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Abstract

Everyday actions such as eating, tooth brushing or applying cosmetics inherently modulate our microbiome. Advances 
in sequencing technologies now facilitate detailed microbial profiling, driving intentional microbiome-targeted product 
development. Inspired by an academic-industry workshop held in January 2024, this review explores the oral, skin and 
gut microbiomes, focussing on the potential long-term implications of perturbations. Key challenges in microbiome safety 
assessment include confounding factors (ecological variability, host influences and external conditions like geography and 
diet) and biases from experimental measurements and bioinformatics analyses. The taxonomic composition of the micro-
biome has been associated with both health and disease, and perturbations like regular disruption of the dental biofilm 
are essential for preventing caries and inflammatory gum disease. However, further research is required to understand 
the potential long-term impacts of microbiome disturbances, particularly in vulnerable populations including infants. We 
propose that emerging technologies, such as omics technologies to characterize microbiome functions rather than taxa, 
leveraging artificial intelligence to interpret clinical study data and in vitro models to characterize and measure host–
microbiome interaction endpoints, could all enhance the risk assessments. The workshop emphasized the importance 
of detailed documentation, transparency and openness in computational models to reduce uncertainties. Harmonisation 
of methods could help bridge regulatory gaps and streamline safety assessments but should remain flexible enough to 
allow innovation and technological advancements. Continued scientific collaboration and public engagement are critical 
for long-term microbiome monitoring, which is essential to advancing safety assessments of microbiome perturbations.

Impact Statement

Microbiome-targeting products are becoming increasingly prevalent, but there remains a significant need to develop a robust 
system for safety assessment. Our review, inspired by discussions from an academic-industry workshop, addresses the chal-
lenges of evaluating microbiome perturbations across the oral, skin and gut ecosystems. We highlight the complexity of linking 
microbiome changes to host outcomes and the variability introduced by external factors such as diet and drugs. We propose 
that while harmonisation of methods, data analysis and regulatory frameworks could advance microbiome risk assessment, 
it must account for the diversity of microbiome sites and populations, ensuring flexibility to adapt to evolving technologies 
and context-specific needs. Emerging technologies, such as in vitro models, artificial intelligence and metagenomics, also hold 
promise for enhancing safety evaluations, including in vulnerable populations (see Fig. 1). This review underscores the need for 
ongoing collaboration between academia, industry and regulatory bodies to develop robust and fit-for-purpose approaches for 
assessing microbiome-targeting products.
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DATA SUMMARY
All data associated with this work are reported within the article.

INTRODUCTION
Human microbiomes are intimately linked to host health, disease, evolution and metabolic functions [1–3]. From birth, we are 
colonized by micro-organisms that form complex communities consisting of bacteria, phages, archaea and eukaryotes [4, 5]. These 
microbiomes, present in various body sites such as the gut, skin, mouth and vagina, reflect highly evolved adaptations to their 
respective environments, which differ in structural composition, pH levels, nutrient availability, oxygen levels and immunological 
responses [6, 7].

Early studies characterizing human microbiotas relied on 16S rRNA gene sequencing, which allowed taxonomic profiling 
primarily at the genus level by defining operational taxonomic units (OTUs) based on similarity thresholds. These initial 
studies revealed the diversity and compositional differences at different body sites and their stability (or lack thereof) over time 
[8–11]. Subsequent advancements in 16S rRNA gene analysis, such as amplicon sequence variants, and the development of 
metagenomic sequencing enabled higher taxonomic resolution to species or sub-species strain levels and functional pathway 
analysis indicative of health or disease states [7, 12, 13]. Assembly-free approaches like 16S rRNA gene sequencing and 
metagenomic profiling rely on mapping sequence reads to reference databases containing sequences with assigned taxonomic 
information [14]. A limitation of these methods is the inability to classify reads absent from the reference databases. Recent 
years have seen the generation of large publicly available genome-sequenced culture collections, primarily from previously 
uncultured gut bacteria, improving metagenome reference databases by filling in some of the missing taxonomic information 
[15–18]. Metagenome-assembled genomes (MAGs) have further circumvented the need for genomes from cultured isolates, 
providing taxonomic and functional profiling without isolation [19–22]. Beyond sequence-only characterisations, technologies 
like metatranscriptomics, metabolomics and metaproteomics allow the profiling of active genes, metabolites and proteins, 
respectively [23, 24].

While microbiome communities remain relatively stable over time in the absence of significant perturbations, the composition 
can shift day to day, influenced by external factors, particularly during early life when the microbiome is still developing. Birth 
is the first major transmission event, with a subset of commensal microbes transferring from mother to baby, with further 
environmental transmission continuing throughout life within family and social networks [25–28]. Human lifestyles, including 
diet, medications and healthcare products, also influence microbiota composition in different body sites over varying timescales 
[29–32]. In traditional risk assessment, the concept of ‘history of safe use’ has been applied to evaluate the safety of ingredients 
or products based on their long-standing use without adverse effects. Interventions such as cosmetics and fermented foods have 
long been utilized and modulate the microbiome, and their safety assessments can be based on extensive historical use and the 
absence of evidence of harm. However, advancements in microbiome science have led to the development of innovative products 
specifically designed to target the microbiome. These innovations, while promising, raise new potential safety implications that 
the concept of ‘history of safe use’ cannot fully address.

Microbiome-targeting products vary in composition and regulatory classifications depending on their intended use. They may 
include probiotics, prebiotics, postbiotics or combinations thereof and fall into categories such as food, cosmetics, medicines 
or drugs/biological products/live biotherapeutic products (LBPs). Notably, classification can be complex, and a product may fit 
into more than one category, and regulatory perspectives differ globally, with varying definitions and pre-market authorisation 
procedures which further complicate matters. The definitions used for this manuscript (not necessarily the ones used by the 
different regulatory bodies) are given in Table 1.

Globally, the Food and Agriculture Organization and World Health Organization (WHO) definition of probiotics – ‘live micro-
organisms which when administered in adequate amounts confer a health benefit on the host’ – is widely accepted but incon-
sistently applied across different regions. To address this, a Codex Alimentarius Commission guideline proposal is currently 
under discussion, aiming to provide consistent terminology for probiotics [33]. Similarly, scientific definitions for prebiotics and 
postbiotics have been proposed to bring more clarity to their usage by the International Scientific Association for Probiotics and 
Prebiotics [34, 35]. When it comes to regulating health claims in food, the EU follows a strict pre-market authorisation procedure, 
which includes specific risk reduction claims [36]. In contrast, the US regulatory system distinguishes between structure–function 
claims, which do not require pre-market authorisation, and health claims, which do [37, 38]. This discrepancy underscores the 
need for clearer global alignment in this space. For cosmetic applications, the International Cooperation on Cosmetic Regulation 
is working towards harmonizing definitions for probiotics, prebiotics and postbiotics [39]. Both the EU and the USA allow the 
inclusion of live micro-organisms in cosmetic products, as reflected in databases like the Cosmetic ingredient database of the 
European Commission in Europe and similar regulations in the USA [40–42]. In the pharmaceutical arena, LBPs must meet 
stringent regulatory standards [43]. In the EU, they are regulated under the framework for biological medicinal products [36] 
and the European Pharmacopoeia [44]. Similarly, in the USA, the Food and Drug Administration (FDA) established guidelines 
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for LBPs in 2012 and has since approved the first faecal microbiota therapy for recurrent Clostridioides difficile infection [45, 46]. 
This demonstrates the evolving landscape for microbiome-based therapeutics as regulatory bodies work to adapt to innovations.

