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Abstract 

 

Most contemporary theories of causal learning identify three primary cues to causality; 

temporal order, contingency and contiguity. It is well-established in the literature that a lack of 

temporal contiguity – a delay between cause and effect – can have an adverse effect on causal 

induction. However research has tended to focus almost exclusively on the extent of delay while 

ignoring the potential influence of delay variability. This thesis aimed to address this oversight.  

Since humans tend to experience causal relations repeatedly over time, we accordingly 

experience multiple cause-effect intervals. If intervals are constant, it becomes possible to predict 

when the effect will occur following the cause. Fixed delays thus confer temporal predictability, 

which may contribute to successful causal inference by creating an impression of a stable 

underlying mechanism. Five experiments confirmed the facilitatory effect of predictability in 

instrumental causal learning. Two experiments involving a different aspect of causal judgment 

found no effects of interval variability, but two further experiments demonstrated that 

predictability facilitates elemental causal induction from observation. These results directly 

conflict with findings from studies of animal conditioning, where preference for variable- interval 

reinforcement is routinely exhibited, and a simple associative account struggles to explain this 

disparity. However both a temporal coding associative account, and higher-level cognitive 

perspectives such as Bayesian structural inference, are compatible with these findings. Overall, 

this thesis indicates that causal learning involves processes above and beyond simple 

associations.  
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Chapter 1 – Current Perspectives on Causal Learning 

 

1.1 Causality and Causal Learning – A brief introduction 

The study of causality has a long and rich history in both philosophy and 

psychology. In essence, causality is understood as the relationship between one event or 

entity, the cause, and another event or entity, the effect, such that the second is recognized 

to be a consequence of the first. In other words, causes produce or generate effects. Causal 

learning, in the simplest sense, is how we come to learn that one thing causes another.  

An expanded and more precise definition of causality acknowledges that causes 

may be either deterministic, where the effect necessarily follows from the cause, or 

probabilistic, where the cause alters the likelihood of the effect. Furthermore, causes may 

be generative, producing or increasing the probability of occurrence of an outcome, or 

preventative, inhibiting an outcome that would otherwise have occurred. Causality then 

may be seen as the underlying laws that govern systematic relations between events.  

Multiple relationships between multiple entities or events may exist within a given 

system. For example, a fire may produce smoke and heat, both of which are common 

effects, while the fire itself may have resulted from natural causes (such as a bolt of 

lightning) or from deliberate human action, both of which may be regarded as common 

causes (or parents). Such an interconnected series of events is known as a causal network 

(Pearl, 2000). Causal learning may thus be more broadly defined as the process by which 

we construct and represent causal relations and networks, and how we use this information 

in thinking, reasoning, judgment and decision-making. The research presented within this 

thesis however focuses on the former, more fundamental question of causal learning – how 

do humans learn that one thing causes another? 

 

1.2 The central problem for causal learning 

The ability to learn enables us to adapt to our environment and, ultimately, to 

survive.    If learning has evolved as an adaptive mechanism, it is natural that the content of 

learning should reflect relations that actually exist in the universe (Shanks, 1995). Causal 

learning endows us with the capacity to create representations that mirror the causal 

structure of our surrounding environment. Creating such representations allows us to 
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understand how and why events occur, to predict the occurrence of future events, and to 

intervene on the world and control our environment, directing our behaviour to evoke 

desired consequences and achieve goals. Causal learning is thus a core cognitive capacity 

and a crucial adaptive mechanism. The central question for learning theorists interested in 

causality is how such knowledge is acquired. 

Seeking an answer to this question has been a preoccupation of scholars throughout 

the ages. Yet, this may, to the uninitiated, seem somewhat surprising. When asked “how do 

you learn that one thing causes another?” an immediate answer may spring to mind such as 

“I see it happen and so I know how it works” (Schlottmann, 1999). One might then be 

puzzled as to why this question has provided such a dilemma when the answer seems so 

intuitively obvious. For example, when one kicks a ball, the causal connection between so 

doing and the subsequent motion of the ball seems immediately apparent. Indeed, it has 

been argued that such events involving physical collision of objects or “launching” 

(Michotte, 1946/1963) may indeed give rise to direct causal perception (for an overview see 

Scholl & Tremoulet, 2000).  

Consider however some alternative examples. When one practices a skill such as 

learning a musical instrument, there is typically a causal understanding that continued 

practice will lead to improved performance. However we cannot directly see the 

physiological changes to the neurons in the brain and muscle fibres in the body that practice 

confers to improve the co-ordination and dexterity of the individual. Nor can the cellular 

changes be observed when, for instance, a pathogen invades our body and causes illness, or 

a drug is taken to treat that illness and eliminate the pathogen from our system. How then, 

have we come to learn causal relations such as that microscopic pathogens cause illness and 

that certain drugs will eradicate these unwanted visitors, or that one can develop a skill 

through practice?  

Such unobservable causal relations need not always involve biological processes. 

Hanging a wet cloth outside on a sunny day, for instance, will cause the cloth to dry, and 

we may well be able to observe the cloth becoming drier, if we have nothing better to do. 

What we cannot see however, is the mechanism involved, the transfer of energy, the water 

molecules becoming more excited and eventually changing state from liquid to vapour as 

they evaporate from the cloth. Moreover, we cannot directly perceive the laws of physics 
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governing the behaviour of molecules, such as in the evaporation of water, which 

ultimately underpin this process. Such causal laws or relations are not entities in themselves 

and are therefore imperceptible; we cannot see (nor hear, touch, smell or taste) a causal law. 

If such laws are unobservable, then how can we ever become aware of them? 

Although philosophical concerns regarding causality extend as far back as the days 

of Aristotle, it was the Scottish empiricist David Hume (1711-1776) that first formalized 

and addressed the “riddle of induction” that is exemplified by such scenarios as described 

above. Hume reasoned that since our sensory modalities are not attuned to the detection of 

causality per se, the existence of causal relations can only be inferred from the observable 

evidence that is accessible to us (Hume, 1739/1888). Causal learning is therefore often 

referred to also as causal inference or induction. It follows then that representations of 

causal relations must be constructed on the basis of the sensory input we receive from the 

world around us. Hume proposed that there are crucial ‘cues to causality’ that underpin 

such representations, and identified the most important determinants as 1) temporal order – 

causes must precede their effects; 2) contingency – effects must repeatedly and reliably 

follow their causes; and 3) contiguity – causes and effects must be closely connected in 

space and time. 

These statistical and temporal relations between events form the bedrock of nearly 

all theories of causal learning. The primary goal of this thesis is to address the possibility of 

an additional cue, namely temporal predictability, contributing to the process of causal 

inference. At this point then, it seems appropriate to provide a brief overview of the thesis, 

and outline how this question shall be approached. 

 

1.3 Plan of the thesis 

The remainder of this chapter will firstly explore in more detail each of the cues to 

causality as suggested by Hume, and the role each is considered to play in causal learning. 

Following this, I shall briefly introduce three broad theories of causal learning, each of 

which has its own particular interpretation of how humans and other agents use such cues 

to learn about causal relations. This background is necessary for the eventual evaluation of 

the empirical results that will be presented further on. Chapter 2 then fully introduces this 

concept of temporal predictability and outlines how such a feature might be a factor in 
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causal learning. It is then considered how each of the theories of causal learning introduced 

in Chapter 1 might accommodate any effects of this potential cue of temporal predictability 

that may be subsequently identified. Chapters 3 and 4 then provide a series of experiments 

designed to assess the empirical contribution of temporal predictability, in both 

instrumental and observational learning tasks. Finally, Chapter 5 provides a full discussion 

of these results and considers their implications, as well as suggesting a new abstract model 

to account for these results, before concluding the thesis by looking towards future research 

that might be pursued along this same vein. 

 

1.4 Hume’s Cues to Causality 

1.4.1 Temporal Order 

Hume’s first cue of temporal order is perhaps the most fundamental, and its 

importance is almost unanimously accepted across researchers; causes must occur prior to 

the effects they produce. There are however a few notable clauses in this dictum. Firstly, 

events may not always be observed in their causal order (see Waldmann & Holyoak, 1992). 

For instance, during a medical diagnosis, a physician may detect a symptom before 

identifying the disease that is causing it. Such situations are in fact crucial for 

distinguishing between the predictions of different theories of causal learning, as shall be 

discussed in more detail further on in this thesis. Secondly, research has shown that new 

information can influence the perception of events in the past, in what is known as 

postdictive perception (Choi & Scholl, 2006). Nevertheless, in most contemporary accounts 

of causal learning, temporal order is taken as a given necessity for causal inference. 

1.4.2 Contingency 

The vast majority of the literature on causal learning has focused on the second cue 

of contingency, and how this information may be used to infer causality. Contingency is the 

extent to which the effect is dependent (contingent) upon the cause, or in other words, the 

degree of covariation between cause and effect. This encompasses both the extent to which 

the effect follows the cause, and also the extent to which the effect occurs without the 

cause, known as the base rate. Contingency then is the degree of statistical dependency 

between the presence and absence of candidate causes and their putative effects. 
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While of course both causes and effects may take the form of stimuli whose 

properties are on a continuum (such as the brightness of a light or the loudness of a tone), 

most models of causal learning simplify the problem by defining cause and effect as either 

present or absent. Researchers generally agree that the statistical information we receive 

with regard to the presence or absence of candidate causes and effects is computed in some 

way to assess the covariation between them, which can then form the basis for a causal 

judgment. At the root of most covariation models is the 2×2 contingency matrix, as shown 

in Figure 1.1, which describes in the most simple format the possible combinations in 

which cause and effect can be either present or absent. Exactly how this information is 

computed is still the subject of rigorous debate (Buehner, Cheng, & Clifford, 2003; Cheng, 

1997; Cheng & Novick, 2005; Lober & Shanks, 2000; Luhmann & Ahn, 2005; White, 

2005) and numerous models with varying degrees of complexity have been proposed to 

account for this computation.  

One of the best known and widely used models is the ∆P statistic (Jenkins & Ward, 

1965). In fact such is the popularity of this measure that it is often treated as an objective 

measure of contingency and “contingency” is sometimes used as a synonym for ∆P. The 

value of ∆P is given by the difference between the probability of the effect in the presence 

of the cause, P(e|c), and the probability of the effect in the absence of the cause, P(e|¬c). In 

terms of the cells of the contingency matrix, this is calculated as:  

∆P = P(e|c) – P(e|¬c) = A/(A+B) – C(C+D) 

There are of course different ways in which the cells of the table may be combined, 

including among others the ∆D rule, calculated as (A+B) – (C+D). For an overview of a 

number of such rules, see Hammond and Paynter (1983). More recently developed models, 

for instance Cheng’s (1997) Power PC theory, have extended covariation-based models to 

account for some of the particular phenomena of causal inference that ∆P alone cannot 

represent. While the discourse continues over how covariation information is and should be 

utilized in making causal inferences, all researchers would likely agree with the general 

principle that the greater the contingency between cause and effect, the stronger the 

perception of causality.  
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Figure 1.1: Standard 2×2 contingency matrix, showing the four possible combinations of 

cause and effect occurrence and non-occurrence. 

 

1.4.3 Contiguity 

The second of Hume’s tenets, contiguity, refers to the proximity of the cause and 

effect both in space and in time – spatial and temporal contiguity. In a classic illustration of 

the importance of contiguity, Michotte (1946/1963) used simple visual stimuli to 

demonstrate the “launching” effect. A prototypical procedure began with two squares (X 

and Y) separated from each other by a small distance. X then began to move in a straight 

line towards Y. On reaching Y (so that their outer surfaces appear to make contact), X 

stopped moving and Y immediately began to move along the same trajectory. Such a 

sequence created the strong impression that X collided with Y and caused Y to move. 

Reports from Michotte’s participants revealed that if Y began to move only after a delay 

(lack of temporal contiguity), or before it was reached by X (lack of spatial contiguity), the 

causal impression of X having launched Y was destroyed.  

However, as alluded to earlier, a distinction may be drawn between causal 

perception, which involves a direct interaction and visible physical contact between the 

participants in the causal relation, and causal induction, when the physical interaction 

between participants is undetectable and the relation must instead be inferred (Cavazza, 

Lugrin, & Buehner, 2007; Schlottmann & Shanks, 1992; Scholl & Nakayama, 2002). While 

spatial contiguity remains of utmost importance for perceptual causality (as in the above 

example of launching), in the case of causal induction (such as in the earlier example of 

inferring the causes of disease), the necessity of spatial contiguity tends to be downplayed. 

After all, many events can often be triggered remotely, such as flipping a switch at one end 
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of a room to cause a light to come on at the other end. Most contemporary research on 

causal inference instead then focuses on temporal rather than spatial contiguity.  

Relatively speaking, there has been far less empirical attention devoted to contiguity 

compared to contingency (although the disparity is gradually being redressed in recent 

years). As a result, contiguity is less well understood and its role in causal learning more 

uncertain. According to Hume, contiguity between cause and effect is essential to the 

process of causal induction. This supposition was affirmed in a systematic investigation by 

Shanks, Pearson and Dickinson (1989). Their task involved judging how effective pressing 

the space-bar on a keyboard was in causing a triangle to flash on a computer screen. 

Participants were given a fixed amount of time to engage on the task and could gather 

evidence through repeatedly pressing the space-bar and observing whether or not the 

outcome occurred. The apparatus was set up to deliver the outcome with a 0.75 probability 

when the space-bar was pressed. On each trial, if an outcome was scheduled, it would occur 

after a specific amount of time following the space-bar. This interval varied between 

conditions from 0 up to 16s.  It was found that as the delay increased, participants’ causal 

judgments decreased in systematic fashion. In fact, conditions involving delays of more 

than 2s were no longer distinguished as causally effective and were judged just as 

ineffective as non-contingent control conditions.  

Shanks et al.’s (1989) results provided evidence that delays have a deleterious effect 

on impressions of causality, corroborating the assertions of Hume that contiguity is indeed 

necessary for causal learning. Yet this idea seems at odds with everyday cognition. Humans 

and other animals often demonstrate the ability to correctly link causes and effects that are 

separated in time and learn causal relations involving delays of considerable length; over 

days, weeks, even months at a time – an often cited example is the temporal gap between 

intercourse and birth (Einhorn & Hogarth, 1986). And yet, Shanks et al. show a failure to 

detect causal relations involving gaps of more than a few seconds. Clearly there must be 

something that enables us to bridge such temporal gaps and infer delayed causal relations. 

Einhorn & Hogarth (1986) proposed a knowledge mediation hypothesis. They argue 

that rather than being essential, the function of contiguity is as a cue to direct attention to 

the  contingencies between events. According to this view, people can overcome the 

requirement for events to be contiguous if there is some other reason why an attentional 
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link should form between these events; for example, if they have knowledge of some 

existing mechanism that may connect one to the other. Some knowledge of human biology 

might therefore enable the connection between intercourse and birth. According to this 

view, if there is an expectation for a delayed mechanism, a temporal delay no longer 

becomes an obstacle to causal inference. Thus prior knowledge can mediate the impact of 

temporal delays. 

Adopting this perspective, Buehner and May (2002) demonstrated the detrimental 

effect of delay could be mitigated by invoking high- level knowledge in participants. In 

judgment tasks where a cover story was used to make a delay between cause and effect 

seem plausible (the effect was an explosion and the candidate cause was the launching of a 

grenade), causal ratings were significantly less adversely affected by delays compared to 

situations where the cover story made delay seem implausible (where the effect was a 

lightbulb illuminating and the candidate cause was pressing a switch). Further work by 

Buehner and May (2004) showed that the effect of delay could be abolished completely by 

providing explicit information regarding the expected timeframe of the causal relation. 

Participants again evaluated the effectiveness of pressing a switch on the illumination of a 

lightbulb; however one group of participants were told that the bulb was an ordinary bulb 

that should light up right away, while another group of participants was instructed that the 

bulb was an energy-saving bulb that lights up after a delay. For this latter group there was 

no decline in ratings with delay; delayed and immediate causal relations were judged as 

equally effective. Indeed in some circumstances, delays even may serve to facilitate causal 

attribution where an immediate consequence is incompatible with an expected mechanism 

(Buehner & McGregor, 2006). 

Additionally, Buehner and May (2003) also found that mediation of delay could 

also be induced through prior experience; they found strong order effects such that where 

conditions with immediate causal relations preceded conditions with delayed relations, 

causal ratings were markedly lower compared to when delayed causal relation conditions 

were presented first. Reed (1992) and Young, Rogers and Beckmann (2005) show that 

filling an interval with a stimulus such as an auditory tone (known as “signalling”) can 

likewise negate the impact of delays. Greville, Cassar, Johansen, and Buehner (2010) have 

meanwhile shown that delays of reinforcement no longer impair instrumental learning 
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when the task environment highlights the underlying contingency structure. Such work 

provides insight as to how causal inference can take place over longer time periods. 

Nevertheless, most researchers agree that in the absence of such mitigating information as 

described above, delays tend to have a deleterious effect on causal learning, and temporal 

contiguity thus remains an important cue to causality. Barring a few exceptions, all other 

things being equal, contiguous causes and effects elicit a stronger causal impression than 

causes and effects separated by a delay. 

 

1.5 Theories of Causal Learning 

Despite a fairly general consensus over the importance of Hume’s cues to causality, 

there is considerable disagreement with regard to the processes that underlie causal 

inference. Moreover, no model of learning thus developed has thus provided a full account 

of causal learning that encompasses its various idiosyncrasies. Dissatisfaction with existing 

accounts has led to the development of a veritable smorgasbord of learning rules and 

models over the years, some with the intention of addressing specific facets of learning that 

previous efforts could not account for, and some providing a more general framework. 

Each is motivated from a particular theoretical stance, and each has had its successes and 

shortcomings debated, some more favourably so than others. One long-standing measure, 

∆P, has already been briefly described. Others include the probabilistic contrast model 

(Cheng & Novick, 1990); Power PC (Cheng, 1997); the pCI rule (White, 2003); BUCKLE 

(Luhmann & Ahn, 2007); knowledge-based causal induction (Waldmann, 1996); causal 

support (Griffiths & Tenenbaum, 2005); and theory-based causal induction (Griffiths & 

Tenenbaum, 2009). While these examples specifically address human causal learning, 

models of animal conditioning have also been applied (with varying degrees of success) to 

account for causal inference, including the Rescorla-Wagner model (1972); the SOP model 

(Wagner, 1981); the Pearce-Hall (1980) and Pearce (1987) models; scalar expectancy 

theory (Gibbon, 1977); and rate estimation theory (Gallistel & Gibbon, 2000b). Neither of 

these lists are exhaustive and it is of course unfeasible to accommodate a detailed 

explanation of all existing models of causal learning within this thesis. Indeed, a full 

account of a single more complex framework such as theory-based causal induction could 

easily stand alone as a doctoral thesis in itself (see, e.g., Griffiths, 2005). Instead it seems 
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more appropriate to categorise these models based on their common ground, and consider 

the general principles underlying each particular theoretical position. It is also worthwhile 

to point out at this juncture that the work contained in this thesis examines only generative 

causes. Accordingly the following review of existing models of causal learning will focus 

on the generative form. 

1.5.1 Conditioning and Associative Learning Theory 

Learning in animals is measured by changes in behaviour. Indeed, it has been 

argued that learning is, by definition, a change in behaviour and that such changes are the 

only way by which learning can be measured (Baum, 1994). Stimuli that elicit a change in 

the behaviour of an organism may be categorized as either reinforcers, which increase the 

frequency of a behaviour, or punishments, which decrease the frequency of a behaviour. 

The common conception of reinforcement or punishment is the delivery of a stimulus that 

has a particular motivational significance or adaptive value to the organism; either an 

appetitive (pleasant) stimulus, such as food, or an aversive (unpleasant) stimulus, such as 

shock, which are known as primary reinforcers (or punishments). Appetitive stimuli are 

also often referred to as rewards, and the terms reward and reinforcer are sometimes used 

interchangeably. However strictly speaking this is not entirely accurate. While appetitive 

stimuli (rewards) generally serve as reinforcers and aversive stimuli as punishments, this is 

not always the case; for instance in the case of a satiated animal, food will often fail to 

increase the frequency of a behaviour and thus cannot be classed as a reinforcer. To clarify 

then, reinforcement and punishment refer to the effects on behaviour, whereas appetitive 

and aversive refer to the nature of the stimuli. Reinforcements and punishments are directly 

responsible for the emergence and maintenance of new behaviour. 

The experimental analysis of animal learning and behaviour began with the 

pioneering work of Ivan Pavlov (1849-1936) and Edward Thorndike (1874-1949) who 

respectively developed the protocols of classical (Pavlovian) and instrumental conditioning 

(see Pavlov, 1927; Thorndike, 1898). In a typical classical conditioning preparation, 

subjects are presented with a neutral stimulus to which they normally would not respond 

such as a tone or light, referred to as the conditioned stimulus (CS), which is then routinely 

paired with another stimulus that has some adaptive value (i.e. a primary reinforcer, such as 

food) and that normally would elicit a response (such as salivation), referred to as the 
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unconditioned stimulus (US). As conditioning progresses, a new pattern of behaviour is 

seen to emerge such that the animal responds to the CS before the US is presented or even 

if the CS is presented in isolation. This is known as the conditioned response (CR) and 

tends to be similar in nature (though not always identical) to the unconditioned response 

(UR) that would normally be elicited by the US. Pavlov’s dogs, for instance, after 

repeatedly hearing a bell ring prior to being fed, developed a salivatory response to the 

sound of the bell. The presentation of the CS and subsequent delivery of the US in classical 

conditioning are arranged by the experimenter and thus not dependent on the animal’s 

behaviour. In an instrumental conditioning protocol meanwhile, a response is required from 

the animal before the satisfying outcome is obtained. In a typical experiment, Thorndike 

placed a cat inside a puzzle box, from which it could escape by triggering the appropriate 

mechanism. Thorndike noted that the time taken for the cat to escape decreased over 

successive trials, and thus concluded that the animal learned to perform the correct response 

to evoke the desired consequence of escape. The consequence thus reinforces the response.  

Conditioning is thus an example of associative learning. The animal associates the 

CS with the US in classical conditioning, and the response with the reinforcer in 

instrumental conditioning. Through associative learning, stimuli that would not themselves 

directly evoke an unconditioned response may acquire a motivational function and thus 

serve as secondary reinforcers. Virtually any stimulus has the potential to provide 

secondary reinforcement, with money an obvious example in human society. Money in fact 

serves as a generalized secondary reinforcer through association with many primary 

reinforcers (since it can be exchanged for food, water, shelter, and even sex) which is why 

it can exert such powerful effects on behaviour. Associative learning is one of the most 

fundamental forms of learning and is ubiquitous in the behaviour of organisms, from 

humans to slime mould (Latty & Beekman, 2009). The parallels between associative 

learning and causal learning should be immediately apparent, and causal learning is indeed 

susceptible to many of the same influences as associative learning (Shanks & Dickinson, 

1987), as shall now be further discussed. 

1.5.1.1 The Rescorla-Wagner Model 

Probably the most influential model of learning ever developed is the associative 

model of Rescorla and Wagner (1972) which at time of writing has been cited in over 3500 
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scholarly articles. The Rescorla-Wagner model (RWM) has enjoyed such tremendous 

success due to its simplicity, elegance, and moreover due to its ability to account for 

various phenomena of conditioning such as blocking (Kamin, 1969). The model was 

developed specifically as an account of Pavlovian conditioning, and specifies the change in 

associative strength between CS and US on a given conditioning trial according to the 

following equation:  

∆V = αβ(λ – ΣV) 

where ∆V is the change in associative strength, α is the salience of the CS, β  is the learning 

rate parameter for the US, λ is the current magnitude of the US, and ΣV is the current level 

of association between the CS and US (summed over previous trials) for each CS present 

on the current trial. More simply, we may term λ as the actual outcome and ΣV the 

expected outcome. The RWM is thus a trial-based error-correction model where the animal 

learns through surprise, in other words through the discrepancy between what is expected to 

happen and what actually happens.  

A trial on which the US follows the CS serves to increase associative strength 

between them, with successive CS-US pairing resulting in (increasingly smaller) 

increments in associative strength until the maximum level of association is reached, and 

learning has reached asymptote. If the US is absent on a given trial, then λ is 0 and there 

will be no increment in associative strength. Indeed if some conditioning has already taken 

place, ΣV will be positive and ∆V will hence be negative, producing a decrement in 

associative strength. Nonreinforcement thus weakens an existing association. Associative 

learning then, as specified by the RWM, is sensitive to the statistical relation or 

contingency between CS and US just as the contingency between cause and effect shapes 

causal inference.  

One of the most notable successes of the RWM was its ability to account for cue 

competition. This phenomenon was first observed by Kamin (1969) who demonstrated a 

“blocking” effect in aversive conditioning with rats. In what is now the standard blocking 

paradigm, the subject initially received CS1 � US in an initial training phase before 

undergoing subsequent training with a compound stimulus CS1CS2 � US (in Kamin’s 

experiments, the US was a shock, CS1 a light, and CS2 a tone). At test, subjects exhibited a 

reduced CR to CS2 compared to control animals that did not experience the initial training 
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with CS1 alone. Learning the CS1 �  US association thus appeared to block learning about 

CS2, providing clear evidence of competition for associative strength between cues. 

Blocking is easily explained by the RWM. Since by the end of phase 1, the US is perfectly 

predicted by CS1, there is no discrepancy between the expectation and outcome. In phase 2 

then where CS2 is presented, λ is equal to ΣV and hence ∆V is 0. CS2 thus fails to acquire 

associative strength. Despite a clear predictive relationship between CS2 and the US in the 

second training phase, CS2 is redundant as a predictor because CS1 has already been 

established as a perfect predictor of the US. The blocking effect thus further emphasized 

the sensitivity of conditioning to the statistical relationship between events.   

1.5.1.2 The Role of Time from an Associative Perspective 

In addition to the statistical relations between cues and outcomes, conditioning is 

also highly sensitive to the temporal arrangement of events. Indeed, prior to the 

development of models such as the RWM, contiguity was held to be the dominant principle 

of learning in traditional associative theories (Gormezano & Kehoe, 1981), with the “Law 

of Contiguity” stating that if two events occur simultaneously, then the reoccurrence of one 

event will automatically evoke a memory of the other. In other words, contiguity was 

considered to be both necessary and sufficient for the formation of an association. Though 

this assertion has since been toned down in light of new evidence (as shall be discussed 

further on), contiguity remains a central determinant for conditioning.   

The importance of contiguity has been made evident through the comparison of 

different conditioning protocols. In what is known as delay conditioning, the CS will first 

be presented and the US then delivered either while the CS is still present (so CS and US 

overlap) or else immediately following CS termination. The delay between CS and US 

onset is referred to as the interstimulus interval (ISI). Meanwhile, there is an interval 

separating CS termination and US onset, this is known as trace conditioning, as 

conditioning is assumed to rely on a trace memory or representation of the CS, since it is no 

longer present. The terminology can sometimes be confusing – in trace conditioning there 

is a delay separating CS and US, while in delay conditioning the US paradoxically follows 

the CS without delay. The “delay” in the term instead refers to that between CS and US 

onset, and serves to distinguish from simultaneous conditioning where CS and US onset is 

concurrent. It is well-established that (generally) trace conditioning is less effective than 
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delay conditioning, and that long-delay conditioning less effective than short-delay 

conditioning, with the CR taking longer to develop (Solomon & Groccia-Ellison, 1996; 

Wolfe, 1921) and being diminished either in magnitude (Smith, 1968) or in rate (Sizemore 

& Lattal, 1978; Williams, 1976). Indeed with longer trace intervals, conditioning can fail to 

occur altogether (Gormezano, 1972; Logue, 1979), though this is highly dependent on the 

nature of the stimuli entering in the relationship, as the following paragraph shall explain. 

The influences of temporal contiguity can be incorporated into models of conditioning such 

as the RWM by adjusting the value of parameters such as α and β .  

Yet, just as with causal learning, there are exceptions to this contiguity principle. 

The blocking effect, in addition to showing the sensitivity of conditioning to the statistical 

relationship between events, demonstrated that contiguity alone was not sufficient for 

conditioning to occur. Although a cue and an outcome may occur contiguously, an 

association between the two will not be learned if the cue is redundant as a predictor. 

Furthermore, there is evidence to suggest that a lack of contiguity is not necessarily a 

barrier to associative learning. In studies by John Garcia and colleagues involving 

conditioned taste aversion (now commonly dubbed the Garcia effect), rats were given a 

gustatory stimulus (such as flavoured water) followed by the inducement of nausea 

(through administration of x-rays, or substances such as lithium chloride or apomorphine 

hydrochloride), and subsequently demonstrated avoidance reactions to the gustatory 

stimulus. Importantly, this conditioned taste aversion was readily established even when the 

onset of nausea is delayed by more than an hour after the gustatory stimulus (Garcia, Ervin, 

& Koelling, 1966). In an extension of this work, Schafe, Sollars and Bernstein (1995) have 

shown that rats fail to acquire conditioned taste aversions when the CS-US interval is very 

brief. Such results indicate that not only is contiguity not always essential for conditioning, 

but it can actually prevent conditioning in certain circumstances. These findings have been 

explained by postulating an innate bias such that certain cues and consequences are more 

readily associable, with these hard-wired preferences presumed to have arisen through 

natural selection. Garcia and Koelling (1966) indeed demonstrated that particular outcomes 

tend to become associated with particular stimuli, even when other stimuli are presented 

concurrently and thus have equal predictive value. While rats in their experiments 

associated internal malaise with gustatory stimuli, they associated external pain (e.g. 
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electric shock) with contextual cues such as tones or lights rather than a substance they 

consumed (demonstrated in their subsequent behaviour).  

Broadly speaking then, the core factors of contingency and contiguity appear to 

exert remarkably similar influences on both the acquisition of associations in classical and 

instrumental conditioning and on human judgment of causal efficacy. These parallels have 

led to speculation that causal inference and conditioning are governed by the same 

underlying processes, and many researchers have attempted to reduce causal inference to 

associative learning (Allan, 1993; Alloy & Tabachnik, 1984; Dickinson, 2001; Dickinson, 

Shanks, & Evenden, 1984; Le Pelley & McLaren, 2003; Shanks & Dickinson, 1987; Van 

Hamme & Wasserman, 1993). In an associative account of causal learning, the cause is 

mapped to the cue (CS) and the effect to the outcome (US). The strength of a causal 

impression is then a direct reflection of the acquired associative strength between cues and 

outcomes, which is continually updated over successive learning opportunities or trials. The 

demonstration of blocking in human contingency judgment gave further credence to this 

idea (Shanks, 1985), although a modified RWM (Van Hamme & Wasserman, 1994) is 

required to encompass backwards blocking (in which phase 1 and phase 2 are switched so 

subjects are first trained with the compound stimulus). 

1.5.1.3 Difficulties for an Associative Account of Causality Judgment 

Associative learning theory recognises that the extent of delay that can be tolerated 

for an association to be learned between stimuli depends on the nature (e.g. the physical 

attributes) of those stimuli (Shanks, 1993). However, while a bias in the associability of 

stimuli is plausible with regard to a few evolutionarily significant relations, such as that 

between taste and nausea, one may often encounter delayed mechanisms that do not have 

any such connection to physiological processes. In human society in particular, day-to-day 

life leads us to interact with many artificially developed mechanisms that are not found in 

the natural environment and thus for which innate knowledge could not possibly have been 

fostered through natural selection. How then can temporal gaps be bridged in these cases? 

Associative accounts of causality judgment suggest that stimuli may have differential 

associative weights that have been transferred from previous learning sessions, which 

indeed may account for order effects pertaining to contiguity (Buehner & May, 2003). 

However associationism cannot account for different interpretations of identical evidence 
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achieved through abstract concepts, such as implicit manipulation of timeframe assumption 

(Buehner & May, 2002). Thus, it is appropriate to consider other theories which 

acknowledge other means whereby the connection between a candidate cause and a 

temporally distant effect may be bridged. 

1.5.2 Causal Mechanism and Power Theories 

A significant aspect of traditional associative theories is that they inherited Hume’s 

empiricism; they are data-driven or “bottom-up” in the sense that only the observable 

properties of stimuli such as contiguity are considered to contribute to learning. However, a 

number of findings have proven problematic for this empiricist approach applied to causal 

inference. People appear to have pre-existing conceptions both about the types of stimuli 

that are able to elicit certain outcomes and the timeframes involved in such processes, and 

can use this knowledge to guide causal inference (Buehner & May, 2002, 2004; Einhorn & 

Hogarth, 1986). Purely bottom-up accounts do not allow the scope for influences such as 

higher- level knowledge on learning and therefore struggle to explain such effects where 

there is no plausible prior associability bias. Alternatives to the empiricist approach 

therefore embrace instead the philosophical position of Immanuel Kant (1781/1965), who 

proposed that people have intuitive ideas about causality that provide a framework for 

learning new relations. That is, causal relations need not be derived solely from empirical 

observation; inference may also be facilitated or constrained by top-down information.  

Causal mechanism or power theories of causal learning stem from the Kantian 

rather than the Humean perspective. The central underlying principle of this view is that 

successful causal inference hinges upon belief in or knowledge of a causal mechanism – a 

specific process connecting causes to their effects and thus creating an intuition of necessity 

between the two (Ahn, Kalish, Medin, & Gelman, 1995; White, 1989). According to this 

view, causes are not just passively followed by effects, but rather actively generate their 

effects by exerting their causal power. This may be seen as the transmission of force, 

energy or some other property from one element to another (Peter A. White, 2009). This 

position is motivated by the same cautionary mantra that is drummed into any aspiring 

scientist or statistician; that correlation or covariation does not necessarily imply causation. 

The key contribution then of mechanistic knowledge is in making the mental leap from an 

observed covariation to the inference of a causal relation. It is therefore considered that 
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people do not infer causality unless they know of a plausible  mechanism by which these 

events could be linked. Such a perspective has however been criticised as being hamstrung 

by circularity: If top-down assumptions about mechanism govern causal inference, where 

do such assumptions come from in the first place? 

1.5.2.1 The Power PC Theory 

Cheng (1997) attempted to synthesize the ideas of Hume and Kant, and refine the 

causal power account, by proposing that empirically observable data (in the form of 

contingency information) serves as the initial input for causal learning, while prior 

knowledge then guides inferences drawn from this data. The prior causal knowledge 

assumed here is general rather than specific. That is, mechanistic knowledge that is initially 

acquired from empirical observations can then subsequently then be generalized to novel 

learning situations (see Liljeholm & Cheng, 2007), hence overcoming the problem of 

circularity. 

According to Cheng (1997), observed deviations in human causal judgments from 

measures such as ∆P are due to fundamental assumptions that people make about the nature 

of causality that go beyond mere covariation, such the assumption of causal power. Such 

deviations in judgement include sensitivity to changes in the base rate of the effect, P(e|¬c), 

when ∆P is constant. To address these shortcomings of ∆P, Cheng advanced the power 

theory of the probabilistic contrast model, usually shortened to PowerPC. This approach 

focuses on the generative (or inhibitory) power of the cause, that is, its capacity to produce 

(or prevent) the effect independently of all other potential causes. Causal power is 

computed as: 

∆P / 1 – P(e|¬c) for generative causes 

–∆P / P(e|¬c) for preventative causes 

Causal power is thus further distinguished from covariation models by making different 

predictions from identical contingency data depending on whether the cause is assumed to 

be generative or preventive, providing greater flexibility. One well-documented phenomena 

of causal induction that covariation models cannot account for but that is predicted by 

Power PC is the problem of ceiling effects. For example suppose one wished to test 

whether a new type of medication produced nausea as a side effect. If every participant 

experienced nausea after taking the medication, P(e|c) = 1 and the scientist might conclude 
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that the medication was a very strong cause of nausea. But suppose every participant was 

feeling nauseous to begin with; the results would then be uninterpretable; the participant 

might well have developed nausea after taking the medication but since they were already 

feeling nauseous this cannot be evaluated. ∆P in this case would be zero; P(e|c) – P(e|¬c) = 

1 – 1 = 0, therefore predicting that the medication would be judged as noncausal. In 

contrast the Power PC model, taking the generative form of the equation,  would not return 

a value in such a case, as the equation attempts to divide by zero. Power PC thus correctly 

predicts that humans in such a situation would refrain from making a causal judgment 

rather than concluding that the medication does not cause nausea.  

In similar fashion, consider again the above clinical trials scenario but instead 

assume that the medication was supposed to prevent (or relieve) nausea. Since none of the 

participants experienced relief, one can, in this case, rationally conclude that the medication 

was ineffective as a preventive cause of nausea. The predictions of causal power and ∆P 

here then are equivalent for the preventive case but differ in the generative case when P(e|c) 

= P(e|¬c) = 1. Meanwhile, if the base rate was zero and once again P(e |c) = P(e|¬c), causal 

power predicts that humans will be unable to make a causal inference in the preventive case 

(as there is no opportunity for the cause to exert its effect) but will accord with ∆P in the 

generative case.  

