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ABSTRACT:  
Reinforced concrete (RC) double-column piers, essential bridge substructures, are 
highly susceptible to earthquake damage. Traditional damage assessment 
methods primarily depend on visual inspection and structural analysis, which are 
often subjective and inefficient. This study proposes a Hybrid Structural-Visual 
Damage Evaluation (HSVDE) framework integrating structural analysis and deep 
learning-based computer vision. The structural analysis provides an initial 
classification of performance levels using material strain and drift ratio. To enhance 
evaluation accuracy and enable rapid post-earthquake assessment, a modified 
DeepLabv3+ model is employed to identify concrete spalling and exposed rebar. 
Finite element analysis was utilised to determine drift ratio thresholds for each 
performance level. The modified DeepLabv3+ model significantly improved rebar 
detection accuracy, achieving an IoU of 42.80% compared to 33.37%, with only a 
slight decrease in spalling detection accuracy. The proposed HSVDE framework 
enhances the accuracy, reliability, and efficiency of seismic damage evaluation, 
supporting timely emergency response and recovery. 
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1. INTRODUCTION 
Bridges are vital components of transportation 

infrastructure, serving as essential lifelines for 
ensuring road network safety and efficiency. 
Among them, piers play a crucial role in supporting 
bridge superstructures and are typically classified 
as single-column or double-column structures. Due 
to their superior overturning resistance and low 
sensitivity to foundation deformations, RC double-
column piers are extensively utilised in mountain 
bridges and urban viaducts (Xiang et al., 2019). 
However, in recent decades, frequent large 
earthquakes such as the 2008 Wenchuan 
earthquake (Yuan, 2008), the 2016 Kumamoto 

earthquake (Yamashita et al., 2022), and the 2023 
Pazarcik earthquake (Memisoglu et al., 2024), 
have caused severe damage to bridge piers, 
exposing their vulnerability to earthquake-induced 
forces. Various methodologies have been 
developed to facilitate the rapid post-earthquake 
assessment and restoration of bridges. Traditional 
assessment methods primarily rely on visual 
inspections and structural analysis, which, although 
effective, are often time-consuming and subjective. 

With the advancement of deep learning and 
computer vision, convolutional neural networks 
(CNNs) have been increasingly adopted in 
structural damage detection (Fan et al., 2022; Zou 
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et al., 2022; Settou et al., 2022). Several studies 
have employed CNNs for the identification and 
classification of damage in RC structures, 
leveraging object detection methods (e.g., YOLO, 
SSD, Faster R-CNN) and semantic segmentation 
models (e.g., FCN, U-Net, DeepLabv3+). For 
instance, Paal et al. (2015) proposed an automatic 
detection framework for RC piers using computer 
vision techniques. Rubio et al. (2019) developed an 
FCN-based model incorporating a VGG-16 
backbone to detect concrete delamination and 
rebar exposure, achieving an average detection 
accuracy of 89.7% and 78.4%, respectively. Tazarv 
et al. (2022) proposed a CNN-based approach to 
quantify damage states and assess structural 
serviceability. Additionally, Luo and Paal (2019) 
developed a machine learning approach to predict 
the drift capacity of RC piers based on visual 
damage features.  Krishnan et al. (2025) conducted 
a comparative analysis of various deep learning 
models, including CNN, U-Net, and DeepLabv3+, 
to assess the performance in crack detection within 
RC structures. However, the majority of existing 
research has primarily focused on single-column 
piers, resulting in the post-earthquake damage 
assessment of double-column piers remaining 
largely unexplored. Furthermore, although deep 
learning models have shown promising results in 
general crack detection and surface damage 
classification, research focusing on concrete 
spalling and rebar exposure, which are two critical 
indicators of structural integrity in RC piers, 
remains limited. 

