
Vol.:(0123456789)

SN Computer Science (2025) 6:480
https://doi.org/10.1007/s42979-025-04015-z

SN Computer Science

ORIGINAL RESEARCH

CrazyKhoreia: A Robotic Perception System for MAV Path Planning
From Digital Images

Santiago Restrepo‑Garcia1 · Victor Romero‑Cano2

Received: 14 April 2024 / Accepted: 1 May 2025
© The Author(s) 2025

Abstract
Micro Air Vehicles (MAVs) can be used for a wide range of applications, such as drone-based light shows for cultural or
marketing purposes, or as a replacement for fireworks. However, more widespread usage of this technology is precluded by
the usability gap between choreography design and deployment on target drones. Seamless deployment of MAV choreog-
raphies requires the building of computational interfaces that can obtain drone trajectories from conventional media such
as digital images. In this paper, we propose CrazyKhoreia, a low-cost, computationally efficient approach to MAV chore-
ography design. CrazyKhoreia is a robotic perception system that obtains a safe, traversable, and accurate waypoint matrix
from a digital image. We validate our trajectory generation system through two distinct modes of operation: light painting,
where an MAV flies through all waypoints, and multi-drone formation, in which multiple MAVs are arranged to emulate a
given image. The utility of each mode is evaluated differently, using the full resolution CrazyKhoreia output as a reference
for comparison. For the light painting mode, we logged the MAV’s pose at a frequency of 10 Hz and compared it with the
reference for different levels of detail in the reproduced path. The Root Mean Squared Error (RMSE) ranges from 0.1287 to
0.3190 m. For multi-drone formation, where the swarm remains stationary, we computed the RMSE by comparing observed
positions with the reference across multiple tests, resulting in a mean RMSE value of 0.1360 m.

Keywords Boundary tracing · Computer vision · Drone swarm · MAV · Path planning · Robotic perception

Introduction

Micro Air Vehicles (MAVs) have been used in numerous
applications in daily life and industry, including racing, cin-
ema, photography, precision agriculture, shipping, security,
military defense, data gathering, and fire control, among
others [1]. In addition to these scenarios, MAVs can also
replace fireworks for entertainment or marketing purposes.
Many firms have created impressive light shows with thou-
sands of drones, where a remote centralized ground station

typically controls a large MAV swarm by transmitting cho-
reography commands to each MAV.

The use of MAVs for light shows offers significant advan-
tages over conventional fireworks. MAVs are reusable, and
do not rely on any class of combustion material, meaning
that they do not leave particulate matter residues in the same
way as fireworks. Furthermore, the interest of many govern-
ments around the world in producing more environmentally
friendly shows has created a new sector in the market for
MAV light shows.

In general, to create a formation for MAV light shows,
multiple waypoints must be established manually to guide
the MAVs to mimic figures such as business logos, geomet-
ric shapes, or objects. However, this light show technique
typically requires a substantial number of MAVs and a sig-
nificant flight area to allow the show to be performed safely
and the intended pattern to be accurately portrayed [2].

A closely related application is Light Painting (LP), a
photography technique that involves moving a light source
(such as a MAV equipped with a light bulb) while a cam-
era sensor is exposed with a slow shutter speed. With this

 * Victor Romero-Cano
 romerocanov@cardiff.ac.uk

 Santiago Restrepo-Garcia
 santiago.restrepo_g@uao.edu.co

1 Faculty of Engineering, Universidad Autónoma de
Occidente, Cll 25 115-85, Cali 760030, Valle del Cauca,
Colombia

2 School of Computer Science and Informatics, Cardiff
University, Cardiff CF24 4 AG, Wales, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-025-04015-z&domain=pdf
http://orcid.org/0000-0003-2910-5116

 SN Computer Science (2025) 6:480 480 Page 2 of 20

SN Computer Science

method, it is possible to recreate the figures mentioned above
with a single MAV. In this case, the path planning problem
involves defining the trajectory required for the MAV to cre-
ate a drawing using a light bulb and a stationary slow-shutter
camera.

Although the manual design of MAV choreographies may
work as intended and produce impressive light shows, it is
a prolonged process that requires extensive manual labor
and many designers and engineers. The cost of creating a
MAV light show increases with the design complexity and
the number of MAVs in flight, which creates a usability gap
between choreography design and the deployment of MAVs
in the field, thereby limiting the more frequent usage of this
technology. It is necessary to incorporate intelligent robotic
systems into the choreography design process to close this
gap and to reduce the cost of using this technology.

The development of robotic perception systems has ena-
bled robots to process and interpret sensory data, allowing
them to model their environment and make decisions in the
physical world, including path planning. Many of these sys-
tems take advantage of machine learning (ML) and com-
puter vision technologies [3]. For example, Saavedra et al.
[4, 5] used robotic perception to autonomously land UAVs
on designated platforms. When implemented effectively,
perception systems can enhance automation, improve secu-
rity, and enable more efficient MAV choreography design
through advanced computational interfaces.

A previous version of this manuscript was posted as a
preprint in 2023 [6], introducing a robotic perception sys-
tem that can extract waypoints from standard 8-bit color or
grayscale images. The extracted waypoints can be used in
both Multiple Drone Formation (MDF) and LP applications,
as shown in Fig. 1.

The contributions of this work are as follows.

• We present a functional, open source, multi-platform
robotic perception architecture for MAV path planning
from digital images, which is entirely implemented in
Python.

• We introduce a documented, easily scalable library for
image and contour processing for MAVs.

• We present an end-to-end pipeline that works in two
modes of operation. MDF, a collision-free swarm coor-
dination algorithm for dense environments and LP, a
cost-conscious approach for aerial light shows.

Related Work

The task of path planning for MAVs from digital images
aims to solve two problems: the generation of a trajectory
from high-level user input, and collision avoidance between
drones.

In [7], the authors proposed a trajectory planner that
ensured a smooth, safe transition between established pat-
terns defined by motion primitives (i.e., a wave surface
equation, a helix or a cone). Although motion primitives
allow the user to set the desired trajectory by means of a
mathematical equation, this requires the end user to have
a knowledge of surface equations and motion dynamics. In
contrast, our work presents an easy-to-use architecture in
which the end user does not need to specify motion priors.

The authors of [8] developed a picture-based motion plan-
ner for a drawing robot. Their system used Canny’s algo-
rithm [9] to detect edges from a digital image. However, this
algorithm has limitations in the context of path planning, as
it does not generate continuous paths. To address this issue,
the authors devised an improved path planning algorithm
that scanned and tracked the white pixels in the image, cat-
egorizing them as start/end, normal, or branch points. As an

Fig. 1 Examples of the use of
CrazyKhoreia. A single digital
image (in this example the
silhouette of a bat) and the flight
space characteristics are passed
as input to CrazyKhoreia, which
applies several computer vision
algorithms to the image to
generate a flight plan for light
painting or multi-drone use

SN Computer Science (2025) 6:480 Page 3 of 20 480

SN Computer Science

alternative, the author of [10] proposed a boundary tracing
algorithm that naturally overcame this issue without requir-
ing additional computation steps. We therefore employed
this boundary-tracing approach in our scheme.

