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ABSTRACT:
With the rising demand for human-centric and energy-efficient indoor environments,
Artificial Intelligence (AI) has emerged as a transformative tool for enhancing
personalised comfort in buildings. This review synthesises findings from 90 peer-
reviewed studies published between 2008 and 2024, focusing on AI applications
across four primary comfort dimensions: Thermal Comfort (TC), Indoor Air Quality
(IAQ), Acoustic Environment (AE), and Visual Comfort (VC). Results reveal a
significant research disparity, with 97.75% of studies focusing solely on TC, leaving
IAQ, AE, and VC untapped. While AI techniques, such as Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), and Random Forests (RF),
demonstrate high predictive accuracy for TC, integrated, multidimensional comfort
models remain scarce. Key gaps include cross-domain modelling, context-specific
adaptation, integration of physiological and psychological indicators, and privacy-
aware AI deployment. This study proposes a multidimensional framework that
fuses environmental and personal factors to support holistic comfort modelling. It
presents strategic insights for developing inclusive, adaptive, and privacy-
conscious AI-driven comfort systems, guiding future research and practical
implementation in the built environment.
KEYWORDS:
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1. INTRODUCTION
People spend approximately 87% of their time

indoors (Klepeis et al., 2001), making indoor
environmental quality a critical factor for health,
well-being, productivity, and overall satisfaction
(Vimalanathan & Babu, 2020; Abbasi et al., 2021;
Lan et al., 2021; Wu et al., 2021a; Wu et al.,
2021b). Despite building design standards aimed at
ensuring thermal comfort for at least 80% of
occupants, real-world satisfaction levels are
significantly lower. A study in North America, for
instance, found that only 38% of surveyed
occupants were satisfied with indoor temperatures

(Karmann et al., 2021), revealing a persistent
disconnect between design expectations and
actual user experiences.

Thermal comfort is primarily assessed using the
Predicted Mean Vote (PMV) and Predicted
Percentage of Dissatisfied (PPD) models. However,
these models often fail to capture actual occupant
experiences. Cheung et al. (2021), using the
ASHRAE Global Thermal Comfort Database II,
found that PMV accurately predicted thermal
sensations in only 34% of cases. Similarly, Lan et
al. (2021) and others have criticised these models
for neglecting individual differences such as age,
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gender, metabolic rate, clothing insulation, and
physical activity. For example, metabolic heat
increases with movement (Liu et al., 2021), while
light activity in cooler environments can reduce
thermal discomfort (Vasilikou & Nikolopoulou,
2019). These findings highlight the need for
personalised comfort models that account for
physiological and behavioural diversity.

At the same time, buildings are responsible for
around 40% of global energy consumption and
nearly one-third of greenhouse gas emissions (Cao
et al., 2021; Yang et al., 2021). Over 50% of
building energy performance (BEP) outcomes are
influenced by human behaviour, operation
strategies, and indoor environmental quality
(Yoshino et al., 2021). Therefore, aligning comfort
optimisation with energy efficiency is essential for
sustainable building operation.

In recent years, AI has emerged as a powerful
tool in this context, offering data-driven models that
can predict and adapt to occupant comfort needs.
Machine learning techniques such as Artificial
Neural Networks (ANNs), Support Vector Machines
(SVMs), and Bayesian algorithms have achieved
predictive accuracies exceeding 80% (Wahid et al.,
2019; Shan et al., 2021; Jiang & Yao, 2021; Tekler
et al., 2021). These models can incorporate both
environmental data and occupant feedback,
enabling more adaptive and personalised comfort
control. However, current research is
disproportionately focused on TC, while other
crucial comfort dimensions such as IAQ, AE, and
VC remain underexplored (Fantozzi & Rocca, 2021;
Pigliautile et al., 2021). Comfort is inherently
multisensory and multidimensional, with complex
interactions between its various factors. For
example, Li et al. (2021) demonstrated that
temperature and humidity levels directly influence
perceived air quality, with higher temperatures and
humidity reducing IAQ satisfaction. Despite such
interactions, most AI-driven studies analyse each
factor in isolation, limiting their effectiveness in
real-world scenarios.

Moreover, personalised comfort is shaped not
only by environmental variables but also by
physiological and psychological attributes (Li et al.,
2021; Kosonen & Tan, 2021). Factors such as
stress, cognitive load, and emotional state can
substantially affect comfort levels. Achieving truly
personalised comfort requires integrating these
human-centric indicators into AI models.

Additionally, many AI systems rely on sensitive
data from personal sensors or cameras to assess
individual parameters, such as clothing insulation
or activity levels. While effective, these methods
raise significant concerns about privacy (Khalil et
al., 2021). Without secure data handling and

privacy-preserving mechanisms, such technologies
risk eroding user trust and may hinder large-scale
implementation.

