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Abstract
In this work, the exact solutions of time fractional Fokker-Planck equation are inves-
tigated using the symmetry approach. Also, the convergence of the reported solutions
is proved along with the graphical interpretation of the obtained solutions.

Keywords Fractional calculus (primary) · Fractional nonlinear Fokker-Planck
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1 Introduction

The importance of studying the fractional differential equations (FDEs) is evident
due to their global behaviour and their ability to model highly complex systems with
infinite variance. This is very challenging and is highly significant for its applications
in modelling diverse fields of science and engineering eg. material science, biology,
pollution control, artificial intelligence, image processing, fluid mechanics, biomath-
ematics etc [1, 8, 12–14, 20]. Therefore, the exact solutions of these equations have
gained a lot of interest from the researchers. The solutions of many significant frac-
tional partial differential equations (PDEs) have already been reported in literature
including Burgers equation [29, 32], KdV equation [28, 31], Hirota-Satsuma equa-
tions [28], Broer-Kaup system [28].

In this paper, our goal is to investigate the exact solutions of the fractional non-
linear Fokker-Planck equation. The nonlinear Fokker-Planck equations have found
applications in various fields such as plasma physics, surface physics, astrophysics,
the physics of polymer fluids and particle beams, nonlinear hydrodynamics, theory
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of electronic circuitry and laser arrays, engineering, biophysics and psychology [4,
23]. The Fokker-Planck equation is used to describe the Brownian motion of a sin-
gle particle in an external potential and it gives an excellent approximation near the
free energy minimum [4, 16]. The importance of the equation is evident from the
fact that the maximum entropy principle for Fokker-Planck gives the Student dis-
tribution which is widely used in financial mathematics [2, 7]. The solution of the
Fokker-Planck equation is a powerful tool that allows one to follow at each instant the
direction of a gradient flux of the associated free energy functional by a discrete time
formulation [4, 16]. The fractional version of the Fokker-Planck equation being more
generalized allows its application to wider range of models whichmotivated us for this
study. The considered nonlinear fractional generalized Fokker-Planck equation [4, 23]
is as follows:

∂α

∂tα
(p(x, t))μ = − ∂

∂x

[
F(x)

(
p(x, t))μ

)] + D
∂2

∂x2
(p(x, t))ν , (1.1)

where D is a dimensionless diffusion like constant, F(x) = − dV (x)
dx is a dimensionless

external force associated with the potential V (x). Here ∂α

∂tα is the Riemann-Liouville
fractional derivative of order α defined as follows:

Definition 1 The partial Riemann-Liouville fractional derivative of order α ≥ 0 with
respect to t is defined by [21, 26]

∂α f (x, t)

∂tα
=

{
1

Γ (1+[α]−α)

(
∂
∂t

)[α]+1 ∫ t
0

f (x,s)
(t−s)α−[α] ds, t > 0, [α] < α < [α] + 1,

∂n f
∂tn , α = n ∈ N.

(1.2)

Taking μ = 1, ν = 2 and F(x) = 1 in (1.1), we will solve the following nonlinear
Fokker-Planck equation:

∂α p(x, t)

∂tα
= −∂ p(x, t)

∂x
+ 2D

((
∂ p(x, t)

∂x

)2

+ p(x, t)
∂2 p(x, t)

∂x2

)

. (1.3)

The main aim of the work is to investigate the exact solutions of fractional gener-
alized Fokker-Planck equation (1.1). To the best of our knowledge, the Lie symmetry
analysis and solutions of fractional equation (1.3) have not been discussed in literature
proving the novelty of the current work.

The present work is organized as follows. Section 2 discusses the group classifi-
cation of the considered fractional equation. Section 3 consists of the investigation
of novel solutions of the equation and Section 4 contains the graphical interpretation
of the obtained solutions. In Section 5, the convergence of the obtained power series
solutions is discussed and the last section gives the concluding remarks of the present
study.
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2 Group classification of Fokker-Planck equation with � = 2

Let us recall the Lie symmetrymethod for fractional PDEswith one dependent variable
u and two independent variables (x, t) [9, 11, 22, 25, 27, 28, 33, 34]. Consider a time
fractional PDE in the following form:

∂αu

∂tα
= F(x, t, u, ux , uxx , ...), (2.1)

where α > 0 and subscripts denote the partial derivatives. Assume the invariance of
(2.1) under one parameter Lie group of transformations given by

{
x̃, t̃, ũ

}
=

{
x, t, u

}
+ ε

{
ξ(x, t, u) + τ(x, t, u) + η(x, t, u)

}
+ O(ε2),

∂α ũ

∂ t̃α
= ∂αu

∂tα
+ εηα,t + O(ε2),

∂ ũ

∂x
= ∂u

∂x
+ εηx + O(ε2),

... (2.2)

where (ξ , τ , η) is the set of infinitesimals, and ηα,t , ηx , ηxx , · · · represent prolongation
operators of order α, 1, 2 and so on, respectively [3, 19, 27]. The corresponding
infinitesimal symmetry generator is given by

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (2.3)

The αth order extended prolongation ηα,t related to Riemann-Liouville fractional
derivative (1.2) is given by [27, 28]

ηα,t = ∂αη

∂tα
+

(
ηu − αDtτ

)∂αu

∂tα
− u

∂αηu

∂tα
+

∞∑

n=1

[(
α

n

)
∂nηu

∂tn
−

(
α

n + 1

)
Dn+1
t τ

]

× ∂α−n
t u −

∞∑

n=1

(
α

n

)
Dn
t ξ∂α−n

t ux + μ, (2.4)

where ηu = ∂η
∂u , Dt represents the total derivative operator and

μ =
∞∑

n=2

n∑

m=2

m∑

k=2

k−1∑

r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!
tn−α

Γ (n − α + 1)
(−u)r

∂m

∂tm
(uk−r )

∂n−m+kη

∂tn−m∂uk
.

(2.5)
Substituting the prolongations and equating the coefficients of various partial deriva-
tives of dependent variables to zero results in an over-determined system of linear
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differential equations in the symmetries ξ, τ, η, called the set of determining equa-
tions.

Integrating the determining equations gives the infinitesimals ξ, τ, η involving some
arbitrary constants or arbitrary functions. Solving the corresponding characteristic
equations obtained from associated vector fields to find the dependent variables u
in terms of new variables. Therefore, one can transform the considered PDE into
a reduced fractional ODE in the new variables, which is easier to solve leading to
solutions of the original fractional PDE.

By application of the Lie symmetry method [3, 11, 27], the invariance of the PDE
(1.3) under the transformations (2.1) gives the following invariance criterion:

ηα,t + ηx − 2D
(
2pxη

x + p(x, t)ηxx + ηpxx
) = 0. (2.6)

Substituting the expressions for prolongation operators results in the following set of
determining equations:

∂ξ

∂t
= ∂τ

∂x
= 0,

∂ξ

∂u
= ∂τ

∂u
= 0,

∂2η

∂u2
= 0,

η + αu
∂τ

∂t
− 2u

∂ξ

∂x
= 0,

2
∂2η

∂u∂t
+ (1 − α)

∂2τ

∂t2
= 0,

α
∂τ

∂t
− 4uD

∂2η

∂u∂x
− 4D

∂η

∂x
+ 2uD

∂2ξ

∂x2
− ∂ξ

∂x
= 0,

3
∂3η

∂u∂t2
+ (2 − α)

∂3τ

∂t3
= 0. (2.7)

Solving this system, the obtained symmetries are as follows:

ξ = αxc1 + c2, τ = c1t + c3, η = αuc1, (2.8)

where c1, c2, c3 are arbitrary constants. Due to the Riemann-Liouville fractional
derivative operator and preservation of its structure under transformations (2.2),
τ(x, t)|t=0 = 0 must hold, which gives c3 = 0. The corresponding vector fields
for constants c1, c2 are as follows:

V1 = αx
∂

∂x
+ t

∂

∂t
+ αu

∂

∂u
,

V2 = ∂

∂x
. (2.9)
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For V1, the characteristic equations are given by

dx

αx
= dt

t
= du

αu
, (2.10)

which lead to the following similarity solutions:

z = xt−α, u = tα f (z). (2.11)

Before discussion of the reduction of considered fractional PDE into a fractional
ordinary differential equation (ODE), let us recall the Erdélyi-Kober operators [3,
13, 15, 17, 18]. Erdélyi-Kober operator is a fractional operation introduced by Arthur

