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Abstract
Micro Air Vehicles (MAVs) can be used for a wide range of applications, such as drone-based light shows for cultural or 
marketing purposes, or as a replacement for fireworks. However, more widespread usage of this technology is precluded by 
the usability gap between choreography design and deployment on target drones. Seamless deployment of MAV choreog-
raphies requires the building of computational interfaces that can obtain drone trajectories from conventional media such 
as digital images. In this paper, we propose CrazyKhoreia, a low-cost, computationally efficient approach to MAV chore-
ography design. CrazyKhoreia is a robotic perception system that obtains a safe, traversable, and accurate waypoint matrix 
from a digital image. We validate our trajectory generation system through two distinct modes of operation: light painting, 
where an MAV flies through all waypoints, and multi-drone formation, in which multiple MAVs are arranged to emulate a 
given image. The utility of each mode is evaluated differently, using the full resolution CrazyKhoreia output as a reference 
for comparison. For the light painting mode, we logged the MAV’s pose at a frequency of 10 Hz and compared it with the 
reference for different levels of detail in the reproduced path. The Root Mean Squared Error (RMSE) ranges from 0.1287 to 
0.3190 m. For multi-drone formation, where the swarm remains stationary, we computed the RMSE by comparing observed 
positions with the reference across multiple tests, resulting in a mean RMSE value of 0.1360 m.
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Introduction

Micro Air Vehicles (MAVs) have been used in numerous 
applications in daily life and industry, including racing, cin-
ema, photography, precision agriculture, shipping, security, 
military defense, data gathering, and fire control, among 
others [1]. In addition to these scenarios, MAVs can also 
replace fireworks for entertainment or marketing purposes. 
Many firms have created impressive light shows with thou-
sands of drones, where a remote centralized ground station 

typically controls a large MAV swarm by transmitting cho-
reography commands to each MAV.

The use of MAVs for light shows offers significant advan-
tages over conventional fireworks. MAVs are reusable, and 
do not rely on any class of combustion material, meaning 
that they do not leave particulate matter residues in the same 
way as fireworks. Furthermore, the interest of many govern-
ments around the world in producing more environmentally 
friendly shows has created a new sector in the market for 
MAV light shows.

In general, to create a formation for MAV light shows, 
multiple waypoints must be established manually to guide 
the MAVs to mimic figures such as business logos, geomet-
ric shapes, or objects. However, this light show technique 
typically requires a substantial number of MAVs and a sig-
nificant flight area to allow the show to be performed safely 
and the intended pattern to be accurately portrayed [2].

A closely related application is Light Painting (LP), a 
photography technique that involves moving a light source 
(such as a MAV equipped with a light bulb) while a cam-
era sensor is exposed with a slow shutter speed. With this 

 * Victor Romero-Cano 
 romerocanov@cardiff.ac.uk

 Santiago Restrepo-Garcia 
 santiago.restrepo_g@uao.edu.co

1 Faculty of Engineering, Universidad Autónoma de 
Occidente, Cll 25 115-85, Cali 760030, Valle del Cauca, 
Colombia

2 School of Computer Science and Informatics, Cardiff 
University, Cardiff CF24 4 AG, Wales, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-025-04015-z&domain=pdf
http://orcid.org/0000-0003-2910-5116


 SN Computer Science           (2025) 6:480   480  Page 2 of 20

SN Computer Science

method, it is possible to recreate the figures mentioned above 
with a single MAV. In this case, the path planning problem 
involves defining the trajectory required for the MAV to cre-
ate a drawing using a light bulb and a stationary slow-shutter 
camera.

Although the manual design of MAV choreographies may 
work as intended and produce impressive light shows, it is 
a prolonged process that requires extensive manual labor 
and many designers and engineers. The cost of creating a 
MAV light show increases with the design complexity and 
the number of MAVs in flight, which creates a usability gap 
between choreography design and the deployment of MAVs 
in the field, thereby limiting the more frequent usage of this 
technology. It is necessary to incorporate intelligent robotic 
systems into the choreography design process to close this 
gap and to reduce the cost of using this technology.

The development of robotic perception systems has ena-
bled robots to process and interpret sensory data, allowing 
them to model their environment and make decisions in the 
physical world, including path planning. Many of these sys-
tems take advantage of machine learning (ML) and com-
puter vision technologies [3]. For example, Saavedra et al. 
[4, 5] used robotic perception to autonomously land UAVs 
on designated platforms. When implemented effectively, 
perception systems can enhance automation, improve secu-
rity, and enable more efficient MAV choreography design 
through advanced computational interfaces.

A previous version of this manuscript was posted as a 
preprint in 2023 [6], introducing a robotic perception sys-
tem that can extract waypoints from standard 8-bit color or 
grayscale images. The extracted waypoints can be used in 
both Multiple Drone Formation (MDF) and LP applications, 
as shown in Fig. 1.

The contributions of this work are as follows.

• We present a functional, open source, multi-platform 
robotic perception architecture for MAV path planning 
from digital images, which is entirely implemented in 
Python.

• We introduce a documented, easily scalable library for 
image and contour processing for MAVs.

• We present an end-to-end pipeline that works in two 
modes of operation. MDF, a collision-free swarm coor-
dination algorithm for dense environments and LP, a 
cost-conscious approach for aerial light shows.