Given advancements in microbiota profiling approaches such as metagenomics, increased interest in microbiome-targeting 
innovations and the lack of harmonisation in legislation, a joint academic-industry workshop was organized by the Microbi-
ology Society from 24 to 25 January 2024. Participants from academia, industry and regulatory bodies with expertise ranging 
from microbiology to artificial intelligence (AI) discussed the potential medium- to long-term implications of perturbations 
in the gut, skin and oral microbiomes, and current research and developments required to assess these perturbations with 

Table 1. Strategies to modulate the gut microbiome – risk-benefit and risk mitigation

Intervention Definition Health benefit Associated risk Uncertain risk Risk mitigation

Faecal (intestinal) 
microbiota transfer [69]

Reconstitution of a 
perturbed microbiota 
with the beneficial stool 
microbiota of a healthy 
individual [157]

Therapy to prevent 
recurrent C. difficile 
infection [158, 159]
Potential therapy for 
other diseases associated 
with severe microbiota 
perturbation (though 
current evidence is less 
persuasive) [160]

Poorly screened samples 
may lead to infections, such 
as bacteraemia

Unknown long-term effects 
of administering these 
microbes, especially in 
children or young adults, 
potentially leading to 
disease later in life, e.g. 
obesity, colorectal cancer 
and inflammatory bowel 
disease

Rigorous donor and sample 
screening, including for 
antibiotic resistance genes; 
move towards use of 
defined combinations of 
gut microbes with similar 
efficacy as whole stool; 
optimize delivery to reduce 
risks such as aspiration 
pneumonia

Probiotics (including next-
generation probiotics)

Live micro-organisms 
that, when administered in 
adequate amounts, confer 
a health benefit on the 
host [161]

May improve gut health, 
support regularity, prevent 
diarrhoea and reduce the 
risk of upper respiratory 
tract infections and eczema 
in children [162, 163]

Traditional probiotics 
have been linked to 
rare fatal infections in 
immunocompromised 
patients; probiotics can 
translocate into the blood, 
though this is very rare

Lack of history of safe 
use for next-generation 
probiotics; unknown 
effects on gut community; 
potential for certain 
probiotics to metabolise 
drugs, altering their 
effectiveness

Rigorous strain 
characterisation 
(genotypic/phenotypic); 
in vitro and preclinical 
safety studies; systematic 
monitoring of adverse 
effects in clinical studies

Live-bacterial products 
(LBPs)

Single strain or defined 
consortia of bacterial 
strains designed to treat 
particular diseases

FDA approved for C. 
difficile infection; other 
products are in clinical 
trials for different 
indications including 
inflammatory bowel 
disease, such as ulcerative 
colitis, and improved 
response to checkpoint 
inhibitors for cancer 
treatment

Currently not well defined Lack of history of safe use, 
so currently hard to define

Products will undergo 
clinical trials before coming 
to market

Postbiotics A preparation of inanimate 
micro-organisms and/
or their components that 
confer a health benefit on 
the host [35]

Emerging evidence 
suggests benefits for 
metabolic health [164]

Still emerging, so risks are 
not well-defined

Unknown long-term 
impacts due to the novelty 
of the intervention

Continued research 
and validation in 
both preclinical and 
clinical settings; low/no 
colonisation risk

Fibres and prebiotics 
(including human milk 
oligosaccharides)

Prebiotics: substrates 
selectively utilized by host 
micro-organisms that 
confer a health benefit 
[34, 165]

Postulated benefits include 
promoting gut health, 
supporting regularity 
and reducing risks of 
cardiovascular and 
metabolic disease [163]

Risks may vary depending 
on individual microbiota; 
high-fibre diets may not 
be tolerated by some 
individuals

Possible increase of fibre-
degrading species linked 
to diseases (e.g. Prevotella/
Segatella and arthritis [166] 
or pathobionts

Microbiome profiling to 
ensure prebiotics/diet do 
not increase virulence 
or infection-associated 
members

Synbiotics [167] A mixture comprising 
live micro-organisms and 
substrate(s) selectively 
utilized by host micro-
organisms that confers a 
health benefit on the host

Combination of probiotics 
and prebiotics may lead to 
gastrointestinal discomfort, 
and imbalances in 
microbial strains or overuse 
in vulnerable populations 
could potentially cause 
adverse health effects

Combination of uncertain 
risks highlighted for 
probiotics and prebiotics

Like the probiotics 
above, they should be 
characterized to ensure 
safety, including a publicly 
available genome sequence 
and annotation assessed for 
any genes of safety concern 
(e.g. toxin production or 
transferrable antibiotic 
resistance)

Diet [168] A specific selection 
of certain foods (e.g. 
Mediterranean diet) [168]

Reduced incidence of 
diseases, frailty and 
inflammation [169]

Variability in individual 
microbiome responses

Potentially unanticipated 
shifts in microbiota 
composition leading to 
off-target effects

Dietary recommendations 
based on individual 
microbiota profiles

Antibiotics Chemicals that inhibit the 
growth of or kill bacteria 
[170]

Treat infections that could 
lead to death if untreated; 
prophylactic use to prevent 
infections

Off-target effects may 
reduce beneficial gut 
microbiota members 
across different body sites; 
disruption of the colonic 
mucosa barrier

Long-term reduction in 
beneficial microbes may 
contribute to disease 
development later in life

Use narrow-spectrum 
antibiotics where possible 
to minimize off-target 
effects
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respect to human health. In the first section of the manuscript, we explore the oral, skin and gut microbiomes, highlighting the 
evidence of their perturbations and associated health implications. The second section is focused on the design of longitudinal 
studies and how AI-driven approaches could enhance microbiome risk assessments. In the third section, we evaluate the 
potential as well as the limitations of in vitro systems for microbiome research. We end with a discussion of the challenges 
posed by current regulatory frameworks and the need for more adaptive approaches. The manuscript covers topics discussed 
at the workshop, with a particular focus on safety rather than efficacy. Other subjects, such as the use of animal models, the 
application of AI in risk assessment beyond addressing uncertainties about confounding factors and considerations for a new 
regulatory framework, were not covered in the workshop and are, therefore, not included. Given the broad scope of topics, 
the review is not exhaustive but aims to highlight seminal work and provide illustrative examples. The workshop outputs are 
summarized in Fig. 1.

