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Abstract 

Background  Deciphering the functionality and dynamics of brain networks across different regions and age groups 
in non-human primates (NHPs) is crucial for understanding the evolution of human cognition as well as the processes 
underlying brain pathogenesis. However, systemic delineation of the cellular composition and molecular connections 
among multiple brain regions and their alterations induced by aging in NHPs remain largely unresolved.

Methods  In this study, we performed single-nucleus RNA sequencing on 39 samples collected from 10 brain regions 
of two young and two aged rhesus macaques using the DNBelab C4 system. Validation of protein expression of sig-
natures specific to particular cell types, brain regions, and aging was conducted through a series of immunofluores-
cence and immunohistochemistry staining experiments. Loss-of-function experiments mediated by short hairpin RNA 
(shRNA) targeting two age-related genes (i.e., VSNL1 and HPCAL4) were performed in U251 glioma cells to verify their 
aging effects. Senescence-associated beta-galactosidase (SA-β-gal) staining and quantitative PCR (qPCR) of senes-
cence marker genes were employed to assess cellular senescence in U251 cells.

Results  We have established a large-scale cell atlas encompassing over 330,000 cells for the rhesus macaque brain. 
Our analysis identified numerous gene expression signatures that were specific to particular cell types, subtypes, 
brain regions, and aging. These datasets greatly expand our knowledge of primate brain organization and highlight 
the potential involvement of specific molecular and cellular components in both the regionalization and functional 
integrity of the brain. Our analysis also disclosed extensive transcriptional alterations and cell–cell connections 
across brain regions in the aging macaques. Finally, by examining the heritability enrichment of human complex traits 
and diseases, we determined that neurological traits were significantly enriched in neuronal cells and multiple regions 
with aging-relevant gene expression signatures, while immune-related traits exhibited pronounced enrichment 
in microglia.
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Background
Owing to their genetic, physiological, and anatomical 
similarities to humans, non-human primates (NHPs) 
such as macaque, marmoset, sooty mangabey, African 
green monkey, and baboon have contributed enor-
mously to human health research as models for inves-
tigating human diseases and assessing both the efficacy 
and safety of newly developed drugs [1–3]. They have 
been particularly widely used to investigate specific 
structures and functions in the brain [4–6], because 
of their complex brains and enhanced cognitive abili-
ties compared to rodent models. The brain represents 
the most complex organ; it contains multiple distinct 
cell types within diverse regions and acts as a control 
center for behavior, emotions, and cognition [7, 8]. The 
precise modulation of neural circuitry among cell types 
and different brain regions is essential for robust brain 
functioning [9], while cellular and circuit dysfunction 
has the potential to cause brain disorders including 
autism, schizophrenia, and those conditions that often 
develop with advancing age such as Alzheimer’s disease 
(AD) and Parkinson’s disease (PD) [9–14].

Understanding brain function and brain disease 
requires the deep systematic characterization of dif-
ferent cells and their interactions across distinct brain 
regions. Rapid advances in single-cell RNA sequencing 
(scRNA-seq) technology have expanded our knowl-
edge of the cellular composition of diverse tissues 
and organs [15–18], and multiple cell types have been 
found to characterize the structural organization of 
the vertebrate brain [5, 19–23]. However, collecting 
fresh tissue samples from many different brain regions 
is logistically challenging in primates, and particularly 
so in humans. In addition, the brain is difficult to pro-
cess into single-cell suspensions and the morphology of 
brain cells is too irregular to withstand traditional sin-
gle-cell approaches [24]. As a consequence, our knowl-
edge and understanding of the cellular composition of 
different primate brain regions remains quite limited, 
despite an increasing number of scRNA-seq studies of 
primate brains from specific regions [5, 20–23]. Sin-
gle-nucleus RNA sequencing (snRNA-seq), which can 
be applied to archived and frozen brain tissues, offers 
a compelling alternative. In this study, we have charac-
terized the brain cellular transcriptome profiles of the 
rhesus macaque (Macaca mulatta) based on approxi-
mately 330,000 cells obtained from ten brain regions 

of young and aged individuals using snRNA-seq. Our 
work reveals the intricacy of the molecular and cellular 
organization of the primate brain and its dynamics with 
aging, providing an important resource for the in-depth 
analysis of the mechanisms underpinning brain func-
tion, aging and disease.

Methods
Animal
Rhesus macaques with no previously reported neu-
ropsychiatric disorders were purchased from the Kun-
ming Primate Research Center, Chinese Academy of 
Sciences (AAALAC accredited). The macaques were 
housed individually in cages and maintained under 
a 12-h light/dark cycle (from 7:00 AM to 7:00 PM), 
with humidity at 60% and a room temperature of 21 
± 2 °C. They received two daily servings of monkey 
chow and one serving of fruit, while water was avail-
able at all times. Their health was closely monitored by 
skilled veterinarians. The monkeys were anesthetized 
with ketamine (10 mg/kg, i.m.), followed by euthana-
sia with sodium pentobarbital (100 mg/kg, i.m.) and 
trans-cardiac perfusion with PBS. All experimental 
protocols had been approved by the Institutional Ani-
mal Care and Use Committee of the Kunming Institute 
of Zoology, Chinese Academy of Sciences (permit nos. 
IACUC-PE-2022-–01-003).

Sample collection for snRNA‑seq
A total of 40 samples were collected from 10 brain 
regions of two young and two aged rhesus macaques. 
These specimens were obtained post-euthanasia, remain-
ing from our previous study [25], and stored at − 80 °C 
in the Kunming Primate Research Center. The two young 
macaques included SY1 (female, 6  years old) and SY2 
(male, 6 years old), while the two old macaques included 
SO1 (female, 17 years old) and SO2 (female, 24 years old). 
As we previously described [25], the brain regions were 
collected by a skilled technician according to a widely 
used macaque brain atlas (http://​www.​brain​maps.​org) 
[26], including amygdala (AMY), putamen (PU), hip-
pocampus (HIP), thalamus (TH), dorsolateral prefrontal 
cortex (DLPFC), cingulate gyrus (CG), superior temporal 
gyrus (STG), superior parietal lobule (SPL), visual cor-
tex V4 (V4), and cerebellar cortex (CBC). Loci and his-
tological sections of the brain regions were displayed in 

Conclusions  Taken together, our study presents a valuable resource for investigating the cellular and molecular 
architecture of the primate nervous system, thereby expanding our understanding of the mechanisms underlying 
brain function, aging, and disease.
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Additional file 1: Fig. S1. Before sample collection, all sur-
gical instruments were sterilized prior to use. To prevent 
cross-contamination, fresh sterile scissors and tweezers 
were used for each sample. After dissection, the tissue 
samples were rinsed with RNAlater solution (AM7021, 
Ambion, USA) and then transferred into cryovials for 
immediate storage in liquid nitrogen. Bulk RNA-seq was 
conducted using parts of these samples in our previous 
study to investigate potential molecular mechanisms of 
brain aging in no-human primates [25]. For better under-
standing, we renamed the samples here and presented 
their old corresponding names used by our previous 
study [25] in Additional file 2: Table S1.

Nucleus isolation
snRNA-seq data were then obtained using the DNBelab 
C4 droplet-based platform by BGI-Shenzhen (Shenz-
hen, 518,083, China) as previously described [15, 27]. 
In brief, around 100-mg frozen tissues were minced and 
transferred to a 7-ml Dounce homogenizer (TIANDZ), 
to which was added 3  ml pre-chilled homogenization 
buffer, and kept on ice. After being allowed to stand 
for 5 − 10 min until full infiltration, tissues were verti-
cally homogenized by the loose pestle (pestle A) until 
resistance was gone (around 10 − 15 times). The mix-
ture was filtered using a 70-μm cell strainer into a 
pre-chilled 50-ml centrifuge tube. Two milliliter homog-
enization buffer was used to wash the homogenizer and 
cell strainer into the 50-ml centrifuge tube. After the 
homogenizer was cleaned using 2 ml nuclease-free H2O, 
the mixture in the 50-ml centrifuge tube was transferred 
into the cleaned homogenizer and further homogenized 
by 20 strokes of the tight pestle (pestle B). After this, 
the mixture was filtered through a 30-μm strainer into a 

15-ml centrifuge tube and centrifuged at 500 g for 5 min 
at 4  °C to pellet nuclei. Pellets were resuspended using 
1  ml blocking buffer into a 15-ml tube and centrifuged 
again at 500 g for 5 min at 4 °C. Nuclei pellets were then 
resuspended using 1.5 ml blocking buffer and mixed 
with a pipette. Nuclei suspensions were stained with 
0.4% trypan blue to estimate whether nuclei were fully 
released under microscopic observation. Nuclei stained 
with DAPI were counted under microscope and sam-
ples with nuclei meeting the following criteria were used 
for library construction: concentration > 700/μl; volume 
≥ 50 μl; membrane integrity rate ≥ 90%; agglomeration 
rate ≤ 5%; and clean solution with no visible impurities. 
The amygdala sample from the 6-year-old female rhesus 
macaque (SY1) was abandoned due to failure to meet the 
criteria, leaving a total of 39 brain samples suitable for 
further snRNA-seq data preparation (Fig. 1A, Additional 
file 2: Table S1).

snRNA‑seq library preparation
snRNA-seq libraries were prepared using DNBelab C 
Series Single-Cell Library Prep Set (MGI, 1000021082) 
as previously described [15, 27]. Briefly, following the 
manufacturer’s protocol, nuclei suspensions were suc-
cessively used for droplet encapsulation, emulsion 
breakage, reverse transcription, and cDNA synthesis 
and amplification to generate barcoded libraries. The 
obtained libraries were then sequenced on the DNB-
SEQ platform at the China National GeneBank (Shen-
zhen, China) using the following sequencing strategy: 
Read 1 was 30 bp in length and included a 10-bp cell 
barcode 1, a 10-bp cell barcode 2, and a 10-bp unique 
molecular identifier (UMI). Read 2 was 90 bp in length 
for transcript sequence.

Fig. 1  Cellular census of rhesus macaque brain using snRNA-seq analysis. A Schematic overview of sample composition and anatomical positions 
of the ten macaque brain regions. F: female; M: male; AMY: amygdala; PU: putamen; HIP: hippocampus; TH: thalamus; DLPFC: dorsolateral 
prefrontal cortex; CG: cingulate gyrus; STG: superior temporal gyrus; SPL: superior parietal lobule; V4: visual cortex V4; CBC: cerebellar cortex. B 
Uniform Manifold Approximation and Projection (UMAP) plot of all 330,006 nuclei clustered into twenty major cell types. ExN: excitatory neuron; 
InN: inhibitory neuron; SPN: spiny projection neuron; CGC: cerebellar granule cell; TH-ExN: ExN mainly from TH; TH-InN: InN mainly from TH; 
AMY-ExN: ExN mainly from AMY; CA1–3: hippocampal excitatory CA1–3 cell; V4-ExN: ExN mainly from V4; Astro: astrocyte; Micro: microglia; OPC: 
oligodendrocyte progenitor cell; cOPC: differentiation committed OPC; Oligo: oligodendrocyte; Epen: ependymal cell; Endo: endothelial cell; Fib: 
perivascular fibroblast; SMC: smooth muscle cell; L5/6 NP: L5-6 near-projecting ExN; UL IT: upper-layer intratelencephalic-projecting ExN; DL CT: 
deep-layer corticothalamic-projecting ExN. C Dot plot shows expression of known markers or some new highly expressed genes of the twenty 
cell types. The dot size represents the percentage of nuclei expressing a gene by each cell type whereas dot color displays the scaled average 
expression level. CB-InN: InN mainly from CBC. D From left to right: dot plot displays significant annotation categories of cell type markers with color 
meaning − log-transformed adjusted P value and size meaning ratio of cell type markers in a term (first), while bar plots show number of cell types 
(second), percentage (perc.) of nuclei across individuals (third), regions (fourth) and age (fifth), and number of candidate cell type marker genes 
(sixth). ST: synaptic transmission; LCFA: long-chain fatty acid; dev.: development; GABA: gamma-aminobutyric acid; CNS: central nervous system; 
BBB: blood–brain barrier. E–M Validation of protein expression of cell-type-highly-expressed genes by immunofluorescence staining, including SV2B 
and CAMK2A for ExNs using slices from DLPFC (E); LMO4 and CAMK2A for ExNs using slices from SPL (F); PPP3CA and CAMK2A for ExNs using slices 
from SPL (G); PPP3CA and PPP1R1B for SPNs using slices from PU (H); CA12 and PPP1R1B for SPNs using slices from PU (I); PDE10A and PPP1R1B 
for SPNs using slices from PU (J); P2RY12 and RNASET2 for Micros using slices from white matter (K); OLIG2 and COL9A1 for OPCs using slices 
from STG (L); OLIG2 and VCAN for OPCs using slices from STG (M). Scale bars: 20 μm in E–J, K, and M; 10 μm in L 