Predictions of the PowerPC model thus more closely mirror human judgments than 

∆P and have proven resilient to challenges from other researchers (see Buehner et al., 

2003). However, although PowerPC emphasizes the distinction between causation and 

covariation, causal power is still computed using covariation information – indeed, the ∆P 

statistic itself forms part of the Power PC model. The causal power perspective therefore 

makes the assumption that an observed configuration of causes and effects can be 

unambiguously interpreted to populate the cells of the contingency table. However, this is 

not necessarily a given. Furthermore, the model does not explicitly represent temporal 

information. 

1.5.2.2 The Role of Time from Covariation Perspectives 

From the causal power view and related perspectives, time is not bestowed with a 

particularly privileged role in causal learning. Temporal information is instead used to 

determine how events experienced in the input are assigned to the cells of the 2×2 
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contingency matrix. Provided that this information can be discerned from the available 

evidence, contiguity is not required to compute contingency. If there is temporal separation 

between cause and effect, the assumptions regarding mechanism and the expectation of 

timeframe determines how these events are interpreted. If a delay is anticipated, then the 

effect will be attributed to the cause, and constituting a single case of cell A (c�e, or e|c), 

as shown in Figure 1.2, strengthening the causal impression. If instead a contiguous 

mechanism is expected, a delayed pairing will be interpreted as one case of cell B (c�¬e 

or ¬e|c) and one case of cell C (¬c�e or e|¬c), weakening the causal impression. This is 

known as the attribution shift hypothesis (Buehner, 2005). Contiguity is thus only a 

necessity if a contiguous mechanism is expected; meanwhile longer delays can be tolerated 

if a slower mechanism is hypothesized. Longer intervals however also increase the 

likelihood of intervening events occurring between action and outcome, which compete for 

explanatory strength and place greater demands on processing and memory resources. 

Delays thus introduce added uncertainty as to whether a given effect was generated by the 

cause in question or whether it was produced by some other mechanism. This can mean that 

causal learning with delays may sometimes be problematic even when the anticipated 

mechanism means delays are plausible. 

 

 

 

Figure 1.2: The effect of attribution shift in parsing an event stream with a specific 

timeframe assumed : c � e intervals that are longer than the temporal window 

simultaneously decrease impressions of P(e|c) and P(¬e|¬c) while increasing impressions 

of P(e|¬c) and P(¬e|c). 

 

The causal power and mechanism theories thus reflect the view that learners adopt a 

more active approach to inferring causality. Rather than just passively processing 

information, we seek to impose structure on data, using heuristics and prior knowledge to 

constrain causal inference. Such mechanistic beliefs are key to avoiding learning spurious 
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relations. We do not, for example, learn that the crowing of a rooster causes the sun to rise, 

despite the fact that former event reliably signals the latter, since we know of no plausible 

mechanism by which the rooster crowing could influence the rising of the sun. A key 

strength of such approaches to causal learning is thus the flexibility to allow for top-down 

influences such as prior knowledge to assist in the comprehension of empirical sensory 

data. From this perspective then, causal learning is more than the mere sum of its parts.  

1.5.3 Causal Models and Structure Theories  

A third perspective on causal learning embraces a framework developed in statistics 

and computer science – probabilistic graphical models (Glymour, 2001; Pearl, 2000; 

Spirtes, Glymour, & Schienes, 1993). As the name suggests, this framework utilizes graphs 

to model probabilistic relations in a simple yet effective manner, in which variables such as 

causes and effects are denoted by nodes, and causal connections are indicated by arrows 

linking these nodes. These models are also commonly referred to as causal Bayesian 

networks (often shortened to Bayes nets), since their application utilises principles of 

Bayesian probabilistic inference. Named after its original proponent Reverend Thomas 

Bayes (1702–1761), Bayesian inference is a form of logical reasoning whereby the 

probability of a hypothesis is assessed by specifying some prior probability which is then 

updated in the light of new, relevant data. 

Figure 1.3 shows a graphical model expressing the causal relation “X causes Y”. 

This is a prototypical example of a directed acyclic graph (DAG); directed in the sense that 

X and Y are connected by a directed arrow from X to Y, rather than by an undirected link; 

and acyclic as there is no corresponding arrow directed from Y to X, and so a path cannot 

be traced from one node back to itself. DAGs are the most popular means of expressing 

causal relations in a graphical model, and the intuitive simplicity of these models makes 

them a effective tool for representing complex causal networks. 

 

 

Figure 1.3: Directed acyclic graph representing causal influence of X on Y. 
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The fact that the causal arrow extends from X to Y with no symmetrical link from Y 

to X reflects causal directionality, such that X causes Y but Y does not cause X. A crucial 

component to causal understanding is that causes produce their effects and not vice versa, 

such that an alteration to X will consequently produce an alteration in Y, but that an 

alteration to made directly to Y itself will not produce an alteration in X. The representation 

of directionality is one of a number of key advantages afforded by Bayes nets. 

1.5.3.1 Causal Model Theory 

Waldmann and Holyoak (1992, 1997) argued that principles such as directionality 

cannot be captured by mere associations, and pinpointed this failure to specify causal 

direction as a major shortcoming of associative theories of causal learning. Waldmann and 

Holyoak instead advocated a causal model theory, according to which humans have a 

strong tendency to learn directed links from causes to effects, rather than vice versa, in line 

with how information is represented in a causal graphical model. Importantly, this remains 

the case even when an effect is observed temporally prior to the cause – for example, when 

one sees smoke before one sees the fire that produces it. In such a case, the smoke is still 

correctly identified as an effect of a temporally precedent cause, the fire, even if the fire is 

seen only subsequently, or remains unseen. In other words, humans construct causal models 

that correspond to the veridical temporal order rather than the perceived temporal order.  

Inferring the presence of fire from the observation of smoke is an example of 

diagnostic inference. Waldmann and Holyoak (1992) drew special attention to the idea that 

people appear able to reason both predictively, from causes to effects, or diagnostically, 

from effects to causes. In a typical conditioning preparation, the order of stimulus 

presentation mirrors the temporal order of a predictive causal model. Cues (input) 

correspond to causes, and effects to outcomes (output). According to an associative account 

of causal learning, the strength of a perceived causal relation is assumed to be a reflection 

of the associative strength between cues and outcomes (Van Hamme, Kao, & Wasserman, 

1993). However as Waldmann and Holyoak illustrate, in diagnostic inference the input-

output sequence is reversed with respect to the true causal model. In an associative account 

of causal learning, effects would be assigned to the input layer and causes would be 

assigned to the output layer, based on the order of observation in a diagnostic causal model. 
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Meanwhile according to causal-model theory, the causal order is preserved and people 

should reason from effects to causes.  

This distinction between associative and causal model theory has important 

implications regarding stimulus competition. As Kamin’s (1969) blocking effect 

demonstrated, cues compete for associative strength in conditioning, and the success of the 

RWM is in part due to its ability to elegantly explain blocking. Associative theory makes 

the same predictions of cue competition regardless of whether cues represent causes or 

effects. Causal model theory meanwhile argues in favour of competition between causes 

rather than cues. To illustrate, consider a common-effect model, where two causes jointly 

influence the same effect – as an example, where both rain and a water sprinkler are 

potential causes of the ground being wet. Suppose one knows that it is raining, one would 

then predict the ground to be wet. Subsequently finding out that the sprinkler had been 

turned on would not affect this prediction; the ground would still be wet. The sprinkler then 

is redundant as a predictor if we already know that it is raining and if rain has been 

established as a reliable predictor. Cues thus compete for explanatory strength as causes in 

predictive inference. Instead then, consider a common-cause model, where both the ground 

being wet and people using umbrellas may be attributed to the common cause of rain. 

Noticing that the ground is wet might lead us to infer that it has been raining. Here 

however, noticing a second effect, that people are carrying umbrellas, would not weaken 

our impression of the first link between the rain and the ground being wet. Thus there is no 

competition between effects. In contrast, according to an associative model, here the effects 

would constitute cues, and the presence of the first cue should block learning about the 

second. Using the blocking paradigm, Waldmann and Holyoak (1992, 1997) demonstrated 

that human subjects indeed made judgments consistent with causal model theory rather than 

associative theory (see also (Booth & Buehner, 2007; Waldmann, 1996, 2000).  

The above examples depend on prior knowledge of the causal models in questions. 

Causal model theory then argues in favour of an integrative process utilizing both empirical 

data and existing knowledge, rather than a purely associative mechanism. In this regard, 

causal model theory is remarkably similar to the causal power approach advocated by 

Cheng (1997), described in the previous section. The defining characteristic of model-based 

theories is instead their basis on the Bayes nets framework. Causal model theory initially 
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focused on how people use causal models in reasoning and how different assumptions 

about causal structure may lead to different predictions from identical data sets. Waldmann 

and colleagues did not however attempt to specify how causal models may be used to 

provide a computational account of how empirical data such as contingency and contiguity 

combines in causal inference.  

1.5.3.2 Bayesian Structure Learning 

This challenge was taken up by Tenenbaum and Griffiths (2001, 2003; Griffiths & 

Tenenbaum, 2005) who pointed out the inadequacy of existing normative models such as 

∆P and causal power to account for various aspects of causal induction (including effects of 

sample size and non-monotonic effects of base rate on judgments). They instead proposed a 

Bayesian “causal support” model to address these shortcomings. At the heart of this 

framework is the notion that causal induction involves two kinds of learning, identifying 

causal structure and assessing causal strength. In other words, deciding whether there exists 

a causal relationship (structure), and if so, the extent of any such relationship (strength).  

Structure learning is the task of identifying the causal model and its functional form, 

as may be represented by a causal graphical model. Prior knowledge of how the world 

works is used to generate a “hypothesis space” of plausible causal models that could 

account for observed sequences of events (Tenenbaum & Griffiths, 2003). The simplest 

case of causal induction is learning the relationship between a single candidate cause and a 

single effect, where values of cause and effect are constrained such that both may be either 

present or absent on a given occasion (and the relationship may thus be represented in the 

contingency matrix). Griffiths and Tenenbaum (2005) termed this as elemental causal 

induction, a moniker that shall be adopted here henceforth. Structure learning in elemental 

causal induction then is essentially a binary decision between two hypotheses, as shown in 

Figure 1.4: h0, in which there is no causal relation between cause c and effect e, and e 

instead occurs solely due to the influence of random background processes b; and h1, where 

c has the generative power to produce e (and b still also produces e).  

The strength of a causal relation may be denoted in a causal graphical model by the 

use of parameters, such as w0 and w1 in Figure 1.4, where b produces e with probability w0 

and c produces e with probability w1. Griffiths and Tenenbaum (2005) argue that both 

causal power and ∆P are estimates of the parameter w1 and so are measures of causal 
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strength. The graph h1 (that a relationship exists between c and e) is therefore assumed in 

both models. The different predictions of the two models results from different 

parameterization of the graph. Causal power (for generative causes) corresponds to a noisy-

OR parameterization, where parameters have independent opportunities to produce the 

effect. ∆P meanwhile corresponds to a linear parameterization, where the parameters 

interact (see Pearl, 1988, for further details). 

 

 

Figure 1.4: Directed acyclic graphs representing the two basic hypotheses that are 

compared in elemental causal induction. 

 

1.5.3.3 Causal Support 

Griffiths and Tenenbaum (2005) argue  that the primary goal of causal inference is 

the more fundamental task of recovering causal structure, as it must be determined whether 

a causal relationships exists before the strength of any such relationship can be assessed. In 

Bayesian structure learning, plausible causal structures within a hypothesis space are 

evaluated in terms of the probability of obtaining the current data set given that structure, 

P(D|hi). This value can be calculated by integrating over parameter values (see Griffiths & 

Tenenbaum, 2005, and Cooper & Herkowitz, 1992, for computational details). In elemental 

causal induction, there are only two causal models in the hypothesis space, h0 and h1. 

Structural inference in elemental causal induction is then made by assessing the likelihood 

of obtaining the observed data under each of these two hypotheses, formalized as a decision 

using Bayes’ rule:  
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Causal support is thus a measure of the extent to which h1 provides a better account of the 

given data than h0. According to Griffiths and Tenenbaum, causal support may be likened 

to a significance test of a hypothesis for which causal power is the effect size measure.  

Griffiths and Tenenbaum (2005) went on to present five experiments demonstrating 

the superiority of causal support over ∆P and causal power in terms of providing a better fit 

with human judgments of causality across a number of different learning situations. 

However, causal support is at its heart a probability based model, and Griffiths and 

Tenenbaum acknowledge that it does not specifically address the dynamics of elemental 

causal learning in continuous time. Although causal support does a tremendous job of 

accounting for how human causal judgments are obtained from contingency information, 

such information is not always clearly defined. Assigning combinations of events to the 

cells of the contingency matrix is a non-trivial task, particularly when delays are involved, 

but causal support does not provide a computational account of the effects of contiguity.  

1.5.3.4 A Bayesian Perspective on Contiguity 

In an updated computational framework entitled theory-based causal induction, 

Griffiths and Tenenbaum (2009) advocate two central concepts. Firstly, that people 

approach the problem of causal induction with prior knowledge, in the form of abstract 

causal theories, that enable the generation of hypothetical causal models for a given 

situation. The principle of Bayesian statistical inference is then used to select the best 

model. Secondly, the framework emphasizes the importance of coincidences, such as in 

patterns of spatial and temporal contiguity. Griffiths and Tenenbaum (see also Griffiths, 

2005) argue that humans are attuned to the detection of such coincidences. Since 

coincidences are by definition those events that are improbable, or in other words unlikely 

to happen due to chance, then coincidences provide support for a causal relationship. 

Indeed, noticing conspicuous coincidences has often led to causal discovery throughout the 

history of science.  

Patterns of coincidence in time and space provide very strong evidence for a causal 

relationship. We will all have experienced, from time to time, the illusion of causality that 

strong contiguity will confer. For example, if we drop a glass on the floor and suddenly all 

the lights go out, we briefly experience the impression of the former having caused the 

latter, although of course we know that there is no mechanism by which this could have 
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occurred and so dismiss this coincidence as spurious. Experimental evidence of illusory 

correlations produced by strong contiguity in the absence of supporting statistical 

information has been provided in the literature (Bullock, Gelman, & Baillargeon, 1982; 

Fiedler, 2000; Mendelson & Shultz, 1976). Of course, such apparent “coincidences” are 

often not merely coincidental but in fact are the product of a genuine underlying 

mechanistic causal connection.  

Bayesian accounts are somewhat obscure with regard to the precise means by which  

contiguity contributes to causal inference. Krynski (2006) attempted to outline how the 

short delay advantage may be explained from a Bayesian perspective, by considering that 

the temporal delays between cause and effect may be modelled as a probability density 

function, characterized as a gamma distribution. The height of the distribution on the y-axis 

for a given point on the x-axis corresponds to the likelihood of observing that particular 

delay. Since short delays are inherently less variable than long delays, the peak of the 

distribution is narrower and higher for short delays. Krynski then goes on to argue that a 

rational approach to causal inference is to integrate over all possible delays, meaning that 

the likelihood ratio is higher when the temporal intervals are shorter, thus providing more 

evidential support for a causal relation. This account of the short delay advantage bears 

striking functional similarities to an associative account, although obviously the two are 

conceptually very different. 

However, the Bayesian structural account does not necessarily predict a uniform 

advantage for contiguity. Rather the timing of events may place constraints on the plausible 

causal models in the hypothesis space. Certain temporal patterns are more characteristic of 

certain causal models than others. In elemental causal induction, the temporal distribution 

of events may either constitute evidence in favour of a causal mechanism or may indicate 

that background processes are a more likely candidate for the observed temporal pattern. 

Griffiths and Tenenbaum (2009) chose a very specific example to demonstrate the effect of 

patterns of temporal coincidence, based on earlier work examining how people use 

temporal information to infer hidden causes (Griffiths, Baraff, & Tenenbaum, 2004). The 

experiment presented a fictitious scenario via a computer simulation involving a set of cans 

arranged on a table, each containing an explosive compound called Nitro X. Participants 

were informed that because of the instability of this compound, spontaneous combustion 
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might produce an explosion of a can at any given moment, and further, that any exploding 

can would propagate unseen shock waves which may in turn cause neighbouring cans to 

explode in a chain reaction. The task required participants to decide whether a particular 

temporal pattern of explosions was due to spontaneous combustion, explosion of a nearby 

can producing a chain reaction, or some other unseen cause. Results indicated that when a 

suitable time lag separated one can’s explosion from another, a causal chain was correctly 

inferred. When several cans exploded simultaneously however, a hidden alternative cause 

was assumed (such as a jolt to the table), thus demonstrating how temporal coincidences 

influence model selection. Griffiths and Tenenbaum provided a fairly complex 

computational account of these particular effects, but did not provide a more general- level 

computational model for the effects of temporal distributions in causal induction. 

Nevertheless, the Bayesian structure approach offers considerable advances in accounting 

for and modelling the effects of contingency and contiguity in human causal learning.  

 

1.5 Chapter Summary 

Causal learning is a core cognitive capacity that enables us to understand, predict 

and control our environment. Causal relations themselves are not directly perceptible by 

our sensory systems, and thus they must be inferred from patterns of evidence in the 

information that reaches us. Cues such as contingency and contiguity between putative 

causes and effects tend to foster impressions of causality between those events.  

Some theories of causal learning adopt the empirical view, that only observable data 

may contribute to the induction of causal relations. An associative perspective purports that 

causal learning is nothing more than the acquisition of associations between cues and 

outcomes. Associations are continuously updated over successive learning instances, with 

contingency and contiguity being determinants of the direction and size of changes in 

associative strength. Problems for associative accounts of causal judgment include apparent 

influences of prior knowledge in mitigating a lack of contiguity between stimuli, since such 

theories cannot accommodate these top-down representations.  

Causal mechanism and power views argue that human causal induction goes beyond 

mere associations. Proponents of these perspectives argue that humans postulate specific 

causal mechanism by which causes generate or prevent effects. This both constrains causal 
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reasoning, such that spurious correlations where there is no plausible mechanism can be 

ignored, and also enabling inference from statistical relations to be guided by top-down 

knowledge. Such cognitive accounts provide the flexibility to account for phenomena such 

as systematic variations in judgment of noncontingent relations (Cheng, 1997), effects of 

prior experience (Buehner & May, 2003), and knowledge-mediation (Buehner & May, 

2002, 2004; Einhorn & Hogarth, 1986).  

Causal-model and structure-based theories meanwhile are inspired by the Bayes 

nets graphical framework to model causal relations. Like the power view, structural 

accounts endorse the idea that inference from empirical data is guided by top-down 

influences in the form of abstract causal knowledge. Where these accounts differ is with 

regard to structure versus strength. The Bayesian approach argues that causal power is an 

attempt to estimate the strength of a c�e cause-effect relation, before having evaluated the 

evidential support for the existence of this relation, and is thus to some extent putting the 

cart before the horse. The Bayesian approach instead is concerned with identifying the 

likelihoods of plausible causal models given the obtained data, ahead of attempting to 

estimate the parameters of this model to evaluate causal strength. According to the 

Bayesian approach, regularities and coincidences such as contingency and contiguity 

constitute evidence in favour of a causal relation since such occurrences are unlikely to 

happen due to chance.  

The order in which these theories have been presented in this chapter largely 

reflects their chronological development. Associative theory is the most longstanding while 

the Bayesian computational (structural) account the most recent. As such, the associative 

view has been the most subject to criticism, while more recent accounts have the benefit of 

hindsight. The question of how people infer causal relations, despite great strides forward 

in understanding of learning processes, remains both unresolved and actively debated. 

Associative theorists have attempted to undermine each significant challenge to 

associationism, including Power PC (Lober & Shanks, 2000), causal model theory (Shanks 

& Lopez, 1996), and knowledge mediation (Allan, Tangen, Wood, & Shah, 2003), which in 

turn has drawn ripostes from the original proponents of these accounts. Discussions range 

from specific boundary cases and technical details, to the more fundamental question of 

whether causal learning is an insightful reasoning process or simply the product of 
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associations. Suffice it to say then that no model has yet offered a full and undisputed 

account of human causal judgement. Any empirical study of the phenomena of causal 

induction would thus do well to remain mindful of all perspectives, their relative merits and 

predictions, and consider how well the various accounts correspond to actual human 

judgment within the domain of interest. This thesis shall adopt this consideration and the 

experiments which follow will consider both the predictions of associative and cognitive 

perspectives and how well the obtained results accord with each perspective.  

This introductory chapter has hopefully provided sufficient background on the 

already recognised cues to causality and how each of these cues is considered to contribute 

to causal learning from three distinct schools of thought on the subject. The following 

chapter shall now introduce the concept of temporal predictability, which is the phenomena 

of central interest to this thesis. This concept will be considered from a theoretical point of 

view, in relation to the three broad perspectives identified in this chapter, before an 

empirical investigation of this concept in the two subsequent chapters. 
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Chapter 2 – The Potential Role of Temporal Predictability in Causal Learning 

 

2.1 Introducing Temporal Predictability 

Griffiths and Tenenbaum (2009) point to the discovery of Halley’s comet as a 

striking example of causal induction through the use of knowledge and theories. Sir 

Edmund Halley (1656-1742) noted that comets observed in 1531, 1607, and 1682 had all 

taken remarkably similar paths across the sky. Halley’s friend and colleague Sir Isaac 

Newton (1643-1727) had already outlined in the Principia Mathematica that comets tend to 

follow orbits corresponding to conic sections. Using the principles of Newtonian physics, 

Halley inferred that the three comets previously observed were in fact one and the same 

comet following a regular solar orbit. As Griffiths and Tenenbaum suggest, Halley’s prior 

knowledge of such physical theories was doubtless crucial to this successful calculation. 

Perhaps the most potent clue to this discovery however was that the three comets had been 

observed approximately 76 years apart from one another in each case. In other words, there 

was a consistent temporal interval between the appearance of all three comets, that varied 

(in relative terms) minimally. Such periodicity is congruent with a celestial body following 

a regular orbit, and hence provided a strong indication that the three comets were in fact 

one and the same. It was this periodicity that allowed Halley to predict that the comet 

would return again in 1758 and indeed this prediction proved to be accurate, with Halley’s 

comet visiting the Earth every 76 years since. This facility of consistent timing, to enable 

predictions regarding the occurrence of future of events and specifically when those events 

will occur, makes “temporal predictability” an apt term to describe such a feature.  

 

As a more commonplace example, consider the following anecdote: 

Dave, Jon and Tom are discussing their morning drives to work. Dave and Jon suffer a 

similar problem in which they encounter sets of traffic lights that sometimes take a very 

long time to change, even when no cars are coming through on the opposite side. Tom 

suggests that they try flashing their headlamps at the traffic lights to induce them to 

change, as he has heard a rumour that they are programmed to respond to the flashing 

lights of emergency service vehicles. Both take his advice. Dave notices that every time he 

flashes his headlamps, the traffic lights do in fact change after a consistent delay of around 
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10 seconds. Jon tries it at the set of lights on his route; sometimes the lights change very 

quickly, sometimes they take much longer, with little discernible pattern.  Jon concludes the 

lights are operating on a fixed program and his headlamps are not influencing them. Dave 

instead decides that his actions are effective and continues to flash his headlamps when 

held up at the traffic lights. 

The above story is an example of how event timing influences the way in which we 

learn about causal relations. Here, contingency information is unhelpful; the traffic lights 

will change eventually, the concern is instead with when they will change. In this example, 

it is not the absolute delay between candidate cause and effect on each instance that 

eventually determines the conclusions drawn by Dave and Jon. Rather, their decisions are 

based on the variation in the timing of events across the set of instances over which they try 

out Tom’s suggestion. What eventually convinces Dave of the efficacy of his actions is the 

consistency of the temporal interval across multiple events. 

The pairing of a particular candidate cause and effect tends to be experienced 

repeatedly rather than as unique, one-off occurrences. Causal relations are, after all, 

manifestations of invariant physical laws governing events in the environment (Sloman, 

2005). Likewise when testing a hypothesized causal mechanism, we will normally make 

multiple attempts, as in the example above. Obviously over multiple cause-effect instances, 

we will experience multiple cause-effect intervals. These intervals may remain constant, or 

may vary from one instance to the next. The variation of the interval separating cause and 

effect is a consideration that has been overlooked with alarming frequency in the literature.  

When there is a degree of constancy in the duration of intervals, then one may be 

able to predict, just as Halley did in the earlier example, when a particular event will occur. 

The degree of accuracy possible with such predictions will likely be a function of how 

consistent the interval is over time. If the temporal interval is fixed and always takes the 

same value, the relationship may be said to be maximally predictable. Conversely, if inter-

event intervals vary from case to case, then predicting future events becomes a much more 

difficult, if not impossible, task. The greater the variability of the intervals, the more 

unpredictable the relationship. Under the former scenario, one may develop particular 

expectations regarding the timing of events, whereas for the latter there is uncertainty as to 

when an outcome may occur. However, what influence this distinction may have, if any, in 
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the detection or appraisal of causal relations, is yet to be fully explored. To begin with then, 

this chapter shall review the scant existing evidence relevant to temporal predictability, 

before considering how such a feature might be accommodated within models of learning.  

 

2.2. The Temporal Predictability Hypothesis 

The ability to predict the occurrence of future events is of course one of the central 

advantages afforded by causal understanding. Causal impressions may thus be considered 

as a direct reflection of the extent to which the cause is a predictor of the effect. This 

importance of predictability for causal learning was emphasized by Young, Rogers and 

Beckmann (2005). Young et al. noted that the dominant approach in the literature was to 

conceive of and define predictability in terms of statistical regularity, that is, whether the 

effect will follow the cause (e.g. Siegler & Liebert, 1974). They instead sought to expand 

this perspective to encompass temporal regularity, positing that causal impressions are 

based on not just whether an effect will occur but also when it will occur. In line with this 

perspective they proposed a “predictability hypothesis” to account for the dual influences of 

contingency and contiguity on causal learning, arguing that while contingency conveys 

predictability in a statistical sense, contiguity conveys temporal predictability.  

Young et al.’s (2005) contention was that delays make it more difficult to predict 

when an outcome will occur, due to the inaccuracy in remembering the duration of a delay. 

The longer the delay, the greater the inaccuracy (Gibbon, 1977). This temporal uncertainty 

creates weaker causal impressions. Young et al. elaborated further by adding the caveat that 

longer delays might sometimes be preferable if such a delay is expected (and thus 

predictable) due to instruction, prior knowledge or experience. Causality then may be 

attributed to temporally separated events provided that “earlier events are good predictors 

of whether and when later events will occur” (p321). However, Young et al. stopped short 

of pointing out what seems a logical extension of this argument; that in order for a delayed 

mechanism to be predictable, it must be temporally consistent.  

Young et al. (2005) did not directly contrast fixed and variable delays in their 

experiments. Instead they investigated the effects of filling the delay interval with an 

auditory stimulus, they suggested would enhance the temporal predictability of the 

outcome. Using variations of Michotte’s (1946/1963) launching effect, participants were 
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shown computer simulations of one ball colliding into another, and were then asked to 

provide a rating of the extent to which they believed the first ball was the cause of the 

second ball moving. In trials where launching lacked temporal contiguity, causal ratings 

were markedly decreased, in line with Michotte’s original findings. However, the 

introduction of the auditory stimulus bridging the temporal gap between impact and launch 

was found to reduce the delay- induced decrease in causal judgments relative to where no 

such stimulus was provided. Young et al. interpreted this finding as evidence in favour of 

the predictability hypothesis; however these results are also readily explicable from an 

associative perspective, in terms of the auditory stimulus signalling the outcome (Reed, 

1992, 1999). Young et al. therefore did not address the potential impact of variation of 

delays from case to case, and so did not conceive of temporal predictability in the same 

sense as described in the anecdotes with which this chapter opened. Instead, they 

considered temporal predictability to be provided by contiguity, since shorter delays are 

inherently less variable, and attributed the detrimental effects of delays to a lack of 

predictability. 

The goal of this chapter is to broaden the conception of the role of temporal 

information beyond mere contiguity, and to reconstruct the temporal predictability 

hypothesis to encompass the impact of delay variability. Rather than just being a 

consequence of contiguity, temporal predictability can be conceived as the consistency of 

intervals over multiple cause-effect pairings. If the temporal interval between cause and 

effect is held constant across repeated instances, then the timing of the event becomes 

highly predictable, even if the actual interval between cause and effect is long. Holding the 

temporal interval constant therefore constitutes another means by which predictability may 

be enhanced, in addition to providing instructions, appealing to prior knowledge, or 

presenting an external cue such as an auditory signal. According to this ‘updated’ version 

of the temporal predictability hypothesis, a consistent timeframe linking cause and effect 

means that the cause is a good predictor of when the effect will occur. While as Young et 

al. (2005) suggest, a short delay is more temporally predictable than a long delay, a fixed 

long delay is more predictable than a variable long delay. Consistent delays thus constitute 

temporal predictability, which should enhance impressions of causality. Fixed intervals 

should therefore be more conducive to causal inference than variable intervals.  
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2.3 Previous Empirical Research on Predictability 

To date, the contrast between fixed and variable intervals in human causal learning 

has received remarkably little empirical attention. One exception is a landmark early study 

on detecting response-outcome contingencies by Wasserman, Chatlosh & Neunaber (1983). 

They studied causal learning in a free-operant paradigm, where a response made during any 

given trial could increase or decrease the likelihood of a light to illuminate at the end of that 

trial. Their third experiment contrasted predictable conditions employing trial lengths fixed 

at a constant value of 3s, against unpredictable conditions where trial lengths could take a 

value of 1, 3 or 5s. Although fixed and variable conditions did not differ significantly, there 

was a general trend indicating that the variable conditions received uniformly, if 

marginally, lower ratings than their fixed counterparts. The implication of this research is 

therefore unclear, and a closer systematic examination of predictability is warranted. 

Indeed, Wasserman et al. (p. 428) stated: 

“Our failure to find significant effects attributable to these  factors in no way means 

that manipulation of the same variables over a broader range of values  would also 

fail to yield reliable results; indeed, we still believe that such work would disclose  

discernible differences. Our research can thus be seen as a guide to others in their 

search for  potent influences on the perception of response-outcome relations.”  

In a related study, Vallée-Tourangeau, Murphy & Baker (2005) investigated the 

effect of outcome density on causal ratings. They implemented conditions where the 

timeline was segmented into 1s ‘timebins’. If a participant responded, a reinforcement was 

presented at the end of the timebin. Action-outcome interval was thus variable depending 

on the point at which the participant responded. This was then contrasted with situations 

where the action-outcome interval was instead held at a constant interval regardless of 

when participants responded. Vallée-Tourangeau et al. found the same apparent trend of 

fixed- interval conditions attracting slightly higher ratings, but again this difference was not 

found to be statistically significant.  

With a dearth of conclusive previous experimental work, there is a lack of clear 

understanding and characterization of the role of predictability in causal learning. The 

initial goal of the empirical work of this thesis is to address this omission in the literature. 

Chapter 3 shall present a series of studies intended to determine whether predictability does 
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in fact exert an influence on judgments, and the nature of that influence. Before progressing 

with these studies however, it is worth casting a broader glance at findings from the 

learning literature that might have some bearing upon this issue of predictability. The non-

significant trends in the studies described above suggests that, if anything, causal relations 

with fixed temporal intervals may be seen as more robust than temporally variable 

relations. However, there is a wealth of evidence from studies of reinforcement learning 

with animals which suggests that the reverse may be true.  

 

2.4 Animal Preference for Variable Reinforcement 

Inspired by the earlier work of Pavlov and Thorndike, the research of B. F. Skinner 

(1904-1990) focused on extending and refining the experimental analysis of behaviour (e.g. 

Skinner, 1938). Thorndike’s earlier experiments were in the form of discrete trials, in the 

sense that the animal performed a single response (pressing the escape mechanism) to a 

given stimulus (being in the puzzle box), with a reduction in the time taken to perform the 

response the measure of learning. Skinner instead developed an apparatus where the animal 

could make multiple responses to given stimuli – the operant conditioning chamber, 

popularly referred to as a Skinner box. A typical chamber includes a food dispenser and a 

lever or mechanism of some kind that can be operated by the animal. Under appropriate 

circumstances, pressing the lever can release a food pellet from the dispenser into the 

animal’s food trough. The animal is able to freely explore the chamber and may press the 

lever at any point; hence this was referred to by Skinner as the instrumental free-operant 

procedure (FOP). This procedure has become so widely adopted that the term operant 

conditioning is often used synonymously with instrumental conditioning (though strictly 

speaking instrumental conditioning is a broader term also including discrete trials 

procedures such as those of Thorndike). Indeed the earlier described paradigms of Shanks 

et al. (1989) and Wasserman et al. (1983) are variants of this basic procedure. 

A longstanding method for the exploration of how relations between responses and 

outcomes govern behaviour is the use of reinforcement schedules (Skinner, 1969). In 

operant conditioning, not every response is followed by a reinforcer; instead, certain 

conditions must be satisfied before reinforcement delivery. Such schedules of 

reinforcement specify the input that is required for a reward to be delivered. The two most 
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common schedules used in behaviour analysis are ratio schedules, where a certain number 

of responses are required before a reward is received, and interval schedules, where 

reinforcement is provided following the first response after a given period of time has 

elapsed. For example in a fixed-ratio (FR) 30 schedule, the reward is dispensed after every 

30 responses, and in a fixed- interval (FI) 30 schedule, the reward is dispensed following the 

first response after a 30 second period has elapsed (from the dispensation of the previous 

reward). These schedules can also be variable as well as fixed; for instance on a variable-

interval (VI) 30 schedule, the amount of time after which a reward can be received varies 

about an average of 30s, with the specific interval for any one trial falling within a pre-

defined range with 30s as the midpoint, for example 0-60s, 15-45s, or 20-40s.  

Higher response rates on a particular schedule are generally taken as an indicator of 

preference; in other words, that the animal has identified that there is a greater potential for 

reward on that schedule. Naturally, a schedule providing a faster rate of reinforcement, or 

requiring less input to receive a reward, will be preferred to a slower or more demanding 

schedule. For instance, a FR10 schedule will be preferred over a FR100 schedule since the 

latter requires ten times as much work for a given reinforcement. But certain types of 

schedules are preferred over others even when the rate of reinforcement is the same. It is a 

fairly well-established finding in the behaviour analysis literature that animals tend to 

respond more frequently during variable-interval schedules compared to fixed-interval 

schedules (Bateson & Kacelnik, 1995; Davison, 1969; Herrnstein, 1964; Killeen, 1968). It 

has been argued that such findings are artefacts of the task; if one assumes that the animal 

can learn the temporal intervals in a fixed preparation (cf. Gallistel & Gibbon, 2000a), then 

it can restrict its responding to the point when it expects reinforcement to be delivered. If 

instead intervals are variable then such a strategy will be ineffective; the best chance for 

receipt of reward is to continue responding frequently throughout the schedule. 

However, it has also been demonstrated that animals prefer variable over fixed 

response-to-reinforcer delays when choosing between alternatives. For instance, Cicerone 

(1976) employed a free-operant procedure in which pigeons were presented with two, 

concurrently available, response keys. Variable-length delay intervals were superimposed 

on the reinforcers scheduled with one response key while delay intervals of constant length 

were superimposed on the reinforcers assigned to the other. The results showed that 
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pigeons preferred variable over constant delays of reinforcement, responding more 

frequently on the variable-delay key, and furthermore that this preference for variability 

increased as the range of the interval lengths increased. Many other studies have also found 

that organisms prefer aperiodic over periodic reinforcement delays (Bateson & Kacelnik, 

1997; Mazur, 1984, 1986) thus indicating that this goes beyond task demands and reflects 

an inherent property of variable reinforcement delay that makes it preferable.  

While it is clear that performance on schedules of reinforcement and causal 

inference in humans are not equivalent tasks, the preference for variable reinforcement 

shown in non-human animals may be indicative of a general facilitatory effect of variability 

in learning preparations. As Reed (1993) points out, while a relationship linking a response 

to an outcome is not necessarily a reinforcement schedule, it is  nevertheless possible that 

“human perception of the causal efficacy of responses may be influenced by such schedules 

of outcome presentation in some systematic manner” (p.328). A consistent preference for 

variability may well be something that generalizes across learning domains. 

Drawing inspiration from such studies of animal reinforcement to make forecasts 

regarding temporal predictability is of course the same approach taken by many proponents 

of associative accounts of causal learning, who have illuminated numerous ways in which 

human causality judgments mirror simple conditioned behaviour. At this point then, it 

seems appropriate to revisit the associative account, along with the other theoretical 

perspectives on learning that were outlined in Chapter 1, and attempt to discern how 

predictability might be accommodated in these theories. This will enable the results 

obtained from these experiments to provide a contribution to the advancement of causal 

learning theory as well as their empirical significance in their own right. 

 

2.5 Theoretical Perspectives on Predictability 

2.5.1 An Associative Analysis of Temporal Predictability 

The dominant theory of animal behavioural processes is associative learning theory 

(Mackintosh, 1983; Rescorla & Wagner, 1972). According to an associative account of 

causal learning, causal relations are represented by the strength of an association between 

putative causes and effects which is determined by the increment (or decrement) of 



 

 

38 

associative strength over repeated learning trials. Effects are considered to be reinforcers to 

the conditioned stimulus or response which is considered as the cause.  

