific datasets, they may not generalize well to
other defect types or surfaces with different characteristics.

Recent studies have further advanced steel surface defect
detection through sophisticated feature fusion techniques.
For example, He et al. (2019) proposed a multilevel-feature
fusion network (MFN), integrating features from multi-
ple CNN layers to improve localization accuracy. This
model’s key contribution is its integration of multilevel
features from various CNN layers, which enhances defect
localization accuracy compared to single-level features. By
combining multiple feature maps containing both low- and
high-level characteristics, this approach improves precision
in detecting steel defects. Additionally, Zhang et al. (2023)
introduced a cross-scale weighted feature fusion network
with Laplace sharpening and an enhanced bidirectional FPN,
excelling at small defect detection. In 2024, Li et al. (2024a)
enhanced YOLOXwith CSPCrossLayer for gradient enrich-
ment, a Squeeze-and-Excitation (SA) module for key feature
emphasis, and a PSblock for efficient multi-scale fusion,
achieving a strong balance of accuracy and speed. Similarly,
(Zhao et al., 2024) proposed MSAF-YOLOv8n, incorporat-
ing multi-scale adaptive fusion and advanced loss functions
to boost precision in complex backgrounds. Peng et al.
(2024) introduced a deformation-aware approach, prioritiz-
ing semantic-rich defect features during backbone extraction,
addressing limitations in simplistic high- and low-level fea-
ture fusion.Despite these advancements, challenges persist in
achieving robustness under noise, illumination changes, and
low-contrast conditions where defects resemble background
features, underscoring the need for continued innovation.Our
proposed AMFNet builds on these developments by integrat-
ing the Branch Interaction Module (BIM), Dilated Context
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Module (DCM), and Spatial Correlation Module (SCM) to
enhance feature perception, contextual extraction, and spatial
attention, addressing the gaps in existing methods for steel
surface defect detection.

The proposed AMFNet

InspiredbyFasterR-CNN, this paper introduces theAMFNet,
as illustrated in Fig. 1. AMFNet is designed specifically for
detecting steel surface defects. This section outlines the back-
bone network, fusion module, and loss function employed in
the proposedmethod. The architecture of our AMFNet incor-
porates several key components: BIM, SCM, and DCM. The
feature extraction utilizes a feature pyramid network (FPN)
with a Faster R-CNN ResNet50 backbone.

Initially, the input image undergoes processing through
the FPN, producing a multi-scale feature pyramid denoted
as C(i=1,2,3,4,5). Given the C1 layer has the highest resolu-
tion and demands significant computational resources, and
considering the necessity to prioritize detailed feature infor-
mation, we utilize [C2,C3,C4,C5] as feature inputs for the
subsequent processing in the BIM module. Moreover, the
SCMmodule is nested in each BIM module to fuse the adja-
cent branch features in the BIM module, which can promote
the information fusion of adjacent features after the initial
fusion.

The feature extracted from C5 are fed into the DCM,
which filters and enhances the extraction of detailed features.
Ultimately, the fused and enhanced features [F2, F3, F4, F5]
are inputted into the detection head of the region proposal
network (RPN) andRCNN for defect classification and local-
ization.

Branch interactionmodule

The image of the steel surface is generated by extracting deep
features from the backbone of a deep convolutional neural
network. These features can capture the complex textures
and defects of the steel surface, including small scratches,
pits, cracks and other defects. Traditional convolutional neu-
ral networks usually have difficulty in capturing both tiny
defects (such as scratches and cracks) and large-area dis-
tributed defect information. To address the shortcomings of
existingmethods in dealingwith complex textures andmulti-
scale defects, and to adapt to the diversity of these defects in
size, shape and distribution, the BIM module is designed for
steel surface defect detection and uses dilated convolutions
with different dilation rates to extract multi-scale features.
These processed features are then reintegrated with the orig-
inal input through jump connections, thereby enhancing the
network’s ability to detect targets of different scales.

As shown inFig. 2, this paper usesC5 as the input example.
Assume that the input feature map has a size of C × H ×W .
The initial feature C5 is divided into four segments along
the channel dimension: [a1, a2, a3, a4], each with a size
of C/4 × H × W . Each segment undergoes convolution
and batch normalization to extract local information, help-
ing to reduce redundancy and optimize the capture of fine
defects (such as scratches and cracks), while keeping the fea-
ture dimensions at C/4 × H × W . Subsequently, to select,
integrate, and enhance features with different semantic infor-
mation, the 1×1 convolution and batch-normalized features
are input into the SCM, together with the adjacent features
ai=1,2,3,4 (as shown in the figure). This process generates
Si=2,3,4, each with a size of C/4 × H × W . This ensures
more accurate handling of small defects while capturing a
broader range of surface defects. It further strengthens the
module’s ability to capture multi-scale and multi-semantic
information.

Subsequently, the feature maps S2, S3, and S4 are dilated
using dilation rates of 3, 5, and 7, respectively. This allows
our network to expand the receptive field while preserving
fine details, enabling it to capture defects on the steel surface
at different scales. At the same time, this multi-scale config-
uration balances detail preservation and global information
capture in scenarios where defects on the steel surface are
distributed diversely, which is difficult to achieve with tradi-
tional dilated convolution configurations. Next, these feature
maps are upsampled using bilinear interpolation to match
the dimensions of the feature map obtained from a1 after
convolution and batch normalization. The upsampled fea-
ture tensor is then concatenated with the feature map from
a1 along the channel dimension, forming a new feature map
C ′
5 with dimensions of C × H ×W . This cross-scale feature

integration enhances the robustness of themodule. To further
improve the module’s robustness, C ′

5 is added pixel-wise to
the original inputC5, resulting in thefinal output B5. This out-
put effectively fuses multi-scale information and enhances
the model’s ability to adapt to non-defective regions. Addi-
tionally, it reduces false positives in non-defective areas,
making it particularly suitable for the complex texture envi-
ronments of steel surfaces. The corresponding calculations
are expressed in Eq. (1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai = chunk(C5), i = 1, 2, 3, 4

