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A B S T R A C T

In the face of escalating climate change concerns, the quest for sustainable energy solutions is more pressing than 
ever. This study delves into the potential of hydrogen and ammonia as alternative fuels, with a focus on am-
monia’s promise due to its zero-carbon emissions and high energy density. Employing machine learning tech-
niques, specifically XGBoost and SVR, this study presents a comprehensive analysis of ammonia and hydrogen 
fuel blends to predict NOx emissions and flame temperature with high accuracy, achieving R2 values predom-
inantly above 0.97. The model’s precision is particularly noteworthy compared to other machine learning 
techniques, where it consistently outperforms with the lowest MSE of 3508.31 and an impressive R2 value of 
0.97653. A detailed feature importance analysis underscores the significance of NH3 mole proportion, equiva-
lence ratio, and total mass flow rate in influencing nitrogen emissions. Furthermore, the proposed XSN opti-
mization framework has proven effective in reducing nitrogen compounds, achieving a substantial decrease in N- 
gases concentration by 51.91 %, from 69.81 ppm to 33.57 ppm. The hybrid model developed in this study 
demonstrates exceptional capability in managing multiple optimization objectives, thereby offering advantages 
in reducing the overall harmful emissions while maintaining stable operation in practical applications of NH3/H2 
combustion. This research enhances the accuracy of emissions prediction under diverse conditions and provides 
valuable insights into effective strategies for controlling nitrogen emissions from NH3/H2 combustion.

1. Introduction

According to the International Energy Agency (IEA), the global en-
ergy demand is projected to triple in the next decade and quintuple by 
the mid-century [1]. However, the increasing energy consumption, 
along with the rising carbon dioxide levels in the atmosphere, poses a 
serious and complex challenge for humanity. The threat of climate 
change and global warming urges the transition to a low-emission, 
carbon-free economy. Therefore, the search for clean and renewable 
energy sources drives the investigation of alternative non-fossil fuels, 
such as hydrogen. However, hydrogen as a fuel has inherent challenges 
of storage and distribution [2,3]. In contrast, ammonia is regarded as a 
promising candidate for the future energy sector due to its superior 
properties such as zero-carbon emission, easy storage, high energy 
density, etc. Furthermore, ammonia in combustion systems is becoming 

a viable option for replacing fossil fuels and reducing carbon emissions 
[4,5]. However, the widespread adoption of ammonia as a fuel still faces 
several challenges, such as its high ignition point, low combustion 
speed, and temperature constraints under some conditions. These fac-
tors lead to unstable ammonia flames, with low flame speed and thick 
flame structure. In addition, ammonia combustion results in significant 
NOx emissions due to the fuel-nitrogen atom. These issues limit the 
feasibility of ammonia as a fuel replacement [6].

To overcome these drawbacks of ammonia-based combustion, 
ammonia/hydrogen fuel blends have been appraised as a potential so-
lution due to their higher laminar burning velocity, enhanced reactivity 
[7], and wider flammability limit compared to pure ammonia flames 
[8]. However, the binary fuel may produce higher levels of NOx than 
pure ammonia flames because of the high flame temperature and the 
abundance of O, H, and OH radicals that facilitate fuel NO formation [9,
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10]. Since NOx emission poses serious threats to human health and 
eco-environment, considerable efforts are being made to reduce NOx 
emissions for ammonia/hydrogen combustion, although there are still 
many unknown phenomena regarding the production of these pollut-
ants. On the one hand, Lee and Kwon [11] reported that the increasing 
fraction of NH3 in the blended fuel increased the formation of NOx and 
N2O. On the other hand, Otomo et al. [12] demonstrated that the NO 
concentration increased with an increase in H2 mole fraction, mainly 
due to thermal NOx (i.e., N + O2 → NO + O, N + OH → NO + H). 
Moreover, operating under fuel-rich conditions was found to be effective 
in reducing NO concentrations as well as the formation of H2 from NH3. 
Overall, the NOx formation and reduction mechanisms are still not fully 
understood because of their complexities and variations under different 
conditions (e.g., reactants, equivalence ratio, pressure, temperature, 
etc.). Many approaches can be used to reduce NOx emissions, such as 
operating parameters optimization [13], catalyst adoption [14], hu-
midification [15], and plasma-assisted combustion [16], etc. Among 
them, the approach of operating parameters optimization, which opti-
mizes the operating parameters by modeling NOx emission and using 
appropriate optimization algorithms, is more desirable because it is 
more time and cost-efficient and easier to implement than the other 
methods. However, due to the nonlinearity of parameter analysis and 
the multivariability of combustion conditions, coupled with the huge 
demand for parameter analysis, it poses a huge challenge to the current 
manual observation and simple statistical analysis methods.

Recently, many machine learning (ML) techniques have been applied 
to solve these problems, offering a new insight for combustion studies. 
The machine learning methods enable data-driven techniques for pro-
cessing large amounts of combustion data, either obtained through ex-
periments or simulations under multiple spatiotemporal scales, thereby 
discovering the hidden patterns underlying these data and advancing 
combustion research [17]. Among these techniques, artificial neural 
networks (ANN) stand out for their capacity for automatic feature 
extraction, robust nonlinear fitting, and generalization, making them a 
popular choice for predicting combustion temperatures and pollutant 
emissions in diverse applications, from IC engines to swirl flames [18,
19]. Despite their advantages, ANNs face challenges such as the need for 
extensive control parameters, difficulty in achieving stable solutions, 
prolonged training durations, and a propensity for overfitting, which 
hampers their broader application [20]. Additionally, the performance 
of ANN models is contingent upon the adequacy and representativeness 
of the input data [21].

Random forest (RF) [22], while valuable, has shown limitations in 
measurement accuracy within combustion estimation studies [23]. 
Similarly, decision tree (DT) models require laborious data preprocess-
ing when handling voluminous combustion data sets [24]. The advent of 
eXtreme Gradient Boosting (XGBoost) represents a paradigm shift, 
amalgamating the strengths of various algorithms to address the de-
ficiencies of traditional ML techniques [25]. The efficacy of XGBoost in 
constructing single-target prediction models for NOx emissions has been 
demonstrated, indicating its potential utility in combustion research 
[26]. Comparative studies by Li et al. [27] have highlighted the 
computational efficiency and predictive accuracy of XGBoost over other 
algorithms like RF and KNN. Dong et al. [28] leveraged XGBoost to 
develop predictive models for NOx emissions and pressure fluctuations 
in gas turbines, showcasing the precision of the algorithm. Yao et al. 
[29] employed XGBoost and Light Gradient Boosting Machine (LGBM) 
to model the filtered density function (FDF) of mixture fractions in 
turbulent evaporating sprays, achieving accuracy levels comparable to 
deep neural networks.

