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ABSTRACT
The effectiveness of persuasive messages often depends on how their affective or cognitive content aligns with recipients' pre-
dispositions for processing such information. Individual differences in the need for affect (NFA) and need for cognition (NFC) 
influence engagement with affective or cognitive appeals, but the interplay between intrinsic brain connectivity and these 
predispositions in shaping persuasive outcomes remains underexplored. This study advances understanding of the affective-
cognitive matching effect by integrating intrinsic (resting-state) and extrinsic (task-based) brain-behavior relationships. Using 
resting-state and task-based functional magnetic resonance imaging (fMRI), we investigate how NFA and NFC align with in-
trinsic brain network properties and influence behavioral and neural responses to affective and cognitive persuasive messages. 
We employ intrinsic connectivity metrics, such as participation coefficient (cross-network communication) and within-module 
degree (within-network communication), to capture resting-state network dynamics not examined in previous studies. Our re-
sults reveal that key regions within the frontoparietal network, which is central to attention, decision-making, and executive 
functions, play pivotal roles in processing persuasive messages based on participants' motivational orientations. Specifically, 
affective-oriented individuals exhibit greater neural engagement with congruent affective messages, while cognitive-oriented 
individuals show intensified engagement under incongruent conditions—a novel finding extending beyond prior research. These 
findings expand the affective-cognitive matching effect to include intrinsic neural dimensions, highlighting how resting-state 
brain connectivity primes responses and modulates task engagement according to motivational predispositions. This integrative 
approach supports the Elaboration Likelihood Model by elucidating distinct neural pathways in persuasion and offers actionable 
insights for tailoring persuasive strategies to individual affective and cognitive orientations.

1   |   Introduction

Researchers have long recognized that the content of attitudes 
can be organized around affective and cognitive components 
(Cacioppo et  al.  1989; Insko and Schopler  1967; Rosenberg 
and Hovland 1960; Maio et al. 2018; Svenningsson et al. 2021). 

Typically, the term affect has been used to refer to the positive or 
negative feelings and emotions that an attitude object evokes in 
the evaluator, whereas the term cognition describes beliefs about 
the positive or negative attributes of an attitude object (e.g., 
Breckler 1984; Conner et al. 2021; Crites et al. 1994; Ostrom 1969; 
Haddock et al. 2008). The categorization of persuasive appeals 
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as affective or cognitive in nature extends beyond the mere con-
tent of attitudes and influences how they are designed (Haddock 
and Maio 2019; See et al. 2008).

Numerous studies have tested the hypothesis that persuasive 
messages are more impactful when their affective or cognitive 
content aligns with the recipient's predisposition to process af-
fective or cognitive information—a phenomenon known as the 
affect-cognition matching effect (Edwards 1990; Fabrigar and 
Petty  1999; Giammusso et  al.  2022). In this regard, individ-
ual differences in the motivation to seek out and use affective 
or cognitive information can be assessed through individual 
differences in the need for affect (NFA; Maio and Esses 2001) 
and the need for cognition (NFC; Cacioppo and Petty 1982). 
NFA reflects the extent to which individuals approach or 
avoid emotion-inducing situations, valuing emotions as useful 
for shaping judgments and behavior. In contrast, NFC reflects 
a tendency to engage in and enjoy effortful cognitive activ-
ities. Both NFA and NFC influence information acquisition 
and processing (Haddock and Maio 2019). For instance, in the 
social perception domain, individuals high in NFA evaluate 
warmth-related traits more positively, while individuals high 
in NFC emphasize competence in their evaluations (Aquino 
et al. 2016). This suggests that NFA and NFC can predict so-
cial evaluations toward others (Crites et al. 1994; Fabrigar and 
Petty 1999; Gharib et al. 2022). In the context of the affective-
cognitive matching effect, Haddock et al. (2008) demonstrated 
that individual differences in NFA and NFC predicted recep-
tivity to affective or cognitive appeals, with greater attitude 
change observed when persuasive messages matched recipi-
ents' affective or cognitive orientation.

To further understand how these individual differences manifest 
at the neural level, recent neuroscientific research has begun to 
explore the brain mechanisms underlying the affective-cognitive 
matching effect. Recent advances in neuroscience have under-
scored the significance of distinguishing between intrinsic and 
extrinsic brain and behavioral properties in understanding af-
fective and cognitive processes (Biswal et al. 2010; Raichle 2010; 
Aquino et al. 2020; Di Plinio et al. 2023). Intrinsic brain proper-
ties refer to the brain's inherent functional organization, as ob-
served during resting-state, task-free fMRI scans. These scans 
capture the brain's baseline network architecture, revealing pat-
terns of connectivity when a person is not engaged in a specific 
task (Fox and Raichle 2007; Raichle 2015). Intrinsic connectiv-
ity networks show properties like global brain modularity and 
intermodular connectivity that are predictive of individual dif-
ferences in behavior, such as sense of agency or susceptibility to 
psychosis-like experiences (Di Plinio et al. 2020; Di Plinio and 
Ebisch  2022). These findings suggest that resting-state brain 
dynamics are linked to individual predispositions that can in-
fluence how people process task-related stimuli (Rosazza and 
Minati 2011; Tsvetanov et al. 2016). Essentially, the information 
exchange across specific networks can predispose individuals to 
respond to external demands (Rasero et al. 2018). This supports 
the idea that intrinsic networks support the brain's responses to 
specific tasks by organizing neural resources in advance.

Graph-theoretical metrics, such as the participation coeffi-
cient, which measures how extensively a brain region inter-
acts across multiple networks, and the within-module degree, 

which assesses connectivity within specific networks, are used 
to quantify these intrinsic connectivity patterns (Rubinov and 
Sporns  2010; Power et  al.  2010). Intrinsic behavioral proper-
ties, including NFA and NFC, are relatively stable individual 
differences that influence how individuals typically approach 
and process affective and cognitive information (Cacioppo 
and Petty 1982; Maio and Esses 2001). For instance, Di Plinio 
et  al.  (2023) found that intrinsic connectivity patterns within 
the frontoparietal module, as measured by participation coef-
ficients, are linked with an individual's affective or cognitive 
orientation. These findings suggest that intrinsic brain con-
nectivity may underlie the motivational orientations (NFA and 
NFC) that guide how individuals process persuasive messages, 
potentially influencing their neural responses and behavioral 
evaluations during persuasion tasks.

In contrast to intrinsic connectivity, extrinsic brain properties 
involve neural responses elicited during task performance, cap-
tured through task-based fMRI (Poldrack 2007). Prior work has 
examined how task-related brain activity supports persuasive 
processing (e.g., Falk et al. 2015; Lee et al. 2019). However, these 
studies have typically focused on predefined regions of interest 
or clinical samples, and have not explicitly examined how base-
line connectivity patterns may predispose individuals to engage 
with persuasive content. By integrating intrinsic and extrinsic 
approaches within the same framework, our study extends this 
literature by investigating how individuals' resting-state brain 
connectivity and affective-cognitive orientations jointly influ-
ence neural and behavioral responses to persuasive messages 
(Tavor et al. 2016). This integration is particularly relevant for 
studying the affective-cognitive matching effect, as it offers a 
neurocognitive basis for understanding how intrinsic predispo-
sitions are associated with evaluative responses to persuasive 
message content (Cacioppo et al. 1996).