Related Work

The task of path planning for MAVs from digital images 
aims to solve two problems: the generation of a trajectory 
from high-level user input, and collision avoidance between 
drones.

In [7], the authors proposed a trajectory planner that 
ensured a smooth, safe transition between established pat-
terns defined by motion primitives (i.e., a wave surface 
equation, a helix or a cone). Although motion primitives 
allow the user to set the desired trajectory by means of a 
mathematical equation, this requires the end user to have 
a knowledge of surface equations and motion dynamics. In 
contrast, our work presents an easy-to-use architecture in 
which the end user does not need to specify motion priors.

The authors of [8] developed a picture-based motion plan-
ner for a drawing robot. Their system used Canny’s algo-
rithm [9] to detect edges from a digital image. However, this 
algorithm has limitations in the context of path planning, as 
it does not generate continuous paths. To address this issue, 
the authors devised an improved path planning algorithm 
that scanned and tracked the white pixels in the image, cat-
egorizing them as start/end, normal, or branch points. As an 

Fig. 1  Examples of the use of 
CrazyKhoreia. A single digital 
image (in this example the 
silhouette of a bat) and the flight 
space characteristics are passed 
as input to CrazyKhoreia, which 
applies several computer vision 
algorithms to the image to 
generate a flight plan for light 
painting or multi-drone use
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alternative, the author of [10] proposed a boundary tracing 
algorithm that naturally overcame this issue without requir-
ing additional computation steps. We therefore employed 
this boundary-tracing approach in our scheme.

Incorporating an automatic perception and planning 
tool into Computer Numerical Control (CNC) machines is 
beneficial, as it enables automatic tool-path generation on 
raw materials for machining. By vectorizing an image and 
utilizing tool path generation software such as Mastercam, 
a G Code program can be created that gives the required 
trajectories. In a similar vein, the computer art algorithm 
proposed in [11] utilized a monochrome digital image to 
generate line and cutout art by imitating its patterns. In this 
algorithm, the size of the lines and cutouts at each point was 
determined by the pixel intensity. Likewise, the authors of 
[12] used a Crazyflie MAV to create stippled prints from 
centroidal Voronoi diagrams and optimized them with an 
approximation of the travelling salesman problem to paint 
the input image. The algorithms used in [11, 12] formed 
a source of inspiration for the architecture of our work, as 
we decided to restrict the user input to a digital image, the 
dimensions of the flight space, and the characteristics of the 
MAV. However, the algorithms described above only worked 
with monochromatic images; in contrast, Crazykhoreia can 
handle both monochromatic and color images, thereby 
increasing the adaptability and usability of the system.

Several works have focused on trajectory generation 
given a user input; for instance, in [13], the authors used 
a Deep Neural Network (DNN) to recognize hand gestures 
predefined by the user from a camera to control the path of 
an MAV for LP. In [14], the authors used ML-based process-
ing of IMU data for gesture classification instead. These 
algorithms are limited to the use of predefined gestures and 
trajectories, meaning that the end user can select from only a 
small range of options. Crazykhoreia does not have a limited 
number of trajectories, which increases the possible outputs 
of the system.

In [15], the authors described the creation of Airways, 
an interactive MAV trajectory generator designed for entry-
level users without a technical background. Airways can 
control the trajectory of an MAV based on high-level input 
from the user, such as drawings, goal positions for video 
panning, games, LP, and aerial shots. This algorithm cre-
ates feasible, collision-free trajectories based on high-level 
input optimizations using iterative quadratic programming, 
which solves the problem of MAV control. Obstacles are 
modeled as spheres and used to adjust the path of the MAV 
in each iteration. This obstacle-avoidance approach may 
present issues when multiple MAVs fly in dense formations 
due to the aerodynamic properties of the aircraft, such as the 
downwash effect, which is significant beneath the rotors of a 
quadcopter [16]. This effect may cause sufficient instability 
to break the entire formation, and it is therefore necessary to 

use another geometrical representation that takes into con-
sideration the downwash effect.

In [2], the authors represented unsafe flight regions by 
means of an artificial potential field, which the MAV used 
to avoid collisions; however, this algorithm often became 
stuck in local optima, thus failing to converge to a feasi-
ble solution. The authors of [17] opted to work with buff-
ered Voronoi cells rather than potential fields, resulting in 
a computationally low-cost algorithm that only required 
positional data on each MAV in order to avoid collisions. In 
the Crazyflie firmware, this algorithm was implemented as 
collision_avoidance.c; however, this firmware does not offer 
Python development, which would have allowed us to use it 
in our system. We therefore chose to approximate ellipsoids 
as cuboids, and employed a three-dimensional intersection 
over union approach to detect collisions between them.

Recent work related to aerial light shows and swarm coor-
dination shows a desire in the community to build this type 
of systems. Fagundes et al. [18] developed an LP pipeline 
to take in digital images or parametric curves and processed 
the resulted motion using videos. In 2023, the authors of 
[19] implemented a closely related motion-planner by cap-
turing drawn trajectories with a cursor on a GUI. In [20] 
the authors used three-dimensional ambigrams to establish 
multi-view aerial light show using swarms while minimiz-
ing the quantity of required drones. Finally, [21] presented a 
solution to the high-complexity concerns involved in aerial 
light shows by implementing a fault-tolerant task assignment 
algorithm.