Support vector regression (SVR) has emerged as a computational 
intelligence-based method designed to surmount the limitations of ANN 
and offer superior solutions for highly nonlinear problems [30]. The 
attempts to apply SVR in modeling NOx emissions from coal-fired 
boilers have yielded promising results, with a closer alignment be-
tween predicted and actual emission concentrations [21]. Although 

XGBoost adeptly manages non-linear relationships, it lacks the 
non-linear fitting prowess of SVR, particularly in high-dimensional 
feature spaces, the use of SVR in isolation for nonlinear relationships 
necessitates expert selection of kernel functions, which is not easy to 
determine. Therefore, this study proposes a combined XGBoost and SVR 
approach to enhance model robustness and generalization capabilities 
while mitigating overfitting risks. Compared to previous studies on 
predicting NOx emissions, the proposed hybrid machine learning 
methodology is highly effective in handling the multivariable nature of 
combustion conditions and large dataset, addressing nonlinear chal-
lenges, and enabling more accurate predictions of combustion emis-
sions. This robust method holds substantial promise for advancing the 
sustainable development of renewable energy sources [31].

ML methods have increasingly been recognized for their efficacy in 
optimizing combustion emissions, such as the extreme learning machine 
[32] and deep neural network [33]. However, these techniques often 
exhibit constraints, particularly when addressing multi-objective opti-
mization problems, due to their inherent single-objective focus and the 
complexity of their models [34]. To address these limitations, we 
employed the Non-dominated Sorting Genetic Algorithm II (NSGA-II), 
renowned for its elite retention strategy, rapid non-dominated sorting, 
and crowding distance calculation, facilitating the swift acquisition of 
high-quality Pareto-optimal solution sets [35,36]. This study pioneers a 
multi-objective optimization framework, integrating advanced machine 
learning models, to offer a novel approach for comprehending and 
mitigating nitrogenous emissions (NO, NO2, N2O, and NH3) during the 
NH3/H2 combustion process. The proposed framework facilitates intel-
ligent optimization of model parameters through genetic operations 
such as crossover, mutation, and selection. By iteratively refining 
parameter combinations, the algorithm adeptly navigates conflicting 
objectives to identify optimal operating conditions. This process not 
only yields the most favorable outcomes but also provides a robust, 
data-driven foundation for the design of efficient burners.

In this study, the XGBoost and SVR are first employed to construct a 
predictive model for NOx&NH3 emissions and adiabatic flame temper-
atures (AFT) of ammonia/hydrogen combustion in a swirl burner. The 
predictive performance of the established models is evaluated against 
other machine learning techniques. Next, a comprehensive feature 
importance analysis is conducted to discern the predominant factors (e. 
g., NH3 mole fraction, equivalence ratio, thermal power) influencing the 
emissions from the NH3/H2 swirling flame, thereby elucidating the un-
derlying flame chemistry. Furthermore, this study introduces an opti-
mization framework aimed at reducing nitrogen compounds (NO, NO2, 
N2O, and NH3) by fine-tuning operational parameters. The predictive 
capabilities of the established model enable accurate predictions and 
optimizations of NOx and NH3 emissions, under diverse operational 
conditions. This research furnishes valuable insights into the flame 
chemistry associated with NOx emissions and proffers viable strategies 
for emission reduction in NH3/H2 combustion processes. The paper is 
structured as follows: Section 2 delineates the experimental setup, 
chemical modeling methods, and dataset used for ML training; Section 3
details the machine learning models, their training and evaluation 
protocols, and the proposed multi-objective optimization framework; 
Section 4 presents the empirical findings, including the impact of the 
predictive model, the salience of each parameter, and recommendations 
for minimizing NOx and NH3 emissions; Section 5 culminates with the 
key findings and implications of the study.

2. Experimental setup and data acquisition

2.1. Swirl burner and operating conditions

The experimental investigations were executed utilizing an 
industrial-scale tangential swirl burner, delineated by a geometric swirl 
number of Sg = 1.05. A schematic delineation of the experimental 
apparatus is depicted in Fig. 1. The burner comprised a radial-tangential 
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swirler integrated with a central bluff body (22.5 mm diameter) to 
stabilize the flame and enhance mixing uniformity. A transparent cy-
lindrical quartz confinement tube (156 mm diameter) provided optical 
access for chemiluminescence imaging and spectroscopic diagnostics, as 
detailed in Ref. [37]. A comprehensive range of ammonia/hydrogen 
mixtures was scrutinized, spanning a wide array of equivalence ratios 
(∅), all conducted under standard atmospheric conditions (Tin = 288 ±
5 K, Pin = 0.11 ± 0.005 MPa). The system was calibrated to sustain a 
steady outlet pressure Pout = 0.11 ± 0.005 MPa. Ammonia and air were 
channeled into the mixing chamber from its base, while hydrogen was 
methodically introduced through six equidistant radial orifices, each 
with a diameter of 1.5 mm, positioned on the central lance, 40 mm 
below the burner exit. These orifices were strategically angled at 45◦ to 
promote the direct injection of hydrogen into the swirling current, thus 
ensuring an exhaustive premixing with ammonia and air before com-
bustion. The volumetric flow rates of the reactants were precisely 
modulated using Bronkhorst mass flow controllers, which boast an ac-
curacy of ±0.5 % within a mass flow range of 15–95 %. A permanent 
methane pilot flame was integrated to assist ignition and prevent 
blow-off during transient conditions [38].

In the present study, three distinct datasets were meticulously 
curated to underpin the establishment and training of the predictive 
model, each dataset reflecting a unique set of operational conditions. 
The parameters selected for investigation—namely, the equivalence 
ratio (ER), thermal power, ammonia mole fraction (XNH3 ), and the 
Reynolds number—are exhaustively cataloged in Table 1. The total mass 
flow was defined as the total mass flow rate of the premixed air/fuel 
reactants. The Reynolds number, a dimensionless quantity character-
izing flow regime, was calculated using Eq. (1): 

Re=
ρuD

μ (1) 

where ρ is the density of the premixed air/fuel flow, and the μ is the 
dynamic viscosity of the premixed flow calculated by an online transport 
properties calculator [39], u is the mean burner exit nozzle velocity, and 
D is the nozzle diameter.

This table also quantifies the number of data groups encapsulated 
within each dataset, providing a clear overview of the data structure and 
diversity. These datasets are pivotal in facilitating the machine learning 
model to generalize and accurately predict NOx emissions under a va-
riety of combustion scenarios.

