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Abstract

Most contemporary theories of causal learning identify three primary cues to causality;

temporal order, contingency and contiguity. It is well-established in the literature that a lack of
temporal contiguity — a delay between cause and effect — can have an adverse effect on causal
induction. However research has tended to focus almost exclusively on the extent of delay while
ignoring the potential influence of delay variability. This thesis aimed to address this oversight.
Since humans tend to experience causal relations repeatedly over time, we accordingly
experience multiple cause-effect intervals. If intervals are constant, it becomes possible to predict
when the effect will occur following the cause. Fixed delays thus confer temporal predictability,
which may contribute to successful causal inference by creating an impression of a stable
underlying mechanism Five experiments confirmed the facilitatory effect of predictability in
instrumental causal learning. Two experiments involving a different aspect of causal judgment
found no effects of interval variability, but two further experiments demonstrated that
predictability facilitates elemental causal induction from observation. These resuls diectly
conflict with findings from studies ofanimal conditioning, where preference for variable- interval
reinforcement is routinely exhibited, and a simple associative account struggles to explain this
disparity. However both a temporal coding associative account, and higher-level cognitive
perspectives such as Bayesian structural inference, are compatible with these findings. Overall,
this thesis indicates that causal learning involves processes above and beyond simple

associations.
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Chapter 1 — Current Perspectives on Causal Learning

1.1 Causality and Causal Learning — A brief introduction

The study of causality has a long and rich hstory in both philosophy and
psychology. In essence, causality is understood as the relationship between one event or
entity, the cause, and another event or entity, the effect, such that the second is recognized
to be a consequence of the first. In other words, causes produce or generate effects. Causal
learning, in the simplest sense, is how we come to learn that one thing causes another.

An expanded and more precise definition of causality acknowledges that causes
may be either deterministic, where the effect necessarily follows from the cause, or
probabilistic, where the cause alters the likelihood of the effect. Furthermore, causes may
be generative, producing or increasing the probability of occurrence of an outcome, or
preventative, inhibiting an outcome that would otherwise have occurred. Causality then
may be seen as the underlying laws that govern systematic relations between events.

Multiple rehtionships between multple entities or events may exist within a given
system. For example, a fire may produce smoke and heat, both of which are common
effects, while the fire itself may have resulted from natural causes (such as a bolt of
lightning) or from deliberate human action, both of which may be regarded as common
causes (or parents). Such an interconnected series of events is known as a causal network
(Pearl, 2000). Causal learning may thus be more broadly defined as the process by which
we construct and represent causal relations and networks, and how we use this information
in thinking, reasoning, judgment and decision-making The research presented within this
thess however focuses on the former, more fundamental question of causal learning — how

do humans learn that one thing causes another?

1.2 The central problem for causal learning
The ability to learn enabks us to adapt to our environment and, ultimately, to
survive. If learning has evolved as anadaptive mechanism, it is natural that the contentof
learning should reflect relations that actually exist in the universe (Shanks, 1995). Causal
learning endows us with the capacity to create representations that mirror the causal

structure of our surrounding environment. Creating such representations allows us to



understand how and why events occur, to predict the occurrence of future events, and to
intervene on the world and control our environment, directing our behaviour to evoke
desired consequences and achieve goals. Causal learning s thus a core cognitive capacity
and a crucial adaptive mechanism. The central question for learning theorists interested in
causality is how such knowledge is acquired.

Seeking an answer to this question has been a preoccupation of scholars throughout
the ages. Yet, this may, to the uninitiated, seem somewhat surprising. When asked “how do
you learn that one thing causes another?”” an immediate answer may spring to mind such as
“T see it happen and so I know how it works” (Schlottmann, 1999). One might then be
puzzled as to why this question has provided such a dilemma when the answer seems so
intuitively obvious. For example, when one kicks a ball, the causal connection between so
doing and the subsequent motion of the ball seems immediately apparent. Indeed, it has
been argued that such events involving physical collision of objects or “launching”
(Michotte, 1946/1963) may indeed give rise to direct causal perception (for an overview see
Scholl & Tremoulet, 2000).

Consider however some alternative examples. When one practices a skill such as
learning a musical instrument, there is typically a causal understanding that continued
practice will lead to improved performance. However we cannot directly see the
physiological changes to the neurons in the brain and muscle fibres in the body that practice
confers to improve the co-ordination and dexterity of the individual. Nor can the cellular
changes be observed when, for instance, a pathogen invades our body and causes illness, or
a drug is taken to treat that illness and eliminate the pathogen from our system How then,
have we come to learn causal relations such as that microscopic pathogens cause illness and
that certain drugs will eradicate these unwanted visitors, or that one can develop a skill
through practice?

Such unobservable causal relations need not always involve biological processes.
Hanging a wet cloth outside on a sunny day, for instance, will cause the cloth to dry, and
we may well be able to observe the cloth becoming drier, if we have nothing better to do.
What we cannot see however, is the mechanism involved, the transfer of energy, the water
molecules becoming more excited and eventually changing state from liquid to vapour as

they evaporate from the cloth. Moreover, we cannot directly perceive the laws ofphysics



governing the behaviour of molecules, such as in the evaporation of water, which
ultimately underpin this process. Such causal laws or relations are not entities in themselves
and are therefore imperceptible; we cannot see (nor hear, touch, smell or taste) a causal law.
Ifsuch laws are unobservable, then how can we ever become aware of them?

Although philosophical concerns regarding causality extend as far back as the days
of Aristotle, it was the Scottish empiricist David Hume (1711-1776) that first formalized
and addressed the “riddle of induction” that is exemplified by such scenarios as described
above. Hume reasoned that since our sensory modalities are not attuned to the detection of
causality per se, the existence of causal relations can only be inferred from the observable
evidence that is accessible to us (Hume, 1739/1888). Causal learning is therefore often
referred to also as causal inference or induction. It follows then that representations of
causal rehtions must be constructed on the basis of the sensory input we receive from the
world around us. Hume proposed that there are crucial ‘cues to causality’ that underpin
such representations, and identified the most important determinants as 1) temporal order —
causes must precede their effects; 2) contingency — effects must repeatedly and reliably
follow their causes; and 3) contiguity — causes and effects must be closely connected in
space and time.

These statistical and temporal relations between events form the bedrock of nearly
all theories of causal learning The primary goal of this thesis is to address the possibility of
an additional cue, namely temporal predictability, contributing to the process of causal
inference. At this point then, it seems appropriate to provide a brief overview of the thesis,

and outline how this question shall be approached.

1.3 Plan of the thesis
The remainder of this chapter will firstly explore in more detail each of the cues to
causality as suggested by Hume, and the rok each is considered to play in causal learning.
Following this, I shall briefly introduce three broad theories of causal learning, each of
which has its own particular interpretation of how humans and other agents use such cues
to learn about causal relations. This background is necessary for the eventual evaluation of
the empirical results that will be presented further on. Chapter 2 then fully introduces this

concept of temporal predictability and outlines how such a feature might be a factor in



causal learning. It is then considered how each ofthe theories of causal learning introduced
in Chapter 1 might accommodate any effects of this potential cue of temporal predictability
that may be subsequently identified. Chapters 3 and 4 then provide a series of experiments
designed to assess the empirical contrbution of temporal predictability, in both
instrumental and observational learning tasks. Finally, Chapter 5 provides a full discussion
of these results and considers their implications, as well as suggestinga new abstract model
to account for these results, before concluding the thesis by looking towards future research

that might be pursued along this same vein.

1.4 Hume's Cues to Causality

1.4.1 Temporal Order

Hume’s first cue of temporal order is perhaps the most fundamental, and its
importance is almost unanimously accepted across researchers; causes must occur prior to
the effects they produce. There are however a few notable clauses in this dictum. Firstly,
events may not always be observed in their causal order (see Waldmann & Holyoak, 1992).
For instance, during a medical diagnosis, a physician may detect a symptom before
identifying the disease that is causing it. Such situations are in fact crucial for
distinguishing between the predictions of different theories of causal learning as shall be
discussed in more detail further on in this thesis. Secondly, research has shown that new
information can influence the perception of events in the past, in what is known as
postdictive perception (Choi & Scholl, 2006). Nevertheless, in most contemporary accounts

of causal learning, temporal order is taken as a given necessity for causal inference.

1.4.2 Contingency

The vast majority of the literature on causal learning has focused on the second cue
of contingency, and how this information may be used to infer causality. Contingency is the
extent to which the effect is dependent (contingent) upon the cause, or in other words, the
degree of covariation between cause and effect. This encompasses both the extent to which
the effect follows the cause, and also the extent to which the effect occurs without the
cause, known as the base rate. Contingency then is the degree of statistical dependency

between the presence and absence of candidate causes and their putative effects.



While of course both causes and effects may take the form of stimuli whose
properties are on a continuum (such as the brightness of a light or the loudness of a tone),
most models of causal learning simplify the problem by defining cause and effect as either
present or absent. Researchers generally agree that the statistical information we receive
with regard to the presence or absence of candidate causes and effects is computed in some
way to assess the covariation between them, which can then form the basis for a causal
judgment. At the root of most covariation models is the 2x2 contingency matrix, as shown
in Figure 1.1, which describes in the most simple format the possible combinations in
which cause and effect can be either present or absent. Exactly how this information is
computed is still the subject of rigorous debate (Buehner, Cheng, & Clifford, 2003; Cheng,
1997; Cheng & Novick, 2005; Lober & Shanks, 2000; Luhmann & Ahn, 2005; White,
2005) and numerous models with varying degrees of complexity have been proposed to
account for this computation.

One of'the best known and widely used models is the AP statistic (Jenkins & Ward,
1965). In fact such is the popularity ofthis measure that it is often treated as an objective
measure of contingency and “contingency” is sometimes used as a synonym for AP. The
value of AP is given by the difference between the probability of the effect in the presence
of the cause, P(e|c), and the probability of the effect in the absence of the cause, P(e|—c). In
terms of'the cells ofthe contingency matrix, this is calculated as:

AP = P(e|c) — P(e|~c) = A/(A+B) — C(C+D)

There are of course different ways in which the cells of the table may be combined,
including among others the AD rule, calculated as (A+B) — (C+D). For an overview of a
number of such rules, see Hammond and Paynter (1983). More recently developed models,
for instance Cheng’s (1997) Power PC theory, have extended covariation-based models to
account for some of the particular phenomena of causal inference that AP alone cannot
represent. While the discourse continues over how covariation information is and should be
utilized in making causal inferences, all researchers would likely agree with the general
principle that the greater the contingency between cause and effect, the stronger the

perception of causality.
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Figure 1.1: Standard 2x2 contingency matrix, showing the four possible combinations of

cause and effect occurrence and non-occurrence.

1.4.3 Contiguity

The second of Hume’s tenets, contiguity, refers to the proximity of the cause and
effect both in space and in time — spatial and temporal contiguity. Ina classic illustrationof
the importance of contiguity, Michotte (1946/1963) used simple visual stimuli to
demonstrate the “launching” effect. A prototypical procedure began with two squares (X
and Y) separated from each other by a small distance. X then began to move in a straight
line towards Y. On reaching Y (so that their outer surfaces appear to make contact), X
stopped moving and Y immediately began to move along the same trajectory. Such a
sequence created the strong impression that X collided with Y and caused Y to move.
Reports from Michotte’s participants revealed that if Y began to move only after a dehy
(lack of temporal contiguity), or before it was reached by X (lack ofspatial contiguity), the
causal impression of X having launched Y was destroyed.

However, as alluded to earlier, a distinction may be drawn between causal
perception, which involves a direct interaction and visibke physical contact between the
partcipants in the causal relation, and causal induction, when the physical interaction
between participants is undetectable and the relation must instead be inferred (Cavazza,
Lugrin, & Buehner, 2007; Schlottmann & Shanks, 1992; Scholl & Nakayama, 2002). W hile
spatial contiguity remains of utmost importance for perceptual causality (as in the above
example of launching), in the case of causal induction (such as in the earlier example of
inferring the causes of disease), the necessity of spatial contiguity tends to be downplayed.

After all, many events can often be triggered remotely, such as flipping a switch at one end



of a room to cause a light to come on at the other end. Most contemporary research on
causal inference instead then focuses on temporal rather than spatial contiguity.

Relatively speaking, there has been far less enpirical attentiondevoted to contiguity
compared to contingency (although the disparity is gradually being redressed in recent
years). As a result, contiguity is kss well understood and its role in causal learning more
uncertain. According to Hume, contiguity between cause and effect is essential to the
process of causal induction. This supposition was affirmed in a systematic investigation by
Shanks, Pearson and Dickinson (1989). Their task involved judging how effective pressing
the space-bar on a keyboard was in causing a triangle to flash on a computer screen.
Participants were given a fixed amount of time to engage on the task and could gather
evidence through repeatedly pressing the space-bar and observing whether or not the
outcome occurred. The apparatus was set up to deliver the outcome with a 0.75 probability
when the space-bar was pressed. On each tral, ifan outcome was scheduled, it would occur
after a specific amount of time following the space-bar. This interval varied between
conditions from O up to 16s. It was found that as the delay increased, participants’ causal
judgments decreased in systematic fashion. In fact, conditions involving delays of more
than 2s were no longer distinguished as causally effective and were judged just as
ineffective as non-contingent control conditions.

Shanks et al.’s (1989) results provided evidence that delays have a deleterious effect
on impressions of causality, corroborating the assertions of Hume that contiguity is indeed
necessary for causal learning. Yet this idea seems at odds with everyday cognition. Humans
and other animals often demonstrate the ability to correctly link causes and effects that are
separated in time and learn causal relations involving delays of considerable length; over
days, weeks, even months ata time — an often cited exanple is the temporal gap between
intercourse and birth (Enhorn & Hogarth, 1986). And yet, Shanks et al. show a failure to
detect causal relations involving gaps of more than a few seconds. Clearly there must be
something that enables us to bridge such temporal gaps and infer delayed causal relations.

Einhorn & Hogarth (1986) proposed a knowledge mediation hypothesis. They argue
that rather than being essential, the function of contiguity is as a cue to direct attention to
the contingencies between events. According to this view, people can overcome the

requirement for events to be contiguous if there is some other reason why an attentional



link should form between these events; for example, if they have knowledge of some
existing mechanism that may connect one to the other. Some knowledge of human biology
might therefore enable the connection between intercourse and birth. According to this
view, if there is an expectation for a delayed mechanism, a temporal delay no longer
becomes an obstacle to causal inference. Thus prior knowledge can mediate the impact of
temporal delays.

Adopting this perspective, Buehner and May (2002) demonstrated the detrimental
effect of delay could be mitigated by invoking high-level knowledge in participants. In
judgment tasks where a cover story was used to make a delay between cause and effect
seem plausible (the effect was an explosion and the candidate cause was the launching of a
grenade), causal ratings were significantly less adversely affected by delays compared to
situations where the cover story made delay seem implausibke (where the effect was a
lightbulb illuminating and the candidate cause was pressing a switch). Further work by
Buehner and May (2004) showed that the effect of delay could be abolished completely by
providing explicit information regarding the expected timeframe of the causal relation.
Participants again evaluated the effectiveness ofpressing a switch on the illumination of a
lightbulb; however one group of participants were told that the bulb was an ordinary bulb
that should light up right away, while another group of participants was instructed that the
bulb was an energy-saving bulb that lights up after a delay. For this latter group there was
no decline in ratings with delay; delayed and immediate causal relations were judged as
equally effective. Indeed in some circumstances, delays even may serve to facilitate causal
attribution where an immediate consequence is incompatible with an expected mechanism
(Buehner & McGregor, 2006).

Additionally, Buehner and May (2003) also found that mediation of delay could
also be induced through prior experience; they found strong order effects such that where
conditions with immediate causal relations preceded conditions with delayed relations,
causal ratings were markedly lower compared to when delayed causal relation conditions
were presented first. Reed (1992) and Young, Rogers and Beckmann (2005) show that
filling an interval with a stimulus such as an auditory tone (known as “signalling”) can
likewise negate the impact of delays. Greville, Cassar, Johansen, and Buehner (2010) have

meanwhile shown that delays of reinforcement no longer impair instrumental learning



when the task environment highlights the underlying contingency structure. Such work
provides insight as to how causal inference can take place over longer time periods.
Neverthekss, most researchers agree that in the absence of such mitigating information as
described above, delays tend to have a deleterious effect on causal learning, and temporal
contiguity thus remains an important cue to causality. Barring a few exceptions, all other
things being equal, contiguous causes and effects elicit a stronger causal impression than

causes and effects separated by a delay.

1.5 Theories of Causal Learning

Despite a fairly general consensus over the importance of Hume’s cues to causality,
there is considerable disagreement with regard to the processes that underlie causal
inference. Moreover, no model of learning thus developed has thus provided a full account
of causal learning that encompasses its various idiosyncrasies. Dissatisfaction with existing
accounts has led to the dewvelopment of a veritable smorgasbord of learning rules and
models over the years, some with the intention ofaddressing specific facets of learning that
previous efforts could not account for, and some providing a more general framework.
Each is motivated from a particular theoretical stance, and each has had its successes and
shortcomings debated, some more favourably so than others. One long-standing measure,
AP, has already been briefly described. Others include the probabilistic contrast model
(Cheng & Novick, 1990); Power PC (Cheng, 1997); the pCI ruk (White, 2003); BUCKLE
(Luhmann & Ahn, 2007); knowledge-based causal induction (Waldmann, 1996); causal
support (Griffiths & Tenenbaum, 2005); and theory-based causal induction (Griffiths &
Tenenbaum, 2009). While these examples specifically address human causal learning,
models ofanimal conditioning have also been applied (with varying degrees of success) to
account for causal inference, including the Rescorla-Wagner model (1972); the SOP model
(Wagner, 1981); the Pearce-Hall (1980) and Pearce (1987) models; scalar expectancy
theory (Gibbon, 1977); and rate estimation theory (Gallistel & Gibbon, 2000b). Neither of
these lists are exhaustive and it is of course unfeasible to accommodate a detailed
explanation of all existing models of causal learning within this thesis. Indeed, a full
account of a single more complex framework such as theory-based causal induction could

easily stand alone as a doctoral thesis in itself (see, e.g., Griffiths, 2005). Instead it seens
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more appropriate to categorise these models based on their common ground, and consider
the general principles underlying each particular theoretical position. It is also worthwhile
to point out at this juncture that the work contained in this thesis examines only generative
causes. Accordingly the following review of existing models of causal learning will focus

on the generative form.

1.5.1 Conditioning and Associative Learning Theory

Learning in animals is measured by changes in behaviour. Indeed, it has been
argued that learning is, by definition, a change in behaviour and that such changes are the
only way by which learning can be measured (Baum, 1994). Stimuli that elicit a change in
the behaviour of an organism may be categorized as either reinforcers, which increase the
frequency of a behaviour, or punishments, which decrease the frequency of a behaviour.
The common conception of reinforcement or punishment s the delivery of a stimulus that
has a particular motivational significance or adaptive value to the organism; ether an
appetitive (pleasant) stimulus, such as food, or an aversive (unpleasant) stimulus, such as
shock, which are known as primary reinforcers (or punishments). Appetitive stimuli are
also often referred to as rewards, and the terms reward and reinforcer are sometimes used
interchangeably. However strictly speaking this is not entirely accurate. While appetitive
stimuli (rewards) generally serve as reinforcers and aversive stimuli as punishments, this is
not always the case; for instance in the case of a satiated animal, food will often fail to
increase the frequency of a behaviour and thus cannot be classed as a reinforcer. To clarify
then, reinforcement and punishment refer to the effects on behaviour, whereas appetitive
and aversive refer to the nature ofthe stimuli. Reinforcements and punishments are directly
responsible for the emergence and maintenance of new behaviour.