Crazykhoreia

System Architecture

In this subsection, we describe the architecture of the Cra-
zyKhoreia system, and explain how the internal modules 
work and interact with each other. CrazyKhoreia has two 
flight modes, LP and MDF. Despite the differences between 
them in terms of how the MAVs fly, the initial processing 
steps of the algorithm are the same. CrazyKhoreia first pro-
cesses the high-level input from the user, in the form of a 
standard digital image, to obtain contours or object bounda-
ries, and these are then scaled according to the flight space 
constraints, which are also input by the user. The waypoints 
are then extracted from the prepared contours.

Both the LP and MDF flight modes rely on these gen-
erated waypoints, although the handling differs in each 
case. In LP, the system relies on the waypoints as input, 
as they serve as key reference points for the movement of 
the MAV along the desired path.
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To ensure precise and efficient path planning, we con-
sider a user-defined parameter called the “detail”, which 
is determined based on the Euclidean distance between a 
pair of waypoints. By defining a level of detail based on 
this distance, the system establishes criteria for limiting 
the number of waypoints, which affects the level of detail 
and the smoothness of the MAV’s trajectory.

By carefully adjusting the density of the waypoints to 
achieve the desired resolution, the LP system reaches an 
optimal balance between accuracy and computational effi-
ciency, according to the precision constraints of the physi-
cal system. This approach allows the MAV to transverse 
the LP trajectory while minimizing the computational cost.

When used in the MDF mode, the algorithm estimates 
the following quantities:

• An initial grid, based on the number of MAVs and the 
flight space dimensions.

• An ideal formation, which is created by grouping the 
waypoints into as many clusters as the number of MAVs 
available.

• An adjusted MAV formation, which is calculated from 
the ideal by taking into account unsafe flight areas (in the 
form of cuboids) to ensure a collision-free formation.

• The assignment of the MAVs to their final positions.

In order to ensure that two or more MAVs do not fly too 
close to each other, we define a three-dimensional cuboid 
around each MAV that represents the Unsafe Flight Area 

(UFA). This region is described using three parameters, 
which are used to build a three-dimensional cuboid with 
shape [lengthX ,widthY , heightZ] meters from the MAV’s 
center of mass, with the Z axis pointing downwards, to take 
into consideration the downwash effect produced by the 
MAV’s rotors. Through the use of the UFA, we can adjust 
the positions of the MDF to assure collision-free swarm 
flight without warping the resulting formation.

The modules of the system are illustrated in the logical 
architecture in Fig. 2.

Our system was tested with Crazyflies MAVs, which were 
connected wirelessly using 2.4 GHz radio communication 
via a Crazyradio PA 2.4 GHz antenna to a Ubuntu 22.04 PC 
using the USB protocol, as shown in the physical architec-
ture in Fig. 3.

To make the user’s experience smoother, we also designed 
a GUI to handle the connection between CrazyKhoreia and 
the Crazyswarm ROS server, which can be difficult for non- 
technical users. As shown in Fig. 4, this interface uses the 
waypoint file generated previously. Depending on the flight 
mode, it automatically writes the necessary data to the Cra-
zyswarm configuration files and executes a flight script, in 
conjunction with a final user confirmation and a simula-
tion dial that toggles between a simulation and the physi-
cal robots; this launches the ROS server and lets the MAV 
swarm fly.

The proposed scheme is illustrated in Fig. 5, in the form 
of a Python-based Object Oriented Programming (OOP) 
software architecture. Each software processing step is 

Fig. 2  Logical architecture of CrazyKhoreia. Text and arrows in violet represent the user input, and internal processing is shown in black. This 
architecture requires minimal user intervention, as the data are only needed once. As output, the user receives a file containing the flight plan
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implemented in a different OOP class; for instance, the 
image-based waypoint generation stage is implemented in 
the crazyKhoreia class, while the LP and MDF function-
alities are implemented in the lightPainting and multi-
DroneFormation classes, respectively.

Image‑Based Waypoint Generation

In our system, we use Suzuki’s boundary tracing algo-
rithm [10] to obtain coordinate chains from image pixels, 
and implement this using the findContours() method from 
OpenCV. This algorithm finds and retrieves contours from a 
binary 8- bit channel image; however, the input image must 
be binarized, meaning that the pixel values can only be zero 
or one

In order to allow CrazyKhoreia to accept any standard 
digital image, we use Otsu’s binarization method [22] to 
generate a binary image from grayscale or color images 
before findContours() is executed. This method automati-
cally chooses an optimal threshold for the binarization of a 
monochromatic image by maximizing the variance between 
the zero and one pixel classes. This is also implemented by 
OpenCV in the threshold module, for which the THRESH_
OTSU flag should be enabled.

The output of our computer vision pipeline is illustrated 
in Fig. 6. The original colored image is thresholded using 
Otsu’s method, and the contours are then generated from the 
correlation between the zero and one pixel classes. These 
contours are highlighted in green.

A close-up of these contours is presented in Fig. 7, which 
shows the unprocessed contours.

We note that the frame of the image was recognized as a 
contour, which is not a desired output, meaning that further 
processing is required. In this process, as the units of the 
contours are the width and height of the image, we adjust the 
pixel-to-distance proportions by using the flight dimensions 
as constraints and the image width and height to calculate 
the ratio shown in Eq. (1) and hence scale the contours with-
out affecting the original width-height ratio. The outer frame 
is deleted, as shown in Fig. 8.

