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Abstract
We show that the square of Carnot–Carathéodory distance from the origin, in
step 2 Carnot groups, enjoys the horizontal semiconcavity (h-semiconcavity)
everywhere in the group including the origin. We first give a proof in the
case of ideal Carnot groups, based on the simple group structure as well as
estimates for the Euclidean semiconcavity. Our proof of the general result
involves more geometric properties of step 2 Carnot groups. We further apply
our h-semiconcavity result to show h-semiconcavity of the viscosity solutions
to a class of non-coercive evolutive Hamilton–Jacobi equations by using the
Hopf–Lax formula associated to the Carnot–Carathéodory metric.
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1. Introduction

Semiconvexity and semiconcavity properties are key regularity properties for functions, related
to bounds for the second derivatives, and applied in many different contexts. We refer to the
monograph by Cannarsa and Sinestrari [19] for an overview on the topic. One of the most
interesting functions, where one can apply this property, is the distance function. It is easily
seen that the standard Euclidean distance is convex and thus semiconvex everywhere but not
semiconcave. However, the squared Euclidean distance to a given point is both semiconvex
and semiconcave, since its Hessian is a constant nonnegative matrix. This leads to many inter-
esting consequences, and it is somehow behind the successful use of the squared distance to
prove many results in PDEs. This opens to question the relation between semiconvexity/semi-
concavity and distance functions in different geometrical settings.

In the case of Carnot groups, there is a vast literature investigating the notion of convex-
ity (or concavity) associated to their sub-Riemannian structure. Later in the paper we will
review several known notions that can be defined in these spaces. Let us just quickly recall the
notion of horizontal convexity (h-convexity for short) introduced by Lu–Mandredi–Stroffolini
in the Heisenberg group [36]; see also [29] for extension to more general Carnot groups. At
the same time, the notion of h-convexity is also studied independently by Danielli–Garofalo–
Nhieu in [22] by adapting the standard convexity definition to the algebraic structure of Carnot
groups. The notion of h-concavity can be symmetrically defined; see definition 2.14 for a pre-
cise definition. Such a notion was later generalised by Bardi and the first author in [11] with a
more geometrical approach that does not require any underlying Lie group structure and cover
sub-Riemannian structures up to the case of Carnot-type Hörmander vector fields.

While many results are known for h-convex or h-concave functions, less research has been
conducted on their semiconvex/semiconcave counterparts, which can be defined by easily
adapting the concept of h-convexity/h-concavity. As an analogue of the Euclidean case, in
[11] it is shown that these notions are equivalent to bounds in the viscosity sense for the
intrinsic Hessian. This equivalence demonstrates that h-semiconvexity/h-semiconcavity serves
as a natural sub-Riemannian generalisation, elucidating why proving h-semiconvexity/h-
semiconcavity properties is exceptionally useful in studying degenerate PDEs associated with
Carnot groups.

In this paper we are interested in exploring such semiconcavity for functions related to
the metric of a class of sub-Riemannian manifolds. In the setting of Carnot groups, various
notions of metric can be considered and they turn out to be all locally equivalent. In this work,
we discuss the Carnot–Carathéodory distance (CC distance for short). It is also the geodesic
distance, which can be defined as the minimal length among admissible curves joining two
given points. A precise definition is given in definition 2.6. It has many important analytic and
geometric properties; for example it is the only distance solving the eikonal equation in this
geometrical setting, as shown in [23, 38].

We attempt to provide h-concavity results for the CC distance in Carnot groups. Our main
result of this paper is the following theorem.

Theorem 1.1. Let G be a step 2 Carnot group with CC distance d. Then d2(·,0) is h-
semiconcave in G.
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Although our result holds for general Carnot groups of step 2, we shall first focus on the
so-called ideal Carnot groups, a subclass of step 2 Carnot groups that includes the Heisenberg
group and general H-type groups as simple yet significant examples. We choose to begin with
a proof for this special case, because it only makes use of several well-understood results
concerning the group structure and the local Euclidean semiconcavity without requiring any
further techniques. An important property of ideal Carnot groups is that the abnormal set,
which consists of endpoints of abnormalminimising geodesics starting from the group identity,
contains only the identity itself. Under certain assumptions for a general Carnot group, it is
shown in [18] that the CC distance from the identity is locally Euclidean semiconcave, and
therefore locally h-semiconcave, away from the abnormal set. See also [26, theorem 5.9] for
this result. However, despite many potential applications in nonlinear analysis and PDEs, the
behaviour near the identity has not been well understood in the literature.

Our analysis complements [18, 26], extending the h-semiconcavity of d2(·,0) to the identity,
and thus obtaining the regularity globally. In the case of ideal Carnot groups, we prove the h-
semiconcavity of d2(·,0) by combining several general results from Lie groups and viscosity
solution techniques. The simple structure of the abnormal set for ideal Carnot groups enables
us to obtain local estimates near the identity via a comparison of the homogeneous norm.

Our proof of the general result as stated in theorem 1.1 involves more geometric aspects of
Carnot groups. It utilises the notion of so-called C-nearly semiconcavity, geometric properties
of the endpoint map and the fact that all minimising geodesics in step 2 Carnot groups are nor-
mal. The notion of C-nearly horizontal semiconcavity was recently introduced by Badreddine
and Rifford in [8]. In the Euclidean setting, it is not equivalent to the standard notion of semi-
concavity unless we restrict it to compact sets and allow the constants in its definition to depend
on the compact set. For Carnot groups, we are able to prove that, while in generalC-nearly hori-
zontal semiconcavity is locally weaker than h-semiconcavity, they are indeed equivalent under
the additional assumption of local Euclidean Lipschitz continuity for the function. Fortunately,
such a local Lipschitz regularity does hold for the squared CC distance in step 2 Carnot groups.
Therefore we can replace the local Euclidean semiconcavity with the results in [8] and show
the h-semiconcavity of d2(·,0) for all Carnot groups of step 2.

It is worth mentioning that the assumption of step 2 is essential; in fact, as shown in [40],
the squared CC distance fails to be h-semiconcave in the Engel group, which is of step 3 and
thus not ideal; see proposition 4.5.

This new regularity property for the squared CC distance leads to various applications to
the study of nonlinear PDEs in step 2 Carnot groups. We include an application to Hamilton–
Jacobi equations in section 6. For a class of time-dependent convexHamilton–Jacobi equations
in step 2 Carnot groups, we show the spatial h-semiconcavity of viscosity solution that is given
by the Hopf–Lax formula (associated to the CC-metric). The h-semiconcavity constant we
obtained depends on t> 0 but is independent of the space variables. Our result provides a sub-
Riemannian generalisation of the Euclidean counterpart; see for example [19, theorem 1.6.1]
for the spatial semiconcavity of the Hopf–Lax solution to Hamilton–Jacobi equations in the
Euclidean space.

Although we have proved that the square of the CC distance is h-semiconcave, its regular-
ity turns out to be still very different from the Euclidean case. It is obvious that the squared
Euclidean distance from the origin is convex in the space. In contrast, we will show that, the
squared CC distance fails to be h-semiconvex in the Heisenberg group; see proposition 3.4.
More related discussions will be given in a forthcoming paper [34].

The paper is organised as follows: In section 2.1 we go over some basics about Carnot
groups including the group multiplication, the dilation and the CC distance. We recall some
known (local) inclusions between the CC balls and the Euclidean balls, and between the CC
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distance and the homogeneous distance. The notions and properties of the endpoint map,
normal and abnormal geodesics, and ideal Carnot groups are reviewed in section 2.2. Some
related details for the special case of the Heisenberg group as well as the notions of the hori-
zontal gradient and the horizontal Laplacian (or sub-Laplacian) are provided in these two
sections as well. In section 2.3 we go over the notions and basic properties of h-concave and
h-semiconcave functions.

Section 3 is devoted to the proof of theorem 3.1 in the case of ideal Carnot groups. We
also disprove the h-convexity of the squared CC distance. In section 4 we prove theorem 1.1,
extending theorem 3.1 to the case of all Carnot groups of step 2.We also show that the assump-
tion of step 2 is necessary for the result to hold. Some related consequences and generalisa-
tions are collected in section 5. We provide our applications to Hamilton–Jacobi equations in
section 6, showing the h-semiconcavity of Hopf–Lax solutions in space under suitable assump-
tions for the Hamiltonian.

2. Preliminaries

2.1. Carnot groups

We begin with some basic facts about Carnot groups. For more details, we refer to [16].

Definition 2.1 (Carnot group). A Carnot group is a connected and simply connected Lie
group G whose Lie algebra g has a stratification g=

⊕s
j=1 gj, that is, a linear splitting g=⊕s

j=1 gj where [g1,gj] = gj+1 for j = 1, . . . ,s− 1 and [g1,gs] = {0}. If gs 6= {0}, the number s
is called the step of G.

Note that the case s= 1 coincides with the standard Euclidean space, therefore, here we
will always consider the case s⩾ 2.

By using the exponential map, we can always identify a Carnot groupGwith its Lie algebra
g with the group law given by the so-called Baker–Campbell–Dynkin–Hausdorff formula; see
[16, section 15] for more details. Furthermore, by choosing a suitable basis of g consisting
of bases of gj, it can be further identified with (Rn, ·) with Rn = Rn1 × . . .×Rns , where · is a
non commutative operation. Here n= n1 + · · ·+ ns denotes the topological dimension ofG as
a manifold and nj represents the dimension of gj. After this identification, the group identity
becomes 0 and p−1 =−p. For r> 0, writing p= (p(1), . . . ,p(s)) ∈ Rn ∼= Rn1 × . . .×Rns , we
can define the dilation δr on (Rn, ·) by

δr

(
p(1), . . . ,p(s)

)
:=
(
rp(1), . . . ,rsp(s)

)
,

which is an automorphism of (Rn, ·). Note that the dilations defined above are anisotropic; for
a more formal definition of the dilations defined on Carnot groups, we refer to [16].

Moreover, the group multiplication satisfies

p · q= p+ q+R(p,q) , ∀p,q ∈ Rn, (2.1)

with R= (R(1), . . . ,R(s)) ∈ Rn1 × . . .×Rns , R( j) a polynomial depending only on the first
n1 + . . .+ nj−1 variables of p and q, i.e. the variables associated via the exponential map with
the first j− 1 layer of the Lie algebra. In particular, when the step s= 2, we have

R(p,q) =
(
0,B

(
p(1),q(1)

))
∈ Rn ∼= Rn1 ×Rn2 , ∀p,q ∈ Rn, (2.2)
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for some skew-symmetric bilinear form B : Rn1 ×Rn1 → Rn2 . For this identification, more
details can be found in [16, proposition 2.2.22 and section 3.2].

Remark 2.2. GivenG step two Carnot group, let us considerR(p,q) introduced in (2.2), there
exists a constant C0 > 0 such that

|R(p,q) |= |B
(
p(1),q(1)

)
|⩽ C0|p(1)||q(1)|⩽ C0|p||q|, ∀p,q ∈G, (2.3)

where | · | is the norm on G∼= Rn.

For the sake of simplicity, we use m := n1 = dimg1 and write p(1) = (p1, . . . ,pm).

Definition 2.3. For 1⩽ i ⩽ m, we use Xi ∈ g1 to denote the left-invariant vector field on G
which coincides with ∂

∂pi
at the identity. Note that {X1, . . . ,Xm} forms a basis of g1.

Example 2.4. The Heisenberg group H= R3 ∼= R2 ×R is the simplest Carnot group whose
group law (2.1) is given by

(x,y,z) · (x̃, ỹ, z̃) =
(
x+ x̃,y+ ỹ,z+ z̃+

1
2
(xỹ− x̃y)

)
,

which means that B((x,y),(x̃, ỹ)) = 1
2 (xỹ− x̃y) in (2.2). From the group multiplication defined

above, it is easy to see that the centre of H (the set of elements which can commute with all
the other elements) is {0}×R. The basis of g1 is given by

X1 =
∂

∂x
− y

2
∂

∂z
, X2 =

∂

∂y
+
x
2
∂

∂z
. (2.4)

Let Y= ∂
∂z . The Lie algebra g of H is given by g= g1 ⊕ g2 with

g1 = span{X1,X2} , g2 = span{Y} .

and the only nontrivial bracket relation of g is [X1,X2] = Y. In this particular case of the
Heisenberg group, one can show easily that (2.3) holds with C0 = 1. In fact, we have

|B
(
p(1),q(1)

)
|= 1

2
|xỹ− x̃y|⩽ 1

2
(|x||ỹ|+ |x̃||y|)⩽ |p(1)||q(1)| ,

for p(1) = (x,y) and q(1) = (x̃, ỹ).