To address this research gap, this study 
proposes a Hybrid Structural-Visual Damage 
Evaluation (HSVDE) framework, which integrates 
structural analysis with deep learning-based 
computer vision to facilitate damage assessment of 
RC double-column piers. The structural analysis 
component provides an initial classification of 
performance levels based on material strain and 
drift ratio. To enhance evaluation precision and 
enable rapid post-earthquake assessment, the 
computer vision component employs a modified 
DeepLabv3+ semantic segmentation model to 
detect and quantify local damage features, 
including concrete spalling and rebar exposure, 
which are frequently overlooked in conventional 
deep learning approaches. The proposed method 
is expected to enhance the accuracy and efficiency 
of damage assessment, providing valuable 
guidance for bridge maintenance and rehabilitation 
planning. 
 
2. METHODOLOGY 

The HSVDE framework is proposed in this 
study, integrating structural analysis and computer 

vision techniques to enhance the accuracy and 
intelligence of damage assessment for RC double-
column piers. The composition and functionality of 
each layer within the HSVDE framework are first 
introduced, followed by a detailed explanation of 
the research implementation process, ensuring 
scientific rigour, systematisation, and reproducibility 
throughout the evaluation procedure. 
 
2.1 HSVDE framework 

The HSVDE framework comprises three key 
components (Fig. 1): (1) the Input Layer, (2) the 
Analysis Layer, and (3) the Output Layer. The 
components are described as follows: 
 Input Layer (shaded in grey). This layer 

primarily collects post-earthquake damage data 
of the bridge pier, including structural monitoring 
data and visual damage data. Structural 
monitoring data are acquired from on-site 
sensors, manual inspections, and measurement 
instruments, capturing key parameters such as 
strain, displacement, and crack propagation, 
which indicate the pier's mechanical response 
and damage extent during seismic events. 
Visual damage data are primarily derived from 
post-earthquake site images, videos, 
experimental datasets, and publicly available 
datasets, which are employed to identify and 
quantify damaged regions. The collected data 
are standardised and pre-processed before 
serving as the foundation for subsequent 
analysis. 

 Analysis Layer (shaded in gold). This layer 
processes input data to define assessment 
indicators and quantify damage through 
structural analysis and computer vision 
techniques. Thresholds for concrete strain (ɛc), 
rebar strain (ɛs), and drift ratio (DD = pier-top 
displacement/pier height) under different 
performance levels are determined through 
quasi-static tests and numerical simulations in 
the structural analysis component. These 
thresholds are subsequently compared with 
data from on-site monitoring to evaluate the 
current status of the pier. Within the computer 
vision component, a modified DeepLabv3+ 
model is employed for precise segmentation of 
damaged regions in RC double-column piers, 
specifically detecting concrete spalling and 
rebar exposure. The model’s lightweight design 
is optimised in this study to enhance 
segmentation accuracy and computational 
efficiency. However, appropriate thresholds for 
spalling area ratio (RA) and rebar exposure 
density (RD) remain under investigation and 
have not been incorporated into the final 
decision-making process in this study. Future 
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work will refine RA and RD computation based 
on experimental data and statistical analysis to 
enhance evaluation accuracy. Results from the 
analysis layer provide the data foundation for 
the output layer, ensuring reliable damage 
assessment. 

 Output Layer (shaded in green). This layer 
integrates the analysis results to classify 
performance levels. Initially, the performance 
level is preliminarily classified based on 
structural analysis indicators, including strain 
thresholds and drift ratio, into four performance 
levels: Immediate, Service Limited, Service 
Disruption, and Life Safety. The classification is 
then refined by incorporating concrete spalling 
area ratio and rebar exposure density. For 
instance, if visual damage indicators exceed a 
predefined threshold (e.g., the mean value of a 
given level (μ) + 1.5 standard deviations (σ)) 
even if structural analysis indicators remain 
within a lower performance level, the 
performance level may be adjusted upward for 
a more accurate assessment. The final output 
consists of the pier performance classification 
results, damage mask images, and quantified 
damage indicators. 
The multi-level damage assessment strategy in 

the HSVDE framework integrates mechanical 
analysis and computer vision, enhancing post-
earthquake damage evaluation accuracy and 
reliability for RC double-column piers. 
 