This paper presents a comprehensive literature
review of AI applications in personalised indoor
comfort. Specifically, the study analyses how AI
has been applied to model personalised comfort,
compares the accuracy and interpretability of
different machine learning techniques, and
proposes a multidimensional comfort framework
that incorporates both environmental and personal
factors. The paper also highlights key research
gaps and offers recommendations for future
development of intelligent, inclusive, and secure
comfort systems. The paper is structured as follows:
Section 2 outlines the research methodology,
including the literature review strategy and data
analysis techniques used to synthesise relevant
studies. Section 3 introduces a multidimensional
theoretical framework for personalised indoor
comfort, derived from the literature, and provides a
detailed analysis of both environmental and
personal comfort indicators. Section 4 reviews the
current state of AI applications in personalised
indoor comfort, with a focus on three key domains:
thermal comfort prediction, smart environmental
control optimisation, and strategies for improving
data efficiency and privacy protection. Section 5
presents a critical discussion of existing research
gaps and future directions, highlighting the need for
integrated, multidimensional models, cognition-
aware personalisation, contextual adaptability
across building types, and robust, privacy-
preserving AI frameworks. Finally, the conclusion is
given in Section 6.

2. METHODOLOGY
This study adopts the Comprehensive

Literature Review (CLR) method to systematically
evaluate and synthesise existing research in the
field of personalised indoor comfort. The CLR
approach integrates both quantitative and
qualitative studies, covering theoretical frameworks,
experimental research, modelling techniques, and
AI applications. This methodology offers a
comprehensive understanding of current trends,
research gaps, and future directions in this
interdisciplinary field.

To ensure the authority and
comprehensiveness of the sources, literature
retrieval was primarily conducted using Scopus and
Web of Science databases. Search queries
included keywords such as ‘Building Comfort’,
‘Personalised Comfort Models’, ‘Artificial
Intelligence’, and ‘Machine Learning’, combined
with Boolean operators to optimise relevance. The
inclusion criteria were as follows:
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(1) Timeframe: Publications from 2008 to 2024
were selected to ensure the inclusion of both
foundational and recent studies.
(2) Document type: Only peer-reviewed journal
articles, review papers, and conference
proceedings were considered. Grey literature (e.g.,
blogs, white papers, news reports) was excluded.

A total of 1,705 documents were initially
retrieved. A two-stage screening process was
applied to ensure the selection of high-quality and
relevant studies. In the first stage, title, abstract,
and keyword screening, 382 duplicate records
were removed. After excluding irrelevant studies,
229 papers remained. In the second stage, full-text
screening was conducted to eliminate papers with
unclear methodologies, insufficient data, or
conclusions misaligned with the review objectives.
Redundant papers with overlapping methods or
datasets were also removed. Priority was given to
recent and highly cited studies to enhance
academic impact and timeliness. Ultimately, 78
core publications were selected for in-depth review.
The screening process is illustrated in Figure 1.

To ensure completeness, this study also
incorporated relevant international standards and
industry guidelines, including ASHRAE 55, ISO
7730, EN 16798-1, ISO 16000, and the ISO 3382
series, which are commonly used benchmarks for
evaluating indoor comfort. Additionally, a backward
citation analysis of the 78 core publications was
conducted, resulting in the inclusion of 12
additional relevant studies.In total, 90 core papers
were analysed. These papers were selected based
on the following criteria:

(1) direct relevance to indoor environmental
comfort (thermal, acoustic, visual, or air quality).

(2) contribution to methodological
development or application in comfort assessment.

To identify research hotspots and thematic
trends, VOSviewer software was employed for co-
word analysis. Keywords and phrases appearing at
least five times across the 90 core articles were
extracted and visualised to highlight dominant

themes and topic evolution (see Figure 2). As
shown in Figure 2, “thermal comfort” emerged as
the most frequently occurring and most centrally
connected term, indicating its dominant position in
the field of comfort-related research. While this
focus has driven advancements in thermal comfort
modeling and personalization, it also reflects a
narrow application scope of AI, with limited
exploration of how such techniques could enhance
understanding and management of acoustic,
lighting, or air quality comfort.

3. MULTIDIMENSIONAL FRAMEWORK FOR
PERSONALISED INDOOR COMFORT

To advance the development of intelligent,
adaptive, and human-centric indoor environments,
this study proposes a Multidimensional Framework
for Personalised Comfort (Figure 3). Derived from
the analysis of 90 peer-reviewed studies and
established international standards (e.g., ASHRAE
55; ISO 7730), this framework conceptualises
personalised comfort as a dynamic outcome of
bidirectional interactions between environmental
conditions and individual characteristics. The
framework serves two core purposes: (1) to
structure and synthesise the fragmented literature
across the four principal comfort dimensions: TC,
IAQ, AE, and VC; (2) to guide the development of
AI-driven comfort models that integrate
environmental and personal indicators for holistic,
adaptive control.