Carnot groups are Lie groups, therefore they have also a manifold structure. Next we briefly
introduce it and we refer to [41, section 4.5] for more details.

Definition 2.5 (Sub-Riemannian structure). On a Carnot group G, the canonical left-
invariant sub-Riemannian structure (D,g) is defined as follows: the horizontal distribution
D (a sub-bundle of the tangent bundle TG satisfying the bracket generating condition) is
generated by g1 and the metric g on D is determined by {X1, . . . ,Xm}. To be more precise,
we have

Dp : = span{X1 (p) , . . . ,Xm (p)} ,

and {X1(p), . . . ,Xm(p)} forms an orthonormal basis at every point p ∈G.

5
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An horizontal path is an absolutely continuous map γ : [0,1]→G such that γ̇(τ) ∈ Dγ(τ)

for a.e. τ , whose length can be calculated by

ℓ(γ) :=

ˆ 1

0

√
g(γ̇ (τ) , γ̇ (τ))dτ. (2.5)

Definition 2.6 (Carnot–Carathéodory distance). The Carnot–Carathéodory distance (or in
short CC distance) between two points p,q ∈G is defined as

d(p,q) := inf{ℓ(γ) |γ horizontal,γ (0) = p,γ (1) = q} .

By the celebrated Chow–Rashevsky theorem (see for example [2, 41]), d is a well-defined
finite distance and its induced topology is the same as the manifold topology; in particular, in
Carnot groups, this means that d is continuous with respect to the standard Euclidean topology.
Therefore (G,d) is a metric space. We call the sub-Riemannian structure (D,g) complete if it
is complete as a metric space. A (length) minimising geodesic is a horizontal path γ such that
ℓ(γ) = d(γ(0),γ(1)).

In addition, the following properties of the CC distance hold (see [16, proposition 5.2.6]):

d(δr (p) , δr (q)) = rd(p,q) , ∀r> 0,p,q ∈G,
d(p,q) = d

(
q−1 · p,0

)
= d

(
p−1 · q,0

)
, ∀r> 0,p,q ∈G.

(2.6)

In the following we use BE(p,r) and BCC(p,r) to denote, respectively, the Euclidean ball
and the CC ball centred at p ∈G with radius r> 0, i.e.

BE (p,r) := {q ∈G | |p− q|< r} , BCC (p,r) := {q ∈G |d(p,q)< r} . (2.7)

A well-known relation between the Euclidean distance and the CC distance is as follows.

Proposition 2.7 ([3], proposition 1.1). On a Carnot group G with step s, for every compact
set K⊂G, there exists a constant C(K)> 0 such that

1
C(K)

|p− q|⩽ d(p,q)⩽ C(K) |p− q| 1s , ∀p,q ∈ K.

It immediately implies the following local inclusions between the Euclidean balls and the
CC balls, i.e. given any compact set K⊂G, if BCC(p,r)⊂ K, then

BE

(
p,C(K)−s rs

)
⊂ BCC (p,r)⊂ BE (p,C(K)r) . (2.8)

In order to simplify our notation, we denote by d0(p) the CC distance between the point p
and the group identity 0, i.e. d0(p) = d(p,0). It is worth mentioning the following equivalence
between the CC distance from the identity and the homogeneous norm.

Proposition 2.8 ([16], proposition 5.1.4). Let d be the CC distance of a Carnot group and
d0 = d(·,0). Then, there exists a constant C⩾ 1 such that

C−1|p|G ⩽ d0 (p)⩽ C|p|G, ∀p ∈G,

where | · |G denotes a homogeneous norm defined by

|p|G =

(
s∑

i=1

|p(i)| 2s!i
) 1

2s!

, ∀p=
(
p(1), . . . ,p(s)

)
∈G, (2.9)

with s the step of the group G and p(i) associated by the exponential map to the i-layer gi.
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We remark that in the special case of Heisenberg groupH (see example 2.4), the homogen-
eous norm in (2.9) reduces to

|(x,y,z) |H =
((
x2 + y2

)2
+ z2

) 1
4
, ∀ (x,y,z) ∈H,

which corresponds to (2.9) with s= 2, p= (x,y,z), p(1) = (x,y) and p(2) = z. With the vector
fields as in (2.4), a commonly used homogeneous norm inH is the Korányi gauge defined by

‖(x,y,z)‖H =
((
x2 + y2

)2
+ 16z2

) 1
4
, ∀ (x,y,z) ∈H.

For our discussions later about general Carnot groups, we will use the form (2.9), but choosing
the Korányi gauge will not affect our results on h-semiconcavity in the case of H, since these
two homogeneous norms are equivalent.

2.2. Endpoint map and ideal Carnot groups

Next we introduce the endpoint and ideal Carnot groups. More details on this part can be
found in [2, section 8] and [41, 46]. We recall that it is usually more convenient to minimise
the energy J as below rather than the original length ℓ defined in (2.5):

J(γ) :=
1
2

ˆ 1

0
g(γ̇ (τ) , γ̇ (τ)) dτ. (2.10)

In fact, we have the following relation (see e.g. [42, theorem 1.1.7] or [46, proposition 2.1]):

1
2
d2 (p,q) = inf{J(γ) |γ : [0,1]→G, horizontal,γ (0) = p,γ (1) = q} . (2.11)

For a fixed p ∈G and any control u ∈ L2([0,1],Rm), let γu be the unique maximal solution of
the following Cauchy problem:

γ̇u (τ) =
m∑
j=1

uj (τ)Xj (γu (τ)) , γ (0) = p. (2.12)

Here, a maximal solution refers to a solution γu : [0,T)→ Rm that cannot be extended beyond
T > 0.

Definition 2.9 (Endpoint map). We use Up to denote the set of u ∈ L2([0,1],Rm) such that the
corresponding trajectories γu solving (2.12) starting at p are defined on the interval [0,1]. Up
is an open set in L2([0,1],Rm). The endpoint map based at p is the map Ep : Up →G defined
as

Ep (u) := γu (1) .

We then obtain an energy functional on Up given by

J (u) := J(γu) =
1
2

ˆ 1

0
|u(τ) |2dτ. (2.13)

Note that Ep is a smooth function on Up (see [41, appendix D]) and a length minimising
geodesic joining p and q is just γu with u minimising J under the constraint Ep(u) = q. Thus,
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by the method of Lagrange multipliers (see e.g. [46, theorem B.2] or [2, section 8.2]), for such
u, there exists a non-trivial pair (λ,ν), such that

λ ◦DEp (u) = νDJ (u) , λ ∈ T∗qG, ν ∈ {0,1} , (2.14)

where ◦ denotes the composition and D denotes the (Fréchet) differential.

Definition 2.10 (Normal and abnormal minimising geodesic). Given ν introduced in (2.14),
the length minimising geodesic γu is called normal if ν= 1 and abnormal if ν= 0.

We remark that a minimising geodesic could be both normal and abnormal at the same time
since the pair (λ,ν) is not necessarily unique (see [41, section 5.3.3] and also example 2.12
below). We call an abnormal minimising geodesic trivial if it is a constant curve.

Now we define the sub-Riemannian Hamiltonian function H : T∗G→ R as

H(µ) :=
1
2

m∑
j=1

(µ ◦Xj)
2
, ∀µ ∈ T∗G,

where ◦ in this context also represents the natural duality pairing. We use H⃗ to denote the
Hamiltonian vector field given by H with respect to the canonical symplectic structure on
T∗G. If γu is normal, then from [2, proposition 8.9] we know that there exists a curve µ :
[0,1]→ T∗G such that µ satisfies the Hamilton equation

µ̇(t) = H⃗(µ(t)) , ∀ t ∈ [0,1] , (2.15)

µ(1) = λ, and π(µ) = γu, where λ is the one in (2.14) (with ν= 1) and π : T∗G→G is the
projection of the bundle. Such a curve µ is called a normal extremal.

The next definition introduces the groups under consideration in this paper; we refer to [45,
46] for more details.

Definition 2.11 (Ideal Carnot group). Given a Carnot group G, we say that G is ideal if the
sub-Riemannian structure (D,g), introduced in definition 2.5, is ideal, which by definition
means that it is complete and it does not admit non-trivial abnormal minimising geodesics.

The following notion of fatness can help us check whether a Carnot groupG is ideal or not.
Recall that G is called fat if for every p ∈G and X ∈ D with X(p) 6= 0, we have

Dp+ [D,X]p = TpG.

Thanks to the left invariance of the sub-Riemannian structure (D,g) onG, the property above
is equivalent to saying that for every X ∈ g1 \ {0}, the following holds true:

g1 + [g1,X] = g. (2.16)

By [48, theorem 10], a Carnot group is ideal if and only if it is fat, which trivially implies that
G is step two, i.e. s= 2.

Example 2.12. The Heisenberg groupH appearing in example 2.4 is ideal. The simplest non-
ideal Carnot group is R×H. To be more precise, suppose that T is a nonzero constant vector
field on R and the Lie algebra of R×H is given by g= g1 ⊕ g2 with

g1 = span{T,X1,X2} , g2 = span{Y} .

8
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Since T commutes with X1,X2,T, (2.16) fails for X=T, which implies that this Carnot group
is not ideal. To be more precise, we can write down explicitly a non-trivial abnormal geodesic.
To show a length minimising geodesic γu is normal or abnormal, by definition we need to
show (2.14) with the endpoint map defined in definition 2.9 and the energy functional defined
in (2.13). Now in our case, by considering X1, X2 given in (2.4) and T= ∂

∂w , and writing (2.12)
in coordinates (w,x,y,z), we have

γ̇u (τ) :=


γ̇1u (τ)
γ̇2u (τ)
γ̇3u (τ)
γ̇4u (τ)

=


u1 (τ)
u2 (τ)
u3 (τ)

1
2

[
−u2 (τ)γ3u (τ)+ u3 (τ)γ2u (τ)

]
 .

Assuming that we start from the group identity 0, we obtain

γju (τ) =

ˆ τ

0
uj (s)ds, ∀ j = 1,2,3,

and

γ4u (1) =
1
2

ˆ 1

0

[
−u2 (τ)γ3u (τ)+ u3 (τ)γ

2
u (τ)

]
dτ

=
1
2

ˆ 1

0

ˆ τ

0
[−u2 (τ)u3 (s)+ u3 (τ)u2 (s)]dsdτ.

This gives the formula of endpoint map based at the group identity in R×H

E0 (u) =


´ 1
0 u1 (τ)dτ´ 1
0 u2 (τ)dτ´ 1
0 u3 (τ)dτ

1
2

´ 1
0

´ τ
0 [−u2 (τ)u3 (s)+ u3 (τ)u2 (s)]dsdτ

 .
Taking the differential, we obtain

DE0 (u)v=


´ 1
0 v1 (τ)dτ´ 1
0 v2 (τ)dτ´ 1
0 v3 (τ)dτ

1
2

´ 1
0

´ τ
0 [−v2 (τ)u3 (s)+ v3 (τ)u2 (s)− u2 (τ)v3 (s)+ u3 (τ)v2 (s)]dsdτ

 ,
since we can check directly that

E0 (u+ v)−E0 (u)−DE0 (u)v= o(‖v‖L2)

as ‖v‖L2 → 0+. Similarly, we can take the differential in the direction v ∈ L2([0,1],R3) for the
energy J as (2.13) and the result is

DJ (u)v=
ˆ 1

0
〈u(τ) ,v(τ)〉dτ.