(See figure on next page.)
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snRNA‑seq data preprocessing
Raw DNBSEQ-sequencing reads were first filtered 
and demultiplexed using the parse tool in PISA (v0.2-
17-g8cc39ef from https://​github.​com/​MGI-​tech-​bioin​
forma​tics/​DNBel​ab_C_​Series_​HT_​scRNA-​analy​sis-​
softw​are) [28, 29]. Retained reads were aligned to the 
Macaca mulatta reference genome (Mmul_10 avail-
able at https://​ftp.​ensem​bl.​org/​pub/​relea​se-​102/​fasta/​
macaca_​mulat​ta/​dna/) [30] using STAR (v2.7.9a) [31], 

transferred to bam files with the sam2bam tool in PISA 
(v0.7 at https://​github.​com/​shiqu​an/​PISA) [29], and 
sorted by sambamba (v0.7.0) [32]. Gene annotation was 
performed for intron and exon reads using the anno 
tool in PISA (v0.7) with GTF file from Ensembl (v102 at 
https://​ftp.​ensem​bl.​org/​pub/​relea​se-​102/​gtf/​macaca_​
mulat​ta/) [30]. UMIs were corrected using the corr tool 
in PISA (v0.2-17-g8cc39ef ). Nucleus versus gene UMI 
count matrix was generated using the count tool in 

Fig. 1  (See legend on previous page.)

https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
https://ftp.ensembl.org/pub/release-102/fasta/macaca_mulatta/dna/
https://ftp.ensembl.org/pub/release-102/fasta/macaca_mulatta/dna/
https://github.com/shiquan/PISA
https://ftp.ensembl.org/pub/release-102/gtf/macaca_mulatta/
https://ftp.ensembl.org/pub/release-102/gtf/macaca_mulatta/
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PISA (v0.7). Due to the issue of data format and envi-
ronment configuration of the software, we used two 
PISA versions (i.e., v0.2-17-g8cc39ef and v0.7) with v0.7 
being the primary one.

Nucleus clustering and cell‑type annotation
First, each of the 39 samples was preprocessed using Seu-
rat (v4.0.2) [33]. In brief, nuclei were filtered according to 
the following criteria: (1) genes were expressed by at least 
100 nuclei; (2) a nucleus was required to express no fewer 
than 500 genes; (3) the number of UMIs in a nucleus was 
no fewer than 1000; (4) the percentage of mitochondrial 
genes expressed in a nucleus was not greater than 10%; 
and (5) the ratio of UMI counts to gene counts was no 
less than 1.2. Second, filtered datasets were dealt with 
using a series of Seurat functions, such as normaliza-
tion with NormalizeData, data scaling with ScaleData, 
and dimension reduction with RunPCA. DoubletFinder 
[34] was employed to remove pseudo-doublets by assum-
ing a doublet formation rate of 10%. Third, Seurat count 
objects were merged across all 39 brain samples and nor-
malized using NormalizeData. FindVariableFeatures was 
performed to identify the 2000 most variable genes in 
terms of their expression. CellCycleScoring was applied 
to calculate S and G2-M scores based on the updated 
cell cycle markers [35]. ScaleData was used to scale the 
data and regress out the effects from sex, UMI counts, 
percentage of mitochondrial genes, and differences 
between the S and G2-M scores (i.e., “CC.differences”). 
We then performed RunPCA to reduce dimensions and 
RunHarmony to correct batch effects from individu-
als. Detection of Uniform manifold approximation and 
projection (UMAP) coordinates and clusters was per-
formed using RunUMAP, FindNeighbors, and FindClus-
ters sequentially. Cluster marker genes were identified 
using FindAllMarkers through a MAST test with UMI 
counts, CC.differences, and sex as covariates. We con-
ducted FindAllMarkers using cells from all individuals as 
a whole analysis, or cells from each individual separately. 
A marker candidate was required to be expressed by at 
least 25% of the cluster cells (i.e., “min.pct”) and its Bon-
ferroni-corrected P value and average fold change (FC) 
were < 0.05 and ≥ 1.5, respectively. We defined a gene as a 
cluster-specific marker if it was a marker candidate from 
both the whole analysis and separate analysis of at least 
two individuals. All cells were transferred to two pub-
lished human and macaque brain snRNA-seq datasets 
[36, 37] using FindTransferAnchors and TransferData. 
For the published datasets, we kept cells as references 
which had anatomical origins same to our ten regions. 
One-to-one orthologous genes between human and rhe-
sus macaque were identified using BioMart (Ensembl 
v102) [30]. Based on well-known marker genes and the 

two published NHP datasets, twenty major brain cell 
types were annotated. UMAP plots displaying different 
categories, such as cell types or regions, were performed 
using DimPlot. Functional annotation was performed for 
each cell type using their human coordinates of markers 
with the clusterProfiler (v4.0.5) R package [38] based on 
the “org.Hs.eg.db” dataset. We divided major cell types 
into nine groups: excitatory group including excitatory 
neurons (ExNs) mainly from the cortex, ExNs mainly 
from AMY (AMY-ExNs), hippocampal excitatory CA1–3 
cells (CA1–3s) and ExNs mainly from V4 (V4-ExNs); 
inhibitory group including GABAergic inhibitory neu-
rons (InNs); putamen-specific group including spiny 
projection neurons (SPNs); cerebellum-specific group 
including cerebellar granule cells (CGCs), InNs mainly 
from CBC (CB-InNs) and Bergmann glia (Bergmanns); 
thalamus-specific group including ExNs mainly from 
TH (TH-ExNs) and InNs mainly from TH (TH-InNs); 
astrocytic group including astrocytes (Astros); microglial 
group including microglia (Micros); oligodendrocyte-
lineage group including oligodendrocyte progenitor cells 
(OPCs), differentiation committed OPCs (cOPCs) and 
oligodendrocytes (Oligos); membrane-related non-neu-
ronal cell type group including ependymal cells (Epens), 
endothelial cells (Endos), perivascular fibroblasts (Fibs), 
and smooth muscle cells (SMCs). A similar pipeline was 
applied to identify the subtypes for each of these cell-
type groups. Given few cells for some subtypes, we only 
performed FindAllMarkers using cells from all individu-
als. Two ways were applied to defined subtype markers: 
markers identified based on cells across subtypes from 
each cell type group were used to distinguish subtypes 
within the group, along with known markers of the cell 
type; markers identified based on cells across subtypes 
from all cell types were used to distinguish subtypes 
between cell-type groups.

Bulk RNA‑seq data processing
The corresponding bulk RNA-seq raw data for the 39 
snRNA-seq samples were obtained from our previous 
study [25]. The RNA-seq data were processed as previ-
ously described [39]. Briefly, we trimmed adaptors and 
low-quality reads using fastp (v0.21.0) [40] with the 
options “-n 15 -q 20 -u 40 -e 20 --length_required 40 
-p -w 1.” Retained reads were aligned to the reference 
genome (Mmul_10) using HISAT2 (v2.2.1) [41] with 
parameters “-t --sensitive --no-discordant --no-mixed 
--–dta.” Expression of genes was estimated using String-
Tie2 (v2.1.4) with default parameters [42] based on the 
annotation file from Ensembl (v102). The sample versus 
gene matrix of fragments per kilobase of exon model per 
million mapped fragments (FPKM) values was utilized 
for the further correlation analysis.
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Correlation of gene expression between snRNA‑seq 
and bulk RNA‑seq data
To assess consistency of gene expression between the 
snRNA-seq data and their corresponding bulk RNA-seq 
data, we performed pairwise correlation analysis between 
the two expression datasets using the cor.test command 
in R [43]. To construct the snRNA-seq expression matrix, 
UMI counts of each gene across all nuclei from a snRNA-
seq sample were summed and transformed to FPKM 
values to represent the expression of the gene in that 
sample. Genes shared by the snRNA-seq and RNA-seq 
expression matrix were used. Both expression matrixes 
were log2 transformed by adding 1 prior to the correla-
tion analysis. The bar plot as well as most plots of this 
study were plotted by the R package ggplot2 [44].

Percentage analysis
To compare cellular composition between distinct brain 
regions, age groups and individuals, we evaluated the 
percentages of nuclei per cell type or subtype across 
regions, age groups or individuals, respectively. The per-
centage of nuclei per region for a specific cell type was 
calculated by dividing the number of nuclei from a given 
cell type for a particular region by the total number of 
nuclei in that region. Similarly, the percentage of nuclei 
per individual for a specific subtype was calculated by 
dividing the number of nuclei from a given subtype for 
a specific individual by the total number of nuclei in that 
individual. When performing percentage analysis for 
subtypes across regions, we first normalized the number 
of nuclei per subtype from a region with the total num-
ber of nuclei from that region. We then calculated the 
percentage of nuclei per subtype for a specific region by 
dividing the normalized ratio per subtype from a given 
region by the total normalized ratios from all regions for 
that subtype. We performed proportion analysis for cell 
types or subtypes across age groups using a pipeline simi-
lar to that employed for regions. Cellular compositional 
difference of cell types was then calculated between the 
young and old groups using a linear regression model 
with sex as a covariate, setting the significant threshold to 
P value < 0.05.

Intercellular communication analysis
We independently conducted cell–cell communica-
tion analysis between cell types with regions and age 
being simultaneously considered or not, using the R 
package CellChat (v2.1.2) [45] by following the official 
workflow (https://​github.​com/​sqjin/​CellC​hat). For the 
ligand-receptor interaction database, we used “Cell-
ChatDB.human” that was manually curated in human 
and contained ~ 3300 validated molecular interactions 
involved in “paracrine/autocrine signaling,” “extracellular 

matrix (ECM)-receptor,” “cell–cell contact,” and “non-
protein signaling.” Significant interactions were inferred 
through a permutation test on the probability value 
assigned to each interaction. We calculated the number 
of interactions between two combinations across regions 
and cell types, either considering age groups or not. We 
then estimated how numbers of intra- or inter-region cel-
lular interactions correlated with regional spatial distance 
by linear regression using the R function lm [43]. The 
spatial distance value between two regions was measured 
following the widely used macaque brain atlas (http://​
www.​brain​maps.​org) [26]. The R function summary [43] 
was utilized to obtain the estimate regression coefficient 
(i.e., slope), R-squared (R2), and P values. The significant 
threshold of correlation was set to be P < 0.05. Slope val-
ues larger or less than zero represented positive or nega-
tive correlations, respectively.