The experimental amalysis of animal learning and behaviour began with the
pioneering work of Ivan Pavlov (1849-1936) and Edward Thorndike (1874-1949) who
respectively developed the protocols of classical (Pavlovian) and instrumental conditioning
(see Pavlv, 1927; Thorndke, 1898). In a typical classical conditioning preparation,
subjects are presented with a neutral stimulus to which they normally would not respond
such as atone or light, referred to as the conditioned stimulus (CS), which is then routinely
paired with another stimulus that has some adaptive value (i.e. a primary reinforcer, such as

food) and that normally would elicit a response (such as salivation), referred to as the
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unconditioned stimulus (US). As conditioning progresses, a new pattern of behaviour is
seen to emerge such that the animal responds to the CS before the US is presented or even
if the CS is presented in isolation. This is known as the conditioned response (CR) and
tends to be similar in nature (though not always identical) to the unconditioned response
(UR) that would normally be elicited by the US. Pavlov’s dogs, for instance, after
repeatedly hearing a bell ring prior to being fed, developed a salivatory response to the
sound of'the bell. The presentationof the CS and subsequent delivery of the US in classical
conditioning are arranged by the experimenter and thus not dependent on the animal’s
behaviour. In an instrumental conditioning protocol meanwhile, a response is required from
the animal before the satisfying outcome is obtained. In a typical experiment, Thorndike
placed a cat inside a puzzle box, from which it could escape by triggering the appropriate
mechanism. Thorndike noted that the time taken for the cat to escape decreased over
successive trials, and thus concluded that the animal learned to perform the correct response
to evoke the desired consequence of escape. The consequence thus reinforces the response.
Conditioning is thus an example of associative learning. The animal associates the
CS with the US in classical conditioning, and the response with the reinforcer in
instrumental conditioning. Through associative learning, stimuli that would not themselves
directly evoke an unconditioned response may acquire a motivational function and thus
serve as secondary reinforcers. Virtually any stimulus has the potential to provide
secondary reinforcement, with money an obvious example in human society. Money in fact
serves as a generalized secondary reinforcer through assocmtion with many primary
reinforcers (since it can be exchanged for food, water, shelter, and even sex) which is why
it can exert such powerful effects on behaviour. Associative karning is one of the most
fundamental forms of learning and is ubiquitous in the behaviour of organisns, from
humans to slime mould (Latty & Beekman, 2009). The parallels between associative
learning and causal learning should be immediately apparent, and causal learning is indeed

susceptible to many of the same influences as assocmtive learning (Shanks & Dickinson,
1987), as shall now be further discussed.

1.5.1.1 The Rescorla-Wagner Model
Probably the most influential model of karning ever developed is the associative

model of Rescorla and Wagner (1972) which at time of writing has been cited in over 3500
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scholarly articles. The Rescorla-Wagner model (RWM) has enjoyed such tremendous
success due to its simplicity, elegance, and moreover due to its ability to account for
various phenomena of conditioning such as blocking (Kamin, 1969). The model was
developed specifically as an account of Pavlovian conditioning, and specifies the change in
associative strength between CS and US on a given conditioning trial according to the
following equation:
AV =af(L-Z2V)

where AV is the change in associative strength, « is the salience of the CS, £ is the learning
rate parameter for the US, A is the current magnitude of the US, and XV is the current level
of association between the CS and US (summed over previous trials) for each CS present
on the current trial. More simply, we may term A as the actual outcome and XV the
expected outcome. The RWM is thus a trial-based error-cormrection model where the animal
learns through surprise, in other words through the discrepancy between what is expected to
happen and what actually happens.

A trial on which the US follows the CS serves to increase associative strength
between them with successive CS-US pairing resulting in (increasingly smaller)
increments in associative strength until the maximum level of association is reached, and
learning has reached asymptote. If the US is absent on a given trial, then A is 0 and there
will be no increment in associative strength. Indeed if some conditioning has already taken
place, £V will be positive and AV will hence be negative, producing a decrement in
associative strength. Nonreinforcement thus weakens an existing association. Associative
learning then, as specified by the RWM, is sensitive to the statistical relation or
contingency between CS and US just as the contingency between cause and effect shapes
causal inference.

One of the most notable successes of the RWM was its ability to account for cue
competition. This phenomenon was first observed by Kamin (1969) who demonstrated a
“blocking” effect in aversive conditioning with rats. In what is now the standard blocking
paradigm, the subject mitially received CS; = US in an initial training phase before
undergoing subsequent training with a compound stimulus CS;CS, = US (in Kamin’s
experiments, the US was a shock, CS; a light, and CS; a tone). At test, subjects exhibited a

reduced CR to CS; compared to control animals that did not experience the initial training
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with CS; alone. Learning the CS; = US association thus appeared to block learning about
CS,, providing clear evidence of competition for associative strength between cues.
Blocking is easily explained by the RWM. Since by the end of phase 1, the US is perfectly
predicted by CS;, there is no discrepancy between the expectation and outcome. In phase 2
then where CS; is presented, A is equal to XV and hence AV is 0. CS, thus fails to acquire
associative strength. Despite a clear predictive relationship between CS; and the US in the
second training phase, CS, is redundant as a predictor because CS; has already been
established as a perfect predictor of the US. The blocking effect thus further emphasized

the sensitivity of conditioning to the statistical rehtionship between events.

1.5.1.2 The Role of Time from an Associative Perspective

In addition to the statistical rehtions between cues and outcomes, conditioning is
also highly sensitive to the temporal amrangement of events. Indeed, prior to the
development of models such as the RWM, contiguity was held to be the dominant principle
of learning in traditional associative theories (Gormezano & Kehoe, 1981), with the “Law
of Contiguity” stating that if two events occur simultaneously, then the reoccurrence ofone
event will automatically evoke a memory of the other. In other words, contiguity was
considered to be both necessary and sufficient for the formation of an association. Though
this assertion has since been toned down in light of new evidence (as shall be discussed
further on), contiguity remains a central determinant for conditioning.

The importance of contiguity has been made evident through the comparison of
different conditioning protocols. In what is known as delay conditioning, the CS will first
be presented and the US then delivered either while the CS is still present (so CS and US
overlap) or else immediately following CS termination. The delay between CS and US
onset is referred to as the interstimulus interval (ISI). Meanwhile, there is an interval
separating CS termination and US onset, this is known as trace conditioning, as
conditioning is assumed to rely on a trace memory or representation of the CS, since it is no
longer present. The terminology can sometimes be confusing — in trace conditioning there
is a delay separating CS and US, while in delay conditioning the US paradoxically follows
the CS without dehy. The “delay” in the term instead refers to that between CS and US
onset, and serves to distinguish from simultaneous conditioning where CS and US onset is

concurrent. It is well-established that (generally) trace conditioning is less effective than
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delay conditioning and that long-delay conditioning kss effective than short-dehy
conditioning, with the CR taking longer to develop (Solomon & Groccia-Ellison, 1996;
Wolfe, 1921) and being diminished either in magnitude (Smith, 1968) or in rate (Sizemore
& Lattal, 1978; Williams, 1976). Indeed with longer trace intervals, conditioning can fail to
occur altogether (Gormezano, 1972; Logue, 1979), though this is highly dependent on the
nature of the stimuli entering in the rehtionship, as the following paragraph shall explain.
The influences of temporal contiguity can be incorporated into modek of conditioning such
as the RWM by adjusting the value of parameters suchas « and £.

Yet, just as with causal learning, there are exceptions to this contiguity principle.
The blocking effect, in addition to showing the sensitivity of conditioning to the statistical
relationship between events, demonstrated that contiguity alone was not sufficient for
conditioning to occur. Although a cue and an outcome may occur contiguously, an
association between the two will not be learned if the cue is redundant as a predictor.
Furthermore, there is evidence to suggest that a lack of contiguity is not necessarily a
barrer to associative learning. In studies by John Garcia and colleagues involving
conditioned taste aversion (now commonly dubbed the Garcia effect), rats were given a
gustatory stimulus (such as flavoured water) followed by the inducement of nausea
(through administration of x-rays, or substances such as lithium chloride or apomorphine
hydrochloride), and subsequently demonstrated avoidance reactions to the gustatory
stimulus. Importantly, this conditioned taste aversion was readily established even when the
onset of musea is delayed by more thanan hour after the gustatory stimulus (Garcia, Ervin,
& Koelling, 1966). In an extension of this work, Schafe, Sollars and Bernstein (1995) have
shown that rats fail to acquire conditioned taste aversions when the CS-US interval is very
brief Such results indicate that not only is contiguity not always essential for conditioning,
but it can actually prevent conditioning in certain circumstances. These findings have been
explained by postulating an innate bias such that certain cues and consequences are more
readily associable, with these hard-wired preferences presumed to have arisen through
natural selection. Garcia and Koelling (1966) indeed demonstrated that particulr outcomes
tend to become associated with particular stimuli, even when other stimuli are presented
concurrently and thus have equal predictive value. While rats in their experiments

associated internal malaise with gustatory stimuli, they associated external pain (e.g.



15

electric shock) with contextual cues such as tones or lights rather than a substance they
consumed (demonstrated in their subsequent behaviour).

Broadly speaking then, the core factors of contingency and contiguity appear to
exert remarkably similar influences on both the acquisition of associations in classical and
instrumental conditioning and on human judgment of causal efficacy. These parallels have
led to speculation that causal inference and condtioning are governed by the same
underlying processes, and many researchers have attempted to reduce causal inference to
associative learning (Allan, 1993; Alloy & Tabachnik, 1984 ; Dickinson, 2001; Dickinson,
Shanks, & Evenden, 1984; Le Pelley & McLaren, 2003 ; Shanks & Dickinson, 1987; Van
Hamme & Wasserman, 1993). In an associative account of causal learning, the cause is
mapped to the cue (CS) and the effect to the outcome (US). The strength of a causal
impression is then a direct reflection ofthe acquired assocmtive strength between cues and
outcomes, which is continually updated over successive learning opportunities or trials. The
demonstration of blocking in human contingency judgment gave further credence to this
idea (Shanks, 1985), although a modified RWM (Van Hamme & Wasserman, 1994) is
required to encompass backwards blocking (in which phase 1 and phase 2 are switched so

subjects are first trained with the compound stimulus).

1.5.1.3 Difficulties for an Associative Account of Causality Judgment

Associative learning theory recognises that the extent of delay that can be tolerated
for an association to be learned between stimuli depends on the nature (e.g. the physical
attributes) of those stimuli (Shanks, 1993). However, while a bias in the associability of
stimuli is plavsible with regard to a few evolutionarily significant relations, such as that
between taste and nausea, one may often encounter delayed mechanisms that do not have
any such connection to physiological processes. In human society in particular, day-to-day
life leads us to interact with many artificially developed mechanisms that are not found in
the matural environmentand thus ©r which innate knowledge could not possibly have been
fostered through natural selection. How then can temporal gaps be bridged in these cases?
Associative accounts of causality judgment suggest that stimuli may have differential
associative weights that have been transferred from previous learning sessions, which
indeed may account for order effects pertaining to contiguity (Buehner & May, 2003).

However associationism cannot account for different interpretations of identical evidence
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achieved through abstract concepts, such as implicit manipulation oftimeframe assumption
(Buehner & May, 2002). Thus, it is appropriate to consider other theories which
acknowledge other means whereby the connection between a candidate cause and a

temporally distant effect maybe brid ged.

1.5.2 Causal Mechanism and Power Theories

A significant aspect of traditional associative theories is that they inherited Hume’s
empiricism; they are data-driven or ‘bottom-up” in the sense that only the observable
properties of stimuli such as contiguity are considered to contribute to learning. However, a
number of findings have proven problematic for this empiricist approach applied to causal
inference. People appear to have pre-existing conceptions both about the types of stimuli
that are able to elicit certain outcomes and the timeframes involved in such processes, and
can use this knowledge to guide causal inference (Buehner & May, 2002, 2004; Einhorn &
Hogarth, 1986). Purely bottom-up accounts do not allow the scope for influences such as
higher-level knowledge on learning and therefore struggle to explain such effects where
there i1s no plausible prior associability bias. Alternatives to the empiricst approach
therefore embrace instead the philosophical position of Immanuel Kant (1781/1965), who
proposed that people have intuitive ideas about causality that provide a framework for
learning new relations. That is, causal relations need not be derived solely from empirical
observation; inference may also be facilitated or constrained by top-down information.

Causal mechanism or power theories of causal learning stem from the Kantan
rather than the Humean perspective. The central underlying principle of this view is that
successful causal inference hinges upon belief in or knowkdge of a causal mechanism — a
specific process connecting causes to their effects and thus creating an intuition of necessity
between the two (Ahn, Kalish, Medin, & Gelman, 1995; White, 1989). According to this
view, causes are not just passively followed by effects, but rather actively generate their
effects by exerting their causal power. This may be seen as the transmission of force,
energy or some other property from one element to another (Peter A. White, 2009). This
position s motivated by the same cautionary mantra that is drummed into any aspiring
scientist or statistician; that correlation or covariation does not necessarily imply causation.
The key contribution then of mechanistic knowledge is in making the mental leap from an

observed covariation to the inference of a causal relation. It is therefore considered that
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people do not infer causality unless they know of a plausble mechanism by which these
events could be linked. Such a perspective has however been criticised as being hamstrung
by circularity: If top-down assumptions about mechanism govern causal inference, where

do such assumptions come from in the first place?

1.5.2.1 The Power PC Theory

Cheng (1997) attempted to synthesize the ideas of Hume and Kant, and refine the
causal power account, by proposing that empirically observable data (in the form of
contingency information) serves as the initial input for causal learning, while prior
knowledge then guides inferences drawn from this data. The prior causal knowledge
assumed here is general rather than specific. That is, mechanistic knowledge that is initially
acquired from empirical observations can then subsequently then be generalized to novel
learning situations (see Liljeholm & Cheng, 2007), hence overcoming the problem of
circularity.

According to Cheng (1997), observed deviations in human causal judgments from
measures suchas AP are due to fundamental assumptions that people make about the nature
of causality that go beyond mere covariation, such the assumption of causal power. Such
deviations in judgement include sensitivity to changes in the base rate of the effect, P(e|—c),
when AP is constant. To address these shortcomings of AP, Cheng advanced the power
theory of the probabilistic contrast model, usually shortened to PowerPC. This approach
focuses on the generative (or inhibitory) power of the cause, that is, its capacity to produce
(or prevent) the effect independently of all other potential causes. Causal power is
computed as:

AP/ 1 — P(e|~c) for generative causes

—AP / P(e|~c) for preventative causes
Causal power is thus further distinguished from covariation models by making different
predictions from identical contingency data depending on whether the cause is assumed to
be generative or preventive, providing greater flexibility. One well-documented phenomena
of causal induction that covariation modek cannot account for but that is predicted by
Power PC is the problem of ceiling effects. For example suppose one wished to test
whether a new type of medication produced nausea as a side effect. If every participant

experienced nausea after taking the medication, P(e|c) = 1 and the scientist might conclude
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that the medication was a very strong cause of mausea. But suppose every participant was
feeling nauseous to begin with; the results would then be uninterpretable; the participant
might well have developed nausea after taking the medication but since they were already
feeling nauseous this cannot be evaluated. AP in this case would be zero; P(e|c) — P(e|~c)=
1 — 1 =0, therefore predicting that the medication would be judged as noncausal. In
contrast the Power PC model, taking the generative form of the equation, would not return
a value insuch a case, as the equation attempts to divide by zero. Power PC thus correctly
predicts that humans in such a situation would refrain from making a causal judgment
rather than concluding that the medication does not cause nausea.

In similar fashion, consider again the above clinical trials scenario but instead
assume that the medication was supposed to prevent (or relieve) nausea. Since none of the
partcipants experienced relief, one can, in this case, rationally conclude that the medication
was ineffective as a preventive cause of nausea. The predictions of causal power and AP
here then are equivalent for the preventive case but differ in the generative case when P(e|c)
= P(e|~c) = 1. Meanwhile, ifthe base rate was zero and once again P(e|c) = P(e|~c), causal
power predicts that humans will be unable to make a causal inference in the preventive case
(as there is no opportunity for the cause to exert its effect) but will accord with AP in the
generative case.

Predictions of the PowerPC model thus more closely mirror human judgments than
AP and have proven resilient to challenges from other researchers (see Buehner et al,
2003). However, although PowerPC emphasizes the distinction between causation and
covariation, causal power is still computed using covariation information — indeed, the AP
statistic itself forms part of the Power PC model. The causal power perspective therefore
makes the assumption that an observed configuration of causes and effects can be
unambiguously interpreted to populate the cells of the contingency table. However, this is
not necessarily a given Furthermore, the model does not explicitly represent temporal

information.

1.5.2.2 The Role of Time from Covariation Perspectives
From the causal power view and relted perspectives, time s not bestowed with a
partcularly privileged role in causal learning. Temporal information is instead used to

determine how ewvents experienced in the input are assigned to the cells of the 2x2
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contingency matrix. Provided that this information can be discerned from the available
evidence, contiguity is not required to compute contingency. If there is temporal separation
between cause and effect, the assumptions regarding mechansm and the expectation of
timeframe determines how these events are interpreted. Ifa delay is anticipated, then the
effect will be attributed to the cause, and constituting a single case of cell A (¢ ¢, or e|c),
as shown in Figure 1.2, strengthening the causal impression If instead a contiguous
mechanism is expected, a delayed pairing will be interpreted as one case of cell B (c>—e
or —e|c) and one case of cell C (¢ e or e|—c), weakening the causal impression. This is
known as the attribution shift hypothesis (Buehner, 2005). Contiguity is thus only a
necessity if a contiguous mechanism is expected; meanwhile longer delays can be tolerated
if a slower mechanism is hypothesized. Longer intervals however also increase the
likelihood of intervening events occurring between action and outcome, which compete for
explanatory strength and place greater demands on processing and memory resources.
Delays thus introduce added uncertainty as to whether a given effect was generated by the
cause in question or whether it was produced by some other mechanism. This can mean that
causal learning with delays may sometimes be problematic even when the anticipated

mechanism means delays are plausible.
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Figure 1.2: The effect of attribution shift in parsing anevent stream with a specific
timeframe assumed : ¢ = e intervals that are longer than the temporal window
simultaneously decrease impressions of P(e|c) and P(—e|—c) while increasing impressions

of P(e|~c) and P(—e|c).

The causal power and mechanism theories thus reflect the view that learners adopt a
more active approach to inferring causality. Rather than just passively processing
information, we seek to impose structure on data, using heuristics and prior knowledge to

constrain causal inference. Such mechanistic beliefs are key to avoiding learning spurious



20

relations. We do not, for example, learn that the crowing of a rooster causes the sun to rse,
despite the fact that former event reliably signals the latter, since we know of no plausible
mechanism by which the rooster crowing could influence the rising of the sun. A key
strength of such approaches to causal karning is thus the flexibility to allow for top-down
influences such as prior knowledge to assist in the comprehension of empirical sensory

data. From this perspective then, causal learning is more than the mere sum of its parts.

1.5.3 Causal Models and Structure Theories

A third perspective oncausal learning embraces a framework developed in statistics
and computer science — probabilistic graphical models (Glymour, 2001; Pearl 2000;
Spirtes, Glymour, & Schienes, 1993). As the name suggests, this framework utilizes graphs
to model probabilistic relations in a simple yet effective manner, in which variables such as
causes and effects are denoted by nodes, and causal connections are indicated by arrows
linking these nodes. These models are also commonly referred to as causal Bayesian
networks (often shortened to Bayes nets), since their application utilises principles of
Bayesian probabilistic inference. Named after its original proponent Reverend Thomas
Bayes (1702-1761), Bayesan inference is a form of logical reasoning whereby the
probability ofa hypothesis is assessed by specifying some prior probability which is then
updated in the light of new, relevant data.

Figure 1.3 shows a graphical model expressing the causal relation “X causes Y.
This is a prototypical example of a directed acyclic graph (DAG); directed in the sense that
X and Y are connected by a directed amrow from X to Y, rather than by an undirected link;
and acyclic as there is no corresponding arrow directed from Y to X, and so a path cannot
be traced from one node back to itself. DAGs are the most popular means of expressing
causal relations in a graphical model, and the intuitive simplicity of these models makes

thema effective tool for representing complex causal networks.

Figure 1.3: Directed acyclic graphrepresenting causal influence of Xon Y.
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The fact that the causal arrow extends from X to Y with no symmetrical link from 'Y
to X reflects causal directionality, such that X causes Y but Y does not cause X. A crucial
component to causal understanding is that causes produce their effects and not vice versa,
such that an alteration to X will consequently produce an alteration n Y, but that an
alteration to made directly to Y itself will not produce an alteration in X. The representation

of directionality is one of a number ofkey advantages afforded by Bayes nets.