As illustrated in Figure 3, the framework is
composed of two primary domains: (1)
Environmental Comfort Indicators, influenced by
the local climate and indoor environment; (2)
Personal Comfort Indicators, encompassing
physical, physiological, psychological, and
behavioural traits. These domains are
interconnected through contextual interplay,
forming the foundation for AI systems that generate
adaptive, real-time responses to occupant needs.
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Figure 1: Flowchart of the publication selection process according to CLR.

Figure 2: VOSviewer Keywords.
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Figure 3: Multidimensional Framework for Personalized Comfort.

3.2. Environmental Comfort Indicators
Environmental comfort indicators are

categorised into two interrelated layers: the Local
Environment and the Indoor Environment. Together,
these layers determine the physical conditions
occupants experience and form the foundational
layer of the proposed Multidimensional Framework
for Personalised Comfort (see Figure 3).

The Local Environment refers to the broader
geographical, climatic, and cultural context in which
a building is situated. As an external factor, it
significantly influences architectural design choices
and indoor environmental conditions. In contrast,
the Indoor Environment comprises the controllable
physical parameters within a building that directly
shape occupants’ sensory experiences, health, and
comfort (Fantozzi & Rocca, 2021; Pigliautile et al.,
2021).

3.2.1 Local Environment Factors
The local environment includes both climate

conditions—such as temperature, solar radiation,
precipitation, humidity, wind speed, and snowfall—
and geographical and cultural variables, including
topography, land use, and occupant behaviour
norms. These factors influence building
performance, thermal loads, ventilation strategies,
and passive design decisions (González, 2021;
Xiong et al., 2021; Huang et al., 2021). For
example, coastal regions benefit from oceanic
moderation, resulting in smaller temperature
fluctuations but higher humidity levels. This often
necessitates the use of energy-intensive
dehumidification systems (Philokyprou et al., 2021).

Conversely, inland arid zones require humidifiers to
maintain indoor relative humidity within a comfort
range (Lei & Liu, 2013).

Geographical characteristics, such as
elevation and urban morphology, also affect
comfort. In mountainous areas, lower temperatures
and thinner air require well-insulated, airtight
construction to minimise heat loss. In urban centres,
the urban heat island effect elevates ambient
temperatures, demanding adaptive shading and
ventilation strategies to mitigate overheating (Shen
et al., 2021).

Cultural factors also play a significant role.
Variations in lifestyle, space usage, and daily
routines can impact comfort perception and indoor
conditions. For instance, BK et al. (2023) found that
Asian households spend five times more time
cooking daily than British households, leading to
significantly higher indoor pollutant levels under
otherwise similar spatial conditions. To ensure
effective comfort system design, it is essential to
integrate climatic, geographical, and cultural
variables into both building-level strategies and AI-
driven comfort models.

3.2.2 Indoor Environment and Current AI
Research Trends

The Indoor Environment comprises four core
comfort dimensions that directly affect occupant
health, satisfaction, and productivity (Fantozzi &
Rocca, 2021; Pigliautile et al., 2021). While each of
these domains has been the subject of
international technical standards (e.g., ASHRAE,
ISO), their integration into AI-based personalised
comfort systems remains uneven.
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TC refers to an individual’s perception of being
thermally “neutral”—neither too hot nor too cold—
under specific thermal conditions (ASHRAE 55,
2020; ISO 7730, 2005). It has the most developed
research base and is strongly correlated with
energy consumption and the performance of HVAC
systems. Recent AI and ML studies have
successfully enhanced TC prediction accuracy and
enabled dynamic HVAC control (Kim et al., 2021).

IAQ refers to the cleanliness and health of
indoor air, influenced by pollutants such as CO₂,
PM2.5, VOCs, and by factors including ventilation
type, relative humidity, and oxygen levels
(ASHRAE 62.1, 2019; ISO 16000, 2004). Poor IAQ
can lead to respiratory illness, fatigue, and
cognitive decline (Li et al., 2021). Despite its
significance, IAQ remains underrepresented in AI
studies, often treated as a secondary element to
TC. Fanger (1987) introduced DECIPOL as a
subjective measure of perceived air pollution;
however, AI models rarely incorporate IAQ as a
primary target (Kim et al., 2021).