The ammonia mole fraction (XNH3 ) in the ammonia/hydrogen binary 
fuel is defined as follows: 

XNH3 =
[NH3]

[NH3] + [H2]
(2) 

where [NH3] and [H2] represent moles of ammonia and hydrogen, 
respectively.

2.2. Emissions

Exhaust emissions such as NO, N2O, NO2, NH3, O2, and H2O, were 
quantified utilizing a specialized quantum cascade laser analyzer 
(Emerson CT5100). The apparatus operated at an elevated temperature 
of 463 K and a sampling frequency of 1 Hz, ensuring a high-fidelity 
temporal resolution. The measurement system demonstrated an accu-
racy of ±1 % and an exemplary linearity of 0.999, indicative of the 
precision of the analytical technique employed. A dilution methodology 
was integrated into the experimental protocol, wherein N2 was 

Fig. 1. Tangential combustor with measuring techniques and control systems.

Table 1 
Comprehensive synopsis of experimental parameters employed in the dataset.

Dataset ER Thermal Power (kW) XNH3 (vol%) Reynolds Number Total Mass Flow (g/s) Number of Data Groups

A 0.65 10, 15, 20 50–100 (5 inc.) 8927–19234 5.11–10.95 28
B 0.6–1.4 (0.05 inc.) 8 70, 75, 85, 95, 100 3711–8996 2.32–4.61 33
C 0.65 10 50–95 (5 inc.) 3450, 5175, 6900 4, 6, 8 29
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introduced into the exhaust sample via a Bronkhorst EL-FLOW Prestige 
MFC. This MFC facilitated the pre-heating of nitrogen to 160 ◦C before 
its amalgamation with the exhaust gases, thereby ensuring a consistent 
sample state. The flow rate of the exhaust sample (FS) during the dilution 
process was meticulously calculated, taking into account the total intake 
flow rate (Ft) and the dilution nitrogen flow rate (Fd), as explicated in Eq. 
(3): 

FS = Ft − Fd (3) 

An isokinetic funnel, featuring an intake diameter of 30 mm, was 
meticulously aligned 50 mm downstream from the terminus of the 
quartz confinement. This configuration was engineered to procure ho-
mogenous samples from the effluent stream, tailored to specific opera-
tional regimes. Samples were transported through a heated line (463 K) 
to prevent condensation and analyzed in real time. The emission metrics 
delineated in this document were methodically aggregated and aver-
aged across a temporal span of 120 s.

2.3. Chemical modelling

To elucidate the influence of variable conditions on the emission 
profiles, an exhaustive chemical analysis was performed using the Ansys 
CHEMKIN-PRO platform. This analysis centered on the analysis of AFT 
within swirling turbulent flames under diverse operational scenarios. 
Utilizing the PREMIX module within the CHEMKIN-Pro package, the 
simulation of a one-dimensional adiabatic planar flame was executed, 
advancing our understanding of reactivity trends. The adopted model 
incorporates the reaction mechanism proposed by Stagni et al. [40], 
which has been corroborated by recent studies [41,42] for its efficacy in 
simulating NH3/H2/air combustion. This mechanism encompasses 31 
chemical species and 203 reactions.

3. Methodology

As illustrated in Fig. 2, in this study we present a novel machine 
learning algorithm that exhibits exceptional proficiency in fitting and 
forecasting the multifaceted attributes of combustion phenomena, 
alongside a spectrum of emission and output parameters. The datasets 
detailed in Tables 1 and in conjunction with the corresponding emis-
sions and AFT for each case, were pivotal in the formulation and 
corroboration of the computational models. The dataset was methodi-
cally partitioned into a training set (comprising 80 % of the samples) and 
a test set (encompassing the remaining 20 %). The training set laid the 
groundwork for the model construction, while the test set was employed 
to evaluate the predictive accuracy of the model.

This innovative algorithm has undergone a comprehensive compar-
ative analysis against a suite of established algorithms, including ANN, 
as well as an array of hybrid methodologies (e.g., RF, RF + Linear 
Regression). The empirical results from these comparative studies un-
derscore the algorithm’s enhanced performance, outstripping its coun-
terparts in terms of effectively steering emission levels and optimizing 
combustion conditions.

3.1. XGBoost

XGBoost emerges as a forefront machine learning methodology, 
materialized through an advanced optimization framework as delin-
eated by Chen and Guestrin [43]. This technique is anchored in the 
principles of gradient boosting decision trees (GBDT), systematically 
combining weak learners in a sequential ensemble. It incorporates a 
regularization term in its objective function to effectively mitigate 
overfitting. This feature makes XGBoost particularly advantageous for 
applications involving limited datasets.

Fig. 2. Conceptual framework of the proposed machine learning algorithm.
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In the preliminary stage of the hybrid modeling approach, an 
XGBoost model was meticulously trained on the designated dataset. This 
model adeptly captured complex nonlinear patterns and interactions 
among variables by constructing multiple decision trees and optimally 
combining their predictions. The parameters governing the XGBoost 
model are systematically enumerated in Table 2. The objective function 
of the XGBoost model was bifurcated into two distinct components: an 
error function term L and a model complexity function term Ω. The 
objective function is written as [43]: 

Obj(r) =
∑n

i=1
L
(
yi, ŷ

(r)
i
)
+
∑r

i=1
Ω(gr) (4) 

where. 

yi - real value, ŷ(r)
i – the prediction at the r-th round, gr -the structure 

of the decision tree, L
(
yi, ŷ

(r)
i
)

- Loss Function, n – the quantity of 
training examples, Ω(gr) – regularization term.

3.2. SVR model

After the training phase of the XGBoost model, the resultant pre-
dictive values were employed as input features to calibrate a series of 
SVR models, each meticulously tailored to predict distinct output vari-
ables. The SVR technique, an extension of the Support Vector Machine 
framework, is proficient in executing both linear and non-linear 
regression tasks. Contrary to the conventional SVM classification 
approach, the SVR methodology aspires to identify an optimal hyper-
plane that minimizes the deviation of all training samples, ensuring the 
narrowest margin from the extremal data points, as depicted in Fig. 3. 
These SVR models play a pivotal role in unraveling the complex non- 
linear dependencies that exist between the input features and the cor-
responding outputs. In instances where the dataset exhibits non-linear 
characteristics, kernel functions are utilized to transmute the feature 
space, mirroring the SVM strategy, and subsequently facilitating the 
regression analysis [44].