PART 1: MICROBIOME BODY SITES, THEIR IMPORTANCE IN HUMAN HEALTH AND THE SAFETY 
OF THEIR PERTURBATIONS
Microbiomes inhabit distinct ecological niches within the human body, each shaped by unique environmental conditions and 
selective pressures. Understanding these individual environments and the factors influencing microbial composition is crucial 
for understanding the potential risks associated with altering/perturbing these microbial ecosystems with targeted microbiome 
interventions. Below, we explore three distinct human-associated microbiomes that represent the major ‘sites’, oral cavity, skin 
and gut, currently targeted via different intervention strategies and products and consider the evidence for potential long-term 
adverse effects.

Fig. 1. Summary of the workshop outputs. Endpoints defining host–microbiome interactions in health and disease remain poorly defined. Effective 
risk assessment is challenging due to uncertainties introduced by confounding factors such as lifestyle and environmental influences (green circle), 
as well as biases inherent in measurement techniques and data analysis methods (blue circle). To address these challenges, we propose integrating 
standardized in vitro testing and longitudinal monitoring of vulnerable populations to better assess potential risks. Additionally, uncertainties can be 
reduced by capturing extensive host metadata, utilizing advanced digital processing techniques, including emerging AI approaches and employing 
open access computational models.
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Gut microbiome
The gut microbiome is the most extensively studied microbial ecosystem, which includes a complex highly individualized commu-
nity of micro-organisms in the digestive tract, playing key roles in numerous host responses including immune development, 
breakdown and metabolism of food and infection resistance [47–49]. During early life, the microbiome plays a pivotal role in 
infant development and is influenced by the maternal microbiota and diet, leading to a mature microbiota essential for health. 
Bifidobacterium represents the keystone early life microbiota genus, which is often dominant in vaginally delivered, breast-fed 
babies due to vertical transmission events and prebiotic effects of human milk oligosaccharides in maternal breast milk [50]. 
In adults, the gut microbiota composition is highly individualized, but with common dominant genera such as Bacteroides, 
Faecalibacterium, Ruminococcus and Blautia [51]. Studies have highlighted significant variations across populations, particularly 
between those in high-income and low- and middle-income countries [22, 52–54]. Defining a ‘healthy’ gut microbiome remains 
challenging due to its variability influenced by factors like age, diet, lifestyle, geography, ethnicity, and medication use [55, 56]. 
Previous studies have also suggested that resilience and stability are generally supported by high diversity and metabolic redun-
dancy, which is why, when focusing on specific taxa, it is also useful to consider the metabolic functions present [55, 57]. The gut 
microbiome has been indicated to influence a wide range of health and disease parameters, including those for inflammatory 
bowel diseases, colorectal cancer and cardiovascular and metabolic diseases [51]. Gut microbiome states have also been associated 
with long-term incident disease and mortality risk [58, 59]. However, determining if gut microbiota perturbations cause or result 
from disease is challenging [60].

Strategies to manipulate the gut microbiome include dietary interventions, prebiotics, probiotics, antibiotics and faecal 
microbiota transplants (FMTs); see Table 1 for more details. While FMT is effective for preventing recurrent C. difficile 
infections, concerns remain regarding the transmission of infections and antibiotic-resistant organisms [61, 62]. The safety 
and efficacy of traditional probiotics are generally well-recognized, though this is strain and condition-specific, with rare 
cases of serious infections also reported, particularly in immunocompromised patients [63, 64]. Indeed, recent reports, as 
well as an FDA safety alert (2023), have highlighted the potential risks associated with probiotic use in neonatal intensive 
care settings, reinforcing the need for rigorous safety assessments and risk mitigation strategies in product development 
and clinical applications [65]. These instances raise important questions about whether adverse effects are primarily driven 
by the microbiome or the host’s response, underscoring the need for a deeper understanding of host–microbiome interac-
tions. Additionally, there is a need to define clear and further endpoints for safety assessments to better evaluate the risks 
and benefits of probiotic use across different populations. Prebiotics and high-fibre diets can beneficially modulate the gut 
microbiome; however, they may also cause bloating and intestinal discomfort [66]. Moreover, the impact of antibiotics 
and other small molecular inhibitors on gut microbiota diversity and the host itself, along with the potential for prolonged 
disruptions and persistent antibiotic-resistant populations, underscores the need for careful assessment of such interventions 
(Table 1) [49, 67, 68].

A significant challenge for the field lies in understanding the long-term implications of gut-targeted microbiome interven-
tions. While most safety assessments focus on short-term effects, there is a growing recognition that microbiome alterations 
could have long-lasting impacts on health, potentially contributing to the development of autoimmune, neurological and 
metabolic disorders [69]. Ongoing research and updated regulations are essential for balancing the risks and benefits of 
microbiome-based therapies.

Oral microbiome
The oral microbiota, colonizing the hard and soft tissues of the oral cavity, is essential for maintaining oral health. While 
salivary glands are sterile, saliva becomes heavily populated with micro-organisms upon entering the oral cavity, reaching 
concentrations of up to 109 microbial cells per ml, predominantly attached to sloughed epithelial cells or present in aggregates 
[70, 71]. Core microbes generally associated with oral health include Streptococcus species, particularly Streptococcus mitis 
and Streptococcus sanguinis, as well as Veillonella, Actinomyces and Haemophilus [72]. Dental biofilms, known as dental 
plaque, also rapidly form on tooth surfaces, and if not adequately managed, these biofilms can lead to dental caries and 
periodontitis, two of the most common human diseases [73]. Dental caries results from frequent sugar consumption, which 
leads to a detrimental biofilm enriched with species such as Streptococcus mutans, Prevotella spp. and Leptotrichia spp. 
[74]. Periodontitis, on the other hand, results from gingival inflammation caused by biofilms at the gum margins, with a 
microbiome shift favouring Gram-negative proteolytic species like Porphyromonas gingivalis and Tannerella forsythia [75]. 
The composition of oral microbiota is also increasingly recognized for its systemic health implications, influencing condi-
tions that extend beyond the oral cavity. Emerging research suggests that shifts in the oral microbial community can serve 
as potential biomarkers for systemic diseases, such as cardiovascular conditions, diabetes and even respiratory infections. 
Additionally, the oral microbiome may play a direct role in mediating systemic inflammation, contributing to these broader 
health impacts [76, 77]. Indeed, the oral microbiome may act as a reservoir for pathogens that can spread to other body sites, 
contributing to systemic infections and inflammatory conditions [78].
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Notably, the resilience of the oral microbiome to short-term perturbations, such as changes in diet and oral hygiene practices, 
is considered indicative of oral health (Table 2) [79, 80]. Current oral health recommendations, such as those from the 
WHO, emphasize regular oral hygiene practices, including twice-daily brushing with fluoride toothpaste, to reduce bacte-
rial overgrowth of potential pathogens in the oral cavity [81, 82]. Fluoride reduces the incidence of caries by supporting 
enamel remineralization, but it may also impact microbiota composition, increasing Bacteroides and reducing Neisseria 
and Haemophilus populations [83]. Additionally, the use of complementary strategies, used in combination with fluoride, 
has been explored, such as through biofilm disruption enhancing acid-neutralizing pathways which may further perturb 
the microbiome [81, 84]. New approaches, such as enzyme-containing toothpaste and postbiotic applications in oral care 
products, have also been explored [31]. The long-term effects of interventions, particularly associated with antimicrobials 
and mouthwash use, are still being investigated. While some studies have raised concerns about the potential for increasing 
antibiotic-resistant bacteria, direct clinical evidence of harm remains inconclusive [85–87].