9



Nonlinearity 38 (2025) 045009 F Dragoni et al

Now we consider the length minimising geodesic γ(τ) = γu(τ) = (τ,0,0,0), τ ∈ [0,1] with
u≡ (1,0,0). Using the formulas above, it is not hard to check that

〈λ,DE0 (u)〉= 0, 〈λ̃,DE0 (u)〉= DJ (u)

with λ= (0,0,0,1) and λ̃= (1,0,0,0). Here 〈·, ·〉 is the inner product on the Euclidean space
R4 inducing the norm | · |. As a result, γ is a non-trivial minimising geodesic that is both normal
and abnormal.

In step 2 Carnot groups every abnormal minimising geodesic needs to be also normal (see
for example [46, theorem 2.22]) while this is not necessarily true for step 3 (or higher) Carnot
groups. Moreover, Carnot groups of step ⩾3 are never ideal Carnot groups because they are
not fat.

Example 2.13. The Engel group E= R4 ∼= R2 ×R×R, which is the simplest step 3 Carnot
group, is not ideal. To be more precise, the Engel group can be identified with R4 with the
following multiplication: given p= (x,y,z,s), p̃= (x̃, ỹ, z̃, s̃) ∈ E

p · p̃=
(
x+ x̃,y+ ỹ,z+ z̃+

1
2
(xỹ− x̃y) ,s+ s̃+

1
2
(xz̃− x̃z)+

1
12

(x− x̃)(xỹ− x̃y)

)
.

Defining

X1 =
∂

∂x
− y

2
∂

∂z
−
( xy
12

+
z
2

) ∂

∂s
, X2 =

∂

∂y
+
x
2
∂

∂z
+
x2

12
∂

∂s
,

Y=
∂

∂z
+
x
2
∂

∂s
, Z=

∂

∂s
.

The Lie algebra g of E is given by g= g1 ⊕ g2 ⊕ g3 with

g1 = span{X1,X2} , g2 = span{Y} , g3 = span{Z} .

Here the nontrivial bracket relations of g are [X1,X2] = Y and [X1,Y] = Z. For more details on
the Engel group, we refer to [1, 5–7] and the references therein.

We conclude this subsection with the definition of several differential operators in Carnot
groups, which utilises the derivatives along the vector fields introduced in definition 2.3. The
horizontal gradient of φ ∈ C1(G) at the point p ∈G, denoted by ∇Hφ(p), is defined by

∇Hφ (p) = (X1φ (p) , . . . ,Xmφ (p)) ∈ Rm.

The horizontal plane H0 passing through the identity 0 is a subspace of G∼= Rn defined by
Rm×{0}× . . .×{0}. It is clear that H0 is isomorphic to Rm and thus from now on we will
not distinguishH0 from Rm. If we use 〈·, ·〉 to denote the inner product on the Euclidean space
G∼= Rn inducing the norm | · |, with these notations, it is not difficult to see that

〈∇Hφ (p) ,h〉= d
dτ

∣∣∣∣
τ=0

φ(p · τh) , ∀h ∈H0. (2.17)

10
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Moreover, similar to the definition of the horizontal gradient, the (symmetrised) horizontal
Hessian of φ ∈ C2(G) at the point p ∈G, denoted by (∇2

Hφ(p))
∗, is the unique m×m sym-

metric matrix satisfying the following formula:

〈
(
∇2

Hφ (p)
)∗
h,h〉= d2

dτ 2

∣∣∣∣
τ=0

φ(p · τh) , ∀h ∈H0. (2.18)

The (canonical) sub-Laplacian at p ∈G is thus defined by∆Hu(p) =
∑m

i=1X
2
i u(p).

2.3. H-concavity and h-semiconcavity

On Carnot groups it is possible to introduce several notions of convexity/concavity. However,
some of them exhibit rather unusual behaviour in this sub-Riemannian setting. For example, in
[43], the authors showed that geodetical convexity is not a suitable notion on Heisenberg group
in the sense that the family of geodetically convex sets only consist of the whole group, the
empty set and the geodesics, and as a consequence the only geodetically convex functions in the
Heisenberg group are the constant functions. Furthermore, strong H-convexity is considered in
[17, 22], and it turns out that it is still a too restrictive notion. A notion of horizontal convexity,
shortly h-convexity, was introduced, independently, by Lu et al [36], for the Heisenberg group,
and by Danielli et al [22] in more general Carnot groups. Later the notion has been discussed in
various papers e.g. [10, 27, 29, 37, 44, 49]. Inmore recent years h-convexity has been applied to
study properties of solutions for certain classes of PDEs [33–35]. Concerning how h-convexity
can be applied to sets, see [24] for an overview and [30, 31] for further applications related to
nonlinear PDEs. The authors of [11, 12] extended the notion of the h-concavity the setting of
vector fields and further studied the notion of h-semiconcavity, which is the key topic of the
present work.

For the purpose of this paper, we introduce directly the notion of h-concavity, holding the
usual relation that u is h-convex if and only if −u is h-concave.

Definition 2.14 (H-concavity). Given an open set Ω⊂G, a function u ∈ LSC(Ω) (i.e. the
function is lower semicontinuous in Ω) is called h-concave if and only if

u(p · h)+u
(
p · h−1

)
− 2u(p)⩽ 0,

∀p ∈ Ω,h ∈H0 such that
[
p · h−1,p · h

]
:= {p · τh |τ ∈ [−1,1]} ⊂ Ω.

(2.19)

Remark 2.15. Note that for definition 2.14 to hold true, one could relax the assumption of
lower semicontinuity. Nevertheless, since later we use the viscosity characterisation of h-
concave functions, we ask such regularity directly in the definition. This definition follows
from [22, 36], where the notion is stated in a slightly different form, but these formulations
coincide with ours for LSC functions; see [29] for details.

Similarly to the standard Euclidean characterisation established first by Alvarez et al in
1997 [4], the h-concavity of a function can be characterised by the sign of its horizontal Hessian
in the viscosity sense: this characterisation was first introduced for the Heisenberg group in
[36] and later proved in Carnot groups in [29, 50]. See also [11] for the more general case of
Carnot-type Hörmander vectors fields.

Combining the results from the above mentioned papers, we have

u is h-concave in Ω, if and only if, −
(
∇2

Hu
)∗ ⩾ 0 in Ω holds in the viscosity sense. (2.20)

To be more precise, the viscosity inequality means that−(∇2
Hφ(p))

∗ ⩾ 0 whenever there exist
φ ∈ C2(Ω) and p ∈ Ω such that u−φ has a local minimum at p.

11
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Example 2.16. On the Heisenberg group H in example 2.4, we have X1 = ∂x− y
2∂z, X2 =

∂y+
x
2∂z, and the horizontal Hessian can be represented by

(
∇2

Hφ
)∗

=

(
X2
1φ

1
2 (X1X2φ+X2X1φ)

1
2 (X1X2φ+X2X1φ) X2

2φ

)
with

X2
1 = ∂xx− y∂xz+

y2

4
∂zz, X2

2 = ∂yy+ x∂xz+
x2

4
∂zz, (2.21)

1
2
(X1X2 +X2X1) = ∂xy−

y
2
∂yz+

x
2
∂xz−

xy
4
∂zz. (2.22)

In this case, one can easily verify that every Euclidean concave function inR3 is also h-concave
in H. The reverse however is not true, as shown in [22, 24, 33].

Next we recall the property under investigation in this paper.

Definition 2.17 (H-semiconcavity). Given an open setΩ⊂G, we call a function u ∈ LSC(Ω)
h-semiconcave if there exists a constant C⩾ 0 such that

u(p · h)+ u
(
p · h−1

)
− 2u(p)⩽ C|h|2, ∀p ∈G,h ∈H0 such that

[
p · h−1,p · h

]
⊂ Ω,

(2.23)

where we recall that | · | is the Euclidean norm on G∼= Rn. The constant C is called h-
semiconcavity constant.

This is a generalisation of the notion of semiconcave functions in the Euclidean space,
for which we refer to [19]. We also refer the reader to [8] for another notion of horizontal
semiconcavity called C-nearly horizontal semiconcavity, which will also be used later; see
definition 4.1 for a precise definition. In proposition 4.2, we will also discuss the relation
between these two notions of horizontal semiconcavity.

A function u is called h-semiconvex if−u is h-semiconcave. Similarly to the characterisation
in (2.20) for h-concave functions, the notion of h-semiconcavity can be characterised by a
bound for the horizontal Hessian in the viscosity sense.

Theorem2.18 (Proposition 5.1 of [11]). Given an open setΩ⊂G and u ∈ LSC(Ω), the follow
statements are equivalent:

(1) u is h-semiconcave in Ω with h-semiconcavity constant C⩾ 0.
(2) We have

−
(
∇2

Hu
)∗ ⩾−C Idm in Ω in the viscosity sense, (2.24)

which means that−(∇2
Hφ(p))

∗ ⩾−C Idm whenever there existφ ∈ C2(Ω) and p ∈ Ω such
that u−φ has a local minimum at p. Here Idm denotes the m×m identity matrix.

The result below is a direct consequence of theorem 2.18 and the stability of viscosity
supersolutions with respect to the infimum. It will be useful in our later applications. Recall
that we denote by LSC(A) the set of lower semicontinuous functions in a set A of a metric
space.

Proposition 2.19. Let Ω be an open set of a Carnot group G. Let {uα}α∈A be a family of h-
semiconcave functions onΩ. Assume that for everyα ∈ A, the function uα is an h-semiconcave

12
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function in Ω with h-semiconcavity constant C⩾ 0 independent of α. Suppose that

u(p) := inf
α∈A

uα (p)>−∞ for all p ∈ Ω.

If u ∈ LSC(Ω), then u is also h-semiconcave in Ω with the same h-semiconcavity constant
C⩾ 0.

3. H-semiconcavity of squared CC distance in ideal Carnot groups

In this section, we present our main result in the case of ideal Carnot groups.

Theorem 3.1. Let G be an ideal Carnot group with CC distance d. Then d2(·,0) is h-
semiconcave in G.

One of the tools we will use is the local (Euclidean) semiconcavity studied in [18]. Recall
that a function u is locally semiconcave in an open setΩ if for every compact convex setK⊂ Ω,
there exists a constant C(K)⩾ 0 such that the following holds:

λu(p)+ (1−λ)u(q)− u(λp+(1−λ)q)⩽ λ(1−λ)C(K) |p− q|2,
∀p,q ∈ K,λ ∈ [0,1] . (3.1)

Here the constant 2C(K) is called the semiconcavity constant on compact set K. Note that
the definition is independent of the choice of the norm | · |, since, in the Euclidean setting,
different norms are equivalent up to a multiplicative constant. Hereafter let us just use the
standard norm on Rn. By definition an ideal Carnot group only possesses trivial abnormal
minimising geodesics. Consequently, the abnormal set of the identity 0, which is just the set
of endpoints of abnormal minimising geodesics starting from the identity 0, must be {0}. It
follows from [18, theorem 1] (and also [26, theorem 5.9]) that d2(·,0) is locally (Euclidean)
semiconcave on G \ {0}. The following lemma, which will be useful in the proof of our main
result, is a direct consequence.

Lemma 3.2. LetG be an ideal Carnot group with CC distance d. Then, for d0 = d(·,0), there
exist two constants C⩾ 0 and c> 0 such that

d20 (p+ v)+ d20 (p− v)− 2d20 (p)⩽ C|v|2, ∀p ∈ ∂BCC (0,1) , |v|⩽ c.

Proof. Set S= ∂BCC(0,1) and η = infq∈S |q|, that is, η is the Euclidean distance between the
origin and the boundary of the unit CC ball. By (2.8) with K= BCC(0,1), it is easy to see that
η > 0. Thus, for every q ∈ S, the compact set BE(q,η/2)⊂G \ {0}; see figure 1.

It follows from the local (Euclidean) semiconcavity of d20 on G \ {0} (see [18, theorem 1])
that there exists a C(q,η)⩾ 0 such that

λd20 (p+)+ (1−λ)d20 (p−)− d20 (λp+ +(1−λ)p−)⩽ λ(1−λ)C(q,η) |p+ − p−|2,

∀p+,p− ∈ BE (q,η/2),λ ∈ [0,1] .
(3.2)

As a result, choosing p+ = p+ v, p− = p− v, and λ= 1
2 , we apply (3.2) to deduce

d20 (p+ v)+ d20 (p− v)− 2d20 (p)⩽ 2C(q,η) |v|2, ∀p ∈ BE (q,η/4) , |v|⩽ η/4.