Incorporating an automatic perception and planning
tool into Computer Numerical Control (CNC) machines is
beneficial, as it enables automatic tool-path generation on
raw materials for machining. By vectorizing an image and
utilizing tool path generation software such as Mastercam,
a G Code program can be created that gives the required
trajectories. In a similar vein, the computer art algorithm
proposed in [11] utilized a monochrome digital image to
generate line and cutout art by imitating its patterns. In this
algorithm, the size of the lines and cutouts at each point was
determined by the pixel intensity. Likewise, the authors of
[12] used a Crazyflie MAV to create stippled prints from
centroidal Voronoi diagrams and optimized them with an
approximation of the travelling salesman problem to paint
the input image. The algorithms used in [11, 12] formed
a source of inspiration for the architecture of our work, as
we decided to restrict the user input to a digital image, the
dimensions of the flight space, and the characteristics of the
MAV. However, the algorithms described above only worked
with monochromatic images; in contrast, Crazykhoreia can
handle both monochromatic and color images, thereby
increasing the adaptability and usability of the system.

Several works have focused on trajectory generation
given a user input; for instance, in [13], the authors used
a Deep Neural Network (DNN) to recognize hand gestures
predefined by the user from a camera to control the path of
an MAV for LP. In [14], the authors used ML-based process-
ing of IMU data for gesture classification instead. These
algorithms are limited to the use of predefined gestures and
trajectories, meaning that the end user can select from only a
small range of options. Crazykhoreia does not have a limited
number of trajectories, which increases the possible outputs
of the system.

In [15], the authors described the creation of Airways,
an interactive MAV trajectory generator designed for entry-
level users without a technical background. Airways can
control the trajectory of an MAV based on high-level input
from the user, such as drawings, goal positions for video
panning, games, LP, and aerial shots. This algorithm cre-
ates feasible, collision-free trajectories based on high-level
input optimizations using iterative quadratic programming,
which solves the problem of MAV control. Obstacles are
modeled as spheres and used to adjust the path of the MAV
in each iteration. This obstacle-avoidance approach may
present issues when multiple MAVs fly in dense formations
due to the aerodynamic properties of the aircraft, such as the
downwash effect, which is significant beneath the rotors of a
quadcopter [16]. This effect may cause sufficient instability
to break the entire formation, and it is therefore necessary to

use another geometrical representation that takes into con-
sideration the downwash effect.

In [2], the authors represented unsafe flight regions by
means of an artificial potential field, which the MAV used
to avoid collisions; however, this algorithm often became
stuck in local optima, thus failing to converge to a feasi-
ble solution. The authors of [17] opted to work with buff-
ered Voronoi cells rather than potential fields, resulting in
a computationally low-cost algorithm that only required
positional data on each MAV in order to avoid collisions. In
the Crazyflie firmware, this algorithm was implemented as
collision_avoidance.c; however, this firmware does not offer
Python development, which would have allowed us to use it
in our system. We therefore chose to approximate ellipsoids
as cuboids, and employed a three-dimensional intersection
over union approach to detect collisions between them.

Recent work related to aerial light shows and swarm coor-
dination shows a desire in the community to build this type
of systems. Fagundes et al. [18] developed an LP pipeline
to take in digital images or parametric curves and processed
the resulted motion using videos. In 2023, the authors of
[19] implemented a closely related motion-planner by cap-
turing drawn trajectories with a cursor on a GUI. In [20]
the authors used three-dimensional ambigrams to establish
multi-view aerial light show using swarms while minimiz-
ing the quantity of required drones. Finally, [21] presented a
solution to the high-complexity concerns involved in aerial
light shows by implementing a fault-tolerant task assignment
algorithm.

Crazykhoreia

System Architecture

In this subsection, we describe the architecture of the Cra-
zyKhoreia system, and explain how the internal modules
work and interact with each other. CrazyKhoreia has two
flight modes, LP and MDF. Despite the differences between
them in terms of how the MAVs fly, the initial processing
steps of the algorithm are the same. CrazyKhoreia first pro-
cesses the high-level input from the user, in the form of a
standard digital image, to obtain contours or object bounda-
ries, and these are then scaled according to the flight space
constraints, which are also input by the user. The waypoints
are then extracted from the prepared contours.

Both the LP and MDF flight modes rely on these gen-
erated waypoints, although the handling differs in each
case. In LP, the system relies on the waypoints as input,
as they serve as key reference points for the movement of
the MAV along the desired path.

 SN Computer Science (2025) 6:480 480 Page 4 of 20

SN Computer Science

To ensure precise and efficient path planning, we con-
sider a user-defined parameter called the “detail”, which
is determined based on the Euclidean distance between a
pair of waypoints. By defining a level of detail based on
this distance, the system establishes criteria for limiting
the number of waypoints, which affects the level of detail
and the smoothness of the MAV’s trajectory.

By carefully adjusting the density of the waypoints to
achieve the desired resolution, the LP system reaches an
optimal balance between accuracy and computational effi-
ciency, according to the precision constraints of the physi-
cal system. This approach allows the MAV to transverse
the LP trajectory while minimizing the computational cost.

When used in the MDF mode, the algorithm estimates
the following quantities:

• An initial grid, based on the number of MAVs and the
flight space dimensions.

• An ideal formation, which is created by grouping the
waypoints into as many clusters as the number of MAVs
available.

• An adjusted MAV formation, which is calculated from
the ideal by taking into account unsafe flight areas (in the
form of cuboids) to ensure a collision-free formation.

• The assignment of the MAVs to their final positions.

In order to ensure that two or more MAVs do not fly too
close to each other, we define a three-dimensional cuboid
around each MAV that represents the Unsafe Flight Area

(UFA). This region is described using three parameters,
which are used to build a three-dimensional cuboid with
shape [lengthX ,widthY , heightZ] meters from the MAV’s
center of mass, with the Z axis pointing downwards, to take
into consideration the downwash effect produced by the
MAV’s rotors. Through the use of the UFA, we can adjust
the positions of the MDF to assure collision-free swarm
flight without warping the resulting formation.

The modules of the system are illustrated in the logical
architecture in Fig. 2.

Our system was tested with Crazyflies MAVs, which were
connected wirelessly using 2.4 GHz radio communication
via a Crazyradio PA 2.4 GHz antenna to a Ubuntu 22.04 PC
using the USB protocol, as shown in the physical architec-
ture in Fig. 3.

To make the user’s experience smoother, we also designed
a GUI to handle the connection between CrazyKhoreia and
the Crazyswarm ROS server, which can be difficult for non-
technical users. As shown in Fig. 4, this interface uses the
waypoint file generated previously. Depending on the flight
mode, it automatically writes the necessary data to the Cra-
zyswarm configuration files and executes a flight script, in
conjunction with a final user confirmation and a simula-
tion dial that toggles between a simulation and the physi-
cal robots; this launches the ROS server and lets the MAV
swarm fly.