2.2 Method 

In this study, the proposed approach consists of 
the following key steps: 
(1) Data Preprocessing. The dataset employed in 
this study was derived from quasi-static tests 
conducted by the authors. Structural data are 
normalised and examined for outliers to ensure the 

validity of material strain and drift ratio thresholds. 
Meanwhile, to enhance the model’s generalisation 
ability, image data are pre-processed through 
background removal, contrast enhancement, and 
data augmentation techniques. Notably, the 
structural analysis component has been 
extensively discussed in previous studies; therefore, 
only the key findings from structural analysis are 
incorporated into this study to support the HSVDE 
framework. 
(2) Model Training and Optimisation. A total of 305 
images were selected for training and evaluation of 
the modified DeepLabv3+ model. The dataset was 
split into 90% for training and 10% for testing, 
corresponding to 274 training images and 31 
testing images. The DeepLabv3+ model was 
optimised using deep learning techniques to 
accurately detect concrete spalling and rebar 
exposure and generate prediction masks. 
Compared to traditional manual inspection 
methods, integrating computer vision analysis 
significantly enhances damage identification 
automation and improves quantitative evaluation 
accuracy. 

Within the HSVDE framework, the structural 
analysis component is initially employed to classify 
the performance levels of RC double-column piers 
according to predefined thresholds. The 
effectiveness of the modified DeepLabv3+ model in 
detecting damage in RC double-column piers has 
been validated, establishing a strong foundation for 
implementing the HSVDE framework. Future 
research will focus on determining appropriate 
thresholds for RA and RD and comparing 
assessment results with experimental data and 
images to further validate the applicability of the 
HSVDE framework in post-earthquake damage 
evaluation of RC double-column piers. 
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Figure 1: Hybrid Structural-Vision Damage Evaluation Framework. 
 
3. HYBRID STRUCTURAL-VISION DAMAGE 
EVALUATION 

To quantify post-earthquake damage in RC 
double-column piers, this section provides a 
comprehensive explanation of the structural 
analysis methodology, derived from experimental 
and numerical simulations, and elaborates on the 
modifications made to the DeepLabv3+ model to 
enhance its segmentation performance for 
concrete spalling and rebar exposure. 
 
3.1 Structural analysis 

The CAS S6-19 (CSA, 2019) standard defines 
four performance levels—Immediate, Service 
Limited, Service Disruption, and Life Safety—
based on seismic exceedance probability and 
bridge importance classification. Each performance 
level corresponds to specific damage states and 
evaluation criteria. This study adopts the four-tier 
performance classification outlined in CAS S6-19, 
considering macroscopic structural failure due to 
material degradation. Based on quasi-static test 
strain data and observed damage phenomena, the 
correlation between the performance levels of RC 
double-column piers and the strain limits of both 
concrete and rebar has been established, as 
summarised in Table 1. 
 
Table 1: Classification of performance levels of RC 
double-column piers. 
 

Performance 
level 

Concrete 
strain limits 

Rebar strain 
limits 

Immediate ɛc ≤ 0.002 ɛs ≤ 0.004 
Service limited ɛc ≤ 0.006 ɛs ≤ 0.030 

Service 
disruption ɛc ≤ 0.008 ɛs ≤ 0.045 
Life Safety ɛc ≤ 0.012 ɛs ≤ 0.068 

 
In performance-based seismic design, pier 

deformation is widely considered a more reliable 
indicator of seismic performance and damage state 
compared to strength-based criteria. Currently, the 
drift ratio at the pier top is one of the most 
commonly used indicators for assessing RC pier 
damage, as expressed in Equation (1): 

                        DD = Δ/H                           (1) 

where  DD - Drift ratio at the top of the pier; 
           Δ - Maximum displacement of the top of the 
pier; 
             H - pier height. 