Identification of region‑specific genes (RSGs)
To identify RSGs, we first identified differentially 
expressed genes (DEGs) between nuclei from a region 
and all other nuclei from the remaining nine regions for 
each cell type using FindMarkers in Seurat through a 
MAST test, with thresholds of “min.pct” for the given cell 
type in the target region ≥ 0.25, Bonferroni-corrected P < 
0.05, and an average FC ≥ 1.5. When conducting a MAST 
test using cells from all individuals as a whole analy-
sis, UMI counts, CC.differences, and sex were treated 
as covariates. Genes defined as DEGs in multi-regions 
for the same cell type were discarded. The retained 
DEGs were considered as first-potential RSGs. In addi-
tion, we performed the above DEG analysis using cells 
from each individual separately, with UMI counts and 
CC.differences as covariates. We defined a first-potential 
RSG as a final-candidate RSG for a region per cell type if 
it was also a potential RSG for a same region and cell type 
in at least two individuals. Meanwhile, considering few or 
no cells from other regions for region-specific cell types 
(i.e., SPNs, CGCs, CB-InNs, Bergmanns, TH-ExNs, TH-
InNs, AMY-ExNs, CA1–3s, and V4-ExNs), we regarded 
cell markers of these cell types as RSGs of the corre-
sponding region and cell type. Functional annotation of 
RSGs was performed using the gprofiler2 R package [46].

Identification of aging‑related DEGs
We identified DEGs between nuclei from the young and 
old macaques by cell type from each region through Find-
Markers with a MAST test treating UMI, CC.differences, 
and sex as covariates. We first used cells from all individ-
uals as a whole analysis. Then, we compared each of the 
two old individuals with each of the two young individu-
als to identify DEGs, namely SO1 vs. SY1, SO1 vs. SY2, 
SO2 vs. SY1, and SO2 vs. SY2. A gene was considered 

https://github.com/sqjin/CellChat
http://www.brainmaps.org
http://www.brainmaps.org
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to be significantly upregulated in the old macaques if its 
“min.pct” of the given cell type in an old macaque region 
was ≥ 0.25, Bonferroni-corrected P value was < 0.05, 
and the average FC compared to the young macaques 
was ≥ 1.5. By contrast, a gene was considered to be sig-
nificantly downregulated in the old macaques if its “min.
pct” of the given cell type in a young macaque region 
was ≥ 0.25, Bonferroni-corrected P value was < 0.05, and 
the average FC compared to the young macaques was 
≤ 1/1.5. An age-related DEG was required to exist both in 
the whole analysis and at least two of the four old versus 
young comparisons, with a same altering trend (namely 
simultaneously upregulated or downregulated) in a same 
region and cell type, but excluding those only from male-
included comparisons (i.e., SO1 vs. SY2 and SO2 vs. SY2) 
to avoid sex-related effects, except for DEGs in AMY, as 
the young AMY sample was only from the young male 
individual. Then, we defined a DEG as a unique old-
downregulated DEG if it was not upregulated in any cell 
type from any brain region of the old macaques. Con-
versely, we defined a DEG as a unique old-upregulated 
DEG if it was not downregulated in any cell type from any 
brain region of the old macaques. Functional enrichment 
analysis was performed using the gprofiler2 R package.

Transcriptional noise analysis
Transcriptional noise was evaluated following a previ-
ous pipeline [47]. Briefly, the numbers of nuclei from 
each cell type per region were down-sampled to be equal 
between young and old macaques and were no fewer 
than 10. Genes were divided into 10 equal bins based on 
their mean expression levels across the down-sampled 
nuclei with the top and bottom bins being excluded. 
For each bin, we only selected the 10% of genes with the 
lowest coefficient of variation (CV). We then calculated 
the euclidean distance between each cell and the corre-
sponding mean value across nuclei from each cell type 
per region within each age group. This euclidean distance 
value was defined as transcriptional noise for each cell.

Pseudotime analysis
Pseudotime analysis was first performed for each cell 
type separately, using monocle3 [48, 49] by following 
the official tutorial (https://​cole-​trapn​ell-​lab.​github.​
io/​monoc​le3/). Nuclei from different individuals were 
treated as distinct batches being corrected using the 
align_cds function. The root of a trajectory was program-
matically or manually selected by using the node with 
enrichment of young cells. Genes varying over a trajec-
tory or between two age groups were identified using 
the graph_test function with Moran’s I test by setting a 
significant threshold of adjusted P (Padj) < 0.05. If there 
were multiple trajectories split by subtypes for a cell type, 

we conducted a pseudotime analysis for each subtype, 
respectively. Expression dynamics of significantly varied 
genes along the trajectory were presented using the plot_
genes_in_pseudotime function.

Heritability enrichment analysis
To ascertain correlations of complex human traits and 
diseases with specific signatures related to cell types, 
subtypes, regions, and aging, we independently per-
formed linkage disequilibrium score regression (LDSC) 
(v1.0.1; https://​github.​com/​bulik/​ldsc) [50, 51] to predict 
the heritability enrichment of 30 diseases/traits across 
genes specifically or predominantly expressed in each 
cell type, subtype and region, or significantly differen-
tially expressed between the young and old macaques as 
described previously [15, 52]. Cell-type- and subtype-
specific marker genes, RSGs, and aging-related DEGs 
were transferred to hg19 genome coordinates based on 
orthologous genes from Ensembl. Files required for the 
basic baseline analysis were downloaded according to 
recommendations from LDSC authors (https://​github.​
com/​bulik/​ldsc/​wiki).

Immunofluorescence and immunohistochemistry staining 
experiments
Macaques for protein validation
Another two young and two aged rhesus macaques were 
used for immunohistochemistry and immunofluores-
cence validation. The two young macaques included SY3 
(male, 5 years old) and SY4 (male, 11 years old), while the 
two old macaques included SO3 (female, 30 years old) 
and SO4 (male, 31 years old) (Additional file 2: Table S1). 
Macaque SY3 was used for validation of cell-type-specific 
genes; SY3 and SY4 were used for validation of most 
region-specific genes, except for ADCY5 where SO3 and 
SO4 were used due to the high expression of this gene in 
the old macaques; all four monkeys were used for valida-
tion of aging-related DEGs.

Brain acquisition, fixation and section
After euthanasia, each macaque brain was removed from 
the skull and immersed into 4% paraformaldehyde (PFA), 
0.01 M PBS at 4 °C for 1 week. Then the 10 brain regions 
of interest from the right hemisphere were cut into 
3  mm-thick sections coronally and embedded in paraf-
fin. The paraffin-embedded sections were then sliced into 
4-μm-thick slices on a Leica RM2016 Microtome (Leica, 
Shanghai, China) for immunohistochemistry and immu-
nofluorescence staining.

Antibodies
The primary antibodies for immunohistochemistry and 
immunofluorescence staining included SV2B (SAB, 

https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc/wiki
https://github.com/bulik/ldsc/wiki
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Cat. #32139, 1:80), RNASET2 (SAB, Cat. #42738, 1:80), 
PDE10A (SAB, Cat. #44386, 1:100), PPP3CA (SAB, Cat. 
#32139, 1:80), VCAN (SAB, Cat. #43346, 1:80), COL9A1 
(SAB, Cat. #46534, 1:80), ADCY5 (SAB, Cat. #34161, 
1:200), HSP90AA1 (SAB, Cat. #32072, 1:100), P2RY12 
(Cellsignal, Cat. #69766S, 1:400), CA12 (Cellsignal, Cat. 
#5865S, 1:100), ZIC4 (Abmart, Cat. #PH0841S, 1:200), 
OLIG2 (Abmart, Cat. #PA5829S, 1:200), TIAM1 (Solar-
bio, Cat. #K009405P, 1:200), ATP5MG (ZEN BIO, Cat. 
#825205, 1:40), ATP5MPL (ZEN BIO, Cat. #163326, 
1:40), TCF7L2 (Abclonal, Cat. #A20770, 1:200), RGS16 
(Abclonal, Cat. #A4078, 1:200), NTS (Abclonal, Cat. 
#A12326, 1:200), CFAP299 (Novus, Cat. #NBP1-86203, 
1:200), CACNA1A (SAB, Cat. #37454, 1:200), HPCAL4 
(SAB, Cat. #28970, 1:50), LMO4 (SAB, Cat. #39194, 1:80), 
VSNL1 (SAB, Cat. #47458, 1:50), PPP1R1B (SAB, Cat. 
#54693, 1:200) and CAMK2A (SAB, Cat. #46394, 1:200). 
The secondary antibodies for the immunohistochemistry 
or immunofluorescence staining contained anti-mouse/
rabbit IgG detection system (ZSGB-BIO, Cat. #PV-9000), 
Cy2 AffiniPure donkey anti-rabbit IgG (Jackon Immu-
noResearch, Cat. #715-225-150, 1:200), 488 AffiniPure 
goat anti-rabbit IgG (Jackon ImmunoResearch, Cat. 
#111-545-144, 1:200), Cy5 AffiniPure donkey anti-mouse 
IgG (Jackon ImmunoResearch, Cat. #715-175-150, 1:200) 
and Cy5 AffiniPure donkey anti-rabbit IgG (Jackon 
ImmunoResearch, Cat. #711-175-152, 1:200).

Immunohistochemistry staining
For the immunohistochemistry staining, paraffin sec-
tions were mounted on microscope slides and baked at 
65 °C overnight. Then, the sections were deparaffinized 
and rehydrated with two 10-min changes of xylene and 
graded alcohols, respectively. The treated sections were 
later heated for 2  min with citrate buffer in a pressure 
cooker for antigen retrieval. Then the sections were 
treated with 70% formic acid for 7  min. Endogenous 
peroxidase in the sections was inactivated by incubation 
with 3% hydrogen peroxide in methanol for 10 min. The 
sections were then blocked with 2% bovine serum albu-
min (BSA) in 0.5% Triton X-100 for 30 min at 37 °C. The 
primary antibodies were diluted in blocking solution 
and incubated with the sections at 4  °C overnight. The 
sections were then incubated with secondary antibod-
ies (PV-9000, 30 min) at 37 °C and developed using 3, 
3’-diaminobenzidine (DAB, MXB, China) in chromogen 
solution, and counterstained with hematoxylin (Sigma, 
USA) for cell nucleus identification. In the negative-con-
trol experiments, only the primary antibodies were omit-
ted. Finally, the sections were dehydrated and cleared 
with graded alcohols and xylene, respectively, and then 
covered with neutral gum and cover slips. The slides 
were analyzed using an Olympus CX41RF microscope 

(Olympus, Tokyo, Japan) and the images captured with 
the matching Olympus DP25 microscope digital camera. 
Immunostaining was performed in parallel in slides for 
each primary antibodies.

Immunofluorescence staining
The paraffin sections were mounted on microscope slides 
and baked at 65 °C overnight. Then, the sections were 
deparaffinized and rehydrated with two 10-min changes 
of xylene and graded alcohols, respectively. The treated 
sections were later heated for 2 min in citrate buffer in a 
pressure cooker for antigen retrieval. Then the sections 
were treated with 70% formic acid for 7 min. Endogenous 
peroxidase of the sections were inactivated by incubation 
with 3% hydrogen peroxide in methanol for 10 min. The 
sections were then blocked with 2% bovine serum albu-
min (BSA) in 0.5% Triton X-100 for 30 min at 37 °C. The 
primary antibodies were diluted in blocking solution and 
the sections were incubated at 4  °C overnight, followed 
by incubation with the corresponding fluorescent sec-
ondary antibodies at room temperature for 2  h. Nuclei 
were stained with 4’,6-diamidino-2-phenylindole (DAPI, 
Sigma, USA) for 15 min. In the negative-control experi-
ments, the primary antibodies were omitted. The slides 
were mounted with Fluoromount-G (SouthernBiotech, 
USA) and imaged on a TissueFAXS Spectra System (Tis-
sueGnostics, Vienna, Austria). Immunostaining was per-
formed in parallel in slides for each primary antibody.