1.5.3.1 Causal Model Theory

Waldmann and Holyoak (1992, 1997) argued that principles such as directionality
cannot be captured by mere associations, and pinpointed this failure to specify causal
direction as a major shortcoming of associative theories ofcausal learning. Waldmann and
Holyoak instead advocated a causal model theory, according to which humans have a
strong tendency to learndirected links from causes to effects, rather than vice versa, in line
with how information is represented in a causal graphical model. Importantly, this remains
the case even when an effect is observed temporally prior to the cause — for example, when
one sees smoke before one sees the fire that produces it. In such a case, the smoke is still
correctly identified as an effect ofa temporally precedent cause, the fire, even if the fire is
seen only subsequently, or remains unseen. In other words, humans construct causal models
that correspond to the veridical temporal order rather than the perceived temporal order.

Inferring the presence of fire from the observation of smoke is an example of
diagnostic inference. Waldmann and Holyoak (1992) drew special attention to the idea that
people appear able to reason both predictively, from causes to effects, or dagnostically,
from effects to causes. In a typical conditioning preparation, the order of stimulus
presentation mirrors the temporal order of a predictive causal model. Cues (input)
correspond to causes, and effects to outcomes (output). According to an associative account
of causal learning, the strength ofa perceived causal relation is assumed to be a reflection
of the associative strength between cues and outcomes (Van Hamme, Kao, & Wasserman,
1993). However as Waldmann and Holyoak illustrate, in diagnostic inference the input-
output sequence is reversed with respect to the true causal model. In an associative account
of causal learning, effects would be assigned to the input layer and causes would be

assigned to the output layer, based on the order of observation ina diagnostic causal model.
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Meanwhile according to causal-model theory, the causal order is preserved and people
should reason from effects to causes.

This distinction between associative and causal model theory has important
implications regarding stimulus competition. As Kamin’s (1969) blocking effect
demonstrated, cues compete for associative strength in conditioning, and the success of the
RWM is in part due to its ability to elegantly explain blocking. Associative theory makes
the same predictions of cue competition regardless of whether cues represent causes or
effects. Causal model theory meanwhile argues in favour of competition between causes
rather than cues. To illustrate, consider a common-effect model, where two causes jointly
influence the same effect — as an examplk, where both rain and a water sprinkler are
potential causes of the ground being wet. Suppose one knows that it is raining, one would
then predict the ground to be wet. Subsequently finding out that the sprinkler had been
turned on would not affect this prediction; the ground would still be wet. The sprinkler then
is redundant as a predictor if we already know that it is raining and if rain has been
established as a reliable predictor. Cues thus compete for explanatory strength as causes in
predictive inference. Instead then, consider a common-cause model, where both the ground
being wet and people using umbrellas may be attributed to the common cause of rain.
Noticing that the ground is wet might lead us to infer that it has been raining. Here
however, noticing a second effect, that people are carrying umbrellas, would not weaken
our impressionof the first link between the rain and the ground being wet. Thus there is no
competition between effects. In contrast, according to an associative model, here the effects
would constitute cues, and the presence of the first cue should block learning about the
second. Using the blocking paradigm, Waldmann and Holyoak (1992, 1997) demonstrated
that human subjects indeed made judgments consistent with causal model theory rather than
associative theory (see also (Booth & Buehner, 2007; Waldmann, 1996, 2000).

The above examples depend on prior knowledge of the causal models in questions.
Causal model theory then argues in favour of an integrative process utilizing both empirical
data and existing knowledge, rather than a purely associative mechanism. In this regard,
causal model theory is remarkably similar to the causal power approach advocated by
Cheng (1997), described in the previous section. The defining characteristic of model-based

theories s instead their basis on the Bayes nets framework. Causal model theory initially
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focused on how people use causal models in reasoning and how different assumptions
about causal structure may lead to different predictions from identical data sets. Waldmann
and colleagues did not however attempt to specify how causal models may be used to
provide a computational account of how empirical data such as contingency and contiguity

combines in causal inference.

1.5.3.2 Bayesian Structure Learning

This challenge was taken up by Tenenbaum and Griffiths (2001, 2003; Griffiths &
Tenenbaum, 2005) who pointed out the inadequacy of existing normative models such as
AP and causalpower to account for various aspects ofcausal induction (including effects of
sample size and non- monotonic effects ofbase rate onjudgments). They instead proposed a
Bayesian “causal support” model to address these shortcomings. At the heart of this
framework 1s the notion that causal induction involves two kinds of learning, identifying
causal structure and assessing causal strength. In other words, deciding whether there exists
a causal relationship (structure), and if so, the extent of any suchrelationship (strength).

Structure learning is the task ofidentifying the causal model and its functional form,
as may be represented by a causal graphical model. Prior knowledge of how the world
works is used to generate a “hypothesis space” of plawsible causal models that could
account for observed sequences of events (Tenenbaum & Griffiths, 2003). The simplest
case of causal induction is learning the relationship between a single candidate cause and a
single effect, where values of cause and effect are constrained such that both may be either
present or absent on a given occasion (and the relationship may thus be represented in the
contingency matrix). Griffiths and Tenenbaum (2005) termed this as elemental causal
induction, a moniker that shall be adopted here henceforth. Structure learning in elemental
causal induction then is essentially a binary decision between two hypotheses, as shown in
Figure 1.4: ho, in which there is no causal relation between cause ¢ and effect e, and e
instead occurs solely due to the influence ofrandom back ground processes b; and /;, where
¢ has the generative power to produce e (and b still also produces e).

The strength of a causal relation may be denoted in a causal graphical model by the
use of parameters, such as wo and w; in Figure 1.4, where b produces e with probability wg
and ¢ produces e with probability w;. Griffiths and Tenenbaum (2005) argue that both

causal power and AP are estimates of the parameter w; and so are measures of causal
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strength. The graph 4, (that a relationship exists between ¢ and e) is therefore assumed in
both models. The different predictions of the two models results from different
parameterization ofthe graph. Causal power (for generative causes) corresponds to a noisy-
OR parameterization, where parameters have independent opportunities to produce the
effect. AP meanwhile corresponds to a linear parameterization, where the parameters

interact (see Pearl, 1988, for further details).

@ ho hy
FRS

Figure 1.4: Directed acyclic graphs representing the two basic hypotheses that are

compared in ekemental causal induction.

1.5.3.3 Causal Support

Griffiths and Tenenbaum (2005) argue that the primary goal of causal inference is
the more fundamental task ofrecovering causal structure, as it must be determined whether
a causal relationships exists before the strength of any such relationship can be assessed. In
Bayesian structure learning, plausible causal structures within a hypothesis space are
evaluated in terms of the probability of obtaining the current data set given that structure,
P(Dh;). This value can be calculated by integrating over parameter values (see Griffiths &
Tenenbaum, 2005, and Cooper & Herkowitz, 1992, for computational details). In elemental
causal induction, there are only two causal models in the hypothesis space, 4y and h;.
Structural inference in elemental causal induction is then made by assessing the likelihood
of obtaining the observed data under each ofthese two hypotheses, formalized as a decision
using Bayes’ rule:

P(D|hy)

support= log m
0
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Causal support is thus a measure of the extent to which 4; provides a better account of the
given data than 4o. According to Griffiths and Tenenbaum, causal support may be likened
to a significance test of a hypothesis for which causal power is the effect size measure.
Griffiths and Tenenbaum (2005) went on to present five experiments demonstrating
the superiority of causal support over AP and causal power in terms of providing a better fit
with human judgments of causality across a number of different learning situations.
However, causal support is at its heart a probability based model, and Griffiths and
Tenenbaum acknowledge that it does not specifically address the dynamics of elemental
causal learning in continuous time. Although causal support does a tremendous job of
accounting for how human causal judgments are obtained from contingency information,
such information is not always clearly defined. Assigning combinations of events to the
cells of the contingency matrix is a non-trivial task, particularly when delays are involved,

but causal support does not provide a computational account ofthe effects of contiguity.

1.5.3.4 A Bayesian Perspective on Contiguity

In an updated computational framework entitled theory-based causal induction,
Griffiths and Tenenbaum (2009) adwocate two central concepts. Firstly, that people
approach the problem of causal induction with prior knowledge, in the form of abstract
causal theories, that emable the generation of hypothetical causal models for a given
situation. The principle of Bayesian statistical inference is then used to select the best
model. Secondly, the framework emphasizes the importance of coincidences, such as in
patterns of spatial and temporal contiguity. Griffiths and Tenenbaum (see also Griffiths,
2005) argue that humans are attuned to the detection of such coincidences. Since
coincidences are by definition those events that are improbable, or in other words unlikely
to happen due to chance, then coincidences provide support for a causal relationship.
Indeed, noticing conspicuous coincidences has often led to causal discovery throughout the
history of science.

Patterns of coincidence in time and space provide very strong evidence for a causal
relationship. We will all have experienced, from time to time, the illusion of causality that
strong contiguity will confer. For example, if we drop a glass on the floor and suddenly all
the lights go out, we briefly experience the impression of the former having caused the

latter, although of course we know that there is no mechanism by which this could have
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occurred and so dismiss this coincidence as spurious. Experimental evidence of illusory
correlations produced by strong contiguity in the absence of supporting statistical
information has been provided in the literature (Bullock, Gelman, & Baillargeon, 1982;
Fiedler, 2000; Mendelson & Shultz, 1976). Of course, such apparent “coincidences” are
often not merely coincidental but in fact are the product of a genuine underlying
mechanistic causal connection.

Bayesian accounts are somewhat obscure with regard to the precise means by which
contiguity contributes to causal inference. Krynski (2006) attempted to outline how the
short delay advantage may be explained from a Bayesian perspective, by considering that
the temporal delays between cause and effect may be modelled as a probability density
function, characterized as a gamma distribution. The height of the distribution on the y-axis
for a given point on the x-axis corresponds to the likelihood of observing that particular
delay. Since short delays are inherently less variable than long delays, the peak of the
distribution is narrower and higher for short delays. Krynski then goes on to argue that a
rational approach to causal inference is to integrate over all possible delays, meaning that
the likelihood ratio is higher when the temporal intervals are shorter, thus providing more
evidential support for a causal relation. This account of the short delay advantage bears
striking functional similarities to an associative account, although obviously the two are
conceptually very different.

However, the Bayesian structural account does not necessarily predict a uniform
advantage for contiguity. Rather the timing of events may place constraints onthe plausible
causal models in the hypothesis space. Certain temporal patterns are more characteristic of
certain causal models than others. In elemental causal induction, the temporal distribution
of events may either constitute evidence in favour of a causal mechanism or may indicate
that background processes are a more likely candidate for the observed temporal pattern.
Griffiths and Tenenbaum (2009) chose a very specific example to demonstrate the effectof
patterns of temporal coincidence, based on earlier work examining how people use
temporal information to infer hidden causes (Griffiths, Baraff, & Tenenbaum, 2004). The
experiment presented a fictitious scenario via a computer simulation involving a set of cans
arranged on a table, each containing an explosive compound called Nitro X. Participants

were informed that because of the instability of this compound, spontaneous combustion
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might produce an explosion of a can at any given moment, and further, that any exploding
can would propagate unseen shock waves which may in turn cause neighbouring cans to
explode in a chain reaction. The task requred participants to decide whether a particular
temporal pattern ofexplosions was due to spontaneous combustion, explosion of a neatby
can producing a chain reaction, or some other unseen cause. Results indicated that when a
suitable time lag separated one can’s explosion ffom another, a causal chain was correctly
inferred. When several cans exploded simultaneously however, a hidden alternative cause
was assumed (such as a jolt to the table), thus demonstrating how temporal coincidences
influence model selection. Griffiths and Tenenbaum provided a fairly compkx
computational account of these particular effects, but did not provide a more general-level
computational model for the effects of temporal distributions in causal induction.
Neverthekss, the Bayesian structure approach offers considerable advances in accounting

for and modelling the effects of contingency and contiguity in human causal learning

1.5 Chapter Summary

Causal learning is a core cogniive capacity that enables us to understand, predict
and control our environment. Causal relations themselves are not directly perceptible by
our sensory systems, and thus they must be inferred from patterns of evidence in the
information that reaches us. Cues such as contingency and contiguity between putative
causes and effects tend to foster impressions of causality between those events.

Some theories of causal learning adopt the empirical view, that only observable data
may contribute to the induction ofcausal relations. Anassociative perspective purports that
causal learning is nothing more than the acquisition of associations between cues and
outcomes. Associations are continuously updated over successive learning instances, with
contingency and contiguity being determinants of the direction and size of changes in
associative strength. Problems for associative accounts of causal judgment include apparent
influences of prior knowledge in mitigating a lack of contiguity between stimuli, since such
theories cannot accommodate these top-down representations.

Causal mechanism and power views argue that human causal induction goes beyond
mere associations. Proponents of these perspectives argue that humans postulate specific

causal mechanism by which causes generate or prevent effects. This both constrains causal
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reasoning, such that spurious correlations where there is no phusible mechanism can be
ignored, and also enabling inference from statistical relations to be guided by top-down
knowledge. Such cognitive accounts provide the flexibility to account for phenomena such
as systematic variations in judgment of noncontingent relations (Cheng, 1997), effects of
prior experience (Buehner & May, 2003), and knowledge- mediation (Buehner & May,
2002, 2004; Einhorn & Hogarth, 1986).

Causal-model and structure-based theories meanwhile are inspired by the Bayes
nets graphical framework to model causal rehtions. Like the power view, structural
accounts endorse the idea that inference from empirical data is guided by top-down
influences in the form of abstract causal knowledge. Where these accounts differ is with
regard to structure versus strength. The Bayesian approach argues that causal power is an
attempt to estimate the strength ofa ¢> e cause-effect relation, before having evaluated the
evidential support for the existence of this relation, and is thus to some extent putting the
cart before the horse. The Bayesian approach instead is concerned with identifying the
likelihoods of plausible causal models given the obtained data, ahead of attempting to
estimate the parameters of this model to evaluate causal strength. According to the
Bayesian approach, regularities and coincidences such as contingency and contiguity
constitute evidence in favour of a causal relation since such occurrences are unlikely to
happen due to chance.

The order in which these theories have been presented in this chapter largely
reflects their chronological development. Associative theory is the most longstanding while
the Bayesian computational (structural) account the most recent. As such, the associative
view has been the most subject to criticism, while more recent accounts have the benefit of
hindsight. The question of how people infer causal relations, despite great strides forward
in understanding of learning processes, remains both unresolved and actively debated.
Associative theorists have attempted to undermine each significant challenge to
associationism, including Power PC (Lober & Shanks, 2000), causal model theory (Shanks
& Lopez, 1996), and knowledge mediation (Allan, Tangen, Wood, & Shah, 2003), which in
turn has drawn ripostes from the original proponents of these accounts. Discussions range
from specific boundary cases and technical details, to the more fundamental question of

whether causal learning is an insightful reasoning process or simply the product of
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associations. Suffice it to say then that no model has yet offered a full and undisputed
account of human causal judgement. Any empirical study of the phenomena of causal
induction would thus do well to remain mindful of all perspectives, their relative merits and
predictions, and consider how well the various accounts correspond to actual human
judgment within the domain of interest. This thesis shall adopt this consideration and the
experiments which follow will consider both the predictions of associative and cognitive
perspectives and how well the obtained results accord with each perspective.

This introductory chapter has hopefully provided sufficient background on the
already recognised cues to causality and how each ofthese cues is considered to contribute
to causal learning from three distinct schools of thought on the subject. The following
chapter shall now introduce the concept of temporal predictability, which is the phenomena
of central interest to this thesis. This concept will be considered from a theoretical point of
view, in relation to the three broad perspectives identified in this chapter, before an

empirical investigation of this concept in the two subsequent chapters.
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Chapter 2 — The Potential Role of Temporal Predictability in Causal Learning

2.1 Introducing Temporal Predictability

Griffiths and Tenenbaum (2009) point to the discovery of Halley’s comet as a
striking example of causal induction through the use of knowledge and theories. Sir
Edmund Halley (1656-1742) noted that comets observed in 1531, 1607, and 1682 had all
taken remarkably similar paths across the sky. Halley’s friend and colleague Sir Isaac
Newton (1643-1727) had already outlined in the Principia Mathematica that comets tend to
follow otbits corresponding to conic sections. Using the principles of Newtonian physis,
Halley inferred that the three comets previously observed were in faict one and the same
comet following a regular solar otbit. As Griffiths and Tenenbaum suggest, Halley’s prior
knowledge of such physical theories was doubtless crucial to this successful calculation.
Perhaps the most potent clue to this discovery however was that the three comets had been
observed approximately 76 years apart from one another in eachcase. In other words, there
was a consistent temporal interval between the appearance of all three comets, that varied
(in relative terms) minimally. Such periodicity is congruent with a celestial body following
a regular orbit, and hence provided a strong indication that the three comets were in fact
one and the same. It was this periodicity that allowed Halley to predict that the comet
would return again in 1758 and indeed this prediction proved to be accurate, with Halley’s
comet visiting the Earth every 76 years since. This facility of consistent timing, to enable
predictions regarding the occurrence of future ofevents and specifically when those events

will occur, makes “temporal predictability” an apt term to describe such a feature.

As a more commonplace example, consider the following anecdote:
Dave, Jon and Tom are discussing their morning drives to work. Dave and Jon suffer a
similar problem in which they encounter sets of traffic lights that sometimes take a very
long time to change, even when no cars are coming through on the opposite side. Tom
suggests that they try flashing their headlamps at the traffic lights to induce them to
change, as he has heard a rumour that they are programmed to respond to the flashing
lights of emergency service vehicles. Both take his advice. Dave notices that every time he

flashes his headlamps, the traffic lights do in fact change after a consistent delay of around
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10 seconds. Jon tries it at the set of lights on his route; sometimes the lights change very
quickly, sometimes they take much longer, with little discernible pattern. Jon concludes the
lights are operating on a fixed program and his headlamps are not influencing them. Dave
instead decides that his actions are effective and continues to flash his headlamps when
held up at the traffic lights.

The above story is anexample of how event timing influences the way in which we
learn about causal relations. Here, contingency information is unhelpful; the traffic lights
will change eventually, the concern is instead with when they will change. In this example,
it is not the absolute delay between candidate cause and effect on each instance that
eventually determines the conclusions drawn by Dave and Jon. Rather, their decisions are
based onthe variation in the timing of events across the setof instances over which they try
out Tom’s suggestion. What eventually convinces Dave ofthe efficacy of his actions is the
consistency ofthe temporal interval across multiple events.

The pairing of a particular candidate cause and effect tends to be experienced
repeatedly rather than as unique, one-off occurrences. Causal relations are, after all,
manifestations of invarant physical laws governing events in the environment (Sloman,
2005). Likewise when testing a hypothesized causal mechanism, we will normally make
multiple attempts, as in the example above. Obviously over multiple cause-effect instances,
we will experience multiple cause-effect intervals. These intervals may remain constant, or
may vary from one instance to the next. The variation of the interval separating cause and
effect is a consideration that has been overlooked with alarming frequency in the literature.

When there is a degree of constancy in the duration of intervals, then one may be
able to predict, justas Halley did in the earlier exampl, when a particular event will occur.
The degree of accuracy possible with such predictions will likely be a function of how
consistent the interval is over time. Ifthe temporal interval is fixed and always takes the
same value, the relationship may be said to be maximally predictable. Conversely, if inter-
event intervals vary from case to case, then predicting future events becomes a much more
difficult, if not impossble, task. The greater the variability of the intervak, the more
unpredictable the relationship. Under the former scenario, one may develop particular
expectations regarding the timing of events, whereas for the latter there is uncertainty as to

whenan outcome may occur. However, what influence this distinction may have, if any, in
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the detection or appraisal of causal relations, is yet to be fully explored. To begin with then,
this chapter shall review the scant existing evidence relevant to temporal predictability,

before considering how such a feature might be accommodated within models of learning

2.2. The Temporal Predictability Hypothesis

The ability to predict the occurrence of future events is of course one of the central
advantages afforded by causal understanding. Causal impressions may thus be considered
as a direct reflection of the extent to which the cause is a predictor of the effect. This
importance of predictability for causal learning was emphasized by Young, Rogers and
Beckmann (2005). Young et al. noted that the dominant approach in the literature was to
conceive of and define predictability in terms of statistical regularity, that is, whether the
effect will follow the cause (e.g. Siegler & Liebert, 1974). They instead sought to expand
this perspective to encompass temporal regularity, positing that causal impressions are
based on not just whether an effect will occur but also when it will occur. In line with this
perspective they proposed a ‘predictability hypothesis™ to account for the dual influences of
contingency and contiguity on causal learning, arguing that while contingency conveys
predictability in a statistical sense, contiguity conveys temporal predictability.