In divergence from the SVM classification schema, SVR aimed to 
construct an optimal hyperplane that fits all training samples, main-
taining a minimal distance from the outermost training data. Fig. 3
delineates the schematic representation of the SVR mechanism. The SVR 
models were instrumental in elucidating the intricate non-linear corre-
lations between the inputs and outputs. For dataset that present non- 
linear fitting challenges, kernel functions were invoked to remap the 
feature space, analogous to the SVM technique, preceding the execution 
of the regression [44].

As explicated in Table 3, a judicious selection of parameters is 
instituted for the SVR models. Each model was subjected to a training 
process to align the forecasts derived from the XGBoost model with the 
respective output variables.

3.3. Grid search

In the current investigation, we scrutinized two prominent machine 
learning classifiers: XGBoost and SVR. These classifiers were trained to 
ascertain the optimal hyperparameters and configurations, leveraging a 
robust estimation methodology. The Python Scikit-Learn library offered 
a streamlined grid search mechanism, facilitating the meticulous opti-
mization of hyperparameters for each classifier. This process was 
instrumental in deriving configuration parameter recommendations that 

are tailored to the algorithm in question. Throughout the hyper-
parameter tuning phase, the most efficacious combinations of hyper-
parameters for both models, as determined through a random search, 
are systematically cataloged in Tables 4 and 5.

3.4. The NSGA-II algorithm

Among various optimization algorithms, the NSGA-II was selected 
for its proven efficiency in handling multi-objective problems with high- 
dimensional data [45]. The ability of NSGA-II to identify a diverse set of 
Pareto-optimal solutions was particularly advantageous for our study, 
which aimed to balance multiple emission objectives without compro-
mising computational speed. Consequently, the NSGA-II framework was 
employed as a pivotal multi-objective optimization method in this study 
to reduce nitrogen emissions while maintaining stable AFTs.

As illustrated in Fig. 4 and detailed in Table 6, our optimization 
strategy intricately combined the predictive capabilities of XGBoost and 
SVR models within the NSGA-II algorithmic structure. This innovative 
configuration began with the generation of an ensemble of candidate 
solutions, denoted by N, each evaluated for fitness based on the pre-
dictive accuracy of the combined XGBoost-SVR model suite.

The optimization process began with the initialization of the popu-
lation. The XGBoost-SVR model selects the input variables most likely to 
influence NOx emissions and flame temperature, generating a series of 
high-quality candidate solutions from the outset. The fitness function 
was calculated using the SVR model, with each solution’s performance 
evaluated based on the prediction results of the XGBoost model. Spe-
cifically, the parameters of each candidate solution were first processed 
and predicted by the XGBoost model, with the prediction results 

Table 2 
The hyperparameters search range of the XGBoost model.

Number of estimators [20, 40, 60, 80, 100, 120]
Maximum depth [10, 30, 50, 80, 100]
Learning rate [0.1, 0.2, 0.3, …, 0.9]

Fig. 3. Schematic diagram of SVR.

Table 3 
The hyperparameters search range of the SVR model.

Kernel [1, 2, 4, 6]
Regularization parameter C [20, 60,100]
Degree [1, 2, 3, 4, 5, 6]
Kernel [1, 2, 4, 6]

Table 4 
The optimal hyperparameters of the XGBoost model.

Number of estimators 100
Maximum depth 50
Learning Rate 0.6
Objective Regression with squared error loss
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subsequently used as input to the SVR model, defining and evaluating 
the fitness function.

Following the primary non-dominated sorting phase, a new genera-
tion of solutions was derived through fundamental genetic algorithmic 
processes: selection, crossover, and mutation. These genetic operations 
generated a new generation of candidate solutions, enhancing the ability 

of the algorithm to explore the solution space and maintain genetic di-
versity. From the subsequent generation onward, a rapid non-dominated 
sorting was applied to the combined set of ancestors and their succes-
sors. Concurrently, the crowding distance metric was calculated for each 
solution within the non-dominated strata. This metric, along with the 
non-dominated ranking, guided the selection of the most promising 
candidates, fostering the development of a new ancestral lineage.

The proposed XGBoost-SVR-NSGA-II (XSN) framework, integrating 
multiple machine learning techniques, served not only as an optimiza-
tion tool but also as a complex decision support system. This methodical 
approach ensured a judicious balance between exploration and exploi-
tation within the solution space, ultimately aiming to achieve a Pareto- 
optimal set. This set was characterized by its ability to minimize NOx 
emissions while concurrently maintaining the AFT within predefined 

Table 5 
The hyperparameters of the SVR model.

Kernel 4
Regularization parameter C 100
Degree 4
Coefficient for the polynomial kernel function 1
Gamma Scale

Fig. 4. Computational flowsheet of the XSN framework.
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constraints.

3.5. Metrics

In the assessment of the regression model performance, the Mean 
Square Error (MSE) was employed as a fundamental metric. The MSE 
quantifies the average of the squares of the errors, essentially capturing 
the variance between the predicted values and the observed data points. 
This metric serves as a lucid gauge of the model’s precision and pre-
dictive accuracy. 

MSE=
1
m
∑m

i=1
(Xi − Yi)

2 (5) 

Furthermore, the Coefficient of Determination (R2), a non- 
dimensional index, was utilized to evaluate the fit of the model. An R2 

value approaching unity is indicative of a model that accounts for a 
greater proportion of the variance observed in the dependent variable, 
suggesting a robust correlation between the independent variables and 
the dependent variable. The proximity of the data points to the regres-
sion line, reflected by a higher R2 value, denotes a denser clustering of 
observations and, consequently, a model that more adeptly elucidates 
the variability of the data.

The R2 value is calculated as follows: 

R2 =1 −

∑m

i=1
(Xi − Yi)

2

∑m

i=1
(Y − Yi)

2
(6) 

where. 

Xi - the predicted output value of sample i,
Yi - the actual output value of sample i,
Y - the mean value of samples Yi (i = 1, 2, …, m).

The MSE, with its range extending from 0 to +∞, operates as an 
indicator of prediction accuracy; a diminutive MSE value denotes a 
model that more precisely mirrors the observed data. In contrast, the R2 

values are confined within the interval (0, 1), where an elevated R2 

value signifies a model endowed with enhanced predictive capabilities.

3.6. Features importance

In our research, Feature Importance (FI) was employed as a statis-
tical metric to quantify the contributory weight of input features on the 
predictive outcomes of the model. An elevated FI value was indicative of 
the heightened impact of a feature on the model output. A compre-
hensive assessment of feature importance was undertaken within the 
model framework to identify the critical factors that significantly 

influence the prediction of emissions and flame temperatures. The input 
features subjected to this evaluation are enumerated in Table 7.