AE involves the quality and level of sound
within a space, including noise, reverberation, and
sound clarity. Poor acoustics can lead to increased
stress, reduced concentration, and fatigue
(Berglund et al., 1999; ISO 3382-1, 2009; ISO
22955, 2021). AE is influenced by both external
sources (e.g., traffic, construction) and internal
sources (e.g., HVAC systems, appliances). Room
geometry and material choices also play critical
roles. AI research in AE is still limited and often
explored alongside TC and IAQ, particularly in
efforts to reduce HVAC noise (Muthuraj et al.,
2023).

VC refers to the adequacy of lighting in terms
of intensity, colour temperature, glare, and spatial
layout. Lighting impacts circadian rhythms, visual
health, and emotional well-being (Giarma et al.,
2021; ISO 8995, 2002; LEED, 2021). AI
applications in VC are emerging, focusing on co-
optimising lighting and thermal conditions. However,
VC remains the least explored dimension in AI
comfort research (Khosravi et al., 2023).

This study systematically analysed 90 core AI-
related papers focusing on the Indoor Environment
and found that TC dominates, accounting for
97.75% of the studies. In comparison, IAQ
accounted for 3.37%, AE for 1.12%, and VE for
2.25%. Moreover, IAQ, AE, and VE are rarely
studied as independent topics but are often
integrated with TC, forming a cross-disciplinary
research pattern.

As shown in Figure 4, most studies on IAQ, AE,
and VC are not standalone investigations, but are
embedded within broader TC-focused research.
The figure employs an overlapping visualisation

rather than a traditional pie chart to reflect the
interconnected nature of these comfort domains.

Figure 4: Current Research on Indoor Comfort Indicators
with AI: TC overwhelmingly dominates the AI literature,
while IAQ, AE, and VE remain underrepresented and

often integrated into TC studies.

The dominance of TC in AI research is
primarily due to its direct link to energy efficiency,
as TC significantly influences the performance and
energy consumption of HVAC systems (Li et al.,
2023). Occupants often manually adjust
temperature settings in response to discomfort,
leading to added energy consumption. Optimising
TC can therefore improve both comfort and
sustainability, aligning with low-carbon building
objectives. However, comfort dimensions are
inherently interconnected (Tang et al., 2021). For
instance, high temperature and humidity levels
increase indoor pollutant emissions, affecting IAQ
(Huang et al., 2023). Sound pressure levels can
negatively impact thermal perception (Tang et al.,
2021). Lighting colour temperature can influence
thermal sensation. These interactions necessitate
the need for multi-factor AI models that move
beyond single-variable predictions to address the
complexity of real-world comfort scenarios.

3.3. Personal Comfort Indicators
In the proposed Multidimensional Framework

for Personalised Comfort (Figure 3), personal
comfort indicators are positioned as a critical
complement to environmental factors. While
traditional models often treat personal variables as
secondary—typically adjusting only TC estimates—
this study recognises them as cross-cutting
determinants that influence all four comfort
domains: TC, IAQ, AE, and VC. Drawing upon
interdisciplinary research in physiology, psychology,
and behavioural science, personal comfort
indicators are categorised into three interconnected
domains: Physiological Factors, Psychological



The University of Strathclyde 7

Factors and Behavioural Factors. Together, these
factors determine how individuals interpret, adapt
to, and interact with their indoor environments.

3.3.1. Physiological Factors
Physiological characteristics shape how the

body responds to environmental stimuli and
influence baseline comfort thresholds. Older adults
often exhibit reduced thermoregulatory capacity
and narrower TC ranges. As a result, they are
more vulnerable to environmental fluctuations and
may require more stable indoor conditions to
maintain comfort and health. Moreover, Gender-
based differences in thermal perception have been
widely studied, though results remain inconclusive.
Wang et al. (2021) identified three general findings
across the literature: statistically significant
differences, (2) weak or non-significant trends, and
(3) no observable differences. While several
studies suggest women report lower satisfaction
with thermal environments than men, this trend is
not universal. For example, Indraganti and Rao
(2010) found higher thermal satisfaction among
women in India, highlighting the role of cultural and
climatic contexts.

Other physiological variables such as body fat
percentage, muscle mass, and metabolic rate
influence both heat production and dissipation.
Individuals with higher metabolic rates or distinct
body compositions may experience discomfort in
the same environmental conditions that others find
acceptable. Similarly, individuals with chronic
illnesses or cardiovascular, respiratory, or
neurological conditions may have altered
responses to temperature, air quality, or noise,
necessitating more tailored comfort strategies.

3.3.2. Psychological Factors
Psychological variables significantly mediate

the perception and evaluation of environmental
conditions. For instance, People’s thermal
expectations are shaped by their regional climate,
social norms, and past exposure. For example,
individuals from colder regions may be more
tolerant of lower temperatures than those from
warmer climates. Moreover, Sedentary individuals
may prefer warmer conditions, while those with
active routines may find cooler environments more
comfortable. Personality traits such as openness or
neuroticism may also affect comfort sensitivity.