The proposed scheme is illustrated in Fig. 5, in the form
of a Python-based Object Oriented Programming (OOP)
software architecture. Each software processing step is

Fig. 2 Logical architecture of CrazyKhoreia. Text and arrows in violet represent the user input, and internal processing is shown in black. This
architecture requires minimal user intervention, as the data are only needed once. As output, the user receives a file containing the flight plan

SN Computer Science (2025) 6:480 Page 5 of 20 480

SN Computer Science

implemented in a different OOP class; for instance, the
image-based waypoint generation stage is implemented in
the crazyKhoreia class, while the LP and MDF function-
alities are implemented in the lightPainting and multi-
DroneFormation classes, respectively.

Image‑Based Waypoint Generation

In our system, we use Suzuki’s boundary tracing algo-
rithm [10] to obtain coordinate chains from image pixels,
and implement this using the findContours() method from
OpenCV. This algorithm finds and retrieves contours from a
binary 8- bit channel image; however, the input image must
be binarized, meaning that the pixel values can only be zero
or one

In order to allow CrazyKhoreia to accept any standard
digital image, we use Otsu’s binarization method [22] to
generate a binary image from grayscale or color images
before findContours() is executed. This method automati-
cally chooses an optimal threshold for the binarization of a
monochromatic image by maximizing the variance between
the zero and one pixel classes. This is also implemented by
OpenCV in the threshold module, for which the THRESH_
OTSU flag should be enabled.

The output of our computer vision pipeline is illustrated
in Fig. 6. The original colored image is thresholded using
Otsu’s method, and the contours are then generated from the
correlation between the zero and one pixel classes. These
contours are highlighted in green.

A close-up of these contours is presented in Fig. 7, which
shows the unprocessed contours.

We note that the frame of the image was recognized as a
contour, which is not a desired output, meaning that further
processing is required. In this process, as the units of the
contours are the width and height of the image, we adjust the
pixel-to-distance proportions by using the flight dimensions
as constraints and the image width and height to calculate
the ratio shown in Eq. (1) and hence scale the contours with-
out affecting the original width-height ratio. The outer frame
is deleted, as shown in Fig. 8.

In the following sub-sections, we explain the implementa-
tion of LP and MDF with the processed contours.

Light Painting

In LP, one MAV flies following the generated waypoints.
Since findContours generates too many contours, they
cannot be immediately used as waypoints, and it is neces-
sary to filter out some of them to save memory space and
avoid saturating the control system. Algorithm 1 shows
the optimization process, which consists of calculating the
Euclidian distance between a pair of waypoints i and i + 1 ,
and comparing it against the detail factor, as mentioned in
Sect. “System Architecture”. If the Euclidian distance is less

(1)Px,y =
Image Shapex,y

Max Flight Spacex,y −MinFlight Spacex,y

Fig. 3 Physical architecture of CrazyKhoreia. All physical connections are two-way, allowing for constant data exchange between all parties.
The computer interfaces with the antenna via USB, and the antenna communicates with each MAV via radio at 2.4 GHz

Fig. 4 Logical architecture of CrazyGUI. The GUI connects CrazyKhoreia to the Crazyflies systems from the flight plan file, and the user then
chooses to whether to run a simulation or a physical flight

 SN Computer Science (2025) 6:480 480 Page 6 of 20

SN Computer Science

Fig. 5 Logical architecture of CrazyKhoreia with mapping onto the
physical architecture. The complete architecture is shown, with the
pipeline for a digital image and parameters for the final flight. There
are three main modules: CrazyKhoreia (for image-based waypoint

generation), MultiDroneFormation (for estimating the end positions
to mimic the original image) and LightPainting (for adjusting the
waypoints according to a user-defined resolution)

Fig. 6 Image-based waypoint generation. An original image is fed into a pair of computer vision algorithms to obtain a threshold image and a set
of unprocessed contours

SN Computer Science (2025) 6:480 Page 7 of 20 480

SN Computer Science

than the detail threshold, the waypoint i is removed from
the waypoint array. We use the image in Fig. 6 to illustrate

the effects of this algorithm by setting the level of detail to
0, 0.02, and 0.1 m.

Fig. 7 Raw contours. In this image, there are 72 contours, represented by combinations of colors and shapes as listed on both sides of the graph.
Some are unintended contours representing the frame of the image. The coordinate units are pixels

Fig. 8 Raw contours. After contour processing, the contours are
scaled in meters, and the extra frame contours are discarded. The fine
gray dashed lines represent the MAV’s flight plan. There are way-
points in this flight plan that were not originally intended, which hap-

pens each time the algorithm changes from one contour to another;
however, an optimization strategy for minimizing this effect falls out-
side the scope of this paper

 SN Computer Science (2025) 6:480 480 Page 8 of 20

SN Computer Science

Algorithm 1 LP optimization. A waypoint is removed if the defined distance is below an arbitrary threshold from the
next waypoint

The example in Fig. 6 is shown for reference in Fig. 9a, with
a detail level of 0 m, and in Fig. 9b, with a value of 0.02 m. In
Fig. 9c, the level of detail is set to the average error of the Loco
positioning system, i.e. 0.1 m. It can be seen that an increase in
the detail variable reduces the overall quality of the expected
results; it is important to note that the system error will depend
on the capabilities of the aircraft and the flight precision.

Finally, the flight choreography was tested in real life using
the Crazyflies MAV described above and shown in Fig. 10.
The reader may notice the resemblance between the expected
results at a detail level of 0.1 m, shown in Fig. 9(c), and the
physical outcome.

Multi‑Drone Formation

In the MDF mode, several MAVs are arranged into positions to
reconstruct the user’s desired figure. In this case, the figure is
a digital image provided by the user. The system achieves this
in four main steps after image processing: initial grid estima-
tion, clustering, collision-free waypoint adjustment, and MAV
assignment.

In this section, we explain these main four steps, and dem-
onstrate them using a bat silhouette image processed to obtain
waypoints, as shown in Fig. 11. We conduct physical experi-
ments using the generated waypoints with seven MAVs.

Initial Grid Estimation

In this step, a squared grid is automatically calculated to allow
the MAVs to be easily placed in the take-off zone before a
flight. This algorithm requires the dimensions of the flight
space, the number of MAVs, and the UFA in order to build a
centered grid. It first calculates the centre of the flight space,
and then estimates the grid size by rounding the squared root
of the number of MAVs. Finally, it uses the UFA to calculate
the grid initial vertex to which the MAVs are appended in
sequential order. A graphical representation of this feature is
shown in Fig. 14.

Clustering

To generate the ideal drone positions, the MDF mode uses
a well-known clustering algorithm to group the waypoints
obtained from the vision algorithms in Sect. 3.2. We use a
K-means implementation from the open-source scikit-learn
Python library in [23] as a clus- tering strategy to group the
previously generated waypoints into N clusters, where N is
the number of agents in flight. The system uses the cluster
centroids as the ideal MDF positions, and arranges them into
an N x 3 matrix. Equation 2 shows the K-means formula; this
algorithm is applied to seven MAVs, as shown in Fig. 12.