See figure 2.
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Figure 1. The CC ball BCC(0,1) and the Euclidean ball BE(q,η/2).

Figure 2. The points p± and the Euclidean balls centred at q.

Since {BE(q,η/4)}q∈S is an open cover of S, by compactness, there exists a finite cover
{BE(qi,η/4)}1⩽i⩽N with N<+∞. Now we introduce

C := 2 max
1⩽i⩽N

C(qi,η)⩾ 0,

then, for every p ∈ S, there exists an i ∈ {1, . . . ,N} such that p ∈ BE(qi,η/4), which yields

d20 (p+ v)+ d20 (p− v)− 2d20 (p)⩽ 2C(qi,η) |v|2 ⩽ C|v|2, ∀|v|⩽ η/4.

By taking c := η/4> 0, we complete the proof of the lemma.

We stress that both constants C,c> 0 in lemma 3.2 depend only on S= ∂BCC(0,1), there-
fore they are both universal constants.

Let us now prove theorem 3.1.

Proof of theorem 3.1. We continue using d0 to denote the CC distance from the identity.
Therefore we have d20(p) = d2(p,0) for p ∈G. Moreover, since Carnot groups satisfy the

14
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Hörmander condition, meaning the distribution associated to Carnot groups is bracket gen-
erating, the CC distance d is continuous (see [41, theorems 2.2 and 2.3]). Therefore it is clear
that the condition d20 ∈ LSC(G).

We first pose the following claim:

For every p ∈G, there exist C> 0 (independent of p) and c(p)> 0 such that

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p)⩽ C|h|2, ∀h ∈H0, |h|⩽ c(p) . (3.3)

Assuming that (3.3) holds, we can use the viscosity characterisation for h-semiconcave func-
tions given in theorem 2.18 to easily conclude. In fact, take φ ∈ C2(G) such that d20 −φ has a
local minimum at some p ∈G. Without loss of generality, by standard viscosity theory tech-
niques, we can assume that the local minimum is equal to 0, i.e. φ(p) = d20(p) (see e.g. [32,
proposition 2.2]). Then claim (3.3) implies that for h ∈H0 with |h| small enough, we get

φ(p · h)+φ
(
p · h−1

)
− 2φ(p)⩽ d20 (p · h)+ d20

(
p · h−1

)
− 2d20 (p)⩽ C|h|2. (3.4)

However, recalling the horizontal differential operators introduced in (2.17) and (2.18) and by
applying the Taylor expansion in the group (see e.g. [16, section 20]), we can write

φ(p · h) = φ(p)+ 〈∇Hφ(p) ,h〉+
1
2
〈
(
∇2

Hφ(p)
)∗
h,h〉+ o

(
|h|2
)
,

φ
(
p · h−1

)
= φ(p)−〈∇Hφ(p) ,h〉+

1
2
〈
(
∇2

Hφ(p)
)∗
h,h〉+ o

(
|h|2
)
.

(3.5)

Combining (3.4) and (3.5), we obtain

〈
(
∇2

Hφ(p)
)∗
h,h〉+ o

(
|h|2
)
⩽ C |h|2,

for all h ∈H0 with |h| small enough. Dividing this inequality by |h|2 and letting |h| → 0+, we
deduce that (∇2

Hφ(p))
∗ ⩽ C Idm and thus −(∇2

Hd
2
0)

∗ ⩾−C Idm in the viscosity sense, which
concludes the result by theorem 2.18.

Let us now prove claim (3.3). Note that G is a fat, since it is assumed to be ideal. We here
only consider the case when G is of step 2. The case of step 1 Carnot group can be reduced to
the known Euclidean case. Let us fix the constants C⩾ 0 and c> 0 appearing in lemma 3.2,
and split the proof of (3.3) into three cases:

Case 1: p ∈ S= {q ∈G |d(q,0) = 1}. We use lemma 3.2 for this case. It follows from (2.1)
and (2.2) that

p · h= p+ h+R(p,h) , p · h−1 = p− h−R(p,h) , ∀p,h ∈G. (3.6)

Furthermore, we apply inequality (2.3) to p ∈ S= ∂BCC(0,1) to get |R(p,h)|⩽ C1|h|, where
C1 = C0 supp∈S |p| ∈ (0,+∞). As a result, we have

|vp,h|⩽ |h|+C1|h|, ∀p ∈ S,h ∈G, where vp,h := h+R(p,h) .

Then for c1 = c
1+C1

, whenever p ∈ S and h ∈H0 such that |h|⩽ c1, we deduce |vp,h|⩽ c.

Combining this with lemma 3.2 (with constant C in place of C) and (3.6), we obtain
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d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p) = d20 (p+ vp,h)+ d20 (p− vp,h)− 2d20 (p)

⩽ C|vp,h|2 ⩽ C(1+C1)
2 |h|2, ∀p ∈ S,h ∈H0, |h|⩽ c1.

This proves claim (3.3) with C= C(1+C1)
2.

Case 2: p ∈G and p 6= 0. In this case, we use the properties of the CC distance as in (2.6).
In fact, for every p 6= 0 we can define p̃= δ1/r(p) with r= d0(p) (i.e. p= δr(p̃)) so that p̃ ∈ S.
Indeed, we have

d0 (p̃) = d0
(
δ1/r (p)

)
=

1
r
d0 (p) =

1
r
r= 1.

Then we can adopt Case 1 for p̃ with h̃= δ1/r(h) for all h ∈H0 such that |h|⩽ c1r, where c1
is the constant determined in Case 1. It is worth pointing out that, due to the condition h ∈H0,
we have

δ1/r (h) =
h
r
, |h̃|= |h|

r
⩽ c1 r

r
= c1.

Hence by our result in Case 1 we can write

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p) = d20 (δr (p̃) · h)+ d20

(
δr (p̃) · h−1

)
− 2d20 (δr (p̃))

= r2
[
d20
(
p̃ · δ1/r (h)

)
+ d20

(
p̃ · δ1/r (h)

−1
)
− 2d20 (p̃)

]
= r2

[
d20
(
p̃ · h̃

)
+ d20

(
p̃ · h̃−1

)
− 2d20 (p̃)

]
⩽ r2C| h̃ |2 ⩽ r2C

|h|2

r2
= C|h|2,

where we take C= C(1+C1)
2 as in Case 1 and c(p) = c1d0(p). This proves claim (3.3) for

the current case with C= C(1+C1)
2 and c(p) = c1d0(p).

Case 3: p= 0. It remains to prove the claim in the case p= 0. To this end, we use the equivalence
of the CC distance and the homogeneous norm introduced in (2.9). Noticing that, for all h ∈H0

we have that |h|G = |h|, hence for p= 0 we obtain

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p) = d20 (h)+ d20 (−h)⩽ 2C2

2 |h|2,

where C2 ⩾ 1 is the constant given in proposition 2.8. This proves claim (3.3) for the point
p= 0 with the constants C= 2C2

2 and c(p) = 1.
To sum up, considering all of the cases discussed above, we have shown that claim (3.3)

holds for all p ∈G and h ∈H0 such that |h|⩽ c(p), with

C=max
(
C(1+C1)

2
,2C2

2

)
> 0, c(p) =

{
c1d0 (p) , if p 6= 0,

1, if p= 0.
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Figure 3. The graph of d20 = d2(·,0) in the Heisenberg group H.

Remark 3.3. We include figure 3 to illustrate the significant difference between the h-
semiconcavity on Heisenberg group H and the usual Euclidean semiconcavity. The following
explicit expression of the CC distance in H is obtained in [14, theorem 1.36]:

d20 (x,y,z) =

{(
θ

sinθ

)2 (
x2 + y2

)
, if (x,y) 6= (0,0) and θ = µ−1

(
4|z|
x2+y2

)
,

4π |z|, if (x,y) = (0,0) ,
(3.7)

where µ : (−π,π)→ R given by

µ(s) :=
2s− sin(2s)

2sin2 s
(3.8)

is an increasing diffeomorphism (see [28, lemme 3, p 112] or appendix). Since d20 is rotational
symmetric in the coordinates x and y, we only draw the graph of d20 on the set {(x,0,z) |x,z ∈
R}. It can be seen from the red curve that a corner-like singularity occurs at the identity 0 in
the direction z (i.e. the forbidden direction). As a result, it is not Euclidean semiconcave at 0,
which by definition means that d20 is not locally Euclidean semiconcave in any neighbourhood
of the identity. This observation might explain why the result [18, theorem 1] or [26, theorem
5.9] did not touch the identity on H.

Our result confirms that such singularity actually does not affect the horizontal semiconcav-
ity of d20 at the identity 0. As a matter of fact, to investigate the definition of h-semiconcavity,
we should restrict the function to the horizontal plane, which gives a smooth function

d20 (x,y,0) = x2 + y2.

The graph of this function is plotted as the blue curve in figure 3.

While we have proved in theorem 3.1 that the squared CC distance d20 in an ideal Carnot
group is h-semiconcave, it however fails to be an h-semiconvex function even in theHeisenberg
group H, the simplest example of ideal Carnot groups. To see this, we present the following
result, which suggests a corner-like singularity at every nonzero point in the centre; see the
green curve in figure 3. See the forthcoming paper [34] for more discussions about this prop-
erty. Since h-semiconvexity is weaker than Euclidean semiconvexity, the following result also
implies [13, corollary 30] on the Heisenberg group H.
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Proposition 3.4. Let d be the CC distance of the Heisenberg group H and d0 = d(·,0) in H.
For every p= (0,0, τ) ∈H with τ 6= 0, the following holds:

lim
h∈H0\{0},h→0

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p)

|h|
=−4d0 (p) . (3.9)

In particular,

lim
h∈H0\{0},h→0

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p)

|h|2
=−∞.

Proof. The key to the proof is the expression of the squaredCCdistance given in (3.7). Since d20
is symmetric with respect to the xy-plane and rotationally symmetric about the z-axis, without
loss of generality, we may assume that h1 > 0, h2 = 0, and z> 0. Moreover, in view of the
1-homogeneity of the CC distance with respect to the group dilation as shown in (2.6), it
suffices to prove (3.9) for e3 = (0,0,1). In fact, for a generic p= (0,0, τ) = δτ (e3), we have,
as H0 3 h→ 0,

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p)

|h|
=
τ 2

|h|

(
d20
(
e3 · δ1/τ (h)

)
+ d20

(
e3 · δ1/τ (h)

−1
)
− 2d20 (e3)

)
=

τ

|h̃|

(
d20
(
e3 · h̃

)
+ d20

(
e3 · h̃−1

)
− 2d20 (e3)

)
→ −4τd0 (e3) =−4d0 (p) ,

where we applied (3.9) at p= e3 with h̃= δ1/τ (h) = h/τ .
Let us now prove (3.9) at p= e3. By symmetry, we may further take h= (h1,0,0) with

h1 > 0. In this case, we have p · h= (h1,0,1) and p · h−1 = (−h1,0,1). Our goal is then to
show

lim
h1→0+

1
h1

(
d20 (h1,0,1)+ d20 (−h1,0,1)− 2d20 (0,0,1)

)
=−4d0 (0,0,1) . (3.10)

We use the expression of the squared CC distance given by (3.7), which yields

d20 (0,0,1) = 4π, d20 (h1,0,1) = d20 (−h1,0,1) =
(

θ

sinθ

)2

h21,

where θ = θ(h1) = µ−1
(

4
h21

)
→ π− as h1 → 0+. The equation for θ also gives

4
h21

= µ(θ) =
2θ− sin(2θ)

2sin2 (θ)
, (3.11)

which yields

h1
π− θ

→ 2√
π
, as h1 → 0+ . (3.12)

Then using (3.11), combined with (3.8), we get

d20 (h1,0,1)+ d20 (−h1,0,1)− 2d20 (0,0,1)
h1

= 2h1
d20 (h1,0,1)− d20 (0,0,1)

h21

= 2h1

[(
θ

sinθ

)2

−πµ(θ)

]
= 2h1

θ (θ−π)+π sinθ cosθ

sin2 θ
.
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By (3.12), we can pass to the limit of the relation above as h1 → 0+ to obtain

lim
h1→0+

d20 (h1,0,1)+ d20 (−h1,0,1)− 2d20 (0,0,1)
h1

= lim
h1→0+

−2h1 (θ+π)

π− θ
=−8

√
π.