Si = SCM(ai−1, BN (Conv1(ai ))), i = 2, 3, 4

C ′
5 = Cat(BN ((US(DilConv2i−1(Si )),

Conv1(a1)))), i = 2, 3, 4

B5 = C ′
5 ⊕ C5

(1)

where chunk denotes the partitioning of the tensor based on
the channel dimension, and i indicates the layer of divisions
by chunks. ai represents the features after being divided into
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Fig. 1 Overall architecture of the proposed AMFNet

Fig. 2 Detailed illustration of
the proposed branch interaction
module (BIM)

four layers, and BN stands for batch normalization. Conv1
and DilConv2i−1 represent the convolutional layer with a
1×1 convolutional kernel and the dilated convolutional layer
with a dilation rate of 2i − 1, respectively. US represents
upsample, and we use bilinear interpolation as the method.
Moreover, Si represents the result of the SCM operation.
The operator Cat signifies the concatenation of the feature
tensors based on the number of channels. The symbol ⊕
signifies element-wise addition.

Spatial correlationmodule

To improve the network’s ability to capture global contextual
features and enable more flexible focus on regions of inter-
est, the SCM module is designed to address the complexity
of surface textures and the irrelevance of local features on
steel surfaces. The innovative design of SCM, as illustrated
in Fig. 3, enables more effective identification of important
regions while filtering out irrelevant local information.

The SCM retains the original channel number and spatial
dimensions (C×H×W ) of the input featuremaps x1 and x2,
ensuring that important spatial information is not lost during
feature transformation. This is critical for defect detection
tasks, as many defects exhibit distinct spatial patterns.

First, a convolution and ReLU operation is applied to the
input tensor x1, followed by a transpose operation to obtain

Fig. 3 Detailed illustration of the proposed spatial correlation module
(SCM)

Q, which has dimensions of C ×W ×H . Then, a direct con-
volution and ReLU operation are performed on x1 to obtain
K . Next, Q and K are element-wisemultiplied. The resulting
matrix undergoes aSigmoid transformation to generate atten-
tionweights, allowing themodel to automatically selectmore
important features, selectively emphasizing critical features
while ignoring irrelevant background or noise. This is espe-
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Fig. 4 Detailed illustration of the proposed dilated context module
(DCM)

cially important for detecting steel surface defects, where the
surface may contain a large amount of irrelevant texture or
noise, and the model needs to distinguish the salient features
of the defects.

Afterward, global average pooling is applied to the atten-
tion weights, producing feature weights of size C × 1 × 1,
which helps to extract comprehensive contextual information
and global attention weights. Finally, K is multiplied by the
global attention weights to obtain the output tensor, thereby
enhancing the attention-weighted region.

Overall, the SCM module improves the model’s sensi-
tivity to steel surface defects by integrating convolution,
feature mapping, attention mechanisms, and global informa-
tion, enhancing the model’s ability to capture various defect
characteristics.

The detailed calculation of this module can be expressed
as follows in Eq. (2):

⎧
⎪⎨

⎪⎩

Q = Transpose (ReLU (Conv1(x1))) ,

K = ReLU (Conv1(x2)) ,

Sout = K � GAP (σ (Q � K )) .

(2)

Here, x1 and x2 denote the two input features of the SCM
module, respectively. Transpose represents the transpose of
an input, and � indicates the element-wise multiplication
operation. Moreover, GAP denotes the global average pool-
ing operation, and σ denotes the Sigmoid function.

Dilated context module

To address the challenge of simultaneously capturing local
details and global contextual information in defect detection,
this paper introduces the Dilated Context Module (DCM),
as shown in Fig. 4. Unlike existing feature fusion methods,
DCM offers a novel solution by combining dilated convolu-
tions,multiple attentionmechanisms, and feature integration.

First, the input feature B5 undergoes dilated convolutions
with three different dilation rates (1, 3, and 5), producing
feature maps with dimensions of C/3× H ×W . This design
significantly expands the receptive field, allowing the model
to capture both fine local features and broader contextual
information. The multi-scale convolution operation is partic-

ularly suited for steel surface defect detection, where defects
exhibit highly diverse and irregular shapes and distributions.

Next, spatial attention (Woo et al., 2018) and channel
attention (Hu et al., 2018) mechanisms are incorporated into
each branch to further refine feature selection. Spatial atten-
tion dynamically focuses on regions likely to contain defects,
enhancing sensitivity to defect areas, while channel attention
adjusts weights based on the importance of specific feature
channels, enabling themodel to better identify relevant defect
characteristics. The combinationof these twoattentionmech-
anisms is more effective than using a single mechanism,
particularly when dealing with complex and varied defect
patterns.

Subsequently, the features processed by each attention
mechanism are integrated through element-wise addition,
resulting in a more semantically rich feature representation.
This fusion not only preserves multi-scale contextual infor-
mation but also optimizes it through the attention mecha-
nisms. Finally, the integrated features are added element-wise
to the original input B5, generating the final output F5 with
dimensions ofC×H ×W . This residual connection strategy
enhances feature representation while retaining the original
information.

Compared to existingmethods, theDCMmodule provides
an innovative solution to key challenges in defect detection,
such as texture complexity and irregular defect distribution.
By combining dilated convolutions with multiple attention
mechanisms, DCM enables precise feature capture and rep-
resentation of complex defects, without incurring additional
computational cost. This process is represented in Eq. (3):

F5 = SA(DilConv1(B5)) ⊕ CA(DilConv3(B5))

⊕ SA(DilConv5(B5))

⊕ B5,

(3)

where B5 denotes the features output from processing C5 to
the BIM, with SA and CA representing spatial attention and
channel attention, respectively.