Collision‑Free Waypoint Adjustment

Since the ideal MDF positions may not allow for a col-
lision-free flight path, they need to be adjusted to avoid
collisions. A C++ implementation of the algorithm in
[17] uses ellipsoids to describe unsafe flight regions. In
this study, we build a virtual cuboid for each MAV in the
system, the dimensions of which are defined by the UFA,
which represents the minimum safety distance along each
axis needed for one MAV to pass another safely.

After building the cuboids for all MAVs, the algorithm
uses the Intersection over Union (IoU), also known as the
Jaccard index, as shown in Eq. (3). This returns a number
between zero and one, according to the volume of overlap
between two cuboids A and B, where zero indicates no
overlap, and one represents full overlap:

Using the IoU metric, and assuming the X-axis is the prin-
cipal axis, we can adjust the flight path by assuming a fixed

(2)
N∑
i=0

min
�j∈C

(||xi − �j||2)

(3)IoU =
|A ∩ B|
|A ∪ B| =

|I|
|U|

SN Computer Science (2025) 6:480 Page 9 of 20 480

SN Computer Science

point of view on the YZ plane, so the positions can be trans-
lated across the X-axis without significantly compromising
the quality of the swarm formation. We can then formulate
the path-planning cost function in Eq. (6) as follows.

Let � be a list of N �i drones.
(
Λ

k

)
 is a k × 2 array

containing all possible drone combinations. Finally, our
cost function J corresponds to the IoU between pairs of
MAVs with UFA Ω.

When the magnitude of the cost function vector is a mini-
mum, this means that the MAV formation is collision-free
and can be used for flight; otherwise, there will be a set of
cuboids Ω whose IoU is not zero, which represents a colli-
sion risk.

The virtual results of this iterative algorithm when
applied to the input image in Fig. 11 are illustrated in
Fig. 13, where the blue points represent the ideal forma-
tion positions obtained from clustering (Fig. 12), and the
orange points show how the optimization algorithm has
moved the blue dots across the X-axis.

MAV Assignment

In the MDF mode, the MAV assignment module solves the
problem of designating a unique MAV to each final MDF
position from the initial grid. This assignment requires an
intersection-free path that minimizes the overall flight dis-
tance based on the cost function. In [24], the authors pro-
posed an optimal allocation approach based on the Hungar-
ian method; however, rather than adjusting the formation of
MAVs to create a collision-free and aerodynamically safe
configuration, they first checked whether the Euclidian dis-
tance between the ideal positions satisfied a predetermined
minimum, and manual processing was required to adjust the
minimum distance hyperparameter. In our scheme, this pro-
cess is done automatically using a collision-free waypoint
adjustment.

(4)� = [�0, ..., �N]

(5)min J =

���������
Ω⎛

⎜⎜⎝
Λ

k

⎞
⎟⎟⎠
k

∩ Ω⎛
⎜⎜⎝
Λ

k

⎞
⎟⎟⎠
k+1

���������
���������
Ω⎛

⎜⎜⎝
Λ

k

⎞
⎟⎟⎠
k

∪ Ω⎛
⎜⎜⎝
Λ

k

⎞
⎟⎟⎠
k+1

���������

(6)J = [J0, ..., Jk]

Fi
g.

 9

C
om

pa
ra

tiv
e

of
 L

P
m

od
e

se
t w

ith
 d

iff
er

en
t d

et
ai

l l
ev

el
s.
a

LP
 w

ith
 a

 d
et

ai
l l

ev
el

 o
f z

er
o.

 A
t t

hi
s l

ev
el

, t
he

re
 is

 n
o

w
ay

po
in

t r
em

ov
al

, a
nd

 it
 a

pp
ea

rs
 a

s i
f t

he
 p

hy
si

ca
l M

AV
 w

ou
ld

 fl
y

w
ith

al

m
os

t n
o

er
ro

r.
b

LP
 w

ith
 d

et
ai

l l
ev

el
 0

.0
2.

 T
he

re
 is

 a
 su

bt
le

 d
iff

er
en

ce
 fr

om
 th

e
pl

an
 w

ith
 a

 d
et

ai
l l

ev
el

 o
f z

er
o,

 a
s t

he
 d

ist
an

ce
 b

et
w

ee
n

w
ay

po
in

ts
 is

 la
rg

er
. c

 L
P

w
ith

 a
 d

et
ai

l l
ev

el
 o

f 0
.1

. T
he

im

ag
e

is
 n

o
lo

ng
er

 re
co

gn
iz

ab
le

, a
nd

 th
e

ap
pa

re
nt

 e
rr

or
 is

 si
gn

ifi
ca

nt
ly

 g
re

at
er

. T
hi

s l
ev

el
 o

f d
et

ai
l s

ho
ul

d
be

 si
m

ila
r t

o
th

e
ac

cu
ra

cy
 o

f t
he

 n
av

ig
at

io
n

sy
ste

m

 SN Computer Science (2025) 6:480 480 Page 10 of 20

SN Computer Science

The MAV assignment algorithm used in this paper was
an implementation of the Hungarian method in the scikit-
learn library linear_sum_assignment(), which worked as
expected in terms of allocating MAVs to their final positions.

Figure 14 shows the overall flight plan with the initial grid,
flight space dimensions, center of the flight space, ideal and
adjusted positions, and a flight path.

Fig. 10 Real-life results from
the LP system. As the physical
drones and perception system
used to test our system had an
accuracy of around 0.1 m, it can
be seen that the results of this
trial resemble Fig. 11, as the
level of detail is similar to the
physical accuracy

Fig. 11 Image-based waypoint generation. Image used to test the Multi-Drone Formation functionality and its contour processing

SN Computer Science (2025) 6:480 Page 11 of 20 480

SN Computer Science

Physical Experiment

The results of our physical experiments are shown in Fig. 15
for an MDF of seven MAVs for an input image of a bat

silhouette. Since prior work on generating flight paths from
digital images is limited, we could not compare the evalu-
ation metrics and the results from this work with those of
other works in the literature, as the I/O of these systems
differs. We propose the evaluation methodology described

Fig. 12 Clustering results. The waypoints are distributed into a known number of clusters, which is equal to the number of MAVs available. The
centroids of the clusters are considered the ideal positions for the MAV swarm to emulate the image

Fig. 13 Results of cost function optimization. The final positions are computed to avoid between-drone collisions and are represented as orange
dots. A front view allows us to check whether the displacement from the ideal positions shown as blue dots warps the image reconstruction

 SN Computer Science (2025) 6:480 480 Page 12 of 20

SN Computer Science

Fig. 14 Calculated MDF from
an input image of a bat silhou-
ette. The green circles represent
the initial grid of MAVs; the red
triangle shows the centre of the
flight space; the black dashed
lines show the dimensions of
the flight space; and the dashed/
dotted grey lines show the flight
paths of the MAVs. This figure
allows us to check the differ-
ent MAV/position assignments
shown with grey lines; for
instance, MAV 0 is assigned to
position 2

Fig. 15 Real-life results for the MDF system. The system generates a bat silhouette as intended

SN Computer Science (2025) 6:480 Page 13 of 20 480

SN Computer Science

in the next section as a baseline for comparing future work
or further improvements to the scheme set out in this paper.