Erdélyi (1940) and Hermann Kober (1940). As we know,
(
Pζ,α

δ

)
is the left-hand sided

Erdélyi-Kober fractional differential operator defined as follows:

(
Pζ,α

δ h
)

(z) :=
m−1∏

j=0

(
ζ + j − 1

δ
z
d

dz

)
(Kζ+α,m−α

δ h)(z), z > 0, δ > 0, α > 0,

m =
{

[α] + 1 if α /∈ N,

α if α ∈ N,
(2.12)

where

(
Kζ,α

δ h
)

(z) :=

⎧
⎪⎨

⎪⎩

1
Γ (α)

∞∫

1
(s − 1)α−1s−(ζ+α)h(zs

1
δ )ds if α > 0,

h(z) if α = 0
(2.13)

is the left-hand sided Erdélyi-Kober fractional integral operator. Also,
(
Dζ,β

δ

)
is the

right-hand sided Erdélyi-Kober fractional differential operator defined by

(
Dζ,β

δ h
)

(z) :=
m∏

j=1

(
ζ + j + 1

δ
z
d

dz

)
(Iζ+β,m−β

δ h)(z), z > 0, δ > 0, β > 0,

m =
{

[β] + 1 if β /∈ N,

β if β ∈ N,
(2.14)

where
(
Iζ,β

δ h
)

(z) :=

⎧
⎪⎨

⎪⎩

1
Γ (β)

1∫

0
(1 − s)β−1sζ h(zs

1
δ )ds if β > 0,

h(z) if β = 0

(2.15)

is the right-hand sidedErdélyi-Kober fractional integral operator. In viewof the diverse
applications of these operators [30], many authors have used these operators for solv-
ing significant fractional PDEs. In this study, only the left-hand sided Erdélyi-Kober
fractional differential and integral operators are used for the symmetry reduction.
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The reduction of (1.3) into a fractionalODE, is described by the following assertion:

Theorem 1 The similarity transformation u(x, t) = tα f (z) with the similarity vari-
able z = xt−α reduce the time fractional Fokker-Planck equation (1.3) into the
nonlinear fractional ODE given by

(
P1,α

1
α

f

)
(z) = − f ′(z) + 2D( f ′(z)2 + f (z) f ′′(z)), (2.16)

where
(
Pζ,α

δ

)
is the Erdélyi-Kober fractional differential operator.

Proof For calculating ∂αu
∂tα , let n − 1 < α < n, n = 1, 2, 3, ... then by the definition

of Riemann -Liouville fractional derivative, it can be proved that

∂αu

∂tα
= ∂n

∂tn

[
1

Γ (n − α)

∫ t

0
(t − s)n−α−1sα f (xs−α)ds

]
. (2.17)

Let p = t
s , then the above expression is transformed into the following:

∂αu

∂tα
= ∂n

∂tn

[
tn

Γ (n − α)

∫ ∞

1
(p − 1)n−α−1 p−(n+1) f (zpα)dp

]
. (2.18)

In view of the definition of Erdélyi-Kober fractional integral operator it can be written
as

∂αu

∂tα
= ∂n

∂tn

[
tn

(
K1+α,n−α

1
α

f

)
(z)

]
. (2.19)

For further simplification, considering ψ(z) ∈ C1(0,∞) with respect to z = xt−α

such that the following holds true:

t
∂

∂t
ψ(z) = t

d

dz
ψ(z)

∂z

∂t
= t x(−α)t−α−1 d

dz
ψ(z) = −αz

d

dz
ψ(z).

Therefore, (2.19) takes the following form:

∂αu

∂tα
= ∂n−1

∂tn−1

[
tn−1

(
n − αz

d

dz

) (
K1+α,n−α

1
α

f

)
(z)

]
. (2.20)

Continuing in this manner, leads to the following expression:

∂αu

∂tα
=

n−1∏

j=0

(
1 + j − αz

d

dz

) (
K1+α,n−α

1
α

f

)
(z),

=
(
P1,α

1
α

f

)
(z), (2.21)
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by using the definition of Erdélyi-Kober fractional differential operator. So the required
differential is given as follows:

∂αu

∂tα
=

(
P1,α

1
α

f

)
(z). (2.22)

Similarly, for α = n = 1, 2, 3, ..., the following must hold:

∂αu

∂tα
=

(
P1,n

1
n

f

)
(z). (2.23)

Hence, the expression (2.22) holds for n−1 < α ≤ n. The result (2.16) of the theorem
follows. ��

3 Power series solutions of reduced fractional ODE (2.16)

Assume the solutions of reduced fractional ODE (2.16) are as follows:

f (z) =
∞∑

n=0

anz
n . (3.1)

Therefore, this must satisfy the following expression:

∞∑

n=0

Γ (1 + α − nα)

Γ (1 − nα)
anz

n = −
∞∑

n=0

(n + 1)an+1z
n

+ 2D

[( ∞∑

n=0

(n + 1)an+1z
n

) ( ∞∑

n=0

(n + 1)an+1z
n

)

+
( ∞∑

n=0

anz
n

)( ∞∑

n=0

(n + 1)(n + 2)an+2z
n

)]

. (3.2)

Comparing coefficients for n = 0 gives the following:

a2 = 1

4Da0

(
a1 − 2Da21 + Γ (1 + α)a0

)
. (3.3)

For n ≥ 1, the following holds true:

an+2 = 1

(n + 1)(n + 2)a0

(
1

2D

Γ (1 + α − nα)

Γ (1 − nα)
an + n + 1

2D
an

−
n∑

k=0

(k + 1)(n − k + 1)ak+1an−k+1
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−
n∑

k=1

(n − k + 1)(n − k + 2)akan−k+2

)

. (3.4)

Hence, the solution (3.1) can be written as follows:

f (z) = a0 + a1z +
(

1

4Da0

(
a1 − 2Da21 + Γ (1 + α)a0

))
z2

+
∞∑

n=1

1

(n + 1)(n + 2)a0

(
1

2D

Γ (1 + α − nα)

Γ (1 − nα)
an

+ n + 1

2D
an −

n∑

k=0

(k + 1)(n − k + 1)ak+1an−k+1

−
n∑

k=1

(n − k + 1)(n − k + 2)akan−k+2

)

zn+2. (3.5)

Thus, the exact solutions of fractional Fokker-Planck equation can be written as

u(x, t) = a0t
α + a1x +

(
1

4Da0

(
a1 − 2Da21 + Γ (1 + α)a0

))
x2t−α

+
∞∑

n=1

1

(n + 1)(n + 2)a0

×
(

1

2D

Γ (1 + α − nα)

Γ (1 − nα)
an + n + 1

2D
an

−
n∑

k=0

(k + 1)(n − k + 1)ak+1an−k+1 −
n∑

k=1

(n − k + 1)

×(n − k + 2)akan−k+2) x
n+2t−(n+1)α. (3.6)

4 Graphs

The solutions (3.6) are interpreted graphically in figures presented in the text. The
change in graphs of all the functions due to the variation in fractional order is clearly
visible, as shown in the figures. Hence, the fractional order can be used to modify
graphs of all the functions without changing the values of independent variables.

5 Convergence of solutions

Here, the convergence of the reported power series solutions is tested. As evident from
the obtained solution (3.6) and the expression (3.4), the following holds true:
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Fig. 1 Plots of u(x, t) for α = 0.001, 0.05, 0.15, 0.95 (left to right)

|an+2| ≤ 1

|a0|
(

1

2|D|
|Γ (1 + α − nα)|

|Γ (1 − nα)| |an| + n + 1

2|D| |an|

−
n∑

k=0

(k + 1)(n − k + 1)|ak+1||an−k+1|

−
n∑

k=1

(n − k + 1)(n − k + 2)|ak ||an−k+2|
)

. (5.1)

Let us assume the following:

A = max

{
1

2|D|
|Γ (1 + α − nα)|

|Γ (1 − nα)| |an |, n + 1

2|D| , (k + 1)(n − k + 1), (n − k + 1)(n − k + 2)

}
. (5.2)

It implies that, (5.1) can be written as follows:

|an+2| ≤ A

|a0|

(

|an| −
n∑

k=0

|ak+1||an−k+1| −
n∑

k=1

|ak ||an−k+2|
)

. (5.3)
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Assume a new power series given by