In the following sub-sections, we explain the implementa-
tion of LP and MDF with the processed contours.

Light Painting

In LP, one MAV flies following the generated waypoints. 
Since findContours generates too many contours, they 
cannot be immediately used as waypoints, and it is neces-
sary to filter out some of them to save memory space and 
avoid saturating the control system. Algorithm 1 shows 
the optimization process, which consists of calculating the 
Euclidian distance between a pair of waypoints i and i + 1 , 
and comparing it against the detail factor, as mentioned in 
Sect. “System Architecture”. If the Euclidian distance is less 

(1)Px,y =
Image Shapex,y

Max Flight Spacex,y −MinFlight Spacex,y

Fig. 3  Physical architecture of CrazyKhoreia. All physical connections are two-way, allowing for constant data exchange between all parties. 
The computer interfaces with the antenna via USB, and the antenna communicates with each MAV via radio at 2.4 GHz

Fig. 4  Logical architecture of CrazyGUI. The GUI connects CrazyKhoreia to the Crazyflies systems from the flight plan file, and the user then 
chooses to whether to run a simulation or a physical flight
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Fig. 5  Logical architecture of CrazyKhoreia with mapping onto the 
physical architecture. The complete architecture is shown, with the 
pipeline for a digital image and parameters for the final flight. There 
are three main modules: CrazyKhoreia (for image-based waypoint 

generation), MultiDroneFormation (for estimating the end positions 
to mimic the original image) and LightPainting (for adjusting the 
waypoints according to a user-defined resolution)

Fig. 6  Image-based waypoint generation. An original image is fed into a pair of computer vision algorithms to obtain a threshold image and a set 
of unprocessed contours
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than the detail threshold, the waypoint i is removed from 
the waypoint array. We use the image in Fig. 6 to illustrate 

the effects of this algorithm by setting the level of detail to 
0, 0.02, and 0.1 m.

Fig. 7  Raw contours. In this image, there are 72 contours, represented by combinations of colors and shapes as listed on both sides of the graph. 
Some are unintended contours representing the frame of the image. The coordinate units are pixels

Fig. 8  Raw contours. After contour processing, the contours are 
scaled in meters, and the extra frame contours are discarded. The fine 
gray dashed lines represent the MAV’s flight plan. There are way-
points in this flight plan that were not originally intended, which hap-

pens each time the algorithm changes from one contour to another; 
however, an optimization strategy for minimizing this effect falls out-
side the scope of this paper
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Algorithm 1  LP optimization. A waypoint is removed if the defined distance is below an arbitrary threshold from the 
next waypoint

The example in Fig. 6 is shown for reference in Fig. 9a, with 
a detail level of 0 m, and in Fig. 9b, with a value of 0.02 m. In 
Fig. 9c, the level of detail is set to the average error of the Loco 
positioning system, i.e. 0.1 m. It can be seen that an increase in 
the detail variable reduces the overall quality of the expected 
results; it is important to note that the system error will depend 
on the capabilities of the aircraft and the flight precision.

Finally, the flight choreography was tested in real life using 
the Crazyflies MAV described above and shown in Fig. 10. 
The reader may notice the resemblance between the expected 
results at a detail level of 0.1 m, shown in Fig. 9(c), and the 
physical outcome.

Multi‑Drone Formation

In the MDF mode, several MAVs are arranged into positions to 
reconstruct the user’s desired figure. In this case, the figure is 
a digital image provided by the user. The system achieves this 
in four main steps after image processing: initial grid estima-
tion, clustering, collision-free waypoint adjustment, and MAV 
assignment.

In this section, we explain these main four steps, and dem-
onstrate them using a bat silhouette image processed to obtain 
waypoints, as shown in Fig. 11. We conduct physical experi-
ments using the generated waypoints with seven MAVs.

Initial Grid Estimation

In this step, a squared grid is automatically calculated to allow 
the MAVs to be easily placed in the take-off zone before a 
flight. This algorithm requires the dimensions of the flight 
space, the number of MAVs, and the UFA in order to build a 
centered grid. It first calculates the centre of the flight space, 
and then estimates the grid size by rounding the squared root 
of the number of MAVs. Finally, it uses the UFA to calculate 
the grid initial vertex to which the MAVs are appended in 
sequential order. A graphical representation of this feature is 
shown in Fig. 14.

Clustering

To generate the ideal drone positions, the MDF mode uses 
a well-known clustering algorithm to group the waypoints 
obtained from the vision algorithms in Sect. 3.2. We use a 
K-means implementation from the open-source scikit-learn 
Python library in [23] as a clus- tering strategy to group the 
previously generated waypoints into N clusters, where N is 
the number of agents in flight. The system uses the cluster 
centroids as the ideal MDF positions, and arranges them into 
an N x 3 matrix. Equation 2 shows the K-means formula; this 
algorithm is applied to seven MAVs, as shown in Fig. 12.

Collision‑Free Waypoint Adjustment

Since the ideal MDF positions may not allow for a col-
lision-free flight path, they need to be adjusted to avoid 
collisions. A C++ implementation of the algorithm in 
[17] uses ellipsoids to describe unsafe flight regions. In 
this study, we build a virtual cuboid for each MAV in the 
system, the dimensions of which are defined by the UFA, 
which represents the minimum safety distance along each 
axis needed for one MAV to pass another safely.