Loss function

We utilize the RPN for region proposals and the RCNN
header for defect classification and regression tasks. Both
have loss functions consisting of classification and regres-
sion. The bounding box regression loss function in the RPN
uses SmoothL1 loss, calculated as follows:

SmoothL1(x) =
{
0.5x2 if |x | < 1

|x | − 0.5 otherwise
(4)

where x represents the discrepancy between the predicted
value and the true value.
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Table 1 Comparison of
NEU-DET and GC10-DET
dataset

Dataset Scale Type number Defect types

NEU-DET 1800 6 Cr, In, Pc, Ps, Rs, Sc

GC10-DET 3570 10 Pu, Wl, Cs, Ws, Os, Ss, In, Rp, Cr, Wf

In addition, we use cross-entropy loss as the classification
loss function of the RPN. The final RPN loss is expressed as
follows:

Lrpn = 1

Ncls

∑

i

CE(pi , p
∗
i )

+α
1

Nreg

∑

i

p∗
i SmoothL1(ti , t

∗
i ). (5)

Here, pi and p∗
i represent the predicted probability of the i-th

anchor being a foreground object and the true label of the i-th
anchor, respectively. ti and t∗i denote the predicted bounding
box parameters for the i-th anchor and the true bounding box
parameters corresponding to the i-th anchor, respectively. In
addition, α indicates a balancing factor set to 1.

In the NEU-DET dataset utilized in this paper, there
exist dense defects such as scratches, patches, among others,
which may lead to significant category imbalance issues. To
address this concern, we employ Focal Loss as an alternative.
Focal Loss allows for adjusting the emphasis on different cat-
egories, thereby enabling the model to concentrate more on
certain categories. Consequently, for the loss function of the
detection head, we utilize the focal loss function for catego-
rization loss, which is calculated as follows:

FL(pt ) = −(1 − pt )
γ log(pt ). (6)

Here, the term (1− pt ) acts as amodulating factor to alleviate
class imbalance, in which pt represents the probability that
the model predicts a sample as a positive instance.

The final RCNN loss is written as follows:

Lrcnn =
N∑

i=1

(
FL(pi , p

∗
i ) + β · SmoothL1(ti , t

∗
i )

)
, (7)

where β is used to judge the importance of balancing classi-
fication losses and regression losses. The model’s emphasis
on the classification and regression tasks can be adjusted by
adjusting the value of β, which is usually set to 1.

Experiments setup

Datasets

In this section, we train our network using theNEU-DET (He
et al., 2019) dataset. TheNEU-DETdataset contains six types

of defects: crazing (Cr), inclusions (In), patches (Pc), pitted
surfaces (Ps), rolled-in scale (Rs), and scratches (Sc). Each
defect type consists of 300 images, all sized at 200×200
pixels. To further verify the generalization of our network,
we also employ the GC10-DET (Lv et al., 2020) dataset.
GC10-DET hasmore types of defects (i.e., 10 types), namely
punching (Pu), weld line (Wl), crescent gap (Cs), water spot
(Ws), oil spot (Os), silk spot (Ss), inclusion (In), rolled pit
(Rp), crease (Cr), and waist folding (Wf). It is worth noting
that some images may contain multiple types of defects. In
our experiments, we randomly split the dataset into training
and validation sets with a ratio of 9:1. Table1 shows the com-
parisonbetween theNEU-DETandGC10-DETdatasets. The
details of the defects are as follows:

Implementation details

In this study, we have implemented our model using PyTorch
and accelerated the training process using an NVIDIA
RTX3070Ti GPU. The parameters of the backbone network
are initializedwith pre-trainingweights fromResNet-50with
FPN. Initially, we employed the SGD optimizer; however, to
improve convergence and address performance, we transi-
tioned to the Adam optimizer. The initial learning rate is
set to 2.5 × 10−5, with a batch size of 2, and we applied a
learning rate decay of 0.05 to dynamically adjust the learning
rate during training. The model was trained for 30 epochs to
achieve stable convergence and effective optimization of net-
work parameters. To enhance the robustness of the training
process and mitigate overfitting, we augmented the dataset
using techniques such as horizontal flipping and random flip-
ping.

Evaluationmetrics

For object detection tasks, it is conmen to employ precision
(P), recall (R), average precision (AP), and mAP as metrics
to evaluate detection performance. Each metric is defined as
follows. Recall measures the ratio of correctly detected true
positives to all actual true positives,

Recall = T P

T P + FN
. (8)

where T P represents the count of instances where the model
accurately predicts positive cases as positive, while FN

123



Journal of Intelligent Manufacturing

Table 2 Comparison of various
detection models in NEU-DET

Methods Cr In Pc Ps Rs Sc mAP

Baseline 0.432 0.789 0.885 0.795 0.707 0.893 0.750

SSD 0.382 0.716 0.903 0.754 0.504 0.900 0.693

YoloV3 0.260 0.572 0.815 0.743 0.382 0.703 0.579

YoloX(s) 0.372 0.832 0.924 0.926 0.664 0.918 0.773

YoloX(l) 0.286 0.758 0.928 0.752 0.404 0.872 0.667

YoloX(x) 0.336 0.798 0.918 0.824 0.650 0.852 0.740

Faster R-CNN 0.465 0.795 0.890 0.834 0.652 0.902 0.756

CABF-FCOS 0.554 0.750 0.935 0.889 0.629 0.844 0.767

CANet 0.470 0.836 0.967 0.771 0.597 0.882 0.754

DIN 0.614 0.856 0.930 0.903 0.646 0.883 0.805

AMFNet (SGD) 0.565 0.819 0.952 0.872 0.726 0.933 0.811

AMFNet (Adam) 0.564 0.791 0.942 0.867 0.810 0.943 0.819

denotes the count of instances where the model incorrectly
predicts positive cases as negative.

Precision measures the ratio of correctly identified true
positives to the total number of examples predicted as posi-
tive,

Precision = T P

T P + FP
. (9)

Here, FP represents the count of instances where the model
incorrectly predicts negative cases as positive.