Young et al’s (2005) contention was that delhys make it more difficult to predict
whenan outcome will occur, due to the inaccuracy in remembering the duration ofa delay.
The longer the delay, the greater the inaccuracy (Gibbon, 1977). This temporal uncertainty
creates weaker causal impressions. Young etal elaborated further by adding the caveat that
longer delays might sometimes be preferable if such a delay is expected (and thus
predictable) due to instruction, prior knowledge or experience. Causality then may be
attributed to temporally separated events provided that “earlier events are good predictors
of whether and when later events will occur” (p321). However, Young et al. stopped short
of pointing out what seems a logical extension of'this argument; that in order for a delayed
mechanism to be predictable, it must be temporally consistent.

Young et al. (2005) did not directly contrast fixed and variabk dehys in their
experiments. Instead they investigated the effects of filling the delay interval with an
auditory stimulus, they suggested would enhance the temporal predictability of the
outcome. Using variations of Michotte’s (1946/1963) launching effect, participants were
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shown computer simulations of one ball colliding into another, and were then asked to
provide a rating of the extent to which they believed the first ball was the cause of the
second ball moving In trials where launching lacked temporal contiguity, causal ratings
were markedly decreased, in lme with Michotte’s original findings. However, the
introduction ofthe auditory stimulus bridging the temporal gap between impact and launch
was found to reduce the delay-induced decrease in causal judgments relative to where no
such stimulus was provided. Young et al. interpreted this finding as evidence in favour of
the predictability hypothesis; however these results are also readily explicable from an
associative perspective, in terms of the auditory stimulus signalling the outcome (Reed,
1992, 1999). Young et al. therefore did not address the potential impact of variation of
delays from case to case, and so did not conceive of temporal predictability in the same
sense as described in the anecdotes with which this chapter opened. Instead, they
considered temporal predictability to be provided by contiguity, since shorter dehys are
inherently less variable, and attributed the detrimental effects of delays to a lack of
predictability.

The goal of this chapter is to broaden the conception of the role of temporal
information beyond mere contiguity, and to reconstruct the temporal predictability
hypothess to encompass the impact of delay variability. Rather than just being a
consequence of contiguity, temporal predictability can be conceived as the consistency of
intervals over multiple cause-effect pairings. If the temporal interval between cause and
effect is held constant across repeated instances, then the timing of the event becomes
highly predictable, even if the actual interval between cause and effect is long. Holding the
temporal interval constant therefore constitutes another means by which predictability may
be enhanced, in addition to providing instructions, appealing to prior knowledge, or
presenting an external cue such as an auditory signal. According to this ‘updated’ version
of the temporal predictability hypothesis, a consistent timeframe linking cause and effect
means that the cause is a good predictor of when the effect will occur. While as Young et
al. (2005) suggest, a short delay is more temporally predictable than a long delay, a fixed
long delay is more predictable than a variable long delay. Consistent delays thus constitute
temporal predictability, which should enhance impressions of causality. Fixed intervals

should therefore be more conducive to causal inference than variable intervals.
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2.3 Previous Empirical Research on Predictability

To date, the contrast between fixed and variable intervals in human causal learning
has received remarkably little empirical attention. One exception is a landmark early study
on detecting response-outcome contingencies by Wasserman, Chatlosh & Neunaber (1983).
They studied causal learning in a free-operant paradigm, where a response made during any
given trial could increase or decrease the likelihood ofa light to illuminate at the end of that
trial. Their third experiment contrasted predictable conditions employing trial kngths fixed
at a constant value of 3s, against unpredictable conditions where trial lengths could take a
value of 1, 3 or 5s. Although fixed and variable conditions did not differ significantly, there
was a general trend indicating that the variable conditions received uniformly, if
marginally, lower ratings than their fixed counterparts. The implication of this research is
therefore unclkar, and a closer systematic examination of predictability is warranted.
Indeed, Wassermanet al (p. 428) stated:

“Our failure to find significant effects attributable to these factors in no way means

that manipulationof the same variables over a broader range of values would also

fail to yield reliable results; indeed, we still believe that such work would disclose
discernible differences. Our research can thus be seen as a guide to others in their
search for potent influences on the perception of response-outcome relations.”

In a related study, Vallée-Tourangeau, Murphy & Baker (2005) investigated the
effect of outcome density on causal ratings. They implemented conditions where the
timeline was segmented into 1s ‘timebins’. If a participant responded, a reinforcement was
presented at the end of the timebin. Action-outcome interval was thus variabk depending
on the point at which the participant responded. This was then contrasted with situations
where the action-outcome interval was instead held at a constant interval regardless of
when participants responded. Vallée-Tourangeau et al. found the same apparent trend of
fixed- interval conditions attracting slightly higher ratings, but again this difference was not
found to be statistically significant.

With a dearth of conclusive previous experimental work, there s a lack of clear
understanding and characterization of the role of predictability in causal learning. The
initial goal of the empirical work of this thesis is to address this omission in the literature.

Chapter 3 shall present a series of studies intended to determine whether predictability does
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in fact exert an influence on judgments, and the nature of that influence. Before progressing
with these studies however, it is worth casting a broader ghnce at findings from the
learning literature that might have some bearing upon this issue of predictability. The non-
significant trends in the studies described above suggests that, if anything, causal relations
with fixed temporal intervals may be seen as more robust than temporally variable
relations. However, there is a wealth of evidence from studies of reinforcement learning

with animals which suggests that the reverse may be true.

2.4 Animal Preference for Variable Reinforcement

Inspired by the earlier work of Pavlov and Thorndike, the research of B. F. Skinner
(1904-1990) focused on extending and refining the experimental analysis of behaviour (e.g.
Skinner, 1938). Thorndike’s earlier experiments were in the form of discrete trials, in the
sense that the animal performed a single response (pressing the escape mechanism) to a
given stimulus (being in the puzzle box), with a reduction in the time taken to perform the
response the measure oflearning. Skinner instead developed anapparatus where the animal
could make multiple responses to given stimuli — the operant conditioning chamber,
popularly referred to as a Skinner box. A typical chamber includes a food dispenser and a
lever or mechanism of some kind that can be operated by the animal. Under appropriate
circumstances, pressing the lever can release a food pellet from the dispenser into the
animal’s food trough. The animal is able to freely explore the chamber and may press the
lever at any point; hence this was referred to by Skinner as the instrumental free-operant
procedure (FOP). This procedure has become so widely adopted that the term operant
conditioning is often used synonymously with instrumental conditioning (though strictly
speaking instrumental conditioning is a broader term also including discrete trials
procedures such as those of Thorndike). Indeed the earlier described paradigms of Shanks
etal (1989) and Wassermanet al. (1983) are variants of this basic procedure.

A longstanding method for the exploration of how relations between responses and
outcomes govern behaviour is the use of reinforcement schedules (Skinner, 1969). In
operant conditioning, not every response is followed by a reinforcer; instead, certain
conditions must be satisfied before reinforcement delivery. Such schedules of

reinforcement specify the input that is required for a reward to be delivered. The two most
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common schedules used in behaviour analysis are ratio scheduks, where a certain number
of responses are required before a reward is received, and interval schedules, where
reinforcement is provided following the first response after a given period of time has
elapsed. For example ina fixed-ratio (FR) 30 schedule, the reward is dispensed after every
30 responses, and ina fixed-interval (FI) 30 schedule, the reward is dispensed fllowing the
first response after a 30 second period has elapsed (from the dispensation of the previous
reward). These schedules can also be variable as well as fixed; for instance on a variable-
interval (VI) 30 schedule, the amount of time after which a reward can be received varies
about an average of 30s, with the specific interval for any one trial falling within a pre-
defined range with 30s as the midpoint, for example 0-60s, 15-45s, or 20-40s.

Higher response rates on a particular schedule are generally taken as an indicator of
preference; in other words, that the animal has identified that there is a greater potential for
reward on that schedule. Naturally, a schedule providing a faster rate ofreinforcement, or
requiring less input to receive a reward, will be preferred to a slower or more demanding
schedule. For instance, a FR10 schedule will be preferred over a FR100 schedule since the
latter requires ten times as much work for a given reinforcement. But certain types of
schedules are preferred over others even when the rate of reinforcement is the same. It is a
fairly well-established finding in the behaviour analysis literature that animals tend to
respond more frequently during variable-interval schedules compared to fixed-interval
schedules (Bateson & Kacelnik, 1995; Davson, 1969; Hemrnstein, 1964; Killeen, 1968). It
has been argued that such findings are artefacts of the task; if one assumes that the animal
can karnthe temporal intervals in a fixed preparation (cf. Gallistel & Gibbon, 2000a), then
it can restrict its responding to the point when it expects reinforcement to be delivered. If
instead intervals are variable then such a strategy will be ineffective; the best chance for
receipt ofreward is to continue responding frequently throughout the schedule.

However, it has also been demonstrated that animals prefer variable over fixed
response-to-reinforcer delays when choosing between alternatives. For instance, Cicerone
(1976) employed a free-operant procedure in which pigeons were presented with two,
concurrently available, response keys. Variable-length delay intervals were superimposed
on the reinforcers scheduled with one response key while delay intervals of constant length

were superimposed on the reinforcers assigned to the other. The results showed that
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pigeons preferred variable over constant delays of reinforcement, responding more
frequently on the variable-delay key, and furthermore that ths preference for variability
increased as the range ofthe interval lengths increased. Many other studies have also found
that organisms prefer aperiodic over periodic reinforcement delays (Bateson & Kacelnik,
1997; Mazur, 1984, 1986) thus indicating that this goes beyond task demands and reflects
an inherent property of variable reinforcement delay that makes it preferable.

While it is clear that performance on schedules of reinforcement and causal
inference in humans are not equivalent tasks, the preference for variable reinforcement
shown in non-human animals may be indicative of a general facilitatory effect of variability
in learning preparations. As Reed (1993) points out, while a relationship linking a response
to an outcome is not necessarily a reinforcement schedule, it is nevertheless possible that
“human perception of the causal efficacy ofresponses may be influenced by such schedules
of outcome presentation in some systematic manner” (p.328). A consistent preference for
variability may well be something that generalizes across learning domains.

Drawing inspiration ffom such studies of animal reinforcement to make forecasts
regarding temporal predictability is of course the same approach taken by many proponents
of associative accounts of causal learning, who have illuminated numerous ways in which
human causality judgments mirror simple conditioned behaviour. At this point then, it
seems appropriate to revisit the associative account, along with the other theoretical
perspectives on learning that were outlined in Chapter 1, and attempt to discern how
predictability might be accommodated in these theories. This will enable the results
obtained from these experiments to provide a contribution to the advancement of causal

learning theory as well as their empirical significance in their own right.

2.5 Theoretical Perspectives on Predictability

2.5.1 An Associative Analysis of Temporal Predictability

The dominant theory of animal behavioural processes is associative learning theory
(Mackintosh, 1983; Rescorla & Wagner, 1972). According to an associative account of
causal learning, causal relations are represented by the strength of an association between

putative causes and effects which is determined by the increment (or decrement) of
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associative strength over repeated learning trials. Effects are considered to be reinforcers to
the conditioned stimulus or response which is considered as the cause.

The impact of contiguity on causal learning is addressed by the supposition that the
greater the temporal separation between stimuli, the less associative strength that is
acquired as a consequence of their pairing (Shanks, 1987). In classical conditioning, this
could be due to the representation of the CS held in memory decaying over time (Wagrer,
1981). Meanwhile in operant conditioning, the value of the reinforcer becomes diminished
as the delay until its receipt is increased, so a delayed reinforcer contributes less associative
strength compared to an immediate one.

It is important to note at this juncture that many distinct models of associative
learning have been proposed over several decades of research i this area. Although these
models may often be grouped together under the same umbrella term, there is no
unanimous agreement between different models on the role of time in learning In the final
chapter ofthis thess, I shall examine a number of specific associative accounts individually
and n more detail, to assess their compatibility with the results presented herein. Generally
speaking however, when associative learning is applied as an account of causal learning in
humans, the essential principles of traditional associtive theories such as the Rescorla-
Wagner (1972) model (RWM), as described in Chapter 1, are applied. For the purpose of
outlining an associative account of temporal predictability then, these principles shall for
the moment be assumed.

Models of associative learning such as the RWM may be capabk of representing
temporal information through the learning rate parameters such as « and £, which refer to
the salience ofthe CS and US. For instance, if it is assumed that the representation of the
CS held in memory decays over time, then the value of the & parameter will decline,
resulting in smaller increments in associative strength when delays are greater. Associative
accounts of the effect of contiguity, as exenmplified by the RWM, thus assume a monotonic
influence of time in learning such that longer delays result in weaker associations. The
overall extent of contiguity may thus serve as a potent determinant of the strength of
acquired associations. One might therefore be tempted to assume that whether contiguity is
fixed or variable should not matter, and the mean delay alone should determine the

contribution of contiguity. However, trial-based models such as the RWM update
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associative strength on a trial-by-trial basis, so each reinforcement makes an individual
contribution to the strength ofan association. Any anticipated effect of predictability would
therefore depend onthe rate at which associative strength changes with delay.

It is generally considered that the greater the extent to which the a stimulus appears
to reinforce behaviour, the stronger the acquired association. In other words, the amount of
conditioned responding that is exhibited, or the rate or magnitude of instrumental
responding (such as pressing a lever), s taken as an indication of the degree of association
between the CS and US (in classical conditioning) or response and reinforcer (instrumental
conditioning). Studies of delayed reinforcement in animals reveal that response rates
decline as a negatively-accelerated function of reinforcer delay (Chung, 1965; Williams,
1976). Taking response rate as a measure of associative strength then suggests that changes
in associative strength as a result of reinforcement diminish with delay of reinforcement
according to the same negatively accelerated function. If causal inference can be reduced to
associative learning, then it may be anticipated that delayed effects lose their capacity to
increase the cause-effect association in an analogous manner.

To then explain animal preference for variable-interval reinforcement, compare a
hypothetical set of fixed delays with a set of variable delays that have an equivalent mean
delay. Further assume that the fixed delay forms a central midpoint about which the
durations of the variable delays are evenly distributed. As an example, if the fixed dehy
was 2s, then for every cause-effect pairing with a delay of 1s in the variable set, there
would be a corresponding pairing with a delay of 3s. Obviously an early outcome will
contribute more associative strength, and a hte outcome less, relative to an outcome with a
delay intermediate between the two. Due to the negatively-accekrated form ofthe function,
associative strength is lost rapidly as contiguity first begins to decline, and less rapidly as
delays become progressively greater. The difference in associative strength between the
early (1s) and the intermediate (2s) outcome is greater than the difference in associative
strength between the intermediate (2s) and the late (3s) outcome. In other words, the loss in
associative strength by increasing delays from 1s to 2s is greater than the subsequent loss
by increasing delays from2s to 3s. The combined associative strength of one early and one
late effect would thus be greater than that of two effects with a fixed intermediate delay,
despite the mean cause-effect delay being identical. In Figure 2.1, where AV is the change
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in associative strength, this could be expressed as: AVy + AV, > 2AV, Comsequently, it
would be expected that a series of effects with delays evenly distributed about a central
mean would accrue greater overall associative strength than where every effect follows the
cause after a fixed delayofa duration equalto that central point.

There has been some debate over the precise mathematical form ofthe function best
describing the decline in response rates with delay. For instance, Chung (1965) reported in
a signalled delayed reinforcement task that pigeons’ response frequencies declined
exponentilly as a function of the dehy interval. Other work (Herrnstein, 1970; Mazur,
1984) suggests that hyperbolic functions more accurately describe such trends. However,
for the above inequality to hold, the precse shape of the function is unimportant; any
negatively accelerated function would result in the same imbalance in accrued associative
strength. Under the assumption that causal learning is a direct reflection of associative
strength, it would then be anticipated that temporally-variable conditions would give a
stronger overall impression of causality than predictable conditions, and thus attract higher

causal ratings.

AVX + AVz > 2AVy

Associative Strength (AV)

Time
Figure 2.1: Potential differences in accrued associative strength between fixed-interval and
variable-interval conditions according to a hyperbola- like discounting function of delayed

events.
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However, this prediction might be considered as somewhat counter- intuitive. One
might be more inclined to expect predictability to provide confirmatory evidence for a
causal relationship, as was the case in the anecdotes at the opening of this chapter.
Consistency of the temporal interval separating candidate cause and effect could be taken
as symbolic ofa genuine relationship between them, in much the same way as statistical co-
occurrence. If causes are hypothesized to bring about their effects by means ofa particular
mechanism or sequence of events, it seems reasomable to suggest that (provided the
mechanism remains unaltered) there should be a degree ofregularity in the timeframe over
which these events unfold. Let us therefore turn now to consider other theories of causal

learning which may generate predictions in accordance with this intuition.

2.5.2 The Attribution Shift Hypothesis

From a covariation perspective of causal learning, a potentnl explanation for the
effect of predictability is the attribution shift (Shanks & Dickinson, 1987). This has was
earlier outlined as an account for the detrimental effect ofdelay. Under this assumption, a
delayed action-outcome pairing is perceived not as a cause-effect pairing, ¢ e, but instead
as one instance of an action with no outcome, ¢ —e and an outcome following no action,
—c—>e, as illustrated earlier in Figure 1.3. In terms of the 2x2 contingency matrix (Figure
1.2), this may be described as one instance of Cell B and one instance of cell C rather than
a single instance ofCell A.

However, this process is highly dependent on the size of the “temporal window”
that is adopted for event parsing. If a reasoner assumes a more relaxed timeframe over
which events may unfold, this enables temporally distal effects to be correctly attributed to
the candidate cause rather than disregarded as spurious. Previous work (Buehner, 2005) has
suggested that prior knowledge about existing causal mechanisms can lead to the
adjustment of this temporal window in this manner. In similar fashion, if the reasoner
repeatedly encounters evidence that is contradictory to their initial timeframe expectations,
they may revise their assumptions and adopt a new, more lenient temporal window. Thus if
the cause and effect are temporally separated, but this interval is constant, this may be
recognized over repeated instances and avoid the delayed effects being subjected to
attribution shift. Temporal predictability, therefore, may enable a learner to bridge temporal

gaps in causal induction through repeated exposure to the same temporal interval. In
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contrast, a variable interval might preclude recognition of the statistical regularity between
cause and effect, which in turn would mean that actual cause-effect pairings will be parsed
as instances of Cells B and C. The attribution shift hypothesis is therefore capable of
forecasting an advantage for predictability through the reduction of erroneous attributionof
delayed effects to random background processes. If the temporal assumptions are relaxed
and the window is expanded to encompass the ¢ e pairings, then with a fixed temporal

interval, all the pairings will be counted.

2.5.3 Bayesian Models

One final perspective takes a broader and more integrative viewpoint on the causal
learning process. The Bayesian structural approach (Glymour, 2001; Griffiths &
Tenenbaum, 2005, 2009; Spirtes et al, 1993; Waldmann & Holyoak, 1992, 1997) is
inspred by concepts from statistics and computer science, specifically, the use of causal
graphical models or Bayes nets to represent causal relations. Again, as with associative
learning, the Bayesian perspective is a general category of learning theories that
encompasses a number of individual models, which differ in their specificities but share
common principles.

Bayesian accounts of causal judgment combine both bottom-up empirical processes,
by which statistical inference from observable evidence forms the basis of causal induction,
with top-down modulation in the form of pre-existing causal theories. These abstract
theories serve to allow the generation of a hypothesis space of plausible causal structures
constrained by prior knowledge, experience and expectations. Under this framework, the
goal of causal induction is to first adjudge the best fitting causal model from the set of
possible structures, by evaluating the evidence in favour of a given structure. Once
structural inference has taken place, one may assess the strength of a causal relation
through parameter estimation. In elemental causal induction, structural inference is a binary
decision between two causal structures; either a causal relation exists (4;), or it does not
(ho). Among the leading accounts of causal learning in the Bayesian tradition is the causal
support model proposed by Griffiths and Tenenbaum (2005) which proposes that
judgments of causality are best described by a log ratio ofthe evidence for #; compared to
ho, which reflects the degree of confidence that the causal relation ¢ e exists between a

candidate cause and an effect. Models such as AP and causal power meanwhile are
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considered to be estimates of the parameter w; which specifies the strength of the c>e
connection. Bayesian perspectives thus emphasizes causal structure over causal strength.