Emotional and cognitive contexts influence
perceptions of comfort. A noisy environment may
feel more disruptive during focused work than
during leisure activities, while lighting conditions
can impact mood and alter the perception of
temperature and noise.

The cultural context is another important
psychological factor. Cultural expectations about
noise levels, lighting preferences, spatial openness,
and cooking behaviours can influence the way
comfort is experienced.

3.3.3. Behavioural Factors
Behavioural factors reflect how individuals

actively manage their environment to restore or
maintain comfort. One of the most immediate
behavioural responses to discomfort, clothing
affects thermal perception and energy balance.
While standards like ASHRAE 55 incorporate
clothing insulation into thermal models, real-world
clothing choices are influenced by factors such as
fashion, culture, gender norms, and dress codes,
making them complex to predict.

Activity level also plays a role, as Physical
exertion increases metabolic heat production and
alters thermal sensation. Occupant activity varies
by context, such as workplaces, classrooms, and
gyms, and demands situationally adaptive comfort
strategies. Moreover, sitting, standing, or
transitioning between physical states impacts
perceived comfort and heat exchange with the
environment. Actions such as adjusting windows,
using fans or heaters, changing rooms, or
modifying lighting are common responses to
discomfort. These behaviours introduce variability
into comfort modelling but also provide valuable
data about user preferences.

Many comfort experiments have attempted to
standardise behavioural variables (e.g., requiring
participants to wear similar clothing or remain
seated) to isolate environmental effects (Wyon et
al., 1971; Beshir & Ramsey, 1981; Grivel & Candas,
1991). While effective for controlled research, such
approaches do not reflect the adaptive richness of
real-world environments. AI-based comfort models
must therefore be designed to accommodate
behavioural variability, not suppress it.

Despite growing recognition of the importance
of personal comfort indicators, most AI models
continue to prioritise environmental data alone,
treating personal variables as static (e.g., age,
gender) or excluding them entirely due to data
collection challenges. However, advancements in
wearable technology, smart furniture, and affective
computing are making physiological and
behavioural data increasingly accessible. These
technologies provide a pathway to: (1) Real-time
monitoring of personal comfort states; (2) Dynamic
model adaptation based on user feedback and
biometric inputs; (3) Context-aware system
responses that personalise comfort delivery.

To unlock the full potential of personalised
comfort, future research must prioritise the
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integration of physiological, psychological, and
behavioural indicators—not only in TC modelling
but across IAQ, AE, and VC domains as well.
Doing so will require truly interdisciplinary
collaboration, combining insights from
environmental engineering, data science,
psychology, and human-computer interaction. Such
integration is crucial for creating inclusive, adaptive,
and intelligent indoor environments that respond to
both environmental and human complexities.

Taken together, environmental and personal
comfort indicators form a tightly interconnected
system, where physical conditions and individual
responses co-evolve in real time. Recognising this
interplay is essential for designing intelligent indoor
environments that adapt not only to external
variables, but also to the nuanced needs of diverse
occupants. The next section examines how AI is
currently utilised to model, predict, and optimise
comfort across these dimensions—highlighting
current trends, limitations, and future opportunities.

4. AI APPLICATION IN PERSONALISED
INDOOR COMFORT

AI technologies are being gradually applied to
indoor comfort research, particularly in the domain
of TC. Among the 90 core studies reviewed in this
work, TC accounted for over 97% of AI-related
comfort modelling. In contrast, research on IAQ,
AE, and VE remains underdeveloped and typically
integrated with thermal modelling rather than
treated independently (Figure 4). This section
synthesises current AI applications in personalised
indoor comfort, focusing on three principal areas:
(1) thermal comfort prediction, (2) smart
environmental control optimisation, and (3) data
efficiency and privacy strategies.

4.1. Thermal Comfort Prediction
TC prediction is the most extensively explored

application of AI in indoor environmental research.
AI models aim to estimate occupants’ thermal
states—typically expressed through thermal
sensation votes (TSV), thermal preference, or
comfort/discomfort classifications—based on
environmental and personal input features.

A range of machine learning algorithms have
been applied to this task, including ensemble and
optimisation techniques such as Random Forest
(RF), Support Vector Machine (SVM), Gradient
Boosting Machines (GBM), and Extreme Gradient
Boosting (XGBoost). These models have
consistently outperformed traditional statistical
approaches and the widely used PMV model,
which often fails to capture the complexity of real-
world occupant responses.