A critical future direction in oral microbiome research involves intensive sampling of diverse populations and conducting 
longitudinal studies using appropriate sampling methods, such as flocked swabs and saliva collection, to provide a compre-
hensive overview of the human oral microbiome over the host lifespan. These studies are essential for identifying early 
microbial biomarkers of diseases like dental caries and periodontitis. Additionally, investigations using clinical methods of 
experimental gingivitis could enhance risk assessment by enabling more precise predictions of how microbiome perturba-
tions may impact oral health and by identifying factors that contribute to resilience. Developing predictive models of oral 
health, particularly those based on early-life microbiome analysis, remains a significant challenge. This is especially true 
when accounting for genetic and functional biomarkers, which go beyond traditional taxonomic units and may offer deeper 
insights into individual susceptibility to oral diseases.

Skin microbiome
The skin microbiota consists of a diverse array of micro-organisms adapted to the skin’s unique environment, playing a funda-
mental role in maintaining skin health and barrier function [88]. The composition of the skin microbiota varies significantly 
across different body sites, influenced by factors such as moisture, sebum content and environmental exposure [89]. Key 
microbial residents include Staphylococcus epidermidis, Cutibacterium acnes and Corynebacterium spp. These populations 
shift across different life stages, with Streptococcus spp. abundant during early life, and Cutibacterium acnes becomes more 
prevalent during puberty due to increased sebum production, while Staphylococcus and Corynebacterium species dominate 
at other times [90–92]. The skin microbiome plays a crucial role in protecting against pathogenic infections and modulating 
immune responses. For instance, Staphylococcus epidermidis has been shown to produce antimicrobial peptides that inhibit 
pathogenic strains, thus contributing to skin defence [93]. However, perturbations in the skin microbiome have been associ-
ated with conditions such as acne, eczema and psoriasis and are thought to influence systemic inflammatory responses, 
potentially impacting overall immune health [94, 95].

Longitudinal studies have demonstrated that the skin microbiome, even at the strain level, exhibits stability over months 
to years in healthy individuals [96, 97]. Indeed, microbiome temporal stability and resilience to mild perturbations are 
hallmarks of healthy skin [98–100]. This stability is attributed to protected niches, such as hair follicles, skin invaginations 
and sweat ducts, which serve as reservoirs for microbes, enabling rapid recolonisation of the skin surface [99]. Frequent 
washing and the use of skincare products have the potential to influence the delicate balance of the skin microbiota. While 
harsh soaps, antiseptics and other cosmetic products can alter the skin’s pH and moisture levels, the direct impact on the 
microbial community and its implications for skin health remain an area of ongoing research (Table 2). Although concerns 
have been raised about potential disruptions leading to conditions such as dryness, irritation or increased susceptibility 
to infections, the current evidence linking these effects directly to changes in the skin microbiome is still limited and 
inconclusive [98, 100–102].

Interventions targeting the skin microbiome, such as the use of probiotics, prebiotics, postbiotics and synbiotics (see Table 1 
for definitions of these terms), are designed to modulate the microbial community. While probiotics can temporarily influ-
ence the composition of the skin microbiome, the ability to engraft – where introduced microbes establish themselves and 
persist long-term – appears to be rare [103, 104]. This suggests that significant long-term alterations to the skin microbiome 
are unlikely, thereby reducing concerns about potential lasting effects from these interventions. Postbiotics, including non-
viable bacteria and lysates, and prebiotics, such as lipids and amino acids mimicking sebum and sweat, offer other avenues 
for modulating the skin microbiome [105]. The combination of live commensals with physiological energy sources (i.e. 
synbiotics) may further improve engraftment rates and efficacy.

Future research should focus on elucidating the mechanisms underlying the stability and resilience of the skin microbiome, 
particularly in response to various treatments and environmental changes [106]. Additionally, there is a need for ongoing 
monitoring to assess the potential long-term effects of cosmetic and therapeutic products on skin microbiota diversity and 
composition, to confirm the absence of adverse effects.
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PART 2: OPTIMIZING METAGENOMIC CLINICAL STUDY DESIGN AND RECOMMENDATIONS, 
POTENTIAL AND LIMITATIONS OF AI INTEGRATION
Taxonomic analysis of the microbiota in clinical studies based on metagenomics has revealed associations between composi-
tion and health and disease, but there is a significant interindividual variation in microbiota composition, complicating 
efforts to define a ‘healthy’ microbiome and making regulatory and safety assessments challenging [56]. Indeed, longitudinal 
sampling plays a crucial role in microbiome research as it helps control for individual variability, allowing for the tracking 
of within-host changes over time rather than relying solely on cross-sectional comparisons, which may be confounded by 
inter-individual differences. Furthermore, given the absence of a universal definition of health, monitoring microbiome 
changes over time provides a more informative approach to identifying patterns associated with disease progression or 
resilience. This temporal perspective enhances our ability to infer causality by linking microbial shifts to specific physiological 
or environmental changes rather than relying on single time-point associations. Moreover, longitudinal samples would 
allow consideration of microbial engraftment – whether transient or permanent – as part of safety assessments, given its 
potential implications for long-term microbiota composition and host health outcomes [107]. So far, although promising, 
AI methods have shown mixed results in predicting health outcomes or identifying causal impacts of microbiome variations 
due to the inherent complexity and individual variability of these ecosystems [108]. We explored how effective clinical design 
complemented by developments in AI could help address these gaps.