Further evidence suggests that matching persuasive messages to 
an individual's orientation enhances self-relevance and message 
processing. For example, greater activation in the ventrome-
dial prefrontal cortex (VMPFC)—a region associated with self-
related processing—has been observed when individuals process 
health-related persuasive content, particularly under conditions 
of self-affirmation (Falk et al. 2011; Northoff and Hayes 2011). 
This enhanced self-relevance can increase motivation to en-
gage with the message, leading to deeper processing (Petty and 
Cacioppo  1986). Moreover, matching information is typically 
processed with greater depth than non-matching information, 
resulting in more persistent attitude change when arguments are 
cogent (Petty and Wegener 1998; Wolfe and Kurby 2016).

The existence of matching and nonmatching channels has a 
parallel in the Elaboration Likelihood Model (ELM), wherein 
whether a person is influenced more by the substance of the 
message (central route) or by external cues (peripheral route) 
depends on their motivation and ability to process the message. 
According to this framework, when the degree of elaboration is 
not constrained, self-relevance plays a pivotal role in increasing 
recipients' motivation to process message arguments carefully 
(Petty and Cacioppo  1986; Haugtvedt et  al.  1992). Haddock 
et al. (2008) reported that individual differences in affective or 
cognitive orientation predicted the amount of information cor-
rectly recognized from matching messages, indicating deeper 
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information processing. Further, the persistence of the match-
ing effect over time may differ between affective and cognitive 
routes. Affective matches might require less processing time 
to yield persistence due to inherent emotional engagement 
(Rocklage and Luttrell 2021; Giner-Sorolla 2004), while cogni-
tive matches may involve more extensive analytical processing, 
including generating supportive thoughts, leading to persistent 
attitude change through cognitive elaboration (Briñol and 
Petty  2018; Teeny et  al.  2020). Our study builds upon these 
findings by examining how intrinsic brain states interact with 
affective-cognitive orientations during exposure to affective-
cognitive persuasive content.

1.1   |   The Study Contribution

Despite extensive research on the affective-cognitive matching 
effect, the neural mechanisms underlying the effect remain un-
clear. Prior research has established that intrinsic and task-based 
connectivity share substantial network architecture (Smith et al. 
2009), while also showing state-dependent reconfigurations in 
specific regions (e.g., precuneus) depending on cognitive de-
mands (Utevsky et  al. 2014). These findings support the rele-
vance of jointly examining rest and task states, as both stable and 
context-sensitive features may contribute to individual variabil-
ity in neural processing of persuasive messages. Specifically, it is 
unknown how intrinsic brain dynamics contribute to extrinsic 
processing of persuasive messages, how this relates to individual 
orientations, and how matching and nonmatching channels are 
involved in determining behavioral outcomes. To address this 
gap, we investigate both intrinsic and extrinsic brain-behavior 
relationships using functional magnetic resonance imaging 
(fMRI). By examining resting-state fMRI data, we can identify 
intrinsic brain connectivity patterns associated with individual 
differences in NFA and NFC, which may predispose individuals 
to process affective or cognitive information in specific ways (Di 
Plinio et al. 2023). Task-based fMRI allows us to measure extrin-
sic neural responses as participants engage with affective and 
cognitive persuasive messages. By analyzing changes in neural 
activation during the task and collecting participants' evalua-
tions of the messages, we can assess how message content and 
individual orientations interact to influence persuasion.

The integration of these methodologies enables us to investigate 
whether intrinsic brain-behavior relationships predict extrinsic 
brain-behavior responses. Specifically, we aim to study if indi-
viduals with certain intrinsic connectivity patterns and orien-
tations exhibit corresponding neural responses and evaluations 
during message processing, thus providing a neural basis for the 
affective-cognitive matching effect. This is important because 
identifying such neural signatures would not only help elucidate 
the mechanisms behind the affective-cognitive matching effect 
but also expand our understanding of how baseline brain states 
predispose individuals to process information in ways that align 
with their intrinsic orientations. While prior research has exam-
ined task-based and, more recently, resting-state connectivity in 
persuasive or social contexts (e.g., Falk et al. 2015; Lee et al. 2019), 
to our knowledge, no study has yet integrated intrinsic and extrin-
sic connectivity measures together with motivational orientations 
and behavioral evaluations in the same framework. Therefore, 
this study provides an integrative perspective that advances the 

field by bridging the gap between resting-state and task-based 
neural mechanisms and their implications for persuasion.

Our approach integrates four levels of information processing, 
namely resting-state connectivity, task-evoked activity, individ-
ual affective-cognitive orientation, and explicit message evalua-
tions, to provide an innovative multidimensional analysis. Our 
methodological approach advances beyond our prior studies by 
integrating these measures to assess how intrinsic brain states 
may prime individuals for differential processing of affective 
and cognitive persuasive messages.

1.2   |   Aims and Hypotheses

Grounded in the ELM (Petty and Cacioppo 1986) and the struc-
tural matching effect (Aquino et al.  2020), the present study 
investigates how individual motivational orientations interact 
with brain connectivity patterns, both at rest and during task 
engagement, in relation to responses to affective versus cogni-
tive persuasive messages. We aim to clarify how intrinsic brain 
states are associated with individual tendencies to engage with 
different types of persuasive content, and how this alignment 
correlates with both neural and behavioral responses.

First, based on prior theory (Petty and Wegener 1998; Haddock 
et  al.  2008; Fabrigar and Petty  1999), we hypothesize that in-
dividual differences in motivational orientations (NFA vs. 
NFC) will modulate neural responses to persuasive messages. 
Specifically, drawing upon existing theoretical perspectives 
rather than empirical outcomes, we hypothesize that affective-
oriented individuals (higher NFA relative to NFC) will exhibit 
greater neural engagement in response to affective messages, re-
flecting congruence between their motivational predispositions 
and message content. On the other hand, cognitive-oriented 
individuals (higher NFC relative to NFA) will engage neural 
resources differently, potentially reflecting deeper elaboration 
processes when processing affective messages (incongruent 
with their motivational orientation).

Second, based on previous evidence indicating that resting-state 
connectivity patterns prime neural responses to task demands 
(Di Plinio et al. 2023; Tavor et al. 2016), we hypothesize that in-
trinsic brain connectivity, particularly within highly integrative 
regions (high participation coefficient nodes), will interact with 
individual motivational orientations to influence task-related 
neural responses.