Our proof of (3.10) is complete, since −8
√
π =−4d0(0,0,1).

4. Generalisation to step 2 Carnot groups

In this section we drop the assumption thatG is ideal by using the results in [8] instead of those
by Cannarsa–Rifford [18] and Figalli–Rifford [26]. Here the main difficulty is to investigate
the relation between the notion of C-nearly horizontally semiconcavity introduced in [8] and
our h-semiconcavity. First we recall the [8, definition 2.7] but in a slightly simplified form.
Although the definition given below is somewhat different from the original one in [8], it is
indeed equivalent for the canonical left-invariant sub-Riemannian structure (D,g).

In what follows we will useD to denote the differential of a map between Euclidean spaces.
When the target space is the real line R, it is the usual gradient∇ and in such case we also use
∇2 to denote the Hessian matrix. Furthermore, for multi-index α= (α1, . . . ,αm) ∈ Nm and a
vector h ∈ Rm, we define

α! :=
m∏

ℓ=1

(αℓ)!, |α| :=
m∑

ℓ=1

αℓ, Dα :=
m∏

ℓ=1

∂αℓ

ℓ , hα :=
m∏

ℓ=1

hαℓ

ℓ . (4.1)

Definition 4.1 (C-nearly horizontal semiconcavity). Let C> 0 and Ω be an open subset of
G∼= Rn, a function f : Ω→ R is said to be C-nearly horizontally semiconcave with respect to
(D,g) if for every p ∈ Ω, there are an open neighbourhood Vp of 0 inH0

∼= Rm, a function ϕp :
Vp ⊂H0 → Ω of class C2, a function ψp : Vp ⊂H0 → R of class C2, and an m×m orthogonal
matrix Op ∈ Om such that

ϕp (0) = p, ψp (0) = f(p) , f (ϕp (h))⩽ ψp (h) , ∀h ∈ Vp, Dϕp (0) = DLp (0)Op

(4.2)

with

‖ϕp‖C2 ⩽ C, ‖ψp‖C2 ⩽ C.

Here Lp denotes the restriction of the left multiplication by p on G on the horizontal planeH0

and

‖φ‖C2 := max
β∈Nm, |β|⩽2

sup |Dβφ|.

Roughly speaking, the definition tells that at every point p ∈ Ω, the function f can be touch-
ing from above uniformly along some m-dimensional C2 submanifoldMp, which is tangent to
the distribution Dp. As a result, we will show that the notion of h-semiconcavity is generally
stronger than this C-nearly horizontal semiconcavity (at least locally) since we can just choose
the manifold Mp to be p ·H0. To show the converse, we need some additional regularity of f,
as shown in the following proposition.

Proposition 4.2. LetG be a step 2 Carnot group and Ω⊂G open. Then the following results
hold.
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(1) If f is h-semiconcave in Ω, then for each open bounded set Ω ′ such that Ω ′ ⊂ Ω, f is C-
nearly horizontally semiconcave in Ω ′ with some C= C(Ω ′)> 0.

(2) If f is C-nearly horizontally semiconcave for some C> 0 and Lipschitz with respect to the
Euclidean norm, then f is also h-semiconcave in Ω.

Proof. We first prove the first assertion. In fact, since f is h-semiconcave, by Theorem we see
that the function fC0(p) := f(p)−C0|p(1)|2 is h-concave for some constant C0 > 0. It follows
from the definition of h-concave functions that for every p ∈ Ω, there exists a vp ∈ Rm such
that

fC0 (p · h)⩽ fC0 (p)+ 〈vp,h〉, ∀h ∈H0,

which implies

f(p · h)⩽ f(p)+ 〈vp+ 2C0p
(1),h〉+C0|h|2, ∀h ∈H0.

Recalling that, for Carnot groups of step 2, we have p · h= (p(1) + h,p(2) +B(p(1),h))
whenever h ∈H0 it is sufficient to choose ϕp(h) := Lp(h) = (p(1) + h,p(2) +B(p(1),h)) and
ψp(h) := f(p)+ 〈vp+ 2C0p(1),h〉+C0|h|2, to get definition 4.1.

Now we prove the second assertion. By the viscosity theory technique, namely using a
similar argument in the proof of theorem 3.1, it suffices to prove the following estimate: for
every p, there exists a constant c(p)> 0 such that

f(p · h)+ f
(
p · h−1

)
− 2f(p)⩽ 2(L+ 1)Cm2|h|2, ∀h ∈H0, |h|⩽ c(p) , (4.3)

where C is the constant in the definition of C-nearly horizontally semiconcavity, and L> 0 is
the Lipschitz constant of f, i.e.

|f(p̄)− f(p̃) |⩽ L|p̄− p̃|, ∀ p̄, p̃ ∈ Ω. (4.4)

We first need to estimate the ‘distance’ between Mp and p ·H0. By Taylor expansion,
for every h̃ ∈H0 with | h̃ | small enough, we have ϕp(h̃) = p+Dϕp(0)h̃+ rp,̃h, where the
remainder is

rp,̃h =
∑

β∈Nm, |β|=2

2
β!

(ˆ 1

0
(1− t)Dβϕp

(
th̃
)
dt

)(
h̃
)β
.

Here, we recall from (4.1) the notations related to the multi-index β. From the assumption
‖ϕp‖C2 ⩽ C, we have

∣∣∣rp,̃h∣∣∣⩽ ∑
β∈Nm, |β|=2

2C| h̃ |2
ˆ 1

0
(1− t)dt⩽ Cm2| h̃ |2,

and, choosing p̄= p+Dϕp(0)h̃ and p̃= ϕp(h̃) in (4.4), we obtain

f
(
p+Dϕp (0) h̃

)
− f
(
ϕp

(
h̃
))

⩽
∣∣∣f(p+Dϕp (0) h̃

)
− f
(
ϕp

(
h̃
))∣∣∣⩽ L

∣∣∣rp,̃h∣∣∣⩽ LCm2| h̃ |2.
(4.5)
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Recalling that Lp(h) = p · h= (p(1) + h,p(2) +B(p(1),h)),∀p ∈G,h ∈H0 with B bilinear,
we have

p+DLp (0)h=
(
p(1),p(2)

)
+
(
h,B

(
p(1),h

))
= p · h.

Plugging the previous equation into (4.4) with h= Oph̃ and using (4.2), we deduce

f(p · h) = f(p+DLp (0)h) = f
(
p+DLp (0)Oph̃

)
= f
(
p+Dϕp (0) h̃

)
⩽ f
(
ϕp

(
h̃
))

+LCm2| h̃ |2. (4.6)

Similarly, by Taylor expansion we deduce

ψp

(
h̃
)
⩽ f(p)+ 〈Dψp (0) , h̃〉+Cm2| h̃ |2 = f(p)+ 〈OpDψp (0) ,Oph̃〉+Cm2| h̃ |2, (4.7)

where we used the fact that Op is orthonormal. Plugging (4.6) and (4.7) into (4.2) and for
h := Oph̃ (note that by orthonormality |h|= |h̃|), we obtain

f(p · h)⩽ f(p)+ 〈OpDψp (0) ,h〉+(L+ 1)Cm2|h |2, ∀h ∈H0 with |h | small enough. (4.8)

Writing (4.8) for h and for h−1 =−h, and adding two inequalities together, we can deduce,
for all h ∈H0 small enough

f(p · h)+ f
(
p · h−1

)
− 2f(p)⩽ 2(L+ 1)Cm2|h|2,

which implies h-semiconcavity in view of the viscosity interpretation as in the proof of
theorem 3.1.

The assumption of Euclidean Lipschitz continuity is essential in order to control all the
terms coming from the second order Taylor expansion in the group and in particular the first
derivatives in the forbidden directions appearing there. In fact, while h-semiconcavity implies
local Lipschitz continuity w.r.t. to the CC distance that allows to bound the horizontal gradient
(see [22, 37, 44, 49]), in general the total gradient may be unbounded. It turns out that such
an assumption is necessary for the equivalence to hold true, as one can see in the following
example.

Example 4.3. On theHeisenberg groupH in example 2.4, the CC distance from the origin d0 is
not h-semiconcave but C-nearly horizontally semiconcave on Ωa,b,R := {(x,y,z) ∈H |a(x2 +
y2)< z< b(x2 + y2), |z|< R} for some suitable a,b,R,C> 0. Now we choose these con-
stants. We refer the reader to appendix for the detailed calculation. Considering a point p∗ =
(x∗,y∗,z∗)with z∗ > 0 and (x∗,y∗) 6= (0,0) and letting z∗ → 0+with (x∗,y∗) fixed, the auxili-
ary function θ = θ(p∗)→ 0+ sinceµ−1(s)→ 0+ as s→ 0+. Then it follows from (A.7)–(A.9)
and (2.21)–(2.22) that(

∇2
H

[
d20
]
(p∗)

)∗ → 2Id2 +
4

µ ′ (0)
1

x2∗ + y2∗

(
y2∗ −x∗y∗

−x∗y∗ x2∗

)
> 0

since µ(s)→ 0+ as s→ 0+. As a result, for z∗ small enough there exists a point p∗ such that
(∇2

H[d
2
0](p∗))

∗ is positive definite. Now fix the point p∗ and we choose a,b,R in such a way
that the p∗ ∈ Ωa,b,R. By direct computation, we have(

∇2
H [d0] (p∗)

)∗
=

1
2d0 (p∗)

[(
∇2

H

[
d20
]
(p∗)

)∗ − 2(∇H [d0] (p∗))⊗ (∇H [d0] (p∗))
]
.
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Note that (∇2
H[d0](p∗))

∗ has at least one positive eigenvalue, since if we pick a nonzero vector ν
orthogonal to∇H[d0](p∗), we have 〈(∇2

H[d0](p∗))
∗ν,ν〉> 0. Consequently, (∇2

H[d0])
∗ cannot

be bounded from above in Ωa,b,R. In fact, by definition we have δr(p∗) ∈ Ωa,b,R for every r ∈
(0,1), and the dilation property (2.6) yields

(
∇2

H [d0] (δr (p∗))
)∗

=
1
r

(
∇2

H [d0] (p∗)
)∗
.

This shows that d0 is not h-semiconcave in Ωa,b,R.
Let us now prove that in Ωa,b,R, d0 is C-nearly horizontally semiconcave for some C> 0.

For every p0 = (x0,y0,z0) ∈ Ωa,b,R, we define the following two functions

ϕp0 (x,y) : =

(
x+ x0,y+ y0,z0 +

x0y− y0x
2

−C∗
(
x2 + y2

))
,

ψp0 (x,y) : = d0 (p0)+ 〈∇H [d0] (p0) ,(x,y)〉.

From definition it is clear that

ϕp0 (0) = p0, ψp0 (0) = d0 (p0) , Dϕp0 (0) = DLp0 (0)

and the C2 norms are uniformly bounded (if the parameter C∗ is given). If we can show
∇2[d0 ◦ϕp0 ](0)< 0, then in a small neighbourhood of 0 we have d0(ϕp0(x,y))⩽ d0(p0)+
〈∇H[d0](p0),(x,y)〉 since∇[d0 ◦ϕp0 ](0) =∇H[d0](p0). Noticing that

∇2 [d0 ◦ϕp0 ] (0) =
1

2d0 (p0)

[
∇2
[
d20 ◦ϕp0

]
(0)− 2(∇H [d0] (p0))(∇H [d0] (p0))

T
]

we only need to prove∇2[d20 ◦ϕp0 ](0)< 0. From (A.10) we have

∇2
[
d20 ◦ϕp0

]
(0) =

(
∇H
[
d20
]
(p0)

)∗
+
(
∂zd

2
0

)
∇2ϕp0 (0) =

(
∇H
[
d20
]
(p0)

)∗ − 8θ (p0)C∗ Id2.

Since (∇H[d20](p0))
∗ is bounded from above and

0< µ−1 (4a)< θ (p0)< µ−1 (4b) , ∀p0 ∈ Ωa,b,R,

we can always choose a constant C∗ > 0 such that ∇2[d20 ◦ϕp0 ](0)< 0. We have verified that
d0 satisfies definition 4.1.