Evaluation

This section describes the evaluation methods used to meas-
ure the performance of CrazyKhoreia in both the LP and
MDF modes of use, and present a summary of the obtained
metrics. An open-source implementation of our system is
provided in a publicly available Github repository.1

For validation and testing purposes, we used the Cra-
zyswarm Project’s Crazyflies [25]. The Crazyswarm Pro-
ject includes a ROS [26] server that manages the Crazyflie
fleet, and allows control with Python scripting using ROS
communication protocols for both high and low-level tasks.

Crazyflies have an onboard state estimation module that
uses one-way ultra-wideband communication [27]. This
module localizes the MAVs within a flight space 2.89
× 2.89 × 2.0 m in size, with an Ultra-Wideband Sensor
(UWB) in each corner and one mounted on each MAV.
It also runs an Extended Kalman Filter (EKF) using the
UWB sensor array and the Time Difference of Arrival
(TDoA V2) mode. The expected accuracy of the sensor,
according to the manufacturer Bitcraze, is approximately
0.1 m, although this accuracy is heavily dependent on the
flight space distribution, as well as the electromagnetic

environment, and this system may have an average error
of around 0.2 m.2

A Sony �6400 is used to capture long-exposure photo-
graphs for the LP mode of use and to record the MDF flights.

Light Painting

To obtain the observed trajectories for the MAVs, we logged
the state estimator output at 10 Hz to compare them with
CrazyKhoreia’s output as ground truth at a level of detail of
0 m. We used Crazyflie’s firmware as software-in-the-loop
to simulate the dynamics of the MAV, this allowed us to
further validate the LP mode with simulation data, sampled
at 5 Hz. The datasets were sampled at different frequencies
and are not synchronized, meaning that it is not possible to
compare them without aligning the data.

Sturm et al. [28] were faced with a similar situation, as
they needed to evaluate a large sequence of RGB-D images
sampled at 30 Hz against a ground truth trajectory from a
motion-capture system sampled at 100 Hz. They proposed
an automatic evaluation method for associating and evaluat-
ing the two drifted datasets by analyzing the global consist-
ency of the estimated trajectory against the ground truth
and calculating the Root Mean Squared Error (RMSE). We
use these algorithms3 to associate the estimator logs with
the ground truth to evaluate our system. Table 1 shows a
summary of these metrics for six flight trials with diverse

Table 1 Evaluation metrics for
light painting mode in physical
drones

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

RMSE 0.087034 0.157847 0.284034 0.179877 0.154584 0.417562 0.213490
Mean 0.080214 0.137918 0.242925 0.166769 0.138483 0.355412 0.186954
Median 0.080742 0.135265 0.208714 0.160938 0.137564 0.304038 0.171210
Standard deviation 0.033775 0.076774 0.147182 0.067407 0.068693 0.219182 0.102169
Minimum 0.025966 0.027454 0.024886 0.035550 0.015202 0.013244 0.023717
Maximum 0.182111 0.321177 0.727020 0.317374 0.310204 1.036357 0.482374

Table 2 Evaluation metrics for
light painting mode in simulated
drones

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

RMSE 0.146744 0.128745 0.319023 0.019805 0.019607 0.182799 0.136121
Mean 0.135465 0.112889 0.284876 0.017571 0.018496 0.145958 0.119209
Median 0.123634 0.104618 0.257089 0.015938 0.019302 0.116380 0.106160
Standard deviation 0.056418 0.061896 0.143601 0.009136 0.006504 0.110054 0.064602
Minimum 0.024481 0.009298 0.020198 0.001404 0.003700 0.001245 0.010054
Maximum 0.292981 0.229668 0.641984 0.047737 0.032369 0.408934 0.275612

1 https:// github. com/ santi agorg 2401/ crazy Khore ia.

2 https:// www. bitcr aze. io/ docum entat ion/ system/ posit ioning/ accur
acy- loco/.
3 https:// cvg. cit. tum. de/ data/ datas ets/ rgbd- datas et/ tools.

https://github.com/santiagorg2401/crazyKhoreia
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools

 SN Computer Science (2025) 6:480 480 Page 14 of 20

SN Computer Science

input images such as a capital letter A, a bat silhouette, a
boat, a circle, a heart and the word “holi”, using physical
drones. Whereas Table 2 shows the results of these trials in
simulation mode.

Although metrics such as RMSE and MSE are commonly
used for path planning, and we used them in this article to
evaluate the flight component of this work, these metrics
are not a true measure of how the waypoint generator Cra-
zyKhoreia recreates the input image. For this reason, we use
the Structural Similarity Index Measure, or SSIM [29]. The
SSIM measures the differences between a reference image
and its altered version in a range from 0 to 1 to obtain a per-
ceptual image quality metric. We applied this computation
by first creating a zeros image matching the shape of the
original image, then taking the output of the CrazyKhoreia
system and scaling it back to match the dimensions of the
figure, and finally tracing a path in the waypoints coordi-
nates. In Fig. 16, we show how this method works with the
boat image, which contains several contours. The SSIM
values for all testing images range from 0.9801 to 0.8674,
successfully validating the image fidelity of the waypoint
generator. Table 3 shows the results for different test images,
where images with multiple contours contribute to a lower
similarity measure due to undesired light traces.

Additionally, the influence of the detail level can also be
measured using the SSIM. As seen in Fig. 9, the resulting
image fidelity rapidly degrades as the detail level increases.
We tested this by comparing the output of CrazyKhoreia for
detail level ranging from 0.00 to 0.20 against the original
image, resulting in SSIM values from 0.8744 to 0.7290 as
expected. In Table4, we present the SSIM value and number
of waypoints for each detail level on the boat figure.

Finally, these metrics show that the flight performance
of CrazyKhoreia in LP mode is aligned with the dynamic

constraints of the Crazyflies. However, an additional error
is introduced by the complexity of the image; this can be
observed in the “Holi” and"Boat 2"trials, which had a larger
error than the previous tests and a lower SSIM. The MAV
also has to cross unexpected space to change between con-
tours, which adds light traces which are not desirable and
introduces further error into the evaluation of the system.
Furthermore, the flight instability due to the small size of
the flight space and aerodynamic issues does not allow the
MAV to fly consistently, resulting in an experimental error
that is approximately %56.84 larger than the simulated error.