By testing these hypotheses, we aim to explore the neural cor-
relates of the affective-cognitive matching effect, providing 
insights into how intrinsic brain states are associated with task-
related neural responses and persuasion-related evaluations.

2   |   Methods

2.1   |   Participants

Thirty-five healthy Italian adults (20 women and 15 men; mean 
age = 25.2 years, SD = 3.4) participated in the study. All partic-
ipants were right-handed, had normal or corrected-to-normal 
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vision, and had no history of psychiatric or neurological disor-
ders or contraindications for MRI scanning. The study was ap-
proved by the Comitato Etico delle Province di Chieti e Pescara 
e dell'Università degli Studi “G. d'Annunzio” di Chieti-Pescara 
(Protocol No. 898) and conducted in accordance with the 
Declaration of Helsinki (2013). Written informed consent was 
obtained from all participants prior to participation.

The sample in this study matched standard sizes in individual 
differences research in cognitive neuroscience and fMRI studies 
(Yarkoni 2009; Turner et al. 2018). Additionally, it balanced sta-
tistical power with the constraints of fMRI data collection and 
processing, which are resource-intensive. While power analyses 
for fMRI are complex due to the high dimensionality of neuroim-
aging data, studies indicate that samples of this size are appro-
priate for identifying stable connectivity patterns and task-related 
activations (Dubois and Adolphs  2016). To mitigate variability 
and enhance the reliability of our findings, we used robust statis-
tical techniques, including mixed-effects models and effect size 
reporting, in line with current recommendations for fMRI studies 
(Mumford and Nichols 2008). This sample size thus allows for ad-
equate sensitivity to detect meaningful associations between in-
trinsic connectivity, task-evoked activity, and affective-cognitive 
orientation, providing a rigorous foundation for our hypotheses 
while adhering to standard practices in fMRI research.

The study follows our first two experiments, which focused 
respectively on task-related fMRI data (Aquino et al. 2020, ex-
amined the neural correlates of the structural matching effect 
on task data) or resting-state fMRI data (Di Plinio et al. 2023; 
studied the predictability of choices using machine learning on 
resting-state data). The present research includes a larger sample 
size and incorporates both resting-state and task-evoked fMRI 
data. Additionally, our study integrates brain and behavioral 
measures to investigate how affective-cognitive orientations 
relate to neural patterns and individual choices in response to 
affective and cognitive persuasive messages.

Unlike our prior work focusing on stimulus-evoked activity, 
we examined how intrinsic connectivity patterns at rest align 
with individual affective-cognitive orientations, thus extending 
the affective-cognitive matching effect to resting-state neural 
dynamics.

2.2   |   Stimuli

Affective and cognitive persuasive messages were meticulously 
crafted based on real advertisements, resulting in 20 affective 
and 20 cognitive messages for various consumer products. Each 
message consisted of five sentences, with affective messages 
emphasizing emotions and sensations (e.g., “The soft wool of 
the pullover ‘Tender’ gives a fresh scent all day”) and cognitive 
messages highlighting product features and qualities (e.g., “The 
new full-resistant pullover is made with 100% merino wool”). 
All messages were designed to elicit positive reactions to control 
for valence confounds.

To ensure the effectiveness of these messages, a preliminary 
validation process was conducted. Initially, 64 participants rated 

each message on its affective-cognitive content and credibility. 
Messages containing self-references (e.g., “The pullover Tender 
cuddles you in a warm hug”) were compared to those without 
self-references (e.g., “The pullover Tender cuddles who wears it 
in a warm hug”) to assess the impact of self-relevance on content 
perception. The results confirmed that self-referenced messages 
significantly enhanced the differentiation between affective and 
cognitive content. Consequently, the 10 most distinct affective 
and 10 most distinct cognitive self-referential messages were se-
lected for the main study. Further validation with an additional 
22 participants confirmed that the selected messages effectively 
differentiated affective and cognitive content without differ-
ences in credibility or length.

2.3   |   Pre-MRI Behavioral Measures

Prior to fMRI scanning, participants' levels of NFA and NFC 
were assessed. NFA was measured using the short version of the 
NFA scale (Appel et al. 2012), which consists of 10 items evaluat-
ing the motivation to approach and avoid emotions. Participants 
responded on a 7-point scale (1 = totally disagree; 7 = totally 
agree), and the NFA score was calculated by summing responses 
after reverse-scoring avoidance items.

NFC was assessed with the 18-item NFC scale (Cacioppo and 
Petty  1982), where participants rated statements on a 7-point 
scale (1 = extremely uncharacteristic; 7 = extremely character-
istic). The NFC score was derived by summing responses after 
reverse-scoring negatively keyed items.

To capture personal orientation toward affect and cognition, 
we computed an Orientation score by subtracting standardized 
NFC scores from NFA scores (Orientation = ZNFA—ZNFC). A 
higher Orientation score indicates a greater reliance on affect, 
while a lower score reflects a greater reliance on cognition. This 
difference score approach enhances the interpretability of in-
dividual differences in affective-cognitive orientation and sup-
ports robust statistical modeling.

2.4   |   MRI Data Acquisition

Imaging data were collected using a 3 Tesla Philips Achieva X 
Series MRI scanner at the Institute of Advanced Biomedical 
Technologies (ITAB) in Chieti, Italy. A sensitivity-encoding 
eight-channel brain coil was utilized to ensure high-quality 
imaging, and head motion was minimized with foam pad-
ding and surgical tape. Participants interacted with the task 
using a response pad fixed to the scanner bed, allowing key-
presses with their right index and middle fingers. An initial 
T1-weighted anatomical image (3-D TFE pulse sequence) was 
acquired with the following parameters: field of view = 240 mm; 
voxel size = 1 mm3; TR = 8.1 ms; TE = 3.7 ms. Subsequently, 
two resting-state runs (234 volumes for each run) and two 
task fMRI runs (404 and 397 volumes, respectively) were ac-
quired using a T2* weighted EPI sequence with TR = 1.8 s; 
TE = 30 ms; number of slices = 35; slice thickness = 3.5 mm; 
in-plane voxel size = 3 mm2; field of view = 228 × 122 × 240 mm; 
flip angle = 85°.
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2.5   |   MRI Experimental Procedure

Following the assessment of NFA and NFC, all participants un-
derwent an fMRI scanning session, which included both resting 
state and task based.

With respect to the resting-state fMRI, participants completed 
two resting-state runs, each lasting approximately 6 min. 
During these runs, they were instructed to focus on a white 
fixation cross displayed on a black screen with their eyes open. 
Compliance was monitored via a video camera positioned in the 
MRI room to minimize head motion.

With respect to the task-based fMRI, the task component con-
sisted of two fMRI runs in which participants were presented 
with 20 persuasive messages (10 affective and 10 cognitive) 
about various consumer products. The messages were random-
ized and presented in a self-referential format to enhance the 
differentiation between affective and cognitive content, as vali-
dated in preliminary studies.