Learning to impose structure on the world of sensation crucially depends on our
ability to identify patterns and consstencies in the environment which we can piece
together to produce a coherent picture. On a representational level, a Bayesian perspective
emphasises that such regularities or coincidences, whether statistical or temporal, are
evidence in favour of a stable causal mechanism. Both contingency and contiguity then
increase the evidence supporting /4; over ho. If it is assumed that a causal relation manifests
as a result of a specific mechanism, that this same mechanism is appealed to in each case,
and the processes involved in the mechanism unfold in a consistent manner, then it seems
reasonabk to anticipate that this mechanism should have a consistent timeframe ofaction.
Constancy of temporal intervals is thus a further regularity in the environment that an
organism may be able to detect and use to construct anaccurate representation of causality.
Meanwhile, spontaneous outcomes, generated by background processes rather than the
hypothesized mechanism, are assumed to occur according to a stochastic Poisson process,
where there is no reason to expect temporal consistency from one case to the next.
Although the likelihood of a spontaneous outcome increases with the time since the last
such outcome, since the probability of an outcome at each precise point is infinitesimal, the
likelihood of spontaneous outcomes repeatedly occurring following the same interval
would be a startling coincidence. Variability may thus be seen as indicative ofa stochastic
process that b= e represents, while predictability is emblematic of the mechanistic process
¢~ e. From the Bayesian structure perspective then, temporal predictability would serve to
facilitate causal learning because temporal regularity between putative cause and effect is
much more likely if there exists a causal relation than if no such relation exists (and the
repeated regularity occurs by chance).

In computational terms, a Bayesian perspective is capable of predicting a
facilitatory effect of temporal predictability through likelihood distributions. Such
distributions reflect the likelihood of obtaining given data under a specific assumed
hypothess. Recall from Chapter 1 the argument presented by Krynski (2006), mirroring
that of Younget al (2005), that the short-delay advantage manifests because short delays

are inherently less variable. According to Krynski, this results in a narrow likelihood
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distribution with a high peak; in other words, the experience of shorter delays provides
strong confirmatory evidence for the existence of the hypothesized causal relation. In
contrast, longer delays (if the variance of such delays is proportional to the mean delay),
result in a wider likelihood distribution. By necessity, a wider distribution will also have a
lower peak, hence longer delays provide weaker confirmatory evidence for a causal
relation. If however the delay is fixed (or at least relatively consistent), then this would
result in a narrowing of the distribution, more closely converging on this fixed delay, with
the result that the peak of the distribution s elevated. In other words, making delays less
variable should have a comparable influence to shortening the delay Thus, the added
certainty provided by fixed delays would serve to increase the likelihood of the data under
the hypothesized mechanism, P(D}4;), and thus should enhance judgments of causality.

2.6 Chapter Summary

Temporal predictability refers to the constancyof a temporal interval between cause
and effect such that the time of occurrence of future effects of can be anticipated.
Predictability may be contrasted with interval variability where predicting the onset ofan
effect becomes more difficult. Previous experiments (Wasserman et al, 1983; Vallée-
Tourangeau et al, 2005) have suggested that there may be the potential for differences in
the precse temporal arrangement of events in a learning preparation, such as with
predictability compared to variability, to elicit different responses or judgments of
causality. What is currently absent from the literature however is a systematic series of
studies specifically centred on elucidating the precise contribution of such temporal
arrangements to causal inference. The following chapter then attempts to defmitively
address the potential role of temporal predictability in human causal learning. It will be
assessed whether case-by-case fluctuations in temporal delay can impact the causal
impression, or whether overall degree of stimulus contiguity across a learning preparation
is the sole contribution of temporal information.

Three broad theories of causal learning have been reviewed in attempt to discern the
predictions that they may generate regarding a potential role for temporal predictability.
From a traditional associative perspective, as exemplified by the RWM, the contiguous

pairings of cause and effect that are possible under a variable timeframe overcompensate
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for the smaller contribution of pairings with longer delays. Variability should therefore
confer an overall boost to impressions of causality compared to predictability (under the
assumption that dehys are symmetrical about the mean). The predictions of this associative
account may appear counterintuitive, but are well-founded on a wealth of research from
reinforcement learning in animals. In contrast, cognitive perspectives allow for top-down
influences on learning, through which predictability could be taken as evidence of a
consistent underlying mechanism and thus facilitate causal inference. At a process level a
covariation-based model may account for a predictability effect by postulating a rehxation
of the temporal window adopted for parsing the flow of input. A Bayesian account of
causal reasoning meanwhile appeals to the idea of delays being modelled as probability
distributions. According to this view, temporal predictability is highly unlikely to occur
under the causal model 4y, where the effect in question is not a consequence of the
candidate cause, and regularity instead constitutes evidence in favour of a causal model /;
where the candidates are connected by a causal link.

The primary motivation underlying the experiments is to definitively address what
has surprisingly remained something of an oversight in the assessment of cause and effect
relations. However, since the outlined theoretical accounts make contrasting predictions, it
is evident that a manipulation of temporal predictability has the potential to provide
evidence that favours one account over another. Thus, results concerning predictability may
also confer some important theoretical insights and reinvigorate the debate between

associative and cognitive accounts of causal learning.
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Chapter 3 — The Role of Temporal Predictability in Instrumental Causal Learning

3.1 Overview and Introduction

This chapter comprises five experiments intended to investigate the role of temporal
predictability in human causal learning. The results constitute evidence in favour of a
facilitatory effect of temporal predictability. Discussion within this chapter focuses largely
on specific aspects of individual studies, as well as general methodological concerns.
Consideration of the wider theoretical implications ofthe results contained herein shall be
withheld until the General Discussion in Chapter 6, where they shall be discussed in light
of the theoretical perspectives outlined in Chapter 2, together with the results of the second
empirical section, Chapter 4.

It is evident that temporal predictability (or variability) has the potential to be added
as a fourth cue to causality (in addition to temporal order, contiguity, and contingency). A
number of perspectives on causal learning have been reviewed, all of which at least allow
for the possibility that temporal predictability may play a role in guiding causal
impressions. Given that existing empirical data is sparse and ambiguous, and that different
theoretical perspectives allow contrasting predictions, this chapter is dedicated to an
experimental analysis ofthe role of temporalpredictability on causal inference.

The primary aim of this chapter is to determine whether predictability can influence
judgments by contrasting fixed and predictable temporal intervals with variable and
unpredictable temporal intervals. The results should inform as to whether predictability
enhances causal judgments, in line with a cognitive perspective and the temporal
predictability hypothesis, or whether instead variability is preferred, in line with a
reductionist approach and a simple associative account. It is also possible that no distinction
maybe made between predictable and variable causal relations, with contingency and mean
overall contiguity remaining the defining principls. Ifhowever predictability can indeed be
identified as a cue to causality, the secondary aim of ths chapter is to understand how
predictability might interact with the established cues of contingency and contiguity,
revealing whether they contribute independent or interactive influences.

For this initial foray into the investigation of temporal predictability in causal

learning, it was necessary to use a paradigm where the temporal interval between cause and
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effect could be tightly controlled, and in which candidate causes and effects were clearly
identifiable as such. Additionally it was considered prudent to avoid any unnecessary
complications or distractions by using a very simple and straightforward paradigm, such
that temporal distributions of events would be the most salient feature of the problem at
hand. The experiments conducted by Shanks, Pearson and Dickinson (1989) proved highly
effective in elucidating the role of temporal contiguity in human causal judgment. As a
computer-based adaptation of previous free-operant instrumental paradigms such as
Wasserman et al.’s (1983) earlier studies, this method allowed for the precse timing of
intervals to be specified and a wealth of behavioural data to be easily recorded. The
paradigm was used again with success by Reed (1992) and Buehner and May (2003). It was

therefore decided to base the initial experiments on a similar paradigm.

3.2 Experiment 1

This first experiment was modelled closely on Shanks et al.’s (1989) original study.
In each condition, participants were presented with a triangle on the screen and a button
labelled “PRESS” just beneath it. Participants were instructed that their task was to
investigate the extent to which their action (clicking on the button) could cause something
to happen on a computer screen (the triangle lighting up).

Participants engaged on a free-operant procedure (FOP) meaning that they were fiee
to choose whether and when to respond throughout the duration of the condition. Previous
studes have found scheduling of response-outcome contingencies on a FOP to be a highly
sensitive and unbiased method of investigating causal learning (Wasserman et al, 1983).
However in many such studies, the karning experince is segmented into pre-defined
‘response bins’ or learning trials (for example of 1-second duration). If a response is made
during this time bin, then it is reinforced at the end of the period. However, it is of course
possible that the participant may respond again during the time between a reinforced
response and the consequent outcome. This, and any further responses, would then go
unreinforced. Consequently, such a procedure fails when participants respond at a faster
rate than that corresponding to the pre-defined bin-size as only the first response within
each bin will have the potential to produce an outcome. This was pointed out by Buehner

and May (2003) who demonstrated that action-outcome delays in a standard FOP change
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P(e|c) and P(el~c), so that the actual contingency experienced by the participant is lower on
delayed than on immediate conditions. Furthermore, and of crucial importance for
scrutinizing the influence of temporal predictability, using this underlying trial structure
means that full control over the cause-effect interval cannot be maintained; while trial
length can be held constant, a participant may respond at any point during this trial hence
the interval between action and outcome may still vary. Wasserman et al’s third
experiment should therefore more accurately be considered as a comparison of low-
variability against high- variability, rather than predictability against variability.

To avoid such problemns, the experiments in this chapter did not employ pre-defined
learning trials or time-bins; instead, every response had the potential to generate an effect,
regardless of when it was made. The same response-outcome contingency as used by
Shanks et al. (1989) was employed again here: every press of the button had a 75% chance
of producing the outcome. If an outcome was scheduled, the effect occurred following the
programmed delay. The experimental program enabled the delay to be precisely specified
for every pairing of cause and effect, meaning it was possible to manipulate temporal
variability and delay across conditions while keeping constant the objective contingences.
Of course, this trial-free instrumental procedure is not free from its own burdens, and one
may note that without defined trials there s inherent ambiguity with respect to matching
individual responses to individual outcomes. For instance, a participant could perform
several responses in quick succession and then observe a corresponding burst of effects
after the relevant delay. It would be difficult to match individual responses to specific
effects, and this would be amplified when the cause-effect interval is variable. Importantly,
however, by allowing each response to produce the effect (without limitations imposed by
trial structures) the overall objective contingency will remain unaffected by variations in
delay and variability of delay, which is essentil to permit these factors to be assessed
independently. Whether the subjective impression of contingency (and indeed therefore in
this case also causality) remains unaltered by these manipulations is of course a different
question altogether, and in fact at the heart of the research reported here.

The experiment employed two mean delays, two and four seconds, and three
different types of temporal predictability. The first was a fixed, pre-determined delay that

remained constant throughout a given condition, and thus constituted maximal
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predictability. However, most natural causal relations rarely involve precise and perfectly
predictable cause-effect delays. Epidemiologists, for instance have long postulated that
disease outbreak follows infection after an incubation period described by a log-normal
distribution (Evans, 1993) centred around a mean expected wait time. Consequently, the
second level of temporal predictability sampled cause-effect intervals from a normally-
distributed probability density function, centred around a midpoint corresponding to one of
the fixed intervals (see Method below for more detail). Finally, as a maximally uncertain
control, a uniform random distribution was employed, where the delay could take any value
within a pre-defined range, with an equal probability of taking any particular value.
Importantly, these manipulations are distinct from Experiment 3 of Wasserman et al.
(1983); rather than restricting intervals to a small set of fixed values, I instead allowed
intervals to vary freely across a continuum.

Most real-world causal relations are assessed against a background of alternative
causes. For instance, whilst an illness may be the cause of a headache, a headache could
also potentially arise as a result of stress, tiredness, or dehydration. Identifying the crucial
relation from other spurious connections is a fundamental part of the induction process. In
order to preserve ecological validity in this respect, I also introduced three different levels
of background effects to the paradigm. This was done by scheduling the effect to occur a
pre-defined number of times, independently of the participant’s action, at random points in

time during the condition.
3.2.1 Method

3.2.1.1 Participants
31 undergraduate students with a median and modal age of 19 years were recruited
via an online partcipation panel hosted at Cardiff University. They received either £4

payment or partial course credit for participation.

3.2.1.2 Design

The experiment manipulated three factors — temporal distribution, background
effects, and delay. Temporal distribution had the levels fixed, normal, and random;
background effects had the levels zero, low, and high; delay had the kvels 2 and 4 seconds.
Factorial combination of these levels resulted in a 3 x 3 x 2 within-subjects design,

producing 18 different conditions each of 90s duration.
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The probability of an outcome following an action, P(e|c), was .75 throughout all
conditions. Note that ths probability was not defined relative to a particular unit of time;
instead, each button press had a 75% chance of causing the triangle to flash. If an event was
generated, the effect then occurred after the appropriate temporal interval had elapsed.

The three types of temporal distribution provided a manipulation of predictability
by controlling the variation of the temporal intervals in each condition. The interval for any
given action-outcome pairing was determined according to the particular combination of
delay and temporal distribution. In the fixed conditions, the temporal interval was always
the same, held at a constant value within the condition (i.e. 2 or 4 seconds). These values
then served as “midpoints™ for the comparable normal and random conditions. For the
random conditions, the temporal interval for any given cause-effect pair was given by
generating a random value within the specified range. So for example in the ‘Randon’
condition, the interval could take any value between 0 and 4 seconds, with any value
equally as likely to occur as another. For the normal conditions, the delay was specified
according to a normal probability distribution with a range of 4 seconds, centred around the
midpoint. So for example in the ‘Normal4’ condition, interval lengths were drawn from a
normal distribution centred around 4 seconds, with minima and maxima of2 and 6 seconds.
Accordingly values closer towards the midpoint of 4 seconds were more likely than values
towards the extreme boundaries of 2 and 6 seconds. Thus, the delay variance for normal
conditions should be smaller with respect to the random conditions.

In addition, three levels of non-contingent ‘background’ effects were employed,
where the outcome occurred independently of the response. As a baseline, I first applied a
zero rate of background effects — the effect did not occur in the absence of the cause and
P(e[~c) = 0. In addition I created a medium rate, equivalent to 1 effect every 10 seconds,
and a high rate equivalent to 1 every 5 seconds. With a total condition time of 90s, this gave
9 and 18 background effects in total ©or the medium and high levels respectively, which
were distributed randomly throughout the condition.
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Fixed 2s Fixed 4s

Normal 2s Normal 4s

Random 2s Random 4s

0 1 2 3 4 <. 6

Figure 3.1: Diagramrepresenting the three types oftemporal distribution applied in

Experiment 1 at the two levels of meandelay.

Two questions were used as dependent measures to gauge participants’ impressions
of causal strength. One was based on a covariational understanding of causality couched
within a counterfactual question:

“Imagine you had pressed the button 100 times i this condition. How many of

these 100 presses would have caused the triangle to light up?”

The other was slightly more ambiguous and was aimed to appeal to the degree of perceived
control beyond pure covariation:

“Overall, to what extent do you feel pressing the button controlled the triangle

lighting up in this condition?”

Participants provided a rating between 0 and 100 for both questions.

3.2.1.3 Apparatus, Materials and Procedure

The experiment was programmed in Python 2.4 and conducted on Appk Macintosh
computers situated in individual testing booths. Participants used the mouse to click on the
“PRESS” button, and used the keyboard to type in their responses at the end of each
condition. After being welcomed by the experimenter and giving consent to participate,

partcipants read on-screen instructions which outlined the nature of the task.
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In each condition, a triangle was presented in the centre of the screen, along with a
button that participants were able to press, by clicking on it with the mouse. If a response
triggered an outcome, the trangle lit up for 250ms. Participants engaged in 18 different
free-operant procedures as described above, presented in a random order, with each
condition lasting 90 seconds. At the end of each, the screen cleared and participants were
asked to respond to the two questions described previously. Participants then typed in their
answers into the appropriate text box and clicked on the SUBMIT button to proceed to the

next condition. In total the experiment lasted around 35 minutes.

3.2.2 Results

3.2.2.1 Causal Judgments

Two different questions were posed at the end of each condition, intending to try
and capture fully all aspects of the participants’ causal impressions. The ‘contingency’
question s a well-established measure that has been used in many previous studies (Shanks
et al, 1989; Wasserman et al., 1983). The ‘control’ question meanwhile was rather more
ambiguous, which may propel participants to take temporal mformation into account in
providing their rating, and thus may provide a more useful measure for capturing any
influence of predictability. Accordingly it seems appropriate to focus initially on this latter
measure. Figure 3 shows mean ratings provided by participants for the ‘control’ question,
for all 18 conditions. For clarity, error bars are omitted; standard deviations can however be
found in Table 3.1. As expected, ratings were considerably higher in the shorter-dehy
compared to the longer-delay conditions. Also in accordance with previous findings, ratings
declined as the rate of background effects increased. The effect of temporal predictability,
which is the factor of principal interest, is less immediately apparent. It can however be
seen that the fixed conditions consistently received higher causal ratings than their normal
and randomly distrbuted counterparts, while there appeared to be little difference between
the two distributed conditions.

A 3x2x3  within-subjects repeated-measures ANOVA comoborated these
impressions, finding significant main effects of temporal distribution, F(2,60) = 3.373,
MSE = 611.2, p < 05, n," =.101; delay, F(1,30) = 20.91, MSE = 729.9, p <.0005, n,> =
411; and background effects F(2,60) =27.49, MSE = 792.5, p <.0005, npz = 478. Since it

was hypothesized that fixed interval conditions would draw higher ratings than their
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variable counterparts, Helmert contrasts, which compare each level ofa categorical variable
to the mean ofthe subsequent levels, were performed to compare the fixed conditions with
the normal and random conditions combined. These planned comparisons confirmed that
fixed interval conditions (M = 52.70, SE = 1.933) received significantly higher ratings than
variable interval conditions (M = 46.95, SE = 1.269), F(1,30) = 4.984, MSE = 1235, p <
.05, np2 = .142, while in turn there was no significant difference between normal and
random conditions, F(1,30) = 0.050, MSE = 7984, p = .825. None of the possible

interactions were significant.

—&—fixed 2s
80 1
--®--normal 2s
—& random 2s
70 A ——fixed 4s
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Background Effects

Figure 3.2: Mean Control Ratings for all conditions in Experiment 1 as a function of
background effects. Filled and unfilled symbols refer to mean delays of 2s and 4s
respectively. Delay variability is noted by different symbol and line styles. Error bars are
omitted for clarity.

Participants’ ratings for the ‘contingency’ question followed the a similar pattern as
for the ‘control’ question, with significant main effects for temporal distribution, F(2,60) =
3.851, MSE = 5575, p <.05, np2 = .114, delay, F(1,30) =20.84, MSE = 679.6, p <.0005,
e =.410, and background effects F(2,60) = 12.57, MSE = 556.6, p < .0005, 1,> = 295. Of
all the possible interactions, only that between delay and background effects was
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marginally significant, F(1,30) = 3.077, MSE = 523.6, p = 0.053, np2 = .093. Further
analysis of this interaction by examining simple main effects revealed a significant contrast
in the differences between zero and high kvels of background effects at short and long
delays, F(1,30) = 5.007, MSE = 598.0, p < 0.05, np2 = .143, and a marginally significant
contrast in the differences between zero and medium levels of background effects at short
and long delays, F(1,30)=4.062, MSE = 845.7, p=0.053, an =.119. Using Figure 3.3 as a
reference, this would seem to indicate that broadly speaking, the influence of background
effects on contingency ratings was rather more muted at bonger delays compared to short
delays. Aside from this interaction, participants apparently made little distinction between
the two dependent measures, with both eliciting similar responses. Indeed inspection of the
raw data revealed that they were treated as identical by considerable proportion of
partcipants, with scores matched in over a third of the total cases. It was therefore decided

to employ only a single dependent measure in subsequent experiments.
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Figure 3.3: Mean Contingency Ratings for all conditions in Experiment 1 as a function of
background effects. Filled and unfilled symbols refer to mean delays of 2s and 4s
respectively. Delay variability is noted by different symboland line styles. Error bars are
omitted for clarity.
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3.2.2.2 Instrumental Behaviour and Outcome Patterns

Table 3.1 shows the behavioural data from the first experiment, for each of the 18
conditions. This includes response rate (i.e. mean presses per minute) within each
condition, and the corresponding rate of effects (outcome density). The experienced P(e|c)
is also shown, calculated as the proportion of responses that generated an effect (ignoring
background effects), for each participant in each condition. The mean interval between
cause and effect was likewise computed, and is shown wih the standard deviation, as an
indication of temporal interval variance, in parentheses. In addition the mean ratings
provided for the contingency and control questions are also reported, again with standard
deviations in parentheses.