Image analysis
Three coronal sections from each brain region were 
randomly selected for staining, and images of 3 visual 
fields were randomly collected for each section. All the 
images were captured with a × 20 objective under the 
same acquisition parameters for each immunostaining. 
The integrated optical density (IOD) of the immunohis-
tochemistry staining and the proportion of immuno-
positive cells of the immunofluorescence staining in the 
10 brain regions were analyzed quantitatively by ImageJ 
(NIH software). All images were converted into 8-bit gray 
scale and thresholds were adjusted and kept constant to 
highlight immunostained cells. Next, the immunoreac-
tive particles were analyzed using the particle analysis 
tool. The IOD and ratio of the immunoreactive cells over 
each analyzed visual field were calculated. Values derived 
from a total of nine visual fields were averaged and pre-
sented as mean ± standard error of mean in bar plots.

Knockdown of VSNL1 and HPCAL4 in U251 glioma cells
To generate U251 glioma cell lines with knockdown of 
VSNL1 or HPCAL4, short hairpin RNA (shRNA) tar-
geting specific genes were designed and cloned into the 
pLKO.1 lentiviral vector. The following target sequences 
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were used for knockdown: sh-VSNL1-1: acagagtttaat​g​a​gcat​

g​aa; sh-VSNL1-2: gcatgaactcaagcagtggta; sh-VSNL1-3: 
tgtccaagtgggaggctaaat; sh-HPCAL4-1: ccttgt​t​c​agaacactgagtt; 
sh-HPCAL4-2: tcagcagctctacatcaagtt; sh-HPCAL4-3: cca-
gattacattggaggagtt. Lentiviral particles were produced by 
co-transfecting the pLKO.1-shRNA plasmids along with 
packaging plasmids (psPAX2 and pMD2.G) into HEK-
293 T cells using Lipofectamine 3000 (Thermo Fisher). 
The viral supernatants were collected 48 h post-transfec-
tion, filtered, and concentrated. U251 glioma cells were 
then transduced with the viral supernatants and selected 
using 2 μg/mL puromycin (InvivoGen, USA) for 3 days to 
ensure stable expression of the shRNAs. The efficiency of 
knockdown was assessed by quantitative PCR (qPCR), 
confirming the reduction of VSNL1 and HPCAL4 expres-
sion in transduced cells.

Senescence‑associated beta‑galactosidase (SA‑β‑gal) 
staining
SA-β-gal staining was used to identify senescent U251 
glioma cells following the knockdown of VSNL1 or 
HPCAL4. This assay detects the enzymatic activity of 
SA-β-gal at a suboptimal pH of 6.0, a hallmark of senes-
cent cells. In detail, U251 cells were transfected with 
shRNA targeting VSNL1 or HPCAL4 (or corresponding 
control shRNA), and after 48 h of culturing, they were 
subjected to SA-β-gal staining following the manufac-
turer’s protocol (C0602, Beyotime Biotech, Shanghai, 
China). The procedure was carried out as follows: (1) 
washing and fixation: cells were washed with hosphate-
buffered saline (PBS) for 3 min, followed by fixation with 
the provided fixative solution at room temperature for 
15 min; (2) staining: After fixation, cells were incubated 
with the SA-β-gal staining working solution overnight at 
37 °C; (3) visualization: the stained cells were then visual-
ized using the Cytation 5 cell-imaging multi-mode plate 
reader (BioTek, Winooski, VT, USA), which enabled the 
detection and quantification of SA-β-gal positive cells.

Quantitative real‑time PCR (qPCR)
qPCR was performed to evaluate the knockdown effi-
ciency of VSNL1 and HPCAL4 in glioma cells, as well as 
to measure the mRNA expression levels of senescence-
related genes, including p16, p21, CCL2, CXCL1, CXCL3, 
and TNFα, in U251 glioma cells following the knockdown 
of VSNL1 or HPCAL4. Total RNA was extracted from 
U251 cells transfected with shRNA targeting VSNL1 
or HPCAL4 (or control shRNA) using TRIzol reagent 
(15596018, Thermo Fisher Scientific, MA, USA) accord-
ing to the manufacturer’s protocol. The RNA purity and 
concentration were assessed spectrophotometrically. For 
cDNA synthesis, an RT kit (K1622, Thermo Fisher Scien-
tific, MA, USA) was used following the manufacturer’s 

instructions. qPCR was then performed to quantify the 
expression of target genes using specific primers for p16, 
p21, CCL2, CXCL1, CXCL3, TNFα, and β-actin (internal 
control), along with SYBR Green master mix (2 × Master 
qPCR Mix TSE201, Tsingke®, Beijing, China). The rela-
tive mRNA expression levels were determined using the 
2−ΔΔCt method.

Statistical analyses
All statistical analyses were carried out based on data dis-
tribution. For immunofluorescence staining data of the 
eight RSGs, we performed the Anderson–Darling test on 
residuals for normality as the samples size was 60, using 
the R function ad.test (nortest) [53]. For immunohisto-
chemical staining data of the eight aging-related genes 
and statistic data after knockdown of VSNL1 or HPCAL4 
in U251 glioma cells, we separately performed the Shap-
iro–Wilk test for normality on raw values of each group 
or condition, using the R function shapiro.test [43]. Lev-
ene’s test was applied for checking homogeneity of vari-
ance, using the R function leveneTest (car) [54].

Consequently, data of RSGs such as RGS16, NTS, 
CA12, PDE10A, and TIAM1 were analyzed through one-
way Analysis of Variance (ANOVA) followed by Dun-
nett multiple comparisons due to normal distribution 
and equal variances using the R functions of aov and 
glht (multcomp) [43, 55], while data of TCF7L2, ZIC4, 
and ADCY5 were analyzed through Welch’s ANOVA fol-
lowed by Games-Howell test and adjusting P values with 
FDR due to normal distribution but unequal variances 
using the R functions of posthocTGH (userfriendlysci-
ence) [56] and p.adjust [43]. Padj < 0.05 was set to be a sig-
nificant threshold.

Data of aging-related genes such as ATP5MG, 
ATP5MPL (downregulated in old DLPFC), CFAP299, 
and VSNL1 were analyzed through unpaired two-tailed 
Student’s t test due to normal distribution and equal vari-
ances using the R function t.test [43], while data of CAC-
NA1A and HSP90AA1 were analyzed through unpaired 
two-tailed Welch’s t-test due to normal distribution but 
unequal variances. Data of ATP5MPL (downregulated 
in old CG) and HPCAL4 were not normally distributed; 
thus, we analyzed through unpaired two-tailed Mann–
Whitney U test using the R function wilcox.test [43]. 
The percentage of SA-β-gal-positive cells transduced 
with sh-VSNL1-1 plasmids, and relative qPCR expres-
sion levels of CXCL3 in the conditions of sh-VSNL1-1 
and sh-VSNL1-3 were not normally distributed; thus, 
we compared their values with the condition of pLKO.1 
using unpaired two-tailed Mann–Whitney U test, 
respectively. For data of other conditions from SA-β-gal 
staining and CXCL3 qPCR, the growth state of U251 cells 
(i.e., relative cell number), and relative qPCR expression 
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levels of genes including p16, p21, CCL2, CXCL1, TNFα, 
VSNL1, and HPCAL4, unpaired two-tailed Student’s t 
test was used due to normal distribution and equal vari-
ances when compared with pLKO.1. P < 0.05 was set to 
be a significant threshold.

Results
Characterization of a cell atlas for NHP brains
To construct a single-cell transcriptome atlas for the 
NHP brain, we profiled gene expression in single nuclei 
of 39 samples from 10 regions of two young and two 
aged rhesus macaques using DNBelab C4 snRNA-seq 
(see “Methods” and Fig.  1A). After a series of filtration 
steps, a total of 330,006 high-quality nuclei were retained 
for further analyses, with a median of 2212 UMIs and 
1398 genes per cell and of 6820 cells per sample (Addi-
tional file  1: Fig. S2). In terms of gene expression, the 
snRNA-seq data correlated well with their correspond-
ing bulk RNA-seq data (Pearson correlation coefficient 
(PCC) = 0.71 ± 0.06; Additional file 1: Fig. S3 A), imply-
ing consistent transcriptomic profiles between snRNA-
seq and bulk RNA-seq data. To correct for batch effects, 
the retained nuclei across all samples were integrated 
using Seurat with Harmony algorithm (Additional file 1: 
Fig. S3B–E). UMAP dimensional reduction and Lou-
vain algorithm were applied to the integrated dataset 
to define distinct clusters, and DEGs were identified for 
each cluster based on the MAST test (Additional file  3: 
Table  S2). Using canonical markers and cell-type trans-
ferring based on the published snRNA-seq datasets from 
human and macaque brains [36, 37], we identified twenty 
major cell types which were evenly split into neuronal 
and non-neuronal types (Fig. 1B–D, Additional file 1: Fig. 
S4). The neuronal cell types included excitatory neurons 
(ExNs; CAMK2A+ SLC17A7+) mainly from the cortex, 
GABAergic inhibitory neurons (InNs; GAD1+ GAD2+), 
ExNs mainly from V4 (V4-ExNs; POU6F2+ CUX2+), 
ExNs mainly from AMY (AMY-ExNs; DPYD+ PRR16+), 
ExNs mainly from TH (TH-ExNs; SLC17A6+ TCF7L2+), 
InNs mainly from TH (TH-InNs; GAD2+ KIT+), InNs 
mainly from CBC (CB-InNs; PVALB+ NEFH+), spiny 
projection neurons (SPNs; PPP1R1B+ PENK+) mainly 
from PU, cerebellar granule cells (CGCs; CBLN1+ NEU-
ROD1+), and hippocampal excitatory CA1–3 cells 
(CA1–3s; CAMK2A+ LMO1+), while the non-neuronal 
types consisted of Bergmann glia (Bergmanns; FABP7+ 
NDRG2+), astrocytes (Astros; AGT​+ AQP4+), microglia 
(Micros; CSF1R+ P2RY12+), oligodendrocyte progenitor 
cells (OPCs; OLIG2+ PCDH15+), differentiation com-
mitted OPCs (cOPCs; GPR17+ SOX4+), oligodendro-
cytes (Oligos; MOBP+ MOG+), ependymal cells (Epens; 
DNAH6+ FOXJ1+), endothelial cells (Endos; CLDN5+ 
FLT1+), perivascular fibroblasts (Fibs; SFRP2+ MYOC+), 

and smooth muscle cells (SMCs; ACTA2+ MYH11+). 
Functional annotation of the cell-type-specific genes 
revealed significant categories paralleling functions of 
the corresponding cell types (Fig. 1D). For example, ExN-
specific genes were enriched in glutamatergic pathways, 
InN in GABA signaling pathways, SPN in dopamine 
response, Bergmann in cerebellar granular layer develop-
ment, Astro in astrocyte differentiation, OPC, cOPC, and 
Oligo in gliogenesis and myelination, Micro in immune 
response, Epen in cilium assembly and cerebrospinal fluid 
circulation, and vascular cells in angiogenesis and wound 
healing. Besides, some cell types also showed intriguing 
functional enrichment, such as both TH-ExNs and TH-
InNs, were remarkably associated with aerobic respira-
tion, while TH-InNs were also specifically involved in 
the sterol and steroid metabolic processes. Astros were 
correlated to ossification and kidney development. Endos 
were related to maintenance of blood–brain barrier and 
aging.