Task runs incorporated two phases. In the first phase, the read-
ing phase, participants were shown each persuasive message 
and were instructed to read each message. The affective and 
cognitive messages were presented in a randomized order in the 
two fMRI runs. The duration for the reading phase was set on 
the basis of the pretest that was conducted to ascertain that the 
time for the reading was sufficient for participants and to as-
certain that the affective and cognitive messages did not differ 
in duration. This reading time was also adapted to be a multi-
ple of the TR (i.e., 1800 ms; the average reading time across the 
messages was 34,960 ms). In the second phase, the evaluation 
phase, which followed each message after a randomly varying 
interval (1.8–5.4 s), participants provided their evaluations. Such 
evaluations included two ratings: an Attitude Rating, for which 
participants rated their liking of the presented object on a scale 
from 1 (not at all) to 7 (very much), and an Intention Rating, 
where participants indicated their likelihood of purchasing the 
object within the next 3 weeks on a scale from 1 (not at all) to 7 
(very likely).

Responses were made using a response pad, with participants 
adjusting their ratings by pressing buttons to increase or de-
crease the score from a starting value of 4. Each evaluation had 
a time limit of 5.4 s. Given the high correlation between attitude 
and intention ratings (r = 0.96, p < 0.001), these responses were 
averaged to create a single index labeled Evaluation, represent-
ing the extrinsic behavioral measure in this study.

2.6   |   MRI Data Preprocessing

Functional images were preprocessed and analyzed using 
AFNI software (Cox 1996). The preprocessing pipeline included 
deobliquing, despiking, and correcting for time-shifted acqui-
sition. Motion correction was performed using a six-parameter 
model and body realignment, followed by nonlinear warping to 
align the images to the Montreal Neurological Institute (MNI) 
standard brain template. Motion parameters were recorded to 
account for movement in subsequent analyses. BOLD signals 
were scaled to a mean of 100 to represent percent signal change, 

enhancing interpretability (Chen et  al.  2017). Finally, images 
were spatially smoothed with a 5-mm full width at half maxi-
mum (FWHM) Gaussian filter. All processing steps, including 
motion correction, nuisance regression (motion parameters, 
WM, CSF, and drift terms), and stimulus timing verification, fol-
lowed standardized guidelines. To ensure rigorous quality con-
trol, we adhered to the multi-stage hierarchical QC procedures 
recommended by Reynolds et al. (2023), including quantitative 
motion metrics, visual inspection, and outlier detection using 
AFNI's afni_proc.py pipelines. No participants were excluded 
due to excessive motion (i.e., > 20% censored volumes).

2.6.1   |   Processing MRI Data: Intrinsic Data 
(Resting-State)

With respect to the resting-state runs, and in line with current 
guidelines (Power et al. 2013), time series were additionally cen-
sored by removing volumes with 10% or more motion outliers 
across voxels and volumes with Euclidean norm of the motion 
derivative exceeding 0.2 mm. A band-pass filter (frequency in-
terval: 0.01–0.10 Hz) was applied in the same regression step 
that implemented censoring (Caballero-Gaudes and Reynolds 
2017). To maximize signal-to-noise ratio, motion parameters 
were included in the regression as noise covariates together with 
the signals extracted from white matter and cerebrospinal fluid. 
We did not regress out the global signal because it is a controver-
sial approach (Saad et al. 2012), and because it has been shown 
that it introduces spurious negative correlations (Wasserstein 
et al. 2019).

2.6.2   |   Processing MRI Data: Extrinsic Data 
(Task-Evoked Activity)

Task runs were additionally analyzed by implementing a gen-
eralized linear model (GLM) at the single-subject level to esti-
mate brain-evoked activity during the affective and cognitive 
conditions of the task. The GLM was implemented in AFNI and 
included two regressors of interest representing the affective 
and cognitive experimental conditions, which were modeled 
with duration-modulated BLOCK functions. The duration of the 
BLOCK function for each trial corresponded to the duration cal-
culated for each target during the pilot experiments. Keypresses 
for target evaluations were modeled through separate regressors 
using GAM functions. Each GLM also included the following 
regressors of no interest: six parameters of motion regressors (x-
axis, y-axis, z-axis, yaw, pitch, and roll), cerebrospinal fluid sig-
nal, white matter signal, linear and non-linear drifts. Once the 
brain activity was estimated in each experimental condition, we 
calculated the difference ΔβA-C = βA—βC, where βA is the value 
for the regressor Affective and βC is the value for the regressor 
Cognitive. Thus, the term ΔβA-C represents the difference in 
evoked activity between affective and cognitive persuasive stim-
ulation and was used in later analysis steps. We also adopted a 
single-trial modeling of brain activity (Pessoa 2008; Chen et al. 
2021) to allow the extraction of ΔβiA-C related to each target i 
to gather trial-level information to be implemented in machine 
learning models (see below). The metric of (differential) task-
evoked activity represents the extrinsic feature of the brain in 
our study.
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2.7   |   Resting-State Connectomics

Resting-state fMRI runs were utilized to extract modular struc-
tures (brain functional networks) and calculate graph indices 
from functional connectivity matrices. The brain was parcel-
lated into 386 cortical and subcortical nodes based on Joliot 
et al. (2015) and 32 cerebellar nodes from the Diedrichsen atlas 
(2009), resulting in a total of 418 nodes. Functional connectiv-
ity between each pair of nodes was assessed using the Pearson 
correlation of their average time series, using the Fisher z-score 
for normalization. Participant-level functional connectivity ma-
trices were binarized using a proportional threshold, retaining 
the top 10% of strongest correlations. This approach is widely 
used in network neuroscience to ensure comparability across 
participants and to preserve the interpretability of graph met-
rics (Rubinov and Sporns 2010; van Wijk et al. 2010). The 10% 
threshold allows for the retention of strong and meaningful con-
nections while minimizing the inclusion of noise-driven edges 
(Garrison et al. 2015).

Modular structures were identified using the Louvain algo-
rithm (Lancichinetti and Fortunato 2009) implemented in the 
Brain Connectivity Toolbox (Rubinov and Sporns 2010) within 
MATLAB (version 2019b). This process involved 1000 itera-
tions to account for the algorithm's stochastic nature, result-
ing in a consensus modular structure at the group level using a 
community detection approach (Lancichinetti and Fortunato 
2009). The structural resolution parameter γ, crucial for net-
work analysis (Betzel et  al. 2016), was varied systematically 
between 0.3 and 5.0 to explore its impact on network modular-
ity. Significant modules within the consensus structure were 
detected using the Newman–Girvan procedure (Newman and 
Girvan 2004).