While the number of responses produced is fairly consistent across conditions, it
appears that conditions without background effects produced the highest response rates in
general, while the ‘Random4’ conditions (random distribution, 4 second delay) received
lower response rates. If for some reason different conditions are producing different
response rates in participants, then the effect of this manipulation may not be directly upon
causal rating but instead mediated through changes in response (and subsequent outcome)
density. It was thus necessary to verify whether the independent variables influenced
ratings indirectly by exerting an effect on behaviour. In addition, some fluctuations in the
actual delay and P(e|c) from the programmed values are also expected; while these were
assumed to eventually cancel out throughout the course of each condition (and certainly
across participants) it is possible that differences between conditions could remain and be
driving any observed differences in causal ratings.

To address these concerns, 3x2x3 within-subjects repeated-measures ANOVAs
were carried out on the data derived from participants’ instrumental behaviour. Due to a
small number of participants responding at a very high rate, the distribution of data for
response and outcome rate is positively skewed; hence response rates were normalized by
taking the square root. No significant effects of temporal distribution, F(2,60) = 0.456,
MSE = 1.536, p = .636, delay, F(1,30) = 0.003, MSE = 1.813, or background effects,
F(2,60) = 2.326, MSE = 1.633, were found on response rate. There was however a
significant distribution % delay interaction, F(1,30) = 3.578, MSE = 1.193, p < .05, npz =

123, specifically that for normal conditions, response rate was higher with shorter delays
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while for random conditions this pattern was reversed. However since this interaction did

not involve a systematic difference in overall response rates between fixed and variable

conditions, it is not problematic for the principal findings. Meanwhile, mean delay maturally

differed between different delay conditions, but was not significantly affected by either

temporal distribution or background effects (both ps > .3). Actual P(e|c) was also

unaffected by all three independent variables (all ps > .1). Participants’ causal judgments

were therefore not impacted by uncontrolled differences in instrumental behaviour or

deviations from programmed values.

mean
response
rate (/min)

mean
outcome
rate (/min)

actual
P(e|c)

mean actual
delay (ms)

mean
control
rating

mean
contingency
rating

level of background effects

zero
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zero
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zero
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law
high
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high
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high

temporal distribution
fiwed normal random
delay
2z 4 2 4 2 4

21.53 21.78 2244 2013 21.31 17.93

19.02 18.07 16.64 2149 13.44 19.22

17.13 18.6% 1658 20.18 21.91 18.98

1642 16.36 1638 1520 1640 1356

13.82 13.60 12.82 16.11 13.96 14.60

12.51 13.62 12.47 1491 16.33 14.80

0772 0.751 0.733 0.768 0768 0754

0730 0.749 0.770 0.758 0761 0.753

0743 0.734 0.754 0.733 0756 0794
2000 (0) 4000 (0) 1992 (167) 4000 (203) 2071 (249} 4016 (237
2000 (0} 4000 (0 2027 (202) 4036 (188) 2017 (325) 3949 (290}
2000 (0) 4000 (0) 2072 (172) 4046 (136) 2049 (273) 3948 (327

76.10(26.51)
55.20 (21.87)
4517 (21.55)

75.87 (26.54)
57.93 (20.37)
56,00 (26.69)

54.87 (21.60)
47.80 (28.41)
37.10 (24.27)

50,43 (23.83)
53.13 (28.009
4557 (30.4%)

60.57 (17 40)
53.07 (22.32)
35,60 (22.93)

5337 (19.67)
53.93 (1831)
46.80 (23.62)

50.10(23.39)
43.67 (27.90)
3517 (2451

44.07 (25,49}
53.57 (24.13)
42.80(27.36)

68.53 (22.71)
5177 (18.19)
39.23 (21.80)

65,40 (24.06)
5547 (20.53)
45.53 (25.66)

Table 3.1: Behavioural Data for Experiment 1. Standard deviations are given in

parentheses.

5227 (21.79)
40.87 (27.85)
3047 (20.31)

52.20 (19.75)
45.17 (26.46)
37.67 (22.70)
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3.2.3 Discussion

The results of this experiment replicate well-established findings that a) in the
absence of delay expectations, cause-effect delays are detrimental to learning and b) adding
non-contingent background effects, thus reducing contingency by inflating the proportion
of e|=c (cell C in Figure 1.2) likewise reduces causal ratings. This instils confidence in the
reliability of the paradigm. Of central interest, however, was the influence of temporal
predictability. The analyses confirmed that conditions with fixed temporal intervals
received the highest causal ratings, suggesting that enhancing predictability by holding the
cause-effect interval constant facilitated attribution, in line with predictions derived from
top-down theories of causal learning.

These effects of predictability do not appear to be obscured by non-contingent
background effects, as evidenced from a lack ofan interaction between predictability and
level of background effects. This is perhaps surprising since if a non-contingent outcome
occurs between the cause and its generated effect, then a different (shorter) interval
between response and outcome will be experienced objectively, which should disrupt the
impression of predictability. However, since the free-operant procedure allows for
responses at any time, subjects are able to make several responses in succession, from
which a comsistent delay may well become evident. Noncontingent effects that
subsequently intervene between the cause and a generated effect should then be correctly
attributed to back ground processes. O ne might then ask, if participants were able to connect
causes with their effects, why judgments were adversely affected by increasing background
effects. To address this question, it should be remembered that causal jud gments tend not to
be solely based on P(e|c), but instead on normative measures of contingency that take the
base rate into account. The fact that the outcome occurs independently ofthe response will
thus reduce the contingency, even if contingent outcomes are correctly attributed to the
candidate cause (by inflating the value of cell C). The marginally significant interaction
between delay and background effects meanwhile is a finding that has not previously been
reported with any real emphasis in the literature. Specifically, this indicated that causal
ratings were less affected by the level at background effects when delays were long
compared to when delays were short, and only when contingency ratings were solicited.

This is potentially interesting and further research might wish to further explore whether
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this is a systematic effect or merely an anomaly. This result s however not in any way
problematic for the findings regarding predictability, and is largely irrelevant to the central
focus of interest, so will not be considered in more detail here.

While the fixed conditions clearly attracted the highest ratings, no distinction was
obtained between the normmal (intermediate variability) and random (high varability)
conditions. Arguably, normally-distributed delays could have been expected to elicit higher
ratings than their uniformly-distributed random counterparts, due to the smaller variability
of delay in the former compared to the latter (as reported in Table 3.1). One possible
suggestion for this failure to find a significant difference is that the large number of
experimental conditions made it more difficult to distinguish one from another and thus
contributed to noise within the data. A more substantial explanation is that the normal and
random conditions were much more similar to each other than either was to the fixed
conditions. While the fixed conditions had no variability of delay, for the two distributed
conditions, there was a maximum range of four seconds within which the effect could occur
following a reinforced respomnse, the only difference between these two being the likelihood
of the effect occurring at a particular point within this range. Rather than increasing or
decreasing the temporal range within which an effect could occur, I varied the probability
distribution according to which any given temporal interval was determined. Although the
variance of the delay was greater for random than normal conditions (Table 3.1), the
maximum range of interval varmbility was the same for each. It therefore seems an
appropriate next step to investigate the effect of modifying temporal predictability by
varying the size of the interval range. Will an increase in interval variability, and
concomitant unpredictability, lead to a corresponding decline in causal evaluations?

Experiments 2A and 2B sought to address this question.

3.3 Experiment 24
Experiment 1 has demonstrated that maximally predictable conditions where the
temporal interval between cause and effect is fixed and constant elicit stronger judgments
of causality, relative to less predictable, variable conditions with the same average delay.
What has to be demonstrated clearly however is whether an increase in the variability ofthe

temporal intervals in a causal relationship produces a corresponding decrease in the
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evaluation of causal strength. As I already poimnted out, the contrast of two differently
shaped distributions, where delays were distributed either normally or uniformly, but still
centred around the same mean, may not have produced sufficient differences in experience
to produce different impressions of causality. Experiment 2A thus sought to implement
differences in the degree of predictability by varying the range over which intervals could
vary, rather than the type of distribution from which they are drawn. If, as the results of
Experiment 1 suggest, predictability enhances causal judgments, then conditions with fixed
intervals should once again receive the highest ratings. Furthermore, if impressions of
causality decline as predictability is lost, then judgments should decline as the range of
temporal intervals increases.

A number of improvements were made to the paradigm. Firstly, only a single
question was deployed as a dependent measure of perceived causal effectiveness.
Experiment 1 ©ound no systematic differences between the two measures used in that study,
so the focus on one question is economical both in terms of participant time and analysis.
Secondly, since Experiment 1 showed that the addition ofrandom non-contingent outcomes
(while producing the expected main effect) had no interaction with either delay or
predictability, the independent factor of' background effects was removed, thus reducing the
number of experimental conditions to six. Thirdly, I increased the time participants could
learn about each causal relation from 90 to 120s, comparable to earlier studies (Shanks et
al, 1989). Experiment 1 employed a shorter exposure time merely to prevent participant
fatigue when working though such a hrge number of conditions. Having streamlined the

number of conditions in this study, it seemed reasonable then to increase exposure time.

3.3.1 Method

3.3.1.1 Participants
42 undergraduate students from Cardiff University were recruited via an online
participation panel. Participants included both males and females, with a median and modal
age of 19 years. Course credit was awarded for participation. Due to an experimenter error,
one participant did not receive the correct materials and was dropped from the sample. One
further participant failed to comply with the instructions and was removed from the
analysis. 40 participants thus contributed data to the sample.
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3.3.1.2 Design
Two independent variables were manipulated — mean programmed delay and range of
temporal interval values. In similar fashion to the “random” conditions in Experiment 1, the
value of a temporal interval on any given cause-effect pairing could take any value within
the defined range, with uniform probability across the range. Interval range was thus a
manipulation of the level of temporal predictability — the wider the range of temporal
interval values, the greater the variation in the value that a temporal interval could take on
any one particular cause-effect instance, and thus the greater the variability of temporal
intervals throughout the experimental condition.

Delay had two levels, 3s and 6s. Range had three values: Os, which meant that there
was no variation in the temporal intervals and the delay was fixed throughout the condition;
3s, which meant the temporal interval on a given cause-effect instance could take any value
within a range of 3s about the mean delay, or in other words 1.5s either side of this central
midpoint; and 6s, which meant temporal intervals could take any value within 3s either side
of the programmed mean delay. These were combined factormlly to produce 6 different
conditions, each of which was experienced by every participant, producing a 2x3 within-
subjects design. As an example, in the 3s-range 3s-delay condition, cause-effect intervals
could take on any value between 1.5 and 4.5s. The six conditions are represented

diagrammatically in Figure 3.4.

| I
Delay 3s Range Os Delay 6s Range Os

J 1
Delay 3s Range 3s  Delay 6s Range Os

: ﬁ |
Delay 3s Range 6s Delay 3s Range 6s '
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Figure 3.4: Diagram illustrating the combination of the levels Delay and Range to produce

the six experimental conditions in Experiment 2A.
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3.3.1.3 Apparatus, materials & procedure

The experiment was run onan Apple “Mac Mini” running Windows XP and Python
2.4.1, with a 17” LCD display. The basic perceptual experience for participants was
virtually identical to that from Experiment 1, except that condition time was extended to
120s, and that I opted to use only a single dependent measure: “On a scale 0f0-100, how
effective was pressing the button at causing the triangle to light up?” The experiment took

approximately 15 minutes to complete.

3.3.2 Results & Discussion

3.3.2.1 Causal Ratings

The mean causal ratings for Experiment 2A are shown in Figure 3.5. There is a
clear separation between delays of3s and 6s, with the more contiguous conditions receiving
higher causal ratings. There also appears to be a general trend for predictability. While
there appears to have been no discernible influence of interval range for short-dehy
conditions, with a longer mean delay causal ratings appear to decline in linear fashion as
temporal interval range is increased and predictability is reduced. This is suggestive ofan
interaction between delay and predictability such that where inter-event delays are longer,
predictability becomes more important.

A 2x3 within-subjects ANOV A obtained the expected significant main effect of
delay F(1,39) = 19.57, p < .0005, MSE = 3869, np2 = .334. However, contrary to my
predictions, there was no significant effect of interval range, F(2,78) = 1.759, p = .179,
MSE = 426.6, np2 = .043. Surprisingly given the trend in ratings in Figure 3.5, the
interaction between delay and range was also not significant, F(2,78) = 1.548, p = .219,
MSE = 472.6. The linear component of the main effect of predictability was however
marginally significant, F(1,39)=4.005,p = .052, MSE =374.7, np2 =.093.



Mean Causal Rating

Figure 3.5: Mean Causal Ratings from Experiment 2A as a function of temporal interval
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range. Different symboland line styles represent different delays. Error bars show standard

CITOIS.

delay
3s | 6s
range of temporal intervals
Os | 3s || 6s | Os || 3s | 6s
mean 30.7 33.1 32775  27.025 28.89744 27575
responses
mean 23.05  24.7125 245625 20.2625  23.3 20475
outcomes
actual P(ec)  0.746 0.750 0.747 0.761 0.772 0.748
mean actual 3000 2983 3022 6000 5989.5 6075
delay (0) (132) (272) (0) (152) 273)
mean causal 67.15 65.95 66.93 61.05 56.25 49.03
rating (26.52)  (22.06)  (19.92) (23.08) (25.02)  (25.85)

Table 3.2: Behavioural Data for Experiment 2A. Standard deviations are given in

parentheses.
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3.3.2.2 Behavioural Data

Table 3.2 summarizes the behavioural data for Experiment 2A. Once again to verify
that behavioural variance is not a confounding influence on causal ratings, the effect of the
independent variables onresponse rates was analyzed using a 2x3 within subjects ANOVA.
There was a marginally significant effect of delay on response rate, F(1,39) = 3.887, p =
.056, MSE = 876.1, npz = .091, driven by slightly higher rates of responding in the short-
delay conditions. There was no significant effect of temporal interval range, F(2,78) =
1.066, p = .349, MSE = 690.8, and no significant delay x range interaction, F(2,78) = .186,
p = .831, MSE = 831.9. Response rates were therefore largely unaffected by these
manipulations. In any case, the correlation between response rate and causal rating was
found to be non-significant, » = -.098, n = 240, p = .129. Variance in causal ratings is
therefore not attributabk to fluctuations in responding. P(e|c) was again constant across
conditions, with none of the expected small fluctuations resulting in this value differing
significantly from the programmed 0.75 level (all ps >.1). Likewise mean temporal interval

did not differ significantly between conditions matched for delay (allps >.05).

3.2.3 Discussion

The anticipated facilitatory effect of temporal predictability failed to convincingly
materialize in the current study. One possibility why the manipulation of interval range
failed to produce reliable effects on causal judgments could be that the cause-effect
contingency was too easily detectable. In contrast to Experiment 1, all background effects
were removed from this task. Therefore participants did not experience effects occurring
independently of their actions. All they needed to do was withhold their responding for an
extended period of time to quickly realize that the effect did not occur without them
pressing the button, and conclude that therefore they were in full control over the
occurrence of the outcome. Not only then did they not experience any non-contingent
conditions situations where they lacked control, but the same response-outcome
contingency was present for all situations. Previous studies (Shanks et al, 1989;
Wasserman et al, 1983) examined a range of contingencies including non-contingent
conditions. Experiencing different degrees of causal control could be key to participants

distinguishing between conditions and making more extensive use oftemporal cues in their
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causal decision. In the short-delay conditions, participants may easily have been able to
detect that they have full control over the outcome occurrence and then further detect the
similar pattern of response-outcome covariation across conditions. They thus would have
had less need to take account of temporal cues and instead base their decision solely on
contingency information (meanwhile the hck of contiguity in longer-delay conditions
means that this information remains difficult to discern). This issue could potentially be
addressed by re-introducing a set level of background effects for all conditions to
demonstrate that the effect may happen independently of the participant’s own action.
Alternatively, the task could include non-contingent conditions in which responding is
ineffective and outcomes occur according to some predefined schedule, so participants
experience both situations where they have control, and no control.

To summarize the principal findings from this study, short-delay conditions tended
to attract higher causal ratings compared to the less contiguous conditions, and did not
appear to differ from one another when predictability was varied. In contrast, in the long-
delay conditions, judgments appeared to decline as predictability was decreased, with the
long-delay low-predictability condition receiving by far the west mean causal rating.
Thus despite the fact that the main effect of temporal interval variability was not
statistically significant in this case, there does seem to be a general trend that accords with
the findings in Experiment 1. The suggestion is that refining the paradigm to be more
sensitive may provide more informative results and help to elicit the precise effect of

temporal predictability.

3.3 Experiment 2B

The previous experiment implemented variations in the degree of predictability by
modifying the range over which intervals could vary, rather than the type of distribution
from which they were drawn. It was anticipated that increasing interval range, thus
entailing decreasing temporal predictability, would produce concomitant declines in causal
judgments. Although an inspection of Figure 3.5 suggests this may have been the case for
longer delays, the effect on shorter debhys was minimal and increasing interval range was
not a statistically significant effect. This casts some doubt on the apparent facilitatory effect
of predictability obtained in the first experiment. Further investigation is thus required.
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Previous studies in the literature included either non-contingent conditions where
P(e|c) = P(e|~c) (Shanks et al, 1989; Wassermanet al., 1983) or non-contingent conditions
where outcomes were predetermined and responding was ineffective (Reed, 1993; Shanks
& Dickinson, 1991). Both manipulations guarantee that participants will experience
situations where the outcome occurs independently of their actions, creating an element of
uncertainty as to whether an outcome that occurs is due to their action or to alternate
causes. Experiment 2A lacked conditions such as these and therefore may have made the
task trivial. Participants may all too easily have been able to recognize that they were the
only active causal agent, and thus work out the response-outcome contingency without
having to make use of other available cues such as temporal information — particularly
since P(e|c) was constant across conditions. If instead an element of uncertainty is created
as to the causal status of the participant’s action, then other potential cues may be more
useful, and so more effectively demonstrate the role of predictability.

It was decided that one of these approaches to adding element of uncertainty must
be adopted in order to ensure that the task is not trivial. Having already examined the
influence of background effects in the first experiment, I instead introduced non-contingent
conditions using a yoking technique. Specifically, outcome sequences that were generated
from the performance of participants during the previous experiment were played back to
partcipants in the current experiment. In these conditions, the action of pressing the button
had no causal efficacy itself and the effects that occurred were therefore non-contingent
upon the current participant’s behaviour. Reed (1993) previously used a yoking technique
in which participants own performance on previous conditions was played back to them in
subsequent non-contingent conditions. Here, yoking to outcome patterns ffom the previous
experiment, rather than to participants’ own behaviour in the cument experiment, was
preferred for two reasons. Firstly, yoking to one’s own behaviour places considerable
restriction on the ordering of conditions, since a yoked condition cannot be presented until
a participant has worked through the corresponding master condition. Secondly, it is very
possible that participants might notice that the same outcome stream they previously
generated is being played back to them, particularly if they are responding in a structured
way (such as using response bursts or specific patterns of responding), and this would

therefore make the task trivial
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3.3.1 Method

3.3.1.1 Participants
60 undergraduate students from Cardiff University, witha medianand modal age of
20 years, were recruited via an online participation panel. Either £4 payment or partial

course credit was awarded for participation.

3.3.1.2 Design

The experiment adopted a 3x2x2 fully within-subjects design. The factors delay and
range remained from Experiment 2A with the same levek, and a third factor, condition,
was introduced, with levels master and yoked. The six master conditions were identical to
the six conditions presented in Experiment 2A, by combining all levels of delay and range
in the same manner. In these conditions, a response from the participant generated an
outcome according to the same probability of 0.75 as for the previous experiment, with the
response-outcome interval likewise determined in the same manner. The six yoked
conditions meanwhile served as noncontingent controlconditions, in which responding was
ineffective in influencing the outcome pattern. The presentation of outcomes in these
conditions was instead yoked to the outcome sequence generated from the performance of
participants during Experiment 2A. Each new participant in the current experiment was
paired randomly (with replacement) with a participant in the previous experiment. The
outcome patterns generated by the previous participant during the six conditions in
Experiment 2A (which were identical to the master conditions here) were then simply
played back in the corresponding yoked conditions. To ensure that the outcome sequence
during the yoked conditions was comparable with that during the master conditions, only
those participants whose outcome rates were in the second and third quartiles were made
available for the yoking procedure; participants with extremely low or high outcome rates
were not included.