Now we prove theorem 1.1 for general step 2 Carnot groups. To this end, we first establish
the following lemma. Since T∗0G∼= (T0G)∗ ∼= g∗ ∼= Rn, there is a natural norm | · | on T∗0G.

Lemma 4.4. Let G be a step 2 Carnot group with CC distance d. Given a fixed (nonempty)
compact set K⊂G, there exists a constant A> 0 such that for every p ∈ K and every length
minimising geodesic γ : [0,1]→G from 0 to p, there is ξ ∈ T∗0G with |ξ|⩽ A such that γ is
the projection of some normal extremal with the initial covector ξ.

Proof. Without loss of generality we can assume K is the CC ball BCC(0,M), otherwise just
enlarge the set K since it is bounded.

First, note that each length minimising geodesic in a step 2 Carnot group is normal (see
[46, theorem 2.22]). In particular, it is the projection of some normal extremal and thus real
analytic.
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Second, for any p ∈ BCC(0,M) \Cut0, where Cut0 denotes the cut locus of the identity 0
defined by

Cut0 :=
{
p ∈G |d20 is not smooth in a neighbourhood of p

}
,

we know ([46, lemma 2.15], [47, proposition 2]) that there exists a unique length minimising
geodesic γ : [0,1]→G from 0 to p. It is thus a projection of some normal extremal µ : [0,1]→
T∗G with µ(1) = D[d20](p)/2 ∈ T∗pG. Here we recall that D denotes the differential. In fact, in
the setting of step 2 Carnot groups, after choosing suitable coordinates, we can identify T∗G
with Rn×Rn and write down the Hamilton equation (2.15) explicitly. See [2, section 13.1]
for more details. Then it follows from [2, (13.9)] that |µ(1)|= |µ(0)|. Hence, to prove |µ(0)|
is uniformly bounded, it is sufficient to show that |µ(1)| is uniformly bounded. In fact, this
boundedness comes from the local Lipschitz continuity of d20 with respect to Euclidean norm
(see [2, corollary 12.14]).

Concerning points p ∈ BCC(0,M)∩Cut0, since the cut locus has measure zero [45, pro-
position 15], we can always approximate p by points in BCC(0,M) \Cut0. Since d20 is locally
Lipschitz, up to a subsequence, the differentials also converge. It is guaranteed by [47, pro-
position 4] that the limiting length minimising geodesic has the same bound as before.

In particular, what we have proved so far implies that if the length minimising geodesic
from 0 to p is unique, then we can find such a A in the assertion.

Finally we show that the bound 2A works for all remaining points. Let γ be an arbitrary
length minimising geodesic. By real analyticity, length minimising geodesics cannot branch
(see [39, proposition 10]) and thus for every s ∈ (0,1), the restriction γ|[0,s] (aftering repara-
meterisation to [0,1]) is a unique length minimising geodesic from 0 to γ(s). In particular, we
choose s= 1/2 and by the result above, γ|[0,1/2] is the projection of some normal extremal
with the initial covector ξ with |ξ|⩽ A. From [2, lemma 8.35], the projection of the normal
extremal with the initial covector 2ξ is the same as γ on [0,1/2]. By real analyticity again they
coincide on the whole [0,1]. This ends the proof with the new bound 2A.

Let us now prove theorem 1.1, using the C-nearly horizontal semiconcavity result in [8].

Proof of theorem 1.1. Similar to the proof of theorem 3.1, we need only to prove the local
estimates corresponding to the ones in lemma 3.2. It follows from [8, proposition 2.9] and
lemma 4.4 that d20 on step 2 Carnot group G is C-nearly horizontally semiconcave and locally
Lipschitz w.r.t. the Euclidean norm in BCC(0,2) (see [2, corollary 12.14]), thus h-semiconcave
in BCC(0,2) by proposition 4.2. Then for any p ∈ S= ∂BCC(0,1) and h ∈H0 with |h|< 1/2,
we have [p · h−1,p · h]⊂ BCC(0,2) since

|d0 (p · th)− d0 (p) |⩽ d(p · th,p) = d0 (th) = t|h|< 1, ∀ t ∈ [−1,1] .

From the h-semiconcavity, there exists a C# such that

d20 (p · h)+ d20
(
p · h−1

)
− 2d20 (p)⩽ C#|h|2, ∀p ∈ S,h ∈H0, |h|⩽ 1/2.

This gives the desired estimate and completes the proof of theorem 1.1.

The assumption of step 2 in theorem 1.1 is essential. The h-semiconcavity of the square of
the CC distance actually fails to hold on the Engel group introduced in example 2.13. See [40,
section 4] for details about this observation. More precisely, the following result holds.
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Proposition 4.5. On the Engel groupE, there exists a nonzero element p inE (in the abnormal
set) such that the following limit holds:

lim
h∈R\{0}, h→0

d0 (p · he1)− d0 (p)
h2

=+∞, (4.9)

where e1 := (1,0,0,0) ∈H0 ⊂ E. In particular, for every r> 0, the following holds:

lim
h→0+

dr0 (p · he1)+ dr0

(
p · (he1)−1

)
− 2dr0 (p)

h2
=+∞. (4.10)

We refer to [40, theorem 1.2] for the proof of (4.9). As an immediate consequence, one can
obtain (4.10) by the mean value theorem.

5. Further consequences and generalisation

Applying theorem 2.18 to the function d20 = d2(·,0), a direct consequence of theorem 1.1 is
the following corollary.

Corollary 5.1. Let d be the CC distance of a step 2 Carnot group G. For d0 = d(·,0), there
exists a constant C> 0 such that

−
(
∇2

H

[
d20
])∗ ⩾−C Idm in G holds in the viscosity sense.

In particular, −∆H[d20]⩾−mC in G holds in the viscosity sense, where m denotes the dimen-
sion of the first layer of the Lie algebra of G. Here, the viscosity inequalities mean that
−(∇2

Hφ(p))
∗ ⩾−C Idm and −∆Hφ(p)⩾−mC hold for any φ ∈ C2(G) and p ∈G such that

d20 −φ attains a local minimum at p.

Proof. From theorem 1.1 we know that d20 is h-semiconcave. Then by (ii) of theorem 2.18,
there exists a constant C⩾ 0 such that for any φ ∈ C2(G) and p ∈G with the property that
d20 −φ has a local minimum at p, we have −(∇2

Hφ(p))
∗ ⩾−C Idm. Taking the trace on both

sides, we obtain −∆Hφ(p)+mC⩾ 0, which concludes the proof.

Corollary 5.2. Let d be the CC distance of a step 2 Carnot group G. For d0 = d(·,0), there
exists a constant C> 0 such that(

∇2
H

[
d20
])∗ ⩽ C Idm,

and

∆H
[
d20
]
⩽ mC

hold almost everywhere in G.

Proof. We first define the cut locus (of the identity 0) as follows:

Cut0 :=
{
p ∈G |d20 is not smooth in a neighbourhood of p

}
.

It is known [45, proposition 15] that the cut locus has measure zero if the step of a Carnot
group is two. From corollary 5.1 we know that −(∇2

H[d
2
0])

∗ ⩾−C Idm and −∆H[d20]⩾−mC
hold in the viscosity sense. Therefore, by standard techniques of viscosity solution theory,
−(∇2

H[d
2
0](p))

∗ ⩾−C Idm and −∆H[d20](p)⩾−mC hold at all points p where d20 is smooth
including all p ∈G \Cut0. Then the conclusion of the corollary follows.
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It is possible to generalise our result in theorem 1.1 for other functions related to the CC
distance. We present the following generalisation in a bounded open set of a step 2 Carnot
group.

Corollary 5.3. Let G be a step 2 Carnot group with CC distance d. Let Ω be a bounded open
set of G. Assume that Ψ : [0,+∞)→ [0,+∞) is an increasing function such that its even
extension Ψ̃ : R→ [0,+∞) is a locally semiconcave function in R, as defined in (3.1). Then,
Ψ(d(·,0)) is h-semiconcave in Ω.

Proof. We still use the notation d0 = d(·,0) inG. We first assume that Ψ̃ ∈ C2(R). Since Ψ̃ is
even, it is easy to obtain Ψ̃ ′(0) = 0. Now let T(Ω) := supp∈Ω d(p)<+∞. On the compact set

[0,T(Ω)], by the local semiconcavity there exists a constant C(Ω)> 0 such that Ψ̃ ′ ′ ⩽ C(Ω).
Consequently this implies

0⩽ Ψ̃ ′ (τ) = Ψ̃ ′ (τ)− Ψ̃ ′ (0)⩽ C(Ω)τ, ∀τ ∈ [0,T(Ω)] . (5.1)

Moreover, for p ∈ Ω \ {0} and h ∈H0 such that [p · h−1,p · h]⊂ Ω, by Taylor expansion we
have

Ψ(d0 (p · h))−Ψ(d0 (p))⩽ Ψ̃ ′ (d0 (p))(d0 (p · h)− d0 (p))+
C(Ω)

2
(d0 (p · h)− d0 (p))

2
.

(5.2)

Notice that

Ψ̃ ′ (d0 (p))(d0 (p · h)− d0 (p))⩽
Ψ̃ ′ (d0 (p))
2d0 (p)

(
d20 (p · h)− d20 (p)

)
,

and, also by the fact h ∈H0, we have

|d0 (p · h)− d0 (p) |⩽ d(p · h,p) = d0 (h) = |h|,

since it is easy to see that t→ th, t ∈ [0,1] is a length minimising geodesic. Inserting these two
estimates into (5.2), we obtain

Ψ(d0 (p · h))−Ψ(d0 (p))⩽
Ψ̃ ′ (d0 (p))
2d0 (p)

(
d20 (p · h)− d20 (p)

)
+
C(Ω)

2
|h|2.

Similarly we have

Ψ
(
d0
(
p · h−1

))
−Ψ(d0 (p))⩽

Ψ̃ ′ (d0 (p))
2d0 (p)

(
d20
(
p · h−1

)
− d20 (p)

)
+
C(Ω)

2
|h|2.

Adding them together and apply theorem 1.1 as well as (5.1), we have

Ψ(d0 (p · h))+Ψ
(
d0
(
p · h−1

))
− 2Ψ(d0 (p))

⩽ Ψ̃ ′ (d0 (p))
2d0 (p)

(
d20 (p · h)+ d20

(
p · h−1

)
− 2d20 (p)

)
+C(Ω) |h|2

⩽ Ψ̃ ′ (d0 (p))
2d0 (p)

C|h|2 +C(Ω) |h|2 ⩽ (C/2+ 1)C(Ω) |h|2,
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under the assumption that p ∈ Ω \ {0} and h ∈H0 such that [p · h−1,p · h]⊂ Ω, where C is the
h-semiconcavity constant of d20. This estimate still holds for p= 0, since Ψ̃ ′(d0(p)) = Ψ̃ ′(0) =
0 in (5.2). This ends the proof for the case Ψ̃ ∈ C2(R).

For general Ψ̃, it is sufficient to approximate by standard mollification. Take ϕε(·) =
ε−1ϕ(·/ε), where ϕ is an even, nonnegative, smooth function with compact support such
that
´
Rϕ dx= 1 and decreasing on [0,+∞). For every ε ∈ (0,1), we can show that ϕε ∗ Ψ̃

is smooth, even, increasing on [0,+∞), and locally semiconcave with the semiconcavity con-
stant on any compact set independent of ε ∈ (0,1). Since ϕε ∗ Ψ̃→ Ψ̃ locally uniformly as
ε→ 0, we can apply the standard stability argument for viscosity solutions to conclude our
proof.

Remark 5.4. Typical examples of the function Ψ satisfying the assumptions of corollary 5.3
are Ψ(τ) = Cτγ with C> 0 and γ ⩾ 2.