For each node, two graph metrics were extracted to character-
ize network integration and segregation: the participation co-
efficient (indicating the extent of a node's connections across 
different modules) and the within-module degree (reflecting 
the strength of a node's connections within its own module). 
These metrics serve as intrinsic features of brain connectivity 
in this study. To examine the relationships between brain con-
nectivity and behavioral measures, group-level analyses were 
conducted for each detected module across all γ values. This 
comprehensive approach allows for the assessment of how in-
trinsic brain network properties relate to affective-cognitive 
orientations and their association with responses to persua-
sive messages.

2.8   |   Analysis of Extrinsic 
Brain-Behavior Relationships

Task-evoked neural activity correlates of subjective persuasive 
message evaluations were assessed using mixed-effects regres-
sion models. We implemented a regression model to assess if the 
difference in evoked activity between affective and cognitive 
persuasive stimulation (ΔβA-C) corresponded with differentially 
favorable affective judgments (i.e., when a product is associated 
with an affective appeal) relative to cognitive judgments (i.e., 
when a product is associated with a cognitive appeal)—our 
Evaluation measure. To note, the individual Evaluation, which 

incorporated attitude and intention, considers how individu-
als evaluated the same product in response to affective versus 
cognitive presentation (i.e., if they preferred the object when 
it was introduced by an affective or a cognitive presentation). 
The analysis was carried out at the whole-brain level and using 
the parcellations described in the resting-state section (ΔβA-C 
values were averaged within voxels of the same node). Both 
random intercepts and slopes were added at the nodal level in 
the mixed-effects regression model to investigate which brain 
regions/hemisphere reflect individuals' judgments. We reported 
standardized coefficients alongside raw estimates to facilitate 
interpretation and allow interpretability across studies, ac-
knowledging that model structure and data hierarchy have a 
great impact on data analysis (see Brysbaert and Stevens 2018; 
Westfall et al. 2014).

2.9   |   Analysis of Rest-Task Interplay

Once we assessed the resting-state neural correlates of 
Orientation and task-evoked neural correlates of Evaluation, 
we studied the interplay between these two sets of state-
dependent features. More precisely, we assessed if intrin-
sic (network architecture and Orientation) brain-behavior 
background may predict extrinsic (task-evoked activity and 
Evaluation) brain-behavior features. To achieve this aim, we 
implemented both a regression approach and a cross-validated 
machine learning model.

To study such interactions through regression, we broke down 
the task-rest interplays into three models: a “brain” model, a “be-
havior” model, and a “brain-behavior” model. In the models, task 
measures were considered as dependent variables. We found this 
approach to be more interpretable and parsimonious than other 
methods (e.g., partial least squares). Thus, the brain model assessed 
the associations between the brain variable of interest during the 
extrinsic task (ΔβA-C) and the brain variable of interest during the 
intrinsic resting state (participation coefficients, within-module 
degrees). The behavior model assessed the associations between 
the extrinsic behavioral variable of interest (Evaluation) and the 
intrinsic behavioral variable of interest (Orientation). Finally, the 
brain-behavior model assessed if the brain-behavior interplay (i.e., 
the linear product between nodal ΔβA-C and subjective Evaluation) 
was predicted by resting-state brain metrics, by Orientation, and/
or by the interaction between these two terms. To note, since the 
dependent variable is the product of subjective Evaluation and 
ΔβA-C, it has positive (> 0) values when there is congruence be-
tween evoked activity and Evaluation, whereas it has negative 
(< 0) values when there is incongruence between evoked activity 
and Evaluation. Combining the three models is appropriate and 
necessary, as it provides more information than studying, for ex-
ample, brain-behavior interactions alone.

We adopted a combined approach based on both traditional 
regression models and cross-validated machine learning to 
ensure a robust and interpretable characterization of rest-task 
relationships. This hybrid strategy allowed us to complement 
the explanatory power and transparency of regression mod-
eling with the generalization potential of machine learning, 
enhancing both the inferential and predictive value of our 
analyses.
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It is important to note that our analytical framework leverages 
hierarchical mixed-effects models, which offer increased statis-
tical power relative to standard linear models by appropriately 
accounting for within-subject and within-region variability. 
This approach is well-supported in the literature as particularly 
suitable for neuroimaging designs involving repeated mea-
sures and high-dimensional data (Chen et  al.  2017; Westfall 
et  al.  2014; Mumford and Nichols  2008). To empirically vali-
date the sensitivity of our pipeline, we conducted a simulation-
based power analysis tailored to the structure of our models. 
We generated synthetic datasets that matched our design (i.e., 
number of subjects, number of ROIs, and model hierarchy) and 
tested the ability of our mixed-effects models to detect fixed ef-
fects of varying magnitudes. Results indicated that, with our 
current sample size and modeling structure, the mixed-effects 
framework was able to detect small effects (β = 0.020) with ap-
proximately 75% power, medium-small effects (β = 0.050) with 
over 95%power, and medium-large effects (β = 0.010) with 100% 
power. These findings support the adequacy of our design for 
capturing even subtle brain-behavior relationships.

3   |   Results

3.1   |   Extrinsic Brain-Behavior Relationships

We first examined the relationship between neural responses 
during persuasion (i.e., task-evoked activity) and participants' 
behavioral evaluations of targets introduced by affective ver-
sus cognitive messages. Specifically, we focused on the dif-
ferential neural activation between affective and cognitive 
persuasive conditions (ΔβA–C), interpreted as an index of 
evaluative congruence or incongruence. A significant nega-
tive association was observed between the difference in task-
evoked activity across affective and cognitive experimental 
conditions (ΔβA–C) and subjective evaluation (Figure  1A; 
β = −0.034 ± 0.012, standardized β = −0.167, t = −2.78, 
p = 0.006).

This result indicates that greater differences in brain activity 
between the affective and cognitive conditions were associ-
ated with lower evaluations, suggesting that incongruence 
between the type of target and its evaluation is linked to 
heightened neural responses. In other words, when neural 
responses strongly diverge between affective and cognitive 
messaging, participants are more likely to exhibit lower per-
suasive impact.

Importantly, this effect was consistent across regions, with 
no significant variability among ROI slopes (Figure  1B), sug-
gesting a global evaluative pattern across the brain. However, 
a hemispheric effect was identified: the association tended 
to be slightly stronger in the left hemisphere (yellow nodes in 
Figure 1B), whereas a slightly weaker effect was detected in the 
right hemisphere (green nodes in Figure 1B). These hemispheric 
differences, while modest, suggest lateralized processing differ-
ences during task-related evaluations.

3.2   |   Intrinsic-Extrinsic Interplay

To examine how intrinsic brain network properties modulate 
persuasive processing, we tested three interconnected models 
capturing the brain, behavior, and brain-behavior relationships 
across rest and task.

The first model (brain model) tested whether intrinsic connec-
tivity, as captured by the participation coefficient (PC), predicts 
task-evoked neural responses (ΔβA-C). In the brain model, we 
did not observe a significant association between the differ-
ence in task-evoked activity and participation coefficients 
(β = 0.002 ± 0.004, t = 0.53, p = 0.59), indicating that intrinsic 
network participation alone does not predict task-evoked brain 
activity differences.