The impact of contiguity on causal learning is addressed by the supposition that the 

greater the temporal separation between stimuli, the less associative strength that is 

acquired as a consequence of their pairing (Shanks, 1987). In classical conditioning, this 

could be due to the representation of the CS held in memory decaying over time (Wagner, 

1981). Meanwhile in operant conditioning, the value of the reinforcer becomes diminished 

as the delay until its receipt is increased, so a delayed reinforcer contributes less associative 

strength compared to an immediate one.  

It is important to note at this juncture that many distinct models of associative 

learning have been proposed over several decades of research in this area. Although these 

models may often be grouped together under the same umbrella term, there is no 

unanimous agreement between different models on the role of time in learning. In the final 

chapter of this thesis, I shall examine a number of specific associative accounts individually 

and in more detail, to assess their compatibility with the results presented herein. Generally 

speaking however, when associative learning is applied as an account of causal learning in 

humans, the essential principles of traditional associative theories such as the Rescorla-

Wagner (1972) model (RWM), as described in Chapter 1, are applied. For the purpose of 

outlining an associative account of temporal predictability then, these principles shall for 

the moment be assumed. 

Models of associative learning such as the RWM may be capable of representing 

temporal information through the learning rate parameters such as α and β , which refer to 

the salience of the CS and US. For instance, if it is assumed that the representation of the 

CS held in memory decays over time, then the value of the α  parameter will decline, 

resulting in smaller increments in associative strength when delays are greater. Associative 

accounts of the effect of contiguity, as exemplified by the RWM, thus assume a monotonic 

influence of time in learning, such that longer delays result in weaker associations. The 

overall extent of contiguity may thus serve as a potent determinant of the strength of 

acquired associations. One might therefore be tempted to assume that whether contiguity is 

fixed or variable should not matter, and the mean delay alone should determine the 

contribution of contiguity. However, trial-based models such as the RWM update 
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associative strength on a trial-by-trial basis, so each reinforcement makes an individual 

contribution to the strength of an association. Any anticipated effect of predictability would 

therefore depend on the rate at which associative strength changes with delay.  

It is generally considered that the greater the extent to which the a stimulus appears 

to reinforce behaviour, the stronger the acquired association. In other words, the amount of 

conditioned responding that is exhibited, or the rate or magnitude of instrumental 

responding (such as pressing a lever), is taken as an indication of the degree of association 

between the CS and US (in classical conditioning) or response and reinforcer (instrumental 

conditioning). Studies of delayed reinforcement in animals reveal that response rates 

decline as a negatively-accelerated function of reinforcer delay (Chung, 1965; Williams, 

1976). Taking response rate as a measure of associative strength then suggests that changes 

in associative strength as a result of reinforcement diminish with delay of reinforcement 

according to the same negatively accelerated function. If causal inference can be reduced to 

associative learning, then it may be anticipated that delayed effects lose their capacity to 

increase the cause-effect association in an analogous manner.  

To then explain animal preference for variable- interval reinforcement, compare a 

hypothetical set of fixed delays with a set of variable delays that have an equivalent mean 

delay. Further assume that the fixed delay forms a central midpoint about which the 

durations of the variable delays are evenly distributed. As an example, if the fixed delay 

was 2s, then for every cause-effect pairing with a delay of 1s in the variable set, there 

would be a corresponding pairing with a delay of 3s. Obviously an early outcome will 

contribute more associative strength, and a late outcome less, relative to an outcome with a 

delay intermediate between the two. Due to the negatively-accelerated form of the function, 

associative strength is lost rapidly as contiguity first begins to decline, and less rapidly as 

delays become progressively greater. The difference in associative strength between the 

early (1s) and the intermediate (2s) outcome is greater than the difference in associative 

strength between the intermediate (2s) and the late (3s) outcome. In other words, the loss in 

associative strength by increasing delays from 1s to 2s is greater than the subsequent loss 

by increasing delays from 2s to 3s. The combined associative strength of one early and one 

late effect would thus be greater than that of two effects with a fixed intermediate delay, 

despite the mean cause-effect delay being identical. In Figure 2.1, where ∆V is the change 
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in associative strength, this could be expressed as: ∆Vx + ∆Vz > 2∆Vy. Consequently, it 

would be expected that a series of effects with delays evenly distributed about a central 

mean would accrue greater overall associative strength than where every effect follows the 

cause after a fixed delay of a duration equal to that central point.  

There has been some debate over the precise mathematical form of the function best 

describing the decline in response rates with delay. For instance, Chung (1965) reported in 

a signalled delayed reinforcement task that pigeons’ response frequencies declined 

exponentially as a function of the delay interval. Other work (Herrnstein, 1970; Mazur, 

1984) suggests that hyperbolic functions more accurately describe such trends. However, 

for the above inequality to hold, the precise shape of the function is unimportant; any 

negatively accelerated function would result in the same imbalance in accrued associative 

strength. Under the assumption that causal learning is a direct reflection of associative 

strength, it would then be anticipated that temporally-variable conditions would give a 

stronger overall impression of causality than predictable conditions, and thus attract higher 

causal ratings. 

 

 

Figure 2.1: Potential differences in accrued associative strength between fixed-interval and 

variable-interval conditions according to a hyperbola- like discounting function of delayed 

events. 



 

 

41 

However, this prediction might be considered as somewhat counter- intuitive. One 

might be more inclined to expect predictability to provide confirmatory evidence for a 

causal relationship, as was the case in the anecdotes at the opening of this chapter. 

Consistency of the temporal interval separating candidate cause and effect could be taken 

as symbolic of a genuine relationship between them, in much the same way as statistical co-

occurrence. If causes are hypothesized to bring about their effects by means of a particular 

mechanism or sequence of events, it seems reasonable to suggest that (provided the 

mechanism remains unaltered) there should be a degree of regularity in the timeframe over 

which these events unfold. Let us therefore turn now to consider other theories of causal 

learning which may generate predictions in accordance with this intuition.  

2.5.2 The Attribution Shift Hypothesis 

From a covariation perspective of causal learning, a potential explanation for the 

effect of predictability is the attribution shift (Shanks & Dickinson, 1987). This has was 

earlier outlined as an account for the detrimental effect of delay. Under this assumption, a 

delayed action-outcome pairing is perceived not as a cause-effect pairing, c�e, but instead 

as one instance of an action with no outcome, c�¬e and an outcome following no action, 

¬c�e, as illustrated earlier in Figure 1.3. In terms of the 2×2 contingency matrix (Figure 

1.2), this may be described as one instance of Cell B and one instance of cell C rather than 

a single instance of Cell A.  

However, this process is highly dependent on the size of the “temporal window” 

that is adopted for event parsing. If a reasoner assumes a more relaxed timeframe over 

which events may unfold, this enables temporally distal effects to be correctly attributed to 

the candidate cause rather than disregarded as spurious. Previous work (Buehner, 2005) has 

suggested that prior knowledge about existing causal mechanisms can lead to the 

adjustment of this temporal window in this manner. In similar fashion, if the reasoner 

repeatedly encounters evidence that is contradictory to their initial timeframe expectations, 

they may revise their assumptions and adopt a new, more lenient temporal window. Thus if 

the cause and effect are temporally separated, but this interval is constant, this may be 

recognized over repeated instances and avoid the delayed effects being subjected to 

attribution shift. Temporal predictability, therefore, may enable a learner to bridge temporal 

gaps in causal induction through repeated exposure to the same temporal interval. In 
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contrast, a variable interval might preclude recognition of the statistical regularity between 

cause and effect, which in turn would mean that actual cause-effect pairings will be parsed 

as instances of Cells B and C. The attribution shift hypothesis is therefore capable of 

forecasting an advantage for predictability through the reduction of erroneous attribution of 

delayed effects to random background processes. If the temporal assumptions are relaxed 

and the window is expanded to encompass the c�e pairings, then with a fixed temporal 

interval, all the pairings will be counted.  

2.5.3 Bayesian Models 

One final perspective takes a broader and more integrative viewpoint on the causal 

learning process. The Bayesian structural approach (Glymour, 2001; Griffiths & 

Tenenbaum, 2005, 2009; Spirtes et al., 1993; Waldmann & Holyoak, 1992, 1997) is 

inspired by concepts from statistics and computer science, specifically, the use of causal 

graphical models or Bayes nets to represent causal relations. Again, as with associative 

learning, the Bayesian perspective is a general category of learning theories that 

encompasses a number of individual models, which differ in their specificities but share 

common principles.  

Bayesian accounts of causal judgment combine both bottom-up empirical processes, 

by which statistical inference from observable evidence forms the basis of causal induction, 

with top-down modulation in the form of pre-existing causal theories. These abstract 

theories serve to allow the generation of a hypothesis space of plausible causal structures 

constrained by prior knowledge, experience and expectations. Under this framework, the 

goal of causal induction is to first adjudge the best fitting causal model from the set of 

possible structures, by evaluating the evidence in favour of a given structure. Once 

structural inference has taken place, one may assess the strength of a causal relation 

through parameter estimation. In elemental causal induction, structural inference is a binary 

decision between two causal structures; either a causal relation exists (h1), or it does not 

(h0). Among the leading accounts of causal learning in the Bayesian tradition is the causal 

support model proposed by Griffiths and Tenenbaum (2005) which proposes that 

judgments of causality are best described by a log ratio of the evidence for h1 compared to 

h0, which reflects the degree of confidence that the causal relation c�e exists between a 

candidate cause and an effect. Models such as ∆P and causal power meanwhile are 
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considered to be estimates of the parameter w1 which specifies the strength of the c�e 

connection. Bayesian perspectives thus emphasizes causal structure over causal strength.  

Learning to impose structure on the world of sensation crucially depends on our 

ability to identify patterns and consistencies in the environment which we can piece 

together to produce a coherent picture. On a representational level, a Bayesian perspective 

emphasises that such regularities or coincidences, whether statistical or temporal, are 

evidence in favour of a stable causal mechanism. Both contingency and contiguity then 

increase the evidence supporting h1 over h0. If it is assumed that a causal relation manifests 

as a result of a specific mechanism, that this same mechanism is appealed to in each case, 

and the processes involved in the mechanism unfold in a consistent manner, then it seems 

reasonable to anticipate that this mechanism should have a consistent timeframe of action. 

Constancy of temporal intervals is thus a further regularity in the environment that an 

organism may be able to detect and use to construct an accurate representation of causality. 

Meanwhile, spontaneous outcomes, generated by background processes rather than the 

hypothesized mechanism, are assumed to occur according to a stochastic Poisson process, 

where there is no reason to expect temporal consistency from one case to the next. 

Although the likelihood of a spontaneous outcome increases with the time since the last 

such outcome, since the probability of an outcome at each precise point is infinitesimal, the 

likelihood of spontaneous outcomes repeatedly occurring following the same interval 

would be a startling coincidence. Variability may thus be seen as indicative of a stochastic 

process that b�e represents, while predictability is emblematic of the mechanistic process 

c�e. From the Bayesian structure perspective then, temporal predictability would serve to 

facilitate causal learning because temporal regularity between putative cause and effect is 

much more likely if there exists a causal relation than if no such relation exists (and the 

repeated regularity occurs by chance).  

In computational terms, a Bayesian perspective is capable of predicting a 

facilitatory effect of temporal predictability through likelihood distributions. Such 

distributions reflect the likelihood of obtaining given data under a specific assumed 

hypothesis. Recall from Chapter 1 the argument presented by Krynski (2006), mirroring 

that of Young et al. (2005), that the short-delay advantage manifests because short delays 

are inherently less variable. According  to Krynski, this results in a narrow likelihood 
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distribution with a high peak; in other words, the experience of shorter delays provides 

strong confirmatory evidence for the existence of the hypothesized causal relation. In 

contrast, longer delays (if the variance of such delays is proportional to the mean delay), 

result in a wider likelihood distribution. By necessity, a wider distribution will also have a 

lower peak, hence longer delays provide weaker confirmatory evidence for a causal 

relation. If however the delay is fixed (or at least relatively consistent), then this would 

result in a narrowing of the distribution, more closely converging on this fixed delay, with 

the result that the peak of the distribution is elevated. In other words, making delays less 

variable should have a comparable influence to shortening the delay Thus, the added 

certainty provided by fixed delays would serve to increase the likelihood of the data under 

the hypothesized mechanism, P(D|h1), and thus should enhance judgments of causality.  

 

2.6 Chapter Summary 

Temporal predictability refers to the constancy of a temporal interval between cause 

and effect such that the time of occurrence of future effects of can be anticipated. 

Predictability may be contrasted with interval variability where predicting the onset of an 

effect becomes more difficult. Previous experiments (Wasserman et al., 1983; Vallée-

Tourangeau et al., 2005) have suggested that there may be the potential for differences in 

the precise temporal arrangement of events in a learning preparation, such as with 

predictability compared to variability, to elicit different responses or judgments of 

causality. What is currently absent from the literature however is a systematic series of 

studies specifically centred on elucidating the precise contribution of such temporal 

arrangements to causal inference. The following chapter then attempts to definitively 

address the potential role of temporal predictability in human causal learning. It will be 

assessed whether case-by-case fluctuations in temporal delay can impact the causal 

impression, or whether overall degree of stimulus contiguity across a learning preparation 

is the sole contribution of temporal information. 

Three broad theories of causal learning have been reviewed in attempt to discern the 

predictions that they may generate regarding a potential role for temporal predictability. 

From a traditional associative perspective, as exemplified by the RWM, the contiguous 

pairings of cause and effect that are possible under a variable timeframe overcompensate 
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for the smaller contribution of pairings with longer delays. Variability should therefore 

confer an overall boost to impressions of causality compared to predictability (under the 

assumption that delays are symmetrical about the mean). The predictions of this associative 

account may appear counterintuitive, but are well- founded on a wealth of research from 

reinforcement learning in animals. In contrast, cognitive perspectives allow for top-down 

influences on learning, through which predictability could be taken as evidence of a 

consistent underlying mechanism and thus facilitate causal inference. At a process level, a 

covariation-based model may account for a predictability effect by postulating a relaxation 

of the temporal window adopted for parsing the flow of input. A Bayesian account of 

causal reasoning meanwhile appeals to the idea of delays being modelled as probability 

distributions. According to this view, temporal predictability is highly unlikely to occur 

under the causal model h0, where the effect in question is not a consequence of the 

candidate cause, and regularity instead constitutes evidence in favour of a causal model h1 

where the candidates are connected by a causal link. 

The primary motivation underlying the experiments is to definitively address what 

has surprisingly remained something of an oversight in the assessment of cause and effect 

relations. However, since the outlined theoretical accounts make contrasting predictions, it 

is evident that a manipulation of temporal predictability has the potential to provide 

evidence that favours one account over another. Thus, results concerning predictability may 

also confer some important theoretical insights and reinvigorate the debate between 

associative and cognitive accounts of causal learning. 
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Chapter 3 – The Role of Temporal Predictability in Instrumental Causal Learning 

 

3.1 Overview and Introduction 

This chapter comprises five experiments intended to investigate the role of temporal 

predictability in human causal learning. The results constitute evidence in favour of a 

facilitatory effect of temporal predictability. Discussion within this chapter focuses largely 

on specific aspects of individual studies, as well as general methodological concerns. 

Consideration of the wider theoretical implications of the results contained herein shall be 

withheld until the General Discussion in Chapter 6, where they shall be discussed in light 

of the theoretical perspectives outlined in Chapter 2, together with the results of the second 

empirical section, Chapter 4.  

It is evident that temporal predictability (or variability) has the potential to be added 

as a fourth cue to causality (in addition to temporal order, contiguity, and contingency). A 

number of perspectives on causal learning have been reviewed, all of which at least allow 

for the possibility that temporal predictability may play a role in guiding causal 

impressions. Given that existing empirical data is sparse and ambiguous, and that different 

theoretical perspectives allow contrasting predictions, this chapter is dedicated to an 

experimental analysis of the role of temporal predictability on causal inference.  

The primary aim of this chapter is to determine whether predictability can influence 

judgments by contrasting fixed and predictable temporal intervals with variable and 

unpredictable temporal intervals. The results should inform as to whether predictability 

enhances causal judgments, in line with a cognitive perspective and the temporal 

predictability hypothesis, or whether instead variability is preferred, in line with a 

reductionist approach and a simple associative account. It is also possible that no distinction 

may be made between predictable and variable causal relations, with contingency and mean 

overall contiguity remaining the defining principles. If however predictability can indeed be 

identified as a cue to causality, the secondary aim of this chapter is to understand how 

predictability might interact with the established cues of contingency and contiguity, 

revealing whether they contribute independent or interactive influences. 

For this initial foray into the investigation of temporal predictability in causal 

learning, it was necessary to use a paradigm where the temporal interval between cause and 
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effect could be tightly controlled, and in which candidate causes and effects were clearly 

identifiable as such. Additionally it was considered prudent to avoid any unnecessary 

complications or distractions by using a very simple and straightforward paradigm, such 

that temporal distributions of events would be the most salient feature of the problem at 

hand. The experiments conducted by Shanks, Pearson and Dickinson (1989) proved highly 

effective in elucidating the role of temporal contiguity in human causal judgment. As a 

computer-based adaptation of previous free-operant instrumental paradigms such as 

Wasserman et al.’s (1983) earlier studies, this method allowed for the precise timing of 

intervals to be specified and a wealth of behavioural data to be easily recorded. The 

paradigm was used again with success by Reed (1992) and Buehner and May (2003). It was 

therefore decided to base the initial experiments on a similar paradigm.  

 

3.2 Experiment 1 

This first experiment was modelled closely on Shanks et al.’s (1989) original study. 

In each condition, participants were presented with a triangle on the screen and a button 

labelled “PRESS” just beneath it. Participants were instructed that their task was to 

investigate the extent to which their action (clicking on the button) could cause something 

to happen on a computer screen (the triangle lighting up).  

Participants engaged on a free-operant procedure (FOP) meaning that they were free 

to choose whether and when to respond throughout the duration of the condition. Previous 

studies have found scheduling of response-outcome contingencies on a FOP to be a highly 

sensitive and unbiased method of investigating causal learning (Wasserman et al., 1983). 

However in many such studies, the learning experience is segmented into pre-defined 

‘response bins’ or learning trials (for example of 1-second duration). If a response is made 

during this time bin, then it is reinforced at the end of the period. However, it is of course 

possible that the participant may respond again during the time between a reinforced 

response and the consequent outcome. This, and any further responses, would then go 

unreinforced. Consequently, such a procedure fails when participants respond at a faster 

rate than that corresponding to the pre-defined bin-size as only the first  response within 

each bin will have the potential to produce an outcome. This was pointed out by Buehner 

and May (2003) who demonstrated that action-outcome delays in a standard FOP change 



 

 

48 

P(e|c) and P(e|¬c), so that the actual contingency experienced by the participant is lower on 

delayed than on immediate conditions. Furthermore, and of crucial importance for 

scrutinizing the influence of temporal predictability, using this underlying trial structure 

means that full control over the cause-effect interval cannot be maintained; while trial 

length can be held constant, a participant may respond at any point during this trial hence 

the interval between action and outcome may still vary. Wasserman et al.’s third 

experiment should therefore more accurately be considered as a comparison of low-

variability against high-variability, rather than predictability against variability.  

To avoid such problems, the experiments in this chapter did not employ pre-defined 

learning trials or time-bins; instead, every response had the potential to generate an effect, 

regardless of when it was made. The same response-outcome contingency as used by 

Shanks et al. (1989) was employed again here: every press of the button had a 75% chance 

of producing the outcome. If an outcome was scheduled, the effect occurred following the 

programmed delay. The experimental program enabled the delay to be precisely specified 

for every pairing of cause and effect, meaning it was possible to manipulate temporal 

variability and delay across conditions while keeping constant the objective contingencies. 

Of course, this trial- free instrumental procedure is not free from its own burdens, and one 

may note that without defined trials there is inherent ambiguity with respect to matching 

individual responses to individual outcomes. For instance, a participant could perform 

several responses in quick succession and then observe a corresponding burst of effects 

after the relevant delay. It would be difficult to match individual responses to specific 

effects, and this would be amplified when the cause-effect interval is variable. Importantly, 

however, by allowing each response to produce the effect (without limitations imposed by 

trial structures) the overall objective contingency will remain unaffected by variations in 

delay and variability of delay, which is essential to permit these factors to be assessed 

independently. Whether the subjective impression of contingency (and indeed therefore in 

this case also causality) remains unaltered by these manipulations is of course a different 

question altogether, and in fact at the heart of the research reported here. 

The experiment employed two mean delays, two and four seconds, and three 

different types of temporal predictability. The first was a fixed, pre-determined delay that 

remained constant throughout a given condition, and thus constituted maximal 
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predictability. However, most natural causal relations rarely involve precise and perfectly 

predictable cause-effect delays. Epidemiologists, for instance have long postulated that 

disease outbreak follows infection after an incubation period described by a log-normal 

distribution (Evans, 1993) centred around a mean expected wait time. Consequently, the 

second level of temporal predictability sampled cause-effect intervals from a normally-

distributed probability density function, centred around a midpoint corresponding to one of 

the fixed intervals (see Method below for more detail). Finally, as a maximally uncertain 

control, a uniform random distribution was employed, where the delay could take any value 

within a pre-defined range, with an equal probability of taking any particular value. 

Importantly, these manipulations are distinct from Experiment 3 of Wasserman et al. 

(1983); rather than restricting intervals to a small set of fixed values, I instead allowed 

intervals to vary freely across a continuum.  

Most real-world causal relations are assessed against a background of alternative 

causes. For instance, whilst an illness may be the cause of a headache, a headache could 

also potentially arise as a result of stress, tiredness, or dehydration. Identifying the crucial 

relation from other spurious connections is a fundamental part of the induction process. In 

order to preserve ecological validity in this respect, I also introduced three different levels 

of background effects to the paradigm. This was done by scheduling the effect to occur a 

pre-defined number of times, independently of the participant’s action, at random points in 

time during the condition.  

3.2.1 Method 

3.2.1.1 Participants 

31 undergraduate students with a median and modal age of 19 years were recruited 

via an online participation panel hosted at Cardiff University. They received either £4 

payment or partial course credit for participation. 

3.2.1.2 Design 

The experiment manipulated three factors – temporal distribution, background 

effects, and delay. Temporal distribution had the levels fixed, normal, and random; 

background effects had the levels zero, low, and high; delay had the levels 2 and 4 seconds. 

Factorial combination of these levels resulted in a 3 × 3 × 2 within-subjects design, 

producing 18 different conditions each of 90s duration.  
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The probability of an outcome following an action, P(e|c), was .75 throughout all 

conditions. Note that this probability was not defined relative to a particular unit of time; 

instead, each button press had a 75% chance of causing the triangle to flash. If an event was 

generated, the effect then occurred after the appropriate temporal interval had elapsed.  

The three types of temporal distribution provided a manipulation of predictability 

by controlling the variation of the temporal intervals in each condition. The interval for any 

given action-outcome pairing was determined according to the particular combination of 

delay and temporal distribution. In the fixed conditions, the temporal interval was always 

the same, held at a constant value within the condition (i.e. 2 or 4 seconds). These values 

then served as “midpoints” for the comparable normal and random conditions.  For the 

random conditions, the temporal interval for any given cause-effect pair was given by 

generating a random value within the specified range. So for example in the ‘Random2’ 

condition, the interval could take any value between 0 and 4 seconds, with any value 

equally as likely to occur as another. For the normal conditions, the delay was specified 

according to a normal probability distribution with a range of 4 seconds, centred around the 

midpoint. So for example in the ‘Normal4’ condition, interval lengths were drawn from a 

normal distribution centred around 4 seconds, with minima and maxima of 2 and 6 seconds. 

Accordingly values closer towards the midpoint of 4 seconds were more likely than values 

towards the extreme boundaries of 2 and 6 seconds. Thus, the delay variance for normal 

conditions should be smaller with respect to the random conditions.  

In addition, three levels of non-contingent ‘background’ effects were employed, 

where the outcome occurred independently of the response. As a baseline, I first applied a 

zero rate of background effects – the effect did not occur in the absence of the cause and 

P(e|¬c) = 0. In addition I created a medium rate, equivalent to 1 effect every 10 seconds, 

and a high rate equivalent to 1 every 5 seconds. With a total condition time of 90s, this gave 

9 and 18 background effects in total for the medium and high levels respectively, which 

were distributed randomly throughout the condition.  
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Figure 3.1: Diagram representing the three types of temporal distribution applied in 

Experiment 1 at the two levels of mean delay. 

 

Two questions were used as dependent measures to gauge participants’ impressions 

of causal strength. One was based on a covariational understanding of causality couched 

within a counterfactual question:  

“Imagine you had pressed the button 100 times in this condition. How many of 

these 100 presses would have caused the triangle to light up?”  

The other was slightly more ambiguous and was aimed to appeal to the degree of perceived 

control beyond pure covariation:  

“Overall, to what extent do you feel pressing the button controlled the triangle 

lighting up in this condition?” 

Participants provided a rating between 0 and 100 for both questions. 

3.2.1.3 Apparatus, Materials and Procedure 

The experiment was programmed in Python 2.4 and conducted on Apple Macintosh 

computers situated in individual testing booths. Participants used the mouse to click on the 

“PRESS” button, and used the keyboard to type in their responses at the end of each 

condition. After being welcomed by the experimenter and giving consent to participate, 

participants read on-screen instructions which outlined the nature of the task. 
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In each condition, a triangle was presented in the centre of the screen, along with a 

button that participants were able to press, by clicking on it with the mouse. If a response 

triggered an outcome, the triangle lit up for 250ms. Participants engaged in 18 different 

free-operant procedures as described above, presented in a random order, with each 

condition lasting 90 seconds. At the end of each, the screen cleared and participants were 

asked to respond to the two questions described previously. Participants then typed in their 

answers into the appropriate text box and clicked on the SUBMIT button to proceed to the 

next condition. In total the experiment lasted around 35 minutes. 

3.2.2 Results 

3.2.2.1 Causal Judgments 

Two different questions were posed at the end of each condition, intending to try 

and capture fully all aspects of the participants’ causal impressions. The ‘contingency’ 

question is a well-established measure that has been used in many previous studies (Shanks 

et al., 1989; Wasserman et al., 1983). The ‘control’ question meanwhile was rather more 

ambiguous, which may propel participants to take temporal information into account in 

providing their rating, and thus may provide a more useful measure for capturing any 

influence of predictability. Accordingly it seems appropriate to focus initially on this latter 

measure. Figure 3 shows mean ratings provided by participants for the ‘control’ question, 

for all 18 conditions. For clarity, error bars are omitted; standard deviations can however be 

found in Table 3.1. As expected, ratings were considerably higher in the shorter-delay 

compared to the longer-delay conditions. Also in accordance with previous findings, ratings 

declined as the rate of background effects increased. The effect of temporal predictability, 

which is the factor of principal interest, is less immediately apparent. It can however be 

seen that the fixed conditions consistently received higher causal ratings than their normal 

and randomly distributed counterparts, while there appeared to be little difference between 

the two distributed conditions. 

A 3×2×3 within-subjects repeated-measures ANOVA corroborated these 

impressions, finding significant main effects of temporal distribution, F(2,60) = 3.373,  

MSE = 611.2, p < .05, ηp
2 = .101; delay, F(1,30) = 20.91,  MSE = 729.9, p < .0005, ηp

2 = 

.411; and background effects F(2,60) = 27.49, MSE = 792.5, p  < .0005, ηp
2 = .478. Since it 

was hypothesized that fixed interval conditions would draw higher ratings than their 
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variable counterparts, Helmert contrasts, which compare each level of a categorical variable 

to the mean of the subsequent levels, were performed to compare the fixed conditions with 

the normal and random conditions combined. These planned comparisons confirmed that 

fixed interval conditions (M = 52.70, SE = 1.933) received significantly higher ratings than 

variable interval conditions (M = 46.95, SE = 1.269), F(1,30) = 4.984, MSE = 1235, p < 

.05, ηp
2 = .142, while in turn there was no significant difference between normal and 

random conditions, F(1,30) = 0.050, MSE = 798.4, p = .825. None of the possible 

interactions were significant. 
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Figure 3.2: Mean Control Ratings for all conditions in Experiment 1 as a function of 

background effects. Filled and unfilled symbols refer to mean delays of 2s and 4s 

respectively. Delay variability is noted by different symbol and line styles. Error bars are 

omitted for clarity. 

 

Participants’ ratings for the ‘contingency’ question followed the a similar pattern as 

for the ‘control’ question, with significant main effects for temporal distribution, F(2,60) = 

3.851, MSE = 557.5, p < .05, ηp
2 = .114, delay, F(1,30) = 20.84, MSE = 679.6, p < .0005, 

ηp
2 = .410, and background effects F(2,60) = 12.57, MSE = 556.6, p < .0005, ηp

2 = .295. Of 

all the possible interactions, only that between delay and background effects was 
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marginally significant, F(1,30) = 3.077, MSE = 523.6, p = 0.053, ηp
2 = .093. Further 

analysis of this interaction by examining simple main effects revealed a significant contrast 

in the differences between zero and high levels of background effects at short and long 

delays, F(1,30) = 5.007, MSE = 598.0, p < 0.05, ηp
2 = .143, and a marginally significant 

contrast in the differences between zero and medium levels of background effects at short 

and long delays, F(1,30) = 4.062, MSE = 845.7, p = 0.053, ηp
2 = .119. Using Figure 3.3 as a 

reference, this would seem to indicate that broadly speaking, the influence of background 

effects on contingency ratings was rather more muted at longer delays compared to short 

delays. Aside from this interaction, participants apparently made little distinction between 

the two dependent measures, with both eliciting similar responses. Indeed inspection of the 

raw data revealed that they were treated as identical by considerable proportion of 

participants, with scores matched in over a third of the total cases. It was therefore decided 

to employ only a single dependent measure in subsequent experiments. 
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Figure 3.3: Mean Contingency Ratings for all conditions in Experiment 1 as a function of 

background effects. Filled and unfilled symbols refer to mean delays of 2s and 4s 

respectively. Delay variability is noted by different symbol and line styles. Error bars are 

omitted for clarity. 
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3.2.2.2 Instrumental Behaviour and Outcome Patterns 

Table 3.1 shows the behavioural data from the first experiment, for each of the 18 

conditions. This includes response rate (i.e. mean presses per minute) within each 

condition, and the corresponding rate of effects (outcome density). The experienced P(e|c) 

is also shown, calculated as the proportion of responses that generated an effect (ignoring 

background effects), for each participant in each condition. The mean interval between 

cause and effect was likewise computed, and is shown with the standard deviation, as an 

indication of temporal interval variance, in parentheses. In addition the mean ratings 

provided for the contingency and control questions are also reported, again with standard 

deviations in parentheses.  

While the number of responses produced is fairly consistent across conditions, it 

appears that conditions without background effects produced the highest response rates in 

general, while the ‘Random4’ conditions (random distribution, 4 second delay) received 

lower response rates. If for some reason different conditions are producing different 

response rates in participants, then the effect of this manipulation may not be directly upon 

causal rating but instead mediated through changes in response (and subsequent outcome) 

density. It was thus necessary to verify whether the independent variables influenced 

ratings indirectly by exerting an effect on  behaviour. In addition, some fluctuations in the 

actual delay and P(e|c) from the programmed values are also expected; while these were 

assumed to eventually cancel out throughout the course of each condition (and certainly 

across participants) it is possible that differences between conditions could remain and be 

driving any observed differences in causal ratings.  

To address these concerns, 3×2×3 within-subjects repeated-measures ANOVAs 

were carried out on the data derived from participants’ instrumental behaviour. Due to a 

small number of participants responding at a very high rate, the distribution of data for 

response and outcome rate is positively skewed; hence response rates were normalized by 

taking the square root. No significant effects of temporal distribution, F(2,60) = 0.456, 

MSE = 1.536, p = .636, delay, F(1,30) = 0.003, MSE = 1.813, or background effects, 

F(2,60) = 2.326, MSE  = 1.633, were found on response rate. There was however a 

significant distribution × delay interaction, F(1,30) = 3.578, MSE = 1.193, p < .05, ηp
2 = 

.123, specifically that for normal conditions, response rate was higher with shorter delays 
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while for random conditions this pattern was reversed. However since this interaction did 

not involve a systematic difference in overall response rates between fixed and variable 

conditions, it is not problematic for the principal findings. Meanwhile, mean delay naturally 

differed between different delay conditions, but was not significantly affected by either 

temporal distribution or background effects (both ps > .3). Actual P(e|c) was also 

unaffected by all three independent variables (all ps > .1). Participants’ causal judgments 

were therefore not impacted by uncontrolled differences in instrumental behaviour or 

deviations from programmed values.  

 

 

 

Table 3.1: Behavioural Data for Experiment 1. Standard deviations are given in 

parentheses. 
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3.2.3 Discussion 

The results of this experiment replicate well-established findings that a) in the 

absence of delay expectations, cause-effect delays are detrimental to learning and b) adding 

non-contingent background effects, thus reducing contingency by inflating the proportion 

of e|¬c (cell C in Figure 1.2) likewise reduces causal ratings. This instils confidence in the 

reliability of the paradigm. Of central interest, however, was the influence of temporal 

predictability. The analyses confirmed that conditions with fixed temporal intervals 

received the highest causal ratings, suggesting that enhancing predictability by holding the 

cause-effect interval constant facilitated attribution, in line with predictions derived from 

top-down theories of causal learning. 

These effects of predictability do not appear to be obscured by non-contingent 

background effects, as evidenced from a lack of an interaction between predictability and 

level of background effects. This is perhaps surprising since if a non-contingent outcome 

occurs between the cause and its generated effect, then a different (shorter) interval 

between response and outcome will be experienced objectively, which should disrupt the 

impression of predictability. However, since the free-operant procedure allows for 

responses at any time, subjects are able to make several responses in succession, from 

which a consistent delay may well become evident. Noncontingent effects that 

subsequently intervene between the cause and a generated effect should then be correctly 

attributed to background processes. One might then ask, if participants were able to connect 

causes with their effects, why judgments were adversely affected by increasing background 

effects. To address this question, it should be remembered that causal judgments tend not to 

be solely based on P(e|c), but instead on normative measures of contingency that take the 

base rate into account. The fact that the outcome occurs independently of the response will 

thus reduce the contingency, even if contingent outcomes are correctly attributed to the 

candidate cause (by inflating the value of cell C). The marginally significant interaction 

between delay and background effects meanwhile is a finding that has not previously been 

reported with any real emphasis in the literature. Specifically, this indicated that causal 

ratings were less affected by the level at background effects when delays were long 

compared to when delays were short, and only when contingency ratings were solicited. 

This is potentially interesting and further research might wish to further explore whether 
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this is a systematic effect or merely an anomaly. This result is however not in any way 

problematic for the findings regarding predictability, and is largely irrelevant to the central 

focus of interest, so will not be considered in more detail here.  

While the fixed conditions clearly attracted the highest ratings, no distinction was 

obtained between the normal (intermediate variability) and random (high variability) 

conditions. Arguably, normally-distributed delays could have been expected to elicit higher 

ratings than their uniformly-distributed random counterparts, due to the smaller variability 

of delay in the former compared to the latter (as reported in Table 3.1). One possible 

suggestion for this failure to find a significant difference is that the large number of 

experimental conditions made it more difficult to distinguish one from another and thus 

contributed to noise within the data. A more substantial explanation is that the normal and 

random conditions were much more similar to each other than either was to the fixed 

conditions. While the fixed conditions had no variability of delay, for the two distributed 

conditions, there was a maximum range of four seconds within which the effect could occur 

following a reinforced response, the only difference between these two being the likelihood 

of the effect occurring at a particular point within this range. Rather than increasing or 

decreasing the temporal range within which an effect could occur, I varied the probability 

distribution according to which any given temporal interval was determined. Although the 

variance of the delay was greater for random than normal conditions (Table 3.1), the 

maximum range of interval variability was the same for each. It therefore seems an 

appropriate next step to investigate the effect of modifying temporal predictability by 

varying the size of the interval  range. Will an increase in interval variability, and 

concomitant unpredictability, lead to a corresponding decline in causal evaluations? 

Experiments 2A and 2B sought to address this question. 

 

3.3 Experiment 2A 

Experiment 1 has demonstrated that maximally predictable conditions where the 

temporal interval between cause and effect is fixed and constant elicit stronger judgments 

of causality, relative to less predictable, variable conditions with the same average delay. 

What has to be demonstrated clearly however is whether an increase in the variability of the 

temporal intervals in a causal relationship produces a corresponding decrease in the 
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evaluation of causal strength. As I already pointed out, the contrast of two differently 

shaped distributions, where delays were distributed either normally or uniformly, but still 

centred around the same mean, may not have produced sufficient differences in experience 

to produce different impressions of causality. Experiment 2A thus sought to implement 

differences in the degree of predictability by varying the range over which intervals could 

vary, rather than the type of distribution from which they are drawn. If, as the results of 

Experiment 1 suggest, predictability enhances causal judgments, then conditions with fixed 

intervals should once again receive the highest ratings. Furthermore, if impressions of 

causality decline as predictability is lost, then judgments should decline as the range of 

temporal intervals increases. 