The FI values were computed using a perturbation-based method, 
also known as permutation importance. This approach is widely adopted 
as a model-agnostic method for global explainability [22]. FI analysis 
offered a window into the model’s internal mechanics, identifying the 
variables with the most significant impact on the prediction objective. 
This analysis was pivotal in honing the model—by eliminating less 
influential features, the model’s computational efficiency was enhanced 
and the risk of overfitting is mitigated, both of which were essential for 
the model’s practical application.

In this study, the FI for both individual XGBoost models and their 
composite counterparts were presented. Within the individual XGBoost 
model, the importance value of each feature was ascertained based on 
the frequency of its utilization as a split node. The importance of a 
feature was calculated by calculating the total number of split points for 
each feature in the model, alongside the extent to which each split point 
improves model performance. The higher the feature importance value, 
the greater the contribution of the feature to the model’s predictive 
ability. For each feature xj in the model, its importance Ij is calculated 
by: 

Ij =
1
M
∑M

m=1

(
∑Tm

t=1

(
î
2
jt ⋅ 1(v(t)= j)

)
)

(7) 

where. 

M − the total number of trees in the model,
Tm -the set of all non-leaf nodes of the m-th tree,
v(t) - split variable associated with node t,

î
2
jt - the square error improvement obtained by using variable xj as the 

splitting variable at node t
1 (v(t)= j)) - an indicator function whose value is when node t uses 
feature xj as the splitting variable, and is 0 otherwise. This formula 
encapsulates the process where, for each tree within the ensemble, 

the xj is used as the sum of ̂i
2
jt that splits the node. This sum is then 

normalized by the total number of trees (M) in the model to yield the 
average importance Ij of feature xj.

The permutation importance method was employed to discern the 
significance of features within the composite model post-XGBoost 
application. This method quantified the contribution of each input 
feature by measuring the degradation in model performance when the 
feature’s values are randomly shuffled, thereby breaking its association 
with the output, and its formula is expressed as follows: 

FIj =
1
N
∑N

n=1

(
MSEOriginal − MSEPermutedj

)
(8) 

where. 

FIj - The importance of the j-th feature;
N – The number of times to repeat the substitution;
MSEOriginal - The mean square error of the original data and the above 
model prediction;
MSEPermutedj - The mean square error of model predictions after 
permuting the j-th feature.

Table 6 
The procedure of the NSGA-II algorithm.

NSGA-II Procedure

Input: N, T, Fk (X) ▹ N members evolved T generations to solve Min fk (X)
1 Initialize Population P0 size N randomly;
2 for t = 1 to T do:
3 Generate next offspring population Qt size N by:
4 Binary Tournament Selection;
5 Crossover and Mutation;
6 Combine current Parents Pt and new offspring Qt to form Rt;
7 Calculate objective values for Rt;
8 Assign Rank (level) for Rt; based on Pareto fronts Fk (non-dominated solutions);
9 Calculate Crowding distance (CD) for each solution in Rt;
10 Initialize next Parent population Pt+1 by the following loop:
11 Add solutions in lowest rank Pareto fronts with priority for a greater CD until 

getting N individuals are obtained;
12 End

Table 7 
Input features.

1. Equivalence ratio 4. H2 ratio (vol%)
2. Thermal Power (kW) 5. Re
3. NH3 ratio (vol%) 6. Total mass flow (g/s)
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The specific steps feature importance evaluation are as follows. 

a. Training Phase: The composite model is trained using the original 
dataset to establish a baseline metric for predictive performance.

b. Perturbation Phase: Values of a particular feature are randomly 
permuted across the dataset, generating a perturbed variant.

c. Prediction Phase: This altered dataset is then employed to predict 
outcomes, from which a permutation performance score is derived.

d. Impact Assessment: The feature’s influence is quantified by the 
discrepancy between the baseline and permutation scores, indicative 
of the feature’s importance ranking.

e Normalization: Importance rankings across all features are normal-
ized to sum to unity, yielding the relative importance ratio for each 
feature.

Through this structured process, we quantitatively determined the 
contribution of individual features to the model’s predictive accuracy. 
This elucidation not only highlighted the significance of each feature 
within the composite model but also informed strategic feature selection 
to optimize model performance.

3.7. System optimization using XSN architecture

In the pursuit of reducing nitrogen oxide emissions while concur-
rently stabilizing flame temperature, this study introduced a multi- 
objective optimization framework. While conceptually related to the 
optimization tool developed by Zhou et al. [46], which prioritized NOx 
emission reduction and demonstrated robustness concerning control 
parameters, our framework extended this prior work by explicitly 
incorporating flame temperature stabilization as a concurrent objective. 
Central to this framework was a machine learning model leveraging the 
XGBoost-SVR algorithm to construct the fitness function integral to the 
optimization process. Input features, as delineated in Table 1, were 
sampled within their respective operational ranges as established by 
experimental design. The multi-objective optimization framework is 
governed by two principal objectives. 

i) Minimize NOx&NH3 emissions.

min NOx = fNO(x) + fNO2 (x) + fN2O(x) + fNH3 (x) (9) 

ii) Maintain flame temperature within 1600K–2100K: This temperature 
range is essential for the efficient operation of combustion equip-
ment and for ensuring the stable convergence of the optimization 
algorithm.

Where:
fNOx (x) denotes the predictive model for NOx emissions, and fTemp(x)

represents the predictive model for flame temperature, both as functions 
of the input parameters. The optimization process aimed to identify a 
parameter set that not only minimizes NOx emissions but also maintains 
flame temperature within the specified range. Temperature difference 
was defined as the minimum difference of the flame temperature to the 
allowed range (1600–2100 K) – thus it was zero when the temperature is 
within the range, and grew if the temperature was too low or too high 
relative to this band. This dual objective served to mitigate the envi-
ronmental impact of NOx pollutants while preserving the stable opera-
tion of the combustion system.

4. Results and discussion

4.1. Performance of the prediction model

Based on the established XGBoost + SVR model, the comparisons 
between the predicted results and the measured data of the output 

features are presented in Fig. 5. Each subplot within the figure delineates 
the congruence of predicted results with measured data, where the solid 
line denotes the ideal scenario of error-free prediction. The scatter of 
data points, representing model predictions, is observed to cluster near 
this line of perfect agreement. To ensure the reliability of the results, the 
model’s generalizability is evaluated using five-fold cross-validation. 
The dataset is randomly divided into 5 groups, and used 4 groups (72 
experimental groups)to train the model and 1 group (18 experimental 
groups) to evaluate it. Each experimental group represents a 120-s time 
average (see Section 2.2 for details). Fig. 5 shows the test set results of 
one of the folds of cross-validation.