Similarly, in the behavioral model, Orientation (a continuous 
index of cognitive-affective motivational orientation) did not 

FIGURE 1    |    Task results. (A) The difference in evoked activity across conditions (ΔβA-C) at the whole-brain level was negatively associated with 
extrinsic evaluation. Each brain node is represented by a separate line and color-coded based on nodal effect sizes (βNOD). (B) Topography and nodal 
effect sizes (βNOD) related to the association between task-evoked activity and Evaluation. The color coding is the same across the two subfigures, 
showing a slightly weaker effect in the right hemisphere and a slightly stronger effect in the left hemisphere. The results show that brain activity was 
generally higher when the Evaluation was incongruent with the experimental condition (e.g., greater Evaluation for the affective target, during the 
Cognitive condition).
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8 of 14 Psychophysiology, 2025

directly predict Evaluation (β = 0.024 ± 0.091, t = 0.27, p = 0.79), 
suggesting no main behavioral preference for affective or cogni-
tive messages across the sample.

However, in the brain-behavior model, we identified signif-
icant associations. Specifically, both nodal participation co-
efficient (β = −0.008 ± 0.002, t = −3.68, p < 0.001) and the 
interaction between Orientation and nodal participation 
coefficient (β = 0.010 ± 0.002, t = 4.33, p < 0.001) were sig-
nificant, while Orientation alone was not (β = 0.009 ± 0.008, 
t = 1.25, p = 0.21). In other words, only when individuals had 
high cross-network integration in a given region (high PC) 
did their motivational orientation (affective vs. cognitive) sig-
nificantly modulate the alignment between neural responses 
and evaluations. These results indicate that the strength of 
cross-network participation (as measured by the participation 
coefficient) and its interaction with individual orientation are 
critical for understanding the relationship between resting-
state brain properties and task-related evaluations. The results 
from the three models, as well as standardized coefficients, 
are represented in Table 1.

Overall, these models illustrate that while individual compo-
nents (PC or Orientation) alone may not strongly predict eval-
uation responses, their interaction in the brain-behavior model 
significantly impacts evaluation, emphasizing the role of brain-
behavior alignment in persuasion processes.

To better understand the significance in the brain-behavioral 
model, Figure 2A depicts the model predictions of the interac-
tion effect between intrinsic (rest) and extrinsic (task) brain-
behavior data: in nodes with low participation coefficients 
(intense blue), there is no significant effect of Orientation on 

extrinsic brain-behavior interactions. Conversely, in nodes 
with high participation coefficients (intense red), a positive 
effect of Orientation on extrinsic brain-behavior interactions 
is observed.

The participation coefficient map (Figure 2B) aligns with pre-
viously reported findings (Power et  al.  2013), showing high 
values in prefrontal, cingulate, inferior parietal, and poste-
rior temporal nodes. These regions largely overlap with the 
fronto-parietal (FP) subnetwork, which has been previously 
associated with Orientation during the resting state (Di Plinio 
et  al.  2023). Additionally, since the dependent variable rep-
resents the linear product between Evaluation and the dif-
ference in task-evoked activity across conditions (ΔβA-C), 
higher values (> 0) indicate matching (congruence) between 
evoked activity and Evaluation, whereas lower values (< 0) 
reflect incongruence between evoked activity and Evaluation 
(Figure 2C).

Summarizing, among affective-oriented individuals (standard-
ized Orientation > 0), FP nodes with high participation coeffi-
cients are more activated when the type of stimulus aligns with 
the individual's evaluation (i.e., when the stimulus has affec-
tive features). In contrast, among cognitive-oriented individu-
als (standardized Orientation < 0), the same high-participation 
nodes are involved when there is incongruence between the 
experimental condition and the individual's evaluation (e.g., an 
affective condition paired with a higher cognitive evaluation, 
or vice versa). Notably, these effects only apply to regions with 
high cross-network connections (e.g., FP regions), but not to re-
gions with low cross-network connections (e.g., sensory or lim-
bic areas). No significant results were found for within-module 
degrees.

TABLE 1    |    Results for the system of regressions implemented to examine the relationship between intrinsic and extrinsic brain-behavior features.

Term Effect size (�) Standard error �̂ t-Stat p

1—Brain Model: Δβ ~ PC + (1|node) + (1|subject)

Intercept −0.018 0.008 — −2.27 0.02

PC 0.002 0.004 0.005 0.53 0.59

2—Behavior Model: Evaluation ~ Orientation

Intercept 0.007 0.097 — 0.07 0.94

Orientation 0.024 0.091 0.011 0.27 0.79

3—Brain-Behavior Model: Δβ:Evaluation ~ PC*Orientation + (1|node) + (1|subject)

Intercept −0.008 0.008 — −0.98 0.02

PC −0.008* 0.002 −0.024 −3.68 < 0.001

Orientation 0.009 0.008 0.133 1.25 0.21

PC:Orientation 0.010 0.002 0.058 4.33 < 0.001

Note: Brain Model. This model assesses the association between brain connectivity (Δβ) and participation coefficient (PC), a measure of intrinsic connectivity, 
controlling for random effects by node and subject. Results indicate a significant intercept (β = −0.018, p = 0.02), suggesting baseline brain activity levels, but no 
significant effect of PC on Δβ (p = 0.59), implying that the participation coefficient alone does not predict brain connectivity changes in this context. Behavior Model. 
This model explores how individual orientation (NFA or NFC) predicts evaluation responses to persuasive messages. Neither the intercept (p = 0.94) nor orientation 
(p = 0.79) reaches significance, indicating that orientation alone does not significantly influence evaluation responses. Brain-Behavior Model. This integrated model 
examines the interaction between brain connectivity (PC) and orientation in predicting evaluation responses, controlling for random effects by node and subject. 
Here, PC shows a significant negative effect (β = −0.008, p < 0.001), and the interaction between PC and Orientation is also significant (β = 0.010, p < 0.001), indicating 
that PC modulates evaluation responses based on individual orientation. This suggests that brain-behavior alignment, particularly the interplay between intrinsic 
connectivity and orientation, significantly influences evaluation, supporting the hypothesis of affective-cognitive matching at the neural level.
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4   |   Discussion

This study explored how intrinsic brain connectivity interacts 
with extrinsic task-related neural and behavioral responses 
within the affective-cognitive framework of persuasion.

We report two particularly novel and important results. 
First, we found a significant negative association between 
task-evoked brain activity (ΔβA-C) and subjective evalua-
tions, indicating that when the message is incongruent with 
its evaluation, neural responses are more intense, particu-
larly in the left hemisphere. Second, whereas intrinsic cross-
network connectivity (participation) and affective-cognitive 
orientation did not independently predict extrinsic outcomes, 

their interaction was significantly associated with those out-
comes. High participation coefficients within regions of the 
frontoparietal network were linked to evaluations that varied 
as a function of individuals' affective-cognitive orientation. 
In affective-oriented individuals, high participation nodes 
were more active during congruent conditions, whereas in 
cognitive-oriented individuals, the same nodes were more ac-
tive during incongruent conditions.