AP measures the average of the model’s precision at
various levels of recall and is typically used to evaluate per-
formanceon a single category. In contrast,mAP is the average
of the AP values for all categories and is used to evaluate the
performance of the entire model on a multi-category task. In
this paper, the threshold for AP is set to 0.5, and the calcula-
tion for AP and mAP are shown below:

{
AP = ∫ 1

0 P(R) dR

mAP = 1
N

∑N
i=1 APi ,

(10)

where N denotes the total number of categories, and APi
represents the first AP value for the i-th category.

Comparative experiment

Detection performance

Table2 summarizes the detection performance of the pro-
posed AMFNet compared to state-of-the-art methods (i.e.,
SSD, YOLOv3, variants of YOLOX, CANet (Hou et al.,
2023), CABF-FCOS (Yu et al., 2021) and DIN (Hao et al.,
2021)) on the NEU-DET dataset, a widely used benchmark
for steel surface defect detection. In this paper, we choose the

mAP at an IoU threshold of 0.5, a standard metric for object
detection tasks.

In general, we can find that AMFNet demonstrates supe-
rior overall performance, achieving an mAP of 0.819 with
the Adam optimizer, outperforming all compared methods,
including SSD (0.693), YOLOv3 (0.579), YOLOX vari-
ants (0.667−0.773), Faster R-CNN (0.756), CABF-FCOS
(0.767), CANet (0.754), and DIN (0.805). This improve-
ment can be attributed to AMFNet’s innovative architecture,
which integrates the Branch Interaction Module (BIM),
Spatial Correlation Module (SCM), and Dilated Context
Module (DCM). These components collectively enhance
multi-scale feature extraction, contextual information fusion,
and attention-driven defect localization, addressing the chal-
lenges of diverse defect sizes, shapes, and distributions on
steel surfaces.

Category-specific performance

We can find that AMFNet excels in several defect categories
as follows.

• Crazing (Cr): AMFNet (Adam) achieves an AP of 0.564,
closely approaching DIN’s 0.614 (Hao et al., 2021), the
highest among competitors. The BIM’s use of dilated
convolutions with varying rates enables effective capture
of fine, elongated crack features, which are often missed
by traditional convolutional networks.

• Scratches (Sc): With an AP of 0.943, AMFNet (Adam)
significantly outperforms YOLOX(s) (0.918) and other
methods. This can be credited to the BIM’s multi-scale
feature integration and theDCM’s ability to balance local
detail preservation with an expanded receptive field, crit-
ical for detecting thin, irregular scratches.

• Rolled-in Scale (Rs): AMFNet (Adam) achieves an AP
of 0.810, a notable improvement over Faster R-CNN
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(0.652) andYOLOX(s) (0.664). TheDCM’s combination
of dilated convolutions and dual attention mechanisms
(spatial and channel) enhances sensitivity to defects with
varying spatial extents, such as Rs, which often exhibit
both localized and distributed patterns.

• Patches (Pc): AMFNet (Adam) records an AP of 0.942,
slightly below CANet’s 0.967 but surpassing CABF-
FCOS (0.935). The SCM’s attention-weighted feature
fusion contributes to robust contextual understanding,
enabling precise detection of patch-like defects amidst
complex textures.

While AMFNet does not lead in every category (e.g., Pc),
its consistent high performance across all categories under-
scores its robustness and adaptability to the NEU-DET
dataset’s diverse defect types.

Impact of optimizer switch: SGD vs. Adam

To investigate the influence of optimization strategies, we
trained AMFNet using two optimizers: Stochastic Gradi-
ent Descent (SGD) and Adam. The results reveal subtle
yet meaningful differences: with regard to the overall mAP,
AMFNet (Adam) achieves an mAP of 0.819, slightly higher
than AMFNet (SGD)’s 0.811. This 0.008 improvement sug-
gests thatAdamprovides amarginal but consistent advantage
in optimizing the model’s weights for defect detection. How-
ever, there are category-specific variations with regard to the
APvalues. For example,APdecreasesmarginally from0.565
(SGD) to 0.564 (Adam) in Cr, indicating minimal sensitivity
to the optimizer switch for this category; AP increases sig-
nificantly from 0.726 (SGD) to 0.810 (Adam) in Rs, a 0.084
gain, highlighting Adam’s superior adaptability to defects
with complex spatial distributions.

The observed differences between SGD and Adam can
be explained by their distinct optimization dynamics. As
a momentum-based method, SGD updates weights using a
fixed learning rate and momentum term, which can lead to
stable convergence butmay strugglewith fine-grained adjust-
ments in deep architectures like AMFNet. Its slightly lower
mAP (0.811) suggests that SGD effectively captures gen-
eral trends but may underfit certain defect-specific features,
such as those in Rs (0.726), due to its reliance on a prede-
fined learning schedule. In contrast, by adaptively adjusting
learning rates based on first- and second-order moment esti-
mates, Adamexcels in navigating the complex loss landscape
of AMFNet, which involves multiple modules (BIM, SCM,
DCM) and a focal loss function tailored to class imbalance.
This adaptability is evident in the improved mAP (0.819)
and significant gains in categories like Rs (0.810) and Sc
(0.943), where precise weight tuning enhances multi-scale
feature representation and attention weighting.

Fig. 5 P–R curves of our AMFNet for each defect category

The NEU-DET dataset’s class imbalance, e.g., dense
scratches (Sc) versus sparse inclusions (In), further ampli-
fiesAdam’s advantage. The focal loss, designed to emphasize
hard examples, pairs effectively with Adam’s adaptive opti-
mization, enabling the model to focus on challenging defects
(e.g., Rs) while maintaining performance on easier ones
(e.g., Pc). The optimizer switch from SGD to Adam yields
a nuanced trade-off: Adam enhances overall performance
(mAP: 0.819 vs. 0.811) and excels in categories requiring
detailed feature refinement (Rs, Sc), while SGD maintains
competitive results with lower computational complexity.
The choice of Adam as the preferred optimizer aligns with
AMFNet’s design goals (i.e., robust multi-scale defect detec-
tion). Therefore, we use Adam as the optimizer in the
subsequent research of the paper.