Multi‑Drone Formation

In MDF, the MAVs are meant to remain at a set position, and
the metrics were measured by taking a picture like Fig. 15.
By using Image-J [30], we could estimate the swarm posi-
tion in the YZ plane and calculate the error using the Euclid-
ean distance between the observed and the expected data;
we then evaluated the Mean Absolute Error (MAE), Mean
Squared Error (MSE) and the Root Mean Squared Error
(RMSE). The evaluation results show an even distribution
of errors, as the MAE is larger than the MSE, which con-
tributes to a less warped MAV formation and thus better
replicates the original image. However, as the RMSE and
the MSE suggest, the system is still sensitive to outlier errors

Fig. 16 SSIM on the boat test image. Additional light traces between contours degrade image fidelity, which lowers the SSIM

Table 3 SSIM analysis on all
test images

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

SSIM Index 0.8674 0.9131 0.8443 0.9653 0.9801 0.8434 0.9023

Table 4 SSIM analysis on different detail levels on the boat image

Detail levels

 Metric 0.00 0.05 0.10 0.15 0.20

SSIM Index 0.8744 0.8024 0.7956 0.7488 0.7290
Number of Waypoints 7597 288 144 110 67

SN Computer Science (2025) 6:480 Page 15 of 20 480

SN Computer Science

that may impact the quality of the MDF mode. The results
are summarized in Table 5.

In this case, MDF involves the MAVs hovering indefi-
nitely until the user tells them to land. The control system
of the MAV and its stability over time significantly contrib-
ute to the overall system error. In this case, CrazyKhoreia’s
performance in the MDF mode was highly accurate, with an
RSME of 0.136 m, which matches the EKF accuracy.

On the other hand, we tested the MDF system in a simu-
lated environment using 5, 15, 25, 50, 75, and 100 MAVs.
However, it was challenging to perform simulations from
50 UAVs and higher since the simulator had not been tested
with large swarms yet, causing outliers to be far from their
goal position or failing to simulate completely. We docu-
mented these experiments in Fig. 17, showing a plot contain-
ing the goal positions in blue, and the observed positions
from the simulation log in orange. Although the impact of
increasing the number of MAVs is feasible, the computa-
tional time increases considerably with larger swarms, as
seen in Fig. 18. We condense the metrics evaluation on
simulated experiments in Table 6. Besides higher positional
error and computational cost, CrazyKhoreia still achieves
feasible results regardless of the number of MAVs.

Discussion

In recent years, there has been a growing interest in develop-
ing systems for automating aerial light shows with UAVs.
Particularly, the focus of this work was generating motion
based on digital images as this offers a straight-forward way
to create aerial light shows in a fast manner. In Table 7 we
summarize the most relevant work in motion planning based
on a user input, such as images, drawing, curves and end-
points. To the best of our knowledge, there has not been a
consensus in a standardized way to evaluate this type of sys-
tems. Hence, we compare our work based on its features, and
the evaluation methods performed. Our work can function
with a single or multiple UAVs, and it is evaluated quan-
titatively by using common metrics such as RMSE, MAE
and MSE.

Pichierri [19] in their work, CrazyChoir, offers a similar
pipeline to creating coordinated motion using UAVs. We
consider their contribution on an LP system as it is most
relevant in this context. They created a toolbox capable of

tracking cursor movement in a GUI, which they later trans-
formed into waypoints. They evaluated the system by cre-
ating a test flight with a CrazyFlie MAV and judging the
resulted motion quality visually. Fagundes [18] also offered
an approach to LP design by utilizing images and parametric
curves as inputs. In this case, they used a laplacian filter to
detect the image edges, which they later used to control the
UAV motion. As [19], they also analized the resulted LP
image visually to evaluate their performance.

Moreover, Weng [20] proposed an interesting way to take
advantage of three different viewing angles for the audience
by building a 3D ambigram. They managed to do this by
taking three input images and the dimensional conditions of
the scenario. Then, these images are processed using bina-
rization and a linear conversion to translate it into the visual
space. They optimized the resulting waypoints by using a
projection error to match common waypoints between the
three images and using them to build the MDF. The authors
reported a MAE of 0.03765, 0.02246 and 0.02593 for the
three test images used in the simulated experiments. Jan
[21] tackled computational issues commonly found in aerial
light shows. For instance, they created a system which takes
already processed waypoints and handles task assignment,
coordination, fault tolerance by providing backup drone, and
collision avoidance.

Additionally, we performed a semi-quantitative evalua-
tion on the systems provided on [18] and [19]. For this, we
used the images provided in their letters for both inputs and
outputs. Then, we obtained SSIMs for both cases, which can
be compared against the evaluation metrics for this paper.
The corresponding SSIM values were 0.5564, 0.4579, and
0.8434 for Pichierri, Fagundes and the"holi"trial for Cra-
zyKhoreia, which was the highest complexity image, respec-
tively. It is worth noting that in both cases, the system is sen-
sitive to flight performance, which affects image fidelity. In
Fig. 19, we show the SSIM for both cases, with an index of
0.5564 and 0.4579 for Pichierri and Fagundes, respectively.

Conclusion

In this paper, we have introduced CrazyKhoreia, a functional
and user-friendly robotic perception architecture for MAV
path planning in light shows based on high-level user input.
Our algorithms have been fully implemented in Python

Table 5 Evaluation metrics for
multi-drone formation mode in
physical drones

Test images

 Metric Triangle 3 MAVs Triangle 4 MAVs Star 5 MAVs Batman 7 MAVs Average

MAE 0.033 0.100 0.140 0.157 0.108
MSE 0.003 0.015 0.026 0.041 0.021
RMSE 0.058 0.122 0.161 0.204 0.136

 SN Computer Science (2025) 6:480 480 Page 16 of 20

SN Computer Science

Fi
g.

 1
7

 P
er

fo
rm

an
ce

 te
st

va
ry

in
g

th
e

nu
m

be
r o

f s
im

ul
at

ed
 U

AV
s f

ro
m

 5
 u

p
to

 1
00

SN Computer Science (2025) 6:480 Page 17 of 20 480

SN Computer Science

Fi
g.

 1
8

 P
lo

ts
 o

f t
he

 e
rr

or
 v

ar
ia

tio
n

re
la

tiv
e

to
 th

e
nu

m
be

r o
f U

AV
s

 SN Computer Science (2025) 6:480 480 Page 18 of 20

SN Computer Science

and are publicly available as an open-sourced PyPi pack-
age called CrazyKhoreia, making the code easily accessi-
ble for further use and development. This work offers the
user a pipeline from inputting a digital image to creating a
fully autonomous MAV swarm that executes the trajectories
planned by the algorithms proposed in this paper. Our sys-
tem is capable of designing and processing an aerial MAV
light show in two modes of operation: LP, in which a single
MAV draws an image using a light bulb, and MDF mode, in
which multiple MAVs hover at predetermined positions to
accurately resemble the image.