Ã(z) =
∞∑

n=0

bnz
n, (5.4)

where bi = |ai | only for (n = 0, 1, 2). Also for n = 1, 2, .., the generalized expression
bn+2 is given by

bn+2 = A

b0

(

bn −
n∑

k=0

bk+1bn−k+1 −
n∑

k=1

bkbn−k+2

)

. (5.5)

Therefore, it holds that |an| ≤ bn for all n. It shows that the series Ã(z) = ∑∞
n=0 bnz

n

is a majorant series of f (z) = ∑∞
n=0 anz

n . The convergence of Ã(z) will prove the
convergence of f (z). Now, the following expression holds true:

Ã(z) = b0 + b1z + b2z
2 + A

b0

∞∑

n=1

(

bn −
n∑

k=0

bk+1bn−k+1 −
n∑

k=1

bkbn−k+2

)

zn+2.

(5.6)
Let us consider the implicit function given by

A(z, Ã) = Ã − b0 − b1z − b2z
2 − A

b0

(
z2( Ã − b0) − 3b1z( Ã − b0 − b1z)

)
. (5.7)

The above expression is analytic in a neighbourhood of (0, b0)whereA(0, b0) = 0 and
∂A(0,b0)

∂ Ã
	= 0. Therefore, by implicit function theorem [24], the series (5.4) has positive

radius of convergence. Hence, the power series solution (3.6) is also convergent in
neighbourhood of (0, b0).

6 Conclusions

In this paper, the Lie group classification of fractional order generalized Fokker-Planck
equation is discussed for reducing it into fractional ODE in Erdélyi-Kober operators.
By solving the reduced ODEwith the help of power series method, the series solutions
are reported successfully. The convergence of the series solutions is proved success-
fully. Also, the obtained solutions are depicted graphically for better understanding
for some particular values of the fractional derivative α and arbitrary constants.
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25. San, S., Yaşar, E.: On the Lie symmetry analysis, analytic series solutions, and conservation laws of

the time fractional Belousov-Zhabotinskii system. Nonlinear Dynam. 109, 2997–3008 (2022)
26. Samko,G.,Kilbas,A.A.,Marichev,O.I.: Fractional Integrals andDerivatives: Theory andApplications.

Gordan and Breach Science Publishers, Switzerland (1993)
27. Singla, K., Gupta, R.K.: On invariant analysis of some time fractional nonlinear systems of partial

differential equations. I. J. Math. Phys. 57, 101504 (2016)
28. Singla, K.: Existence of series solutions for certain nonlinear systems of time fractional partial differ-

ential equations. J. Geometry Phys. 167, 104301 (2021)
29. Singla, K.: Investigation of exact solutions and conservation laws for nonlinear fractional (2+1)-

dimensional Burgers system of equations. Reports Math. Phys. 92, 75–83 (2023)
30. Sneddon, I.N.: The use in mathematical analysis of Erdélyi-Kober operators and some of their applica-

tions. In: Fractional Calculus and Its Applications, Proc. Internat. Conf. Held in New Haven, Lecture
Notes in Math. 457, Springer, New York 37-75 (1975)

31. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional fifth order KdV
equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013)

32. Wang, G., Xu, T.: Invariant analysis and explicit solutions of the time fractional nonlinear perturbed
Burgers equation. Nonlinear Anal. Modell. Control 20, 570–584 (2015)

33. Yu, J., Feng, Y.: Lie symmetries, exact solutions and conservation laws of time fractional Boussinesq-
Burgers system in ocean waves. Commun. Theoret. Phys. (2024). https://doi.org/10.1088/1572-9494/
ad71ab

34. Yu, J., Feng, Y.: Group classification of time fractional Black-Scholes equation with time-dependent
coefficients. Fract. Calc. Appl. Anal. 27, 2335–2358 (2024). https://doi.org/10.1007/s13540-024-
00339-4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1088/1572-9494/ad71ab
https://doi.org/10.1088/1572-9494/ad71ab
https://doi.org/10.1007/s13540-024-00339-4
https://doi.org/10.1007/s13540-024-00339-4

	On solutions of fractional nonlinear Fokker-Planck equation
	Abstract
	1 Introduction
	2 Group classification of Fokker-Planck equation with ν=2
	3 Power series solutions of reduced fractional ODE (2.16)
	4 Graphs
	5 Convergence of solutions
	6 Conclusions
	Acknowledgements
	References