A number of improvements were made to the paradigm. Firstly, only a single 

question was deployed as a dependent measure of perceived causal effectiveness. 

Experiment 1 found no systematic differences between the two measures used in that study, 

so the focus on one question is economical both in terms of participant time and analysis. 

Secondly, since Experiment 1 showed that the addition of random non-contingent outcomes 

(while producing the expected main effect) had no interaction with either delay or 

predictability, the independent factor of background effects was removed, thus reducing the 

number of experimental conditions to six. Thirdly, I increased the time participants could 

learn about each causal relation from 90 to 120s, comparable to earlier studies (Shanks et 

al., 1989). Experiment 1 employed a shorter exposure time merely to prevent participant 

fatigue when working though such a large number of conditions. Having streamlined the 

number of conditions in this study, it seemed reasonable then to increase exposure time. 

3.3.1 Method 

3.3.1.1 Participants 

42 undergraduate students from Cardiff University were recruited via an online 

participation panel. Participants included both males and females, with a median and modal 

age of 19 years. Course credit was awarded for participation. Due to an experimenter error, 

one participant did not receive the correct materials and was dropped from the sample. One 

further participant failed to comply with the instructions and was removed from the 

analysis. 40 participants thus contributed data to the sample. 
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3.3.1.2 Design 

Two independent variables were manipulated – mean programmed delay and range of 

temporal interval values. In similar fashion to the “random” conditions in Experiment 1, the 

value of a temporal interval on any given cause-effect pairing could take any value within 

the defined range, with uniform probability across the range. Interval range was thus a 

manipulation of the level of temporal predictability – the wider the range of temporal 

interval values, the greater the variation in the value that a temporal interval could take on 

any one particular cause-effect instance, and thus the greater the variability of temporal 

intervals throughout the experimental condition.  

Delay had two levels, 3s and 6s. Range had three values: 0s, which meant that there 

was no variation in the temporal intervals and the delay was fixed throughout the condition; 

3s, which meant the temporal interval on a given cause-effect instance could take any value 

within a range of 3s about the mean delay, or in other words 1.5s either side of this central 

midpoint; and 6s, which meant temporal intervals could take any value within 3s either side 

of the programmed mean delay. These were combined factorially to produce 6 different 

conditions, each of which was experienced by every participant, producing a 2×3 within-

subjects design. As an example, in the 3s-range 3s-delay condition, cause-effect intervals 

could take on any value between 1.5 and 4.5s. The six conditions are represented 

diagrammatically in Figure 3.4. 

 

 

Figure 3.4: Diagram illustrating the combination of the levels Delay and Range to produce 

the six experimental conditions in Experiment 2A. 
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3.3.1.3 Apparatus, materials & procedure 

The experiment was run on an Apple “Mac Mini” running Windows XP and Python 

2.4.1, with a 17” LCD display. The basic perceptual experience for participants was 

virtually identical to that from Experiment 1, except that condition time was extended to 

120s, and that I opted to use only a single dependent measure: “On a scale of 0-100, how 

effective was pressing the button at causing the triangle to light up?” The experiment took 

approximately 15 minutes to complete. 

3.3.2 Results & Discussion 

3.3.2.1 Causal Ratings 

The mean causal ratings for Experiment 2A are shown in Figure 3.5. There is a 

clear separation between delays of 3s and 6s, with the more contiguous conditions receiving 

higher causal ratings. There also appears to be a general trend for predictability. While 

there appears to have been no discernible influence of interval range for short-delay 

conditions, with a longer mean delay causal ratings appear to decline in linear fashion as 

temporal interval range is increased and predictability is reduced. This is suggestive of an 

interaction between delay and predictability such that where inter-event delays are longer, 

predictability becomes more important.  

A 2×3 within-subjects ANOVA obtained the expected significant main effect of 

delay F(1,39) = 19.57, p < .0005, MSE = 386.9, ηp
2 = .334. However, contrary to my 

predictions, there was no significant effect of interval range, F(2,78) = 1.759, p = .179, 

MSE = 426.6, ηp
2 = .043. Surprisingly given the trend in ratings in Figure 3.5, the 

interaction between delay and range was also not significant, F(2,78) = 1.548, p = .219, 

MSE = 472.6. The linear component of the main effect of predictability was however 

marginally significant, F(1,39) = 4.005, p = .052, MSE = 374.7, ηp
2 = .093. 
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Figure 3.5: Mean Causal Ratings from Experiment 2A as a function of temporal interval 

range. Different symbol and line styles represent different delays. Error bars show standard 

errors. 
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Table 3.2: Behavioural Data for Experiment 2A. Standard deviations are given in 

parentheses. 
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3.3.2.2 Behavioural Data 

Table 3.2 summarizes the behavioural data for Experiment 2A. Once again to verify 

that behavioural variance is not a confounding influence on causal ratings, the effect of the 

independent variables on response rates was analyzed using a 2×3 within subjects ANOVA. 

There was a marginally significant effect of delay on response rate, F(1,39) = 3.887, p = 

.056, MSE = 876.1, ηp
2 = .091, driven by slightly higher rates of responding in the short-

delay conditions. There was no significant effect of temporal interval range, F(2,78) = 

1.066, p = .349, MSE = 690.8, and no significant delay × range interaction, F(2,78) = .186, 

p = .831, MSE = 831.9. Response rates were therefore largely unaffected by these 

manipulations. In any case, the correlation between response rate and causal rating was 

found to be non-significant, r = -.098, n = 240, p = .129. Variance in causal ratings is 

therefore not attributable to fluctuations in responding. P(e|c) was again constant across 

conditions, with none of the expected small fluctuations resulting in this value differing 

significantly from the programmed 0.75 level (all ps > .1). Likewise mean temporal interval 

did not differ significantly between conditions matched for delay (all ps > .05). 

 

3.2.3 Discussion 

The anticipated facilitatory effect of temporal predictability failed to convincingly 

materialize in the current study. One possibility why the manipulation of interval range 

failed to produce reliable effects on causal judgments could be that the cause-effect 

contingency was too easily detectable. In contrast to Experiment 1, all background effects 

were removed from this task. Therefore participants did not experience effects occurring 

independently of their actions. All they needed to do was withhold their responding for an 

extended period of time to quickly realize that the effect did not occur without them 

pressing the button, and conclude that therefore they were in full control over the 

occurrence of the outcome. Not only then did they not experience any non-contingent 

conditions situations where they lacked control, but the same response-outcome 

contingency was present for all situations. Previous studies (Shanks et al., 1989; 

Wasserman et al., 1983) examined a range of contingencies including non-contingent 

conditions. Experiencing different degrees of causal control could be key to participants 

distinguishing between conditions and making more extensive use of temporal cues in their 
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causal decision. In the short-delay conditions, participants may easily have been able to 

detect that they have full control over the outcome occurrence and then further detect the 

similar pattern of response-outcome covariation across conditions. They thus would have 

had less need to take account of temporal cues and instead base their decision solely on 

contingency information (meanwhile the lack of contiguity in longer-delay conditions 

means that this information remains difficult to discern). This issue could potentially be 

addressed by re- introducing a set level of background effects for all conditions to 

demonstrate that the effect may happen independently of the participant’s own action. 

Alternatively, the task could include non-contingent conditions in which responding is 

ineffective and outcomes occur according to some predefined schedule, so participants 

experience both situations where they have control, and no control. 

To summarize the principal findings from this study, short-delay conditions tended 

to attract higher causal ratings compared to the less contiguous conditions, and did not 

appear to differ from one another when predictability was varied. In contrast, in the long-

delay conditions, judgments appeared to decline as predictability was decreased, with the 

long-delay low-predictability condition receiving by far the lowest mean causal rating. 

Thus despite the fact that the main effect of temporal interval variability was not 

statistically significant in this case, there does seem to be a general trend that accords with 

the findings in Experiment 1. The suggestion is that refining the paradigm to be more 

sensitive may provide more informative results and help to elicit the precise effect of 

temporal predictability. 

 

3.3 Experiment 2B 

The previous experiment implemented variations in the degree of predictability by 

modifying the range over which intervals could vary, rather than the type of distribution 

from which they were drawn. It was anticipated that increasing interval range, thus 

entailing decreasing temporal predictability, would produce concomitant declines in causal 

judgments. Although an inspection of Figure 3.5 suggests this may have been the case for 

longer delays, the effect on shorter delays was minimal and increasing interval range was 

not a statistically significant effect. This casts some doubt on the apparent facilitatory effect 

of predictability obtained in the first experiment. Further investigation is thus required. 
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Previous studies in the literature included either non-contingent conditions where 

P(e|c) = P(e|¬c) (Shanks et al., 1989; Wasserman et al., 1983) or non-contingent conditions 

where outcomes were predetermined and responding was ineffective (Reed, 1993; Shanks 

& Dickinson, 1991). Both manipulations guarantee that participants will experience 

situations where the outcome occurs independently of their actions, creating an element of 

uncertainty as to whether an outcome that occurs is due to their action or to alternate 

causes. Experiment 2A lacked conditions such as these and therefore may have made the 

task trivial. Participants may all too easily have been able to recognize that they were the 

only active causal agent, and thus work out the response-outcome contingency without 

having to make use of other available cues such as temporal information – particularly 

since P(e|c) was constant across conditions. If instead an element of uncertainty is created 

as to the causal status of the participant’s action, then other potential cues may be more 

useful, and so more effectively demonstrate the role of predictability. 

It was decided that one of these approaches to adding element of uncertainty must 

be adopted in order to ensure that the task is not trivial. Having already examined the 

influence of background effects in the first experiment, I instead introduced non-contingent 

conditions using a yoking technique. Specifically, outcome sequences that were generated 

from the performance of participants during the previous experiment were played back to 

participants in the current experiment. In these conditions, the action of pressing the button 

had no causal efficacy itself and the effects that occurred were therefore non-contingent 

upon the current participant’s behaviour. Reed (1993) previously used a yoking technique 

in which participants own performance on previous conditions was played back to them in 

subsequent non-contingent conditions. Here, yoking to outcome patterns from the previous 

experiment, rather than to participants’ own behaviour in the current experiment, was 

preferred for two reasons. Firstly, yoking to one’s own behaviour places considerable 

restriction on the ordering of conditions, since a yoked condition cannot be presented until 

a participant has worked through the corresponding master condition. Secondly, it is very 

possible that participants might notice that the same outcome stream they previously 

generated is being played back to them, particularly if they are responding in a structured 

way (such as using response bursts or specific patterns of responding), and this would 

therefore make the task trivial.  
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3.3.1 Method 

3.3.1.1 Participants   

60 undergraduate students from Cardiff University, with a median and modal age of 

20 years, were recruited via an online participation panel. Either £4 payment or partial 

course credit was awarded for participation.  

3.3.1.2 Design 

The experiment adopted a 3×2×2 fully within-subjects design. The factors delay and 

range remained from Experiment 2A with the same levels, and a third factor, condition, 

was introduced, with levels master and yoked. The six master conditions were identical to 

the six conditions presented in Experiment 2A, by combining all levels of delay and range 

in the same manner. In these conditions, a response from the participant generated an 

outcome according to the same probability of 0.75 as for the previous experiment, with the 

response-outcome interval likewise determined in the same manner. The six yoked 

conditions meanwhile served as noncontingent control conditions, in which responding was 

ineffective in influencing the outcome pattern. The presentation of outcomes in these 

conditions was instead yoked to the outcome sequence generated from the performance of 

participants during Experiment 2A. Each new participant in the current experiment was 

paired randomly (with replacement) with a participant in the previous experiment. The 

outcome patterns generated by the previous participant during the six conditions in 

Experiment 2A (which were identical to the master conditions here) were then simply 

played back in the corresponding yoked conditions. To ensure that the outcome sequence 

during the yoked conditions was comparable with that during the master conditions, only 

those participants whose outcome rates were in the second and third quartiles were made 

available for the yoking procedure; participants with extremely low or high outcome rates 

were not included. 

Factorial combination of range, delay and condition in a 3×2×2 within-subjects 

design produced twelve different conditions. The first condition presented was always a 

master condition, and counterbalancing across participants determined which of the six 

conditions was selected as the first. The remaining conditions were then presented in 

random order. 
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3.3.1.3 Apparatus, Materials & Procedure 

The experiment took place in a large computer lab. Participants were tested in small 

groups, seated in a quiet area of the lab to work on the task. Each participant used a PC 

running Windows XP and Python version 2.4.1, with a 19” LCD widescreen display. The 

paradigm was a straightforward adaptation from the previous study, with the visual 

appearance in terms of size and shape of stimuli and the speed of stimulus presentation 

consistent with Experiment.1. The basic experience for participants was thus virtually 

identical to that from Experiment 1, except that condition time was extended to 120s, and 

that I opted to use only a single dependent measure: “On a scale of 0-100, how effective 

was pressing the button at causing the triangle to light up?” As in the previous experiment, 

participants used the mouse to click on the button and the keyboard to type in responses. 

The experiment took approximately 15 minutes to complete. 

3.3.2 Results 

3.3.2.1 Causal Ratings 

Figure 3.6 shows mean causal ratings for Experiment 2B. Firstly, there is a very 

clear distinction between ratings for the master and the yoked conditions, with the master 

conditions receiving significantly higher ratings as expected, F(1,59) = 114.2, MSE = 1270, 

p < .0005, ηp
2 = .659. This indicates that participants had little difficulty in correctly 

distinguishing the contingent and non-contingent causal relations within the experimental 

set. The yoked conditions themselves all appear to have elicited very similar, low causal 

ratings, as expected, since there is no connection between response and outcome. The fact 

that ratings are above zero is likely attributable to the occasional random co-incidence of 

participants responses with the pre-programmed outcomes, or a reluctance to endorse 

ratings at the extreme end of the scale.  

Of primary interest, however, are the master conditions, where delay and delay 

variability actually affected the timing of outcome following responses. Accordingly, 

subsequent analysis of ratings shall focus on these conditions alone. As can be seen in 

Figure 3.6, judgments of causal effectiveness declined as a function of increasing interval 

range (and thus temporal uncertainty), with an ANOVA confirming a significant linear 

relationship, F(1,59) = 10.97, MSE = 651, p < .005, ηp
2 = .157,. The effect of delay is also 

immediately apparent, with short-delay conditions receiving uniformly higher ratings than 
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the long-delay, F(1,59) = 14.07, MSE = 590.4, p < .0005, ηp
2 = .193, in line with 

Experiment 1 and prior research. There was no significant interaction between range and 

delay, F(2,118) = 0.186, MSE = 444.2, p  = .830. Planned comparisons found that 

conditions with fixed intervals (M = 57.06, SE = 2.860) received significantly higher 

ratings than both the maximally-variable conditions (M = 46.15, SE = 2.683), t(119) = 

3.553, p < .01, and the intermediate-variability conditions (M = 49.22, SE = 2.530), t(119) 

= 2.524, p < .05, which in turn did not differ significantly from each other, t(119) = 1.053, p  

= .294. 

 

 

Figure 3.6: Mean Causal Ratings from Experiment 2B as a function of interval range. 

Filled and unfilled symbols refer to master and yoked conditions respectively. Mean delays 

are noted by different symbol and line styles. 

 

3.3.2.2 Instrumental Behaviour and Outcome Patterns 

Table 3.3 shows the behavioural data for the six master conditions in Experiment 

2B. 3×2 within-subjects ANOVAs found that actual P(e|c) remained unaffected 

significantly by either range or delay (both ps > .5) and mean experienced delay was also 

unaffected by range, F(2,118) = 0.319, MSE = 7.021, p = .727. This provides assurance that 
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the programmed manipulations delivered the appropriate event streams to participants. 

Response rates (normalized by taking square root) were not significantly influenced by 

range, F(2,118) = 0.456, MSE = 1.918, p = .635; however there was a significant effect on 

response rate of delay, F(1,59) = 5.197, MSE = 1.609, p < .05, ηp
2 = 0.088. An inspection 

of Table 3.3 suggests that response rate was slightly lower in the long-delay conditions; this 

is in line with previous reports (e.g. Shanks et al., 1989).  

 

 

Table 3.3: Behavioural Data for Experiment 2B. Standard deviations are given in 

parentheses. 

 

3.3.3 Discussion 

Experiment 2B has therefore provided a clear illustration that temporally predictable 

cause-effect relations are perceived as more causal compared to variable and unpredictable 

relations. Furthermore, increasing temporal variability within unpredictable relations results 

in a corresponding linear decrease in causal judgments. This is the first time, as far as I am 

aware, that this finding has been obtained in a free-operant response-outcome learning task. 

It would appear, therefore, that these results are more in line with a structural or model-

based account of causal judgment, and problematic for associative perspectives on causal 

learning and a reductionist account. 
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However, these results need not altogether be incompatible with comparable 

findings from reinforcement learning; there remains an alternative explanation that must be 

explored. Drawing on the wider literature on learning and memory, it has been widely 

reported that the progression of learning is highly dependent on the type of training or 

practice undergone. In particular with regard to motor learning and skill acquisition, 

researchers have compared constant practice, where participants practice using a consistent 

set of materials and skills, with variable practice, where performance takes place in a 

variety of different conditions. Constant practice generally produces better performance in 

the short term, whereas variable practice leads to better retention in the long run (Gluck, 

Mercado, & Myers, 2008). Thus although learning under consistent conditions may initially 

result in more rapid acquisition, over time, variable conditions result in the formation of 

stronger associations. According to Schmidt (1975), variations in practice of a motor skill 

result in superior learning which is demonstrated by better ability to transfer the skill to 

different contexts. Wulf and Schmidt (1997) for example found that performance on a 

continuous pursuit tracking task in transfer tests with novel scaling was generally enhanced 

by variable compared to constant practice. Until fairly recently though, there has been little 

interest in whether this finding generalizes to higher level cognitive tasks. However,  

Goode, Geraci and Roediger (2008) investigated the effects of constant versus variable 

practice on performance with the verbal priming task of anagram solution. The results from 

this study showed that although initially a greater proportion of anagrams were correctly 

solved following constant rather than variable practice, by the third practice session this 

trend had reversed.  

Thus, there is converging evidence from a range of learning paradigms and contexts 

for a facilitatory effect of variability, provided enough learning time is provided. Of course, 

causal or contingency learning is very different from motor skill acquisition. Nonetheless, 

inspiration may be taken from this literature to explore the possibility of an analogous role 

of temporal variability with respect to causal learning. Specifically, I shall acknowledge the 

possibility that learning may reach asymptote faster with consistent temporal intervals 

compared to variable ones, and hence the apparent advantage conferred by temporal 

predictability may simply be due to learning having failed to reach asymptote for the 

variable conditions in the time provided. If this is indeed the case, this short-term advantage 
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for predictability may then disappear over enough learning trials, and even be reversed in 

the long run. 

In contrast, a computational perspective might instead suggest that, if anything, 

temporal predictability may have more of an impact as learning progresses: Increasing 

learning time is likely to enhance any potential temporal contribution to a mental 

computation of causality, since more temporal information becomes available over 

extended learning periods. Moreover, temporal predictability is only capable of exerting an 

influence when an observer experiences multiple intervals. The more cause-effect intervals 

a reasoner experiences during a learning period, the greater the total amount of variation 

that may be experienced, and the more apparent a distinction between a predictable, fixed 

relation and a variable, unpredictable relation may become. I endeavoured to examine these 

two opposing hypotheses in the following experiment. 

 

3.4 Experiment 3 

Experiments 1 and 2B have clearly demonstrated a facilitatory effect of temporal 

predictability in causal learning. However, a possible consideration in the interpretation of 

these results is that the rate of acquisition may differ with temporally predictable conditions 

compared to temporally variable conditions. Variable-interval causal relations may take 

longer to discover but may then lead to formation of a stronger associative bond, and thus 

prove more resilient to extinction. If enough learning time is provided, then it might be 

expected that judgments of causal strength for temporally variable causal relations should 

match or even exceed those for temporally predictable conditions.   

To address this possibility, the following study set out to investigate the potential 

influence of the learning time provided in each experimental condition on the effect of 

temporal predictability in a free-operant causal learning experiment. If, as might be 

suggested by associative accounts, the effect of predictability observed thus far is merely a 

failure of learning to reach asymptote, then increasing condition time should bring causal 

ratings for variable conditions in line with predictable conditions. Accordingly in the 

following experiment, condition duration was introduced as a factor by adding conditions 

lasting double the length of time as those in previous experiments (that is, four rather than 

two minutes) and contrasting conditions with different durations. If the ‘failure to reach 
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asymptote’ argument holds, some reduction of the difference between predictable and 

variable temporal relations should be obtained for the four-minute conditions with respect 

to the two-minute conditions. The variable conditions may even be judged as more causal if 

in fact variability leads to the formation of stronger associations (provided enough learning 

time is allowed), as might be suggested from the literature on variability of practice. The 

experiment will thus serve as a sterner test of the influence of temporal predictability. 

3.4.1 Method 

3.4.1.1 Participants 

33 undergraduate psychology students based at Cardiff University, with a median 

and modal age of 19 years, were recruited via an online participation panel, and received 

partial course credit for completing the experiment. 

3.4.1.2 Design  

This experiment introduced exposure time (to each condition) as an additional 

factor. Two levels of this factor were applied; 2 minutes, to be consistent with experiments 

thus far and attempt to replicate the findings; and 4 minutes, which by doubling the 

sampling opportunity should provide ample time for participants to fully investigate, 

discover and make a judgment on any causal relationship that might exist. Delay and range 

were retained as factors, although to simplify and condense the experiment, I removed the 

‘intermediate' level of temporal interval range (3s). This gave two levels of range, 0s (fixed 

and maximally predictable) and 6s (variable and maximally unpredictable), while the two 

levels of mean delay remained at 3s and 6s. Combination of all three factors produced 8 

different conditions, all of which were experienced by each participant, thus providing a 

2×2×2 fully within-subjects design. The condition that was experienced first by each 

participant was pre-determined by counterbalancing across participants; all remaining 

conditions occurred in random order. Participants provided causal ratings from 0-100 at the 

end of each condition as the dependent measure. 

In order to add a degree of difficulty to the task and avoid making the contingency 

too apparent, a steady rate of non-contingent background effects was applied to each 

condition. This was equivalent to one every ten seconds, and each effect could occur at any 

point within a given ten second segment (i.e. the first background effect could occur 

somewhere between 0-10s, the next between 10-20s and so on). Of course, yoked 
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conditions could instead have been again implemented, as for Experiment 2B, but given 

that this experiment had eight master conditions, it seemed that matching each of these with 

a non-contingent condition would be somewhat uneconomical, and a more streamlined 

experiment would be less tedious for participants. 

3.4.1.3 Apparatus, materials & procedure 

The experiment was conducted in a small computer lab, using identical apparatus as 

for Experiment 2, and was once again developed and run using the Python programming 

language. Participants were tested in small groups, seated at individual workstations which 

were screened off from each other. The paradigm and procedure were identical to those of 

the previous experiments, using the same visual stimuli and layout, with only the key 

differences described above, and corresponding modifications to the instructions informing 

participants that they would experience conditions of different durations.  

3.4.2 Results 

3.4.2.1 Causal Ratings 

Figure 3.7 summarizes the results from Experiment 3. As can be clearly seen, there 

is once again a noticeable influence of interval range, with a decline in ratings evident with 

all bar one of the temporally-variable conditions compared to the corresponding 

temporally-predictable conditions with the same combination of delay and condition time, 

and an overall significant main effect of range, F(1,32) = 6.134, MSE = 571.4, p < .05, ηp
2 

=  .161. Delay also again has an immediately apparent influence, with the 3s conditions 

receiving significantly higher ratings than 6s conditions, F(1,32) = 5.152, MSE = 823, p < 

.05, ηp
2 =  .139. Of central interest in this experiment, it can be seen that there is no 

significant influence of the duration of the experimental conditions, F(1,32) = 0.796, MSE 

= 694.5, p = .379, and crucially no significant Range × Duration interaction, F(1,32) = 

2.26, MSE = 587.6, p = .143, confirming that the advantage for predictability over 

variability is maintained for the longer (4-minute) conditions. None of the other possible 

interactions were significant.  
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Figure 3.7: Mean Causal Ratings from Experiment 3 as a function of interval range. Filled 

and unfilled symbols refer to 2 and 4 minutes training respectively. Mean delays are noted 

by different symbol and line styles. 

 

3.4.2.2 Instrumental Behaviour and Outcome Patterns 

Table 3.4 shows the behavioural data from Experiment 3. As can be seen, response 

rates were fairly consistent across levels of range and delay, though naturally there were 

more responses in total in the 4-minute conditions than the 2-minute. Within-subjects 

ANOVAs found that response rate (square-rooted), mean experienced delay, and actual 

P(e|c), were not significantly affected by interval range (all ps > .1); mean delay and P(e|c) 

were unaffected by condition duration (all ps > .2); and response rate and P(e|c) were 

unaffected by delay (all ps > .2); therefore the effects of my manipulations are not mediated 

through these potential confounds.  
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Table 3.4: Behavioural Data for Experiment 3. Standard deviations are given in 

parentheses. 

 

3.4.3 Discussion 

This experiment has once again found temporally predictable causal relations to 

receive significantly higher causal ratings than temporally variable, and indeed obtained the 

strongest effect of predictability thus far. Here I provided maximal contrast between 

predictable and unpredictable conditions by allowing intervals to vary up to the maximum 

of 100% of the nominal interval (0-6s with a mean delay of 3s and 0-12s with a mean delay 

of 6s) and dispensing with any intermediate levels of predictability 

This effect of temporal predictability remained undiminished as condition time 

increased, with condition time itself appearing to have little influence. The extent of 

information sampling apparently then does not moderate or mediate any effects associated 

with predictability. We can therefore be confident that the effect of predictability observed 

thus far (and demonstrated once again in this experiment), cannot be attributed to a mere 

failure of learning to reach asymptote. Temporal regularity remains as a cue to causality 

regardless of duration of learning. 
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3.5 Experiment 4 

From the outset, the goal of this chapter was firstly to ascertain whether temporal 

predictability might have an influence on causal judgments, and what this might be. In the 

experiments thus far, a definite pattern has begun to emerge such that conditions with fixed 

temporal intervals are consistently judged to be more causally effective than those with 

variable temporal intervals. The lattermost findings addressed the possibility of an 

alternative explanation for this effect, but found no evidence to support this alternative.  

The initial question therefore appears to have been satisfactorily answered. The secondary 

aim of this chapter, if predictability could indeed be identified as a potential cue to 

causality, was then to determine what its relationship might be to the other most prominent 

cues, contingency and contiguity.   

En route to the current point, each experiment has included at least two levels of 

mean delay, enabling us to evaluate the predictability effect at both short and long intervals. 

Since contiguity and predictability may be both be regarded as parameters of a set of 

temporal intervals, respectively analogous to the mean and the standard deviation of a 

distribution, it seemed a natural approach to investigate the two in tandem, and hence shed 

light on the relationship between predictability and contiguity. The facilitatory effect of 

predictability on judgments has now been demonstrated across a number of different 

delays, with delay extent not appearing to moderate the influence of predictability. While 

Experiment 2A suggested that predictability might be more important when contiguity is 

low, the general effect of predictability has tended to be comparable at both longer and 

shorter delays. This same pattern also persists under both shorter and longer observation 

times. Predictability and contiguity thus appear to independently influence causal judgment.  

Thus far however, this thesis has only barely touched on the potential relationship 

between predictability and contingency. In Experiment 1, contingency was manipulated in 

a sense by the use of different levels of background effects. Increasing the frequency of 

noncontingent outcomes inflates the value of P(e|¬c) (cell C in the 2×2 contingency 

matrix), so contingency is decreased as level of background effects is increased. While the 

simple main effect of background effects on judgments was robust, there was no interaction 

between predictability and background effects. This suggests that, as with contiguity, 
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contingency does not mediate the impact of predictability, and the two act separately to 

influence causal judgments.  

There are of course other ways through which contingency may vary; the values of 

all three remaining cells of the 2×2 matrix may be adjusted. However in the FOP, without 

using an underlying trial structure, precise values of P(¬e|c) and P(¬e|¬c) cannot be 

defined, since defining the absence of an effect must be in reference to a specified unit or 

period of time. The value of P(e|c) however can be controlled directly. Throughout all the 

experiments presented so far, a constant value of P(e |c) has been used. This value was 

inherited from Shanks et al.’s (1989) paradigm, and since this has proved useful as a 

template for investigating the role of time in a number of subsequent studies (Reed, 1992), 

it was adopted as the standard for the experiments in this chapter. There was, however, an 

additional consideration underlying the selection of this default level. Research suggests 

that in order for a temporal interval to be learned, the interval in question must be 

experienced with sufficient regularity (Gallistel & Gibbon, 2000b). Hence it was assumed 

that for temporal predictability (in the form of interval regularity) to be detected and used 

as a cue to causality, the cause must then generate the effect reliably enough to provide 

such experience. The fairly high probability of 0.75 used by Shanks et al. fitted this 

requirement. The question then arises as to whether this assumption was indeed valid. Does 

a high probability of a response generating an outcome constitute a prerequisite for a 

predictability effect? The final experiment of this chapter sought to answer this question.  

3.5.1 Overview of experiment 

The familiar FOP paradigm was once again utilised, with varying levels of P(e|c) 

applied across different conditions. Probabilities of 80%, 50% and 20% were used in 

conjunction with both fixed and variable delays. A single mean delay of 2 seconds was 

selected, with interval then either fixed at this value or varying freely on a given pairing 

between 0 and 4 seconds.  

Since the focus here is on P(e |c) rather than P(e |¬c), no background effects were 

applied. Earlier in this chapter, the concern was raised that without the uncertainty provided 

by background effects or noncontingent conditions, the task may become trivial as 

participants may recognize a constant contingency across conditions. However since a 
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constant value of P(e|c) is not being used across condition, this concern does not apply to 

the current experiment.  

Owing to external time constraints, the experiment needed to be as short and 

streamlined as possible. Accordingly, and since the preceding experiment revealed no 

significant effect of observation time, the duration of each condition was reduced to one 

minute. The reduced duration should also further minimize any problems arising from the 

absence of background effects, since long periods of abstaining from responding (which 

would reveal this absence) are likely to be reduced commensurately. 

3.5.2 Predictions 

There is a large body of existing evidence (e.g. Alloy & Tabachnik, 1984; Chatlosh, 

Neunaber, & Wasserman, 1985; Wasserman et al., 1983) demonstrating that human causal 

judgments tend to be strongly influenced by contingency, of which P(e|c) is a major 

component. This experiment should be no exception and therefore it is anticipated that 

causal judgments will decline as P(e|c) is decreased. Based on the results of the thesis thus 

far, higher ratings for conditions with fixed intervals compared to those with variable 

intervals is also anticipated. If the predictability effect depends on repeated experience of 

the fixed interval, as intuition suggests, then one should also expect an interaction between 

probability and predictability, such that superiority of predictability over variability is 

amplified at higher probabilities. If instead predictability and contingency are independent, 

as the lack of an interaction in Experiment 1 implies, then one would anticipate that fixed 

intervals should create stronger impressions of causality than variable intervals regardless 

of the probability of an outcome following a response.  

3.5.3 Method 

3.5.3.1 Participants 

23 psychology undergraduates volunteered via an online participation panel hosted 

at Cardiff University and completed the experiment to receive partial course credit.  

3.5.3.2 Design 

The factors delay (with levels fixed and variable) and probability (with levels 0.8, 

0.5, and 0.2) combined in a 2×3 within-subjects design giving six conditions each of one 

minute in duration. Each response made had the specified probability of generating an 
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outcome. If scheduled, the outcome occurred either after a delay of 2s (fixed interval 

conditions), or after a delay of between 0 and 4s (variable interval conditions) with the 

delay on any given cause-effect pairing randomly selected from within this range. To 

alleviate order effects, counterbalancing across participants was applied with respect to 

which of the six conditions was the first presented.  

3.5.3.3 Apparatus& Materials 

The experiment was conducted on a Dell Inspiron laptop with a 19” display running 

Microsoft Windows Vista and Python 2.6. Participants were tested one-at-a-time in an 

individual testing booth.  

3.5.3.4 Procedure 

The standard instrumental FOP used in the previous experiments was once again 

applied here. Visual stimuli, layout, requirements and basic procedure were thus identical 

to the preceding experiments.  The only difference between this and the previous 

experiments, from the perspective of participants, was the shorter condition duration and 

the absence of background effects.  

3.5.4 Results 

3.5.4.1 Causal Judgments 

Figure 3.8 presents mean causal ratings for the six conditions in Experiment 4. Most 

evident from inspection of this figure is the ascension of causal ratings in an apparently 

linear trend as P(e|c) is increased. It is also immediately apparent that conditions with fixed 

delays received uniformly higher mean causal ratings than the corresponding variable-delay 

conditions, although this difference is only substantial at the highest level of P(e|c).  

A 2×3 within-subjects ANOVA found significant main effects of predictability, 

F(1,22) = 7.355, MSE = 636.9, ηp
2 = .251, p < .05, and probability, F(2,44) = 40.59, MSE = 

675.6, ηp
2 = .649, p < .0005. Planned comparisons collapsing across predictability found 

that ratings where P(e|c) was 0.8 (M = 70.61, SE = 4.564) were significantly higher than 

those at 0.5 (M = 42.26, SE = 4.159), t(45)  = 5.849, p < .001, which in turn were 

significantly higher than those at 0.2 (M = 22.00, SE = 4.309), t(45)  = 3.825, p < .001, 

emphasizing the strong linear effect of P(e|c). The overall interaction between the two 

failed to reach significance, F(2,44) = 2.363, MSE = 515, p = .16; however the linear 
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component of the interaction was marginally significant, F(1,22) = 4.209, MSE = 384.8, p = 

.052, ηp
2 = .161. Further analysis of the interaction using Bonferroni-corrected pairwise 

comparisons found that ratings at P(e|c) of 0.8 were significantly higher for fixed than 

variable conditions, t(22) = 3.564, p  < .005, but no such differences were found at P(e|c) of 

0.5 or 0.2.   

 

 

Figure 3.8: Mean causal ratings from Experiment 4 as a function of P(e|c). Filled and 

unfilled symbols refer to fixed and variable delays respectively.  

 

3.5.4.2 Instrumental Behaviour and Outcome Patterns 

The behavioural data for Experiment 4 is reported in Table 3.5. As with the 

preceding experiments, analyses of this data were again performed to examine potential 

confounds. Normalized response rate was not significantly affected by probability, F(2,44) 

= 0.052, MSE = 1.916, p = .950, variability, F(1,22) = 1.740, MSE = 3.409, p = .201, or the 

interaction between the two, F(2,44) = 1.137, MSE = 1.017, p = .330. Different levels of 

P(e|c) naturally resulted in significant differences between conditions for rate of outcomes, 

F(2,44) = 12.29, MSE = 325.2, p < .001, ηp
2 = .358, and actual contingency, F(2,44) = 

425.63, MSE = 0.011, p < .001, ηp
2 = .951, but these measures were not significantly 
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affected by variability, both ps > 0.25. Mean delays experienced were not significantly 

affected by probability, variability, or their interaction, all ps > 0.4. The effect of 

predictability in this experiment therefore cannot be attributed to these potential confounds. 

 

 

Table 3.5: Behavioural Data for Experiment 4. Standard deviations are given in 

parentheses. 

 

3.5.5 Discussion 

Experiment 4 continued the pattern shown throughout this chapter that holding the 

cause effect interval constant elicited higher causal ratings. The facilitatory role of temporal 

predictability in causal learning has been demonstrated yet again and the support for the 

predictability hypothesis is now compelling. The manipulation of outcome probability 

meanwhile also produced the expected findings, with judgments corresponding to a close 

linear function of P(e |c). 

Evaluating the interplay between probability and predictability is a less 

straightforward task. On the one hand, an inspection of Figure 3.8 indicates that predictable 

conditions received uniformly higher ratings than variable conditions across levels of 

probability, and while a main effect of predictability was confirmed, the interaction failed 

to reached significance. At the same time, the linear component of the interaction was 
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marginally significant, and perhaps most tellingly, follow-up comparisons revealed that 

fixed and variable conditions differed significantly only at P(e|c) = 0.8. The influence of 

predictability is thus amplified when the effect follows the cause with a high probability.  

This is consistent with causal learning being viewed as a retroactive reasoning 

process. For predictability to be detected and thus exert an influence, the cause-effect 

interval must be experienced with sufficient regularity in order that a temporally predictable 

causal relation may be distinguished from an unpredictable one. Strictly speaking, it might 

be more accurate to say that the effect of increasing statistical regularity was harmed by 

temporal unpredictability, since when P(e|c) was highest, judgments fell well below ∆P 

with variable intervals, but were more normative at lower levels of P(e |c). However, since 

there was a cause-effect delay in all conditions, it is not necessarily expected that 

judgments should in fact conform to ∆P but to fall somewhat short of this measure (Shanks 

et al., 1989). Regardless, it is clear from this experiment that temporal predictability elicits 

stronger judgments of causality than variability, and this difference is amplified when 

P(e|c) is high. The notion that sufficient experience of the interval in question is necessary 

for predictability to be identified is thus supported by these results.  