We conclude this section by remarking that the strategy employed here can be generalised
to cover step 2 sub-Riemannian manifolds, such as the rototranslation geometry introduced by
Citti and Sarti [20] to model the visual cortex. The main difference is that, due to the absence of
dilations, the result would only hold locally, i.e. within compact sets. In this context, the notion
of h-semiconcavity needs to be adapted to deal with the lack of an algebraic structure, using
the definition of X -semiconcavity introduced in [11]. In fact, one can use local coordinates
and adopt an approach similar to that used in [11] to show that the notion of semiconcavity
is invariant under changes of coordinates. Further details will be provided in our forthcoming
paper.

6. Application to Hamilton–Jacobi equations

In this section, we study h-semiconcavity of the viscosity solutions for a class of time-
dependent Hamilton–Jacobi equations of the form:{

ut+Φ(|∇Hu|) = 0, in (0,+∞)×G,
u(0, ·) = g, on {0}×G,

(6.1)

where ut denotes the time derivative of u, ∇Hu is the horizontal gradient in a (step 2) Carnot
group G, and Φ : [0,+∞)→ [0,+∞) is a continuous, convex, non-decreasing function such
that Φ(0) = 0. We assume throughout this section that g ∈ LSC(G), where we recall that
LSC(A) denotes the set of lower semicontinuous functions in a set A. In [23] (see also [38] for
the case of the Heisenberg group) it was proved that, if g ∈ LSC(G) and

∃C> 0 such that g(p)⩾−C(1+ d0 (p)) holds for all p ∈G, (6.2)

then the viscosity solution u ∈ LSC([0,+∞)×G) of the Cauchy problem (6.1) can be obtained
by the (metric) Hopf–Lax formula

u(t,p) = inf
q∈G

[
g(q)+ tΦ∗

(
d(p,q)
t

)]
, (t,p) ∈ [0,+∞)×G, (6.3)

where Φ∗ is the Legendre–Fenchel function associated to Φ, that is defined by

Φ∗ (s) := sup
τ⩾0

{sτ −Φ(τ)} , s⩾ 0. (6.4)
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For the uniqueness, we refer to [21], where comparison principles are proved for the Cauchy
problem with continuous initial data. Using theorem 1.1, we prove that, under suitable condi-
tions onΦ∗, for all t> 0, the viscosity solution of problem (6.1) given by (6.3) is h-semiconcave
in space. For the convenience of the reader, we will first show the result in the easiest case when
Φ(s) = s2/2 for s⩾ 0 and then study the case of a more general Φ.

Let us first recall another known result for the Hopf–Lax function.

Lemma 6.1 ([23]). Let G be a step 2 Carnot group with CC distance d. Let d0 = d(·,0) in G.
Assume that g ∈ LSC(G) and satisfies (6.2). Then u ∈ LSC([0,+∞)×G) and there exists a
constant C ′ > 0 such that

u(t,p)⩾−C ′ (1+ d0 (p)+ t) , ∀p ∈G, t> 0. (6.5)

Moreover, if g ∈ LSC(G) is bounded, then the infimum in (6.1) is actually a minimum and it
is attained in a CC ball centred at the point p with radius depending only on Φ and t.

Our first result is the following.

Theorem 6.2. Let G be a step 2 Carnot group with CC distance d. Let d0 = d(·,0) in G.
Assume that g ∈ LSC(G) satisfies (6.2). LetΦ(s) = s2/2 for s⩾ 0 and u be defined as in (6.3).
Then u(t, ·) is h-semiconcave in G, for every t> 0.

Proof. Since d(p,q) = d(q−1 · p,0) = d0(q−1 · p) holds for all p,q ∈G, given the choice
Φ(s) = s2/2 for s⩾ 0, we have Φ∗(s) = s2/2 by (6.4) and the function u in (6.3) reduces to

u(t,p) = inf
q∈G

{
g(q)+

d20(q
−1 · p)
2t

}
, (t,p) ∈ [0,+∞)×G.

By theorem 1.1, for every q ∈G and t> 0, the function

p 7→ g(q)+
d20
(
q−1 · p

)
2t

is h-semiconcave with h-semiconcavity constant C/(2t), where C> 0 is the h-semiconcavity
constant of d20. In view of (6.5), we have u(t,p)>−∞ for any t> 0 and p ∈G. Then the
h-semiconcavity of u(t, ·) in G follows from proposition 2.19.

Remark 6.3. Theorem 6.2 implies that u(t, ·) defined by (6.3) is also locally Lipschitz con-
tinuous with respect to the CC distance, which in turn yields a local Hölder continuity with
respect to the Euclidean distance.

We next generalise the previous result for more general Hamilton–Jacobi equations
but under additional boundedness assumption on g and locally strong convexity of the
Hamiltonian. Here we say that a function f is locally strongly convex in an open set Ω⊂ Rn if
for every compact convex set K⊂ R, there exists a constant C(K)> 0 such that

λf(x)+ (1−λ) f(y)− f(λx+(1−λ)y)⩾ λ(1−λ)C(K) |x− y|2, ∀x,y ∈ K,λ ∈ [0,1] .

Theorem 6.4. LetG be a step 2 Carnot group with CC distance d. Assume that g ∈ LSC(G) is
bounded. Let Φ : [0,+∞)→ [0,+∞) be a continuous, convex, non-decreasing function with
Φ(0) = 0. Assume in addition that Φ is coercive in the sense that

Φ(τ)

τ
→+∞ as τ →+∞, (6.6)
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and the even extension Φ̃ : R→ [0,+∞) of Φ is locally strongly convex in R. Let u be the
viscosity solution of (6.1) defined as in (6.3). Then, u(t, ·) is h-semiconcave in G for every
t> 0.

Proof. It is well known that the Legendre–Fenchel transform of a coercive, strongly convex
function is semiconcave in R; see for example [25, lemma 4 in chapter 3.4]. Using (6.6),
one can localise this property to prove the Legendre–Fenchel transform of a coercive, locally
strongly convex function is locally semiconcave in R. Since Φ̃ is locally strongly convex in R,
we thus obtain the local semiconcavity of (Φ̃)∗ in R.

On the other hand, asΨ =Φ∗ in [0,+∞), we have (Φ̃)∗
∣∣
[0,+∞)

=Ψ under current assump-
tions on Φ; in other words, Ψ has a semiconcave even extension in R. Now applying corol-
lary 5.3 with Ψ =Φ∗, we obtain the local h-semiconcavity of Φ∗(d0), that is Φ∗(d0) is h-
semiconcave in any bounded open set Ω⊂G.

Let us fix t> 0 arbitrarily. For any p ∈G, we can use the boundedness of g to deduce that

g(q)+ tΦ∗

(
d0
(
q−1 · p

)
t

)
→+∞ as d0 (q)→+∞.

By (6.3), it then follows that there exists q̂ ∈G depending on p such that

u(t,p) = g(q̂)+ tΦ∗

(
d0
(
q̂−1 · p

)
t

)
⩽ g(p) ,

which yields

tΦ∗

(
d0
(
q̂−1 · p

)
t

)
⩽ g(p)− g(q̂) .

Applying the boundedness of g again, we are led to d0(q̂−1 · p)<M for someM> 0 depending
on Φ, t but independent of p, q̂. In other words, for every fixed t> 0 and p ∈G, we have

u(t,p) = inf
Ω

{
g(q)+ tΦ∗

(
d0
(
q−1 · p

)
t

)}
, (6.7)

for any open set Ω⊂G satisfying BCC(p,M)⊂ Ω.
By the local h-semiconcavity of Φ∗(d0), for any p0 ∈G, we see that

p 7→ g(q)+ tΦ∗

(
d0
(
q−1 · p

)
t

)

is h-semiconcave in BCC(p0,1) for all q ∈ BCC(p0,M+ 1) with h-semiconcavity constant
depending only onM (in particular independent of p0). In view of proposition 2.19, we obtain
the h-semiconcavity of u(t, ·) in BCC(p0,1) with the same h-semiconcavity constant by taking
infimum of the function above over q ∈ BCC(p0,M+ 1) and noting that

u(t, ·) = inf
q∈BCC(p0,M+1)

{
g(q)+ tΦ∗

(
d0
(
q−1 · p

)
t

)}
,

thanks to (6.7) with Ω= BCC(p0,M+ 1)⊃ BCC(p,M).

28



Nonlinearity 38 (2025) 045009 F Dragoni et al

Since the h-semiconcavity constant of u(t, ·) in BCC(p0,1) is independent of p0 ∈G, we
thus obtain the h-semiconcavity of u(t, ·) in G.

Our h-semiconcavity result above can be applied to some particular Hamilton–Jacobi
equations such as

ut+
1
α
|∇Hu|α = 0 in (0,+∞)×G,

with a bounded initial value g ∈ LSC(G) and 1< α⩽ 2. The case α= 1 is not covered by
theorem 6.4, but if g ∈ LSC(G) is assumed to be bounded and h-semiconcave in G, then we
have preservation of the spatial h-semiconcavity of the viscosity solution given by the optimal
control formula

u(t,p) = inf
q∈BCC(p,t)

g(q) , t> 0, p ∈G.

The proof is simply a straightforward application of proposition 2.19.
It is not our intention to study in detail stationary PDE problems in this paper, but one

possible simple application of theorem 1.1 in this direction is for the eikonal equation

|∇Hu|= 1 in Ω, (6.8)

where Ω⊂G is a given open set. Let S=G \Ω, we define the CC distance from the set S by

dS (p) :=min
q∈S

d(p,q) =min
q∈S

d0
(
q−1 · p

)
.

Note that dS is continuous, and when S= {0}, dS = d0, which is exactly the CC distance from
the group identity. It is well known [23] that u= dS is a viscosity solution of (6.8) satisfying
the boundary condition u= 0 on ∂Ω; we refer to [15] for more discussions about the distance
function and eikonal equation. We can use theorem 1.1 to prove easily that the square of the
solution dS is h-semiconcave in Ω.

Proposition 6.5. Let S⊂G be a nonempty closed set on a step 2 Carnot groupG. Then d2S is
an h-semiconcave function in G.

Proof. Observe that

d2S (p) =min
q∈S

d2 (p,q) =min
q∈S

d20
(
q−1 · p

)
,

and for every q ∈ S, the function p 7→ d20(q
−1 · p) is h-semiconcave with h-semiconcavity con-

stant the same as the one of d20. As a result, the proof follows from proposition 2.19.
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Appendix. Properties of special functions and details of computation

Figure 4. The graph of the function µ.

This appendix provides additional details for the arguments presented in example 4.3.
Recall that from definition (3.8) we have

µ(s) =−(scots) ′ =
s− sinscoss

sin2 s
=

2s− sin(2s)

2sin2 s
.

See figure 4 for the graph of µ.
By direct computations, we have

µ ′ (s) =
2(sins− scoss)

sin3 s
> 0, ∀s ∈ (−π,π) , (A.1)

which implies µ is an increasing diffeomorphism between (−π,π) and R. Consult also [28,
lemme 3, p 112]. As a result, the inverse functionµ−1 is an increasing diffeomorphism between
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R and (−π,π). By the inverse function theorem we have

(
µ−1

) ′
(s) =

1
µ ′ (µ−1 (s))

, ∀s ∈ R. (A.2)

Recall that we have the formula of d20 (3.7). For z> 0 and (x,y) 6= (0,0), the auxiliary func-

tion θ = θ(x,y,z) = µ−1
(

4z
x2+y2

)
is a smooth function of (x,y,z). As a result, by (A.2), we can

calculate the derivatives of θ:

∂xθ =
(
µ−1

) ′( 4z
x2 + y2

)(
− 4z

(x2 + y2)2

)
2x=− 2xµ(θ)

(x2 + y2)µ ′ (θ)
(A.3)

and similarly

∂yθ =− 2yµ(θ)
(x2 + y2)µ ′ (θ)

, ∂zθ =
4

(x2 + y2)µ ′ (θ)
. (A.4)

Now using (A.3) we obtain

∂xd
2
0 = 2

(
θ

sinθ

)
sinθ− θ cosθ

sin2 θ
∂xθ
(
x2 + y2

)
+

(
θ

sinθ

)2

2x

= 2

(
θ

sinθ

)
sinθ− θ cosθ

sin2 θ

(
− 2xµ(θ)
(x2 + y2)µ ′ (θ)

)(
x2 + y2

)
+

(
θ

sinθ

)2

2x

= 2x

(
θ

sinθ

)(
2
sinθ− θ cosθ

sin2 θ

−θ+ sinθ cosθ

sin2 θ

sin3 θ
2(sinθ− θ cosθ)

+
θ

sinθ

)
= 2θ cotθ x.