The MSE and R2 values of each predicted output feature are listed in 
Table 6. The R2 values for the output parameters predominantly exceed 
0.97, underscoring the excellent prediction accuracy of the established 
model. An exception is noted in the R2 value for NO2 emissions, which 
stands at 0.934 within the test set. This deviation is potentially attrib-
utable to the more dispersed distribution of NO2 concentrations and 
their comparatively lower magnitude. Overall, the alignment of pre-
dicted results with measured values corroborates the model validity, 
reinforcing its utility in NOx emission studies pertaining to ammonia/ 
hydrogen combustion.

In the assessment of the hybrid XGBoost + SVR model, a phased 
training methodology was adopted to scrutinize the convergence of the 
Root Mean Squared Error (RMSE) throughout the simulated epochs. For 
the XGBoost component, each epoch signifies a successive iteration over 
the dataset, progressively honing the ensemble of decision trees. In 
contrast, the SVR model simulates epochs by incrementally enlarging 
the dataset, thereby enriching the model’s exposure to diverse data 
points. To facilitate a comprehensive understanding of the model fitting 
dynamics, both the SVR and XGBoost algorithms were segmented into 
50 and 100 epochs, respectively, for illustrative purposes in Fig. 6. Post 
each epoch, the RMSE metrics were computed for both the training and 
validation sets, shedding light on the learning trajectory and the 
generalization aptitude of each constituent within the hybrid architec-
ture. This systematic approach elucidates the distinct and collective 
proficiency of XGBoost and SVR in the context of predictive modeling for 
N-gas emissions (NO, NO2, N2O, and NH3). Within the XGBoost algo-
rithm, each epoch signifies a successive iteration over the dataset, 
facilitating the progressive refinement of the decision tree ensemble. In 
contrast, the SVR model simulates epochs through a gradual augmen-
tation of the training dataset, thereby permitting the observation of 
performance enhancements as the model assimilates an expanding 
corpus of data. After each epoch, RMSE metrics are computed for both 
the training and validation dataset, yielding insights into the learning 
trajectory and the generalization aptitude of each algorithmic compo-
nent within the hybrid construct. This deliberate and methodical eval-
uation serves to elucidate the individual and synergistic contributions of 
XGBoost and SVR to the overarching predictive modeling endeavor. 
Both the empirical evaluations of the XGBoost and SVR models reveal 
remarkable reductions in the test RMSE across the epochs.

The proficiency of the established model in predicting various 
emissions and AFT is quantitatively assessed and presented in Table 8. 
The R2 and MSE serve as the principal metrics for evaluating model 
performance. As delineated in Table 8, the R2 and MSE values, computed 
for both the training and testing phases, affirm the robust explanatory 
power and consistent predictive performance of the model. Notably, the 
R2 values approximate unity for flame temperature and NH3 emission 
during the training phase and remain elevated during testing, validating 
the model’s precision and reliability in these specific predictions. On 
average, the model exhibits commendable predictive capabilities, with 
R2 values of 0.99379 in training and 0.97653 in testing.

Table 9 demonstrates the comparisons of the prediction performance 
between the XGBoost + SVR and other commonly used models, 
including the RF, ANN, RF + Linear Regression, RF + ANN, etc. Simi-
larly, the comparative analysis of various models was grounded on MSE 
and R2 metrics, key indicators of model accuracy and predictive power. 
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Fig. 5. Comparative analysis of model predictions and empirical data in ammonia/hydrogen flames.

Fig. 6. RMSE convergence across simulated epochs of employed machine learning models. ((a) XGBoost; (b) SVR.

Table 8 
Prediction performance of the established model across training and testing phases.

NO (ppm) NO2 (ppm) N2O (ppm) NH3 (ppm) Flame Temperature (K) Average

Train R2 0.99986 0.98123 0.99057 0.99753 0.99976 0.99379
Train MSE 149.731 36.7810 71.5952 253.801 5.64498 103.511
Test R2 0.97151 0.93448 0.98704 0.99502 0.99461 0.97653
Test MSE 16738.9 33.8141 81.0623 577.581 110.179 3508.31
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As is shown, the established model of this study (XGBoost + SVR) 
showcases outstanding performance with the lowest MSE of 3508.31 
and the highest R2 value of 0.97653. This hybrid model significantly 
outstrips the other contenders, including standalone models and other 
ensemble techniques. For context, the standalone RF model achieved an 
R2 of 0.87160 with an MSE of 11627.6, whereas the ANN scored an R2 of 
0.63127 with a substantially higher MSE of 46701.8. AdaBoost, another 
ensemble technique, delivered an R2 of 0.79709 and an MSE of 9477.83. 
Combining RF with Linear Regression resulted in an R2 of 0.84544 and 
an MSE of 10394.0, whereas coupling RF with ANN produced an R2 of 
0.77712 but with a significantly elevated MSE of 77828.3. The stand-
alone XGBoost model offered a competitive R2 of 0.84646 with an MSE 
of 5893.57. It can be concluded that the XGBoost + SVR model estab-
lished in this paper is competent to predict the concentration of NOx 
emissions (NO, NO2, N2O) and flame temperature.

The superior performance of the XGBoost + SVR model can be 
attributed to its dual capability of capturing complex data patterns. 
XGBoost can effectively capture the variance in the data, while SVR can 
model the residuals with its flexible non-linear kernel. The combination 
of these two models harnesses their respective strengths: the robustness 
of XGBoost to overfitting and the powerful prediction of SVR of 
continuous outcomes. The high MSE observed with the RF + ANN model 
suggests that while ANN added complexity to the model, it did not 
translate to an improved prediction on this particular dataset, possibly 
due to overfitting or an inadequate architecture for the data complexity. 
The standalone underperformance of ANN could be attributed to similar 
reasons and highlights the challenges of tuning ANNs to specific dataset. 
In contrast, the low MSE and high R2 of the XGBoost + SVR model 
indicate not only a good fit but also a strong generalization capability. 
The ability of this model to accommodate the variance of the data while 
also capturing intricate patterns that may be missed by other models sets 
a new benchmark for predictive accuracy in this application domain.