Interestingly then, it seems that a straightforward relationship between predictability 

and contingency in a broad sense cannot be defined. Instead, comparing the results of 

Experiments 1 and 4 suggests that predictability is differentially sensitive to the cells of the 

contingency matrix. While reducing contingency through increasing the value of P(e|¬c) 

(cell C) surprisingly did not adversely impact the effect of predictability, reducing 

contingency by reducing P(e|c) (cell A) attenuated the predictability effect. Temporal 

regularity thus depends on statistical regularity only to a certain degree. This dependency 

should however not harm the case for temporal predictability to be recognized as a cue to 

causality in its own right. Greville and Buehner (2007), for instance, have demonstrated 

that contingency and contiguity act in concert to influence causal judgment. Since the 

experience of temporal intervals, which convey both contiguity and predictability 

information, necessarily depends on there being a certain contingency with which the effect 

follows the cause, then it should come as no surprise that there is a considerable degree of 

interplay between these cues to causality.  
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Chapter Summary 

This chapter has attempted to broaden understanding of the role of time in causal 

inference, and to address a gap in the empirical study of causal learning. Specifically, it has 

been highlighted that temporal predictability can act as an empirical cue in the induction of 

causal relations from a real-time response-outcome schedule. More precisely, the results 

demonstrate that fixed, predictable temporal intervals attract higher causal ratings than 

variable ones, and that causal ratings decrease as a function of temporal uncertainty.  

Before postulating that temporal predictability should join temporal order, 

contingency and contiguity as a recognized cue to causality, it seems necessary to ascertain 

whether the findings obtained thus far can generalize to other learning situations. One 

obvious feature of the studies presented thus far is that they are all based on the same 

essential paradigm, the instrumental FOP. As Waldman and Hagmayer (2005) observe, 

there are two primary modes of accessing information; by “doing” (intervening) and by 

“seeing” (observing). A number of studies have demonstrated that differential results may 

be obtained depending on which mode of learning is instigated (Lagnado & Sloman, 2004; 

Sloman & Lagnado, 2005). Likewise in behaviour analysis, the distinction between 

learning through intervention or observation is manifested through the two separate 

conditioning protocols, instrumental and classical conditioning. Despite the obvious 

parallels between the two, each process is known to have its own individual characteristics. 

The most obvious question to next pursue would thus seem to be, can the same facilitatory 

effects of predictability obtained here with an instrumental procedure likewise be obtained 

with causal inference from observation? 
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Chapter 4 – The Role of Temporal Predictability in Observational Causal Learning 

 

The experiments in Chapter 3 repeatedly demonstrated the facilitatory role of 

temporal predictability in instrumental causal learning. Conditions with fixed temporal 

intervals consistently received higher ratings than their variable counterparts, with such 

differences reaching statistical significance in four of the five studies presented. Increasing 

interval variability appeared to elicit a corresponding decline in causal evaluations, and 

variability was never preferred to predictability.  

An obvious common thread of the tasks in Chapter 3, and the studies on which they 

were based such as those of Shanks et al. (1989), Reed (1992), and Wasserman et al. 

(1983), is that they all concern instrumental learning. Such tasks are characterized by 

requiring a participant to actively investigate a putative causal relation by making 

instrumental responses such as pressing a button, and observing the effect this has on the 

delivery of a particular stimulus, such as a light illuminating. Such tasks trace their heritage 

to operant conditioning studies with animals such as those of Skinner. Here then, a putative 

causal link in the environment is actively investigated through the performance of a 

response and its apparent consequences. Causal relations may, of course, also be uncovered 

by passive observation, through simply observing the occurrence of different stimuli (but 

see Lagnado & Sloman, 2002). The immediately apparent allegory is with operant and 

classical conditioning.  

The next logical consideration, then, for evaluating the role of temporal 

predictability, would seem to be whether the same effects of predictability hold for causal 

induction from observed rather than generated events, and thus whether the effects obtained 

thus far may generalize to other forms of causal decision making. However, before delving 

headlong into the empirical investigation of predictability in observational settings, it is 

worth pausing briefly to examine existing theories and research to clarify whether an 

influence of predictability parallel to that observed in the instrumental studies is indeed 

expected.  
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4.1 Parallels and Disparities between Classical and Instrumental Conditioning 

The most obvious basis for the separate consideration of learning through acting and 

learning through observing is the dissociation between classical and instrumental 

conditioning. Chapter 1 introduced these basic protocols, both of which are used to study 

the acquisition of associations. Classical conditioning concerns associations between cues 

or signals in the environment. Instrumental conditioning meanwhile refers to the 

association between an executed behaviour and an evaluative outcome. In the former 

paradigm, the experimenter typically arranges the delivery of both the CS and the US, 

whereas in the latter, while the contingency between response and reinforcer is determined 

by the experimenter, the subject chooses the rate at which it performs the instrumental 

response (although it may be prompted to response by another stimulus such as the 

illumination of the response key, e.g., Ferster & Skinner, 1957; Lander, 1965).  

The obvious operational distinction aside, classical and instrumental conditioning 

share many common elements. As discussed earlier, both are similarly affected by stimulus 

intensity and the statistical and temporal relations between stimuli. As with causal learning, 

contingency and contiguity are crucial constituents of both classical and instrumental 

conditioning processes. If it is to be proposed that temporal predictability also constitutes a 

fundamental component of learning, then it seems reasonable to expect consistent effects of 

predictability across both instrumental and observational modes.  

However, despite their inherent similarities, the associative learning literature tends 

to treat classical and instrumental conditioning as distinct processes. Skinner (1938) was 

one of the first researchers to highlight the operational distinction between the two 

processes, and to postulate separate mechanisms for the two. Evidence from neurological 

studies suggests that while certain neurological structures and pathways are vital to both 

processes, such as the orbitofrontal cortex (OFC) (Delamater, 2007), the role of other 

structures such as the amygdala is dissociable between classical and instrumental 

conditioning. For instance, Vazdarjanova and McGaugh (1998) demonstrated that rats with 

amygdala lesions fail to exhibit conditioned freezing to cues paired with a shock, despite 

still successfully performing the instrumental response of avoiding a compartment in which 

they received the shock. 
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4.2 Distinguishing Intervention and Observation 

In studies of human causal judgment, the distinction between observational and 

instrumental learning has traditionally been less pronounced than in conditioning. Whereas 

fundamentally different mechanisms have been postulated to underlie the formation of CS-

US and response-outcome associations, statistical models of learning based on cause-effect 

contingencies (such as ∆P or PowerPC) apply the same algorithm regardless of whether 

such events are passively observed or actively generated.   

As discussed earlier, the dominant approach to the study of causal induction has 

focused on how statistical information is used to infer causality. As such, observational 

studies where specifically defined event contingencies can be presented to participants have 

been widely utilised to assess how well human causal judgment corresponds to the 

available statistical information. Typically, unambiguous data indicating presence and 

absence of causes and effects is presented either in a summary format such as tabulated 

results (Greville & Buehner, 2007; Liljeholm & Cheng, 2007), or through sequential 

presentation of cases (Matute, Arcediano, & Miller, 1996; Meder, Hagmayer, & 

Waldmann, 2008). Such studies have shown that passively observed contingency 

information affects judgments of causality in much the same way as response-outcome 

contingencies in instrumental learning, with higher contingencies eliciting stronger 

judgments of causality. Studies of observational learning involving direct experience of 

cause-effect delays in real time are rather more thin on the ground, but Siegler and Liebert 

(1974) and Buehner and McGregor (2006, 2009) have demonstrated effects of contiguity 

mirroring those found in response-outcome learning tasks (that is, judgments tend to 

decline with delays). It has further been demonstrated that moderating influences of the 

effects of contiguity such as prior knowledge are also exhibited in observational as well is 

instrumental studies (Allan et al., 2003).  

Yet in recent years, causal model theory in particular has emphasized the special 

status of actions in causal reasoning (Blaisdell, Sawa, Leising, & Waldmann, 2006; 

Lagnado & Sloman, 2004, 2006; Leising, Wong, Waldmann, & Blaisdell, 2008; Sloman & 

Lagnado, 2005; Waldmann, 1996, 2000; Waldmann & Holyoak, 1992, 1997). Intervention 

– performing an instrumental response on a system to modify the value of a variable – 

creates different predictions compared to where the value of a variable is merely observed. 
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In an oft-cited example, observing a reading on a barometer may lead one to have 

expectations regarding the weather, while if one was to make an intervention to deliberately 

set the barometer to a specific setting, one would not expect the weather to change 

correspondingly. Such causal asymmetry reflects not only causal directionality (causes 

produce their effects but not vice versa) but also causal structure in the sense that 

intervening on a variable renders it independent of its parent causes.   

Of course, such distinctions with respect to learning causal structure do not 

constitute a direct parallel with distinguishing between intervention and observation in 

elemental causal induction from a real-time cue-outcome schedule. Nevertheless, this does 

highlight the special status of interventions in causal reasoning. This recognition of the 

privileged role bestowed to instrumental responding may well therefore create different 

expectations between learning through observation rather than intervention. It is generally 

accepted in scientific literature that experimentation is a more effective tool for learning 

and discovery than observation (Hinkelmann & Kempthorne, 1994; Lagnado & Sloman, 

2004) and one can easily see how instrumental learning may be a more powerful process 

through which to explore ones’ environment. By deliberately intervening on the 

environment, an organism can control the frequency or rate of responding, the pattern or 

temporal distribution of responses, the intensity or strength of response, and so on and so 

forth. Simply put, patterns of intervention are self-governed, and choices can modulate the 

data that is received (Lagnado & Sloman, 2006). Learning from observation meanwhile 

may intuitively seem more difficult, since the occurrence of stimuli is beyond the control of 

the organism.  

Temporal regularity in particular might be easier to detect under instrumental rather 

than observational conditions. Under the former, since one can control ones own rate and 

pattern of responding, one can produce meaningful or memorable patterns of responses, 

that perhaps might be dubbed response rhythms. After generating such rhythms, one can 

then monitor the stream of outcomes to see if a similarly matching pattern occurs. This 

could be on as simple a level as comparing ratios of rates or frequencies (that is, comparing 

number of outcomes to number of responses) but could also involve more complex 

comparisons such as whether the specific timing of outcomes mirrors the pattern of 

responses (or to what degree the patterns have a similar temporal distribution). Meanwhile 
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when learning through observation alone, one would have to wait for such meaningful 

patterns to be generated by the environment or an alternative agent. Interventional learning 

then may promote more directed hypothesis testing, as someone who repeatedly intervenes 

on a system is in a better position to test their own hypotheses than someone who merely 

observes the system. Indeed, Sobel and Kushnir (2006) demonstrated that “learners were 

better at learning causal models when they observed intervention data that they had 

generated, as opposed to observing data generated by another learner” (p.411). 

In summary, it is clear that  there are many commonalities between instrumental and 

observational learning, in the domains of both animal conditioning and human causal 

learning. Such commonalities, particularly with regard to the general effects of cues such as 

contingency and contiguity, suggests that an effect of predictability observed in 

instrumental paradigms might well extend to observational scenarios. At the same time, 

there is much evidence to suggest that intervention and observation differ in the insight that 

they may provide regarding causal structures. Suffice it to say, it is certainly not a given 

that the same facilitatory effects of predictability on causal learning in instrumental tasks 

will also be found in observational tasks.  

 

4.3 Existing Evidence – Young & Nguyen, 2009 

As an illustration of this point, recent work by Young and Nguyen (2009) obtained 

results which directly contradict the findings presented in Chapter 2. Their task could, to 

some extent, be conceived as a classical conditioning analogue of these temporal 

predictability studies, with participants observing events rather than taking instrumental 

action. Participants in Young and Nguyen’s experiments engaged in a first-person-shooter 

game, exploring a 3D virtual world consisting of four game levels, each containing seven 

separate regions. In each region, participants encountered groups of three ‘orcs’ (humanoid 

monster-like characters) firing projectiles from their crossbows onto a distal target (such as 

a building). Participants were informed that in each case, one orc was an enemy and was 

firing explosive projectiles (the true cause, or target) while the other two were ‘friendlies’ 

and firing duds (the foils). For each orc, the firing of the crossbow was noticeable by the 

recoil of the weapon and an audible click; the projectile itself could not be seen travelling 

from the weapon to the target since this makes the causal link all too evident. The firing of 
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the enemy (target) orc produced explosions in the target region. The participants’ task was 

to protect the building at each region by destroying the orc that was causing the explosions, 

shooting it with their own crossbow. Essentially then, the task can be summarized as 

deciding which of three candidate causes (orcs) was producing an effect (explosions).  

The key manipulation of interest was the extent and variability of the delay between 

the cause (target orc firing its weapon) and the effect (explosions). This was varied across 

game regions (along with presence or absence of auditory fillers during the delay). At each 

region, the firing of the orcs’ weapons was governed by an underlying trial structure, with 

each orc firing its weapon once during each trial. The trials were of 4s duration, with each 

orc firing at a random point during the first 3s of the 4s trial. The timing of the effect 

meanwhile was not linked to the trial structure; rather, the effect followed the true cause 

according to the programmed cause-effect delay. Game level 1 contained no delays and was 

used to orient the participants to the game environment. In subsequent levels, Young and 

Nguyen employed delays of 0.5s, 1s and 2s, which at a given region could be fixed or could 

vary from trial to trial by up to either 25% or 50% of the nominal delay. In experiment 1, 

delay varied within levels while variability was constant within a given level but varied 

across levels; the reverse arrangement was made for experiment 2. 

Contrary to the findings presented in Chapter 3 of this thesis, in Young and 

Nguyen’s experiments constancy of delay did not appear to provide an advantage, and in 

fact high variability sometimes led to an increased percentage of correct target selection. 

This suggests that participants’ ability to connect the effect with its true cause increased 

when the intervals separating them were variable. As well as being somewhat 

counterintuitive, this result is in direct conflict with those obtained thus far in this thesis, 

and therefore this warrants closer examination.  

It should be noted that the advantage for variability was considerably less robust 

and pervasive than the concurrent influence of delay extent, and curiously seemed to be 

restricted to male participants; variability had no significant influence on either accuracy or 

latency for females. It is also worth pointing out that Young and Nguyen’s task utilized a 

dependent measure unlike that in the instrumental studies in Chapter 3. Rather than 

providing a judgment of causal strength, participants instead were faced with a forced-

choice discrimination task, having to select the correct target from multiple causal 
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candidates. This is quite obviously different from the evaluation of a single cause-effect 

relation on the basis of repeated observations, and may well involve different cognitive 

mechanisms or reasoning processes. Nevertheless, if temporal predictability reinforces the 

idea of a genuine stable causal mechanism linking cause and effect, then if participants can 

recognize this, it should be a useful cue to choosing the correct target. Indeed, one might be 

particularly inclined to make such an assumption when considering the game context 

provided by Young and Nguyen, set in a realistic 3D environment comparable to a real-

world scenario. If participants assume that the same laws of physics present in our world 

applied to the game environment, then they should assume that a projectile being fired at a 

target should take the same time to reach that target when being fired repeatedly by the 

same weapon (assuming that wind speed and direction were constant). Much research 

exists that suggests such prior knowledge or experience can generalize to experimental 

tasks (Buehner & May, 2002,  2003, 2004; Einhorn & Hogarth, 1986; Waldmann, 1996). 

Such mechanism considerations would seem to predispose Young and Nguyen’s 

participants to expect temporal predictability. The failure to find such an advantage for 

fixed intervals in either of Young and Nguyen’s experiment thus poses difficulty for the 

predictability hypothesis. The discrepancy between these results and those presented in 

Chapter 3 clearly warrants further exploration. 

4.3.1 An alternative to the predictability hypothesis –  The temporal proximity account  

One of the difficulties involving causal learning with delays is that competing 

agents can come between the cause and the outcome. This is particularly true in a task such 

as this, involving choice between multiple identical causal candidates, since the foils can be 

more contiguous with the effect than the true cause. The corollary of this is that incorrect 

selection of a foil as the target may arise from an coincidental instance of the foil being 

contiguous with the effect. The longer the delay, the more likely this is to occur, and this is 

particularly true for a constant, high-delay causal candidate: Whilst for a variable- long-

delay, there is the possibility on any given trial that there may be a contiguous pairing of 

the cause and effect, this cannot occur with fixed- long-delays. Young and Nguyen (2009) 

were aware of these complication; in running Monte Carlo simulations prior to the 

experiment, they discovered that “highly variable long delays produced a larger number of 

experiences of the true cause being more contiguous to the effect whereas consistent long 
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delays produced more experiences of one of the foils being more contiguous” (p.300). If 

participants tend to select as the target the candidate that is most often proximal to the 

effect, then this will result in a greater number of errors in a fixed- long-delay condition. 

Their results suggest this may well have been the case, with correct identification of the 

target for fixed-high-delay causal candidates falling as low as under 20%. According to 

such an interpretation, it is not variability per se that is facilitatory, but rather the occasional 

contiguous pairing that variability permits. 

Yet, despite identifying this potential issue prior to conducting their experiments 

and predicting this effect of variability, Young and Nguyen (2009) still describe this finding 

as paradoxical. This is understandable since Young and colleagues were in fact the initial 

proponents of the temporal predictability hypothesis (Young et al., 2005), according to 

which consistent delays are indicative of a genuine mechanism connecting cause and effect. 

Young and Nguyen’s participants however failed to make use of such information, in 

violation of this hypothesis, and instead apparently selected as the target the candidate that 

was most often  contiguous with the effect. Here then, there is apparently a shift in 

emphasis between temporal cues, from predictability to contiguity. 

The simple associative model describing the decline of associative strength with 

delay as a negatively accelerated function (Figure 2.1) is consistent with and would predict 

this behaviour since according to this model, associative strength (and thus impression of 

causality) would be most boosted by experience of a contiguous cause-effect pairing. And it 

is indeed the case, as the simulations revealed, that variability produces more instances of 

the cause being contiguous with the effect, with a greater degree of variability creating a 

greater likelihood of contiguous cause-effect pairings. But given that the same is true in 

elemental causal induction, why was predictability consistently favoured over variability in 

the experiments in the preceding chapter? Evidently, valid accounts can be constructed to 

explain facilitatory effects of both predictability and variability; what is unclear is why 

there appears to be a shift from on to the other depending on the task. It is not the case that 

predictability is simply more important than contiguity in elemental causal induction, since 

effect sizes obtained for contiguity in the previous chapter were consistently larger than 

those for predictability. There must then be other reasons why interval regularity failed to 

produce the same effects in Young and Nguyen’s study.  
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4.3.2 The video game context 

Perhaps the most  prominent difference between my studies and the paradigm 

employed by Young and Nguyen (2009) is the context. The video game presents 

participants with a virtual world, a highly detailed and involving environment. Young and 

Nguyen argued, justifiably, that such scenarios are more representative of real-world causal 

learning tasks where information will have to be filtered from the rich sensory input 

available, placing high demands upon organisms’ cognitive resources. However as a 

consequence, much of the empirical evidence may have been less salient and more difficult 

to detect, with many other stimuli to divert attention. In the experiments presented in the 

previous chapter, the visual stimuli were simple and there were no alternative behavioural 

opportunities besides actively investigating the causal link. In contrast, Young and 

Nguyen’s study ceded a great deal of control to the participant, allowing them to freely 

explore the virtual world, and choosing from what distance and what angle to view the 

relevant events. As a consequence, participants may have been engrossed in simply 

navigating the environment and had their attention drawn by other visual features. In 

addition, another layer of complexity was added through of auditory stimuli filling the 

delay interval. Young and Nguyen acknowledge that “the consistency of the delays was 

likely less evident within our complex dynamic environment” (p.309). The question thus 

arises as to whether the rich detail of the video game captured attention to the extent that 

participants were simply unable to recognize interval constancy. Young and Nguyen’s aim 

in providing this complex context was to more closely mirror the richness of the world 

within which we make our everyday causal inferences, and thus improve ecological 

validity. While such a goal is laudable, it may well be that a more traditional, tightly-

controlled experimental approach is more useful in eliciting the precise role of a more 

subtle causal cue such as temporal predictability, before moving forward to see how 

complex dynamic environments may alter the influences of such temporal factors.  

 

4.4 Experiment 4A 

Accordingly, the goal of the next experiment was to construct an analogue of Young 

and Nguyen’s experiment, using a straightforward preparation with simple stimuli. By 

doing so, the potential diversion of exploring the 3D virtual world would be eliminated, 
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which would then hopefully allow participants to focus specifically on the relevant events. 

By devoting greater attention to the candidate causes and effects, the temporal relations 

between these events should become more apparent to participants. At the same time, any 

effects of prior knowledge or experience that participants may have brought to bear in the 

realistic scenario provided by the first-person-shooter game would be eliminated. To this 

end, the essential features of Young and Nguyen’s task in terms of the timing of stimulus 

delivery were retained and recast in a simple experimental protocol using abstract stimuli, 

more closely resembling standard contingency judgement problems such as those of Reed 

(1992), Shanks et al. (1989) and Wasserman et al. (1983). Participants were presented with 

a triangle in the upper portion of the screen, as per the experiments in Chapter 2, and below 

this were situated three buttons, in similar arrangement to the ‘orcs’ in Young and 

Nguyen’s task. Alongside each button was a pointing hand, which periodically moved and 

depressed the button, which constituted an instance of a candidate cause. Thus, as in Young 

and Nguyen’s task, participants took no instrumental action themselves in generating the 

button-presses. Instead, the administration of the candidate causes was governed by the 

same underlying trial structure with each candidate cause occurring at a random point 

within the first 3s of each 4s trial. The triangle illuminated contingent upon one of the 

buttons being pressed, with the other two buttons being foils. The interval separating cause 

and effect was determined using the same programmed delays and delay variability as for 

Young and Nguyen’s task. Buttons were labelled 1, 2 and 3 from left to right, and the 

position of the true cause on each condition was randomized on each condition. 

Participants thus had only to focus on the timing of the candidate causes and the 

effect, and were free from the potential distractions of the complex environment. 

Consequently it was hoped that where constancy of delay between cause and effect existed, 

that this would become evident to the participants. Results should then reveal whether such 

information was beneficial to participants in terms of the accuracy and rapidity of their 

choice of causal candidate, or whether they instead tended to prefer the occasional 

contiguous pairing of cause and effect licensed by interval variability.  
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4.4.1 Predictions 

Detrimental effects of delay are a well-established finding in the learning literature 

and delays should thus make the identification of the correct causal candidate more 

difficult; hence it was expected that increasing delays would increase error rate and latency. 

The impact of whether delays are predictable or variable was rather more difficult to 

forecast, since viable accounts for facilitatory effects of both predictability and variability 

have been mooted. While the simplistic adaptation of Young and Nguyen’s (2009) causal 

decision making task should mean that the temporal distribution of events is more salient, 

whether such information will in fact aid the decision process in a task such as this is, as 

yet, uncertain. However based on the results of the previous chapter, coupled with the 

simplification of the task, a facilitatory effect of predictability was anticipated. 

4.4.2 Speed-Accuracy Tradeoff 

There remains, in a task of this nature, a further potential relationship that 

surprisingly was overlooked by Young and Nguyen (2009); that between the two dependent 

measures, sampling time and accuracy. It is a widely-known and longstanding finding in 

the psychological domain that a relationship often exists between the speed and the 

accuracy with which a task is performed or a decision is reached (Garrett, 1922; Schouten 

& Bekker, 1967). From an adaptive perspective, it is advantageous for such behaviours to 

be executed as rapidly and accurately as possible (Chittka, Skorupski, & Raine, 2009). 

Typically however, speed and accuracy tend to be inversely related such that the faster a 

response is made, the less accurate that response tends to be. In a decision-making task, 

accumulating more information can increase the likelihood of an correct decision, though at 

the cost of the additional time required to do so. A balance must therefore be struck 

between competing demands; speed may be sacrificed for accuracy, or accuracy for speed, 

depending on what the circumstances call for. This compromise is commonly referred to as 

the speed-accuracy tradeoff (SAT) (Wickelgren, 1977).  

Much effort has been devoted to the development of both normative theories of 

optimal decision making (e.g. Bogacz, 2007) and models that reflect the actual behavioural 

preferences of organisms (e.g. Zacksenhouse, Bogacz, & Holmes, 2010). The precise 

function linking speed and accuracy may differ between behaviours (Wood & Jennings, 

1976) and the SAT does not always manifest in all types of learning situations (Busemeyer, 
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1985; Leek, Reppa & Arguin, 2005; for an overview, see Busemeyer, 1993). Nevertheless 

the SAT is a pervasive phenomenon found in a diverse range of behaviours in humans and 

other organisms, including motor performance and aiming movements (Hancock & Newell, 

1985; Keele, 1968); olfactory discrimination (Uchida & Mainen, 2003); recognition 

memory (Reed, 1973); and foraging (Burns, 2005). One paradigm in which the SAT is 

particularly well-established is the two-alternative forced-choice decision task (Bogacz, 

Brown, Moehlis, Holmes, & Cohen, 2006; Herrnstein, 1961). In such a task, where in terms 

of accuracy one can only be correct or incorrect on a single given choice, one must then ask 

oneself, “how much time is an error worth?” (Pew, 1969, p.16). Since the current task can 

be certainly be characterised as a forced choice discrimination task (although obviously 

with three alternatives), it seems highly plausible that an SAT may be exhibited here. 

Therefore in addition to the potential effects of manipulating delay and variability on 

accuracy, accuracy may also be influenced by sampling time. While of course sampling 

time is itself a dependent measure, and may therefore be affected by the controlled factors, 

an independent influence of sampling time on accuracy may also be exerted. Analysis of 

the current experiment therefore needs to take this into account.  

4.4.3 Method 

4.4.3.1 Participants and Apparatus 

40 psychology students (24 females, 16 males) based at Cardiff University 

completed the experiment either voluntarily or to receive partial course credit. Due to 

experimenter error, one participant received incorrect materials, and one further participant 

self-reported as completely misunderstanding the experiment. Data was disregarded in both 

cases, thus a total of 38 participants contributed data to the analysis. 

The experiment was conducted in either a single person testing booth, or in a small 

computer lab, where individual workstations were screened off from one another using 

partitions. The Python programming language was used to create and deliver the 

experiment, using PCs running Microsoft Windows XP. Size, shape and speed of stimulus 

delivery was consistent across computers. 
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4.4.3.3 Design and Materials 

The independent factors delay extent and delay variability were combined in a fully 

within-subjects design. Each factor had three levels; 500ms, 1000 ms and 2000ms for delay 

extent (programmed mean values), and none (0%), low (25%) and high (50%) for delay 

variability, combining to give nine experimental conditions all of which were experienced 

by each participant. I also included one additional condition involving no delays as an 

initial practice trial, however this condition did not contribute to the results. Conditions 

were not blocked by delay or by variability; instead, the order of which condition was 

presented first was counterbalanced across participants, with the remaining conditions 

presented in random order. The dependent measures were accuracy, coded as either 1 or 0 

depending on whether or not the participant selected the correct target, and the sampling 

time taken to reach this decision. 

The paradigm was a straightforward adaptation of Young and Nguyen’s video 

game, taking the essential principles of stimulus delivery from this task, and re-situating it 

in a simple context more closely resembling traditional contingency judgment paradigms 

(Reed, 1992; Shanks et al. 1989; Wasserman et al., 1983). The basic layout on screen 

consisted of an outline of a triangle, and beneath this, three red buttons, arranged 

equidistant from each other along the horizontal and labelled as 1, 2 and 3 from left to right. 

Each button initially appeared in the ‘unpressed’ state, with a raised appearance and 

coloured in a dark and desaturated shade of red. Alongside each button was an image of a 

pointing finger. When a cause was scheduled, the finger moved directly on top of the 

button, which then simultaneously ‘depressed’ (took on a sunken appearance) and 

‘illuminated’ (turned a brighter, more saturated shade of red) thus effectively creating the 

impression that the finger had pressed the button. The effect consisted of the triangle 

flashing for 250ms as in previous experiments.  

The true cause was deterministic (always produced the effect) and the position of 

the true cause was randomized across conditions. The delay between the true cause and the 

effect on any given trial was a function of the two independent variables delay extent and 

delay variability. For example, while the delay on the 500ms/0% condition was always 

500ms, the interval on a 2000ms/50% condition could vary anywhere between 1000ms and 
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3000ms. Intervals were sampled from within the specified range according to a uniform 

probability distribution; in other words all delays were equally probable.   

In governing stimulus delivery, an underlying trial structure was used in the same 

manner as for Young and Nguyen’s experiments, with the timeline divided into 4s 

segments. Trials ran seamlessly from one into the next; as one trial ended the next trial 

began immediately with no inter-trial interval. Trial structure was therefore not explicitly 

signalled to participants. All the candidate causes (button presses) occurred during the first 

3s of each 4s segment, randomly distributed within this 3s. The effect then followed its true 

cause with the specified delay. The timing of the effect was thus not anchored to the trial 

structure, as in other trial-based experiments such as Wasserman et al. (1983); only the 

timing of the causes was dictated by this structure. This meant that on occasion, the effect 

would not actually occur before a new trial began, and that it could ‘spill over’ into the next 

trial. For instance, the latest that a cause could occur would be 3s into the 4s trial, while 

delays could range up to 3s (which is the maximum possible in the 50%-variability long-

delay condition). Thus, the effect could occur as late as 6s after the start of one trial, which 

would in fact be 2s into the following trial, and therefore possibly follow instances of the 

cause from that next trial. This of course destroys the deterministic nature of the cause; 

objectively, there will be no effects on some trials and more than one on others. While this 

might be a potential source of confusion for participants, stimulus delivery was intended to 

be as faithful as possible to Young and Nguyen’s original paradigm, so this trial structure 

was retained.  

4.4.3.4 Procedure 

Participants were instructed that their task was to identify, in each condition, the 

button which they felt was the most likely to be causing the triangle to illuminate. It was 

made clear to participants that the buttons themselves would automatically be pressed by 

the pointing hands as the condition progressed and that no direct responses (besides 

selecting their choice) were required. Rather, they simply had to observe the sequences of 

events taking place on the computer screen, which would continue until they were ready to 

make their choice. Thus, they were in control of how much information to sample, and 

were free to take as much or as little time as they wanted in each condition, though still 

trying to make the correct choice in each case.  
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Figure 4.1: Screen shot of the stimuli used in Experiments 5A and 5B.  

 

In similar fashion to Young and Nguyen (2009), who used the first game level as an 

orienting phase with no delays, I gave participants a practice condition likewise involving 

no delays so that they could familiarize themselves with the stimulus arrangement and task 

demands. As discussed earlier, prior experience can bias participant expectation and 

dramatically modulate the influence of factors such as delay (Buehner & May, 2003). It 

was therefore anticipated that this practice trial might well bias participants to expect 

contiguity and thereby reduce tolerance to delays. However since Young and Nguyen did 

not raise this as a methodological concern, it was decided that the benefit of providing a 

practice trial outweighed the potential costs, given that the task is that much more complex 

than the traditional contingency judgment paradigm. On completing this practice phase, 

participants were informed that the next few tasks might be more difficult and then 

proceeded to the first experimental condition. Participants were instructed that once they 

were ready to make their decision, they could press the corresponding key on the keyboard 

(1, 2 or 3) to select the respective button. The trial sequence terminated immediately when 

a target was selected with the appropriate keyboard press. Participants were given explicit 

feedback informing them whether their choice was correct or incorrect immediately 

following their response, and could then proceed directly to the next condition.  
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The program recorded which of the buttons was selected, whether this choice was 

correct, and the time taken to make this choice from the beginning of the condition, thus 

providing the dependent measures. Young and Nguyen also took into account the gender of 

their participants and their previous experience with video games, since these were 

identified as factors that could influence task performance. However since the adapted 

paradigm used here is less like a game and more closely resembles standard causal 

judgement paradigms, amount of prior gaming experience was not solicited from 

participants in the current experiment, nor were gender differences analysed. The 

relationship between the two dependent measures was however examined to determine the 

presence of a speed-accuracy tradeoff. 

4.4.4 Results 

It is worth taking a moment here to provide a brief overview of the results section, 

since the novel paradigm posed a considerable challenge in terms of deciding on 

appropriate methods for analysis. Young and Nguyen (2009) originally used repeated-

measures ANOVAs to examine the effects of delay and variability on both accuracy and 

latency. Since latency is a continuous variable, an ANOVA is an appropriate choice of 

analysis in this case. However, given that the dependent variable accuracy is dichotomous, 

the assumptions of an ANOVA here are violated, and a binary logistic regression instead 

seems more apt. However, this method assumes that each individual case (or participant) 

contributes only one score, an assumption violated by the repeated measures design of the 

current experiment. Subsequent studies by Young and colleagues using the same paradigm 

went on to use linear mixed effects models in place of the ANOVA, while the methods for 

performing repeated measures logistic regression suggested by Lorch and Myers (1990) 

were also considered as an option. However the most appropriate analysis instead seemed 

to be the use of a generalized linear model, specifying subject as a repeated measures 

variable, while using binomial error distribution and a logit link function to address the 

binary dependent variable accuracy. This permitted not only the modelling of the 

independent variables delay and variability as predictors, but also the dependent variable 

latency as a covariate of accuracy. Young and colleagues ignored this potential relationship, 

and while the speed-accuracy relationship is only of tangential interest to the topic of 

predictability that is the focus of this thesis, I considered that to adequately and fully 
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describe the relationship between the variables that this needed to be taken into account. 

Hence, although the accuracy of participant choices might be the most interesting result in 

this experiment, in order to determine which predictors should enter into the model, it was 

first necessary to interpret the relationship between variables. Thus, an analysis of the 

speed-accuracy relationship shall be presented first, followed by an analysis of the effects 

of delay and variability on latency, before proceeding to examine the potential predictive 

influence of delay, variability and latency on accuracy.  

4.4.4.1 Speed-Accuracy Tradeoff 

Each participant contributed a score for accuracy and latency in each of the nine 

experimental conditions. In terms of overall performance, the total percentage of correct 

responses across all participants and conditions was 62.6%, with a mean sampling time of 

15.9s. Sampling times were, as is typical of such experiments, positively skewed, so were 

log-transformed to normalize the distribution for subsequent analyses.  

For each participant, mean accuracy (percentage of correct choices) and mean log 

sampling time across all nine conditions were calculated. A positive correlation was found 

between sampling time and accuracy, r = 0.426, n = 38, p < .01, such that participants who 

spent a longer time on average sampling information made fewer erroneous choices. Figure 

4.1 summarizes this relationship showing mean accuracy as a function of mean sampling 

time. This is indicative of a speed-accuracy tradeoff, at least in terms of individual 

performance. To avoid any confusion, it is as well to note that latency and speed are 

antonyms; therefore here, since accuracy is positively correlated with latency, there is a 

negative correlation between accuracy and speed. 

To confirm the presence of the speed-accuracy tradeoff on a more general level, a 

repeated-measures binomial logistic regression was performed (since accuracy was coded 

as a dichotomous variable) for all scores across participants and conditions. Overall, 

sampling time was not a significant predictor of accuracy β = 0.288 , SE = 0.164, Wald χ2 

= 3.075, p = .08. However, decision difficulty can modulate the speed-accuracy tradeoff 

(Pleskac & Busemeyer, 2010; Ratcliff & Rouder, 1998) and therefore separate analyses 

were performed at each level of delay. While for delays of 0.5s, accuracy was not 

significantly predicted by sampling time, β = 0.121 , SE = 0.466, Wald χ2 = 0.067, p = 

0.795, sampling time was a positive predictor of accuracy with delays of both 1s, β  = 0.791 



 

 

101 

, SE = 0.325, Wald χ2 = 5.936, p < .05, and 2s, β = 0.749 , SE = 0.237, Wald χ2 = 9.975, p 

< .005. Sampling time should therefore be considered as a predictor in the regression model 

for accuracy. 
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Figure 4.1: Scatter plot showing participants’ mean percentage accuracy as a function of 

their mean log sampling time across all nine conditions in Experiment 5A. 

 

4.4.4.2 Sampling Time 

Since the presence of the SAT indicates that sampling time may exert an influence 

on accuracy independent of the controlled variables, it seems sensible to first analyse the 

effect of the controlled factors on sampling time ahead of accuracy. Mean log sampling 

times for each of the nine experimental conditions are shown as a function of delay and 

variability in Figure 4.2. The distribution of scores suggests that longer delays resulted in 

longer latencies, while the effect of variability is more difficult to discern. A 3×3 repeated 

measures ANOVA confirmed the main effect of delay as significant, F(2,74) = 24.52, MSE 

= 0.191, ηp
2 = .399, p < .0005. Planned orthogonal Bonferroni-corrected pairwise 

comparisons found that sampling times with delays of 2s (M = 2.773, SD = 0.737) were 

significantly longer than those at both 1s (M = 2.440, SD = 0.665), t(113) = 5.576, p < .001, 

and at 0.5s (M = 2.406, SD = 0.586), t(113)  = 6.039, p < .001, which in turn did not differ 

significantly from one another, t(113) = 0.592, p = .555. No significant effect of variability 
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was found on sampling time, F(2,74) = 1.947, MSE = 0.171, p = .150; nor was there a 

significant interaction between delay extent and variability, F(2,74) = 1.179, MSE = 0.204, 

p = .322. 