Precision-recall curve analysis

Figure5 illustrates the PR curves for each defect category on
the NEU-DET dataset. AMFNet demonstrates superior per-
formance in the Pc (patches) and Sc (scratches) categories,
as evidenced by the largest areas under the curve, reflecting
high precision and recall. This dominance is attributable to
the BIM’s multi-scale feature extraction, which effectively
captures the distributed patterns of Pc and the fine, elon-
gated structures of Sc. The model also performs robustly
in Rs (rolled-in scale), Ps (pits), and In (inclusions), with
PR curves indicating competitive precision-recall trade-offs.
However, the Cr (crazing) category exhibits relatively lower
performance, as indicated by the curve’s position in the
lower-left region of the plot. Despite this, AMFNet’s AP for
Cr (0.564 with Adam, Table 2) remains competitive, surpass-
ingmost alternatives (e.g., SSD: 0.382, YOLOv3: 0.260) and
approaching DIN’s leading 0.614. This suggests that while
Cr detection remains challenging (likely due to cracks’ thin,
irregularmorphology), AMFNet’s designmitigates these dif-
ficulties better than most alternatives.
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Figure 6 extends this analysis by comparing PR curves
across methods at varying confidence thresholds. AMFNet’s
envelope region encloses the largest area under the curve,
outperforming classicalmethods such as SSD,YOLOv3, and
YOLOX variants. This result underscores AMFNet’s ability
to maintain high precision across a broad range of recall val-
ues, a critical advantage in industrial defect detection where
both false positives andmissesmust beminimized. The larger
area reflects the synergistic effect of the Spatial Correlation
Module (SCM) and Dilated Context Module (DCM), which
enhance feature discriminability and contextual awareness,
enabling robust detection under diverse operating conditions.

Visual comparison

To complement the quantitative metrics, Fig. 7 provides a
qualitative visualization of detection results across methods,
with each row representing a defect category and each col-
umn corresponding to a model: (a) baseline, (b) SSD, (c)
YOLOv3, (d) YOLOX(s), (e) YOLOX(l), (f) YOLOX(x),
(g) RetinaNet, and (h) AMFNet. The color-coded bound-
ing boxes highlight detected defects, with confidence scores
indicating prediction reliability.

AMFNet (column h) consistently achieves the highest
confidence thresholds across all categories, demonstrating
its precision in localizing defects of varying sizes and shapes
within a single image. For instance, in the Cr category (first
row), AMFNet detects all defects with confidence scores
exceeding 0.70, whereas competing methods like SSD and
YOLOv3 exhibit omissions or lower scores (e.g., <0.50).
Similarly, in the In category (second row), AMFNet main-
tains scores above 0.65, contrasting with the inconsistent
detection of baselines. The Sc category (sixth row) further
highlights AMFNet’s superiority, with precise delineation of
elongated scratches, evidenced by tight bounding boxes and
scores above 0.87, where other models struggle with frag-
mented or missed detections.

This visual evidence reinforces AMFNet’s ability to mit-
igate omissions and false positives, a common challenge
in steel surface inspection. The BIM’s multi-scale feature
extraction, bolstered by dilated convolutions, ensures sensi-

tivity to defects across sizes (e.g., fine Sc vs. broad Pc). The
SCM’s spatial correlation mechanism enhances feature dis-
criminability, reducing false positives in noisy backgrounds,
while theDCM’s integration of dilated convolutions and dual
attention refines feature representations, improving localiza-
tion precision. These strengths are particularly evident in the
high-confidence detections of Cr and In, where competing
methods falter, and in the precise boundary delineation of Sc
and Rs.

Ablation study

To dissect the contributions of AMFNet’s key components,
i.e., Branch Interaction Module (BIM), Spatial Correlation
Module (SCM), and Dilated Context Module (DCM), we
conduct an ablation study on the NEU-DET dataset. This
section evaluates their individual and combined impacts
on detection performance, computational complexity, and
deployment strategies.

Ablation of proposed modules

Table3 quantifies the effects of integrating BIM, SCM, and
DCM into the baseline model, assessing mean mAP at IoU
thresholds of 0.5 (mAP50), 0.75 (mAP75), and 0.5:0.95
(mAP50:90), alongside FLOPs and parameter count (mil-
lions).

The baseline model yields an mAP50 of 0.744, mAP75 of
0.337, and mAP50:90 of 0.388, with a computational cost of
134.52G FLOPs and 41.38M parameters. The introduction
of individual modules results in significant improvements in
the model’s performance. Specifically, with the inclusion of
BIM, the model’s accuracy is enhanced through multi-scale
feature fusion, raising the mAP50 to 0.786, mAP75 to 0.342,
and mAP50:90 to 0.399. Other modules, such as SCM and
DCM, also showpositive effects on themodel’s performance,
although the improvements are not as pronounced as with
BIM. Furthermore, the combination of two modules leads to
even higher performance gains, with the best results achieved
by the combination of SCM and DCM, which increases the

Fig. 6 PR curve comparison with different confidence thresholds on the NEU-DET dataset
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Fig. 7 Visual comparison of our
AMFNet test results with
state-of-the-art methods on the
NEU-DET dataset, with various
defect types represented by
different colors: a baseline, b
SSD, c YoLoV3, d YoloX(s), e
YoloX(l), f YoloX(x), g
RetinaNet, h our AMFNet
(Color figure online)

Table 3 Ablation Study on the
NEU-DET dataset

BIM SCM DCM mAP50 mAP75 mAP50:90 Flops (G) Params (M)

0.744 0.337 0.388 134.52 41.38

� 0.786 0.342 0.399 144.29 42.48

� 0.755 0.349 0.384 140.37 44.48

� 0.775 0.358 0.393 138.89 43.68

� � 0.802 0.353 0.401 168.68 45.58

� � 0.792 0.367 0.399 158.63 44.78

� � 0.804 0.371 0.389 175.35 46.78

� � � 0.819 0.386 0.422 189.48 47.88

mAP50 and mAP75 to 0.804 and 0.371, respectively. The
trade-off is an increase in FLOPS from 134.52G to 175.35G.