Factornl combimation of range, delay and condition in a 3x2x2 within-subjects
design produced twelve different conditions. The first condition presented was always a
master condition, and counterbalancing across participants determined which of the six
conditions was sekcted as the first. The remaining conditions were then presented in

random order.
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3.3.1.3 Apparatus, Materials & Procedure

The experiment took place in a large computer lab. Participants were tested in small
groups, seated in a quiet area of the lab to work on the task. Each participant used a PC
running Windows XP and Python version 2.4.1, witha 19” LCD widescreen display. The
paradigm was a straightforward adaptation from the previous study, with the visual
appearance in terms of size and shape of stimuli and the speed of stimulus presentation
consistent with Experiment.1. The basic experience for participants was thus virtually
identical to that from Experiment 1, except that condition time was extended to 120s, and
that I opted to use only a single dependent measure: “On a scale of 0-100, how effective
was pressing the button at causing the triangle to light up?” As in the previous experiment,
partcipants used the mouse to click on the button and the keyboard to type in responses.

The experiment took approximately 15 minutes to complete.
3.3.2 Results

3.3.2.1 Causal Ratings

Figure 3.6 shows mean causal ratings for Experiment 2B. Firstly, there is a very
clear distinction between ratings for the master and the yoked conditions, with the master
conditions receiving significantly higher ratings as expected, F(1,59)= 114.2, MSE = 1270,
p < .0005, np2 = .659. This indicates that participants had little difficulty in correctly
distinguishing the contingent and non-contingent causal relations within the experimental
set. The yoked conditions themselves all appear to have elicited very similar, low causal
ratings, as expected, since there is no connection between response and outcome. The fact
that ratings are above zero is likely attributable to the occasional random co-incidence of
participants responses with the pre-programmed outcomes, or a reluctance to endorse
ratings at the extreme end of the scale.

Of primary interest, however, are the master conditions, where delay and dehy
variability actually affected the timing of outcome following responses. Accordingly,
subsequent anmalysis of ratings shall focus on these conditions alone. As can be seen in
Figure 3.6, judgments of causal effectiveness declined as a function of increasing interval
range (and thus temporal uncertainty), with an ANOVA confirming a significant linear
relationship, F(1,59) = 10.97, MSE = 651, p < .005, rbz =.157,. The effect ofdelay is also

immediately apparent, with short-delay conditions receiving uniformly higher ratings than
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the long-delay, F(1,59) = 14.07, MSE = 590.4, p < .0005, np2 = .193, in line with
Experiment 1 and prior research. There was no significant interaction between range and
delay, F(2,118) = 0.186, MSE = 444.2, p = .830. Planned comparisons found that
conditions with fixed mtervals (M = 57.06, SE = 2.860) received significantly higher
ratings than both the maximally-variable conditions (M = 46.15, SE = 2.683), «(119) =
3.553, p < .01, and the intermediate- variability conditions (M = 49.22, SE = 2.530), #(119)
=2.524, p < .05, which in turn did not differ significantly from each other, #(119) = 1.053, p
=.29%.
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Figure 3.6: Mean Causal Ratings from Experiment 2B as a function of interval range.
Filled and unfilled symbols refer to master and yoked conditions respectively. Mean delays

are noted by different symboland line styles.

3.3.2.2 Instrumental Behaviour and Outcome Patterns

Table 3.3 shows the behavioural data for the six master conditions in Experiment
2B. 3x2 within-subjects ANOVAs found that actual P(elc) remained unaffected
significantly by either range or delay (both ps > .5) and mean experienced delay was also
unaffected by range, F'(2,118)=0.319, MSE =7.021, p=.727. This provides assurance that
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the programmed manipulations delivered the appropriate event streams to participants.
Response rates (normalized by taking square root) were not significantly influenced by
range, F(2,118) = 0.456, MSE = 1918, p = .635; however there was a significant effect on
response rate of delay, F(1,59) =5.197, MSE = 1.609, p < .05, np2 =0.088. An inspection
of Table 3.3 suggests that response rate was slightly lower in the long-delay conditions; this
is in line with previous reports (e.g Shanks et al., 1989).

delay
3s | s
range of temparal intervals
s 3z | s | s 3z s

mean response

N 2183 19.06 19.51 13.01 19.08 1828
rate {/mimn)

mean outcorme

. 1631 14 04 14 868 13.62 14 32 1371
rate {/mimn)

actual P(e|c) 0750 0.745 0734 0759 0758 0750

mean actual 3000 2968 2593 &000 5960 5969

delay (1ns) (o (213 (359 {5)] (208) (5667
mean causal a0 92 5463 21.28 5320 43 20 41.02
rating (2272 (26.02) (3004 (3288 (2851 (2805

Table 3.3: Behavioural Data for Experiment 2B. Standard deviations are given in

parentheses.

3.3.3 Discussion

Experiment 2B has therefore provided a clear illustration that temporally predictable
cause-effect relations are perceived as more causal compared to variable and unpredictable
relations. Furthermore, increasing temporal variability within unpredictabk relations results
in a corresponding linear decrease in causal judgments. This is the first time, as far as [ am
aware, that this finding has been obtained in a free-operant response-outcome learning task.
It would appear, therefore, that these results are more in line with a structural or model-
based account of causal judgment, and problematic for associative perspectives on causal

learning and a reductionist account.
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However, these results need not altogether be incompatble with comparable
findings from reinforcement karning; there remains analternative explanation that must be
explored. Drawing on the wider literature on learning and memory, it has been widely
reported that the progression of karning is highly dependent on the type of training or
practice undergone. In particular with regard to motor learning and skill acquisition,
researchers have compared constant practice, where participants practice using a consistent
set of materials and skills, with variable practice, where performance takes place in a
variety ofdifferent conditions. Constant practice generally produces better performance in
the short term, whereas variable practice leads to better retention in the long run (Gluck,
Mercado, & Myers, 2008). Thus although learning under consistent conditions may initially
result in more rapid acquisition, over time, variable conditions result in the formation of
stronger associations. According to Schmidt (1975), variations in practice of a motor skill
result in superior learning which is demonstrated by better ability to transfer the skill to
different contexts. Wulf and Schmidt (1997) for example found that performance on a
continuous pursuit tracking task in transfer tests with novel scaling was generally enhanced
by variable compared to constant practice. Until fairly recently though, there has been little
interest in whether this finding generalizes to higher level cognitive tasks. However,
Goode, Geraci and Roediger (2008) investigated the effects of constant versus variable
practice on performance with the verbal priming task of anagramsolution. The results from
this study showed that although mitially a greater proportion of anagrams were correctly
solved following constant rather than variable practice, by the third practice session this
trend had reversed.

Thus, there is converging evidence from a range of learning paradigms and contexts
for a facilitatory effect of variability, provided enough learning time is provided. Of course,
causal or contingency learning is very different from motor skill acquisition. Nonetheless,
inspration may be taken from this literature to explore the possibility of an analogous role
of temporal variability with respect to causal learning. Specifically, I shall acknowled ge the
possibility that learning may reach asymptote faster with consistent temporal intervals
compared to variable ones, and hence the apparent advantage conferred by temporal
predictability may simply be due to learning having failed to reach asymptote for the

variable conditions in the time provided. If this is indeed the case, this short-term advantage
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for predictability may then disappear over enough learning trials, and even be reversed in
the long run.

In contrast, a computational perspective might instead suggest that, if anything,
temporal predictability may have more of an impact as learning progresses: Increasing
learning time is likely to enhance any potential temporal contribution to a mental
computation of causality, since more temporal information becomes available over
extended learning periods. Moreover, temporal predictability is only capable of exerting an
influence when an observer experiences multiple intervals. The more cause-effect intervals
a reasoner experiences during a learning period, the greater the total amount of variation
that may be experienced, and the more apparent a distinction between a predictable, fixed
relation and a variable, unpredictable relation may become. I endeavoured to examine these

two opposing hypotheses in the following experiment.

3.4 Experiment 3

Experiments 1 and 2B have clearly demonstrated a facilitatory effect of temporal
predictability in causal karning. However, a possible consideration in the interpretation of
these results is that the rate ofacquisition may differ with temporally predictable conditions
compared to temporally varable conditions. Variable-interval causal relations may take
longer to discover but may then lead to formation of a stronger associative bond, and thus
prove more resilient to extinction. If enough learning time is provided, then it might be
expected that judgments of causal strength for temporally variable causal relations should
match or evenexceed those for temporally predictable conditions.

To address this possibility, the following study set out to investigate the potential
influence of the learning time provided in each experimental condition on the effect of
temporal predictability in a free-operant causal learning experiment. If, as might be
suggested by associative accounts, the effect of predictability observed thus far is merely a
failure of learning to reach asymptote, then increasing condition time should bring causal
ratings for variable conditions in line with predictable conditions. Accordingly in the
following experiment, condition duration was introduced as a factor by adding conditions
lasting double the kngth of time as those in previous experiments (that is, four rather than

two minutes) and contrasting conditions with different durations. If the ‘failure to reach
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asymptote’ argument holds, some reduction of the difference between predictable and
variable temporal relations should be obtained for the four-minute conditions with respect
to the two- minute conditions. The variable conditions mayevenbe judged as more causal if
in fact variability leads to the formation of stronger associations (provided enough learning
time is allowed), as might be suggested from the literature on variability of practice. The

experiment will thus serve as a sterner test of the influence of temporal predictability.
3.4.1 Method

3.4.1.1 Participants
33 undergraduate psychology students based at Cardiff University, with a median
and modal age of 19 years, were recruited via an online participation panel, and received

partil course credit for completing the experiment.

3.4.1.2 Design

This experiment introduced exposure time (to each condition) as an additional
factor. Two levels of this factor were applied; 2 minutes, to be consistent with experiments
thus far and attempt to replicate the findings; and 4 minutes, which by doubling the
sampling opportunity should provide ample time for participants to fully investigate,
discover and make a judgment on any causal relationship that might exist. Delay and range
were retained as factors, although to simplify and condense the experiment, I removed the
‘intermediate' level of temporal interval range (3s). This gave two levels of range, Os (fixed
and maximally predictable) and 6s (variable and maximally unpredictable), while the two
levek of mean delay remained at 3s and 6s. Combination of all three factors produced 8
different conditions, all of which were experienced by each participant, thus providing a
2x2x2 fully within-subjects design. The condition that was experienced first by each
partcipant was pre-determined by counterbalancing across participants; all remaining
conditions occurred in randomorder. Participants provided causal ratings from0-100 at the
end of each condition as the dependent measure.

In order to add a degree of difficulty to the task and avoid making the contingency
too apparent, a steady rate of non-contingent background effects was applied to each
condition. This was equivalent to one every ten seconds, and each effect could occur at any
point within a given ten second segment (i.e. the first background effect could occur

somewhere between 0-10s, the next between 10-20s and so on). Of course, yoked
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conditions could instead have been again implemented, as for Experiment 2B, but given
that this experiment had eight master conditions, it seemed that matching each of these with
a non-contingent condition would be somewhat uneconomical, and a more streamlined

experiment would be less tedious for participants.

3.4.1.3 Apparatus, materials & procedure

The experiment was conducted in a small computer lab, using identical apparatus as
for Experiment 2, and was once again developed and run using the Python programming
language. Participants were tested in small groups, seated at individual workstations which
were screened off from each other. The paradigm and procedure were identical to those of
the previous experiments, using the same visual stimuli and layout, with only the key
differences described above, and corresponding modifications to the instructions informing

partcipants that they would experence conditions of different durations.
3.4.2 Results

3.4.2.1 Causal Ratings

Figure 3.7 summarizes the results from Experiment 3. As can be clearly seen, there
is once again a noticeable influence ofinterval range, with a decline in ratings evident with
all bar one of the temporally-variable conditions compared to the corresponding
temporally-predictable conditions with the same combination of delay and condition time,
and an overall significant main effect of range, F(1,32) = 6.134, MSE = 571.4, p < .05, np2
= .161. Delay also again has an immediately apparent influence, with the 3s conditions
receiving significantly higher ratings than 6s conditions, F(1,32) = 5.152, MSE = 823, p <
.05, np? = .139. Of central interest in this experiment, it can be seen that there is no
significant influence of the duration ofthe experimental conditions, F(1,32) = 0.796, MSE
= 694.5, p = .379, and crucially no significant Range x Duration interaction, F(1,32) =
2.26, MSE = 587.6, p = .143, confirming that the advantage for predictability over
variability is maintained for the longer (4-minute) conditions. None of the other possible

interactions were significant.
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Figure 3.7: Mean Causal Ratings from Experiment 3 as a function ofinterval range. Filled

and unfilled symbols refer to 2 and 4 minutes training respectively. Mean delays are noted

by different symboland line styles.

3.4.2.2 Instrumental Behaviour and Outcome Patterns

Table 3.4 shows the behavioural data from Experiment 3. As can be seen, response
rates were fairly consistent across levels of range and dehy, though naturally there were
more responses in total in the 4-minute conditions than the 2-minute. Within-subjects
ANOVAs found that response rate (square-rooted), mean experienced delay, and actual
P(e|c), were not significantly affected by interval range (all ps >.1); mean delay and P(e|c)
were unaffected by condition duration (all ps > .2); and response rate and P(e|c) were
unaffected by delay (all ps > .2); therefore the effects of my manipulations are not mediated

through these potential confounds.



75

candition time
2 minutes | 4 minuies

dalay
3s | ds | 35 | ois
range of temparal mtervals
&z oz | s | oz | s | o | s o

meal I'esponse
rate (/mnin)

25.65 24.45 26.55 25.03 28778 26.19 28.56 24.60

mean outcome
rate (/mnin}

19.18 18.29 20.00 19.26 21.68 19.53 21.57 1861

actual P(e|c) 0.741 0.740 0745 0764 0762 0746 0754 0761

mean actual 3000 3031 000 sagl 3000 3126 000 5924

delay (mns) ) (343) ) (343) () (244) (0) (240)
mean causal 5036 4036 4361 4152 5812 4736 4558 3636
rating (2844)  (28.03)  (32.92) (28.17) (26700 (2354) (25.66) (2591)

Table 3.4: Behavioural Data for Experiment 3. Standard deviations are given in

parentheses.

3.4.3 Discussion

This experiment has once again found temporally predictable causal relations to
receive significantly higher causal ratings than temporally variable, and indeed obtained the
strongest effect of predictability thus far. Here I provided maximal contrast between
predictable and unpredictable conditions by allowing intervals to vary up to the maximum
of 100% of the nominal interval (0-6s with a mean delay of3s and 0-12s with a mean dehy
of 6s) and dispensing with any intermediate levels of predictability

This effect of temporal predictability remained undiminished as condition time
increased, with condition time itself appearing to have little influence. The extent of
information sampling apparently then does not moderate or mediate any effects associated
with predictability. We can therefore be confident that the effect of predictability observed
thus far (and demonstrated once again in this experiment), cannot be attributed to a mere

failure of learning to reach asymptote. Temporal regularity remains as a cue to causality

regardless of duration oflearning.
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3.5 Experiment 4

From the outset, the goal of this chapter was firstly to ascertain whether temporal
predictability might have an influence on causal judgments, and what this might be. In the
experiments thus far, a definite pattern has begun to emerge such that conditions with fixed
temporal intervals are consistently judged to be more causally effective than those with
variable temporal intervals. The lattermost findings addressed the possibility of an
alternative explanation for this effect, but found no evidence to support this alternative.
The initial question therefore appears to have been satisfactorily answered. The secondary
aim of this chapter, if predictability could indeed be identified as a potential cue to
causality, was then to determine what ts relationship might be to the other most prominent
cues, contingency and contiguity.

En route to the current point, each experiment has included at least two levels of
meandelay, enabling us to evaluate the predictability effect at both short and long intervals.
Since contiguity and predictability may be both be regarded as parameters of a set of
temporal intervals, respectively analogous to the mean and the standard deviation of a
distribution, it seemed a natural approach to investigate the two in tandem, and hence shed
light on the relationship between predictability and contiguity. The facilitatory effect of
predictability on judgments has now been demonstrated across a number of different
delays, with delay extent not appearing to moderate the influence of predictability. W hile
Experiment 2A suggested that predictability might be more important when contiguity is
low, the general effect of predictability has tended to be comparable at both longer and
shorter delays. This same pattern also persists under both shorter and longer observation
times. Predictability and contiguity thus appear to independently influence causal judgment.

Thus far however, ths thesis has only barely touched on the potential relationship
between predictability and contingency. In Experiment 1, contingency was manipulated in
a serse by the use of different levels of background effects. Increasing the frequency of
noncontingent outcomes inflates the value of P(e[~) (cell C in the 2x2 contingency
matrix), so contingency is decreased as level of background effects s increased. While the
simple main effect of background effects onjudgments was robust, there was no interaction

between predictability and background effects. This suggests that, as with contiguity,
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contingency does not mediate the impact of predictability, and the two act separately to
influence causal judgments.

There are of course other ways through which contingency may vary; the values of
all three remaining cells of the 2x2 matrix may be adjusted. However in the FOP, without
using an underlying trial structure, precise values of P(—e|c) and P(—e|~c) cannot be
defined, since defining the absence of an effect must be in reference to a specified unit or
period of time. The value of P(e|c) however can be controlled directly. Throughout all the
experiments presented so far, a constant value of P(e|c) has been used. Ths value was
inherited from Shanks et al’s (1989) paradigm, and since this has proved useful as a
template for investigating the role of time in a number of subsequent studies (Reed, 1992),
it was adopted as the standard for the experiments in this chapter. There was, however, an
additional consideration underlying the selection of this default level. Research suggests
that in order for a temporal interval to be learned, the interval in question must be
experienced with sufficent regularity (Gallistel & Gibbon, 2000b). Hence it was assumed
that for temporal predictability (in the form of interval regularity) to be detected and used
as a cue to causality, the cause must then generate the effect reliably enough to provide
such experience. The fairly high probability of 0.75 used by Shanks et al. fitted this
requirement. The question then arises as to whether this assumption was indeed valid. Does
a high probability of a response generating an outcome constitute a prerequisite for a

predictability effect? The final experiment ofthis chapter sought to answer this question.

3.5.1 Overview of experiment

The familiar FOP paradigm was once again wtilised, with varying levels of P(ec)
applied across different conditions. Probabilities of 80%, 50% and 20% were used in
conjunction with both fixed and variable delays. A single mean delay of 2 seconds was
selected, with interval then either fixed at this value or varying freely on a given pairing
between 0 and 4 seconds.

Since the focus here is on P(e|c) rather than P(e|—), no background effects were
applied. Earlier in this chapter, the concern was raised that without the uncertainty provided
by background effects or noncontingent conditions, the task may become trivial as

partcipants may recognize a constant contingency across conditions. However since a
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constant value of P(e|c) is not being used across condition, this concern does not apply to
the current experiment.

Owing to extermal time constraints, the experiment needed to be as short and
streamlined as possible. Accordingly, and since the preceding experiment revealed no
significant effect of observation time, the duration of each condition was reduced to one
minute. The reduced duration should also further minimize any problems arising from the
absence of background effects, since long periods of abstaining from responding (which

would reveal this absence) are likely to be reduced commensurately.

3.5.2 Predictions

There & a large body of existing evidence (e.g. Alloy & Tabachnik, 1984; Chatlosh,
Neunaber, & Wasserman, 1985; Wasserman et al., 1983) demonstrating that human causal
judgments tend to be strongly influenced by contingency, of which P(e|c) is a major
component. This experiment should be no exception and therefore it is anticipated that
causal judgments will decline as P(e|c) is decreased. Based on the results of the thesis thus
far, higher ratings for conditions with fixed intervals compared to those with variable
intervals is also anticipated. If the predictability effect depends on repeated experience of
the fixed interval, as intuition suggests, then one should also expect an interaction between
probability and predictability, such that superiority of predictability over variability is
amplified at higher probabilities. If instead predictability and contingency are independent,
as the lack of an interaction in Experiment 1 implies, then one would anticipate that fixed
intervals should create stronger impressions of causality than variable intervals regardless

of the probability ofan outcome following a response.
3.5.3 Method

3.5.3.1 Participants
23 psychology undergraduates volunteered via an online participation panel hosted

at Cardiff University and completed the experiment to receive partial course credit.