 

 

Figure 4.2: Mean log sampling time as a function of interval variability for all nine 

conditions in Experiment 5A. Different symbol and line styles denote different mean 

delays. Error bars show standard errors. 

 

4.4.4.3 Accuracy 

To analyse the effects of the independent factors on accuracy, SPSS™ was used to 

fit a range of generalized linear models to the data, specifying a binomial error distribution 

with a logit link function. As mentioned earlier in the prologue to the current experiment, in 

order to correctly interpret these effects, it is crucial to identify the best-fitting model, 

including any potential interaction between the dependent measures themselves. The 

presence of the speed-accuracy tradeoff suggests that latency may indeed be a predictor of 

accuracy independently of the influence of the controlled variables. Latency was thus 

included as a covariate in the regression model. Figure 4.3 depicts a potential model for the 

relationships between the variables in the experiment. The best fitting model was assessed 



 

 

103 

according to the quasi likelihood under independence model criterion (QIC; Pan, 2001). 

Each of the fixed-effects factors, covariates and their interactions were systematically 

included or excluded until the best model was identified. 

 

 

Figure 4.3: Hypothetical causal model of the independent and dependent variables in 

Experiment 5A. Nodes represent variable and arrows represent causal influence.  

 

Each of the fixed-effects factors, covariates and their interactions were 

systematically included or excluded until the best model was identified. The best model 

included the intercept with delay and sampling time as fixed effects and no factorial 

interaction: Accuracy ~ delay + logRT. Variability was not included as factor in the best 

fitting model. In the best model including variability, its influence was not significant, 

Wald χ2 = 0.139, p = .933. Variability therefore did not contribute to predicting differences 

in accuracy. Delay had a strongly negative predictive effect on accuracy, Wald χ2 = 47.64, 

p < .001, while sampling time was a positive predictor, Wald χ2 = 10.18, p < .005.  

It is also perhaps worth noting here that an ANOVA performed on the data, 

although an inappropriate choice of analysis, likewise reveals precisely the same results 

with respect to the independent variables, that is, a significant main effect of delay and no 

significant effect of variability. 
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Figure 4.4: Mean percentage accuracy as a function of delay variability for all nine 

conditions in Experiment 5A. Different symbol and line style refer to different mean 

delays. Error bars are omitted due to the dichotomous nature of the dependent measure. 

 

4.4.5 Discussion 

The results confirm that introducing a delay between the cause and effect made the 

task of identifying the true cause more difficult. Delay extent was a potent predictor of both 

sampling time and choice accuracy, with longer delays resulting in longer latencies and 

lower accuracies. This finding replicates that of Young and Nguyen (2009) and is 

consistent with the effects of temporal delays throughout the learning literature. In addition, 

evidence for a speed-accuracy tradeoff was obtained, with longer decision times tending to 

reduce error frequency, consistent with the bulk of existing research on decision making. 

This was particularly notable in light of the fact that longer sampling times and lower 

accuracy were both common effects of increasing delays, meaning accuracy and latency 

were predisposed to be negatively rather than positively correlated with one another. The 

effect of interval variability meanwhile was negligible on either accuracy or latency. The 

key determinant of difficulty therefore appeared to be overall contiguity; whether this was 

imperfect or constant across trials was of little consequence. I did not, therefore, replicate 
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the facilitatory effect of variability from Young and Nguyen’s study. At the same time, I 

also failed to replicate the facilitatory effects of predictability from the preceding chapter. 

This does not readily lend support to the predictability hypothesis.  

An explanation for Young and Nguyen’s (2009) results has already been outlined in 

terms of participants selecting their target based on sporadic instances of cause-effect 

contiguity licensed by variability. Meanwhile in Chapter 3 where opposing results were 

obtained, a potential explanation for a top-down facilitatory effect of predictability was 

forwarded in terms of providing a impression of a consistent causal mechanism. Why then 

in the current task are participants apparently failing to make use of either potential cue?  

In the original  experiment of Young and Nguyen (2009), it was considered that 

temporal regularities might  be overshadowed by the complex dynamic environment that 

the video game setting provided. The goal of the current experiment was to remove the 

distraction provided by extraneous stimuli in such an environment and thus allow 

participants to make full use of the available cues in terms of temporal distributions of 

events. On the one hand it seems at first glance that this aim was unsuccessful, since no 

facilitatory effect of predictability manifested. On the other hand, the advantage for 

variability that Young and Nguyen reported was no longer present. If two potential 

strategies by which learners reach a decision may be postulated – either selecting based on 

occasional contiguous cause-effect pairings and thus preferring variability, or instead 

recognizing a consistent temporal interval as evidence for a causal mechanism and thus 

preferring predictability – then use of these strategies equally between participants, will 

have the overall effect of cancelling each other out. The results of the current experiment 

could therefore be interpreted as a shift in the number of participants adopting the latter 

strategy over the former (compared to Young and Nguyen’s paradigm), though with neither 

strategy being dominant. Such a suggestion must be treated with caution however. While 

Young and Nguyen’s results provide some evidence that participants might be adopting the 

former strategy, there is not yet evidence that other participants might be adopting the latter 

strategy, at least not on this particular task; hence this account cannot yet be validated. 

Moving beyond such speculation then, there remain more solid explanations for the lack of 

a facilitatory effect of predictability that can be addressed experimentally, and which shall 

now be discussed. 
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In order for temporal predictability to facilitate causal induction in the top-down 

manner suggested by cognitive accounts, then constancy of temporal interval must first be 

detected. A participant will need to experience a number of cause-effect pairings before it 

can be recognized that delays are consistent. This is particularly true where there are more 

than one causal candidates involved, as each must be focused on separately. If only small 

samples are taken then interval constancy might not even be recognized and therefore 

cannot act as a cue to causality. While in Experiment 3 no overall effect of increasing the 

duration of conditions was found, participants still had a minimum of two minutes 

exploration time, with a mean response rate of 20 per minute across conditions and 

participants. This would presumably give the participants enough evidence to recognize the 

constancy of the temporal interval if such constancy was present. Furthermore, while there 

is no direct motivation for participants to respond, the fixed sampling time and lack of 

alternative behavioural opportunities may have prompted participants to occupy themselves 

by actively investigating the causal link rather than just sitting there doing nothing. 

In contrast, in Young and Nguyen’s (2009) task, participants were free to navigate 

the environment with apparently no restriction on the minimum amount of observation time 

and information sampling they had to undergo prior to selecting a target. Decision making 

may therefore have been on the basis of fairly sparse data. Young and Nguyen 

acknowledged that players “were not motivated to obtain large observation samples” 

(p.309). Sampling times in the current study were likewise self-truncated. No instruction 

was given regarding recommended minimum observation time; control of this parameter 

was ceded completely to participants. There was also no incentive (besides getting the 

answer correct) for participants to increase the amount of information sampled, and no 

penalty was applied for incorrect responses (besides the feedback that the choice was 

incorrect), so there was no deterrent from making hasty decisions. It should come as little 

surprise then that the overall mean decision time was just 15.9s which is less than four trials 

sampled per condition. It seems very unlikely that participants could have identified a 

consistent temporal interval from such limited data; perhaps therefore it is to be expected 

that predictability should make such little difference in a task such as this.  

The difficulty in perceiving predictability is further compounded by the presence of 

multiple alternative causes. While one might feasibly notice over the course of four trials 
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that a single cause produces its effect following a constant delay, this would be next to 

impossible with three causal candidates all competing for attention over such a short space 

of time. Participants would need to be able to isolate individual causal candidates (focusing 

on one at a time while ignoring the others) in order to recognize interval constancy, which 

in itself is a challenging task that would likely require extended observation. Furthermore, 

with the potential for foils to come between the cause and the effect, some intervals might 

contain intervening stimuli while others might be unfilled. This may disrupt subjective 

perception of the interval (Grondin, 1993; Rammsayer & Lima, 1991) making the task of 

identifying predictably doubly difficult. 

As well as the self- truncated sampling times providing an obstacle for the detection 

of predictability, this may also predispose participants to making a greater number of errors 

with fixed delays. A small number of participants made very rapid decisions after observing 

just a solitary effect. Presumably, under such limited evidence, they selected that causal 

candidate that was most temporally proximal to the effect on that particular trial. It is 

unlikely, particularly in the case of long fixed delays, that the correct target will be selected 

via such a strategy. As already stated, there is a greater likelihood, on a given trial, that a 

foil will be more contiguous with the effect than the true cause under fixed compared to 

variable delays. If an observer experiences a contiguous foil early on and is particularly 

“trigger-happy” they may incorrectly select this as the target. The frequency with which 

such errors are made will be exacerbated with long fixed delays since the true cause would 

always be temporally separated from its effect (while this is not necessarily guaranteed with 

variability). Thus, quicker responses will tend to result in more errors for fixed delays. 

Research suggests that such impulsive choice is often more likely in males than in females 

(Claes, Vertommen, & Braspenning, 2000; D'Zurilla, Maydeu-Olivares, & Kant, 1998) 

which would account for the pattern of results obtained by Young and Nguyen where males 

made considerably more errors than females under fixed 2s delays. The opposite was 

however true in the current experiment, where males outperformed females under fixed 2s 

delays with 44% correct choices compared to 27%, which might to some extent account for 

the failure to replicate Young and Nguyen’s (2009) advantage for variability. 
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Clearly, the small samples that arose from self-truncation of observation times can 

potentially have a significant bearing on the results with regard to the effect of 

predictability. Different findings may well have been obtained had learners been given 

sampling opportunities of a pre-determined duration (as they were in the experiments in 

Chapter 2) and experienced more pairings of cause and effect. Thus, the following 

experiment aimed to increase the amount of information sampled by participants. The most 

obvious means of doing so would be to introduce a fixed number of trials or a minimum 

observation time, forcing participants to experience a given amount of information. 

Additionally, a disincentive for making impulsive decisions could be provided by 

introducing a penalty for incorrect choices.  

 

4.5 Experiment 5B 

Having failed to discern conclusive evidence from this experiment regarding the 

influence of predictability in observational causal decision-making, the data and paradigm 

were examined more closely in an attempt to ascertain why this might be the case. The 

apparent difficulty is that participants are generally not allowing themselves enough 

sampling time, and thus experience with the cause-effect relation, in order to actually detect 

interval constancy. As a consequence, predictability cannot act as a cue. In order for the 

paradigm to be a useful tool for probing the effects of predictability, suitable modifications 

are called for that can prompt participants to observe larger samples and increase sensitivity 

to temporal information.  

One element of the experimental design overlooked in the first replication was that 

Young and Nguyen’s (2009) task required participants to make eight successive shots to 

successfully destroy the target in each case. Such an increase in response requirement in 

turn increases the time cost of making an incorrect target selection, and should accordingly 

prompt participants to extend sampling time and improve the likelihood of a correct choice. 

However, because my adaptation of the paradigm took participants away from the first-

person-shooter environment, it did not really make any sense to ask them to select the target 

eight consecutive times before their decision registered. Instead, a ten-second time penalty 

for an incorrect target selection was added to the experiment. This should provide an 

incentive for participants to exercise more restraint and make sufficient observations to give 
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them a reasonable chance of making the correct response, since presumably participants 

will not want their time to be occupied by the experiment any longer than necessary.  

In order for the paradigm to be receptive to the effects of predictability, participants 

also need to be prevented from making a decision based on the first trial they experience. 

The feature of temporal predictability based on constancy of interval requires experience of 

more than one cause-effect pairing, in order that intervals may be compared. Predictability 

therefore cannot possibly be perceived on the basis of a single trial. To address this, a 

minimum observation period was introduced. Participants were prevented from making 

their selection until five trials had elapsed. After this point they were free to make their 

response whenever they wished; they could continue to observe the stream of evidence if so 

desired, or make their response immediately the opportunity became available. Both the 

time penalty and the minimum observation period were clearly and explicitly described to 

participants in the instructions. Through these alterations, it was anticipated that 

participants would observe more cause-effect instances and thus have more of an 

opportunity to recognize the consistency of the temporal interval between the true cause 

and the effect. 

4.5.1 Method 

4.5.1.1 Participants  

40 undergraduate psychology students from Cardiff University completed the 

experiment to receive course credit. Due to a program malfunction, two participants failed 

to experience all the experimental conditions and their data was thus disregarded, leaving a 

total of 38 participants contributing data to the analysis. 

4.5.1.2 Design  

The basic design was identical to the previous experiment, using the same 

independent and on-screen stimuli, with a few minor modifications to the procedure. 

Firstly, a ten-second time penalty for incorrect choices was applied. If a participant failed to 

select the correct target, explicit feedback was provided informing the participant that their 

choice was incorrect and that a time penalty of ten seconds would follow. The ‘continue’ 

button that allowed progression to the next condition did not appear until this time had 

elapsed. Secondly, a minimum observation period of five trials was introduced. Participants 

were informed that any response made before this point would be ineffective. The end of 
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this minimum period was signified by the appearance of three boxes labelled 1, 2 and 3, 

beneath the respective buttons, immediately following the fifth trial. These boxes could 

then be clicked on with the mouse to select the desired target. This represents one further 

small alteration from the first experiment in that participants now clicked an on-screen 

selection box to indicate their choice rather than pressing the corresponding key on the 

keyboard. Qualitative feedback provided in the previous experiment such as “I meant to 

press 3 but slipped and pressed 2 instead” suggested that accidental key presses may have 

contributed to erroneous selections. This modification made it less likely that participants 

would inadvertently press a different key than intended, since the button were situated 

fairly widely apart. It was emphasized in the instructions given that the appearance of the 

on-screen buttons was not a signal to respond and participants need not make their decision 

as soon as the opportunity became available, but could continue to observe for as long as 

they felt necessary to arrive at the correct decision.  

4.5.1.3 Apparatus & Materials 

All participants completed the experiment in the same small computer lab that was 

used in Experiment 5A, with the same apparatus and software. The program was a minor 

modification of the previous experiment as described above. 

4.5.1.4 Procedure 

The instructions given to participants were identical to those in the previous 

experiment with the addition of information pertaining to the changes made. Instructions 

thus informed participants that an incorrect selection would result in a ten-second time 

penalty before they could proceed to the next condition; that each condition had a minimum 

observation time during which they would be prevented from selecting the target; and that 

after this minimum time, numbered boxes would appear beneath the respective buttons, on 

which they could click to select their target. It was emphasized that the appearance of the 

boxes did not signal the end of the condition, and participants need not make their decision 

as soon as the opportunity became available; instead the event sequences would persist 

beyond this point and they could continue to observe for as long as they felt necessary to 

make an informed decision.  
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4.5.2 Results 

As for the previous study, each participant provided an accuracy and latency score 

in each of the nine conditions. Accuracy improved overall (81.3% correct target selection 

compared to 62.6% in Experiment 5A), t(653) = 5.560, p < .0005. Latencies were also 

significantly longer, increasing from 15.9s to 27.1s, t(682) = 14.821, p < .0005. 

Mean percentage accuracy and mean log sampling time across all nine conditions 

were again calculated for individual participants. In a remarkable reversal from the 

previous experiment, a strong negative correlation was found between sampling time and 

accuracy, r = −0.557, n = 38, p < 0.001. In other words, participants who sampled more 

information also made more incorrect choices. This is the inverse of the classic speed-

accuracy tradeoff that is typical of forced-choice discrimination tasks. The relationship is 

illustrated in Figure 4.5. 
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Figure 4.5: Scatter plot showing participants’ mean percentage accuracy as a function of 

their mean log sampling time across all nine conditions in Experiment 5B. 

 

Repeated-measures binomial logistic regressions confirmed the violation of the 

speed-accuracy tradeoff across participants. Latency was overall a negative predictor of 

accuracy, β  = −8.935, SE = 1.360, Wald χ2 = 43.17, p < .001, such that longer sampling 

time actually diminished the likelihood of a correct response. This pattern was consistent at 
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each level of delay; at 0.5s, β  = −27.53 , SE = 9.606, Wald χ2 = 8.106, p < .005, β   = 

−12.43 , SE = 2.614, Wald χ2 = 22.62, p < .001, and 2s, β =  −7.315, SE = 1.803, Wald χ2 = 

16.46, p < .001.  

4.5.2.1 Sampling Time 

Figure 4.6 shows mean log sampling times for each of the nine conditions. Longer 

latencies with increasing cause-effect delays is an immediately noticeable pattern, with 

little discernible effect of variability. These impressions were confirmed by a 3×3 repeated 

measures ANOVA, finding firstly a significant main effect of delay, F(2,74) = 66.89, MSE 

= 0.041, ηp
2 = .644, p < .001, but no significant effect of variability, F(2,74) = 1.632, MSE 

= 0.040, p = .203, nor a significant interaction, F(2,74) = 1.451, MSE = 0.049, p = .220. 

Bonferroni-corrected pairwise comparisons between levels of delay found that sampling 

times with delays of 2s (M = 3.435, SD = 0.288) were significantly longer than those at 

both 1s (M = 3.215, SD = 0.207), t(113) = 3.160, p < .005, which in turn were longer than 

those at 0.5s (M = 3.141, SD = 0.161), t(113)  = 7.649, p < .001, verifying that latencies 

increased with delay. 

 

Figure 4.6: Mean log sampling time as a function of interval variability for all nine 

conditions in Experiment 5B. Different symbol and line styles denote different mean 

delays.  
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4.5.2.2 Accuracy 

For the analysis of accuracy, the generalized linear model was again used to assess 

the best fitting model, systematically adding or eliminating factors until the lowest QIC was 

obtained. The best model included the intercept with delay, sampling and factorial 

combination of delay and sampling time as fixed effects: Accuracy ~ delay + logRT + 

delay * logRT. As for the previous experiment, variability was not a significant predictor of 

accuracy and was excluded from model. Delay entered into the expected negative 

predictive relationship with accuracy, Wald χ2 = 9.660, p < .01. In contrast to the previous 

experiment however, sampling time was a strongly negative predictor of accuracy, Wald χ2 

= 36.85, p < .001. Accuracy was also significantly predicted by the interaction of delay and 

sampling time, Wald χ2 = 9.006, p < .05. The nature of the interaction was such that at 

longer sampling times, accuracy was lower for longer delays than shorter delays.  

 

 

Figure 4.7: Mean percentage accuracy as a function of interval variability for all nine 

conditions in Experiment 5B. Different symbol and line styles denote different mean 

delays.  
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4.5.3 Discussion 

The key difference between this experiment and its predecessor were the 

manipulations to increase sampling time via an enforced observation period of 20s 

minimum and penalizing incorrect answers. The aim in doing so was to provide enough 

experience with the temporal interval in order that any facilitatory effect that interval 

regularity might contribute can actually be exerted.  

4.5.3.1 A Speed-Accuracy Violation 

A side-effect of these alterations that is immediately apparent on inspection of 

Figure 4.6 is that overall accuracy increased significantly from the previous experiment. 

This suggests that the additional sampling obtained from the extended observations enabled 

participants to make better, more informed choices. Paradoxically though, in terms of 

individual participant performance, longer latencies were actually accompanied by more 

errors. This is a complete reversal of the speed-accuracy tradeoff typically seen in decision-

making tasks relationship and that was in fact obtained in the previous experiment. Such a 

finding, while counterintuitive, is not unknown in the literature. Errors are sometimes 

slower than correct responses, mainly when the task is difficult and an emphasis is placed 

on accuracy (Ratcliff & Rouder, 1998; Swensson, 1972). However, the high level of overall 

accuracy attained in this experiment suggests that task difficulty is unlikely to be 

responsible for this violation of the SAT. An alternative candidate that immediately 

suggests itself is the effect of delays, which tended to both increase latency and reduce 

accuracy, thus naturally predisposing a negative relationship between the two. Yet, 

regression analysis revealed an independent influence of sampling time above and beyond 

that partialled out onto delay. To explain this finding then, it is worth briefly mentioning a 

number of contrasting accounts of decision-making that can encapsulate violations of the 

normal speed-accuracy relationship.  

In a controversial example, Fiedler and Kareev (2006) argued that small samples 

can result in more accurate choices since the high dispersion of a small sample distribution 

tends to amplify an existing population contingency. They also suggest that the relative 

advantage of small samples is most apparent when sampling is self- truncated, as was 

indeed the case here. Evans and Buehner (2011) meanwhile provide evidence favouring a 

reflection of the causal structure proposed by Fiedler and Kareev – that is, clear data can 
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create small samples, rather than small samples creating clear data. According to this view, 

sampling is ended when the correct choice becomes evident. At the same time, larger 

samples may incur mental fatigue, resulting in more errors. In addition, Busemeyer (1993) 

also suggests that the normal relation between speed and accuracy may be violated when 

discriminability between alternatives is low, which was also true of the current experiment. 

Applying such perspectives to these results, it would seem that decisions which 

were relatively easy were made quickly (once a response was permitted by the experiment). 

Meanwhile difficult decisions prompted longer deliberation, but the additional sampling 

was not sufficient to increase frequency of correct target selection, and these slower 

responses were still more likely to be incorrect. What then seems something of a mystery is 

how the manipulations, which extended sampling time, improved overall accuracy if 

sampling time and accuracy are negatively correlated? To address this, the data from the 

previous experiment was examined more closely. Across participants and conditions, nearly 

25% of all choices made occurred before two trials had completed, with accuracy for this 

subset below 50%, compared to over 66% for decisions made after two or more trials. This 

suggests that the lack of accuracy in the first experiment was largely attributable to 

impulsive or careless choices. Here, the introduction of a minimum sampling time 

eliminated the possibility of making such quick decisions. The change in the nature of the 

relationship between accuracy and latency from Experiment 5A to 5B, coupled with the 

overall increase in accuracy, thus demonstrates that this manipulation was effective in 

reducing the frequency of errors due to insufficient data.  

4.5.3.2 Failure to find support for predictability 

Although the modifications to the paradigm had a significant influence in terms of 

increasing overall accuracy, the additional sampling by participants did not appreciably 

change the influence of delay extent or variability. With regard to delay extent, the results 

largely echo those of the previous experiment. Longer delays tended to increase both error 

frequency and sampling time, with the longest delays of two seconds being most 

problematic. Differences between the two shorter delays were relatively minor. Effects of 

delay variability on both accuracy and latency were once again minimal. Though Figures 

4.6 and 4.7 suggest that low variability produced both greater accuracy and lower sampling 

times (suggesting that ease of decision was facilitated) than either no variability or high 
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variability, this was not a statistically significant finding. Once again then, I failed to obtain 

a facilitatory effect of either predictability or variability (although accuracy was slightly but 

not significantly higher for low-variability compared to no-variability). These results 

therefore provide support neither for the predictability hypothesis, nor the alternative 

argument that sporadic contiguity would make variability preferable. What does this mean 

in terms of the overall assessment of the predictability hypothesis?  

The collective failure to find an advantage for predictability, both in the two 

experiments presented thus far in this chapter and in those of Young and Nguyen, certainly 

present a difficult challenge for the temporal predictability hypothesis. The pessimist may 

be tempted to reject this theory outright. However before undue consternation at the extent 

to which these results undermine the predictability hypothesis, a number of important 

points should be taken into consideration. It is worth reminding ourselves that these 

experiments are all based on a novel paradigm that is markedly different from reliable 

standards such as the free operant procedure. As such, the suitability of this paradigm for 

assessing causal learning has not been established. The numerous ways in which this task 

differs from standard contingency judgments has already been pointed out earlier in the 

chapter in terms of the arrangement and delivery of stimuli, the required responses, and the 

dependent measures solicited. Further considerations shall now be addressed that raise 

additional queries over viability of this paradigm to assess the impact of temporal cues such 

as predictability.  

Firstly, it should be noted that although a minimum observation period was 

introduced, few participants extended their sampling for much longer than this required 

amount. Indeed, the overall mean sampling time across all participants and conditions was 

27.1s, which is less than two additional trials beyond the mandatory five. This remains in 

sharp contrast to the two minutes and twenty-or-so response-outcome pairings that were 

typical of the instrumental experiments in the previous chapter. While it is possible that 

predictability may have been recognized from seven cause-effect pairings, it is still a 

difficult task given that participants lacked the power to isolate individual causes or 

exercise any control over the timing of their occurrences. It is still therefore not necessarily 

a given that participants were in fact able to notice the constancy of temporal interval in the 

fixed delay conditions.  



 

 

117 

Yet despite this, the overall percentage of correct target selection rose sharply to 

over 80%. The additional 12s taken (on average) per condition was thus sufficient for an 

improvement of nearly 20% in accuracy. The implication is that had the minimum 

observation time been increased much further then accuracy may well have approached 

ceiling; differences between conditions would thus be negligible and the experiment would 

provide no meaningful data regarding the manipulated variables. Efforts to make 

predictability more apparent by further increasing sampling time beyond the restrictions 

imposed for this experiment would therefore likely be an exercise in futility. 

4.5.3.3 Temporal order violations may reveal the true cause 

Moreover, the longer that one observes these sequences of events in this particular 

arrangement, the more opportunities will become available for the causal relation to be 

“given away” by a single trial. To explain: One reason that this paradigm was selected as a 

probe for temporal predictability was because the influence of temporal cues was expected 

to be amplified. Given the deterministic  nature of the experiment – the true cause always 

produces the effect, and every trial always includes all three candidate causes – contingency 

between cause and effect ceases to be a useful cue. Temporal information is thus the only 

source of information that can be used to successfully rule out the foils and identify the true 

cause. However, the available temporal information may provide a more potent and 

fundamental indicator of causality than either contiguity or predictability – temporal order. 

Recall that the candidate causes may occur at any point within the first three seconds of the 

trial, and the occurrence of the effect is not tied to the end of the trial but can occur at any 

point. Consequently there is the possibility that on any given trial, the true cause may occur 

relatively early, and be followed by its effect, before either of the two foils have occurred. 

On a trial such as this, the true cause is immediately revealed as such, since the principle of 

temporal priority (that causes must precede their effects) rules out the other two candidates. 

The use of a trial structure, forcing all candidate causes to occur fairly closely together with 

one another in time, may to some extent alleviate this problem, as it prevents individual 

candidates from being isolated, but it does not eliminate it completely.  

Participants may well be capable of realizing that depending on the points at which 

the causes occur, some trials may be more useful and informative than others. As an 

obvious example, a trial when all causes coincidentally occur at the same time (at least on a 
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perceptual level) is of no use in distinguishing between them. Meanwhile a trial that rules 

out a foil as a potential cause through temporal order violations as described above 

represents the most useful configuration of events in terms of facilitating correct target 

identification. Participants may simply wait for a trial (or combination of trials) that reveals 

the true cause or makes the decision obvious (for instance one foil may be ruled out during 

one trial while the second is ruled out in another). In other words, the decision may be 

based neither on contiguity nor predictability.  

Contiguity does, however, greatly increase the likelihood of such an occurrence. For 

instance, consider a fixed delay of 0.5s. With trials of 3s length, if the true cause occurred 

during the first 1s (i.e. the first third) of the trial, the following two candidates would both 

need to occur after 1.5s or later (i.e. during the second half) to guarantee that the effect 

from the true cause preceded both of the foils. A probability estimate of this configuration 

is thus 1/3 * 1/2 * 1/2 = 1/12. If instead the delay was of 1s, the two candidates would need 

to occur after 2s or later (i.e. during the final third of the trial) if the true cause occurred 

during the first 1s, and the probability is then 1/33 = 1/27. Predictability meanwhile does 

not improve the likelihood of this configuration. In fact, the likelihood decreases 

exponentially with longer delays and so the overall likelihood is somewhat greater with 

variable delays (distributed evenly about a central point) than delays fixed at the same 

central point. This may be likened to the way in which variable delays may result in a 

greater net associative associated strength than fixed delays of equivalent mean duration 

(see Figure 2.1).  

Since such a potent indicator of causality may present itself in this kind of decision 

making task, it is small wonder that the variability of delay seemingly matters so little. It 

has already been noted that attempts to improve sensitivity of the paradigm to predictability 

by increasing number of observed pairings led to a sharp escalation of overall accuracy, 

leading to concerns that further such efforts may lead to performance becoming 

indistinguishable between conditions. Such concerns are now heightened, since as the time 

spent observing the event sequences progresses, so the occurrence of a temporal order 

violation by a foil becomes increasingly likely. presumably making it evident which is the 

true cause. It would thus seem that this paradigm is poorly suited to the investigation of 

how predictability shapes the inductive process.  
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4.5.3.4 Alternative Applications 

These concerns should not however detract from the considerable potential of this 

paradigm, which may have numerous other promising applications. In recent years there 

has been considerable interest in developing video games as learning and educational tools. 

Games are engaging and can motivate students to learn through entertainment (Kim, Park, 

& Baek, 2009). Research has suggested that games such as first-person shooters may confer 

genuine benefits in terms of general cognitive or behavioural performance, such as 

increasing reaction times and speed of action processing (Dye, Green, & Bavelier, 2009), 

and may even be applied as a tool in psychotherapy (Ceranoglu, 2010). Even aside from the 

obvious attraction of the video game, the task itself also represents a new variety of a causal 

decision-making problem with which various aspects of learning may be explored. Indeed, 

Young and colleagues have already adapted their paradigm to investigate how decision 

time and accuracy are affected by time pressure (Young, Sutherland, & Cole, 2011), 

number of options or causal candidates (Nguyen, Young, & Cole, 2010), and probabilistic 

rather than deterministic causes (Young, Sutherland, Cole, & Nguyen, 2011). Future work 

might wish to consider how performance on a task such as this might relate to individual 

traits such as need-for-cognition, ruminative style, or with scores on an impulsivity 

questionnaire such as Barratt’s Impulsivity Scale (Barratt & Patton, 1983; Patton, Stanford, 

& Barratt, 1995). 

4.5.3.5 “Back to Basics” 

A number of valid explanations have been advanced as to why predictability has 

failed to demonstrate an influence in this particular strand of learning tasks. The fact 

remains, however, that a lack of constant contiguity apparently does not preclude the 

correct identification of a cause from a series of prospective candidates. In a causal 

decision-making task of this nature, predictability is apparently not a feature that ‘makes or 

breaks’ the detection of a causal relationship. Indeed, although not evident in the 

experiments presented here, an advantage for variability has been found by Young and 

Nguyen (2009), and a feasible explanatory framework has been constructed to account for 

these effects that would seem to be in direct competition with the temporal predictability 

hypothesis.  
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Recall however that the predictability hypothesis specifically referred to the process 

of elemental causal induction. Young et al. (2005) purported that the extent to which a 

single candidate cause was a good predictor of whether and when an effect occurred 

determined the extent of the causal impression between the two, providing examples such 

as poison ivy causing allergies or a bat striking a ball. However the two experiments 

presented in this chapter thus far, although concerning causal attribution, are not in the 

strictest sense elemental causal induction. From a Bayesian perspective, elemental causal 

induction is the task of choosing between the two models h1 and h0, with temporal 

predictability considered to be more likely under the former than the latter. Here instead the 

hypothesis space includes three possible causal models (constrained by the experimental 

instructions), h1, h2 and h3. In each of these, background causes are ruled out (by virtue of 

the instructions). Unlike the comparison in elemental causal induction between h0 (where 

variability is likely) and h1 (where predictability is likely), predictability in this task is a 

priori equally likely across all models and therefore less useful as a diagnostic cue.  

Furthermore, besides the obvious differences in the structure and demands of the 

task that have already been emphasized, there is one clear alternative explanation for these 

conflicting results that has not yet been considered. The elephant in the room, so to speak, 

is the distinction outlined in the opening of this chapter; that between observation and 

intervention. Perhaps the reason for the lack of influence of predictability in Young and 

Nguyen’s study, and the two analogues presented here, is simply because these are 

observational studies. It may be the case that observational learning is not susceptible to the 

influences of predictability and this instead remains an epiphenomenon of instrumental 

learning. As discussed earlier, there are a number of plausible reasons why this might be 

the case, not least the special status held by active intervention in causal reasoning 

(Lagnado & Sloman, 2004; Leising et al., 2008). One might therefore be tempted to infer 

that intentional action or deliberate intervention is necessary for predictability to exert an 

influence, and to attribute the disparity between these sets of results to differences between 

operant and observational learning. There are however far too many disparities between the 

paradigm used here and typical contingency judgment protocols, above and beyond the 

distinction between observational and instrumental learning, to permit any such conclusion 

with confidence from these results alone. Instead to address this proposition, an 
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observational learning task is required that is a closer analogue of the instrumental studies 

of the previous chapter. The remainder of the current chapter takes up this challenge. 

 

4.6 Experiment 6A 

There is thus far a dearth of support for the predictability hypothesis from the 

observational learning studies presented in this chapter. The facilitatory effect of 

predictability that was evident in the preceding instrumental studies has not been replicated 

in a task requiring the identification of a cause from multiple candidates. It should however 

be acknowledged that this task was an adaptation of a novel paradigm that is quite unlike 

those traditionally used to study contingency estimation and judgments of causal efficacy. 

Experiments such as those of, for instance, Alloy and Abramson (1979), Wasserman et al. 

(1983), Dickinson et al. (1984), Shanks et al. (1989), Shanks and Dickinson (1991), Reed 

(1992), Buehner and May (2003), Vallée-Tourangeau et al. (2005), and White (2009), all 

concerned the assessment of the causal relation between a single candidate cause and effect 

over successive learning trials – in other words, elemental causal induction.  

Young et al. (2005), when outlining the predictability hypothesis, provide specific 

example referring to elemental causal induction, such as bat hitting a ball or poison ivy 

causing allergies). The predictability hypothesis was specifically developed as an account 

of this particular process, arguing that the predictive power of a candidate cause provides 

evidence for the existence of a causal relation compared to no such relation existing. The 

task used for the first two experiments in this chapter, although requiring a causal decision, 

is quite clearly distinct from elemental causal induction, and may in fact tap fundamentally 

distinct learning mechanisms that are required for ‘target selection’ (Heekeren, Marrett, & 

Ungerleider, 2008).  

This now leaves two major competing explanations for the lack of a predictability 

effect in the latter two studies. Is it because these studies involved observation rather than 

intervention, or is it because these tasks did not involve elemental causal induction? To 

definitively address whether temporal predictability can facilitate causal induction through 

observation alone, an observational variant of the elemental causal induction paradigm is 

required.  
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4.6.1 An Observational Analogue of the Elemental Causal Judgment Task 

Accordingly, the following experiment adopted a paradigm that retained most of the 

same basic features as the instrumental free operant procedure, with the primary difference 

being that participants passively observe a sequence of candidate causes and effects instead 

of actively generating them through instrumental responses. Rather than choosing the 

correct cause from a number of candidates, participants were once again required to 

evaluate the causal efficacy of a single candidate causal relation, namely, the effect of a 

button being pressed on the illumination of a triangle on the computer screen. Obviously, 

the participant could not be permitted to press this button directly, so the question then was 

how to govern the occurrence of the candidate causes and subsequent effects. In order to 

provide the closest replica of an instrumental study, it was decided to use one of the 

experiments in the previous chapter to form a direct template for the current study, using 

the same factors, conditions and patterns of event occurrence. Since the timing of every 

response and outcome made during each experiment was recorded, this data can be used to 

generate a stream of events and play this back to an observer. This previously generated 

sequence of causes and effects can then simply be observed as cues and outcomes. The key 

decision then was which of the previous studies to select as the template. It was decided 

that the ideal candidate should include more than two levels of predictability, in order that 

any trend in judgments with predictability can be more accurately described. Secondly, in 

order to successfully compare predictability effects between instrumental and observational 

learning, the instrumental study used for comparison needs to have obtained reliable main 

effects. In addition, since pre-recorded data was presented, it was also advantageous for the 

selected study to have a large sample size, thus providing a wide range of possible event 

sequences to choose from. Experiment 2B appeared to fit all these criteria well, and was 

therefore chosen as the basis for the following study.  

One small dilemma arose from this choice. The original study included six non-

contingent control conditions. These effectively provided no real insight as to the effects of 

predictability, since any outcomes were not contingent on responses and intervals were thus 

uncontrolled. Instead, these conditions were added to provide contrast with the master 

conditions. Recall that the removal of background effects in Experiment 2A led to 

speculation that the task became trivial and therefore minimized the influence of 
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predictability. The subsequent manipulation of adding control conditions in Experiment 2B 

meanwhile appeared to be successful in improving sensitivity to temporal information. 

However, it seems rather uneconomical to double the length of this experiment solely for 

this purpose. At the same time, the alternative method of including background effects 

might obscure the objective perception of interval regularity. The question thus arose to 

which, if either, of these methods of increasing uncertainty should be included.  