In addition to the canonical cell-type markers, we also 
identified and validated many genes that were found to 
be predominantly expressed in a particular cell type but 
which, to our knowledge, have not yet been well reported 
in NHPs, including SV2B, PPP3CA, and LMO4 for neu-
rons with an excitatory nature, PPP3CA also for SPNs, 
GRIK1 and GALNTL6 for InNs, CA12 and PDE10A for 
SPNs, HOMER3 and ZNF385C for CB-InNs, ANXA1 for 
Bergmanns, RGS16 for TH-ExNs, OTX2 and ASIC4 for 
TH-InNs, HPSE2 for V4-ExNs, ADGRV1 and ETNPPL 
for Astros, APBB1IP and RNASET2 for Micros, COL9A1 
and VCAN for OPCs and cOPCs, LIMS2 and GNB4 for 
cOPCs, CD22 for cOPCs and Oligos, ANLN for Oligos, 
ARMC3 for Epens, and MFAP4 for Fibs (Fig.  1C, E–M, 
Additional file  3: Table  S2). In particular, the expres-
sion of SV2B has been recently found to be restricted 
to the glutamatergic neurons of human temporal cor-
tex [57]. Our results provide further evidence for SV2B 
being specifically expressed in primate ExNs. PPP3CA 
variants are known to be associated with severe epilepsy 
and dysmorphism [58]. Our finding of PPP3CA overex-
pression in the excitatory and spiny projection neurons 
of rhesus macaque might therefore provide a clue as to 
the pathogenic mechanism whereby these two cell types 
are involved in epileptic seizure. LMO4 has been shown 
to control the balance between excitatory and inhibi-
tory neurons in the ventral spinal cord [59]. GRIK1 has 
recently been shown to be predominantly expressed 
in the GABAergic neurons in the rodent amygdala 
[60], while we confirmed its remarkable expression in 
macaque InNs. Local inactivation of GRIK1 expression 
in adult rodent amygdala reduces ongoing GABAergic 
transmission giving rise to a mild anxiety-like behavior 
[60]. ADGRV1 (alias VLGR1) variants have been reported 
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to be related to epilepsy and audio-visual abnormalities 
[61]. High ADGRV1 expression in macaque astrocytes 
and astrocyte-like glial cells (i.e., Epens) would help to 
explain its pathological involvement. ETNPPL expres-
sion has been found to be specifically induced by diet in 
mouse brain astrocytes, while altered ETNPPL expres-
sion has been implicated in mood disorders [62, 63]. The 
predominant ETNPPL expression in macaque astrocytes 
may provide an insight into ETNPPL functions. Kel-
ley et  al. recently identified APBB1IP as a novel marker 
of human brain microglia even though its microglial 
functions remain unstudied [64]. Our own data show 
that APBB1IP expression is significantly associated with 
macaque microglia and support the view that APBB1IP 
may represent a useful microglial marker. Hamilton et al. 
have reported that microglial failure to digest apoptotic 
cells is a major contributor to RNASET2-deficient leu-
koencephalopathy [65]. RNASET2 overexpression in 
macaque Micros concurs with the view that RNASET2 
pathogenesis is likely to operate through microglial dys-
function. Intriguingly, Pluvinage et  al. found that CD22 
is exclusively expressed by oligodendrocytes in human 
brain but by microglia in mouse brain [66]. Our own data 
on CD22 overexpression in macaque Oligos and cOPCs, 
a small population of oligodendroglial cells presenting 
an intermediate state between OPCs and newly formed 
Oligos, suggested that CD22 might be a specific marker 
of oligodendroglial cells in the primate brain. Consistent 
with our finding of high ANLN expression in macaque 
oligodendrocytes, Erwig et  al. also stated that ANLN 
expression is at its highest in the myelinating oligoden-
drocytes of mouse brain and its depletion causes patho-
logical myelin outfoldings by disturbing myelin septin 
assembly [67]. To our knowledge, functions of COL9A1 
in the brain have not yet been reported, while its loss in 
mice disrupts myeloid cell functions [68]. Overexpres-
sion of COL9A1 in macaque OPCs and cOPCs should 
prompt future exploration of its functions. VCAN has 
been recently identified as a novel marker of a primary 
OPC subtype in a murine model of cerebral ischemia 
[69], but is also a marker of OPCs and an ExN subclus-
ter in human brain [70]. Our results confirm that VCAN 
expression typically correlates with OPCs. Owing to the 
cost and precious nature of the samples involved, we 
opted to validate eight of these novel (or less well-known) 
cell-type-specific genes using immunostaining alongside 
canonical markers and obtained perfect concordance 
across macaque brain regions (Fig. 1E–M). In summary, 
our results expand the number of existing canonical 
markers for different brain cell types, including those 
specific to primates.

Cell–cell communications between brain cell types
Robust brain functions are critically reliant on the precise 
regulation of connections between cell types. Using Cell-
Chat, we analyzed intercellular communications across 
distinct cell types. In total, we observed 114 significant 
ligand-receptor pairs (LRPs) from 46 signaling path-
ways. The strongest crosstalk was evident among ExNs, 
InNs, CGCs, SPNs, and V4-ExNs (Fig.  2A). Cell types 
were found to be associated with the signaling pathways 
through five patterns, including two outgoing commu-
nication patterns of secreting cells and three incoming 
communication patterns of target cells (Fig.  2B). Four 
signaling groups were identified based on their func-
tional similarity, as members within a group exhibited 
similar major senders and receivers and thus might per-
form similar and/or redundant roles (Fig. 2C–F). Group 
1 was dominated by immune pathways (i.e., ADGRB, 
ANGPT, ANGPTL, BMP, CD39, CD45, COMPLE-
MENT, CX3C, ESAM, IL16, MHC-II, NTS, PECAM1, 
THY1, and VEGF) representing signaling from/to a 
single type of glial or vascular cells, especially Micros, 
Astros, and Endos. For example, the LRP ENTPD1-
ADORA2B in the CD39 pathway specifically mediated 
signaling from Micros (Fig. 2F). ENTPD1 (alias CD39) is 
known as a microglial-specific marker [71], a character-
istic that was also corroborated by our results (Fig. 2E). 
ENTPD1 encodes an ectonucleotidase that serves to 
regulate immunity and inflammation [72]. Both ESAM 
and PECAM1 exclusively regulate autocrine signaling 
between Endos (Fig.  2D), two endothelial cell markers 
that show selective expression in Endos from our data 
(Fig. 2E). ESAM encodes endothelial cell-selective adhe-
sion molecule that regulates angiogenesis and endothelial 
permeability, with involvement in various vascular dis-
eases including atherosclerosis and various hypervascular 
tumors [73, 74]. PECAM1 plays a vital role in the main-
tenance of endothelial junction integrity and the vascu-
lar barrier [75]. Group 2 included twelve pathways (i.e., 
CLDN, EPHA, JAM, LAMININ, MPZ, NEGR, Netrin, 
PDGF, PTN, PTPR, RELN, SLIT), which were mainly 
involved in nervous system development and largely rep-
resented signaling from neuronal or non-neuronal cells 
as primary outgoing resources. For instance, NEGR1 was 
particularly evident in terms of the connections among 
neurons (Fig.  2D, F). NEGR1 encodes neuronal growth 
regulator 1, a cell adhesion molecule that is involved in 
cortical layering and which is essential for the balance 
between excitatory/inhibitory neurons [76]. NEGR1 
deficiency dramatically alters brain morphology and dis-
rupts neurite arborization in mice [76]. Moreover, the 
LRP PTN-PTPRZ1 in the PTN pathway primarily output 



Page 12 of 27Wang et al. Genome Medicine           (2025) 17:41 

signals from non-neuronal cells, consistent with the very 
low level of PTN expression in neurons (Fig. 2D–F). PTN 
encodes pleiotrophin, a growth factor that modulates 
microglia-mediated neuroinflammation and is involved 

in many brain disorders including neurodegenerative dis-
eases and drug addiction [77]. Group 3 contained nine 
pathways (i.e., ADGRL, CADM, CNTN, NCAM, NRG, 
NRXN, PCDH, PSAP, and PTPRM) with predominant 

Fig. 2  Cell–cell communications across the twenty major cell types. A Interaction weights/strength between any pair of cell types, displayed 
by edge width. B Alluvial plots highlight the outgoing signaling patterns of secreting cells (left) and incoming signaling patterns of target 
cells (right). C Signaling pathways were clustered into four groups based on their functional similarity. Dot size was proportional to the overall 
communication probability (Prob.). D Outgoing communication patterns of secreting cells (left) and incoming communication patterns of target 
cells (right). Dots were colored according to cell types, while dot size was proportion to the contribution score (Contri.) of each cell type to each 
signaling pathway to show association between cell type and their enriched signaling pathways. Signaling pathways were colored according 
to the four functionally similar groups. E Dot plot illustrates expression of the representative ligand-receptor genes for each of the four functionally 
similar groups. The dot size represents the percentage of nuclei expressing a gene by each cell type whereas dot color displays the scaled average 
expression level. F Interaction weights/strength between any pair of cell types for the representative ligand-receptor pairs, displayed by edge width
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signals from neuronal cells and cOPCs, which are mainly 
associated with cell–cell adhesion, synapse assembly, 
and behavior. In particular, the LRP NRXN3-NLGN1 in 
the NRXN pathway primarily sends signals from neu-
ronal cells to most cell types (Fig. 2F). NRXN3 was highly 
expressed in neuronal cells and one of its missense vari-
ant has been shown to enhance mouse empathy fear [78]. 
NLGN1 encodes a postsynaptic cell adhesion protein that 
influences synapse formation and stabilization and has 
been linked to cognitive disorders, such as schizophrenia, 
autism, and AD [79, 80]. Group 4 contained mainly inte-
grin-mediated signaling pathways (i.e., ADGRE, CDH, 
COLLAGEN, FN1, GAP, IGF, PROS, NOTCH, TENAS-
CIN) targeting to Astros and SMCs, which have been 
implicated in cell junction assembly and wound healing. 
For example, both LRPs FN1-SDC4 in the FN1 pathway 
and TNR-SDC4 in the TENASCIN pathway used SDC4 
as a receptor and send signals to Astros (Fig. 2F). SDC4 
and FN1 were identified as a marker specific to Astros 
and vascular cells in our data, respectively (Fig. 2E), both 
of which play important roles in cell adhesion, cell migra-
tion, and wound healing [81]. Together, the intercellular 
communication analysis improved our understanding of 
how brain cells connect with each other to maintain nor-
mal brain functions.

Transcriptional landscape and regional specificity of cell 
subtypes
Vast cellular heterogeneity within the neuronal popula-
tion has been previously reported in both primate and 
mouse brain [82, 83]. Revealing the transcriptomic diver-
sity of brain cell types is a prerequisite for the explora-
tion of brain functions that are dependent upon cellular 
and regional specificity. Thus, we performed further clus-
ter analysis for the major cell types so as to define their 
subtypes using a similar method. In total, we detected 
88 subclusters, including 3 for SPNs, 2 for CB-InNs (i.e., 
Purkinje neurons and basket/stellate cells), 6 for TH-
ExNs, 2 for TH-InNs, 2 for AMY-ExNs, 4 for CA1–3s, 
5 for V4-ExNs, 12 for cortical ExNs, 15 for InNs, 5 for 
Astros, 9 for Micros, 2 for OPCs, 6 for Oligos, 2 for 
Epens, 10 for Endos, and 3 for Fibs (Fig. 1B, Additional 
file  1: Figs. S5–13). These subpopulations of cells were 
characterized by high expression of their own specific 
signatures (Additional file  3: Table  S2). Thus, for exam-
ple, we detected excitatory subclasses mainly from cor-
tical neurons based on known layer markers (i.e., CUX2 
for L2- 3, RORB for L3-5, RXFP1, TLE4 and FOXP2 for 
L5/6, and HTR2C for L5-6 near-projecting (NP) ExNs) 
and annotations from the published human snRNA-seq 
dataset (Additional file 1: Fig. S4) [37]. Interestingly, most 
V4 L2-5 ExNs were distinct from excitatory layer neu-
rons of cortex tissues like DLPFC, CG, STG, and SPL, 