After building the cuboids for all MAVs, the algorithm 
uses the Intersection over Union (IoU), also known as the 
Jaccard index, as shown in Eq. (3). This returns a number 
between zero and one, according to the volume of overlap 
between two cuboids A and B, where zero indicates no 
overlap, and one represents full overlap:

Using the IoU metric, and assuming the X-axis is the prin-
cipal axis, we can adjust the flight path by assuming a fixed 

(2)
N∑
i=0

min
�j∈C

(||xi − �j||2)

(3)IoU =
|A ∩ B|
|A ∪ B| =

|I|
|U|
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point of view on the YZ plane, so the positions can be trans-
lated across the X-axis without significantly compromising 
the quality of the swarm formation. We can then formulate 
the path-planning cost function in Eq. (6) as follows.

Let � be a list of N �i drones. 
(
Λ

k

)
 is a k × 2 array 

containing all possible drone combinations. Finally, our 
cost function J corresponds to the IoU between pairs of 
MAVs with UFA Ω.

When the magnitude of the cost function vector is a mini-
mum, this means that the MAV formation is collision-free 
and can be used for flight; otherwise, there will be a set of 
cuboids Ω whose IoU is not zero, which represents a colli-
sion risk.

The virtual results of this iterative algorithm when 
applied to the input image in Fig. 11 are illustrated in 
Fig. 13, where the blue points represent the ideal forma-
tion positions obtained from clustering (Fig. 12), and the 
orange points show how the optimization algorithm has 
moved the blue dots across the X-axis.

MAV Assignment

In the MDF mode, the MAV assignment module solves the 
problem of designating a unique MAV to each final MDF 
position from the initial grid. This assignment requires an 
intersection-free path that minimizes the overall flight dis-
tance based on the cost function. In [24], the authors pro-
posed an optimal allocation approach based on the Hungar-
ian method; however, rather than adjusting the formation of 
MAVs to create a collision-free and aerodynamically safe 
configuration, they first checked whether the Euclidian dis-
tance between the ideal positions satisfied a predetermined 
minimum, and manual processing was required to adjust the 
minimum distance hyperparameter. In our scheme, this pro-
cess is done automatically using a collision-free waypoint 
adjustment.
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The MAV assignment algorithm used in this paper was 
an implementation of the Hungarian method in the scikit-
learn library linear_sum_assignment(), which worked as 
expected in terms of allocating MAVs to their final positions. 

Figure 14 shows the overall flight plan with the initial grid, 
flight space dimensions, center of the flight space, ideal and 
adjusted positions, and a flight path.

Fig. 10  Real-life results from 
the LP system. As the physical 
drones and perception system 
used to test our system had an 
accuracy of around 0.1 m, it can 
be seen that the results of this 
trial resemble Fig. 11, as the 
level of detail is similar to the 
physical accuracy

Fig. 11  Image-based waypoint generation. Image used to test the Multi-Drone Formation functionality and its contour processing
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Physical Experiment

The results of our physical experiments are shown in Fig. 15 
for an MDF of seven MAVs for an input image of a bat 

silhouette. Since prior work on generating flight paths from 
digital images is limited, we could not compare the evalu-
ation metrics and the results from this work with those of 
other works in the literature, as the I/O of these systems 
differs. We propose the evaluation methodology described 

Fig. 12  Clustering results. The waypoints are distributed into a known number of clusters, which is equal to the number of MAVs available. The 
centroids of the clusters are considered the ideal positions for the MAV swarm to emulate the image

Fig. 13  Results of cost function optimization. The final positions are computed to avoid between-drone collisions and are represented as orange 
dots. A front view allows us to check whether the displacement from the ideal positions shown as blue dots warps the image reconstruction
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Fig. 14  Calculated MDF from 
an input image of a bat silhou-
ette. The green circles represent 
the initial grid of MAVs; the red 
triangle shows the centre of the 
flight space; the black dashed 
lines show the dimensions of 
the flight space; and the dashed/
dotted grey lines show the flight 
paths of the MAVs. This figure 
allows us to check the differ-
ent MAV/position assignments 
shown with grey lines; for 
instance, MAV 0 is assigned to 
position 2

Fig. 15  Real-life results for the MDF system. The system generates a bat silhouette as intended
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in the next section as a baseline for comparing future work 
or further improvements to the scheme set out in this paper.

Evaluation

This section describes the evaluation methods used to meas-
ure the performance of CrazyKhoreia in both the LP and 
MDF modes of use, and present a summary of the obtained 
metrics. An open-source implementation of our system is 
provided in a publicly available Github repository.1

For validation and testing purposes, we used the Cra-
zyswarm Project’s Crazyflies [25]. The Crazyswarm Pro-
ject includes a ROS [26] server that manages the Crazyflie 
fleet, and allows control with Python scripting using ROS 
communication protocols for both high and low-level tasks.