These findings extend the affective-cognitive matching effect 
(Edwards 1990; Fabrigar and Petty 1999; Haddock et al. 2008) 
to a neural level, showing that intrinsic brain connectivity 
modulates responses to persuasive messages. This integration 
provides a deeper understanding of the mechanisms under-
lying personalized persuasion, highlighting the role of fronto-
parietal hubs in aligning brain connectivity with motivational 
orientations.

4.1   |   Extrinsic Brain-Behavior Relationships

The negative association between extrinsic brain activity 
(ΔβA-C) and subjective evaluations supports the affective-
cognitive matching effect (Petty and Cacioppo  1986; Fabrigar 
and Petty 1999; Haddock et al. 2008), where cogent persuasive 
messages have a greater impact when aligned with the recipi-
ent's affective or cognitive orientation. Specifically, our findings 
show that mismatched message types increase neural activity; in 
other words, incongruent conditions may trigger additional neu-
ral resources, potentially causing cognitive strain. This aligns 
with evidence demonstrating that the brain recruits broader 
networks to handle increased cognitive demands (Botvinick 
et al. 2004; Shenhav et al. 2013). The fronto-parietal network, 
involved among others in functions as cognitive control and 
maintaining task goals (Cole and Schneider  2007; Dosenbach 
et al. 2008), may play a role in reconciling message-evaluation 
mismatches. Thus, the increased neural activation we observe 

FIGURE 2    |    Rest-task interplay. (A) Predictions of the extrinsic-
interaction term (dependent variable) from the brain-behavior model 
linking intrinsic orientation, intrinsic nodal participation, extrinsic 
Evaluation, and extrinsic brain activity. The system of regression mod-
els adopted to study task-rest associations showed a significant effect 
of the interaction orientation *participation coefficient on extrinsic 
brain-behavior data. (B) Nodes with high participation coefficients 
in our study (red) largely overlap with the FP network (see Di Plinio 
et al. 2023; Power et al. 2013), encompassing prefrontal, inferior pari-
etal, mid-cingulate, and posterior temporal nodes. Instead, nodes with 
low participation (low) include limbic and sensory regions. (C) The de-
pendent variable of interest, namely the extrinsic brain-behavior inter-
action, represents the linear product between evaluation and the differ-
ence in task activity across conditions (ΔβA-C). These results indicate 
that cognitive-oriented individuals are likely to have greater brain ac-
tivity in nodes with high participation coefficients (e.g., fronto-parietal 
network) when the experimental condition is incongruent with their 
evaluation. Instead, affective-oriented individuals are likely to have 
greater brain activity in nodes with high participation coefficients when 
the experimental condition is congruent with their evaluation.
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in response to mismatched persuasive messages is consistent 
with broader models of neural economy, where greater resource 
expenditure is required to maintain performance under condi-
tions of cognitive conflict (Poldrack et al. 2009).

The negative association predominantly observed in the left 
hemisphere reflects its putative role in analytical and cogni-
tive processing, explaining why incongruent cognitive mes-
sages tend to elicit greater activation in this region (Corser and 
Jasper 2014). This lateralization is supported by studies demon-
strating the left hemisphere's critical involvement in managing 
complex cognitive tasks and resolving cognitive-emotional con-
flicts (Gainotti 2019). Our findings underscore the importance 
of aligning persuasive message content with individual affective 
or cognitive orientations. Increased neural resource allocation 
during mismatched conditions underscores the cognitive effort 
needed to process incongruent information. Our findings align 
with earlier work demonstrating continuity between resting and 
task-related functional architectures (Smith et al. 2009), while 
also supporting the view that dynamic reconfigurations—par-
ticularly within integrative hubs such as the frontoparietal net-
work—are sensitive to context-specific cognitive engagement 
(Utevsky et al. 2014). This dual nature underscores the potential 
of rest-task integration in capturing both trait-like and state-
dependent components of persuasion processing.

4.2   |   Intrinsic-Extrinsic Interplay

The interaction between participation coefficients and 
Orientation supports the affective-cognitive matching effect by 
facilitating cross-network integration. Previous studies have 
shown that high participation nodes aid cognitive control and 
attentional modulation by enabling efficient communication 
across networks (Dosenbach et al. 2008; Menon 2011). As ap-
plied to the present research, in affective-oriented individuals, 
increased activity in high participation nodes during congru-
ent conditions suggests effective processing of matched per-
suasive messages. Conversely, cognitive-oriented individuals 
show this increased activity during incongruent conditions, 
indicating efforts to resolve cognitive discrepancies. Such in-
creased neural recruitment suggests enhanced analytical pro-
cessing to resolve cognitive discrepancies (Bunge et al. 2009). 
The regions involved (e.g., supramarginal gyrus, dorsolateral 
prefrontal cortex) are implicated in higher-order cognitive 
functions, including error detection and conflict resolution, 
which are essential for resolving incongruent information and 
adapting behavioral responses (Nee and D'Esposito 2016).

These findings highlight the crucial role of high participation 
nodes, or hubs, in facilitating network integration during complex 
evaluations by integrating affective and cognitive inputs (Barrett 
and Satpute 2013; Pessoa 2008). This type of top-down regulation 
may enable affective-oriented individuals to align their intrinsic 
predispositions with external affective cues, thereby enhanc-
ing the persuasive impact of congruent messages (Ochsner and 
Gross  2005). This perspective supports the notion that intrinsic 
brain networks may be functionally aligned with the brain's re-
sponse to external tasks, consistent with frameworks proposing 
that intrinsic connectivity patterns scaffold task-related neural 
responses (Di Plinio et al. 2023; Tavor et al. 2016). These findings 

are also consistent with research suggesting that intrinsic network 
properties are associated with individual differences in how peo-
ple engage with task-related demands, including conflict process-
ing (Fox and Raichle 2007; Raichle 2015).

Our study provides a comprehensive view of how intrinsic 
brain connectivity relates to motivational orientations and 
how this relationship is associated with responses to persua-
sive messages. By integrating graph-theoretical metrics that 
quantify cross-network integration, we offer a deeper look 
into the neural architecture underlying individual differences 
in evaluative processing. This advancement contributes to 
bridging psychological models with large-scale brain network 
dynamics. By demonstrating that the interaction between in-
trinsic network properties and individual orientation is asso-
ciated with variability in extrinsic evaluations, our findings 
refine our understanding of the affective-cognitive matching 
effect.