The key concern in the earlier instrumental experiments was that if a participant 

wished to test the hypothesis that the base rate was zero, they simply had to withhold 

responding for a certain period of time. Removing the option of direct responding 

eliminates this opportunity. Even if the event sequence includes a long period with no cues, 

the inability to test the hypothesis directly through intervention may well prevent any firm 

conclusions being drawn (Lagnado & Sloman, 2006). Concerns over the task becoming 

trivial therefore seem to be less pertinent to observational learning. Furthermore, whereas in 

an instrumental learning task an awareness of one’s own responses is assumed, in the 

observational experiment one must pay close attention throughout in order to notice when 

cues are presented. The experiment is thus more demanding in terms of attentional 

resources. It may well therefore be rather difficult for participants to maintain concentration 

for twelve conditions, each of two minutes duration, all identical in appearance, while at the 

same time being prevented from active investigation. It was therefore considered that the 

task would be challenging enough even without control conditions and learners would be 

reliant on all available cues, including temporal predictability if indeed such information 

can aid the process, in order to evaluate the causal relation. Moreover, since the analogue of 

the rather complex task of Young and Nguyen (2009) failed to find any effect of varying 

the temporal intervals, here there was a compulsion to provide as simple and 

straightforward a paradigm as possible to investigate temporal variability in an 

observational task. Accordingly, the master conditions alone from Experiment 2B were 

utilized for a more streamlined study. 
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4.6.2 Method 

4.6.2.1 Participants  

33 undergraduate psychology students at Cardiff University completed the 

experiment to receive course credit.  

4.6.2.2 Design  

The task marked a return to the standard causal judgement paradigm, replaying 

event sequences from an earlier experiment, from which the design is hence largely 

inherited. Experiment 2B was chosen as the template, since this study provided robust 

findings and included three levels of interval range, providing a better insight as to the trend 

of judgments as a function of predictability. For the sake of simplicity and economy, only 

the master conditions (where the cause actually generated the effect according to the 

specified intervals) were selected, ignoring the non-contingent yoked conditions. Condition 

(master/yoked) as a factor was therefore eliminated, leaving six experimental conditions 

arising from the factorial combination of mean Delay (3s/6s) and interval Range (0s/3s/6s) 

in a 2×3 within-subjects design.  

Let us briefly recap the implementation of the factors delay extent and variability in 

determining temporal intervals in the preparation. For conditions with zero variability, 

intervals were fixed at the specified delay. Where the delay was variable, the nominal delay 

instead represented the midpoint of a range defining the limits from which the interval 

could be taken of the possible interval values on any given instance. Over successive 

occurrences, the mean interval should approximate to the nominal value. With a wider 

interval range, the variability of the intervals is increased, and the less predictable the 

condition becomes. In contrast, conditions with a fixed delay entail maximal temporal 

predictability. See Figure 3.4 for a schematic representation of the temporal ranges of the 

conditions. 

4.6.2.3 Apparatus, Materials and Procedure  

Participants were tested in groups in the same small computer lab using the same 

equipment as for the previous two experiments. The arrangement of stimuli and task 

procedure was on a parallel with the parent experiment on which it was based. Participants 

saw a triangle in the centre of the screen and a button beneath this triangle. In addition, an 

image of a pointing finger, like that used in the two previous experiments, was presented 
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alongside the button. In the original instrumental paradigm, participants used the mouse 

cursor to move over and click on the button to perform a response. Here instead, the 

pointing hand was used to signify a button-press. Ordinarily, the hand was situated adjacent 

to the button, which was itself in the ‘unpressed’ state (raised in appearance and not 

illuminated). At the point where an instance of the cause was scheduled according to the 

recorded data (i.e. when a response was made by the previous participant), the hand moved 

over the button, which then depressed and illuminated for 250ms, before both hand and 

button returned to their original state. If an effect was scheduled, the triangle illuminated in 

the usual way, also for 250ms.  

The occurrence of causes and effects was simply a carbon copy of the exact same 

response and outcome schedule that was generated and experienced by the selected 

participant from Experiment 2B. Occurrence of effects was therefore not determined anew 

using a probability schedule following occurrence of causes but instead matched the pattern 

in the recorded data. No additional background events were inserted into the event 

sequence. Since it is yet to be definitively addressed whether predictability may serve as a 

cue to the inductive process, the intention was to keep the study fairly short and 

straightforward. Accordingly only the six master conditions were retained. By so doing it 

was hoped that participants would be more receptive to temporal information and noisy 

data from participant inattention would be avoided.  

In order that participants may report an informed judgment, they must obtain 

adequate experience of the causal relation in question. For the event sequence to provide 

useful evidence, it must comprise sufficient pairings of cause and effect so that the 

statistical and temporal relationship between them is tangible. As discussed with respect to 

the previous two experiments, temporal features such as interval constancy may not 

become apparent with small samples, and therefore the influence of such information on 

causal judgment cannot be evaluated. In addition, deviation from programmed values has 

greater weight with smaller samples which may mean that the encountered data is not truly 

representative of the causal relation under investigation. At the same time, if event density 

is too high then the true causal relationship may be obscured. It is necessary for the 

encountered data stream to also contain periods where no causes are administered, in order 

that the baseline occurrence of the effect can be determined. Accordingly, the median 
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response rate across conditions was calculated for each participant in the original 

experiment, and a median split was performed. Data from participants whose overall 

response rates were in the upper and lower quartiles was discarded, thus excluding event 

streams containing too few or too many responses to provide meaningful data. This still left 

a total of 30 different data sets from the middle two quartiles that were available for 

selection. For each new participant in the current experiment, one data set was chosen at 

random (with replacement) from this sample, with a separate selection for each participant. 

The event sequences experienced by the previous participant for all six conditions were 

then replayed to the current participant in the corresponding condition, with the order in 

which the conditions were experienced also retained. The pattern of events experienced by 

each participant in the current experiment thus exactly mirrored the pattern generated and 

experienced by a previous participant. The dependent measure was once again a causal 

rating provided by participants between 0 and 100. Since each condition lasted for two 

minutes, when combined with reading time for instructions, this gave a total experiment 

time of approximately 15 minutes.  

 

4.6.3 Results 

4.6.3.1 Causal Ratings 

Figure 4.8 shows the mean of the causal ratings provided by participants for the six 

different conditions. It can clearly be seen that the maximally predictable conditions, where 

the temporal interval was invariant, received the highest ratings. It seems that judgments 

decline as interval variability increases and temporal predictability is lost. With longer 

delays, ratings appear to decline as a linear function of increasing variability, whereas with 

shorter delays, a negatively accelerated function would appear to better to describe the 

decline in ratings with variability, as the decline levels off. The effect of delay is less 

apparent; while ratings are noticeably higher for 3s than 6s where variability is high, the 

different delays received close to identical mean ratings where variability was intermediate 

or zero.  
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Figure 4.8: Mean causal ratings as a function of temporal interval range for all six 

conditions in Experiment 6A. Different symbol and line styles denote different mean 

delays. 

 

A 3×2 repeated measures ANOVA found a significant main effect of interval range, 

with only the linear component reaching significance, F(1,32) = 11.11, MSE = 504.5, p < 

.005, ηp
2 = .258. Planned comparisons found a significantly higher ratings for the fixed (M 

= 54.55, SE = 3.754) compared to both the high-variability (M = 41.52, SE = 3.072) 

conditions, t(65) = 3.401, p < .005, and the intermediate-variability (M = 45.97, SE = 

3.690) conditions, t(65) = 2.408, p < .05; the difference between intermediate and high 

variability was non-significant, t(65) = 1.298, p = .199. No significant effect of mean delay 

was obtained, F(1,32) = 0.546, MSE = 715.2, p = .465, nor was there a significant 

interaction between predictability and delay, F(2,64) = 0.656, MSE = 474.1, p = .522.  

4.6.3.2 Cue and outcome patterns 

Since all the events in the experiment are simply being played back from pre-

recorded data, it is not entirely accurate to suggest that they may be directly influenced by 

the independent variables. However, these factors could have influenced the behaviour of 

the participants undergoing the instrumental learning task from which this data was 
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obtained. For this reason and also for the sake of completeness and consistency with 

previous experiments, the data for the rates of event occurrence, objective contingency 

between cause and effect, and actual delays experienced, are reported in Table 4.1.  

 

 

Table 4.1:  Behavioural data for Experiment 6A. Standard deviations are given in 

parentheses. 

 

Repeated measures ANOVAs were used to analyse the effect of delay and 

variability on cue and outcome patterns. Rate of cue occurrence did not vary significantly 

with delay, F(1,32) = 0.083, MSE = 157.438, p = .775. However, there was significant 

variation with temporal interval range, F(2,64) = 4.015, MSE = 226.580, p < .05, ηp
2 = 

.111, and a significant delay × range interaction, F(2,64) = 3.612, MSE = 175.889, p < .05, 

ηp
2 = .101. Obviously since cues and outcomes were probabilistically linked, outcome rates 

followed a similar pattern, with no significant effect of delay, F(1,32) = .467, MSE = 

110.239, p = .499, but significant variation with temporal interval range, F(2,64) = 4.777, 

MSE = 139.483, p < 0.012, ηp
2 = 0.130, and a significant interaction between delay and 

range, F(2,64) = 4.155, MSE = 100.212, p < 0.02, ηp
2 = 0.115. However, these effects of 

predictability on cue and outcome rates were unsystematic, and not consistent with the 

direction of the effect of predictability on ratings, so are not confounded with this finding.  
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For analysis of the experienced mean delays, seven data points that were more than 

two standard deviations from the mean were removed. Experienced delay naturally varied 

significantly with different nominal delays, F(1,32) = 3252, MSE = 13900, p < .0005, ηp
2 = 

.990. There was no significant variation with temporal interval range, F(2,64) = 0.262, MSE 

= 69530, p = .771, and no significant delay × range interaction, F(2,64) = .077, MSE = 

110400, p = .926. Mean actual P(e|c) did not vary significantly with delay, F(1,32) = 0.610, 

MSE = 0.004, p = .440, or range, F(2,64) = 2.898, MSE = 0.011, p = .062, nor was there a 

significant delay × range interaction, F(2,64) = 2.023, MSE = .005, p = .141. The effects of 

the independent variables on ratings are therefore not driven by systematic variations in 

experienced contingency or contiguity between experimental conditions. 

Of rather more pressing concern however are the standard deviations reported in 

Table 4.1. It can clearly be seen that, at the longer mean delay of 6s, there was considerably 

greater variation for the 6s-range condition than for the 3s-range condition, as would of 

course be expected. However, this difference is markedly reduced for the shorter 3s delays. 

In other words, the difference between intermediate and high variability was greater for 

longer delays compared to shorter delays, which was not intended. Does this pose problems 

for the interpretation of the causal ratings?  

The differences in the causal ratings between these conditions in fact mirrors the 

pattern of differences in variability. At longer delays, interval variability appreciably 

increases in accordance with the programmed variability, and ratings decline apparently as 

a function of this increasing variability. Meanwhile at shorter delays, the objective interval 

variability increases by a far smaller margin from one level to the next, and ratings 

similarly show a smaller decline. The higher ratings for short delays compared to long 

delays (with high variability) may well be attributable to the differences in actual interval 

variability rather than the differences in delay extent. If this indeed is the case, then one 

may speculate that had the difference in variability between intermediate and high 

conditions for the lower delays matched that of the longer delays, then ratings might also 

have declined in the same linear fashion. In other words, this unexpected findings actually 

works against the hypothesized effect of predictability, since there is smaller difference in 

objective variability than expected between different programmed levels of variability. We 

can therefore be more confident still in the reliability of the main effect of predictability. 
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However, the absence of the delay effect remains problematic, and shall be further explored 

in the next experiment. 

4.6.4 Discussion 

For the first time in this chapter, a significant effect of predictability in an 

observational learning task has been obtained. Causal judgments were highest with fixed 

delays, and declined as delay variability increased, in much the same fashion as for the 

earlier instrumental tasks. This finding demonstrates the capacity of temporal predictability 

to facilitate causal learning in an observational or classical conditioning analogue of the 

elemental causal induction task. The implication is that the facilitatory effects of 

predictability seen in instrumental learning can indeed generalize to observational learning, 

at least when requirements of the task are similar. Specifically, when the learning 

preparation calls for causal inference in the sense of providing an evaluative judgement of a 

single candidate causal relation, such judgments are enhanced by temporal predictability.  

The judgments that appear to be primarily driving the main effect of interval range 

are those given for the fixed conditions. These were the highest judgments provided at both 

long and short delays and were significantly higher when collapsed across delays than their 

variable counterparts. It can therefore be declared with some confidence that judgments of 

causality were enhanced by predictability. The effect of increasing variability was less 

definitive. While it is evident that increasing interval variability elicited weaker judgments, 

this deterioration was more pronounced with longer delays, appearing to follow a linear 

function. At shorter delays however, the decline levelled off as variability increased, 

suggesting a negatively accelerated function. The analyses report that only the linear 

component of the main effect was significant. Regardless of its precise functional form, the 

decline in ratings with loss of predictability is clear.  

These effects of temporal predictability are consistent with the instrumental studies 

reported earlier. Meanwhile, rather surprisingly, no effect of delay extent was found. This 

marks the first occasion in this body of work where the effect of predictability superseded 

that of delay. This is in contrast to a plethora of studies in the literature that have previously 

demonstrated detrimental effects of delays in learning, both in human judgments of 

causality (Shanks et al., 1989) and conditioning in animals (Grice, 1948; Williams, 1976), 

which has become a familiar and well-established phenomenon. Indeed, robust and 
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consistent effects of delay were found in all the instrumental studies presented earlier. The 

failure to find an effect of delay extent here is therefore a cause for some concern. Buehner 

and May (2002, 2003, 2004) have demonstrated that delays need not always impair 

judgments of causality. However, their studies required the presence of additional 

information, such as prior knowledge of mechanism, to bridge the temporal gap in such 

circumstances. External cues can also mitigate the effect of delays, such as auditory fillers 

bridging the temporal gap (Young et al., 2005) or markers delineating trial structure 

(Greville et al., 2010). Yet no such cues were provided in the current study. What then 

could have attenuated the impact of delays?  

Although Buehner and May (2004) showed that expectation of a delay could 

mitigate its detrimental impact, according to the strong version of the knowledge mediation 

hypothesis, an expectation of a delayed mechanism should also result in a weaker 

perception of causality when events are contiguous, since the data is then inconsistent with 

mechanism beliefs. However this finding was not obtained; when response and outcome 

were maximally contiguous, ratings were high regardless of whether contiguity was made 

plausible or implausible by the cover story. Thus the incompatibility of the expected 

mechanism was insufficient to negate the facilitatory effect of contiguity. Yet, in a 

Pavlovian analogue of Buehner and May’s (2002) grenade- launching task, Allan, Tangen, 

Wood and Shah (2003) managed to achieve the full crossover interaction such that ratings 

were higher when delay and prior knowledge were congruent both in contiguous and in 

delayed conditions. If there is a greater bias to expect contiguity in an instrumental rather 

than an observational learning task, it is possible that experienced contiguity overrode 

instruction in Buehner and May’s experiments but was subordinate to mechanism belief in 

Allan et al.’s Pavlovian analogue. It is therefore plausible that contiguity was similarly de-

prioritised in the observational experiment reported here and the prominence of 

predictability as a cue was thus heightened. In Experiment 2A, the decision to remove 

background effects apparently resulted in the a failure of predictability to offer any further 

facilitation beyond that already provided by contiguity. Here, if the reverse is true and the 

importance of contiguity as a cue is degraded, then the absence of background effects or 

control conditions may have exacerbated this overshadowing effect (although their 

exclusion was, as discussed earlier, a carefully considered decision).   
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An additional possibility is that the motivational significance of a contiguous 

outcome may be reduced in an observational learning task. Many normative theories 

analyse decision-making in terms of utility (Manski, 2000; Mongin, 1997), which is often 

characterized by a cost-benefit relation. The cost of making a response or an intervention is 

typically considered in terms of the effort expended by the animal in comparison to the 

animal’s energy budget (Caraco & Lima, 1987). Meanwhile, the benefit or subjective value 

conferred by a reward is strongly influenced by the delay until the receipt of that reward, as 

a vast body of literature on temporal discounting has made clear (e.g. Myerson & Green, 

1995). In instrumental performance, contiguity is thus central in determining the utility of a 

particular response-outcome relation. In contrast, merely observing a cue incurs a 

negligible energy cost in comparison to performing an instrumental response. As such, 

contiguity may well have a diminished role in learning from observation.  

These concerns over the lack of an effect of delay should not however detract from 

the principle novel finding from the current study, that causal learning through observation 

alone can be facilitated by temporal predictability. Participants observing sequences of cues 

and outcomes obtained from performance of previous participants showed the same 

improvement in ratings with predictability as that shown by the participants who originally 

generated the data through instrumental responding. Caution must however be exercised 

before drawing any firm conclusions from the results of this single study, and four specific 

arguments may be advanced to suggest that a further experiment is warranted. Firstly, in 

light of the failure to find any such effects in first two experiments of the this chapter, a 

replication of the effect obtained using the current paradigm would be desirable in order to 

improve confidence in this finding. Secondly, despite considerable effort to ensure that cue 

and outcome rates and timings were comparable with typical human instrumental 

performance, there remained unplanned differences in event distributions between the 

experimental conditions that it would be preferable to eliminate. Thirdly, the surprising 

absence of a delay effect raises some minor methodological concerns with regard to the 

presence of background effects or control conditions.  

The fourth and final concern is perhaps the most crucial to conclusively determining 

whether temporal predictability can indeed serve as a cue to causality in both instrumental 

and observational learning. Organisms, particularly humans, may be seen as intentional 
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agents who perform naïve experiments and engage in hypothesis testing in order to uncover 

causal mechanisms. As such, they can intervene on the world in a structured manner in an 

attempt to elucidate meaningful patterns of events. Organisms can also learn vicariously; 

that is, by observing the behaviour of others. However, many causal mechanisms are 

inaccessible to or independent of the behaviour of organisms. One of the key benefits 

afforded by observational learning is that it allows organisms to learn about causal systems 

on which they cannot directly intervene. At the same time, an important challenge for 

observational learning is that lack of control over stimulus delivery means there is no 

guarantee that events will be segregated into meaningful patterns. Causal inference in 

naturalistic systems, such as learning that the presence of clouds may cause rain or that 

forest fires may arise from an extended period of hot and dry weather, tends to be made 

from more haphazard distributions of events quite unlike the structured responding typical 

of the behaviour of organisms. Such events may be characterized as stochastic processes. A 

distinction can thus be made between patterns of events that might be emblematic of 

learning from one’s own behaviour, learning from the behaviour of another, or learning by 

simply observing events unfold.  

The experiments in the previous chapter constitute learning by “doing”; the current 

study meanwhile falls into the category of “watching it done” (Sobel, 2003). Though the 

participant observing the events sequences did not directly observe the previous participant 

performing the action, the event sequences were obtained from human performance. As 

such, these sequences included patterns of cue occurrence that was characteristic of 

exploratory behaviour, including rapid successive response bursts, rhythmic responding, 

and abstinence from responding. If learning through observation can truly be facilitated by 

temporal predictability, it needs to be demonstrated that predictability can facilitate 

induction from event sequences that more closely resemble those in naturalistic settings, 

where such characteristic patterns that might serve as useful diagnostic tools are absent. 

The goal of the following experiment therefore was to reduce the incidence of these 

structured patterns of cue presentation and see if the facilitatory effect of predictability 

obtained in the current experiment can be replicated with a more challenging causal 

induction task.  
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4.7 Experiment 6B 

Temporal predictability has thus far been demonstrated to facilitate causal induction 

when evaluating a causal relation, both through one’s own instrumental responding, and 

also through observation. The third and final step required is to determine whether 

predictability can facilitate induction when observing events that occur according to a 

stochastic process rather than in patterns characteristic of the intentional action of an agent.  

Accordingly, this experiment utilized a similar observational variant of the 

elemental causal induction task closely based on the previous paradigm. The essential 

modification was that this time the distribution of cues and outcomes were not extracted 

from performance of previous human participants. Instead, the causal candidate occurred 

according to a probabilistic rate process. The likelihood of obtaining patterns of cues 

resembling exploratory behaviour, such as successive burst or a long period of abstinence, 

is therefore reduced, and should thus appear more “natural” (or random) to observers. 

Furthermore, since the same rate was applied to all conditions in the experiment, this 

should help ensure equal rates of cue presentation across conditions, whereas the previously 

recorded instrumental data used in the previous study is more prone to include greater 

fluctuations in response rates. 

In addition, non-contingent background effects were reintroduced to the experiment. 

This manipulation was made for two reasons. Firstly, this makes the task more challenging 

and provides a more strenuous test of the reliability of the predictability effect, as objective 

perception of predictability may be impaired by a non-contingent effect occurring between 

the cue and its programmed outcome. Secondly, the absence of a main effect of delay in the 

previous study was unexpected and drew comparisons with Experiment 2A where a similar 

procedure similarly saw the influence of one factor overshadow the other. By making the 

task more challenging it may prompt participant to make full use of the available cues and 

thus restore the effect of delay extent.  

4.7.1 Method 

4.7.1.1 Participants 

33 participants completed the experiment either voluntarily or to receive partial 

course credit. One participant self-reported as completely failing to understand the task, 

hence their data was discarded. 



 

 

135 

4.7.1.2 Design 

The same 2×3 within-subjects design as for the previous experiment was again 

applied here. The factors delay (3s/6s) combined with interval range (0s/3s/6s) provided six 

conditions, each lasting for two minutes, with participants providing a causal rating from 0-

100 as the dependent measure.  

4.7.1.3 Apparatus, Materials & Procedure 

The experiment was carried out in the same location using the same equipment as 

for the previous experiment. The changes made from the previous experiment did not affect 

the outward appearance or requirements of the task, thus the arrangement of stimuli, 

instructions, and basic perceptual experience for participants was also essentially identical.  

The first modification from the previous experiment was that the occurrence of cues 

or candidate causes was no longer obtained from pre-recorded data. Instead, the timeline 

was divided into a series of small segments during which there was a fixed probability of a 

cue being presented. Specifically, after every 500ms, there was a 1/6 chance of cue 

presentation. This created, on average, a rate of one cue every three seconds, which is in 

line with the approximate 20 responses per minute observed in the preceding instrumental 

studies. Following cue presentation, the outcome was delivered according to the 

appropriate probability schedule with the appropriate temporal interval. Once again, the 

probability of the outcome following the cue was set to 0.75. The temporal intervals were 

likewise determined by the nominal delay and range of variation about this central point for 

a given condition. The delays and ranges used were identical to the previous experiment. 

The second modification was the application of background effects at a pseudo-

random rate of one every ten seconds on average. In other words, the first background 

effect occurred at a randomly determined point between 0-10s into the condition, the 

second between 10-20s, and so on.  

4.7.2 Results 

4.7.2.1 Causal Ratings 

Figure 4.9 shows the mean of the causal ratings provided by participants for the 

eight different conditions. As has become a fairly prevalent feature of the experiments 

presented in this thesis, the condition with fixed short delays attracted noticeably higher 

ratings than all other conditions. The familiar effect of delay also appears to have 
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resurfaced, with short-delay conditions receiving uniformly higher ratings than long-delay 

conditions. Ratings also appear to generally decline with increasing temporal interval 

range, though this is more pronounced with short than long delays.   

A 2×3 repeated measures ANOVA found a significant main effect of delay, F(1,31) 

= 12.73, MSE = 406.0, p = .001, ηp
2 = .291. The  effect of interval range was also 

significant, F(2,62) = 5.352, MSE = 314.0, p < .01, ηp
2 = .147, but there was no significant 

delay × range interaction, F(2,62) = 0.169, MSE = 370.5, p = .845. Only the linear 

component of the main effect of range was significant, F(1,31) = 7.805, MSE = 422.9, p < 

.01, ηp
2 = .201. Planned comparisons found that ratings for the fixed conditions (M = 46.48, 

SE = 3.090) were significantly higher than both the maximally-variable conditions (M = 

36.33, SE = 2.895), t(63) = 2.902, p < .01, and the intermediate-variability conditions (M = 

40.22, SE = 3.110), t(63) = 2.086, p < .05; the difference between intermediate and high 

variability was not significant at the 0.05 level, t(63) = 1.206, p = .232.  

4.7.2.2 Cue and outcome patterns 

Table 4.2 reports the mean cue and outcome rates, experienced contingency and 

contiguity, and ratings provided by participants, for each condition. Rate of cause 

occurrence did not vary significantly with delay, F(1,31) = 0.950, MSE = 31.66, p = .337, 

or temporal interval range, F(2,62) = 0.334, MSE  = 42.25, p = .559, nor was there a 

significant delay × range interaction, F(2,62) = 0.448, MSE = 26.34, p  = .641. Obviously 

since effect rate is directly determined by cause rate, a similar pattern emerged, with no 

effect of delay, F(1,31) = 1.748, MSE = 21.03, p = .196, or temporal interval range, F(2,62) 

= 0.032, MSE = 31.13, p = .968, and no interaction between the two, F(2,62) = 0.730, MSE 

= 22.93, p = .486. Mean actual P(e|c) did not vary significantly with delay, F(1,31) = 0.685, 

MSE = 0.005, p = .414, or range, F(2,62) = 1.777, MSE = 0.004, p = .178, nor was there a 

significant delay × range interaction, F(2,62) = 0.491, MSE = 0.004, p = .614. The mean 

action-outcome interval experienced within a given condition naturally varied significantly 

with delay, F(1,31) = 13100, MSE = 33620, p < .0005, ηp
2 = .998, but there was no 

significant variation with temporal interval range, F(2,62) = 1.072, MSE = 54910, p = .348, 

and no significant delay × range interaction, F(2,62) = 0.270, MSE = 43070, p = .764. In 

summary, no unplanned differences in event rates or experienced contingency or contiguity 

were confounded with differences in ratings between conditions. 
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Figure 4.9: Mean causal ratings for Experiment 6B as a function of temporal interval range. 

Different symbol and line styles denote different mean delays. Error bars show standard 

errors.  

 

4.7.3 Discussion 

The most apparent differences between these results and those of the previous study 

is the return of the familiar detrimental effect of delays on ratings. Indeed the effect is 

strong and robust, with shorter delays preferred to longer delays at each level of 

predictability. This restores faith in the reliability of the observational paradigm being 

utilized here. Ratings overall were lower than in the previous study, which is to be expected 

since the task was deliberately made more challenging. The most notable result in the wider 

context however is that a significant effect of temporal predictability has once again been 

obtained. Although a comparison of effect sizes reveals that the influence of predictability 

was weaker here than in the previous experiment, and was once again subordinate to the 

influence of delay, a reduction in the influence of predictability was anticipated as a 

consequence of the manipulations. Yet despite the potential obstacles this effect was 

nonetheless statistically significant.  
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Table 4.2: Behavioural data for Experiment 6B. Standard deviations are given in 

parentheses. 

 

This provides addition al confirmation that predictability can facilitate causal 

induction in observational as well as instrumental learning. Furthermore, the predictability 

effect is maintained when observing patterns of events whose occurrence is governed by a 

probabilistic rate schedule as well as when observing those derived from exploratory 

behaviour. This finding thus completes a ‘hat-trick’ of obtaining facilitatory effects of 

predictability in elemental causal induction tasks, having now been demonstrated in 

learning from one’s own responses, learning by observing another’s responses, and learning 

from identifying patterns in a stochastic process.  

There are of course some idiosyncrasies of the current set of results that warrant 

further comment. It is certainly interesting that what may seem like fairly minor 

modifications from the previous to the current paradigm were capable of producing such 

significant changes with regard to delay. Given the consistent effects of delay in all the 

other experiments contained herein, one might be tempted to dismiss the lack of such an 

effect in the previous experiment as something of an anomaly. Yet, the effect of delay was 

not just marginal but well short of significance, and there is reason to suspect the delay 

effect have been almost completely absent had endogenous variability been greater in the 
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low-delay high-variability condition. The combined results of the two studies then strongly 

imply that resurfacing of the delay effect in the current experiment is attributable to the 

reintroduction of background effects, and without their competing influence, contiguity 

ceases to be important for observational learning. Given robust influences of delay 

throughout the literature however this seems unlikely. Possibly then, there is some 

threshold above which delays will indeed impair learning but the delays in this experiment 

coupled with the absence of noncontingent effects meant the delay was beneath this 

threshold. Couple with the notion that considerations of utility may be less important in 

observational learning, one can begin to postulate reasonable explanations for this 

surprising finding. It should however be kept in mind that the primary novel finding of 

these latter two experiments was the predictability effect.  

A further nuance of the current experiment may be identified. Although there was 

no significant interaction between delay and predictability, an inspection of Figure 4.9 

suggests the trend that the decline in ratings with predictability for longer delays was less 

steep compared to that for shorter delays, and also compared to the same decline with 

longer delays in the previous experiment. This is however readily explicable in view of the 

modifications made. As I suggested earlier, introducing background effects might interfere 

with the detection of predictability, since a non-contingent effect might occur during the 

interval between a cause and its scheduled effect. Thus the effect will follow the cause after 

a shorter interval than normal and destroy the impression of fixed intervals (unless this 

effect is correctly disregarded as spurious). Obviously then, with longer fixed intervals, the 

greater the potential for this to occur, and the more damaging (potentially) background 

effects will be to a facilitatory influence of predictability.  

Future research may wish to delve deeper into the precise relationship between 

delay, background effects, and whether the task is instrumental or observational. For the 

present moment though, the main objective of this study – to determine whether 

predictability can facilitate causal learning in from stochastic rates – has largely been 

fulfilled, with the answer in the affirmative.  
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4.8 Chapter Summary 

This chapter aimed to take the investigation of temporal predictability a step further 

by uncovering whether the facilitatory effects of predictability in instrumental causal 

induction found in the previous chapter could be extended to observational learning. 

Overall, the evidence at first glance paints a mixed picture, with the latter half of the 

experiments finding a similar facilitatory effect while the former pair were unreceptive to 

predictability. These first two experiments were however based on a novel paradigm which, 

as has been discussed at length, differs considerably from the traditional causal judgment 

task, and numerous justifications have been presented as to why this paradigm may not be 

amenable to the influence of predictability. Meanwhile when reverting to a more traditional 

causal induction paradigm as the basis for the observational learning task, facilitatory 

effects of predictability complementing those found with instrumental learning were 

obtained, both when the patterns of cue occurrence were based on prior exploratory 

behaviour and also when based on a more random rate-based process.  

The results from the latter two studies nicely harmonize with the results from 

Chapter 3. Causal relations with fixed temporal intervals consistently received higher 

judgments from observing participants than conditions with variable intervals, as was also 

the pattern during the instrumental studies, and increasing interval variability resulted in a 

concomitant decline in ratings, in line with the results of Experiment 2B. It has thus been 

demonstrated that elemental causal induction is aided by temporal predictability both in 

instrumental and observational learning.  

The results of the last two experiments add considerable weight to the argument that 

predictability facilitates learning, at least with respect to elemental causal induction. 

Temporal predictability does not, on the basis of the first two experiments in this chapter, 

assist in the identification of a causal candidate from a number of alternatives. One can of 

course then immediately question the validity of such a blanket statement as “temporal 

predictability facilitates causal learning” when in fact a facilitatory effect of predictability 

has only been demonstrated in a very specific learning preparation. It however would seem 

fairly reasonable to conclude from the accumulation of results herein that temporal 

predictability facilitates elemental causal induction in both instrumental and observational 

learning.  
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Chapter 5 – General Discussion and Conclusions 

 

This final chapter will summarize and broadly discuss the empirical work presented 

in this thesis. Firstly, I shall provide a very brief synopsis of each experiment, before 

expanding more generally on their underlying motivation, specific findings and overall 

impact. I shall then review the three main theoretical positions on causal learning as 

presented in Chapter 2, and consider how well the empirical work in this thesis resonates 

with each perspective. A critique of the methodology and an outline of further research that 

may be undertaken in this domain shall then follow, before a final summary of the most 

important conclusions that may be drawn from this work. 

 

5.1 Brief Synopsis of Experiments 

Experiment 1, rather ambitiously perhaps, attempted to determine at a stroke 

whether a) temporal predictability influences causal judgments; in other words will causal 

relations with fixed intervals be judged differently from those with variable intervals; b) the 

nature of that influence (i.e. will predictability or variability be preferred); c) whether 

temporal predictability, if such an effect is obtained, interacts with other influences such as 

contingency and contiguity. The results of Experiment 1 indicated that fixed- interval causal 

relations were indeed judged as more causal than those with variable intervals, and that this 

apparent facilitatory effect of predictability did not interact with either contingency or 

contiguity. 

However Experiment 1, far from being a definitive answer, was merely the first 

indication of a role for predictability. The data was somewhat noisy and the experiment 

perhaps attempted to accomplish too much too quickly. The subsequent two experiments 

then set about to replicate the predictability effect, and to determine whether ratings decline 

as the causal relation becomes increasingly unpredictable (in other words, determine the 

function according to which ratings follow predictability).  

Experiment 2A showed that fixed intervals elicited higher causal ratings than 

variable intervals, and that causal ratings declined with increasing unpredictability, 

however only at longer overall delays. With shorter delays, the overall effect of 

predictability was minimal. Consideration of methodological considerations suggested that 
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predictability may have been redundant as a cue at shorter delays. Increasing task difficulty 

in Experiment 2B demonstrated convincingly that at both long and short delays, fixed 

causal relations were preferred and judgments declined as a function of temporal 

uncertainty.  

Experiment 3 demonstrated that temporally predictable causal relations received 

more favourable evaluations than unpredictable relations, regardless of allocated learning 

time, and thus ruled out an alternative explanation for the predictability effect.  

Experiment 4 once again demonstrated that fixed temporal intervals enhanced 

judgments of causality, and that this effect was most marked when the effect followed the 

cause with a high probability. This result, in tandem with Experiment 1, suggested that 

predictability may be differentially affected by statistical relation between cause and effect; 

specifically that the influence of predictability depends on the effect following the cause 

with a high probability, but is largely insensitive to the base rate of the effect. 

Experiments 5A and 5B failed to find a significant effect of temporal predictability 

in the identification of  the true cause from a number of candidates. However this paradigm 

was markedly different from that of the previous studies and possibly insensitive to case-

by-case fluctuations in cause-effect delay. 

Experiments 6A and 6B replicated the predictability effect in observational learning 

tasks that were similar in nature to the earlier instrumental studies. The combined 

implication of Experiments 5 and 6 is that temporal predictability can enhance judgments 

of causality in observational learning, but that the predictability effect may be limited to the 

special case of elemental causal induction. Whether temporal predictability may serve as a 

cue to causality when a different hypothesis space is involved remains a question for future 

research.  

 

5.2 Temporal Predictability Facilitates Elemental Causal Induction 

The empirical studies presented in the preceding three chapters attempted to 

broaden the perception of the role of time in causal learning, and resolve some unanswered 

questions concerning this role. Temporal contiguity has long been recognized as a potential 

cue to causality. However the fact that contiguity may vary from one cause-effect pairing to 

another has largely been overlooked in the literature. Acknowledgement of this problem 



 

 

143 

allows a distinction to be drawn between temporal predictability, where contiguity is 

constant, and temporal uncertainty, where contiguity is variable. The primary question that 

this thesis attempted to resolve was, are human judgments of causality affected by this 

distinction, and if so, how? 

Overall the experiments have demonstrated fairly consistently that temporal 

predictability can act as an empirical cue in causal induction. More precisely, the results 

demonstrate that fixed, predictable temporal intervals attract higher causal ratings than 

variable ones, and that causal ratings decrease as a function of temporal uncertainty. This 

facilitatory effect of temporal predictability was demonstrated in both instrumental and 

observational learning from a real- time response-outcome (or cue-outcome) schedule. 

Effects of predictability persist regardless of extent of information sampling, and appear 

largely independent of delay extent or the frequency of non-contingent background effects. 

Two experiments however demonstrated that there are limitations on the ability of 

predictability to aid a causal judgment. When choosing between multiple alternative 

candidates, a consistent temporal interval between the cause and its effect did not help to 

differentiate the true cause from noncausal foils. The facilitatory effects of predictability 

were instead limited to enhancing the impression of causality between a single candidate 

cause and its effect. The most accurate conclusion that one can draw from the empirical 

work presented in these two chapters is therefore “temporal predictability facilitates 

elemental causal induction.” 

This specificity should not in any way detract from the significance of these 

findings. Many theories and extensive empirical research have focused almost exclusively 

on this process of elemental casual induction (Cheng, 1997; Griffiths & Tenenbaum, 2005; 

Shanks, 1993; Wasserman, 1990; White, 2003), and considerations such as how 

contingency data may be used to infer causality has been an important and heated topic of 

debate. The results of the work herein will hopefully contribute to understanding and 

stimulate debate, while at the same offering insight into an under-researched aspect of 

causal judgment.  

Having now reached a conclusion regarding the facilitatory effect of predictability 

founded on a significant body of empirical research, the next step is to consider the broader 

theoretical implications of this finding. Chapter 2 reviewed three major strands of learning 
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theory aiming to provide an account of human causal judgment. I shall now review each of 

these perspectives, their respective predictions regarding an effect of predictability and the 

resulting support or conflict that the results of this thesis provide. 

 

5.3 An Associative Analysis of Temporal Predictability 

The importance of contiguity has been debated among associative theorists. While 

contiguity has previously been identified as both necessary and sufficient for an association 

to be acquired (Damianopoulos, 1982; Guthrie, 1933; Miller & Barnet, 1993; Savastano & 

Miller, 1998), other work casts doubt on such assertions (Rescorla, 1988; Schafe, Sollars, 

& Bernstein, 1995). The prevailing view however is that within a standard conditioning or 

reinforcement learning preparation, degradations in contiguity between cue and outcome or 

response and reinforcer leads to progressively weaker associations. While supplemental 

explanations are required to account for learning over longer intervals, such as in 

conditioned taste aversion, this simple principle rather neatly explains a well-established 

feature of animal behaviour, the preference for variable- interval reinforcement. Applying 

basic associative theory to causal learning therefore assumes a monotonic effect of 

contiguity. 