We found that CrazyKhoreia’s flight performance in the
LP mode was adequate in terms of the swarm’s accuracy
on the logs of physical experiments such as the letter A
and the Batman logo, which had RMSE errors of 0.087034
and 0.157847 m, respectively compared against the out-
put of CrazyKhoreia with a detail level of 0.02. Moreo-
ver, SSIM analysis on the waypoints generator shows
how CrazyKhoreia can recreate the original image with
SSIM values from 0.9801 to 0.8434, with higher values
meaning a better structural similarity between the input
and resulting images. However, on more complex images

Table 6 Evaluation metrics for
multi-drone formation mode in
simulated drones

Number of MAVs

 Metric 5 15 25 50 75 100

MAE 0.024146 0.375684 0.685345 0.500909 0.785833 0.998290
MSE 0.001540 0.248626 0.810208 0.541254 1.498744 2.752233
RMSE 0.026157 0.475007 0.779889 0.650511 0.960280 1.271988
Compute time 0.033333 0.083333 0.250000 3.000000 13.00000 42.00000

Table 7 Comparisson
between state-of-the-art aerial
light shows methods and
CrazyKhoreia

Mode Evaluation

Input type Single
UAV

Multi
UAV

Qualitative Quantitative Method

CrazyKhoreia Images ✓ ✓ ✗ ✓ RMSE,
MAE,
and MSE

Pichierri [19] Cursor tracking ✓ ✗ ✓ ✗ Visual
Fagundes [18] Parametric curves

and images
✓ ✗ ✓ ✗ Visual

Weng [20] Images ✗ ✓ ✗ ✓ MAE
and MPE

Jan [21] End-points ✗ ✓ ✗ ✓ Complexety

Fig. 19 SSIM comparison between Pichierri [19] and Fagundes [18] respectively

SN Computer Science (2025) 6:480 Page 19 of 20 480

SN Computer Science

such as Boat2 and Holi, the system gave RMSE errors of
around 0.284034 and 0.417562 m. An average RMSE of
0.213490 is found in physical experiments while simula-
tion provided an error of 0.136121 m. This was due to
flight instabilities and aerodynamic issues, and because
the MAVs flew through areas that were not in the original
image, which increased the error. In contrast, in the MDF
mode, the system performed above our expectations, with
an RMSE error of 0.136 m, which is considerably lower
than that of the UWB sensors and the EKF accuracy pro-
vided by the manufacturer. Testing the MDF mode using
simulated drones proved CrazyKhoreia’s scalability. It can
successfully run on swarms of 5 to 100 MAVs. However,
large swarms affect error and computational time. Also,
simulation proved challenging on large swarms, increas-
ing the number of outliers and further affecting evalua-
tion metrics, with RMSE values ranging from 0.026157
to 1.271988 m.

Future work will involve creating an optimization func-
tion for the LP mode to minimize the length of the flight
path between contours and reduce power consumption. Even
though the MDF mode works as intended, it would be inter-
esting to allow the system to automatically change between
formations smoothly to enable more vivid aerial light shows.
Furthermore, studying different geometrical representations
for the collision avoidance algorithm might improve the
MDF performance of large swarms in dense environments.
Additionally, as this is an offline planner, CrazyKhoreia does
not account for external disturbances. As observed in the
physical experiments, small environmental or navigational
perturbations affect how the image is recreated by the drone.
Future work can include accounting for the effects on image
fidelity of factors such as wind and localisation drift. Nota-
bly, adding an onboard controller capable of reacting to these
perturbations while minimizing the error would increase the
system’s robustness and feasibility for outdoor deployment.
At present, CrazyKhoreia operates independently of the
controller or hardware used, and it can be integrated with
standard controllers such as PID, or more advanced control
strategies that explicitly address external disturbances.

Funding No funding was received to assist with the preparation of
this manuscript.

Data Availability Data sharing not applicable to this article as no data-
sets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors have no conflict of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Fennelly LJ, Perry MA. Appendix 16a - unmanned aerial vehicle
(drone) usage in the 21st century. In: Davies, S.J., Fennelly, L.J.
(eds.) The Professional Protection Officer (Second Edition), Sec-
ond edition edn., pp. 183–189. Butterworth-Heinemann, Boston.
2020. https:// doi. org/ 10. 1016/ B978-0- 12- 817748- 8. 00050-X .
https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ B9780 12817
74880 0050X.

 2. Sun H, Qi J, Wu C, Wang M. Path planning for dense drone for-
mation based on modified artificial potential fields. In: 2020 39th
Chinese Control Conference (CCC), 2020;pp. 4658–4664. https://
doi. org/ 10. 23919/ CCC50 068. 2020. 91893 45.

 3. Premebida C, Ambrus R, Marton Z-C. Intelligent robotic per-
ception systems. In: Hurtado, E.G. (ed.) Applications of Mobile
Robots. IntechOpen, Rijeka. 2018. Chap. 6. https:// doi. org/ 10.
5772/ intec hopen. 79742.

 4. Ruiz MS, Vargas AMP, Cano VR. Detection and tracking of a
landing platform for aerial robotics applications. In: 2018 IEEE
2nd Colombian Conference on Robotics and Automation (CCRA),
2018;pp. 1–6. https:// doi. org/ 10. 1109/ CCRA. 2018. 85881 12.

 5. Saavedra-Ruiz M, Pinto-Vargas AM, Romero-Cano V. Monocu-
lar visual autonomous landing system for quadcopter drones
using software in the loop. IEEE Aerosp Electron Syst Mag.
2022;37(5):2–16. https:// doi. org/ 10. 1109/ MAES. 2021. 31152 08.

 6. Restrepo-García S, Romero-Cano V. CrazyKhoreia, a robotic
perception system for UAV path planning from digital images.
TechRxiv. 2023. https:// doi. org/ 10. 36227/ TECHR XIV. 21836 868.
V1.

 7. Du X, Luis CE, Vukosavljev M, Schoellig AP. Fast and in sync:
Periodic swarm patterns for quadrotors. In: IEEE Int. Conf. Robot.
Autom., 2019;pp. 9143–9149. https:// doi. org/ 10. 1109/ ICRA.
2019. 87940 17.

 8. Hsu C-F, Kao W-H, Chen W-Y, Wong K-Y. Motion planning and
control of a picture-based drawing robot system. In: IFSA-SCIS
2017 - Jt. 17th World Congr. Int. Fuzzy Syst. Assoc. 9th Int. Conf.
Soft Comput. Intell. Syst., 2017;pp. 1–5. https:// doi. org/ 10. 1109/
IFSA- SCIS. 2017. 80232 32.

 9. Canny J. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell. 1986;PAMI-8(6), 679–698. https:// doi.
org/ 10. 1109/ TPAMI. 1986. 47678 51.

 10. Suzuki S, be K. Topological structural analysis of digitized
binary images by border following. Comput graph image pro-
cess. 1985;30(1):32–46. https:// doi. org/ 10. 1016/ 0734- 189X(85)
90016-7.