4.3   |   Implications for Persuasive Communication

Understanding the neural basis of the affective-cognitive 
matching effect offers significant insights for designing per-
suasive messages. By aligning message content with the tar-
get audience's intrinsic affective or cognitive orientations, 
communicators can enhance message self-relevance and pro-
cessing efficiency. For example, a health promotion initiative 
might use affectively oriented messages that emphasize the 
emotional well-being associated with physical activity for 
affective-oriented individuals, while presenting statistical 
evidence about the health benefits of exercise for cognitive-
oriented individuals, thereby increasing persuasive impact 
and consumer engagement (see Maio et  al.  2018). Our find-
ings extend the affective-cognitive matching effect by show-
ing that intrinsic brain connectivity interacts with individual 
orientations and is associated with differences in neural and 
behavioral responses to affective and cognitive information, 
suggesting that intrinsic brain networks may contribute to the 
alignment between motivational predispositions and external 
persuasive stimuli. This integration bridges psychological and 
neuroscientific perspectives, offering a more comprehensive 
view of personalized persuasion.

These results resonate with the ELM (Petty and Cacioppo 1986; 
Petty et al. 2015), which posits that persuasion occurs through cen-
tral and peripheral routes based on an individual's motivation and 
ability to process information. The intrinsic-extrinsic interplay 
suggests that self-relevance, driven by message-content matching, 
increases the likelihood of central processing, possibly leading to 
more enduring attitude change compared to peripheral process-
ing. Furthermore, the role of frontoparietal hubs in mediating this 
interplay underscores the importance of neural resource alloca-
tion in persuasive communication. High participation coefficients 
within these regions facilitate cross-network integration, enabling 
efficient processing of congruent persuasive messages in affective-
oriented individuals and the reconciliation of incongruent mes-
sages in cognitive-oriented individuals.

Additionally, our study highlights the novelty of integrating in-
trinsic brain connectivity with extrinsic task-related responses 
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to understand processes underlying persuasion. This approach 
advances psychological models by incorporating neural predis-
positions, offering a more nuanced framework for predicting and 
enhancing persuasive outcomes. Future psychological models of 
persuasion should consider both intrinsic neural architectures and 
extrinsic processing dynamics to better capture the complexity of 
attitude formation and change. While our findings were derived 
from a consumer context, the implications of affective-cognitive 
matching extend well beyond marketing applications. Indeed, 
tailoring persuasive content to match individuals' intrinsic moti-
vational orientations could be equally valuable in domains such 
as health promotion, environmental communication, and political 
campaigns. For example, individuals with high NFA might re-
spond more favorably to emotionally charged public health mes-
sages (e.g., emphasizing hope, fear, or empathy; Heffner et al. 2021) 
whereas those with high NFC may be more persuaded by messages 
grounded in data, logic, and critical reasoning (Aquino et al. 2020; 
Conner et al. 2021).

In addition, affective-cognitive matching can be used to address 
the challenges of contemporary society. For example, discussions 
surrounding global warming have historically been dominated 
by the debate about the existence of the effect and the role of 
human beings in generating it. Research on the affect-cognition 
matching effect shows that engagement with the underlying 
emotion of an attitude can be at least as important as engage-
ment with cognition (see also Rocklage and Luttrell 2021). With 
the increase of interventions involving citizens, institutions, and 
companies in the process of change, research that identifies the 
role of these matching effects can help to build messages that are 
more likely to be personally relevant and accessible to the target 
audience, allowing for better dialogue on global issues.

Future research should empirically test the generalizability of 
the affective-cognitive matching effect across such domains, 
using content-specific persuasive stimuli and outcomes that re-
flect real-world behaviors. This would help establish whether 
the neural and psychological mechanisms identified here op-
erate similarly across contexts, or whether they interact with 
domain-specific variables such as topic relevance, message cred-
ibility, or social norms.

Overall, these findings not only reinforce existing theories of 
persuasion but also provide actionable strategies for enhanc-
ing persuasive communication. By leveraging neuroscientific 
insights, practitioners can develop more targeted and effective 
persuasive messages that resonate deeply with individual ori-
entations, ultimately fostering meaningful and lasting attitude 
change across various domains such as health promotion, sus-
tainability, marketing, and education.

4.4   |   Limitations and Future Directions

While our study provides valuable insights, several limita-
tions must be acknowledged. First, our sample consisted of 
healthy Italian adults, which may limit the generalizability of 
the findings. Second, the reliance on self-reported measures 
of evaluation could potentially introduce biases such as social 
desirability or response consistency. Future studies should sup-
plement self-report measures with objective behavioral metrics 

to enhance the validity of behavioral assessments. Third, the 
stimuli were limited to positively valenced consumer messages, 
restricting the applicability of the findings to other contexts and 
emotional tones. Future research can explore a broader range 
of message types and domains to assess the robustness of the 
affective-cognitive matching effect. Fourth, the present study 
focused primarily on spatial patterns of brain activity and static 
connectivity measures, without directly addressing the tempo-
ral dynamics of persuasive processing. However, emerging ap-
proaches in dynamic functional connectivity offer promising 
tools to capture fluctuations in network organization over time, 
which may align with transitions across stages of message re-
ception, evaluation, and internalization. Integrating spatial and 
temporal neural features would offer a more comprehensive un-
derstanding of the mechanisms by which intrinsic brain states 
influence evaluative processing in real time.

Finally, our design is inherently correlational, which limits 
causal inference. While our results suggest meaningful associ-
ations between intrinsic brain states, motivational orientations, 
and persuasive outcomes, future studies should consider exper-
imental manipulations to establish causal links. For example, 
non-invasive neuromodulation techniques such as transcranial 
magnetic stimulation (TMS) or transcranial direct current stim-
ulation (tDCS) could be used to transiently modulate network-
level properties (e.g., frontoparietal connectivity) and assess 
their effect on evaluative responses. Additionally, interventions 
aimed at altering motivational orientations (e.g., through prim-
ing or framing tasks) could be employed to observe changes in 
persuasion outcomes. These approaches would help clarify the 
directionality of the observed relationships and strengthen the 
mechanistic interpretation of the affective-cognitive matching 
effect.

4.5   |   Conclusion

This study advances our understanding of the neural mech-
anisms underlying the affective-cognitive matching effect by 
demonstrating that intrinsic brain connectivity patterns of indi-
viduals interact with their psychological affective-cognitive ori-
entations to influence task-related evaluations. Functional brain 
regions with high cross-network communication in the fronto-
parietal network emerge as critical hubs for aligning intrinsic 
predispositions with extrinsic evaluative processes, highlighting 
the importance of cross-network integration in persuasive com-
munication. Importantly, while our study focused on consumer-
related persuasive messages, the underlying mechanisms are 
likely relevant to a broad array of contexts—including health, 
environmental, and political communication—where attitude 
change is a key outcome. Future work should explore these do-
mains to test the cross-contextual robustness and translational 
potential of affective-cognitive matching in both research and 
applied communication strategies.
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