Powering and designing longitudinal studies
Longitudinal studies, particularly when synthesized through meta-analyses, offer evidence of the highest relevance and are a 
cornerstone for microbiome safety research. As the volume and diversity of microbiome data in public repositories grow (e.g. 
European Nucleotide Archive, MGnify), AI methods are increasingly used to integrate data from various cohorts, enhancing 
statistical power [109]. However, clinical studies must be meticulously planned and executed with well-defined objectives and 
robust study designs. A critical aspect of individual studies is ensuring they are sufficiently powered to detect subtle but significant 
microbiome perturbations [110]. Safety is a paramount concern in these studies, making it essential to rely on objective biomarkers 
as well as self-reported symptoms, which can be subjective, to provide a more comprehensive assessment. Randomized controlled 
trials (RCTs) are the gold standard for clinical study design, ideally conducted in a double-blind and placebo-controlled manner 
to eliminate bias. However, these can be very costly and complicated to set up. Cross-over designs, where each participant serves 
as their control, offer an advantage by minimizing interindividual variability in microbiota composition. Prospective studies can 

Summary Box 1: Common features and differences of the oral, skin and gut microbiomes and safety assessment 
of their perturbations.

The human gut, skin and oral microbiotas are all diverse communities that play crucial roles in both disease and health. 
However, each microbiota’s composition is influenced by distinct biogeographies within different microenvironments [178]. 
For instance, the oral microbiome includes diverse habitats such as the teeth and soft palate, the skin microbiome varies 
across sebaceous (oily) and dry skin regions and the gut microbiome spans environments from the acidic stomach (pH 1.5–3) 
to the slightly acidic large intestine (pH 5.5–7). Common phyla across these three sites include Bacillota (formerly Firmicutes), 
Pseudomonadota (formerly Proteobacteria), Actinomycetota (formerly Actinobacteria) and Bacteroidota (formerly Bacteroidetes), 
though different subsets of constituent species tend to dominate each body site [179]. For example, Bacillota and Bacteroidota 
are prevalent in the gut and oral cavity, while Actinomycetota (also dominant in the gut of breast-fed infants) and Pseudomon-
adota are commonly found in the oral cavity and on the skin. All three body sites are targets for microbiome-modulating inter-
ventions including therapies aimed at improving or maintaining health. The skin microbiome is influenced by the daily use of 
cosmetics and skincare products, the gut microbiome is modulated by diet and medications and the oral microbiome is affected 
by diet and oral hygiene practices. Unlike the gut microbiome, the oral microbiome requires active modulation to maintain 
health throughout the life course; without regular interventions such as toothbrushing – while consuming a modern diet – indi-
viduals may develop dental caries and periodontitis [180]. The skin microbiome is inherently resilient to perturbations. Although 
cases of systemic infections linked to gut probiotics in vulnerable populations have been very rare, there is a need for ongoing 
monitoring to assess potential long-term safety implications. This monitoring may benefit from public involvement, such as the 
public reporting of adverse effects, consumer feedback on the effectiveness and tolerability of products and broader engage-
ment in participatory health monitoring platforms. Involvement from the public can also help identify patterns of adverse reac-
tions more rapidly and provide real-world data that may otherwise be missed in clinical trials, thereby improving post-market 
surveillance and safety assessments. Despite the differences among human microbiomes, a fundamental challenge in evalu-
ating the safety of microbiome perturbations across all types is the presence of confounding factors and the lack of established 
biomarkers that clearly differentiate between health and disease.
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allow the detection of risk factors with epidemiological and public health relevance [58]. Ideally, comprehensive time-series data 
would help both measuring and understanding resilience and finding biomarkers of health and disease but are often challenging 
to obtain due to practical and ethical constraints. AI can prioritize targets for further study and predict the impacts of microbiome 
alterations, helping to design experiments that maximize the accuracy and relevance of findings [111]. Studies should include, 
at a minimum, baseline and end-of-intervention sampling points. It has been proposed that an additional sampling point at an 
appropriate time after the intervention to check the ability of the microbiome to return to its initial state could be used as a proxy 
for showing that microbiome resilience has not been compromised [110].

Participant representativeness, intervention strategies and metadata considerations
The selection of study participants must also be approached with care, incorporating relevant inclusion and exclusion criteria. Key 
factors include age, gender, health status, medication use, co-morbidities, diet and lifestyle. Additionally, the geographical location 
and environment (urban vs. rural) can significantly impact the microbiome and must be considered. For example, extensive 
catalogues of genomes from cultured microbes and MAGs have identified over 200,000 distinct genomes from tens of thousands 
of metagenomic datasets, representing ~5,000 distinct species in the human gut [20]. However, these samples predominantly 
come from North American, European and Chinese populations, highlighting a lack of global representation [112–114] (Fig. 2). 
Furthermore, these studies primarily focus on adult microbiotas, with less attention given to the microbiotas of infants and the 
elderly, which have distinct compositions. The microbiomes of other body sites, like the skin, vagina and oral cavity, are under-
represented in global studies, despite their accessibility and importance. The adaptability of AI allows for the characterisation 
of these microbiomes with high accuracy, though generalizability to new samples and populations is limited by geographic 
and demographic variations in available data. Baseline microbiota composition is also a critical variable that can influence an 
individual’s response to an intervention, necessitating careful consideration during participant selection [66]. Registry-based 
studies can offer highly standardized individual-level data on a population scale, with a strong research tradition, particularly in 
Nordic countries [115]. However, access to these data for research purposes can vary significantly between countries, depending 
on national regulations and data-sharing policies. More broadly, inclusive research is required to understand the full scope of 
microbiome variations and their implications on host health [116].

The investigation products or interventions used in these studies must be meticulously characterized, which includes verifying 
the intended dose for realistic exposure and ensuring safety concerning microbiological or chemical hazards. Studies that test 
multiple doses, possibly in a cross-over manner, can provide valuable insights into dose–response relationships, while initial 
exploratory studies, including single-arm studies, may be required to design subsequent RCTs effectively [117]. Factors such 
as host genetics and environmental influences, which are often not recorded in databases due to privacy concerns and cost, 
further complicate these analyses. Non-linear relationships, like dose-dependent effects and individual responses influenced by 
microbiota composition or host immune interactions, are common and significant for safety evaluations. AI can help identify 

Fig. 2. The distribution of genomes found in the four MGnify human microbiome catalogues: gut, skin, vaginal and oral. While each of these catalogues 
contains different numbers of genomes and is not directly comparable, the maps highlight the geographic skew of the samples contributing to the 
genomes found within these catalogues, with human microbiomes from North America, Europe and China representing the bulk of the data [181].
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hidden confounders and facilitate automated biomarker discovery, though the complexity of these relationships often exceeds 
the capabilities of available data [108].