Crazyflies have an onboard state estimation module that 
uses one-way ultra-wideband communication [27]. This 
module localizes the MAVs within a flight space 2.89 
× 2.89 × 2.0 m in size, with an Ultra-Wideband Sensor 
(UWB) in each corner and one mounted on each MAV. 
It also runs an Extended Kalman Filter (EKF) using the 
UWB sensor array and the Time Difference of Arrival 
(TDoA V2) mode. The expected accuracy of the sensor, 
according to the manufacturer Bitcraze, is approximately 
0.1 m, although this accuracy is heavily dependent on the 
flight space distribution, as well as the electromagnetic 

environment, and this system may have an average error 
of around 0.2 m.2

A Sony �6400 is used to capture long-exposure photo-
graphs for the LP mode of use and to record the MDF flights.

Light Painting

To obtain the observed trajectories for the MAVs, we logged 
the state estimator output at 10 Hz to compare them with 
CrazyKhoreia’s output as ground truth at a level of detail of 
0 m. We used Crazyflie’s firmware as software-in-the-loop 
to simulate the dynamics of the MAV, this allowed us to 
further validate the LP mode with simulation data, sampled 
at 5 Hz. The datasets were sampled at different frequencies 
and are not synchronized, meaning that it is not possible to 
compare them without aligning the data.

Sturm et al. [28] were faced with a similar situation, as 
they needed to evaluate a large sequence of RGB-D images 
sampled at 30 Hz against a ground truth trajectory from a 
motion-capture system sampled at 100 Hz. They proposed 
an automatic evaluation method for associating and evaluat-
ing the two drifted datasets by analyzing the global consist-
ency of the estimated trajectory against the ground truth 
and calculating the Root Mean Squared Error (RMSE). We 
use these algorithms3 to associate the estimator logs with 
the ground truth to evaluate our system. Table 1 shows a 
summary of these metrics for six flight trials with diverse 

Table 1  Evaluation metrics for 
light painting mode in physical 
drones

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

RMSE 0.087034 0.157847 0.284034 0.179877 0.154584 0.417562 0.213490
Mean 0.080214 0.137918 0.242925 0.166769 0.138483 0.355412 0.186954
Median 0.080742 0.135265 0.208714 0.160938 0.137564 0.304038 0.171210
Standard deviation 0.033775 0.076774 0.147182 0.067407 0.068693 0.219182 0.102169
Minimum 0.025966 0.027454 0.024886 0.035550 0.015202 0.013244 0.023717
Maximum 0.182111 0.321177 0.727020 0.317374 0.310204 1.036357 0.482374

Table 2  Evaluation metrics for 
light painting mode in simulated 
drones

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

RMSE 0.146744 0.128745 0.319023 0.019805 0.019607 0.182799 0.136121
Mean 0.135465 0.112889 0.284876 0.017571 0.018496 0.145958 0.119209
Median 0.123634 0.104618 0.257089 0.015938 0.019302 0.116380 0.106160
Standard deviation 0.056418 0.061896 0.143601 0.009136 0.006504 0.110054 0.064602
Minimum 0.024481 0.009298 0.020198 0.001404 0.003700 0.001245 0.010054
Maximum 0.292981 0.229668 0.641984 0.047737 0.032369 0.408934 0.275612

1 https:// github. com/ santi agorg 2401/ crazy Khore ia.

2 https:// www. bitcr aze. io/ docum entat ion/ system/ posit ioning/ accur 
acy- loco/.
3 https:// cvg. cit. tum. de/ data/ datas ets/ rgbd- datas et/ tools.

https://github.com/santiagorg2401/crazyKhoreia
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
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input images such as a capital letter A, a bat silhouette, a 
boat, a circle, a heart and the word “holi”, using physical 
drones. Whereas Table 2 shows the results of these trials in 
simulation mode.

Although metrics such as RMSE and MSE are commonly 
used for path planning, and we used them in this article to 
evaluate the flight component of this work, these metrics 
are not a true measure of how the waypoint generator Cra-
zyKhoreia recreates the input image. For this reason, we use 
the Structural Similarity Index Measure, or SSIM [29]. The 
SSIM measures the differences between a reference image 
and its altered version in a range from 0 to 1 to obtain a per-
ceptual image quality metric. We applied this computation 
by first creating a zeros image matching the shape of the 
original image, then taking the output of the CrazyKhoreia 
system and scaling it back to match the dimensions of the 
figure, and finally tracing a path in the waypoints coordi-
nates. In Fig. 16, we show how this method works with the 
boat image, which contains several contours. The SSIM 
values for all testing images range from 0.9801 to 0.8674, 
successfully validating the image fidelity of the waypoint 
generator. Table 3 shows the results for different test images, 
where images with multiple contours contribute to a lower 
similarity measure due to undesired light traces.

Additionally, the influence of the detail level can also be 
measured using the SSIM. As seen in Fig. 9, the resulting 
image fidelity rapidly degrades as the detail level increases. 
We tested this by comparing the output of CrazyKhoreia for 
detail level ranging from 0.00 to 0.20 against the original 
image, resulting in SSIM values from 0.8744 to 0.7290 as 
expected. In Table4, we present the SSIM value and number 
of waypoints for each detail level on the boat figure.