The full AMFNet (BIM + SCM + DCM) achieves peak
performance: mAP50 of 0.819 (+0.075), mAP75 of 0.386
(+0.049), and mAP50:90 of 0.422 (+0.034). This configura-
tion incurs 189.48G FLOPs and 47.88M parameters, a 41%
and 16% increase over the baseline, respectively. Themodest
computational trade-off relative to the substantial accuracy
gains, e.g., a 10%mAP50 improvement, underscores the effi-
ciency of the three-module synergy. Eachmodule contributes
uniquely: BIM enhances scale adaptability, SCM improves
spatial focus, and DCM refines defect localization, collec-
tively optimizing detection at the standard IoU=0.5 threshold
and beyond.

Despite the performance boost, inference speed decreases
to ∼15 FPS under our experimental setup (compared to

∼100 FPS for lightweight models like (Li et al., 2024a)
with similar hardware). However, steel surface inspection
prioritizes accuracy over real-time processing, as defects are
typically analyzed offline or in controlled settings. Thus,
AMFNet’s design prioritizes precision, making the speed-
accuracy trade-off justifiable for industrial applications.

Figure 8 visualizes this enhancement via heatmaps from
a post-fusion layer, comparing the baseline (first row) and
AMFNet (second row) across four steps: original image,
heatmap, overlay, and detection result. AMFNet’s heatmap
(b) exhibits sharper focus on defect regions, with higher
activation intensity and clearer boundary delineation than
the baseline. The overlay (c) and results (d) show improved
localization and confidence scores, attributable to DCM’s
rich receptive field and attentionmechanisms,which enhance
sensitivity to defect boundaries and complex textures.
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Fig. 8 Heatmaps displayed by
specific layers: a original image,
b heatmap, c overlay image, d
result

Table 4 Performance metrics of
DCM on the NEU-DET

Models mAP50 mAP75 mAP50:90 mAP(s) mAP(m) mAP(l)

DCM(1) 0.819 0.386 0.422 0.369 0.370 0.564

DCM(2) 0.797 0.362 0.408 0.361 0.359 0.550

DCM(3) 0.788 0.366 0.412 0.357 0.364 0.523

DCM(4) 0.778 0.355 0.405 0.356 0.362 0.517

DCM(1/2/3/4) 0.766 0.331 0.393 0.339 0.355 0.522

Deployment of DCM

Table 4 examines the impact of deploying DCM across dif-
ferent BIM layers, reporting mAP50, mAP75, mAP50:90,
and size-specific mAPs (small: mAP(s), medium: mAP(m),
large: mAP(l)) on the NEU-DET. The results put partic-
ular emphasis on its deployment in the first layer, which
demonstrates the best performance. Notably, at IoU = 0.5
(mAP50), it achieves a remarkable accuracy of 0.819, show-
casing its efficacy in detecting defects. However, in terms
of detecting small defects (mAP(s)), its performance is rela-
tively lower at 0.365. Conversely, it excels in detecting large
defects (mAP(l)) andmedium-sized defects, achieving 0.556
and 0.366, respectively, underscoring its robust capability in
detecting defects of varying sizes when deployed on the first
layer of BIM.

With regard to the DCMs deployed at higher layers
(DCM2, DCM3, and DCM4), each also exhibits improved
performance but slightly lags behind in most evaluation met-
rics. It should be noted that simultaneous deployment of
DCMs across all layers of BIM (DCM1/2/3/4) results in a
decrease in all performance metrics, with mAP dropping
to 0.393 and mAP50 to 0.766. This suggests that while
single-layer deployment can achieve high defect detection
performance, simultaneous deployment across multiple lay-
ers may lead to performance degradation.

Cross-dataset validation

Generalizability verification

To assess the generalization capability of AMFNet beyond
the NEU-DET dataset, we evaluate its performance on the
GC10-DET dataset, which encompasses a broader range of
steel surface defects with varying morphologies and com-
plexities. Table5 compares AMFNet against several state-of-
the-art methods, including SSD, YOLO variants (YOLOv3,
YOLOv5, YOLOv7), Faster R-CNN, EDDN (Lv et al.,
2020), DCA_RFCN, EC-YOLO (Cheng et al., 2024), and
DCC-CenterNet (Tian & Jia, 2022). In general, AMFNet’s
mAP of 0.699 exceeds that of Faster R-CNN (0.644), a struc-
turally similar baseline, highlighting the added value of BIM,
SCM, and DCM over a standard ResNet50-FPN backbone.
Compared to YOLO variants, AMFNet consistently outper-
forms despite their computational efficiency (e.g., YOLOv7:
0.655), reflecting its superior feature processing for com-
plex defect patterns. Specializedmethods like EDDN (0.651)
and DCC-CenterNet (0.619) lag behind, likely due to their
focus on specific defect types, whereas AMFNet’s hierarchi-
cal design ensures broader generalization.