An associative perspective on causal learning is partly motivated by the multitude of 

apparent similarities between conditioning in animals and causal learning in humans 

(Shanks & Dickinson, 1987). Endorsements of an associative perspective have considered 

phenomena such as the outcome-density bias, sensitivity to cue competition, and super-

learning to reflect deep structural similarities between human causal learning and animal 

conditioning (Shanks, Holyoak, & Medin, 1996). The experiments in this thesis addressed 

the question as to whether a similar commonality arises between human judgment and 

animal behaviour in response to variations in intervals between cause and effect; that is, the 

degree of temporal predictability. The results from my experiments, however, have shown 

that human judgments were directly opposed to animal preference for variable 

reinforcement, and participants instead drew the conclusion that causes which produced 

their effects over a stable and reliable timeframe were more effective than those where the 

effect occurred with variable latencies. What is the reason for this distinction? 
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One important conceptual difference between studies of animal conditioning and 

human causal learning which might account for the divergent results is that the emphasis in 

the former tends to be in terms of rewards and punishments – stimuli that respectively 

increase or decrease the likelihood of a specific behaviour – rather than causes and effects. 

Studies of conditioning nearly always employ real appetitive or aversive stimuli (e.g. food 

or shocks), whereas studies of causal hardly ever do (e.g. triangles flashing) – and if they 

do, it tends to be only in described examples (e.g. food allergy scenarios, stock market 

“games”) where any specific outcome has no direct relevance or value to the participants 

themselves. Consequently, conditioning studies involve the concept of utility: a food 

reward is pleasant, and a foot shock is painful. Human causal learning studies, in contrast, 

seldom call upon utility: It is of no consequence to the participant whether the triangle 

flashes, or whether an imaginary Mister X experiences an allergic reaction. This disparity is 

significant because when utility is relevant, then behavioural economics come into play, 

and phenomena such as delay discounting may manifest, as shall now be further explained. 

5.3.1 Delay Discounting 

The use of tangible rewards (and punishments) with adaptive value in studies of 

animal conditioning means that such stimuli are subject to discounting. To explain, rewards 

can in many cases be quantified (for instance, the amount of food or money received) and 

in this regard have an objective value. Naturally, animals favour large rewards over smaller 

rewards (Denny & King, 1955; Festinger, 1943). However, depending on the current 

situation (such as the animal’s level of deprivation) the reward may also have a subjective 

value that differs from its objective magnitude. A factor of crucial importance in 

determining subjective value is the time taken for the reward to be received. It is well-

established that animals exhibit preference for immediate rewards over delayed rewards of 

the same magnitude (Chung & Herrnstein, 1967). However, numerous studies have 

demonstrated that in certain cases, animals will choose a smaller immediate reward over a 

larger delayed reward (Rachlin & Green, 1972). If we assume that, in choosing between 

concurrently available alternatives, the animal always selects the reward which it perceives 

has the greater value, then we may conclude that the subjective value of a reward declines 

with delay. Delays of reinforcement thus result in the objective value of the reward being 

discounted, hence the term delay discounting is used to describe this process. The greater 
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the delay until the reward is delivered, the lower its subjective value – that is, the more 

likely it becomes that the animal will prefer the smaller sooner reward over the larger later 

reward. This is of course reflected in the effects of reinforcement delays on response rates 

and choice behaviour as already discussed in Chapter 2, where I identified a number of 

studies which have demonstrated that rates of responding decline with delays according to a 

negatively accelerated function (Chung, 1965; Herrnstein, 1970; Mazur, 1984; Williams, 

1976). The process of delay (or temporal) discounting has been extensively studied from 

both psychological and economic perspectives (e.g. Ainslie, 1991), and similar effects of 

reinforcement delay on choice behaviour have been obtained for both human and non-

human subjects (Green & Myerson, 2004; Green, Myerson, Holt, Slevin, & Estle, 2004; 

Woolverton, Myerson, & Green, 2007). 

Theories of delay discounting however seem less likely to apply to human causal 

learning, because they address how (positive and negative) subjective utility decreases as a 

function of time-to-event. If the event has no intrinsic utility (as is arguably the case in 

human causal learning studies), then there is nothing to discount. In contrast, rewards and 

punishments are very clearly liable to discounting, both in human and non-human animals. 

The advantage of variable over fixed intervals in studies of animal learning thus may well 

be grounded in the shape of the discounting function and commensurate differences in 

subjective utility of the obtained outcomes. But because studies of human causal learning 

do not involve utility, discounting does not apply. Indeed, in other work I have carried out 

as part of my research but that is not presented in this thesis, I found a lack of correlation 

between the rate at which participants devalued delayed rewards in a discounting task and 

their judgment of delayed causal relations, which further supports the idea that the two 

processes are distinct. There is therefore both a theoretical and an empirical basis to suggest 

that delays have different effects in causal and reinforcement learning, and so by extension, 

that a common learning algorithm is unlikely to underlie both processes. The implication 

may then be drawn that if an associative account is used to explain animal preference for 

variable reinforcement (which it does rather neatly as described in Chapter 2), then the 

same account cannot be used to explain the facilitatory effect of temporal predictability in 

human causal judgment.   A key assumption underlying this argument is that preference for 

variable reinforcement is indeed a reflection of the degree of association between response 
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and reinforcer. However as outlined in the previous chapter, such preferences may also be 

explained in terms of subjective value. Ascribing choice behaviour to associative learning 

assumes that subjective value of the reward is derived from or equivalent to associative 

strength. However, it may be that exhibition of preferences is due not to the association 

between response and reinforcer per se, but due to perceived net gain. If the two can be 

dissociated, this suggests that animals have the capacity to learn associations, or causal 

connections, without this necessarily resulting in an observable change expressed in 

behaviour. It is therefore implied that elements that traditionally were perceived as only 

adjunctive to the formation of associations and determinants of associative strength, such as 

reward magnitude, timing, and reliability, may also be represented in the association, and 

that such parameters determine the expression of behaviour. Indeed, a recent variant of 

associative learning theory, the temporal coding hypothesis (Miller & Barnet, 1993) posits 

exactly that, as shall be discussed in more detail further below. 

One might then be tempted to suggest that the function linking associative strength 

to delay does not follow a negatively accelerated function when applied to causal learning. 

If the shape of the function is different, then different predictions regarding interval 

variability may be generated. For instance, a linear function would predict no difference 

between variable and predictable delays, while a positively accelerated function would 

indeed predict an advantage for fixed delays. However such functions would be implausible 

since they would cross the x-axis and thus predict negative associative strength for 

outcomes delayed beyond a certain point, when obviously the occurrence of an outcome, 

however delayed, should never contribute less associative strength than no outcome at all. 

Moreover, there is no empirical basis for the suggestion of a different function, whereas the 

negatively accelerated function describing the effect of increasing delays is well 

established. Even in studies directly soliciting human judgments of causality (Shanks & 

Dickinson, 1991; Shanks et al., 1989), mean causal ratings at specific delays were found to 

broadly adhere to such a function. In studies comparing fixed and variable delays then, a 

simple summation or average of perceived causality across the combined delays 

experienced should thus have conferred a higher overall rating for variable rather than fixed 

delays. Yet somehow, this was not the case in the studies presented here and in the majority 

of cases the opposite was in fact true. The implication is that the perceived causal strength 
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goes beyond a simple arithmetic combination of the delays or perceived causality on each 

trial or cause-effect pairing, and that the process of causal induction is more than just the 

“sum of its parts” and some other information or representational knowledge must form an 

integrative part of causal inference. 

5.3.2 The Temporal Coding Hypothesis 

Recent formulations of associative theories have begun to challenge the simplistic 

conception of timing effects that limited earlier models. According to the traditional 

associative view (Pearce, 1987; Pearce & Hall, 1980; Rescorla & Wagner, 1972), 

contiguity may, in the appropriate circumstances, be a contributory factor to the associative 

strength that is acquired, with decrements in contiguity resulting in weaker associations. 

However, this view did not subscribe to the idea that organisms acquire representational 

knowledge of temporal intervals, and instead saw contiguity as merely adjunctive to the 

learning process. The temporal coding hypothesis (TCH) however, as alluded to above, 

represents a radical departure from this traditional view, and instead argues that the 

temporal relationship between events is encoded as part of the association. During training, 

exposure to contiguous or delayed event contingencies will not only result in respectively 

stronger or weaker acquisition, but also will create expectancies regarding the timeframe of 

action. Following training then, exposure to the CS will lead to anticipation not only of the 

occurrence but also of the timing of the US. Another way of saying this is that the animal 

learns not only that the effect will occur, but also when it will occur. This information is 

then assumed to play a critical role in determining if a response is made, and the magnitude 

and timing of that response. In other words, whether or not an acquired association will be 

expressed as observable behaviour depends on the encoded temporal knowledge 

(Arcediano & Miller, 2002; Savastano & Miller, 1998). According to such a perspective, 

the factors determining the ease with which a particular relation is learned may not 

necessarily result in a concomitant preference in choice behaviour associated with that 

relation. An extension of such an argument would be that an organism may be perfectly 

capable of recognizing a particular relation, and indeed identifying that relation as stable, 

but still exercise preference for another schedule that it perceives as perhaps less stable but 

offering greater potential for reward. 
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This idea has steadily accumulated support, since it has proved capable of 

addressing findings concerning variations in timing that previous associative models (e.g. 

Rescorla-Wagner, 1972; Pearce-Hall, 1980) could not account for, including differential 

effects of various CS-US intervals in Hall-Pearce negative transfer (Savastano & Miller, 

1998) and in overshadowing (Blaisdell, Denniston, & Miller, 1998). By acknowledging that 

animals encode temporal information as part of the association, this view could potentially 

address findings where the role of time appears to go beyond mere contiguity. For instance, 

Allan, Tangen, Wood and Shah (2003) argue that the temporal coding hypothesis can be 

adapted to accommodate the results of Buehner and May (2004), and their own findings, 

that delayed causal relations receive higher causal evaluations than contiguous relations 

under certain circumstances. The basis of this argument is that knowledge mediation serves 

as an initial training phase where the observer “learns” the delay. A similar extrapolation of 

this theory might apply here; if an organism learns the temporal interval between events 

and carries this forward, subsequent variation of the intervals might negatively impact CS-

US association (as does a disruption of continuity between training phases, e.g. in latent 

inhibition or negative transfer). Indeed, Denniston, Blaisdell and Miller (1998) have already 

demonstrated an adverse effect of temporal incongruence in inhibitory conditioning. 

The temporal coding hypothesis can not only account for the superiority of temporal 

regularity, but it paradoxically also appears capable of addressing the preference for 

variability observed in studies using reinforcement schedules. The notion that contiguity is 

a key determinant of associative strength remains a fundamental tenet of the temporal 

coding hypothesis, as outlined by Blaisdell et al. (1998, p. 72): “Contiguity  is sufficient for 

the formation of an association. The degree of spatial and temporal proximity  between two 

events (stimuli or responses) determines the extent to which they are associated.” Thus, the 

association will depend on how associative strength changes as a function of delay, and the 

shape of this function may be highly dependent on the context. As mentioned previously, 

since utility is crucial for animal reinforcement learning, it may well be that the associative 

strength of delayed events does in such cases decline in a manner consistent with delay 

discounting  

The difficulty then seems to lie in determining the specific predictions of the 

temporal coding hypothesis; what are the circumstances that govern whether a facilitatory 
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or inhibitory effect of variability on learning is anticipated from this perspective? The 

temporal coding hypothesis does not explicitly put differential weights on the extent versus 

the constancy of the reinforcement delay. Consequently, it could potentially be adapted to 

fit any set of results via a post-hoc re-conceptualization of the learning task (for example, 

see Allan et al., 2003). What is therefore needed is some extension or restriction of this 

theory that would enable it to specify, a priori, the expected progression of learning given a 

particular input or data set.  

Clearly, the temporal coding hypothesis represents an important step in the 

development of associative learning theory; the fundamental principle that temporal 

information is encoded in an association enabling the multi- faceted influences of time in 

learning to be accommodated. However, such a radical departure from traditional 

associationism raises queries over whether the temporal coding hypothesis can truly be 

regarded as an associative theory in the strictest sense. The idea that an animal acquires 

representational knowledge of the intervals in a conditioning preparation, and that this 

knowledge affects subsequent behaviour, seems to echo similar arguments regarding 

knowledge mediation proposed by cognitive theories of learning. Moreover, it remains as 

yet unclear whether the anticipation of a definitive influence of temporal predictability in a 

given situation can be derived from the TCH. I shall therefore now turn to consider other 

theoretical approaches that make more concrete predictions regarding predictability.  

 

5.4. A contingency-based perspective on predictability 

Having struggled thus far to reconcile the finding of this thesis with associative 

learning theory, it seems appropriate to now consider this evidence in light of the 

covariation or contingency-based perspective. It was described in the introduction how the 

attribution shift hypothesis could extend a covariation perspective to account for the effect 

of predictability by reducing erroneous attribution of delayed effects to random background 

processes. With a temporally predictable cause, repeated experience of a constant interval 

may lead the reasoner to adjust their temporal window such that delayed events are 

attributed to the candidate cause rather than disregarded. However there remains the 

compelling question of whether time merely serves to facilitate or inhibit the detection and 

interpretation of events, or if temporal information itself is actually computed to form an 
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integral part of the mental representation of causality. According to this account, temporal 

information is not considered to form part of a mental representation of causality, but 

merely determines the attribution of events to the cells of a contingency table. However, if 

this were the case, and predictability improves causal judgments simply by enabling the 

reasoner to correctly detect cause-effect pairings, then the degree of separation between 

cause and effect should not matter. If repeated experience of the same interval enables 

detection of delayed events, there should not be a simultaneous effect of delay. Under these 

assumptions then, while an effect of predictability could be accounted for, effects of 

predictability and delay are mutually exclusive and could not occur in tandem as 

demonstrated by my results. Besides, Greville and Buehner (2007) have already 

demonstrated that contiguity and covariation act in concert to influence causal judgment, 

even in situations where the extent of contingency is unambiguous. 

Additionally, the covariation account and attribution shift hypothesis encounter 

difficulty with the results from Experiment 3. If participants are given more time to explore 

the causal relation in question, they most likely will (and in this case indeed did) experience 

more action-outcome pairings. The more exposure participants have to a particular 

contingency, the more likely it is that they will be able to recognize it correctly. While it is 

clear that temporal cues such as contiguity or predictability may assist in the recognition of 

cause-effect pairings in the short term at least, (and conversely, temporal delay or 

unpredictability may impede the attribution of effect to the cause), given enough exposure, 

participants should be able to detect contingencies independently of temporal information. 

If participants do in fact come to notice the contingency, and this is the determinant of their 

causal representation, then temporal information should cease to be important. However as 

Experiment 3 revealed, judgments of causality did not move significantly closer to ∆P as 

learning time was increased, and the effects of predictability and delay persisted. The 

implication is that cues such as contiguity and predictability are in-and-of-themselves 

components of a computation of causal strength, rather than just an aide to event parsing for 

the calculation of covariance, as a purely statistical or contingency-based approach to 

learning would suggest.  
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5.4.1 Attribution Aide or Cognitive Component? 

Thus, the evidence from this study is incompatible with a covariation perspective 

even when its assumptions are relaxed as per the attribution shift hypothesis. However, it 

may still possible that the process of attribution shift does in fact take place during event 

parsing, but that the constraints of the covariation account on this process are invalid. 

According to a strict covariation account, having determined whether or not event pairings 

are causal or spurious, temporal information then plays no further role in the learning 

process. However if instead temporal information is still represented in the mental 

computation, then the causal decision may essentially be a trade-off between contingency 

and contiguity. For instance, suppose that predictability does indeed result in a shift of the 

temporal window. In a delayed but predictable relation, it is likely that attribution shift will 

not occur; since all the effects happen after the same interval, they should be attributed to 

the cause. However since they are all delayed, the overall impression of contiguity will be 

weak. For a delayed but variable relation however, while later events may be disregarded as 

spurious, there will also be earlier events, that occur with closer contiguity than events in 

the fixed interval relation, which should be attributed to the cause. Subjective contingency 

therefore is decreased relative to the fixed-condition; however because the remaining c�e 

pairings that are counted will all have equal or shorter intervals than the fixed-delay, then 

the overall impression of contiguity is stronger for the variable condition. Thus whether 

variable or predictable causal relations are perceived as stronger would crucially depend on 

the trade-off between contingency and contiguity (see Buehner & McGregor, 2009).  

 

5.5 A Bayesian account of predictability 

As discussed previously, Bayesian models of causal learning assess the likelihood 

of the obtained data under two opposing hypotheses; one where there is a genuine 

mechanistic link between candidate cause and effect, and one where no such links exists 

and the effect is the result of alternative unseen causes. Regularity is more likely under the 

former hypothesis than the latter so is taken as evidence for the existence of a causal 

relation. Though Griffiths and Tenenbaum’s (2005) causal support model was originally 

developed as a computational account of assessing causal structure from contingency 

information, a logical extension of this  perspective could easily be applied to temporal 
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information. Under this assumption, the prediction of the structure account with regard to 

the phenomenon addressed in this paper is clear: temporal regularity should facilitate 

learning. Indeed, in a more recent framework, Griffiths and Tenenbaum (2009) extend the 

structure account and highlight the importance of patterns of spatial or temporal 

coincidences, with a set of regularly-spaced events being much more probable under an 

identified potential mechanism than a spontaneous activation of an unseen alternative 

cause.  

From such a perspective, predictability may further facilitate causal learning 

through the process of Bayesian updating (for instance see Lagnado & Sloman, 2002; 

Lagnado, Waldmann, Hagmayer, & Sloman, 2007). For instance a reasoner may, in the first 

few instances of experiencing a delayed causal relation, decide that the effect was not 

actually generated by the cause. However if the temporal interval is fixed, then after several 

exposures the reasoner may revise and update their causal beliefs about the relation in 

question, and adopt a new expectation of the timeframe. If they then continue to experience 

effects that occur at the time they now expect, then this will reinforce the impression of a 

causal relation. Additionally, events that had previously been classed as non-causal may 

also be re-evaluated as causal, further contributing to the overall impression of causal 

strength. However, one problem with a simple formulation of the Bayesian account is that it 

too, like the Attribution Shift Hypothesis, would seem incapable of simultaneously 

accounting for a joint influence of delay and temporal predictability. Presumably, if a 

temporal interval is highly predictable, and therefore provides good support for a causal 

structure model, the extent of delay should not matter. One way to address this would be for 

future models to include priors of delay assumptions that reflect the consistent bias to prefer 

contiguous over delayed relations. 

 

5.6 A Novel Approach – Temporal Expectancy Theory 

A theory of conditioning that takes a step further in acknowledging the role of 

temporal information is Gibbon’s (1977) scalar expectancy theory (SET), a precursor of 

Gallistel and Gibbon’s rate estimation theory (RET), which postulates that temporal 

intervals are in fact the sole determinant of conditioning (Gallistel & Gibbon, 2000a). SET 

was developed as a model to account for the timing of the conditioned response (CR) in 
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animals, when there is some temporal separation between the conditioned stimulus (CS) 

and unconditioned stimulus (US). At the heart of this theory is the idea of a temporal 

accumulator that continually monitors the time until the delivery of a reinforcer. When 

reinforcement is received, the latency is written to memory. At the onset of the CS, the 

currently elapsing interval (te) is compared to the remembered latency (t*). When this ratio 

exceeds a threshold (β), the animal responds, hence this ratio te:t* is known as the decision 

variable. Since the CR is an anticipatory response, the when-to-respond threshold β is 

somewhat less than 1. To summarize in the simplest of terms, the timing of the CR depends 

on when the animal expects the US to be delivered.  

If it is accepted that animals can remember intervals and develop an expectancy of 

when an outcome is likely to occur, then this model could then feasibly be extended to 

account for the effects of predictability reported in this thesis. Through repeated experience 

of a temporally consistent causal relation, it may become apparent that causes and effects 

are separated by the same temporal interval. If this interval is detected, it can then be 

recorded in memory, analogously to the t* signal as specified by SET. There thus develops 

a clear expectancy of points in time at which an outcome can occur. Attention can then be 

more closely directed to the point at which the outcome is anticipated; in terms of SET, 

when the currently elapsing interval te approaches the remembered interval t*. As the ratio 

of te to t* grows, expectancy of an outcome peaks. Meanwhile, the outcome is not expected 

at other times. Depending then on the time at which an outcome occurs, the effect will 

either be attributed to the cause (if the decision ratio is close enough a given threshold) or 

to random background processes (if it is not). Following a response (or observed cue), it 

then becomes a simple case of waiting to see if an effect occurs at the anticipated point or 

not, thus making causal attribution easier. From such a perspective, the process of causal 

induction depends not solely on the temporal proximity of the effect to its cause, but on the 

temporal proximity of an effect to its expected time of occurrence. In other words, the 

temporal predictability of the outcome will facilitate the attribution process. 

To outline a rudimentary computational account of this process, recall from Chapter 

1 the brief discussion of the ideas proposed by Krynski (2006), specifically that the 

likelihood of experiencing a given delay, where delay variability is assumed to be 

proportional to delay duration, could be modelled as a probability distribution, thus creating 
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a bias favouring short delays. Borrowing from this idea, consider that the expectancy of 

experiencing an outcome at any given point following the cause may likewise be modelled 

as a distribution of likelihood over time. In other words, the shape of this distribution will 

then correspond to expectancy; the expectancy of outcome occurrence will vary over time, 

with the distribution peaking at those points when outcomes are expected. In terms of SET, 

the distribution peak would be at t*. If the outcome occurs at or close to this point, then this 

provides evidence in favour of the assumed timeframe and hypothesized causal mechanism, 

while outcomes occurring at other times will offer no such support or may constitute 

disconfirmatory evidence. While this expectancy distribution may of course favour short 

delays a priori, a key assumption is that the shape of the distribution may be moulded 

through experience, such that repeated experience of a given temporal interval will cause an 

elevation of the expectancy distribution at that point in time. This provides the flexibility to 

permit any fixed interval to be detected and written to memory as the t* signal.  

The question is then raised as to why there should be any effect of delay if there is 

sufficient temporal regularity. From a rational perspective, if sufficient cognitive resources 

are assumed to be available, then a consistent 10s delay should offer just as much evidence 

in favour of a causal relation as a consistent 1s delay. This question may be addressed by 

appealing to the idea of Bayesian evidence integration and the consideration of dual 

expectancy distributions. Suppose that more than one expectancy distribution may exist, 

and that a first distribution maps the expectancy of an outcome following the cause, where 

that outcome is in fact due to that cause. Based on experience, the peak of this outcome 

may be over any particular delay, and the less variation in previously experienced delays, 

the narrower and higher this peak will be. However consider then a second expectancy 

distribution that maps the expectancy of an outcome occurring due to random background 

processes. As Krynski (2006) suggests, the spontaneous occurrence of outcomes may be 

modelled as a Poisson process, in which the probability density function of the waiting time 

until the next occurrence is an exponential distribution. Thus, as the interval following a 

candidate cause increases, so does the likelihood of the spontaneous occurrence of an 

outcome. In contrast, the likelihood of an outcome having occurred spontaneously becomes 

increasingly less likely as temporal proximity to the cause increases. Any given outcome 

may therefore be assigned two values; the likelihood of that outcome being due to the 
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cause, and the likelihood of that outcome being due to background processes. The evidence 

in favour of a causal relation, that is, in favour of h1 over h0, may be assessed by a ratio of 

these two values. Thus, if one was to directly compare a fixed short delay and a fixed long 

delay, while there may be a peak of the same shape over each delay on the first distribution, 

the height of the second distribution will be greater at the longer delay, and thus the ratio of 

expectancies will always be lower for longer delays relative to shorter delays that are both a 

priori equally likely. In summary, while a predictable delay may indeed result in facilitation 

of causal attribution through an increase in the likelihood of an outcome occurring at that 

particular delay being due to the cause, the corresponding likelihood of that outcome being 

due to random background processes is minimized with contiguity, further enhancing 

perception of causality.  

It would thus seem that this approach appealing to temporal expectancy is capable 

of embracing joint effects of both predictability and contiguity. While this approach is not 

novel in the sense that it adopts the idea of evidence integration, and thus is still essentially 

a Bayesian decision, this is the first account, as far I as I am aware, that would a priori 

predict a contribution of both delay extent and variability to causal inference.  

 

5.7 Methodological Concerns 

One important methodological aspect of the experiments presented in this thesis that 

might be brought to attention is the assumption that the psychological mean of the temporal 

intervals is equivalent to the arithmetic mean. To adequately compare variable and fixed 

delays, it was necessary to ensure that the mean of the intervals in the variable condition 

was (approximately) equal to that of the predictable condition, since a discrepancy would 

imply that the differences in predictability were confounded with different actual 

experienced delays. Indeed in all such types of experiment, there is bound to be some 

fluctuation of the mean experienced delay from the nominal programmed delay set by the 

experimenters (though an analysis of this data for my experiments showed a good degree of 

isomorphism between the two). However, it is not necessarily a given that the mean of 

these experienced intervals is functionally equivalent to the psychological mean. If 

subjective perceived duration of a temporal interval differs from the veridical duration, then 

the perceived mean duration will likewise differ from the recorded mean. This need only be 



 

 

157 

cause for concern for my studies if subjective duration is some non- linear function of actual 

duration. Wearden (1991) has shown that subjective time increases linearly as a function of 

real time in interval reproduction experiments. Perception of time is not always so accurate 

however; using a similar paradigm, Humphreys and Buehner (2010) found evidence to 

suggest that as intervals increase, our ability to accurately judge their duration diminishes 

and intervals may be perceived as shorter than they actually are. In psychophysics, the 

Weber-Fechner Law regarding the relationship between the physical magnitudes of stimuli 

and their perceived intensity suggests that time perception may in fact be logarithmic, 

endorsing Humphreys and Buehner’s results. This however would still not cause problems 

for the interpretation of the results presented in this thesis. According to this view, longer 

intervals would be increasingly underestimated. relative to shorter intervals, and the 

(subjective) net delay would thus be smaller when considering a short and long delay 

compared to two instances of a constant delay formed by the arithmetic mean of the short 

and long interval. Therefore this discrepancy would only work against the predictability 

hypothesis and make it less likely for predictable relations to draw higher ratings than 

variable ones. Since in fact predictable conditions were favoured, this is not really a 

concern; indeed in light of this consideration, the obtained findings are all the more 

noteworthy.  

5.7.1 Interactions of Predictability with Delay Extent and Background Effects 

One interesting feature of a number of the experiments presented here is that the 

occurrence of non-contingent outcomes independently of a response or cue does not 

seemingly render temporal predictability impotent as a guide to causality. It has been 

discussed previously that the occurrence of a background effect between a response or cue 

and its associated outcome can disrupt objective predictability, since the interval between 

the response or cue and the background effect will differ from the regular interval that 

would separated the response or cue and its generated outcome. Yet, significant effects of 

predictability were found in all the experiments including background effects, namely 

Experiments 1, 3, and 6B. Moreover, an interaction between predictability and background 

effects in Experiment 1 was not found, suggesting that even increasing the rate of 

background effects to a high level does not completely obscure temporal regularity. Yet at 

the same time, these experiments all showed weaker effects of predictability compared to 
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others where background effects were absent, with the most obvious comparison being 

between 6A and 6B. A full understanding of the dynamics of the relationship between 

temporal predictability and background effects could thus certainly benefit from further 

study. 

Throughout all experiments, no interaction between delay and predictability was 

found. Yet at the same time, trends in experiment 2A and 6A indicate that predictability 

might be more beneficial at longer delays than shorter delays, with the reverse being true 

for Experiment 6B. Perhaps it is unwise to make any speculation on the basis of non-

significant trends, but it is possible that a three-way interactive relationship may exist 

between predictability, delay and the presence or absence of background effects, such that 

in the presence of background effects, predictability exerts a greater influence at shorter 

delays, and a greater influence at longer delays in the absence of background effects. The 

underlying basis for this supposition is that the absence of background effects might make 

judging contingency trivial with shorter (but not longer) delays, rendering predictability 

information surplus to requirements (as was seemingly the case in Experiment 2A), while 

the presence of background effects might obscure predictability at longer (but not shorter) 

delays (as was seemingly the case in Experiment 6B).  

It should be remembered that all the studies presented here were very much 

exploratory in nature, and some trial and error was necessary in determining the best 

paradigm to probe for an effect of temporal predictability. Further research would be 

desirable, particularly investigating this thorny issue of background effects.  

 

5.8 Future Directions 

Far from being the final word on temporal predictability in causal learning, this 

thesis may be regarded as a starting point that hopefully will act as a springboard for future 

work investigating this interesting property. It is of course not a given that the results 

obtained here will necessarily generalize to other types of learning situations, and further 

research may consider alternative preparations. Indeed, the paradigm devised by Young and 

Nguyen (2009) has already suggested that interval variability may have different effects in 

multiple-cue causal decision making compared to elemental contingency judgment, and this 

potential avenue warrants further exploration.  
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As additional possibilities, one could, for instance, examine the effect of 

predictability in scenarios where the operational relationship between cause and effect is 

already clearly defined, with no ambiguity regarding which response generates which 

outcome. Such a scenario would provide further clarity as to whether temporal variability 

weakens impressions of causality by degrading the subjective perception of contingency or 

purely due to the uncertainty regarding effect timing. There is also work currently being 

conducted within the causal learning sphere concerning the effects of ‘hasteners’ versus 

‘postponers’. For example, Greville and Buehner (2007) demonstrated that in causal 

learning from tabular data, when contingency was identical in two scenarios, participants 

evaluated scenarios where the timing of the outcomes was brought forward as more 

causally effective than those where outcomes were more delayed. Lagnado and 

Speekenbrink (2010) meanwhile have investigated the effect of adding a hastener on causal 

learning in real time, but in fact found that hasteners actually exerted a detrimental effect on 

causal ratings. Lagnado and Speekenbrink interpreted this effect in terms of the greater 

variability in experienced delays that the hastener provided; their finding is thus in 

accordance with those of this thesis and lends further support to the predictability 

hypothesis. It would be interesting to see if comparable effects to those of hasteners and 

postponers could be achieved by applying ‘stabilizers’ and ‘destabilizers’ where by the 

timing of the effect is respectively made more or less predictable.  

One obvious feature of the experiments in this thesis is that they all deal with 

generative causes. A further future research question may then be: How might 

predictability affect preventive causes? This is perhaps difficult to anticipate, since without 

the occurrence of an outcome, there is no ‘marker’ to clearly delineate the interval between 

cause and a preventative effect. One cannot easily measure the interval between a response 

and an absence of an outcome. Only if the outcome was anticipated at a precisely defined 

moment, and then subsequently failed to occur, could a realistic attempt be made at such a 

measurement. Instead, when considering preventative causes, it would be easier to assess 

the impact of predictability in terms of rates. If a candidate cause was temporally extended 

beyond a point event to have a substantial duration, then occurrence of outcomes during the 

presence and absence of the cause may be either temporally predictable (that is, regularly 

spaced) or temporally variable. Current work by our lab is underway in contrasting fixed 
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and outcome rates when moving from one context to another, considering changes both in 

overall increases or decreases in outcome rate, as well as whether such rates are temporally 

predictable or unpredictable. Early results indicate firstly that, as would be expected, 

humans are sensitive to both the direction and extent of changes in overall outcome rate, 

and of novel significance, that a moderating effect of predictability is exerted such that 

judgments are less positive for generative and less negative for preventative causes.  

 

5.9 Conclusions 

Perhaps the most concise encapsulation of the findings of this thesis is the following 

sentence: Temporal predictability can play a role in causal learning and in elemental causal 

induction, this role has been characterized as facilitatory. Temporal predictability thus must 

be acknowledged and accommodated within causal theories. No existing causal model 

currently represents such information adequately, and this highlights the difficulty of 

constructing a model of causal learning in real time. Extensive and excellent work has been 

carried out by, for example, Cheng (1997), Griffiths and Tenenbaum (2005), and others, in 

providing models that have been enormously successfully in modelling human judgments 

from unambiguously available contingency data. However as the findings of this thesis and 

other works (e.g. Buehner, 2005) have demonstrated, to assume that configurations of 

events experienced in continuous time neatly and consistently assign themselves to cells in 

the contingency table is a fallacy.  

The initial goal of this thesis was to address a gap in the empirical study of causal 

learning, rather than to advance any particular theoretical account. However, the evidence 

from the experiments herein contained make a strong case for the rejection of a simple 

associative account for the effect of delay in causal learning. The findings do not rule out 

an associative account altogether, but the proposition that the detrimental effect of delays in 

causal learning are the result of a decline in associative strength in the same manner as 

response rates in animals decline with delayed reinforcement is seriously challenged by the 

collective results here. The findings of Experiment 7 underscore this dissociation and 

illustrate the difficulty in attempting to provide a unifying account of learning processes. 

Considering the results of this thesis as a whole, the evidence has steadily mounted in 

favour of the temporal predictability hypothesis, that humans infer a stronger impression of 
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causality when the interval separating cause and effect is fixed rather than variable. While 

constant delays may not universally promote causal learning, temporal predictability clearly 

facilitates elemental causal induction.  

Looking forward, the effects of temporal predictability demonstrated throughout 

this thesis, combined with the pervasive (and already established) effects of delay, suggest 

that an alternative conception of the contribution of time in causal induction may help to 

provide a better model for the learning process. I propose that, in line with the structural 

account, temporal information should be regarded in a similar manner to statistical 

information, which is to say that regularities in this input are used by reasoners to infer 

causal relations. Therefore, just as statistical regularity facilitates causal discovery, so does 

temporal regularity. The rationale behind this argument is that reasoners evaluate the 

likelihood of obtaining the observed data that is available to them within two hypothetical 

universes in a Bayesian decision. In one universe, there is a genuine mechanistic link 

between candidate cause and effect, and in the other there is not (and the effect happens 

solely due to random background conditions). Under the latter hypothesis, any form of 

cause-effect regularity is unlikely. If there is consistently a reliable timeframe of event 

occurrence such that cause and effect are routinely separated by the same temporal interval, 

then this provides growing evidence of a causal relation. 

The effects of time in causal learning may then be seen as fourfold. Firstly, as has 

been pointed out many times previously in the literature, causal relations with short delays 

are much easier to learn than those with long delays. If there is a temporal separation 

between cause and effect then establishing a causal link between them requires far greater 

cognitive effort; the events must be held in memory for longer and other events that occur 

in the intervening period must be ignored. Secondly, there is also the cognitive or pragmatic 

component of delay. In the case of a generative cause, if two different events produce an 

outcome but one does so more rapidly than the other, then that event may be judged as the 

stronger cause, particularly if considerations of utility figure in the evaluation of the 

relation. For instance, if a person has a splitting headache, then the sooner a medication can 

provide relief, the better. Thirdly, any temporal interval between cause and effect may be 

compared to an existing hypothesis about the causal mechanism and the expected 

timeframe of event occurrence. Evidence which conforms to this will strengthen the causal 
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relation, while that which deviates from expectation will weaken the impression. Fourthly, 

and which is the key novel insight provided by this thesis, evidence of a regular temporal 

interval between cause and effect might either facilitate the discovery of the statistical 

regularity between cause and effect, or may result in the reasoner modifying prior 

assumptions about the timeframe of the hypothesized relation (or both). Since such 

regularity is highly unlikely to occur by random chance, temporal predictability conveys 

representational evidence in favour of a consistent causal mechanism..  

The ultimate implication that I hope to impart from this thesis, beyond the empirical 

findings, is that causal induction involving directly experienced events occurs within real 

time, and time therefore must be an integral component of the learning process. Models of 

causal learning therefore crucially need to represent temporal information as well as 

frequencies or rates of causes and effects. Among popular perspectives on learning, two 

divergent approaches provide some key insights to this issue. Recent advances in 

associative learning theory, such as the temporal coding hypothesis, offer the flexibility to 

incorporate differential effects of time dependent on the learning situation, by positing that 

organisms learn temporal relationships along with associations, and that the nature of 

behaviour depends on this representational knowledge. Meanwhile, a cognitive perspective, 

distilling elements from causal model theory and the Bayesian structure approach, presents 

the threefold argument that causality is the product of a mechanistic connection between 

cause and effect, that such mechanisms reveal themselves through environmental 

regularities, and the integration of the available evidence both for and against the existence 

of a causal relation allows one to form mental representations of causal relations in the 

world around us. The willingness of researchers to remain open to exciting new findings in 

causal learning, under whatever theoretical tradition such work may have been carried out, 

together with the synthesis of ideas developed across different disciplines, from machine 

learning and artificial intelligence to conditioning and behavioural economics, may 

continue to offer new insights to the scientific community and further deepen our 

understanding of causality and causal learning. 
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