Finally, these metrics show that the flight performance 
of CrazyKhoreia in LP mode is aligned with the dynamic 

constraints of the Crazyflies. However, an additional error 
is introduced by the complexity of the image; this can be 
observed in the “Holi” and"Boat 2"trials, which had a larger 
error than the previous tests and a lower SSIM. The MAV 
also has to cross unexpected space to change between con-
tours, which adds light traces which are not desirable and 
introduces further error into the evaluation of the system. 
Furthermore, the flight instability due to the small size of 
the flight space and aerodynamic issues does not allow the 
MAV to fly consistently, resulting in an experimental error 
that is approximately %56.84 larger than the simulated error.

Multi‑Drone Formation

In MDF, the MAVs are meant to remain at a set position, and 
the metrics were measured by taking a picture like Fig. 15. 
By using Image-J [30], we could estimate the swarm posi-
tion in the YZ plane and calculate the error using the Euclid-
ean distance between the observed and the expected data; 
we then evaluated the Mean Absolute Error (MAE), Mean 
Squared Error (MSE) and the Root Mean Squared Error 
(RMSE). The evaluation results show an even distribution 
of errors, as the MAE is larger than the MSE, which con-
tributes to a less warped MAV formation and thus better 
replicates the original image. However, as the RMSE and 
the MSE suggest, the system is still sensitive to outlier errors 

Fig. 16  SSIM on the boat test image. Additional light traces between contours degrade image fidelity, which lowers the SSIM

Table 3  SSIM analysis on all 
test images

Test images

 Metric A Batman Boat 2 Circle Heart Holi Average

SSIM Index 0.8674 0.9131 0.8443 0.9653 0.9801 0.8434 0.9023

Table 4  SSIM analysis on different detail levels on the boat image

Detail levels

 Metric 0.00 0.05 0.10 0.15 0.20

SSIM Index 0.8744 0.8024 0.7956 0.7488 0.7290
Number of Waypoints 7597 288 144 110 67
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that may impact the quality of the MDF mode. The results 
are summarized in Table 5.

In this case, MDF involves the MAVs hovering indefi-
nitely until the user tells them to land. The control system 
of the MAV and its stability over time significantly contrib-
ute to the overall system error. In this case, CrazyKhoreia’s 
performance in the MDF mode was highly accurate, with an 
RSME of 0.136 m, which matches the EKF accuracy.

On the other hand, we tested the MDF system in a simu-
lated environment using 5, 15, 25, 50, 75, and 100 MAVs. 
However, it was challenging to perform simulations from 
50 UAVs and higher since the simulator had not been tested 
with large swarms yet, causing outliers to be far from their 
goal position or failing to simulate completely. We docu-
mented these experiments in Fig. 17, showing a plot contain-
ing the goal positions in blue, and the observed positions 
from the simulation log in orange. Although the impact of 
increasing the number of MAVs is feasible, the computa-
tional time increases considerably with larger swarms, as 
seen in Fig. 18. We condense the metrics evaluation on 
simulated experiments in Table 6. Besides higher positional 
error and computational cost, CrazyKhoreia still achieves 
feasible results regardless of the number of MAVs.

Discussion

In recent years, there has been a growing interest in develop-
ing systems for automating aerial light shows with UAVs. 
Particularly, the focus of this work was generating motion 
based on digital images as this offers a straight-forward way 
to create aerial light shows in a fast manner. In Table 7 we 
summarize the most relevant work in motion planning based 
on a user input, such as images, drawing, curves and end-
points. To the best of our knowledge, there has not been a 
consensus in a standardized way to evaluate this type of sys-
tems. Hence, we compare our work based on its features, and 
the evaluation methods performed. Our work can function 
with a single or multiple UAVs, and it is evaluated quan-
titatively by using common metrics such as RMSE, MAE 
and MSE.

Pichierri [19] in their work, CrazyChoir, offers a similar 
pipeline to creating coordinated motion using UAVs. We 
consider their contribution on an LP system as it is most 
relevant in this context. They created a toolbox capable of 

tracking cursor movement in a GUI, which they later trans-
formed into waypoints. They evaluated the system by cre-
ating a test flight with a CrazyFlie MAV and judging the 
resulted motion quality visually. Fagundes [18] also offered 
an approach to LP design by utilizing images and parametric 
curves as inputs. In this case, they used a laplacian filter to 
detect the image edges, which they later used to control the 
UAV motion. As [19], they also analized the resulted LP 
image visually to evaluate their performance.

Moreover, Weng [20] proposed an interesting way to take 
advantage of three different viewing angles for the audience 
by building a 3D ambigram. They managed to do this by 
taking three input images and the dimensional conditions of 
the scenario. Then, these images are processed using bina-
rization and a linear conversion to translate it into the visual 
space. They optimized the resulting waypoints by using a 
projection error to match common waypoints between the 
three images and using them to build the MDF. The authors 
reported a MAE of 0.03765, 0.02246 and 0.02593 for the 
three test images used in the simulated experiments. Jan 
[21] tackled computational issues commonly found in aerial 
light shows. For instance, they created a system which takes 
already processed waypoints and handles task assignment, 
coordination, fault tolerance by providing backup drone, and 
collision avoidance.

Additionally, we performed a semi-quantitative evalua-
tion on the systems provided on [18] and [19]. For this, we 
used the images provided in their letters for both inputs and 
outputs. Then, we obtained SSIMs for both cases, which can 
be compared against the evaluation metrics for this paper. 
The corresponding SSIM values were 0.5564, 0.4579, and 
0.8434 for Pichierri, Fagundes and the"holi"trial for Cra-
zyKhoreia, which was the highest complexity image, respec-
tively. It is worth noting that in both cases, the system is sen-
sitive to flight performance, which affects image fidelity. In 
Fig. 19, we show the SSIM for both cases, with an index of 
0.5564 and 0.4579 for Pichierri and Fagundes, respectively.