while some hippocampal CA ExNs were close to cortical 
ExNs. InNs were roughly split into two major branches 
based on their developmental origins in the medial and 
caudal ganglionic eminence using LHX6 and ADARB2 as 
a typical marker, respectively. LHX6 exhibits high chro-
matin at the promoter site of SST and PVALB, while 
ADARB2 had accessibility at the promoter chromatin of 
VIP and LAMP5, which are four well-known inhibitory 
subtype markers [27] (Additional file 1: Fig. S9). Besides, 
specific signatures were identified between the two cer-
ebellar inhibitory subtypes (Additional file  1: Fig. S6), 
including their well-known markers (i.e., PCP2, CALB1, 
and CA8) and unwell-characterized genes (e.g., PPP1R17, 
GRIK1, and COL4 A2) for Purkinje neurons, and unwell-
characterized genes (e.g., KIT, BTBD11, and TFAP2B) for 
basket/stellate cells which have been often defined using 
its well-known markers shared with Purkinje neurons. 
However, we found specific over-expression of PCP2, 
CALB1, and CA8 in macaque Purkinje neurons rather 
than basket/stellate cells, while both subtypes highly 
expressed CB-InN markers, such as GAD1, PVALB, 
NEFH, HOMER3, and ZNF385C. Vascular and ependy-
mal cells are two major membrane-related non-neuro-
genic cell types. Based on known markers and the public 
human brain vasculature dataset [84], we confirmed the 
three well-defined vascular populations including Endos, 
Fibs, and the mural cell SMCs (Additional file 1: Fig. S13). 
Endos were grouped into 10 subtypes, including 7 cap-
illary clusters (capEndos by MFSD2A+) as well as one 
arteriole cluster (aEndos by VEGFC+ ARL15+ DKK2+ 
FBLN5+), one venule cluster (vEndos by ADGRG6+ 
ACKR1+ DTX4+), and one new Endos (KHDRBS2+ 
CAMK2A+ CABP1+). Fibroblasts highly expressed 
MFAP4 in rhesus macaques and were classed into three 
clusters, including Fib1 (CEMIP+ KCNK2+ SLC6A20+), 
Fib2 (SFRP2+ MYOC+ GABRA6+ GRM4+), and Fib3 
(SFRP2+ MYOC+ TP63+ ADAMTSL1+). Ependymal 
cells were clustered into Epen1 (FAM183A+ LHB+ 
C1H1orf87+) and Epen2 (HTR2C+ PRLR+ MAP3K15+).

Intriguingly, we observed some region-specific sub-
types (RSSs) that consistently overexpressed a series of 
genes across distinct cell types, especially with PU, TH, 
and CBC (Fig.  3A, Additional file  1: Figs. S5–13D). For 
example, SPN1–3 and capEndo4 were primarily from PU 
and simultaneously expressed CA12, PDE10A, PENK, 
PPP1R1B, and ADCY5; TH-ExN1–6, Astro4, Micro5, 
and Oligo5 were mainly from TH and highly expressed 
NTS, RGS16, SLC17A6, and TCF7L2; Purkinje neurons, 
basket/stellate cells, CGCs, Bergmanns, Micro6, Oligo6, 
and Fib2 were predominantly from CBC and widely 
expressed CHN2, GRID2, PATJ, TIAM1, and ZNF521. 
We also found that some RSSs exhibited highly distinc-
tive transcriptomic signatures. Thus, TH-specific InN1 
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specifically expressed ASIC4 and OTX2. We further 
validated the predominant protein expression of these 
genes in corresponding brain regions, such as PDE10A in 
PU, NTS in TH, and TIAM1 in CBC (Fig.  3B–E, Addi-
tional file  1: Figs. S14 A and S15). PDE10A encodes a 

cyclic adenosine monophosphate (cAMP)/cyclic guano-
sine monophosphate (cGMP) phosphodiesterase and is 
associated with dopaminergic neurotransmission in the 
striatum (comprising PU and caudate nucleus), while its 
dysfunction causes various neurological and psychiatric 

Fig. 3  Characterization of region-specific subtypes (RSSs). A Heat map (top) indicates percentage of nuclei counts across the ten brain regions 
for each cell subtype, whereas the dot plot (bottom) shows expression of RSS marker genes. The dot size represents the percentage of nuclei 
expressing a gene by subtype whereas dot color displays the average expression level. B–E Immunofluorescence validation of protein expression 
of RSS-overexpressed genes, including NTS for TH (B and C) and TIAM1 for CBC (D and E) across the ten regions. Bar plots in C and E represent 
the mean percentage of immunopositive cells for each staining across three visual fields with standard error of mean bars. For both genes, one-way 
analysis of variance (ANOVA) was applied followed by Dunnett multiple comparisons due to normal distribution and equal variances. ****: Padj < 
0.0001; ***: Padj < 0.001; **: Padj < 0.01; *: Padj < 0.05. Scale bars: 20 μm
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disorders such as AD, PD, and schizophrenia [85]. NTS 
encodes a neuropeptide, neurotensin, that has been 
found to be highly expressed in mouse TH and is essen-
tial for sleep regulation through a thalamo-amygdala 
circuit in mice [86]. OTX2 encodes a homeodomain tran-
scription factor that plays a crucial role in the identity 
and fate of thalamic glutamatergic precursors by inhib-
iting GABAergic differentiation [87]. TIAM1 encodes 
T-cell lymphoma invasion and metastasis-inducing pro-
tein 1, a Rac-specific activator critical for the migration 
of cerebellar granule cell precursors along a gradient of 
brain-derived neurotrophic factor (BDNF) [88]. The 
functions of these genes suggest that the region-specific 
cell subtypes may contribute to the functional specificity 
of brain regions and brain disorders.

Delineation of region‑specific expression patterns shared 
among different cell types
The aforementioned signatures shared across RSSs 
inform region-specific expression and promise to pro-
vide new insights into the molecular mechanisms under-
lying the regionalization of brain functions. To further 
explore brain region-specific expression patterns, we first 
evaluated the cellular composition of different regions 
and found that brain cortex tissues (e.g., STG, SPL, V4, 
CG, DLPFC, and CBC) harbored a little higher propor-
tion of neurons than subcortical nuclei (e.g., TH, HIP, 
PU, and AMY) whereas the latter contained more glial 
cells (Fig.  4A, B). Moreover, subcortical neurons were 
distinct from cortical neurons and exhibited their own 
signatures, particularly remarkable expression of known 
layer markers in cortical excitatory neurons but not in 
subcortical excitatory neurons. These results corrobo-
rate the observation that neuron addition paralleled pri-
mate cortical expansion, especially in the generation of 
upper-layer neurons [89, 90], whereas glia are the chief 
orchestrators of neurodegenerative diseases related to 
subcortical nuclei, such as glial involvement in PD patho-
genesis within basal ganglia, an important component of 
which is putamen [91]. In addition, most cerebellar cells 
were also very different from other brain tissue cells and 
thus named separately, such as the excitatory neurons—
CGCs, inhibitory neurons—Purkinje and basket/stellate 
cells, and astrocytes—Bergmanns, which indicates the 
unique roles of CBC.

To explore how transcriptomic profiles changed with 
spatial distance variation among brain regions, we first 
estimated expression Euclidean distance between two 
regions across genes. We detected significantly positive 
correlations (slope > 0, P = 0.02066, R2 = 0.03128, linear 
model) between regional expression and spatial distance 
(Fig. 4C, Additional file 1: Fig. S16 A), which suggests that 
more distant regions exhibited greater transcriptomic 

differences. Moreover, we assessed intra- or inter-region 
cellular communications using CellChat and calculated 
relationships between the numbers of LRPs and spatial 
distance through a linear model. We found that connec-
tions between CBC-specific (i.e., CGCs, CB-InNs and 
Bergmanns) and other cell types were extensively signifi-
cantly increased with increasing spatial distance, but con-
nections within CBC-specific cell types tended to be the 
opposite (Fig. 4D, Additional file 1: Fig. S17). Meanwhile, 
connections with glia and other neurons mainly exhibit 
negative relationships with spatial distance. These imply 
that cerebellar cells had strong interactions with cells 
from those distant regions, while other cellular interac-
tions between regions tended to decrease with increasing 
spatial distance. The differences in gene expression and 
cell–cell communications between regions may make a 
significant contribution to the functional regionalization 
of brain.

Thus, to further characterize the regional transcrip-
tomic specificity, we identified region-specific genes 
(RSGs) that were significantly highly expressed in a cell 
type of one region as compared to the other nine regions. 
In total, we obtained 1532 unique RSGs, with most of 
them deriving from a particular cell type and also being 
defined as an RSG in a same region from previously 
published NHP datasets [36, 92, 93] (Fig. 4E, Additional 
file  1: Fig. S16B, Additional file  4: Table  S3). TH, CBC, 
AMY, and PU had the largest number of RSGs. Enrich-
ment analysis of RSGs revealed fundamental biologi-
cal pathways that were common among several regions, 
including nervous system development, cell communica-
tion, cognition, and behavior (Additional file 1: Fig. S16 
C). In addition, we also annotated unique categories rel-
evant to regional functions. For example, RSGs in AMY 
regulate axon development and response to temperature 
stimulus, while AMY is a brain region primarily involved 
into emotional response [94]; RSGs in PU are related to 
visual learning and behavior, while PU has been found to 
be implicated in visual information process [95]; RSGs 
in HIP are associated with long-term memory; RSGs in 
TH are involved in cellular respiration and the adeno-
sine triphosphate (ATP) metabolic process, whereas TH 
is a high energy-consuming gateway that relays infor-
mation flow to the cortex [96]; RSGs in V4 play impor-
tant roles in response to retinoic acid and short-term 
memory. Interestingly, we noted that most RSS-shared 
overexpressed genes were also cell-type-shared RSGs in 
a same region, including NTS, RGS16, and TCF7L2 in 
TH, ADCY5, CA12, and PDE10A in PU, and TIAM1 in 
CBC, whose proteins were also highly expressed in the 
corresponding brain regions (Figs.  3 and 4F–J, Addi-
tional file 1: Fig. S14). RGS16 encodes a member of the 
G protein signaling (RGS) family and is predominantly 
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Fig. 4  Cellular and molecular patterns across the ten regions. A Percentage of cell types in each brain region. B Percentage of neuron, glia, 
and vascular in cortical and subcortical tissues. C Correlations between regional expression Euclidean distance and spatial distance by linear 
regression. P and R2 values were obtained using the “lm” and “summary” functions in R. D Scatter plot of slope and R2 values from “lm” to show 
correlations between intra- or inter-region cellular communication and spatial distance. Dot size represents P values. E Number of region-specific 
genes (RSGs) in each region by totals (top) or shared by the 1–20 cell types (bottom). The bottom dot plot indicates the number of RSGs by dot 
size; its y-axis represents the number of cell types in which an RSG was simultaneously identified. F Dot plot shows expression of top AMY-, PU-, 
TH-, V4-, and CBC-specific genes across regions. The dot size represents the percentage of nuclei expressing a gene by each region whereas dot 
color displays the scaled average expression level. G–J Immunofluorescence validation of RSG protein expression, including CA12 for PU (G and H) 
and TCF7L2 for TH (I and J) across the ten regions. Bar plots in H and J represent the mean percentage of immunopositive cells for each staining 
across three visual fields with standard error of mean bars. One-way ANOVA was applied for CA12 followed by Dunnett multiple comparisons due 
to normal distribution and equal variances, while Welch’s ANOVA was applied for TCF7L2 followed by Games-Howell test and adjusting P values 
using FDR due to normal distribution but unequal variances. ****: Padj < 0.0001; ***: Padj < 0.001; **: Padj < 0.01; *: Padj < 0.05. Scale bars: 20 μm
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expressed in the rodent thalamus and suprachiasmatic 
nucleus. RGS16 knockdown causes abnormal circadian 
locomotor activity rhythms and food anticipation [97]. 
TCF7L2, encoding a member of the LEF1/TCF transcrip-
tion factor family, modulates postmitotic differentiation 
and terminal selection postnatally in TH and is a risk 
gene for mental disorders like schizophrenia and autism 
[98]. ADCY5 encodes adenylate cyclase 5, a striatum-
specific enzyme that converts ATP to cAMP. Mutations 
in ADCY5 are associated with dyskinesias, while PU and 
striatum are engaged in the modulation of movement 
and learning [99]. CA12 encodes membrane-associated 
carbonic anhydrase XII which catalyzes the reversible 
hydration of carbon dioxide; its expression is affected 
by hypoxia and estrogen receptors [100]. Despite its 
still unclear functions in PU, CA12 is regarded as a can-
cer marker and a potential biomarker for chronic back 
pain, while increased left PU volume is associated with 
the chronic back pain caused by ankylosing spondylitis 
[100, 101]. We also validated highly protein expression 
of ZIC4 in macaque CBC, a CBC-specific gene being 
defined in human [92, 93]. ZIC4 encodes a zinc-finger 
(ZF) transcription factor closely related to the protein 
product of the CBC-specific gene ZIC1. Both ZIC1 and 
ZIC4 are required for cerebellar development and their 
heterozygous deletion causes reduced cerebellar size due 
to decreased proliferation of postnatal granule cell pro-
genitors and is associated with Dandy-Walker malforma-
tion (DWM), the most common congenital cerebellar 
defect [102]. Overall, these results are a reflection of 
the specific molecular and cellular signatures that exist 
among different cell types in the same brain region; these 
may play important roles in maintaining the regional 

transcriptional network thereby contributing to the func-
tional integrity and regionalization of the brain.