Recent studies demonstrate that hybrid AI
structures can improve prediction accuracy by
10%–40% (Feng et al., 2023; Liu et al., 2025;
Haghirad et al., 2023). Notable approaches include:
(1) Combining mathematical models with machine
learning; (2) Integrating physiological signal data
(e.g., skin temperature, heart rate); (3) Applying
reinforcement learning for dynamic control and
adaptation. These techniques have been shown to
improve both comfort prediction and energy
efficiency, with some studies reporting up to 22%
energy savings without compromising user
satisfaction.

Another emerging trend is contextualising TC
models based on building type. Generic models
often fail to perform well across different
environments, such as schools, offices, or homes,
due to variations in activity patterns and occupant
expectations. For example, Bai et al. (2025) found
that Gradient Boosting Machines (GBM) performed
best in classrooms, achieving an accuracy of
94.49%. In contrast, Random Forest (RF) was
more effective in offices and residential buildings,
achieving accuracies of 81.62%–84.97%. This
study underscores the importance of
contextualising model development to the
functional and operational characteristics of
different indoor environments. Table 1 presents a
selection of AI-based TC prediction studies,
highlighting their algorithms, settings, and
performance outcomes.

Table 1: Thermal Comfort Prediction Article Summary

Author AI Algorithm Application
Scenarios Key Findings

Aryal &
Becerik-
Gerber,
2019

RF,SVM,KN
N,subspace
KNN

General
Building

Introducing Thermal
Sensation and
Thermal Satisfaction
for TC prediction,
achieving the highest
accuracy by
combining Air
Temperature, Wrist
Temperature, and
Thermal Camera
data.

Zhao et
al., 2014

Recursive
Least
Squares,
RLS

Office

The PDTC model
achieves higher
accuracy in
describing personal
TC, with significantly
lower prediction and
regression errors
(MSE and Bias) than
the traditional PMV
model.

Qi et al.
(2023). SVR General

Building

The personalised
regression model has
an RMSE of 0.6692,
with the lowest MAE
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at 23°C and 26°C,
measuring 0.657 and
0.541, respectively.

Haghirad,
Heidari
and
Hosseini
(2024)

RF General
Building

The accuracy
reaches 34% when
using the PMV model
and 72.4% when
incorporating 12
related parameters.

Ghahram
ani et al.
(2015)

Online
Learning +
Bayesian
Network

General
Building

The prediction
accuracy is 70.14% ±
8.20%.

Wu et al.
(2023).

RF, SVM,
Logistic
Regression
(LR)

General
Building

SVM achieves the
highest accuracy at
approximately 78%.

Wu et al.,
2023

RF, LR,
SVM

General
Building

RF achieves the
highest accuracy at
approximately 69%

Wang et
al., 2020 SVM， LR General

Building

SVM achieves the
highest accuracy at
63.9%.

Kliangkhl
ao et al.,
2024

SVM，
KNN, ANN

General
Building

With physiological
parameters included,
SVM achieves the
highest accuracy at
approximately 95%.

Feng,
Wang,
Wang
and Chen
(2023)

RF,
XGboost Dwelling

With the inclusion of
physiological
parameters, XGboost
achieves a prediction
accuracy of 98.95%.

Bai et al.
(2025).

Gradient
Boosting
Machine(GB
M), Extreme
Gradient
Boosting(XG
B),RF

Classroom
, Office,
Dwelling

GBM is suitable for
classrooms (94.49%),
while RF is suitable
for offices and multi-
unit residential
buildings (81.62%
and 84.97%,
respectively).

4.2. Smart Environmental System Control
Optimisation

Beyond prediction, AI is being actively used to
power intelligent environmental control systems,
particularly within HVAC (Heating, Ventilation, and
Air Conditioning) operations. These systems aim to
maintain personalised comfort while optimising
energy use. Unlike static or purely predictive
models, smart control systems operate in real-time
closed-loop configurations, where environmental
parameters are continuously adjusted in response
to new data and occupant feedback. Key AI
techniques in this domain include Model Predictive
Control (MPC), Deep Reinforcement Learning
(DRL), and various forms of intelligent logic
embedded in HVAC and Personal Comfort
Systems (PCS).

Chaudhuri et al. (2019) proposed a
collaborative control strategy that integrates central

HVAC systems with localised PCS devices. This
hybrid approach enables individual occupants to
fine-tune their immediate environment, reducing
the load on central systems and significantly
improving both comfort and energy efficiency.
Similarly, Muthuraj et al. (2024) developed a noise-
aware ventilation control system for classroom
environments. Their model classified air
conditioning unit (ACU) noise levels and used this
information to dynamically adjust ventilation
settings, thereby balancing thermal and acoustic
comfort. These studies demonstrate how AI can
facilitate multidimensional comfort control,
extending beyond temperature to encompass noise,
air quality, and user preferences.