Specifically, AMFNet performs well in detecting defect
types such as Ws and Os with accuracies of 0.869 and 0.795,
respectively, which are the highest scores among the com-
pared models. These defects often exhibit irregular, diffuse
shapes with fuzzy boundaries and uneven distributions, pos-
ing challenges for traditional detectors. The SCM enhances
detection by emphasizing spatial distribution patterns unique

123



Journal of Intelligent Manufacturing

Table 5 Cross-dataset validation on the GC10-DET

Methods Pu Wl Cg Ws Os Ss In Rp Cr Wf mAP

SSD 0.852 0.874 0.906 0.612 0.652 0.475 0.268 0.305 0.427 0.592 0.597

Yolov3 0.882 0.896 0.907 0.575 0.754 0.554 0.389 0.354 0.455 0.456 0.619

Yolov5 0.887 0.875 0.931 0.82 0.735 0.523 0.323 0.319 0.355 0.577 0.635

YOLOv7 0.866 0.934 0.952 0.825 0.696 0.489 0.344 0.414 0.402 0.625 0.655

Faster R-CNN 0.895 0.948 0.858 0.825 0.773 0.538 0.455 0.256 0.267 0.627 0.644

EDDN 0.900 0.885 0.848 0.558 0.622 0.65 0.256 0.364 0.521 0.919 0.651

DCA_RFCN 0.893 0.998 0.982 0.705 0.599 0.658 0.264 0.182 0.668 0.67 0.662

EC-YOLO 0.95 0.38 0.96 0.84 0.79 0.62 0.82 0.7 0.38 0.63 0.641

DCC-CenterNet 0.844 0.855 0.962 0.773 0.509 0.848 0.302 0.139 0.499 0.766 0.619

AMFNet 0.899 0.886 0.862 0.869 0.795 0.511 0.515 0.496 0.528 0.633 0.699

to Ws and Os, while suppressing background noise through
attention-weighted feature fusion. This capability is crit-
ical for distinguishing these defects from complex steel
textures. In addition, AMFNet also achieves a high detec-
tion accuracy of 0.899 in the Pu category. AMFNet ranks
among the top performers (e.g., EDDN: 0.900, EC-YOLO:
0.95), demonstrating balanced adaptability to well-defined,
localized defects. The BIM’s multi-scale feature extraction
ensures robust detection of Pu’s distinct geometric charac-
teristics. However, it is most noteworthy that the accuracy of
most networks in the three defect categories of In, Rp and Cr
is relatively low. These categories are notoriously challeng-
ing due to their subtle appearances and lowcontrast.AMFNet
achieves APs of 0.515 (In), 0.496 (Rp), and 0.528 (Cr), sur-
passingmost competitors. For In andRp, AMFNet trails only
EC-YOLO (Cheng et al., 2024) (0.82 and 0.7, respectively),
while inCr, it ranks second toDCA_RFCN(Tian&Jia, 2022)
(0.668). The DCM’s integration of dilated convolutions and
dual attention mechanisms (spatial and channel) enhances
sensitivity to these faint, irregular defects by expanding the
receptive field and refining feature representations.

The GC10-DET results validate our AMFNet’s design
principles and also strengthen AMFNet’s claim as a robust
solution for industrial defect detection, capable of adapting
to varied steel surface inspection tasks. Specifically, by lever-
aging dilated convolutions with varying rates, BIM adapts to
the diverse scales of GC10-DET defects (e.g., small Rp vs.
diffuse Ws), ensuring comprehensive feature capture. More-
over, The SCM’s attention-driven feature fusion enhances
discriminability, as seen in Ws and Os, where spatial rela-
tionships are critical for accurate detection amidst noise.
Lastly, The DCM’s combination of dilated convolutions and
attention mechanisms enables precise localization of subtle
defects (e.g., Cr, In), a key factor in AMFNet’s competitive
performance across datasets.

5-Fold cross-validation

To mitigate the risk of overfitting and ensure the statistical
robustness of AMFNet’s performance, we have also con-
ducted 5-fold cross-validation on the GC10-DET dataset.
This approach partitions the dataset into five subsets, train-
ing and validating the model iteratively to assess consistency
across folds. Table 6 reports the AP scores for each defect
category and the mAP across all folds for AMFNet and other
models.
AMFNet achieves a mean mAP of 0.716 (averaged across
folds: 0.719, 0.727, 0.712, 0.693, 0.732), significantly out-
performing classical single-stage detectors: SSD (0.586,
+0.130),YOLOv3 (0.626, +0.090),YOLOv5 (0.633, +0.083),
and YOLOv7 (0.651, +0.065). Compared to Faster R-CNN,
a representative two-stage detector, AMFNet improves mAP
by 0.075 (0.716 vs. 0.641). These gains highlight AMFNet’s
robustness against dataset variability, a critical factor in
industrial defect detection where overfitting to specific sam-
ples can compromise reliability.

With regard to category-specific performance, AMFNet
demonstrates superior detection in the Ws and Os cate-
gories, with mean APs of 0.844 and 0.801, respectively.
These values exceed those of all baselines (e.g., YOLOv7:
0.815 and 0.691 for Ws and Os). The SCM plays a piv-
otal role here, leveraging spatial attention to emphasize the
irregular, diffuse patterns of Ws and Os while suppress-
ing background noise. Additionally, the DCM’s expanded
receptive field ensures precise localization of these defects,
which often exhibit fuzzy boundaries. Across other cate-
gories, AMFNet maintains competitive performance without
significant degradation. For instance, in Pu, AMFNet’s mean
AP of 0.925 rivals top performers like YOLOv3 (0.920),
while in Cr, its mean AP of 0.563 surpasses most baselines
(e.g., SSD: 0.433). This consistency underscores AMFNet’s
ability to generalize across diverse defect morphologies.
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Table 6 Results of 5-fold cross-validation on the GC10-DET dataset