4.2. Feature importance

In this study, feature importance (FI) is calculated using a 

perturbation-based method. Specifically, each feature was randomly 
permuted multiple times across the dataset, and the resulting increase in 
prediction error (measured by MSE) is averaged. The mathematical 
formulation is given in Equation (8). The values plotted in Fig. 7
represent the unnormalized FI values, which directly quantify the in-
crease in MSE caused by destroying the association between each input 
feature and the target. These FI values were not scaled or normalized, 
and hence reflect the absolute magnitude of feature contribution. The 
analysis reveals a pronounced sensitivity of NO emissions to the 
equivalence ratio, corroborating the findings of antecedent studies that 
the equivalence ratio can substantially impact the NO emissions. 
Furthermore, the heatmap indicates a significant propensity for 
ammonia slip under rich NH3/H2 combustion conditions, attributable to 
the concomitant reduction in available oxygen [47]. This phenomenon 
is underscored by the heightened sensitivity of NH3 emissions to the NH3 
ratio, accentuating its pivotal role in emission control strategies. The 
thermal power is observed to exhibit minimal sensitivity to emissions 
when juxtaposed with the NH3 ratio and equivalence ratio. Notably, the 
H2 ratio is shown to have negligible sensitivity to all emissions and the 
AFT, a manifestation of its inherent redundancy relative to the NH3 ratio 
within the fuel composition. Consequently, the NH3 ratio is posited to 
fully encapsulate the sensitivity otherwise attributed to the H2 ratio.

Overall, the heatmap accentuates the profound influence of the NH3 
ratio and equivalence ratio on emissions and AFT. Concurrently, it de-
lineates the varying degrees of impact exerted by other input features on 
specific emissions—for instance, the total mass flow is identified as a 
significant determinant of emissions such as NO, NH3, and N2O. These 
discerned patterns furnish valuable insights for the optimization of 
combustion processes, aligning them with stringent environmental 
standards.

In light of the sensitivity analysis outcomes in Fig. 7 and the 
demonstrated efficacy of the XGBoost + SVR model in Table 9, this 
investigation further explores a feature importance analysis. This anal-
ysis is pivotal in discerning the individual contributions of input vari-
ables to the overall NOx emissions, thereby informing operational 
strategies and emission control for NH3/H2 combustion. Table 10 enu-
merates the significance of various input features as appraised by both 
the hybrid XGBoost + SVR and the standalone XGBoost models. The 
findings from both models concur that the NH3 mole fraction, equiva-
lence ratio, and total mass flow rate are paramount contributors to NOx 
emissions, aligning with the inferences of prior NH3/H2 combustion 
research [48,49]. The accumulative importance of the input features are 
shown in Fig. 8.

The observed shifts in feature importance from the standalone 
XGBoost to the XGBoost + SVR hybrid underscore the nuanced inter-
action effects that the SVR captures, which may elude the XGBoost 
model when operating in isolation. The pronounced impact of the NH3 
proportion within the hybrid model intimates a complex, non-linear 
interplay with the target variable, adeptly harnessed by the SVR. This 
complexity likely stems from the SVR proficiency in modeling intricate 
relationships between the residuals of XGBoost predictions and the 
target variable, relationships that are not immediately discernible 
within the primary XGBoost framework. Conversely, the negligible in-
fluence of the H2 ratio in both models can be attributed to its functional 
redundancy relative to the NH3 ratio. Furthermore, the disparate sig-
nificance of the equivalence ratio and Reynolds number between the 
models suggests that their associations with the output variables are 
more linear, hence sufficiently captured by XGBoost, while the SVR does 
not contribute additional interpretive value for these variables.

4.3. Optimization of nitrogen emissions using the XSN framework

Given the detrimental impact of reactive nitrogen compounds on 
ecosystems—manifesting as air pollution and contributing to the 
greenhouse effect—and their adverse effects on human health, it is 
imperative to mitigate the concentration of total nitrogenous gases (NO, 

Table 9 
Comparisons of the prediction performance of different models.

Methods MSE R2

Random Forest 11627.6 0.87160
ANN 46701.8 0.63127
AdaBoost 9477.83 0.79709
RF þ Linear Regression 10394.0 0.84544
RF þ ANN 77828.3 0.77712
XGBoost 5893.57 0.84646
XGBoost þ SVR 3508.31 0.97653

Fig. 7. Feature importance values computed via the perturbation-based 
method. Each value represents the average increase in MSE after randomly 
permuting the corresponding feature.
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NO2, N2O, NH3) in exhaust emissions. This necessitates the strategic 
modification of operating parameters within the swirl burner. After the 
establishment of the XGBoost + SVR model, which predicts NOx and 
NH3 emissions as well as AFT under varying conditions and input fea-
tures, the XSN framework is employed to optimize the selection of input 
features. The aim is to minimize nitrogen compounds while maintaining 
the AFT within the normal temperature range of 1600–2100 K based on 
the experimental dataset.

Table 11 delineates the input parameters alongside the nitrogen 
emissions and AFT for both the optimized model and the experimental 
setup with the lowest recorded nitrogen emissions. The empirical data 
indicated a minimum total nitrogen gas concentration of 69.81 ppm, 
whereas the optimization approach achieved a significant reduction to 
33.57 ppm, marking a decrease of 51.91 %. This substantial diminution 
underscores the efficacy of the optimization model in regulating nitro-
gen emissions. Concurrently, the AFT is maintained at a viable 2013.66 
K. Pertaining to the input features of the optimized data set, the 
equivalence ratio is established at 1.22 with an ammonia proportion of 
95 %, figures that resonate with those derived from preceding NOx 
emission studies [50,51].

The Pareto front generated by the NSGA-II optimization delineates 
the complex interplay between NOx emissions, quantified through MSE 
values, and temperature discrepancies. As illustrated in Fig. 9, a well- 

Table 10 
Importance of individual features across different models.

Model Equivalence ratio Thermal Power (kW) NH3 H2 Re Total Mass Flow (g/s)

Ratio Ratio

XGBoost 0.3037 0.0252 0.2621 0.0000 0.2901 0.1197
XGBoost þ SVR 0.0939 0.0076 0.6460 0.0000 0.0404 0.2122

Fig. 8. Analysis of individual feature importance and cumulative importance based on XGBoost + SVR.

Table 11 
Comparison between optimized and experimental value parameters.