 11. Stoppel S, Bruckner S. Lineslab: A flexible low-cost approach
for the generation of physical monochrome art. Comput Graph
Forum. 2019;38(6):110–24. https:// doi. org/ 10. 1111/ cgf. 13609.
https:// onlin elibr ary. wiley. com/ doi/ pdf/ 10. 1111/ cgf. 13609

 12. Galea B, Kia E, Aird N, Kry PG. Stippling with aerial robots. In:
Proceedings of the Joint Symposium on Computational Aesthetics

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/B978-0-12-817748-8.00050-X
https://www.sciencedirect.com/science/article/pii/B978012817748800050X
https://www.sciencedirect.com/science/article/pii/B978012817748800050X
https://doi.org/10.23919/CCC50068.2020.9189345
https://doi.org/10.23919/CCC50068.2020.9189345
https://doi.org/10.5772/intechopen.79742
https://doi.org/10.5772/intechopen.79742
https://doi.org/10.1109/CCRA.2018.8588112
https://doi.org/10.1109/MAES.2021.3115208
https://doi.org/10.36227/TECHRXIV.21836868.V1
https://doi.org/10.36227/TECHRXIV.21836868.V1
https://doi.org/10.1109/ICRA.2019.8794017
https://doi.org/10.1109/ICRA.2019.8794017
https://doi.org/10.1109/IFSA-SCIS.2017.8023232
https://doi.org/10.1109/IFSA-SCIS.2017.8023232
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1111/cgf.13609
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13609

 SN Computer Science (2025) 6:480 480 Page 20 of 20

SN Computer Science

and Sketch Based Interfaces and Modeling and Non-Photorealistic
Animation and Rendering. Expresive ’16, pp. 125–134. Euro-
graphics Association, Goslar, DEU. 2016.

 13. Serpiva V, Karmanova E, Fedoseev A, Perminov S, Tsetserukou
D. Dronepaint: Swarm light painting with dnn-based gesture rec-
ognition. In: ACM SIGGRAPH 2021 Emerging Technologies.
SIGGRAPH ’21. Association for Computing Machinery, New
York, NY, USA. 2021. https:// doi. org/ 10. 1145/ 34505 50. 34653 49.

 14. Ibrahimov R, Zherdev N, Tsetserukou D. Dronelight: Drone draws
in the air using long exposure light painting and ml. In: 2020 29th
IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), 2020;pp. 446–450. https:// doi. org/
10. 1109/ RO- MAN47 096. 2020. 92236 01.

 15. Gebhardt C, Hepp B, Nägeli T, Stevšić S, Hilliges O. Airways:
Optimization-based planning of quadrotor trajectories according
to high-level user goals. In: Conf. Hum. Factors Comput. Syst.
- Proc. CHI ’16, pp. 2508–2519. Association for Computing
Machinery, New York, NY, USA. 2016. https:// doi. org/ 10. 1145/
28580 36. 28583 53.

 16. Zheng Y, Yang S, Liu X, Wang J, Norton T, Chen J, Tan Y. The
computational fluid dynamic modeling of downwash flow field for
a six-rotor uav. Front Agric Sci Eng. 2018;5(2):159. https:// doi.
org/ 10. 15302/J- FASE- 20182 16.

 17. Zhou D, Wang Z, Bandyopadhyay S, Schwager M. Fast, on-line
collision avoidance for dynamic vehicles using buffered voronoi
cells. IEEE Robot Autom Lett. 2017;2(2):1047–54. https:// doi.
org/ 10. 1109/ LRA. 2017. 26562 41.

 18. Fagundes LA, Barcelos CO, Vassallo RF, Brandão AS. Exploring
the science and art of uav light painting: From equations and pix-
els to long-exposure photography. 2024 International Conference
on Unmanned Aircraft Systems, ICUAS 2024, 2024;755–762.
https:// doi. org/ 10. 1109/ ICUAS 60882. 2024. 10556 858.

 19. Pichierri L, Testa A, Notarstefano G. Crazychoir: Flying swarms
of crazyflie quadrotors in ros 2. IEEE Robotics and Automation
Letters. 2023;8:4713–20. https:// doi. org/ 10. 1109/ LRA. 2023.
32868 14.

 20. Weng KC, Lin ST, Hu CC, Soong RT, Chi MT. Multi-view
approach for drone light show. Visual Computer. 2023;39:5797–
808. https:// doi. org/ 10. 1007/ S00371- 022- 02696-8/ FIGUR ES/ 18.

 21. Jan GE, Lei T, Sun CC, You ZY, Luo C. On the problems of drone
formation and light shows. IEEE Trans Consum Electron. 2024.
https:// doi. org/ 10. 1109/ TCE. 2024. 34215 16.

 22. Otsu N. A threshold selection method from gray-level histograms.
IEEE Trans Syst Man Cybern: Syst. 1979;9(1):62–6. https:// doi.
org/ 10. 1109/ TSMC. 1979. 43100 76.

 23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M. Duch-
esnay: Scikit-learn: Machine learning in python. J Mach Learn
Res. 2011;12(85):2825–30.

 24. Nar D, Kotecha R. Optimal waypoint assignment for designing
drone light show formations. Results Control Optim. 2022;9:
100174. https:// doi. org/ 10. 1016/j. rico. 2022. 100174.

 25. Preiss JA, Honig W, Sukhatme GS, Ayanian N. Crazyswarm: A
large nano-quadcopter swarm. In: IEEE Int. Conf. Robot. Autom.,
2017;pp. 3299–3304. https:// doi. org/ 10. 1109/ ICRA. 2017. 79893
76.

 26. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J,
Wheeler R, Ng AY, et al. Ros: an open-source robot operating
system. In: Proc. - IEEE Int. Conf. Robot. Autom., 2009;vol. 3,
p. 5. Kobe, Japan.

 27. Ledergerber A, Hamer M, D’Andrea R. A robot self-localization
system using one-way ultra-wideband communication. In: IEEE
Int. Conf. Intell. Robots Syst., 2015;pp. 3131–3137. https:// doi.
org/ 10. 1109/ IROS. 2015. 73538 10.

 28. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D. A bench-
mark for the evaluation of rgb-d slam systems. In: IEEE Int. Conf.
Intell. Robots Syst., 2012;pp. 573–580. https:// doi. org/ 10. 1109/
IROS. 2012. 63857 73.

 29. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality
assessment: from error visibility to structural similarity. IEEE
Trans Image Process. 2004;13(4):600–12. https:// doi. org/ 10. 1109/
TIP. 2003. 819861.

 30. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with
imagej Biophotonics Int. 2004;11(7):36–42.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3450550.3465349
https://doi.org/10.1109/RO-MAN47096.2020.9223601
https://doi.org/10.1109/RO-MAN47096.2020.9223601
https://doi.org/10.1145/2858036.2858353
https://doi.org/10.1145/2858036.2858353
https://doi.org/10.15302/J-FASE-2018216
https://doi.org/10.15302/J-FASE-2018216
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/ICUAS60882.2024.10556858
https://doi.org/10.1109/LRA.2023.3286814
https://doi.org/10.1109/LRA.2023.3286814
https://doi.org/10.1007/S00371-022-02696-8/FIGURES/18
https://doi.org/10.1109/TCE.2024.3421516
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.rico.2022.100174
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/IROS.2015.7353810
https://doi.org/10.1109/IROS.2015.7353810
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

	CrazyKhoreia: A Robotic Perception System for MAV Path Planning From Digital Images
	Abstract
	Introduction
	Related Work
	Crazykhoreia
	System Architecture
	Image-Based Waypoint Generation
	Light Painting
	Multi-Drone Formation
	Initial Grid Estimation
	Clustering
	Collision-Free Waypoint Adjustment
	MAV Assignment
	Physical Experiment

	Evaluation
	Light Painting
	Multi-Drone Formation
	Discussion

	Conclusion
	References