Cellular alterations in the aging brain of NHPs
Aging is the progressive decline in physiological and 
functional capacity, involving especially memory loss, 
decreased comprehension and a slowing of reflexes [14, 
103, 104]. Previous studies have used single-cell/nucleus 
RNA sequencing to show that aging is driven by various 
complex molecular and cellular signatures from a few 
brain regions [47, 105, 106]. Here, using a wider range 
of brain regions, we set out to survey the transcriptional 
and cellular changes that accompany aging. We first 
determined the correlations of inter-region expression 
and spatial distance as described above for the young 
and old macaques, respectively. We found significant 
positive relationships between regional expression and 
spatial distance in the young group but not in the old 
individuals (Fig.  5A), implying that differences in gene 
expression between regions largely decreased in the old 
macaques. We then compared the transcriptional noise 
between young and old individuals and detected broadly 
increased instability of gene expression with aging (Addi-
tional file 1: Fig. S18), consistent with the reduced tran-
scriptional stability apparent in aged tissues that has been 
reported previously [47, 107].

We independently performed intra- or inter-region 
cell–cell communication analysis for the young and old 
groups (Additional file 1: Fig. S19). The total interaction 
strength of the inferred cell–cell communication net-
works from the old samples was higher than those from 
the young samples (Additional file 1: Fig. S19 A). Com-
pared to the young group, interaction strength of most 

Fig. 5  Alterations in transcriptomic profiles of macaque brain with aging at single-cell levels. A Correlations between regional expression 
Euclidean distance and spatial distance by linear regression for the young and old macaques, respectively. P and R2 values were obtained 
using the “lm” and “summary” functions in R. B Circos plots show the number of DEGs downregulated (left panel) and upregulated (right panel) 
in the old macaques compared to the young macaques across different cell types and brain regions. Each connecting curve denotes the number 
of intersected down- or upregulated DEGs between two cell-type-region groups. The connecting curves suggest similar altering transcriptomic 
trends of aging-associated DEGs across regions and cell types in an age group. Venn diagram (middle panel) indicates the number of unique 
or shared old-downregulated or old-upregulated DEGs. C Comparison of protein expression for selected DEGs in corresponding young and old 
brain regions by immunohistochemistry staining. The old-downregulated DEGs included ATP5MG in DLPFC; ATP5MPL in DLPFC and CG; HSP90AA1, 
VSNL1, and HPCAL4 in CG; and CFAP299 in CBC. CACNA1A were old-upregulated in CBC. Bar plots (bottom panels) show the mean integrated optical 
density (IOD) for each immunohistochemistry staining across nine visual fields with standard error of mean bars. Scale bars: 50 μm. D The growth 
state of U251 glioma cells transduced with pLKO.1, sh-VSNL1-2, and sh-HPCAL4-2 plasmids, respectively. Red arrows pointed cells that increased 
in size. The right bar plot shows the mean relative cell number for each treatment with standard error of mean bars. E The senescence-associated 
beta-galactosidase (SA-β-gal) positive state of U251 glioma cells transduced with pLKO.1, sh-VSNL1-3, and sh-HPCAL4-3 plasmids, respectively. 
The right bar plot shows the mean percentage of SA-β-gal-positive cells for each treatment with standard error of mean bars. F Relative mRNA 
expression levels of senescence marker genes (i.e., p16, p21, CCL2, CXCL1, CXCL3, and TNFα) based on qPCR in U251 glioma cells after each treatment 
of VSNL1 or HPCAL4 knockdown. In C–F, unpaired Welch’s t-test was applied for CACNA1A and HSP90AA1 due to normal distribution but unequal 
variances and unpaired Mann–Whitney U test was applied for ATP5MPL (CG), HPCAL4, SA-β-gal staining in sh-VSNL1-1, and CXCL3 qPCR expression 
in sh-VSNL1-1 and sh-VSNL1-3 due to abnormal distribution, while other comparisons were all analyzed using unpaired Student’s t test due 
to normal distribution and equal variances. ****: P < 0.0001; ***: < 0.001; **: P < 0.01; *: P < 0.05; ns: P > 0.05

(See figure on next page.)
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cell types from different regions was enhanced in the old 
group, while some other types were attenuated (Addi-
tional file  1: Fig. S19B). For example, Oligos from CBC 
and CG, and CA1–3s from HIP showed increased out-
going and incoming signaling in the old samples, while 
Endos from CBC, SMCs from STG, and Micros from 
V4 exhibited the opposite. Signaling pathways highly 
enriched in the old macaques were a little more than 
those in the young individuals (Additional file 1: Fig. S19 
C), with the top ones involved in signal transduction and 

pathogenesis of cancer and neurodegenerative diseases 
such as L1CAM, OPIOID, WNT, CSF, KIT, CCK, THBS, 
TRAIL, and ncWNT. The positive relationship of spatial 
distance with connections between CBC-specific and 
most other cell types were detected in both young and 
old group but enhanced in the latter (Additional file  1: 
Fig. S19D). Most cross-regional connections to TH-
InNs, InNs, or Astros were significantly attenuated with 
increasing spatial distance in the young macaques, but 
the pattern eliminated in the old macaques. These results 

Fig. 5  (See legend on previous page.)
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suggest that cross-regional cell–cell communication 
largely changed in aging macaques, especially cellular 
connections in CBC to other regions. So far, cerebellum 
has exhibited tight links with aging and neurodegenera-
tive disorders [52, 108, 109]. Our findings may therefore 
provide an important new perspective on understanding 
the molecular underpinnings of the aging process and 
age-associated pathologies.

To estimate aging difference in cell-type composi-
tion, we then performed differential proportion analy-
sis between the young and old macaques using a linear 
regression model with sex as a covariate. We found a large 
increase of CGCs and AMY-ExNs as well as decrease of 
InNs, cOPCs, and Oligos in the old group (Additional 
file 1: Fig. S19E). Meanwhile, several subtypes were also 
obviously either reduced or enriched in the old group 
(Additional file  1: Figs. S5–13E). For example, although 
no remarkable difference was found in the whole com-
position of Micros and OPCs between the young and old 
groups, their subtypes Micro8 and OPC1 significantly 
decreased in the old macaques. These results suggest that 
inhibitory neurons and glia were largely reduced with 
aging, while excitatory neurons in CBC and AMY were 
the opposite. The cellular compositional changes might 
contribute to the fundamental aging mechanisms. For 
instance, decline in inhibitory neurons and glia might 
correlate with age-related reduced functional plastic-
ity and immune dysfunction, respectively, as dendritic 
remodeling of inhibitory neurons and immune response 
of immunocompetent glial cells diminishes with aging 
[110, 111].

To explore the potential molecular mechanisms 
underlying brain aging, we examined the gene expres-
sion profile alterations associated with aging across 
brain regions and cell types. In total, we identified 
1386 and 1276 genes that were respectively signifi-
cantly down- and upregulated in the old macaques 
compared to the young macaques (Fig.  5B, Additional 
file  5: Table  S4). These aging-related DEGs exhibited 
similar trends of expression changes across regions 
and cell types in an age group, with 138 DEGs simul-
taneously down- and upregulated in the old macaques 
at different cell types or regions. Many of these DEGs 
were included as human aging-related genes by the 
Aging Atlas database [112] or work of Jia et  al. based 
on large-scale Genotype-Tissue Expression project 
(GTEx) samples [113] (Additional file  1: Fig. S20 A). 
Age-related transcriptomic changes were largely found 
in ExNs, InNs, Astros, and Oligos (Fig. 5B), with mar-
ginally more old-downregulated DEGs in InNs, Micros, 
OPCs, CGCs, and Bergmanns than their old-upreg-
ulated DEGs. Compared to the other eight regions, 
DLPFC and CG showed the most remarkable changes 

in gene expression with aging, in line with other evi-
dence for the important roles played by the two regions 
in aging, such as the involvement of DLPFC dysfunc-
tion in the cognitive deficits associated with age-
related disorders [114] and abnormal neuronal and 
glial activity of CG in the pathogenesis of AD depres-
sion [115]. Further, we separately conducted functional 
enrichment analysis using DEGs from each cell type 
and region. Genes displaying decreased expression in 
the old macaques across cell types and regions were 
extensively enriched in energy metabolism, apoptosis, 
translation, immunity, and gliogenesis, whereas DEGs 
upregulated in the aging macaques were more pre-
dominantly implicated in signal transduction, synapse 
assembly, dendrite development, neurogenesis, nervous 
system process, cognition, behavior, sensory percep-
tion of pain, and rhythm (Additional file 1: Fig. S20B). 
Nevertheless, opposite exceptions also widely existed. 
For instance, upregulated DEGs in SPNs from PU and 
Oligos from TH were implicated in gliogenesis, while 
downregulated DEGs from many cell types and regions 
also showed relatively weak enrichment of cell com-
munication and signal transduction. Genes involved in 
immunity were mostly downregulated in glial and vas-
cular cells (especially Astros) of the old macaques, with 
some exceptions upregulated in the old, such as Micros 
in SPL and V4, Oligos in TH, and Endos in CG. These 
results suggest heterogeneous aging phenotypes in dis-
tinct cell types across different brain regions. Moreover, 
we observed significant expression changes in several 
genes with aging that were then confirmed by immuno-
histochemical staining showing that these changes were 
reflected at the protein level; these included ATP5MG 
and ATP5MPL significantly downregulated in the 
DLPFC and CG of old macaques, HSP90AA1, VSNL1, 
and HPCAL4 downregulated in the old CG, CFAP299 
downregulated in the old CBC as well as CACNA1A 
upregulated in the old CBC (Fig. 5C, Additional file 1: 
Figs. S20 C and S21). Both ATP5MG (alias ATP5L) 
and ATP5MPL (alias ATP5MJ) are potential regulators 
of ATP synthesis and function in energy metabolism 
[116, 117]. Interestingly, expression of ATP5MG is also 
decreased in AD, a well-known aging-associated dis-
ease [116]. HSP90AA1 encodes a heat shock protein 
that participate in autophagy or immunity, and which 
has potential therapeutic or prognostic value in the 
context of disease [118, 119]. Both VSNL1 (alias VILIP-
1) and HPCAL4 (alias VILIP-2) are members of the 
visinin-like subfamily of neuronal calcium sensor pro-
teins [120, 121]. VSNL1 encodes visinin-like protein 1, 
a peripheral AD biomarker. VSNL1 upregulates cAMP 
levels and differentiation in peripheral cells and is asso-
ciated with schizophrenia [122]. Very little is known 
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about the function of HPCAL4, which may affect neu-
rotransmitter release through modulating the presyn-
aptic P/Q-type Ca2 + channels [120]. We identified 
HPCAL4 as an ExN marker and VSNL1 as a marker of 
ExNs, TH-ExNs, and TH-InNs using all cells from the 
ten brain regions (Additional file  1: Fig. S22 A, Addi-
tional file 3: Table S2), while both genes were identified 
as ExN markers based on only cells from CG (Addi-
tional file 1: Fig. S22B). We also validated their protein 
expression in ExNs from CG and TH (only for VSNL1) 
using immunofluorescence staining (Additional file  1: 
Fig. S22 C). These results imply potential important 
links between functions of VSNL1 and HPCAL4 and 
neurons, especially ExNs. Few functional data are 
available for CFAP299 (alias C4orf22), which is mainly 
known for its possible involvement in spermatogenesis 
through regulating cell cycle and apoptosis [123]. CAC-
NA1A encodes the pore-forming subunit of neuronal 
P/Q-type Ca2 + channels and its mutations may cause 
cognitive impairment, autism, and epileptic encepha-
lopathy [124].