Methods and data bias
Sampling strategies are also key and must be tailored to the specific microbiome under investigation. For instance, skin micro-
biome studies might use punch biopsies, tape strips, cup-scrubs or swabs, while oral microbiome studies may sample from soft 
tissues like the tongue or hard palate, or hard tissues such as dental plaque, and faecal samples are commonly used as proxies 
for gut mucosal microbiota instead of biopsies [118–120]. Standardized sample collection practices could help with reproduc-
ibility but come with their own set of challenges. It’s important to acknowledge that no single protocol is without bias, and the 
inherent variability in microbial communities across individuals complicates the application of one-size-fits-all methodologies. 
Protocol choices, such as DNA extraction techniques or sample preservation methods, can introduce biases that influence 
study outcomes, particularly when comparing diverse populations or microbial compositions (e.g. differences in Gram-positive 
vs. Gram-negative bacterial lysis) [60]. Rather than strict standardisation of sampling protocols, the emphasis should be on 
transparent documentation of methods and thoughtful selection of protocols tailored to the study’s specific context. This would 
allow for better interpretation of results within and across studies while acknowledging the limitations imposed by different 
techniques. Other aspects such as defining the exact biogeography for skin samples, for example [121], metadata standards and 
reporting requirements, can mitigate some sources of bias and facilitate data comparison across studies while taking into account 
the evolving scientific understanding and specific study needs. Researchers must also weigh logistical and ethical considerations, 
balancing scientific rigour against participant burden and available resources. Flexibility in adapting methodologies based on 
the study population and microbial composition is essential to maintaining both relevance and validity in microbiome research, 
particularly in longitudinal or population-based studies.

The choice of bioinformatics tools and reference databases also adds to the experimental bias [122, 123]. The downstream analysis 
of microbiome data should, therefore, encompass a range of endpoints, including (but not limited to) alpha- and beta-diversity, 
taxa richness, the relative abundance of specific taxa and functional activity. However, determining which microbiome features 
are most informative for applications like diagnostics or safety assessments remains unclear. In addition, the methods used to 
estimate these features and whether they are considered in absolute terms or relative abundance, which require compositional 
analysis, can also introduce some bias [124, 125].

The application of AI in microbiome safety assessments is challenging due to inconsistent reporting of metadata, such as partici-
pants’ demographics and the experimental conditions [126]. Nonetheless, even with limited metadata, exploratory analyses 
can still yield valuable insights, especially when integrated with more comprehensive data sets. While the lack of consistent, 
high-quality metadata hampers progress, AI tools like text mining and large language models can augment datasets by inferring 
missing information and suggesting potential functions or interactions [109]. Nonetheless, differences in reference databases 
and analytical tools can lead to inconsistent results between studies, complicating comparisons. Open access to research data and 
methodologies promotes greater transparency and reproducibility, which plays a vital role in reducing bias and ensuring more 
robust, reliable outcomes across studies [127]. Discussions at the workshop emphasized the limitations of current AI-driven 
tools and the need for rigorous validation and implementation strategies before they can be reliably integrated into regulatory 
decision-making. Biases related to data representativeness and patient attrition are common challenges, and even advanced AI 
methods may not fully capture the complexity of host-associated microbiomes.

Integrating additional measurements
In addition to microbiome analyses, clinical studies must include comprehensive assessments of host health. Monitoring for 
adverse events is crucial, but this is often limited to short-term surveillance. It is equally important to implement strategies for 
long-term monitoring, as potential adverse effects – such as increased risk of immune disorders or cancers – may not manifest 
until years later. Developing robust, long-term post-trial or post-market surveillance systems such as pharmacovigilance or 
cosmetovigilance or alternatively population-based studies would help identify these delayed outcomes and ensure the safety 
of microbiome-based interventions over the lifespan [56]. This should be coupled with measuring biomarkers of immune and 
inflammatory responses, which can indicate interactions between the microbiota and the host immune system. Other relevant 
health markers should be included depending on the microbiome in question, such as clinical blood markers and anthropometry 
measurements for studies on the gut microbiome [128, 129]. Laboratory analyses may utilize a range of techniques, from quantita-
tive PCR for quantifying bacterial load to shotgun metagenomic sequencing for taxonomic and functional profiling.

While metagenomics has advanced our understanding of microbiomes, challenges remain. The focus has largely been on 
taxonomy, but different strains within the same species can have vastly different genomic content, complicating analyses. For 
instance, Phocaeicola vulgatus, a prevalent bacterium in the human gut, has a core genome of 2,257 genes but an accessory 
genome exceeding 44,000 genes, highlighting the need for strain-level resolution [130]. Additionally, a substantial portion of the 
genes identified in the human gut microbiome – often reported to range from 25% to as high as 70%, depending on the methods 
used – lack functional annotations. This gap complicates efforts to link genetic potential with functional outcomes. Moreover, a 
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significant number of annotated genes may have incorrect or incomplete annotations, further challenging the interpretation of 
microbiome functions and their impacts on host health. Studies also often overlook microbial eukaryotes, archaea and viruses, 
which also play critical roles in microbiome dynamics and may influence product safety assessments [131, 132]. The potential 
of AI to analyse multi-kingdom interactions, including those involving eukaryotes, archaea and viruses/bacteriophages, could 
provide deeper insights into microbiome–host interactions and their safety implications [78].

Metabolomics and RNA sequencing are also valuable for understanding microbial and host gene expression and metabolic activity 
[117, 120]. Metabolites produced by the microbiota are also key indicators of microbiome health and function [133]. Although 
metagenomics primarily reveals the genetic potential of microbiomes, integrating multi-omics approaches (metagenomics, 
metatranscriptomics, metaproteomics and metabolomics) can provide a more complete picture of the active microbial functions 
and their effects on the host. This integration is not yet standard practice, even in clinical trials, and is expensive to implement at 
scale, but it holds promise for uncovering causal relationships between different omics layers and host phenotypes.

PART 3: THE POTENTIAL AND LIMITATIONS OF IN VITRO MODELS FOR SAFETY ASSESSMENT
In the context of microbiome research, where defining a ‘healthy’ or ‘normal’ microbiome remains challenging, safety assess-
ments are often framed by the absence of adverse effects on the host. However, comprehending the effects of microbiome-
targeting products and therapies on host responses and biomarkers is crucial for evaluating safety, much like assessments 
conducted for all new drugs. In vitro models, particularly 2D cell culture systems, are commonly used to study host responses 
to microbial challenges due to their relative simplicity and lower costs, with additional conditions, e.g. saliva-mimicking 
media or the addition of lipopolysaccharides, allowing more ‘real-world’ simulations of the microbiome and host environ-
ments [134, 135]. These models allow for the rapid evaluation of endpoints such as inflammatory cytokine production 
and cell viability [135]. However, while primary human cells from the relevant tissue are often preferred for their ability to 
closely mimic the behaviour of human tissues, the use of immortalized cell lines can be advantageous in certain experimental 
contexts. Immortalized cells, which are genetically modified for continuous growth, can help reduce variability and provide 
more consistent results, depending on the purpose of the experiment [136]. Additionally, using cells from multiple donors 
helps to account for individual variability, enhancing the relevance of the findings [134, 135]. Despite their utility, 2D cell 
culture models have limitations, including a lack of 3D architecture and a limited duration in culture, which can affect their 
ability to simulate real tissue interactions. For example, in studies of the skin microbiome, cell culture models may not 
accurately represent the interactions between skin bacteria and living keratinocytes, as many bacteria primarily interact with 
the stratum corneum, the outermost layer of the skin [89]. To address these limitations, more complex models that better 
replicate tissue biology are often necessary (Table 3).