(A.5)

For a similar reason,

∂yd
2
0 = 2θ cotθ y, ∂zd

2
0 = 4θ. (A.6)

Taking derivatives again we have

∂xxd
2
0 = 2θ cotθ+

4x2µ2 (θ)

(x2 + y2)µ ′ (θ)
, ∂xyd

2
0 =

4xyµ2 (θ)

(x2 + y2)µ ′ (θ)
, (A.7)

∂yyd
2
0 = 2θ cotθ+

4y2µ2 (θ)

(x2 + y2)µ ′ (θ)
, ∂xzd

2
0 = 4∂xθ =− 8xµ(θ)

(x2 + y2)µ ′ (θ)
, (A.8)

∂yzd
2
0 = 4∂yθ =− 8yµ(θ)

(x2 + y2)µ ′ (θ)
, ∂zzd

2
0 = 4∂zθ =

16
(x2 + y2)µ ′ (θ)

. (A.9)

Fixing a p0 = (x0,y0,z0) ∈ Ωa,b,R in example 4.3, from the definition of ϕp0 , we have

(
d20 ◦ϕp0

)
(x,y) = d20

(
x+ x0,y+ y0,z0 +

x0y− y0x
2

−C∗
(
x2 + y2

))
.

For the ease of notation we use Fp0 to denote d20 ◦ϕp0 . Then a direct computation gives
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∂xFp0 =
(
∂xd

2
0

)
◦ϕp0 +

(
−y0

2
− 2C∗x

)(
∂zd

2
0

)
◦ϕp0 ,

∂yFp0 =
(
∂yd

2
0

)
◦ϕp0 +

(x0
2
− 2C∗y

)(
∂zd

2
0

)
◦ϕp0 ,

and

∂xxFp0 =
(
∂xxd

2
0

)
◦ϕp0 + 2

(
−y0

2
− 2C∗x

)(
∂xzd

2
0

)
◦ϕp0

+
(
−y0

2
− 2C∗x

)2 (
∂zzd

2
0

)
◦ϕp0 − 2C∗

(
∂zd

2
0

)
◦ϕp0 ,

∂xyFp0 =
(
∂xyd

2
0

)
◦ϕp0 +

(x0
2
− 2C∗y

)(
∂xzd

2
0

)
◦ϕp0 +

(
−y0

2
− 2C∗x

)(
∂yzd

2
0

)
◦ϕp0

+
(x0
2
− 2C∗y

)(
−y0

2
− 2C∗x

)(
∂zzd

2
0

)
◦ϕp0 ,

∂yyFp0 =
(
∂yyd

2
0

)
◦ϕp0 + 2

(x0
2
− 2C∗y

)(
∂yzd

2
0

)
◦ϕp0

+
(x0
2
− 2C∗y

)2 (
∂zzd

2
0

)
◦ϕp0 − 2C∗

(
∂zd

2
0

)
◦ϕp0 .

Inserting the point 0, by (2.21)–(2.22) and (A.6), we obtain

∇2
[
d20 ◦ϕp0

]
(0) =∇2Fp0 (0) =

(
∇H
[
d20
]
(p0)

)∗ − 8θ (p0)C∗ Id2. (A.10)
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Laplacian Bull. London Math. Soc. 42 395–404

[16] Bonfiglioli A, Lanconelli E and Uguzzoni F 2007 Stratified Lie Groups and Potential Theory for
Their sub-Laplacians (Springer Monographs in Mathematics) (Springer)

[17] Calogero A, Carcano G and Pini R 2007 Twisted convex hulls in the Heisenberg group J. Convex
Anal. 14 607–19

[18] Cannarsa P and Rifford L 2008 Semiconcavity results for optimal control problems admitting no
singular minimizing controls Ann. Inst. Henri Poincaré C 25 773–802

[19] Cannarsa P and Sinestrari C 2004 Semiconcave Functions, Hamilton-Jacobi Equations and
Optimal Control (Progress in Nonlinear Differential Equations and Their Applications vol 58)
(Birkhäuser Boston, Inc.)

[20] Citti G and Sarti A 2006 A cortical based model of perceptual completion in the roto-translation
space J. Math. Imaging Vis. 24 307–26

[21] Cutr̀ı A and Da Lio F 2007 Comparison and existence results for evolutive non-coercive first-order
Hamilton-Jacobi equations ESAIM Control Optim. Calc. Var. 13 484–502

[22] Danielli D, Garofalo N and Nhieu D-M 2003 Notions of convexity in Carnot groupsCommun. Anal.
Geom. 11 263–341

[23] Dragoni F 2007 Metric Hopf-Lax formula with semicontinuous data Discrete Contin. Dyn. Syst.
17 713–29

[24] Dragoni F and Filali D 2019 Starshaped and convex sets in Carnot groups and in the geometries of
vector fields J. Convex Anal. 26 1349–72

[25] Evans L C 2010 Partial Differential Equations (Graduate Studies in Mathematics vol 19) 2nd edn
(American Mathematical Society)

[26] Figalli A andRifford L 2010Mass transportation on sub-RiemannianmanifoldsGeom. Funct. Anal.
20 124–59

[27] Garofalo N and Tournier F 2006 New properties of convex functions in the Heisenberg group Trans.
Am. Math. Soc. 358 2011–55

[28] Gaveau B 1977 Principe de moindre action, propagation de la chaleur et estimées sous elliptiques
sur certains groupes nilpotents Acta Math. 139 95–153

[29] Juutinen P, Lu G, Manfredi J J and Stroffolini B 2007 Convex functions on Carnot groups Rev. Mat.
Iberoam. 23 191–200

[30] Kijowski A, Liu Q and Zhou X 2024 Horizontally quasiconvex envelope in the Heisenberg group
Rev. Mat. Iberoam. 40 57–92

[31] Kijowski A, Liu Q, Zhang Y and Zhou X 2023 A second-order operator for horizontal quasicon-
vexity in the Heisenberg group and application to convexity preserving for horizontal curvature
flow (arXiv:2312.10364)

[32] Koike S 2004 A Beginner’s Guide to the Theory of Viscosity Solutions (MSJ Memoirs vol 13)
(Mathematical Society of Japan)

[33] Liu Q, Manfredi J J and Zhou X 2016 Lipschitz continuity and convexity preserving for solutions
of semilinear evolution equations in the Heisenberg group Calc. Var. Partial Differ. Equ. 55 80

[34] Liu Q, Zhang Y and Zhou X Horizontal concavity breaking for evolution equations in the
Heisenberg group (in preparation)

[35] Liu Q and Zhou X 2021 Horizontal convex envelope in the Heisenberg group and applications to
sub-elliptic equations Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 2039–76

[36] Lu G, Manfredi J J and Stroffolini B 2003 Convex functions on the Heisenberg group Calc. Var.
Partial Differ. Equ. 19 1–22

[37] Magnani V 2006 Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex
functions Math. Ann. 334 199–233

[38] Manfredi J J and Stroffolini B 2002 A version of the Hopf-Lax formula in the Heisenberg group
Commun. PDE 27 1139–59

[39] Mietton T and Rizzi L 2020 Branching geodesics in sub-Riemannian geometryGeom. Funct. Anal.
30 1139–51

[40] Montanari A and Morbidelli D 2016 On the lack of semiconcavity of the subRiemannian distance
in a class of Carnot groups J. Math. Anal. Appl. 444 1652–74

[41] Montgomery R 2002 A Tour of Subriemannian Geometries, Their Geodesics and Applications
(Mathematical Surveys and Monographs vol 91) (American Mathematical Society)

[42] Monti R 2001 Distances, boundaries and surface measures in Carnot-Carathéodory spaces PhD
Thesis University of Trento (available at: https://cvgmt.sns.it/paper/3706/)

33

https://doi.org/10.1112/blms/bdp131
https://doi.org/10.1112/blms/bdp131
https://doi.org/10.1016/j.anihpc.2007.07.005
https://doi.org/10.1016/j.anihpc.2007.07.005
https://doi.org/10.1007/s10851-005-3630-2
https://doi.org/10.1007/s10851-005-3630-2
https://doi.org/10.1051/cocv:2007021
https://doi.org/10.1051/cocv:2007021
https://doi.org/10.4310/CAG.2003.v11.n2.a5
https://doi.org/10.4310/CAG.2003.v11.n2.a5
https://doi.org/10.3934/dcds.2007.17.713
https://doi.org/10.3934/dcds.2007.17.713
https://doi.org/10.1007/s00039-010-0053-z
https://doi.org/10.1007/s00039-010-0053-z
https://doi.org/10.1090/S0002-9947-05-04016-X
https://doi.org/10.1090/S0002-9947-05-04016-X
https://doi.org/10.1007/BF02392235
https://doi.org/10.1007/BF02392235
https://doi.org/10.4171/rmi/490
https://doi.org/10.4171/rmi/490
https://doi.org/10.4171/rmi/1417
https://doi.org/10.4171/rmi/1417
https://arxiv.org/abs/2312.10364
https://doi.org/10.1007/s00526-016-1024-5
https://doi.org/10.1007/s00526-016-1024-5
https://doi.org/10.1007/s00526-003-0190-4
https://doi.org/10.1007/s00526-003-0190-4
https://doi.org/10.1007/s00208-005-0717-4
https://doi.org/10.1007/s00208-005-0717-4
https://doi.org/10.1081/PDE-120004897
https://doi.org/10.1081/PDE-120004897
https://doi.org/10.1007/s00039-020-00539-z
https://doi.org/10.1007/s00039-020-00539-z
https://doi.org/10.1016/j.jmaa.2016.07.032
https://doi.org/10.1016/j.jmaa.2016.07.032
https://cvgmt.sns.it/paper/3706/


Nonlinearity 38 (2025) 045009 F Dragoni et al

[43] Monti R and Rickly M 2005 Geodetically convex sets in the Heisenberg group J. Convex Anal.
12 187–96

[44] Rickly M 2006 First-order regularity of convex functions on Carnot groups J. Geom. Anal.
16 679–702

[45] Rifford L 2013 Ricci curvatures in Carnot groups Math. Control Relat. Fields 3 467–87
[46] Rifford L 2014 Sub-Riemannian Geometry and Optimal Transport (Springerbriefs in Mathematics)

(Springer)
[47] Rifford L and Trélat E 2005 Morse-Sard type results in sub-Riemannian geometry Math. Ann.

332 145–59
[48] Rizzi L 2016 Measure contraction properties of Carnot groups Calc. Var. Partial Differ. Equ. 55 60
[49] Sun M and Yang X 2006 Lipschitz continuity for H-convex functions in Carnot groups Commun.

Contemp. Math. 8 1–8
[50] Wang C 2005 Viscosity convex functions on Carnot groups Proc. Am. Math. Soc. 133 1247–53

34

https://doi.org/10.1007/BF02922136
https://doi.org/10.1007/BF02922136
https://doi.org/10.3934/mcrf.2013.3.467
https://doi.org/10.3934/mcrf.2013.3.467
https://doi.org/10.1007/s00208-004-0622-2
https://doi.org/10.1007/s00208-004-0622-2
https://doi.org/10.1007/s00526-016-1002-y
https://doi.org/10.1007/s00526-016-1002-y
https://doi.org/10.1142/S0219199706002015
https://doi.org/10.1142/S0219199706002015
https://doi.org/10.1090/S0002-9939-04-07836-0
https://doi.org/10.1090/S0002-9939-04-07836-0

	Horizontal semiconcavity for the square of Carnot–Carathéodory distance on step 2 Carnot groups and applications to Hamilton–Jacobi equations
	1. Introduction
	2. Preliminaries
	2.1. Carnot groups
	2.2. Endpoint map and ideal Carnot groups
	2.3. H-concavity and h-semiconcavity

	3. H-semiconcavity of squared CC distance in ideal Carnot groups
	4. Generalisation to step 2 Carnot groups
	5. Further consequences and generalisation
	6. Application to Hamilton–Jacobi equations
	Appendix. Properties of special functions and details of computation
	References