Model Pu Wi Cg Ws Os Ss In Rp Cr Wf mAP

SSD 0.812 0.845 0.925 0.453 0.65 0.382 0.293 0.325 0.422 0.594 0.570

0.688 0.945 0.854 0.512 0.621 0.451 0.326 0.294 0.389 0.453 0.553

0.769 0.738 0.958 0.529 0.628 0.479 0.317 0.335 0.455 0.575 0.578

0.917 0.887 0.916 0.573 0.712 0.482 0.332 0.329 0.495 0.621 0.626

0.878 0.881 0.905 0.556 0.684 0.512 0.372 0.285 0.405 0.551 0.603

YoloV3 0.947 0.926 0.949 0.678 0.689 0.457 0.395 0.345 0.349 0.535 0.627

0.896 0.901 0.904 0.586 0.732 0.515 0.606 0.333 0.396 0.427 0.629

0.889 0.934 0.878 0.594 0.727 0.625 0.558 0.289 0.494 0.411 0.639

0.932 0.911 0.854 0.645 0.679 0.435 0.537 0.389 0.345 0.406 0.613

0.935 0.901 0.913 0.555 0.775 0.448 0.406 0.359 0.417 0.522 0.623

YoloV5 0.901 0.846 0.908 0.789 0.699 0.495 0.376 0.351 0.354 0.546 0.627

0.865 0.901 0.887 0.816 0.749 0.424 0.415 0.337 0.371 0.518 0.628

0.887 0.912 0.896 0.794 0.688 0.454 0.386 0.401 0.342 0.499 0.626

0.910 0.899 0.865 0.822 0.721 0.514 0.404 0.389 0.404 0.534 0.646

0.875 0.933 0.857 0.804 0.676 0.485 0.371 0.364 0.474 0.543 0.638

YoloV7 0.855 0.917 0.919 0.845 0.688 0.504 0.421 0.458 0.418 0.611 0.664

0.879 0.906 0.922 0.814 0.656 0.534 0.399 0.424 0.389 0.589 0.651

0.845 0.947 0.879 0.798 0.711 0.512 0.501 0.398 0.421 0.634 0.665

0.865 0.898 0.887 0.801 0.674 0.496 0.454 0.412 0.366 0.547 0.640

0.837 0.874 0.933 0.817 0.725 0.474 0.367 0.384 0.399 0.558 0.637

Faster-RCNN 0.915 0.904 0.833 0.854 0.685 0.472 0.523 0.386 0.325 0.574 0.647

0.902 0.932 0.795 0.844 0.7745 0.512 0.501 0.335 0.289 0.598 0.645

0.866 0.914 0.841 0.817 0.698 0.489 0.479 0.364 0.341 0.616 0.643

0.854 0.897 0.787 0.799 0.765 0.563 0.438 0.401 0.277 0.604 0.639

0.886 0.874 0.804 0.787 0.721 0.504 0.469 0.374 0.304 0.588 0.641

AMFNet 0.892 0.855 0.936 0.838 0.828 0.571 0.525 0.514 0.628 0.604 0.719

0.967 0.939 0.948 0.790 0.733 0.552 0.559 0.526 0.569 0.691 0.727

0.960 0.925 0.907 0.810 0.848 0.595 0.499 0.508 0.479 0.590 0.712

0.852 0.954 0.916 0.835 0.793 0.427 0.579 0.401 0.560 0.616 0.693

0.953 0.87 0.939 0.946 0.803 0.573 0.550 0.476 0.577 0.637 0.732

To visualize performance stability, Fig. 9 presents box
plots derived from the 5-fold results in Table 6. AMFNet’s
mAP box plot exhibits the highest median (∼0.72) and
the narrowest interquartile range (IQR) among all models,
indicating both superior accuracy and low variance across
folds (range: 0.693−0.732). In contrast, SSD’s wider IQR
(0.553−0.626) and lower median (∼0.58) reflect greater
instability. ForWs andOs,AMFNet’s boxes show the highest
medians (∼0.84 and ∼0.80) and overall heights, confirm-
ing its dominance and consistency in these categories. The
compact IQR for Ws (0.790−0.946) and Os (0.733−0.848)
further validates AMFNet’s robustness against data splits, a
testament to the BIM’s multi-scale feature extraction stabi-
lizing performance across diverse samples.

The 5-fold cross-validation confirms AMFNet’s statisti-
cal reliability, with an mAP of 0.716 closely aligning with

its single-run performance (0.699 in Table 5), suggesting
minimal overfitting. The model’s stability (narrow IQR) and
category-specific strengths (Ws, Os) reinforce its suitabil-
ity for industrial deployment, where consistent performance
across unseen data is paramount.

Conclusion and outlook

In this paper, we propose an aggregated multilevel feature
interaction fusion network (AMFNet) for detecting defects
on industrial steel surfaces. Unlike previous approaches, our
method emphasizes the fusion of features from different
paths to achieve effective multi-scale integration. To this
end, we introduce the branch interaction module (BIM),
which fuses features from multiple paths, fully integrating
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Fig. 9 Box plot performance
comparison of different
categories and models

shallow fine-grained details with deep semantic informa-
tion and enhancing both feature extraction and the model’s
capacity to detect defects at multiple scales. Additionally, we
propose a dilated contextmodule (DCM) to expand the recep-
tive field by inflating convolutions, allowing each output to
encompass a broader range of information, thus support-
ing more effective multi-scale fusion. To further improve
channel and contextual feature extraction, we introduce the
spatial correlation module (SCM), which strengthens the
network’s ability to recognize and interpret steel surface
defects by extracting and emphasizing key regions. Exper-
imental results on the NEU-DET and GC10-DET datasets
demonstrate the superior detection performance of AMFNet,

showing that these enhancements in feature extraction and
defect detection comewith only aminimal increase in param-
eters.

Although the method proposed in this paper improves the
performance of steel surface defect detection, it still relies
on supervised approaches, which make the manual annota-
tion of datasets both necessary and costly. In future work,
we plan to explore semi-supervised and unsupervised meth-
ods to address the challenges associated with manual dataset
labeling. For instance, we aim to investigate self-supervised
learning techniques for feature learning using unlabeled data,
aswell as the applicationofGenerativeAdversarialNetworks
(GANs) or diffusionmodels to generate synthetic defect data
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for training. Furthermore, the current method has limita-
tions in terms of computational cost and inference speed,
which makes it unsuitable for environments with high-speed
requirements. In the future, wewill explore the application of
multi-scale feature fusion techniques for industrial anomaly
detection from a more efficient perspective.
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