3D models, such as organoids, ‘organ-on-a-chip’ systems and human tissue explants, offer more realistic tissue-level functions 
and structures. For instance, while keratinocytes in 2D culture cannot fully mimic the conditions bacteria encounter on 

Summary Box 2: Clinical studies and AI

Despite careful design and execution, clinical studies often face challenges in generalizing findings to broader populations, 
particularly those with different demographics or health statuses. Another significant challenge is the long-term safety assess-
ment of microbiome interventions, including potential unintended consequences and off-target effects, which are often beyond 
the scope of typical clinical studies due to practical, ethical and financial constraints.
Optimizing and documenting methodologies for both microbiome and host measurements across studies is crucial for assessing 
the safety of microbiome perturbations. Rather than rigid standardisation, a flexible and evolving framework is needed to 
minimize batch effects and facilitate meaningful data aggregation. This approach acknowledges that scientific understanding 
continues to evolve, and methodologies must be refined accordingly. Cross-comparing results from studies using different 
approaches will require sophisticated methods to account for variability while leveraging the strengths of diverse datasets. 
Emerging AI methods hold promise for simplifying and interpreting heterogeneous datasets, but this requires significant 
investment in data aggregation, annotation and computational resources, and the openness of AI systems is also critical [127].
AI models offer new tools to manage the complexity of large datasets, but improving the explainability and interpretability of 
AI-generated results remains a critical goal. Rather than rigid standardisation, the focus should be on enhancing transparency 
and reproducibility in safety assessments, allowing AI to predict outcomes and quantify associated uncertainties and risks, 
thereby supporting balanced decision-making. Open access to research methods and, where possible, research data, is a 
critical element of transparency and reproducibility [127, 182].
Additionally, experimental data from in vitro models could complement clinical studies by providing insights into specific micro-
biome functions, offering a valuable tool for evaluating potential long-term effects in a controlled environment.
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the skin surface, skin equivalents or ex vivo human skin cultures provide a closer approximation [136]. These models are 
particularly valuable as the barrier properties of artificial skin constructs may not always accurately reflect those of natural 
human skin, potentially affecting bacterial adhesion and interactions [136, 137]. In the study of the gut microbiome, organoids 
derived from patient tissues or stem cells are increasingly used to investigate host–microbiota interactions [138]. Organoids 
maintain the structural and functional characteristics of the original tissue, including organ-specific and patient-specific 
traits. However, traditional 3D organoids present challenges for microbiome studies because their luminal surface faces 
inwards, complicating access. Techniques have been developed to linearize these organoids into 2D systems, thereby exposing 
the apical surface for interactions with microbes or microbial metabolites [139]. Nevertheless, maintaining strictly anaerobic 
conditions typical of the gut environment remains a challenge, though adaptations like hypoxic environments can provide 
more physiologically relevant conditions [139, 140].

Microfluidic devices or ‘organ-on-a-chip’ systems, incorporating organoid-derived cells, offer a sophisticated platform 
for simulating and precisely controlling the mechanical forces and continuous flow of luminal content characteristic of 
living tissues [134]. For example, the HuMiX platform can maintain anaerobic conditions, allowing for a co-culture of 
organoids with microbes under conditions that closely mimic the in vivo environment. However, these systems often separate 
microbial and host cells with a nanoporous membrane, limiting direct contact [141]. While they allow for multiple omics 
analyses from a single sample, they may not capture all aspects of direct host–microbe interactions [142]. Given that these 
systems more closely simulate conditions within human organs, they represent excellent platforms for conducting efficacy 
and safety assessments of microbiome interventions. For example, microfluidic devices may help replicate the dynamic  

Table 3. In vitro models for safety and efficacy testing for microbiome-targeting products/therapies

Main advantage Main disadvantage Most relevant measurable safety endpoint

2D cell culture models Ease of use
Low cost
Relatively rapid assessment
Scalable
Moderate/high throughput
Good reproducibility

Limited time in culture
Lack of 3D architecture – does not mimic in 
vivo host–microbiome interactions

Inflammatory cytokine production
Cell viability

Primary human cells May retain behaviour of human cells in tissues Multiple donors needed to reflect inter-person 
variability

Cell lines Engineered to enable continuous passage
Provide consistency across studies
Easier to source

Does not necessarily retain the behaviours of 
human cells in tissues

3D models 3D architecture
More tissue level function
More representative of microbe-surface 
interaction (skin)

Higher cost
Often require specialized expertise and 
equipment

Viability
Cytokine production
Gene expression
Structural changes (fluorescence microscopy, 
electron microscopy, imaging)
Can study microbial communities (viability, 
growth, metabolites, toxins, compositional 
changes of mixed populations)

3D skin equivalents Reproducibility
Commercially available

Barrier properties do not resemble that of 
human skin

Ex vivo human skin 
maintained in organ culture

Gold standard
Closer resemblance to barrier properties of real 
skin maintained (better mimicking of host–
microbiome interaction)

Availability

Organoids Preserving organ, disease and patient-
specific characteristics and enabling repeated 
experiments

Luminal side of cells oriented towards the centre 
– obstacle to study host microbiome interaction
Not possible to directly co-culture with strictly 
anaerobic bacteria because it is an aerobic model

Single or multiple omics readout across many 
different samples

Linearized organoids Apical (luminal) side accessible
Can be co-cultured with bacteria and microbial 
derived metabolites introduced into the culture 
media

Not possible to directly co-culture with strictly 
anaerobic bacteria because it is an aerobic model
More expensive than normal 3D organoids

Single or multiple omics readout across samples; 
TEER (transepithelial electrical resistance) for 
barrier integrity and imaging

Microfluidic devices Incorporate organoid cells with other cell types 
(immune cells and fibroblasts)
Can replicate anaerobic conditions (gut)

Infrastructure and cost needs
Standardisation is challenging

Multiple omics readouts from the same sample 
under select conditions

Organ-on-a chip Reproducible and controllable environment for 
both host and microbial cells
Precise manipulation of microscale fluids, 
mimicking the physiological environment of the 
human organs

Different platforms have different attributes
Often difficult to choose the most adequate one

Imaging, multi-omics and cytokine 
measurements
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(and shear force and flow) conditions of the oral cavity, offering a more realistic platform for assessing the safety and efficacy 
of oral care products and microbiome-targeted therapies [143]. However, these advanced models are costly and require 
specialized expertise and equipment, which can limit their widespread use. A further significant limitation is that, by their 
very nature, such models can only assess acute or short-term effects, with limited ability to fully assess potential long-term 
health impacts of microbiome-based interventions. Additionally, validating these models using in vivo data may be needed to 
determine their relevance and accuracy [144, 145]. In the USA, the FDA has, in principle, approved the use of organ-on-chip 
models to replace some animal experiments in drug safety tests before a drug is given to participants in human trials [146].