A fibre-based finite element model of the RC 
double-column pier was developed in OpenSees, 
as depicted in Fig. 2. The Displacement-Based 
Beam-Column Element was utilised to simulate the 

hysteretic behaviour of the pier columns, while the 
Elastic Beam-Column Element was employed to 
represent the cap beam. The fibre model was 
discretised into three material categories: 
unconfined concrete, confined concrete, and 
reinforcing steel. The constitutive models for these 
materials were established using Concrete 01 
(Scott et al., 1982), Concrete 02 (Mander et al., 
1988), and ReinforcingSteel (Kunnath et al., 2009), 
respectively. 

To account for parameter variability, the Monte 
Carlo sampling technique was employed to 
generate 500 sets of random parameter 
combinations, each representing an independent 
finite element model of an RC double-column pier. 
Through iterative cyclic analyses on these 500 
finite element models, the four drift ratio thresholds 
were derived based on the strain limits of concrete 
and rebar, as defined in Table 1: 
 Immediate: DD=0.327%; 
 Service limited: DD=0.878%; 
 Service disruption: DD=1.000%; 
 Life safety: DD=5.149%. 

 

 
Figure 2: RC Double-column pier modelling information. 
 
3.2 DeepLabv3+ model 

The DeepLab series was developed as an 
extension of Fully Convolutional Networks (FCN) 
(Long et al., 2015) to improve its effectiveness in 
image segmentation tasks. The DeepLabv3+ 
model employs an encoder-decoder architecture, 
integrating an additional decoder module into 
DeepLabv3 to facilitate the fusion of low-level and 
high-level features, enhancing segmentation 
boundary accuracy, as illustrated in Fig. 3.  

The encoder component consists of a backbone 
feature extraction network and an Atrous Spatial 
Pyramid Pooling (ASPP) module. The backbone 
network may be chosen from Xception (Chollet, 
2017), the ResNet series (Chen et al., 2025), or the 
MobileNet series (Peng et al., 2024). 
 Xception extracts both high- and low-level 

semantic information. The high-level feature 



 

The University of Strathclyde   5 
 

maps undergo further refinement via ASPP, 
while the low-level feature maps are transmitted 
to the decoder. 

 The ResNet series has fewer parameters than 
Xception, thereby reducing computational 
complexity while maintaining adequate feature 

extraction capabilities, rendering it well-suited 
for resource-constrained applications. 

 The MobileNet series is designed as a 
lightweight network, making it optimal for 
applications that demand high computational 
efficiency and fast inference speeds. 

 

 
Figure 3: The structure of Deeplabv3+. 
 

The ASPP module enhances multi-scale feature 
extraction by applying a 1×1 convolutional layer, 
three 3×3 convolutional layers, and a global 
average pooling layer to the backbone network 
output. Features at four distinct scales are 
concatenated along the channel dimension, 
compressed via a 1×1 convolutional layer, and 
subsequently forwarded to the decoder module. 

The decoder component processes both low-
resolution, high-level semantic features and high-
resolution, low-level spatial details obtained from 
the encoder component. The high-level feature 
maps are upsampled and concatenated with low-
level feature maps after dimensionality reduction. 
Finally, the extracted features are refined using 
3×3 convolutional layers, which reconstruct the 
original image resolution and enhance 
segmentation accuracy. 
 
3.3 DeepLabv3+ model architecture and 
modification 
In this study, computer vision analysis was 
performed in two stages: object detection and 
semantic segmentation. Initially, the YOLO11 
model was trained and fine-tuned to accurately 
differentiate between target columns and 
background environments, thereby enabling the 
rapid identification of specific damage types (i.e., 
concrete spalling and rebar exposure), as 
illustrated in Fig. 4. 
 

 
Figure 4: Target detection test results. 
 