To examine effects of aging-related DEGs on aging, we 
conducted loss-of-function experiments in U251 glioma 
cells for VSNL1 and HPCAL4, respectively. We found 
that knockdown of VSNL1 or HPCAL4 both significantly 
induced U251 cells senescence (Fig.  5D–F, Additional 
file  1: Figs. S23 and S24): cell proliferation remark-
ably slowed down; cell volume obviously increased; per-
centage of senescence-associated beta-galactosidase 
(SA-β-gal) positive cells largely enhanced; expression of 
senescence marker genes (i.e., p16, p21, CCL2, CXCL1, 
CXCL3, and TNFα) significantly increased. These results 
suggest that VSNL1 and HPCAL4 downregulation in the 
old macaques might contribute to aging.

Moreover, to further investigate cellular transcriptional 
alterations with aging, we performed pseudotime analysis 
to infer the aging process for a cell type or subtype using 
monocle3 (Additional file 1: Fig. S25). Many cell types or 
subtypes exhibited trajectory transition from young to 
aged nuclei, which suggest a gradual progression toward 
aging in these cell types/subtypes, such as Astros, SPNs 
in PU, and cerebellum-specific cell types/subtypes like 
CGCs, Bergmanns, and Purkinje neurons. However, not 
all cells from the young individuals retained a youth-
ful state, while a subset of cells from the old individuals 
located in an earlier pseudotime. Nevertheless, many 
aging-related DEGs showed a similar expression trend 
across pseudotime. For instance, the old-downregulated 
DEGs like CFAP299 and ATP5MPL exhibited a decrease 
expression along pseudotime, while the old-upregulated 
DEGs like CACNA1A had an increase expression along 
pseudotime. These results indicate that a progressive 

aging trajectory potentially existed in most cells of many 
cell types.

Taken together, our results provide an unparalleled 
close-up view of the landscape of transcriptomic and cel-
lular alterations that accompany aging, especially female 
aging due to our sample composition as we discussed 
detailedly in the following “Discussion” section, in an 
NHP brain.

Implications of cellular, regional, and aging‑relevant 
signatures in human diseases and traits
To assess the potential involvement of gene expression 
signatures related to specific cell types, subtypes, regions, 
and aging in human diseases and complex traits, we 
used LDSC to determine the heritability enrichment of 
30 diseases/traits across genes that were specifically or 
predominantly expressed in each cell type, subtype, and 
region, or which exhibited differential expression after 
aging, as previously described [15, 52] (Fig. 6, Additional 
file 1: Fig. S26). As was to be expected, neurological traits 
were substantially enriched in neuronal populations, 
including worry, sleep duration, and schizophrenia pri-
marily in excitatory and spiny projection neurons, intelli-
gence, and years of education in excitatory and inhibitory 
neurons, as well as insomnia and neuroticism mainly in 
InNs. We also observed enrichment of schizophrenia in 
astrocytes, consistent with the observation that astro-
cyte dysfunction contributes critically to the pathogen-
esis of schizophrenia [125]. In addition, we also detected 
enriched heritability of immune-related diseases, such 
as rheumatoid arthritis and type 1 diabetes, in several 
microglial subtypes. In particular, enrichment of atten-
tion-deficit/hyperactivity disorder (ADHD) was mainly 
found in V4-ExNs and Micros. ADHD is a common neu-
rodevelopmental disorder in children and adults, char-
acterized by inattention, impulsivity, and hyperactivity. 
Visual cortex abnormalities have been detected in adults 
with ADHD, while alterations in microglial activation 
have been implicated in the ADHD pathophysiology [126, 
127]. Our results further confirmed these findings and 
revealed potential involvements of V4-ExNs and Micros 
in ADHD pathogenesis. Among the three lipid-related 
traits, i.e., levels of high-density lipoprotein (HDL), low-
density lipoprotein (LDL), and triglycerides, we found 
enrichment of HDL in Astros but not for the other two 
traits, in line with what is known about the regulation of 
astrocytes in HDL generation [128]. Moreover, we also 
observed enrichment of neurological traits across aging-
related genes in regions including DLPFC, CG, and V4, 
implying that genes which exhibit significant expression 
changes with aging may play important roles in the devel-
opment of human diseases and complex traits, especially 
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in the context of mental illness. Triglycerides and coro-
nary artery disease (CAD) showed highest heritability 
enrichment in DLPFC glia across aging-related genes, 
suggesting potential roles of DLPFC glia in abnormal tri-
glyceride levels and increased CAD risk with aging.

Taken together, neuronal cells were more likely to 
be involved in neurologically relevant traits, with dis-
tinct subtypes contributing to different traits. Microglial 
markers were engaged in immune-related traits. Aging-
related DEGs across cell types from several regions were 
substantially involved in neurological traits, suggesting 
that the expression of many genes implicated in brain 
function and brain disorders may change during the 
aging process. By contrast, no obvious enrichment pat-
terns of the traits were found in the brain region-specific 
genes, while aging-related genes did not appear to be 
involved in traits that are generally regarded as being 
systemic, such as height and LDL. In summary, the 30 
diseases/traits analyzed here exhibited tight connections 
to cell-type markers and aging-related DEGs rather than 
region-specific genes in the macaque brain, especially for 
neurological or immune-related traits.

Discussion
The molecular and cellular diversity and specializations 
in human and mouse brains have been extensively stud-
ied by scRNA-seq or snRNA-seq, significantly advancing 
our understanding of the organization and dynamics of 
brain networks underlying cognition and behavior [19, 
37, 129]. Employing snRNA-seq, we systematically pro-
filed the cellular and molecular architecture of the rhesus 
macaque brain across multiple distinct regions. Our find-
ings offer a comprehensive delineation of the cellular and 
molecular organization of NHP brain regions, provid-
ing new insights into how a broad functional repertoire 
emerges from static brain anatomy—an enduring chal-
lenge in brain research [129].

Through differential gene expression analysis and 
immunofluorescence, we expanded the list of markers 
for major brain cell types and identified several subtypes 
with distinctive marker genes. These cell populations 
were not isolated but engaged in intricate communica-
tion via diverse LRPs. Additionally, we uncovered cellular 
and molecular mechanisms underlying brain regionaliza-
tion. For instance, differences in gene expression across 

Fig. 6  Heritability enrichment of 30 human complex traits and diseases across specific signatures of cell types and subtypes. Heat maps 
show the association of selected human traits and diseases with cell types (left of the top panel) and subtypes (right of the top panel) using 
− log-transformed P values from LDSC. Circle size indicates significance with empty space denoting P ≥ 0.05. The rectangles colored by deep sky 
blue highlight the selected patterns of enrichment
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brain regions increased with spatial distance between 
regions. Notably, cerebellar cells exhibited enhanced 
interactions with cells in distant brain regions, whereas 
interactions among most other cell types tended to 
decrease with distance. A comparison of cellular compo-
sition revealed a higher proportion of neurons in the cor-
tical regions compared to subcortical nuclei, where glial 
cells were more abundant. Moreover, we observed sev-
eral cell subtypes that exhibited regional specificity and 
identified a number of genes that were highly expressed 
in different cell types within the same region. The region-
specific subtypes commonly overexpressed many region-
specific genes. Thus, we envisage that region-specific 
subtypes and genes may play crucial roles in conferring 
functional and structural specificity to brain networks 
across regions.

Furthermore, we observed significant transcriptional 
and cellular alterations in the brain with aging. Com-
pared to the young macaques, aged macaques exhib-
ited reduced transcriptional stability and decreased 
gene expression differences across regions. Cross-
regional cell–cell communication also showed marked 
changes with aging, particularly in interactions 
involving cerebellar cells. Certain cell types displayed 
aging-related compositional alterations, including an 
increase in CGCs and AMY-ExNs, and a decrease in 
InNs, cOPCs, and Oligos. Thousands of aging-related 
DEGs were identified across regions and cell types, 
with extensively consistent trends in their expression 
changes. Functional enrichment analysis revealed that 
upregulated DEGs in aging macaques were associated 
with cognition and behavior, while downregulated 
DEGs were primarily involved in energy metabolism 
and apoptosis. Pseudotime analysis showed that most 
cell types in aged macaques followed a progressive 
aging trajectory, with many age-related DEGs exhib-
iting consistent expression patterns over pseudotime. 
These results highlight extensive molecular and cel-
lular changes as critical drivers of aging, characterized 
by weakened regional specialization and connections, 
disrupted functional properties, and impaired cogni-
tion and behavior. Such changes might be implicated 
in age-related diseases like AD, PD, and schizophrenia 
[13, 14, 116, 125]. Finally, heritability enrichment anal-
yses of human complex traits and diseases across cell 
populations, brain regions, and age groups revealed 
a strong association of neurological traits with neu-
ronal populations and aging-related DEGs, particularly 
in regions such as DLPFC, CG, and V4. Our dataset 
serves as a valuable resource for investigating normal 
brain function and the dysfunctions associated with 
aging and mental disorders. However, our samples 
were mainly from female individuals, and to avoid 

sex-related effects, we identified age-related DEGs 
by incorporating multiple comparisons with those 
only from male-to-female compares being discarded, 
which suggested that the aging-related alterations we 
reported here primarily reflected female aging. More 
samples from both male and female individuals in 
the further would make up for this limitation. Even 
more comprehensive surveys will now be required to 
determine how the alterations in transcriptomic sig-
natures that occur with age are involved in the pro-
cess of aging and aging-associated pathogenesis. For 
instance, knockdown of VSNL1 or HPCAL4 in U251 
cells induced remarkable senescence, suggesting that 
the downregulation of these genes in aged macaques 
may contribute to aging. However, further experimen-
tal and bioinformatic analyses are required to clarify 
their precise roles in the aging process and associated 
pathologies.

Conclusions
It has always been fascinating and challenging to investi-
gate how brain functions with precision and has evolved 
rapidly as the most complex and vital organ of humans. 
Yet, due to ethical constraints and limited access to 
human brain tissues, NHPs that present genetic, physio-
logical, and anatomical similarities to humans make ideal 
models for studying brain function and evolution. By 
characterizing the cellular transcriptome profiles of the 
rhesus macaque across multiple regions from young and 
aging individuals using snRNA-seq, this work unveils the 
intricate molecular and cellular organization of the pri-
mate brain and its dynamic alterations with aging, espe-
cially in females. The data generated in this study would 
therefore provide a valuable resource for the in-depth 
analysis of the mechanisms underlying the precise mod-
ulation of brain function, the evolution of human high 
cognitive abilities, and the progression of brain aging and 
related diseases.
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