Optimization model Experimental data

Input Features Emissions Input Features Emissions

Equivalence Ratio 1.25 NO (ppm) 19.50 Equivalence Ratio 1.15 NO (ppm) 58.00
Thermal Power (kW) 8.22 NO2 (ppm) 8.10 Thermal Power (kW) 8.00 NO2 (ppm) 6.74
NH3 Ratio 0.95 N2O (ppm) 4.17 NH3 Ratio 0.75 N2O (ppm) 2
H2 Ratio 0.05 NH3 (ppm) 1.80 H2 Ratio 0.25 NH3 (ppm) 3.07
Re 43447.59 AFT (K) 2013.66 Re 27029.66 AFT (K) 2032.93
Total Mass Flow (g/s) 2.80 Total Nitrogen Emissions (ppm) 33.57 Total Mass Flow (g/s) 2.58 Total Nitrogen Emissions (ppm) 69.81

Fig. 9. Pareto front analysis: balancing NOx emissions and temperature vari-
ations in NH3/H2 combustion.
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defined clustering of solutions emerges, demonstrating the algorithm’s 
capability to simultaneously minimize NOx emissions while maintaining 
controlled temperature fluctuations. The color-coded points highlight 
key trade-offs: solutions in the upper left region achieve significantly 
lower NOx MSE but with greater temperature deviations, whereas points 
in the lower right prioritize minimal temperature differences at the cost 
of higher NOx error. This distribution underscores the inherent trade- 
offs in combustion optimization, where minimizing one objective 
often necessitates compromises in the other. The presence of distinct 
solution clusters suggests that the algorithm effectively explores and 
exploits the search space, yielding multiple viable alternatives for 
decision-makers to select from based on operational priorities.

Fig. 10 further illustrates the evolutionary trajectory of the NSGA-II 
optimization over 50 generations, capturing the convergence behavior 
of NOx emissions and temperature differences. Initially, the fitness 
values exhibit considerable dispersion, indicative of broad exploratory 
sampling. As the algorithm progresses, both objectives exhibit a clear 
trend toward convergence, with NOx emissions and temperature de-
viations stabilizing into lower, more refined regions. The structured 
stratification observed in the scatter plots suggests that the algorithm 
efficiently identifies and retains high-quality solutions, progressively 
refining the Pareto set over successive generations. This convergence 
pattern is a testament to the optimization method’s effectiveness in 
handling multi-objective trade-offs, demonstrating its capability to 
balance environmental constraints with operational feasibility. Overall, 
the results underscore the effectiveness of NSGA-II in handling this 
multi-objective optimization problem: it substantially reduces NOx 
emissions while maintaining controlled temperature variations. The 
algorithm not only finds a diverse set of optimal trade-off solutions, but 
it also does so with apparent efficiency, giving confidence that the ob-
tained Pareto front is both representative and practical for informing 
real-world engineering decisions.

Notably, as shown in Table 11, the optimal condition corresponds to 
an NH3 mole fraction of approximately 95 %, which is higher than 
typical experimental test cases. This outcome can be understood from 
both combustion science and optimization perspectives. High ammonia 
content results in lower flame temperature and reduced thermal NOx, 
and by jointly optimizing equivalence ratio and mass flow rate, the 
model found a condition where most NH3 is consumed, minimizing both 
NOx and NH3 slip. From a modeling standpoint, the genetic algorithm 
effectively explored the parameter space and determined that a small 
fraction of H2 is sufficient for combustion stability, while excessive H2 
would have raised temperatures and increased NOx formation. The 
result demonstrates the model’s capacity to identify non-obvious but 
physically valid solutions through data-driven optimization.

4.4. Limitations and future work

While this study provides insights into multiple optimization 

objectives using NSGA-II, it is important to note a few considerations. 
The dataset employed is highly specific and proprietary, which could 
affect the generalizability of the findings to other settings or conditions 
where similar data are unavailable. Additionally, the computational 
demand of the NSGA-II algorithm, particularly with large dataset and 
complex models, is notable. This aspect might influence the applicability 
of the approach in scenarios where computational resources are 
constrained.

To address these limitations, future work can focus on enhancing the 
robustness and applicability of the study. First, collaborating with in-
dustry partners to obtain more extensive data or generate synthetic 
dataset can help validate and improve the model under different con-
ditions. Second, conducting scalability studies to evaluate the perfor-
mance of the proposed model under varying computational loads can 
ensure its applicability in different operating environments. Finally, 
future studies can explore integrating the developed model with a real- 
time monitoring system to dynamically optimize emissions based on 
changing operating conditions. Furthermore, to maximize its societal 
impact, future efforts should broaden the application of this tool to 
facilitate the transition towards net-zero emissions across critical energy 
sectors, including transportation and the built environment.

5. Conclusions

The urgency of mitigating climate change has propelled the search 
for clean energy alternatives, with hydrogen and ammonia emerging as 
frontrunners. Ammonia, in particular, shows promise due to its zero- 
carbon emissions and high energy density. Despite its potential, chal-
lenges such as a high ignition point and low reactivity pose barriers to its 
adoption as a fuel source. Ammonia/hydrogen blends offer a solution, 
yet they may increase NOx emissions. This study explores the optimi-
zation of operating parameters to reduce nitrogen emissions, combining 
the machine learning techniques, XGBoost and SVR, to improve pre-
diction accuracy and reduce overfitting risks. The NSGA-II genetic al-
gorithm is utilized to optimize model parameters, aiming to minimize 
nitrogen compounds in exhaust emissions. The main conclusions are 
listed as follows. 

1. The XGBoost + SVR model demonstrates high predictive accuracy, 
with most R2 values exceeding 0.97, indicating strong correlations 
between predicted and measured data. The exception is NO2 with an 
(R2) value of 0.934, likely due to its more scattered distribution and 
lower values.

2. When compared to other models like RF, ANN, and their combina-
tions, the XGBoost + SVR model excels, achieving the lowest MSE 
(3508.31) and the highest R2 value (0.97653). The superior perfor-
mance of this hybrid model is credited to its ability to capture 
complex data patterns, with XGBoost addressing data variance and 
SVR modeling non-linear residuals.

Fig. 10. Convergence of NOx emissions and temperature discrepancies over generations.
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3. The feature importance analysis reveals that NH3 mole proportion, 
equivalence ratio, and total mass flow rate are significant contribu-
tors to nitrogenous emissions (NO, NO2, N2O, and NH3). The H2 ratio 
appears to have a negligible impact, possibly due to its redundancy 
with the NH3 ratio. The XGBoost model effectively captures the 
linear relationships of features like the equivalence ratio and Rey-
nolds number, while the SVR does not add explanatory value for 
these features.

4. The proposed XSN framework successfully minimizes nitrogen 
compounds, reducing the total concentration of N-gases (NO, NO2, 
N2O, and NH3) from 69.81 ppm to 33.57 ppm, a decrease of 51.91 %. 
The input features of the optimization model, such as an equivalence 
ratio of 1.22 and an ammonia proportion of 95 %, align closely with 
previous NOx emission studies, confirming the model’s effectiveness 
in controlling nitrogen emissions.
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