Recent advances in single-cell and spatial omics have further enhanced our understanding of these complex models by enabling 
the detailed characterisation of individual cells and their spatial arrangements within organoids. Imaging techniques, both fixed 
and live, offer crucial insights into co-culture dynamics, while high-throughput systems allow for extensive screening of microbial 
species or their metabolites [147, 148].

PART 4: PROSPECTIVE: FUTURE DIRECTIONS AND CHALLENGES
Technological advances have significantly enhanced our ability to identify the taxonomic and functional composition of 
host-associated microbiota. However, linking these microbiota profiles to meaningful host outcomes remains challenging, 
especially over various timescales. This difficulty is reflected in the frequent use of the term ‘dysbiosis’ without a clear 
definition and the uncertainty in predicting the biological impact of changes in microbial abundance [60]. Unlike traditional 
diagnostic microbiology, where detecting a pathogen can be definitive, microbiome research often deals with subtle and 
complex shifts that are harder to interpret. Furthermore, while optimizing study sampling methods is critical for ensuring 
data reliability, practical constraints often necessitate a balance between methodological rigour and feasibility. Factors such 
as sample storage (e.g. home freezing and buffer stabilisation), self-collection kits returned by post, and pre-processing delays 
can influence microbiome integrity, and ongoing efforts aim to refine protocols that maintain scientific robustness while 
enabling broader study participation.

When evaluating the potential health implications of consumer products on microbiomes, a range of human-associated 
microbiota can be involved, including those in the nasopharynx, oral cavity, digestive tract, reproductive tract and skin. Each 
of these microbiomes is dynamic, influenced by host genetics, lifestyle, hygiene practices, diet and age, plus a plethora of other 
factors. A more comprehensive understanding of the relationships between microbial composition, including non-bacterial 
components, and host health could enhance disease therapies and the safety assessment of microbiome-targeting consumer 
products, whether the effects of these interventions are intentional or incidental.

Despite the growing prevalence of products that alter the human microbiome, there are no globally standardized safety 
requirements or pathways [110, 149], although The European Food Safety Authority (EFSA) has recently acknowledged the 
role of the microbiome in impacting and refining future risk assessment approaches [150]. Currently, regulatory requirements 
differ across regions and can be further influenced by the product’s intended purpose (e.g. medicinal vs. dietary supple-
ments), target population and route of administration [151]. While the EFSA has proposed frameworks like the ‘Qualified 
Presumption of Safety’ to streamline the assessment of certain probiotics, other regions may use different criteria, such as 
the Generally Recognized As Safe status in the USA [150, 152–154].

The traditional microbiological risk assessment approach, which integrates hazard identification, characterisation and expo-
sure assessment, may not fully address the complexities of microbiome-related risks. Defining a ‘healthy microbiome’ and 

Summary Box 3: Defining relevant endpoints for harmonisation of in vitro measurement methods

In vitro models, particularly advanced 3D systems and microfluidic devices, are rapidly evolving and offer powerful tools for 
studying host-microbiota interactions and assessing safety. However, more research is required to evaluate their representa-
tiveness, given the inherent variability of both the host and microbiomes, as well as the wide range of technologies available 
[183].
One of the key challenges in using in vitro techniques for testing the safety of microbiome interventions is the lack of consist-
ency across approaches and methodologies. Despite the availability of diverse test methods, there is no universally recognized 
international standard for in vitro assessment of products or interventions targeting the human microbiome.
Identifying relevant assays and achieving relative harmonisation will only be possible once the biological endpoints for meas-
uring microbiome perturbations are clearly defined. To address these issues, collaboration between the scientific community, 
industry and regulatory bodies is crucial for defining and validating these endpoints and establishing a harmonized framework. 
Such guidelines would not only strengthen safety substantiation claims but also enhance regulatory acceptance and consumer 
confidence.
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measuring the impact of interventions remain significant challenges [56, 150]. There is, therefore, an increasing interest in 
exploring alternative approaches, such as focusing on functional outcomes (microbial and host) rather than composition, 
where in vitro models may come into play. AI may play a crucial role in identifying patterns within complex microbiome 
data [127, 155], while methodologies from other fields, like next-generation risk assessment principles used in toxicology, 
could offer new insights. These approaches aim to ensure that changes in the microbiome, whether from consumer products 
or other sources, do not pose undue risks to consumers. Most recently, an international multidisciplinary expert panel has 
developed best practice guidelines and a regulatory framework for clinical microbiome testing, aiming to minimize inap-
propriate use, address current knowledge gaps and ensure evidence-based, safe implementation in clinical medicine [156].

The development and deployment of microbiome-targeting products raise several ethical considerations that need to be 
addressed to ensure responsible research and application. Some key concerns include informed consent (including scope, risks 
and potential long-term outcomes), privacy (microbiome data can be highly personal and may reveal sensitive information 
about an individual’s health, lifestyle and even ancestry), transparency and openness of AI methods, equitable access (as 
therapies develop, there is a risk they may only be available to certain populations, exacerbating existing health disparities) 
and the potential for unintended consequences (such as off-target effects or alterations in the microbiome that could affect 
health in later life). Thus, ensuring comprehensive ethical oversight, including clear guidelines for the development and 
marketing of microbiome-targeting products, is also a key consideration.

As the field evolves, interdisciplinary collaboration and innovative methodologies will be crucial in advancing our understanding 
of the human microbiome and its implications for health and safety. This progress will contribute to the establishment of more 
consistent and comprehensive regulatory frameworks, providing clearer guidance for the development and assessment of 
microbiome-altering products.

Conclusion
The workshop which aimed at reviewing the safety assessments of the oral, skin and gut microbiome perturbations highlighted 
the importance of interdisciplinary collaboration in advancing microbiome research. Key takeaways include the integration 
of AI for analysing complex microbiome data and predicting interactions, the necessity of well-designed clinical studies 
with clear endpoints and high-quality sample metadata and the development of innovative in vitro models for safety testing. 
Special attention is required for vulnerable populations, and tailored interventions may mitigate risks in these groups. Public 
awareness and education are also crucial for fostering informed decision-making and acceptance of microbiome-targeting 
interventions. Ongoing research is essential for a better understanding and assessment of microbiome–host interactions. 
As the field progresses, it is indispensable that regulatory frameworks keep up with scientific advancements balancing the 
needs for harmonisation of microbiome safety assessment approaches and innovation.
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