The integration of AI into environmental control
systems allows for a range of advanced
functionalities. These include dynamic adjustment
of temperature and airflow setpoints, coordination
between central HVAC and PCS units, and
continuous learning from real-time feedback to
improve user satisfaction. The ability to personalise
comfort delivery at the individual level, while also
reducing energy consumption, represents a
significant advancement toward adaptive,
occupant-centric smart buildings.

4.3. Data-Driven Efficiency and Privacy
Challenges

While the potential of AI for personalised
comfort is clear, these systems are highly
dependent on large volumes of high-quality data.
The availability, granularity, and reliability of input
data directly influence the precision of model
outputs. At the same time, collecting such data
presents significant challenges in terms of
efficiency, scalability, and privacy. As AI comfort
systems evolve toward real-time and individualised
operation, researchers are increasingly focused on
strategies to reduce data dependency and enhance
user privacy without compromising model
performance.

One approach to reducing data requirements
involves clustering users based on similar thermal
preferences. This enables the development of
generalised comfort models that do not require
individual-level training for every occupant. For
example, Lee et al. (2017) combined clustering
techniques with Bayesian Optimisation and
XGBoost to build efficient TC models in office
settings. Their method reduced data collection
costs and computational complexity while
maintaining strong predictive accuracy.

Another promising strategy is Federated
Learning (FL), which allows AI models to be trained
across decentralised edge devices without
transmitting raw data to a central server. Instead,
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only encrypted model parameters are shared,
preserving user privacy. Khalil et al. (2022) applied
Federated Neural Networks (Fed-NN) in both
factory and office environments, achieving 80.39%
prediction accuracy while reducing communication
costs and safeguarding personal data, making this
approach particularly suitable for privacy-sensitive
contexts such as smart homes and healthcare
facilities.

To address data scarcity in under-
instrumented buildings, researchers have turned to
deep learning and transfer learning techniques.
Somu et al. (2021) proposed a hybrid CNN-LSTM
model capable of processing spatiotemporal
sensor data and demonstrated that transfer
learning could effectively reduce the amount of
labelled training data required. Tekler et al. (2024)
further tested a TL-CNNLSTM-FT model and
reported minimal loss in accuracy even when
training data was reduced to just 10% of the full
dataset. Yang et al. (2025) compared several
hybrid AI models, including Hybrid Decision Trees,
SVM, KNN, RF, and Neural Networks, and found
that the Hybrid-NN variant achieved the highest
overall prediction accuracy at 97.78%.

Together, these advancements in data
efficiency and privacy protection are critical for
scaling AI-based comfort systems. They open the
door to broader deployment in diverse building
types and user groups, without imposing excessive
data burdens or violating user privacy. Table 2
summarises representative recent studies in the
areas of data optimisation, privacy protection, and
AI algorithm enhancement.

Table 2: Representative Studies on Data Efficiency and
Privacy in AI-Based Thermal Comfort Research

Author AI Algorithm Application
Scenarios Main Finding

Lee et
al.,
2017

Bayesian
Optimization +
XGBoost

Office

A generalised
model is built using
clustering methods,
reducing the need
for individual
modelling.

Khalil
et al.,
2022

Fed-NN Factory
and Office

The prediction
accuracy is
80.39%, while
protecting privacy
and reducing costs.

Somu
et al.
(2021)

Hybrid Deep
Transfer
Learning, TL
CNN-LSTM
（Transfer
Learning
Convolutional
Neural Networks-
Long Short-Term

General
Building

By combining CNN
and LSTM to
process
spatiotemporal
data, transfer
learning reduces
the data
requirements for
training.

Memory）

Tekler
et al.,
2024

TL-CNNLSTM-
FT（Thermal
Preference and
Air Movement
Preference）

General
Building

The accuracy is
69.3% with 100%
of the data and
66.8% with 10% of
the data.

Yang
et al.
(2025)
.

Hybrid-DT,
Hybrid-SVM,
Hybrid-KNN,
Hybrid-RF,
Hybrid-NN

General
Building

Hybrid-NN
achieves the
highest prediction
accuracy at
97.78%.

5. DISCUSSION AND FUTURE DIRECTIONS
This study has synthesised recent

advancements in the integration of AI with
personalised indoor environmental comfort. While
considerable progress has been made, particularly
in the domain of TC, research into other critical
dimensions such as IAQ, AE, and VC remains
underdeveloped. These dimensions are often
addressed in isolation, lacking the coherent,
multidimensional frameworks necessary for holistic
comfort modelling. As the field transitions from
single-variable optimisation to occupant-centric
systems, future research must address five
interrelated challenges: theoretical integration,
deep personalisation, contextual adaptability,
privacy protection, and collaborative infrastructure.