The detailed quantitative evaluation of concrete 
spalling and rebar exposure has been largely 
absent in existing damage detection methods for 
RC double-column piers. To address this gap, a 
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modified DeepLabv3+ model for damage detection 
was proposed. 

To balance model accuracy with lightweight 
deployment, MobileNetv3-Large was selected as 
the backbone network, rendering the model 
suitable for rapid post-earthquake assessment 
applications. However, the original network 
exhibited notable limitations in processing fine-
grained features (e.g., spalling boundaries) and 
elongated targets (e.g., exposed rebar) during 
training. The main challenges included inadequate 
feature extraction, blurred segmentation 
boundaries, and reduced sensitivity to small 
objects. 

To address these limitations, a multi-branch 
feature enhancement module was developed while 
preserving the original backbone network, as 
illustrated in Fig. 5. This module comprises two 
parallel processing branches: (1) a detail 
enhancement branch, utilising two successive 3×3 
convolutional layers to extract fine-grained features 
through small receptive fields; (2) a spatial 
attention branch, which generates attention weight 
maps to adaptively highlight critical regions within 
the image. The outputs of these branches were 
fused through a feature aggregation module, 
facilitating effective multi-scale feature integration. 
This approach preserved high-level semantic 
information while maintaining detailed spatial 
features, which led to enhanced segmentation 
accuracy for both concrete spalling and rebar 
exposure. 
 

 
Figure 5: A multi-branch feature enhancement module. 
 

A novel weighted composite loss function was 
proposed to address the challenges in loss function 
design. Given the class imbalance in RC structure 
damage detection—where background pixels are 
most prevalent, followed by concrete spalling and 
sparsely represented rebar exposure—a 
differentiated weight ratio of 1:2:4 was applied. The 

loss function was formulated as a weighted 
combination of Cross-entropy loss, Dice loss, and 
Focal Tversky loss, with corresponding weight 
coefficients set to 0.3:0.5:0.2. Cross-entropy loss 
ensures fundamental classification accuracy, Dice 
loss improves overall segmentation performance, 
and Focal Tversky loss—with α and β set to 0.7 
and 0.3, respectively—balances false positives and 
false negatives. Additionally, the γ parameter (set 
to 1.3) enhanced the model’s capacity to learn from 
hard-to-detect samples. This multi-component loss 
function design significantly improved the model’s 
recognition performance, particularly enhancing its 
capacity to detect rebar exposure, which remains a 
more challenging task. 

In terms of training strategies, a differentiated 
learning rate and dynamic scheduling mechanism 
were employed to optimise model convergence. 
Specifically, a lower learning rate (1e-5) was 
applied to the pre-trained backbone network to 
preserve feature stability, while a higher rate (1e-4) 
was assigned to the newly introduced 
enhancement module to accelerate convergence. 
Furthermore, a learning rate scheduling strategy 
combining a warm-up phase with cosine annealing 
was implemented. The warm-up phase mitigated 
early-stage training instability, whereas cosine 
annealing facilitated more effective exploration of 
optimal solutions during later training stages. 
 
3.4 Model evaluation metrics 

To evaluate the performance of the modified 
DeepLabv3+ model in detecting concrete spalling 
and rebar exposure, intersection over Union (IoU), 
Precision (P), Recall (R), and F1-score (F1) were 
adopted as evaluation metrics and calculated 
based on Equations (2) – (5): 

            IoU = TP / (TP +  FN + NP)             (2) 

                  P = TP / (TP + FP)                     (3) 

                  R = TP / (TP + FN)                    (4) 

              F1 = 2 × P × R / (P + R)                (5) 

where  TP - true positive;  
            FP - false positive;  
            FN - false negative. 

IoU reflects the overlap between predicted and 
actual damage regions, P indicates the reliability of 
damage detection, and R represents the 
completeness of the identified damage areas. 
Given the inverse relationship between P and R, 
where gains in one may reduce the other, the F1 is 
adopted as a balanced evaluation metric, with 
higher values representing improved segmentation 
accuracy. 