Conclusion

In this paper, we have introduced CrazyKhoreia, a functional 
and user-friendly robotic perception architecture for MAV 
path planning in light shows based on high-level user input. 
Our algorithms have been fully implemented in Python 

Table 5  Evaluation metrics for 
multi-drone formation mode in 
physical drones

Test images

 Metric Triangle 3 MAVs Triangle 4 MAVs Star 5 MAVs Batman 7 MAVs Average

MAE 0.033 0.100 0.140 0.157 0.108
MSE 0.003 0.015 0.026 0.041 0.021
RMSE 0.058 0.122 0.161 0.204 0.136
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and are publicly available as an open-sourced PyPi pack-
age called CrazyKhoreia, making the code easily accessi-
ble for further use and development. This work offers the 
user a pipeline from inputting a digital image to creating a 
fully autonomous MAV swarm that executes the trajectories 
planned by the algorithms proposed in this paper. Our sys-
tem is capable of designing and processing an aerial MAV 
light show in two modes of operation: LP, in which a single 
MAV draws an image using a light bulb, and MDF mode, in 
which multiple MAVs hover at predetermined positions to 
accurately resemble the image.

We found that CrazyKhoreia’s flight performance in the 
LP mode was adequate in terms of the swarm’s accuracy 
on the logs of physical experiments such as the letter A 
and the Batman logo, which had RMSE errors of 0.087034 
and 0.157847 m, respectively compared against the out-
put of CrazyKhoreia with a detail level of 0.02. Moreo-
ver, SSIM analysis on the waypoints generator shows 
how CrazyKhoreia can recreate the original image with 
SSIM values from 0.9801 to 0.8434, with higher values 
meaning a better structural similarity between the input 
and resulting images. However, on more complex images 

Table 6  Evaluation metrics for 
multi-drone formation mode in 
simulated drones

Number of MAVs

 Metric 5 15 25 50 75 100

MAE 0.024146 0.375684 0.685345 0.500909 0.785833 0.998290
MSE 0.001540 0.248626 0.810208 0.541254 1.498744 2.752233
RMSE 0.026157 0.475007 0.779889 0.650511 0.960280 1.271988
Compute time 0.033333 0.083333 0.250000 3.000000 13.00000 42.00000

Table 7  Comparisson 
between state-of-the-art aerial 
light shows methods and 
CrazyKhoreia

Mode Evaluation

Input type Single
UAV

Multi
UAV

Qualitative Quantitative Method

CrazyKhoreia Images ✓ ✓ ✗ ✓ RMSE,
MAE,
and MSE

Pichierri [19] Cursor tracking ✓ ✗ ✓ ✗ Visual
Fagundes [18] Parametric curves

and images
✓ ✗ ✓ ✗ Visual

Weng [20] Images ✗ ✓ ✗ ✓ MAE
and MPE

Jan [21] End-points ✗ ✓ ✗ ✓ Complexety

Fig. 19  SSIM comparison between Pichierri [19] and Fagundes [18] respectively
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such as Boat2 and Holi, the system gave RMSE errors of 
around 0.284034 and 0.417562 m. An average RMSE of 
0.213490 is found in physical experiments while simula-
tion provided an error of 0.136121 m. This was due to 
flight instabilities and aerodynamic issues, and because 
the MAVs flew through areas that were not in the original 
image, which increased the error. In contrast, in the MDF 
mode, the system performed above our expectations, with 
an RMSE error of 0.136 m, which is considerably lower 
than that of the UWB sensors and the EKF accuracy pro-
vided by the manufacturer. Testing the MDF mode using 
simulated drones proved CrazyKhoreia’s scalability. It can 
successfully run on swarms of 5 to 100 MAVs. However, 
large swarms affect error and computational time. Also, 
simulation proved challenging on large swarms, increas-
ing the number of outliers and further affecting evalua-
tion metrics, with RMSE values ranging from 0.026157 
to 1.271988 m.

Future work will involve creating an optimization func-
tion for the LP mode to minimize the length of the flight 
path between contours and reduce power consumption. Even 
though the MDF mode works as intended, it would be inter-
esting to allow the system to automatically change between 
formations smoothly to enable more vivid aerial light shows. 
Furthermore, studying different geometrical representations 
for the collision avoidance algorithm might improve the 
MDF performance of large swarms in dense environments. 
Additionally, as this is an offline planner, CrazyKhoreia does 
not account for external disturbances. As observed in the 
physical experiments, small environmental or navigational 
perturbations affect how the image is recreated by the drone. 
Future work can include accounting for the effects on image 
fidelity of factors such as wind and localisation drift. Nota-
bly, adding an onboard controller capable of reacting to these 
perturbations while minimizing the error would increase the 
system’s robustness and feasibility for outdoor deployment. 
At present, CrazyKhoreia operates independently of the 
controller or hardware used, and it can be integrated with 
standard controllers such as PID, or more advanced control 
strategies that explicitly address external disturbances.
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