First, current models are predominantly
focused on TC, with limited cross-dimensional
integration. However, indoor comfort is inherently
multidimensional, shaped by complex interactions
among environmental variables. For example,
temperature and humidity jointly affect the emission
and perception of volatile organic compounds
(VOCs), influencing IAQ. Acoustic conditions can
modulate thermal perception and cognitive
performance, while lighting brightness and colour
temperature influence circadian rhythms and may
even affect thermal sensitivity. Future AI models
should capture these nonlinear interdependencies
using advanced architectures such as Bayesian
networks, graph-based reasoning, or multimodal
deep learning, which can fuse heterogeneous data
streams into unified comfort prediction and control
systems.

Second, current personalisation efforts are
often limited to basic demographic or physiological
variables such as age, gender, and body mass.
While informative, these features fall short of
capturing the cognitive, emotional, and cultural
dimensions of comfort perception. Emerging
technologies in affective computing and wearable
sensing offer promising pathways for deeper
personalisation. Physiological signals such as
electroencephalography (EEG), electrodermal
activity (EDA), heart rate variability (HRV), and
facial expression analysis can provide rich, real-
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time proxies for cognitive and emotional states. By
integrating these signals with psychological
profiling, AI systems can evolve from reactive
comfort control to cognition-aware, emotion-
sensitive models, enhancing inclusivity and
responsiveness.

Third, comfort needs and behavioural patterns
vary significantly across building types—such as
homes, offices, classrooms, and healthcare
settings—yet most AI models are developed and
validated in homogeneous environments. This
limits their generalisability and practical deployment.
Future research should prioritise the creation of
scenario-specific comfort ontologies and adaptive
models capable of transferring knowledge across
spatial, functional, and cultural contexts.
Techniques such as transfer learning, domain
adaptation, and reinforcement learning can support
rapid calibration to new environments. Additionally,
embedding contextual metadata—including room
function, occupancy patterns, and local climate—
into AI pipelines can improve both predictive
accuracy and control robustness.

Fourth, as AI systems increasingly rely on
personal and physiological data, privacy protection
emerges as a critical barrier to widespread
adoption. Although methods such as federated
learning and data anonymisation offer promising
solutions, several challenges remain. These
include high algorithmic and communication
overhead, slow convergence rates in decentralised
models, and vulnerabilities to model inversion and
side-channel attacks. To mitigate these risks, future
research should explore hybrid privacy-preserving
frameworks—such as federated learning combined
with differential privacy to bound data leakage risks,
blockchain-based multiparty computation for
decentralised trust management, and edge
computing to enable localised inference and
reduce data transmission.

Finally, to accelerate progress and promote
reproducibility, the field would benefit from the
creation of an open, multidimensional indoor
comfort data-sharing platform. This platform should
include standardised comfort metrics across TC,
IAQ, AE, and VC; annotated physiological,
behavioural, and affective indicators; and privacy-
safe, user-consented data collection protocols.
Equally important is the cultivation of cross-
disciplinary collaboration among environmental
engineers, architectural scientists, cognitive
psychologists, data scientists, and ethicists. Such
collaboration is essential to design comfort systems
that are not only intelligent and adaptive but also
equitable, inclusive, and ethically grounded.

6. CONCLUSION
This study has reviewed and synthesised

recent advancements in the application of AI to
personalised indoor comfort modelling. It focused
on three core domains: thermal comfort prediction,
smart environmental control optimisation, and
strategies for improving data efficiency and privacy
protection. The findings reveal a significant
imbalance in the literature, with thermal comfort
dominating current research while other key
comfort domains—such as IAQ, AE, and VC—
remain substantially underrepresented.

Although AI models have made notable
progress in capturing individual preferences,
several critical challenges persist. These include
the lack of integrated, cross-dimensional models;
limited adaptability across various building types
and user groups; insufficient incorporation of
psychological and affective indicators; and growing
concerns over data privacy, transparency, and
ethical use.

To address these gaps, this study proposes a
multidimensional framework that integrates both
environmental and personal comfort indicators.
Based on the findings, four priority areas are
recommended for future research and development:
(1) the creation of unified, multi-factor comfort
models that account for the interplay between TC,
IAQ, AE, and VC; (2) the integration of cognitive,
emotional, and physiological factors to enable
deeper personalisation; (3) the development of
adaptive, generalisable models suitable for diverse
real-world settings; and (4) the implementation of
privacy-aware AI approaches that balance
performance with ethical data stewardship.

With continued interdisciplinary collaboration
and technological innovation, AI has the potential
to move beyond simple comfort prediction and
become the foundational engine of intelligent,
inclusive, and privacy-conscious indoor
environments, enabling a new generation of
human-centric smart buildings.
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