The dataset was utilised to train both the 
original DeepLabv3+ model and the modified 
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DeepLabv3+ model, while the validation set was 
employed to compare their performance. The 
results are summarised in Table 2. For rebar 
exposure detection, the IoU increases to 42.80%, 
representing a 28.3% improvement. Precision and 
recall increased to 56.90% and 63.33%, 
respectively, while F1 improved from 44% to 
59.94%. These results suggest that the enhanced 
feature extraction mechanism was more effective in 
capturing elongated structures such as rebar. 
Moreover, the attention mechanism improved 
feature localisation, and the optimised loss function 
facilitated the learning of rebar-specific features. 

For concrete spalling detection, in comparison 
with the original DeepLabv3+ model, the IoU 
decreased from 79.61% to 73.81%, indicating a 
5.80% reduction, while precision and recall 
dropped to 82.52% and 87.48%, respectively. The 
F1 declined from 88.25% to 84.93%, representing 
a decrease of 3.32%. This outcome suggests that 
the modified model adopted a more conservative 
strategy for concrete spalling detection, resulting in 

reduced boundary precision and omission of minor 
spalling regions. The observed decline in F1 can 
be primarily attributed to the trade-off between 
precision and recall, which resulted from 
modifications to the feature extraction process 
aimed at improving rebar detection. Given that 
exposed rebar signifies more severe structural 
deterioration, the modified DeepLabv3+ model was 
designed to prioritise improvements in rebar 
detection. Although the performance of concrete 
spalling detection slightly decreased, the trade-off 
is considered acceptable in practical engineering 
scenarios. 

Fig. 6 presents segmentation results for 
representative damage images from the testing set, 
including the input, ground-truth masks, and 
corresponding model predictions. The strong 
alignment between model predictions and the 
ground-truth masks further validates the 
effectiveness of the proposed enhancements. 
 

Table 2: Comparison of test results between the improved model and the original DeepLabv3+ model. 
 

Metrics 
Traditional model Modified model 

Concrete 
spalling 

Rebar 
exposure 

Concrete 
spalling 

Rebar 
exposure 

IoU 79.61% 33.37% 73.81% 42.80% 
P 85.27% 53.23% 82.52% 56.90% 
R 92.21% 39.85% 87.48% 63.33% 
F1 88.25% 44.00% 84.93% 59.94% 

 

 
Figure 6: Modified DeepLabv3+ model prediction 
performance results. 

 
4. CONCLUSION 

This study introduces the HSVDE framework, 
which integrates structural analysis with deep 
learning for the post-earthquake damage 
assessment of RC double-column piers. The 
structural analysis component utilises quasi-static 
tests and numerical analysis to preliminarily 
establish material strain and drift ratio thresholds, 
providing a foundational basis for performance 
classification. By analysing 500 finite element 
models, four drift ratio thresholds were identified: 
Immediate Occupancy (0.327%), Limited 
Serviceability (0.878%), Service Disruption 
(1.000%), and Life Safety (5.149%). 

To enable rapid and more accurate post-
earthquake evaluation, the computer vision 
component utilises a modified DeepLabv3+ model. 
This model substantially improves the detection of 
rebar exposure, achieving an IoU of 42.80% 
(+28.3%), with precision increasing to 56.90% and 
recall reaching 63.33%, effectively mitigating 
limitations observed in previous segmentation 
methods. Although the IoU for concrete spalling 
detection exhibits a slight decrease from 79.61% to 
73.81%, the overall segmentation performance 
remains robust. 
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Future research will focus on refining the 
decision-making process, improving segmentation 
accuracy, and integrating larger datasets to 
enhance model generalisation. The HSVDE 
framework supports intelligent, efficient, and data-
driven seismic damage evaluation and repair 
decision-making. 
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