3.5.3.2 Design
The factors delay (with levels fixed and variable) and probability (with levels 0.8,
0.5, and 0.2) combined in a 2x3 within-subjects design giving six conditions each of one

minute in duration. Each response made had the specified probability of generating an
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outcome. If scheduled, the outcome occurred either after a delay of 2s (fixed interval
conditions), or after a delay of between 0 and 4s (variable interval conditions) with the
delay on any given cause-effect pairing randomly selected from within this range. To
alleviate order effects, counterbalancing across participants was applied with respect to

which of'the six conditions was the first presented.

3.5.3.3 Apparatus& Materials

The experiment was conducted on a Dell Inspiron laptop with a 19” display running
Microsoft Windows Vista and Python 2.6. Participants were tested one-at-a-time in an
individual testing booth.

3.5.3.4 Procedure

The standard instrumental FOP used in the previous experiments was once again
applied here. Visual stimuli, layout, requirements and basic procedure were thus identical
to the preceding experiments. The only difference between this and the previous
experiments, from the perspective of participants, was the shorter condition duration and

the absence of'background effects.
3.5.4 Results

3.5.4.1 Causal Judgments

Figure 3.8 presents mean causal ratings for the six conditions in Experiment 4. Most
evident from mspection of this figure is the ascension of causal ratings in an apparently
linear trend as P(e|c) is increased. It is also immediately apparent that conditions with fixed
delays received uniformly higher mean causal ratings than the corresponding variabk-dehy
conditions, although this difference is only substantialat the highest level of P(e|c).

A 2x3 within-subjects ANOVA found significant main effects of predictability,
F(1,22)=17.355, MSE = 636.9, n,> = 251, p < .05, and probability, (2,44) = 40.59, MSE =
675.6, N> = 649, p < 0005. Planned comparisons collapsing across predictability found
that ratings where P(e|c) was 0.8 (M = 70.61, SE = 4.564) were significantly higher than
those at 0.5 (M = 42.26, SE = 4.159), t45) = 5.849, p < .001, which in turn were
significantly higher than those at 0.2 (M = 22.00, SE = 4.309), #(45) = 3.825, p < .001,
emphasizing the strong linear effect of P(e|c). The overall interaction between the two
failed to reach significance, F(2,44) = 2.363, MSE = 515, p = .16; however the linear
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component ofthe interactionwas marginally significant, F(1,22)=4.209, MSE =384.8,p=
.052, np? = .161. Further analysis of the interaction using Bonferroni-corrected pairwise
comparisons found that ratings at P(elc) of 0.8 were significantly higher for fixed than
variable conditions, #(22) = 3.564, p < .005, but no such differences were found at P(e|c) of
0.50r0.2.
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Figure 3.8: Mean causal ratings from Experiment4 as a functionof P(e|c). Filled and

unfilled symbols refer to fixed and variable delays respectively.

3.5.4.2 Instrumental Behaviour and Outcome Patterns

The behavioural data for Experiment 4 is reported in Table 3.5. As with the
preceding experiments, analyses of this data were again performed to examine potential
confounds. Normalized response rate was not significantly affected by probability, F(2,44)
=0.052, MSE = 1.916, p=.950, variability, F(1,22) = 1.740, MSE =3.409, p =.201, or the
interaction between the two, F(2,44) = 1.137, MSE = 1.017, p = .330. Different levels of
P(e|c) naturally resulted in significant differences between conditions for rate of outcomes,
F(244) =12.29, MSE = 325.2, p < .001, npz =358, and actual contingency, F(2,44) =
425.63, MSE = 0.011, p < .001, np2 = .951, but these measures were not significantly
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affected by variability, both ps > 0.25. Mean delays experienced were not significantly
affected by probability, variability, or their interaction, all ps > 0.4. The effect of

predictability in this experiment therefore cannot be attributed to these potential confounds.

delay
Jixed ‘ variable
P(elc)
08 | o5 | 02 | 08 | 05 0.2

mean response

. 32.87 34.00 31.00 28.57 23.13 29.48
rate (/min)

mean outcome

. 26.87 17.30 6.70 2274 11.70 5.70
rate (/min)

actual P(ejc) 0.763 0.751 0.743 0.764 0.772 0.746

mean actual 2000 2000 2000 1938 2151 2120
delay (ms) (0) (0) (0) (355)  (441)  (842)

mean causal 8235  44.65 2535 5887 3987  18.65
rating (21.60) (27.79) (25.16) (29.48) (25.88) (22.53)
Table 3.5: Behavioural Data for Experiment 4. Standard deviations are given in

parentheses.

3.5.5 Discussion

Experiment 4 continued the pattern shown throughout this chapter that holding the
cause effect interval constant elicited higher causal ratings. The facilitatoryrole of temporal
predictability in causal learning has been demonstrated yet again and the support for the
predictability hypothesis is now compelling. The manipulation of outcome probability
meanwhile also produced the expected findings, with judgments corresponding to a close
linear functionof P(elc).

Evaluating the interplay between probability and predictability is a less
straightforward task. Onthe one hand, an inspection of Figure 3.8 indicates that predictable
conditions received uniformly higher ratings than variable conditions across levels of
probability, and while a main effect of predictability was confirmed, the interaction failed

to reached significance. At the same time, the linear component of the interaction was
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marginally significant, and perhaps most tellingly, follow-up comparisons revealed that
fixed and variable conditions differed significantly only at P(elc) = 0.8. The influence of
predictability is thus amplified when the effect follows the cause witha high probability.

This is comsistent with causal learning being viewed as a retroactive reasoning
process. For predictability to be detected and thus exert an influence, the cause-effect
interval must be experienced with sufficient regularity in order that a temporally predictable
causal relation may be distinguished from an unpredictable one. Strictly speaking, t might
be more accurate to say that the effect of increasing statistical regularity was harmed by
temporal unpredictability, since when P(e|c) was highest, judgments fell well bebw AP
with variable intervals, but were more normative at lower levels of P(e|c). However, since
there was a cause-effect delay in all conditions, it is not necessarily expected that
judgments should in factconformto AP but to fall somewhat short of this measure (Shanks
et al, 1989). Regardless, it is clear from this experiment that temporal predictability elicits
stronger judgments of causality than variability, and this difference is amplified when
P(e|c) is high. The notion that sufficient experience of the interval in question is necessary
for predictability to be identified is thus supported by these results.

Interestingly then, it seems that a straightforward relationship between predictability
and contingency in a broad sense cannot be defined. Instead, comparing the results of
Experiments 1 and 4 suggests that predictability is differentially sensitive to the cells of the
contingency matrix. While reducing contingency through increasing the value of P(e|—c)
(cell C) surprisingly did not adversely impact the effect of predictability, reducing
contingency by reducing P(e|c) (cell A) attenuated the predictability effect. Temporal
regularity thus depends on statistical regularity only to a certain degree. This dependency
should however not harm the case for temporal predictability to be recognized as a cue to
causality in its own right. Greville and Buehner (2007), for instance, have demonstrated
that contingency and contiguity act in concert to influence causal judgment. Since the
experience of temporal intervak, which convey both contiguity and predictability
information, necessarily depends on there being a certain contingency with which the effect
follows the cause, then it should come as no surprise that there is a considerable degree of

interplay between these cues to causality.
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Chapter Summary

This chapter has attempted to broaden understanding of the role of time in causal
inference, and to address a gap in the empirical study of causal learning. Specifically, it has
been highlighted that temporal predictability canact as an empirical cue in the inductionof
causal rehtions from a real-time response-outcome schedule. More precisely, the results
demonstrate that fixed, predictable temporal intervals attract higher causal ratings than
variable ones, and that causalratings decrease as a function of temporal uncertainty.

Before postulating that temporal predictability should join temporal order,
contingency and contiguity as a recognized cue to causality, it seems necessary to ascertain
whether the findings obtained thus far can generalize to other learning situations. One
obvious feature of the studies presented thus far is that they are all based on the same
essential paradigm, the instrumental FOP. As Waldman and Hagmayer (2005) observe,
there are two primary modes of accessing information; by “doing” (intervening) and by
“seeing” (observing). A number of studies have demonstrated that differential results may
be obtained depending on which mode of learning is instigated (Lagnado & Sloman, 2004;
Sloman & Lagnado, 2005). Likewise in behaviour amalysis, the distinction between
learning through itervention or observation is manifested through the two separate
conditioning protocols, mstrumental and classical conditioning. Despite the obvious
parallels between the two, each process is known to have its own individual characteristics.
The most obvious question to next pursue would thus seem to be, can the same facilitatory
effects of predictability obtained here with an instrumental procedure likewise be obtained

with causal inference from observation?
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Chapter 4 — The Role of Temporal Predictability in Observational Causal Learning

The experiments in Chapter 3 repeatedly demonstrated the facilitatory role of
temporal predictability in instrumental causal learning. Conditions with fixed temporal
intervals consistently received higher ratings than their variable counterparts, with such
differences reaching statistical significance in four ofthe five studies presented. Increasing
interval variability appeared to elicit a corresponding decline in causal evaluations, and
variability was never preferred to predictability.

An obvious common thread of the tasks in Chapter 3, and the studies on which they
were based such as those of Shanks et al (1989), Reed (1992), and Wasserman et al.
(1983), is that they all concern instrumental learning. Such tasks are characterized by
requiring a participant to actively mnvestigate a putative causal relation by making
instrumental responses such as pressing a button, and observing the effect this has on the
delivery ofa particular stimulus, such as a light illuminating. Such tasks trace their heritage
to operant conditioning studies with animals such as those of Skinner. Here then, a putative
causal link in the environment is actively investigated through the performance of a
response and its apparent consequences. Causal relations may, of course, also be uncovered
by passive observation, through simply observing the occurrence of different stimuli (but
see Lagnado & Sloman, 2002). The immediately apparent allegory is with operant and
classical conditioning.

The next logical consideration, then, for evaluating the role of temporal
predictability, would seem to be whether the same effects of predictability hold for causal
induction from observed rather than generated events, and thus whether the effects obtained
thus far may generalize to other forms of causal decision making. However, before delving
headlong into the empirical investigation of predictability in observational settings, it is
worth pausing briefly to examine existing theories and research to clarify whether an
influence of predictability parallel to that observed in the instrumental studies is indeed

expected.
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4.1 Parallels and Disparities between Classical and Instrumental Conditioning

The most obvious basis for the separate consideration oflearning through acting and
learning through observing is the dissociation between classical and instrumental
conditioning. Chapter 1 introduced these basic protocols, both of which are used to study
the acquisition of assocntions. Chssical conditioning concerns associations between cues
or signak in the environment. Instrumental conditioning meanwhile refers to the
association between an executed behaviour and an evaluative outcome. In the former
paradigm, the experimenter typically arranges the delivery of both the CS and the US,
whereas in the latter, while the contingency between response and reinforcer is determined
by the experimenter, the subject chooses the rate at which it performs the instrumental
response (although it may be prompted to response by another stimulus such as the
illumination ofthe response key, e.g., Ferster & Skinner, 1957; Lander, 1965).

The obvious operational distinction aside, classical and instrumental conditioning
share many common elements. As discussed earlier, both are similarly affected by stimulus
intensity and the statistical and temporal relations between stimuli. As with causal learning,
contingency and contiguity are crucial constituents of both classical and instrumental
conditioning processes. If it is to be proposed that temporal predictability also constitutes a
fundamental component of learning, then it seems reasonable to expect consistent effects of
predictability across both instrumental and observational modes.

However, despite their inherent similarities, the associative learning literature tends
to treat classical and instrumental conditioning as distinct processes. Skinner (1938) was
one of the first researchers to highlight the operational distinction between the two
processes, and to postulte separate mechanisms for the two. Evidence from neurological
studes suggests that while certain neurological structures and pathways are vital to both
processes, such as the orbitofrontal cortex (OFC) (Delamater, 2007), the role of other
structures such as the amygdala is dissociable between classical and instrumental
conditioning. For instance, Vazdarjanova and McGaugh (1998) demonstrated that rats with
amygdala lesions fail to exhibit conditioned freezing to cues paired with a shock, despite
still successfully performing the instrumental response ofavoiding a compartment in which

theyreceived the shock.
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4.2 Distinguishing Intervention and Observation

In studies of human causal judgment, the distinction between observational and
instrumental learning has traditionally been less pronounced than in conditioning. Whereas
fundamentally different mechanisms have been postulhted to underlie the formation of CS-
US and response-outcome associations, statistical models of learning based on cause-effect
contingencies (such as AP or PowerPC) apply the same algorithm regardless of whether
suchevents are passively observed or actively generated.

As discussed earlier, the dominant approach to the study of causal induction has
focused on how statistical information is wsed to infer causality. As such, observational
studies where specifically defined event contingencies can be presented to participants have
been widely utilised to assess how well human causal judgment corresponds to the
available statstical information. Typically, unambiguous data indicating presence and
absence of causes and effects is presented either in a summary format such as tabulated
results (Greville & Buehner, 2007; Liljeholm & Cheng 2007), or through sequential
presentation of cases (Matute, Arcediano, & Miller, 1996; Meder, Hagmayer, &
Waldmann, 2008). Such studies have shown that passively observed contingency
information affects judgments of causality in much the same way as response-outcome
contingencies in instrumental learning, with higher contingencies eliciting stronger
judgments of causality. Studies of observational learning involving direct experience of
cause-effect delays in real time are rather more thin on the ground, but Siegler and Liebert
(1974) and Buehner and McGregor (2006, 2009) have demonstrated effects of contiguity
mirroring those found in response-outcome learning tasks (that s, judgments tend to
decline with delays). It has further been demonstrated that moderating influences of the
effects of contiguity such as prior knowledge are also exhbited in observational as well is
instrumental studies (Allan etal., 2003).

Yet in recent years, causal model theory in particular has emphasized the special
status of actions in causal reasoning (Blaisdell, Sawa, Leising, & Waldmann, 2006;
Lagmado & Sloman, 2004, 2006; Leising, Wong, Waldmann, & Blaisdell, 2008; Sloman &
Lagnado, 2005; Waldmann, 1996, 2000; Waldmann & Holyoak, 1992, 1997). Intervention
— performing an instrumental response on a system to modify the value of a variable —

creates different predictions compared to where the value of a variable is merely observed.
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In an oft-cited examplk, observing a reading on a barometer may lead one to have
expectations regarding the weather, while ifone was to make an intervention to deliberately
set the barometer to a specific setting, one would not expect the weather to change
correspondingly. Such causal asymmetry reflects not only causal directionality (causes
produce their effects but not vice versa) but also causal structure in the sense that
intervening ona variable renders it independent of its parent causes.

Of course, such distinctions with respect to learning causal structure do not
constitute a direct parallel with distinguishing between intervention and observation in
elemental causal induction from a real-time cue-outcome schedule. Nevertheless, this does
highlight the special status of interventions in causal reasoning. This recognition of the
privileged role bestowed to instrumental responding may well therefore create different
expectations between learning through observation rather than intervention. It is generally
accepted in scientific literature that experimentation is a more effective tool for learning
and discovery than observation (Hinkelmann & Kempthorne, 1994; Lagnado & Sloman,
2004) and one can easily see how instrumental learning may be a more powerful process
through which to explore ones’ environment. By deliberately intervening on the
environment, an organism can control the frequency or rate of responding, the pattern or
temporal distrbution of responses, the intensity or strength of response, and so on and so
forth. Simply put, patterns of intervention are self-governed, and choices can modulate the
data that is received (Lagnado & Sloman, 2006). Learning from observation meanwhile
may intuitively seem more difficult, since the occurrence ofstimuli is beyond the controlof
the organism.

Temporal regularity in particular might be easier to detect under instrumental rather
than observational conditions. Under the former, since one can control ones own rate and
pattern of responding, one can produce meaningful or memorable patterns of responses,
that perhaps might be dubbed response rhythms. After generating such rhythms, one can
then monitor the stream of outcomes to see if a similarly matching pattern occurs. This
could be on as simple a level as comparing ratios of rates or frequencies (that is, comparing
number of outcomes to number of responses) but could also involve more complex
comparisons such as whether the specific timing of outcomes mirrors the pattern of

responses (or to what degree the patterns have a similar temporal distribution). Meanwhile
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when learning through observation alone, one would have to wait for such meaningful
patterns to be generated by the environment or an alternative agent. Interventional learning
then may promote more directed hypothesis testing, as someone who repeatedly intervenes
on a system is in a better position to test their own hypotheses than someone who merely
observes the system. Indeed, Sobel and Kushnir (2006) demonstrated that “learners were
better at learning causal models when they observed intervention data that they had
generated, as opposed to observing data generated by another learner” (p.411).

In summary, it is clear that there are many commomalities between instrumental and
observational learning, in the domains of both animal conditioning and human causal
learning. Such commonalities, particularly with regard to the general effects ofcues suchas
contingency and contiguity, suggests that an effect of predictability observed in
instrumental paradigms might well extend to observational scenarios. At the same time,
there is much evidence to suggest that intervention and observation differ in the insight that
they may provide regarding causal structures. Suffice it to say, it is certainly not a given
that the same facilitatory effects of predictability on causal learning in instrumental tasks

will also be found in observational tasks.

4.3 Existing Evidence — Young & Nguyen, 2009

As an illustration of this point, recent work by Young and Nguyen (2009) obtained
results which directly contradict the findings presented in Chapter 2. Their task could, to
some extent, be conceived as a classical conditioning analogue of these temporal
predictability studies, with participants observing events rather than taking instrumental
action. Participants in Young and Nguyen’s experiments engaged in a first-person-shooter
game, exploring a 3D virtual world consisting of four game levels, each containing seven
separate regions. In each region, participants encountered groups of three ‘orcs’ (humanoid
monster-like characters) firing projectiles from their crossbows onto a distal target (such as
a building). Participants were informed that in each case, one orc was an enemy and was
firing explosive projectiles (the true cause, or target) while the other two were friendlies’
and firing duds (the foils). For each orc, the firing of the crossbow was noticeable by the
recoil of the weapon and an audible click; the projectile itself could not be seen travelling

from the weapon to the target since this makes the causal link all too evident. The firing of
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the enemy (target) orc produced explosions in the target region. The participants’ task was
to protect the building at each region by destroying the orc that was causing the explosions,
shooting it with their own crossbow. Essentially then, the task can be summarized as
deciding which of three candidate causes (orcs) was producing an effect (explosions).

The key manipuhtionof interest was the extent and variability of the delay between
the cause (target orc firing its weapon) and the effect (explosions). This was varied across
game regions (along with presence or absence ofauditory fillers during the delay). At each
region, the firing of the orcs’ weapons was governed by an underlying trial structure, with
each orc firing its weapon once during each trial. The trials were of4s duration, with each
orc firing at a random point during the first 3s of the 4s trial. The timing of the effect
meanwhile was not linked to the trial structure; rather, the effect followed the true cause
according to the programmed cause-effect delay. Game level 1 contained no delays and was
used to orient the participants to the game environment. In subsequent levels, Young and
Nguyen employed delays 0f0.5s, 1s and 2s, which at a given region could be fixed or could
vary from trial to trial by up to either 25% or 50% ofthe nominal delay. In experiment 1,
delay varied within levels while variability was constant within a given level but varied
across lewvels; the reverse arrangement was made for experiment 2.

Contrary to the findings presented in Chapter 3 of this thesis, in Young and
Nguyen’s experiments constancy of delay did not appear to provide an advantage, and in
fact high variability sometimes led to an increased percentage of correct target selection.
This suggests that participants’ ability to connect the effect with its true cause increased
when the intervals separating them were variable. As well as being somewhat
counterintuitive, this result is in direct conflict with those obtained thus far in this thesis,
and therefore this warrants closer examination.

It should be noted that the advantage for variability was considerably less robust
and pervasive than the concurrent influence of delay extent, and curiously seemed to be
restricted to male participants; variability had no significant influence on either accuracy or
latency for females. It is also worth pointing out that Young and N guyen’s task utilized a
dependent measure unlke that in the instrumental studies in Chapter 3. Rather than
providing a judgment of causal strength, participants instead were faced with a forced-

choice discrimination task, having to sekct the correct target from multiple causal
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candidates. This is quite obviously different from the evaluation of a single cause-effect
relation on the basis of repeated observations, and may well involve different cognitive
mechanisms or reasoning processes. Nevertheless, if temporal predictability reinforces the
idea of a genuine stable causal mechanism linking cause and effect, then if participants can
recognize this, it should be a useful cue to choosing the comrect target. Indeed, one might be
particularly inclined to make such an assumption when considering the game context
provided by Young and N guyen, set in a realistic 3D environment comparable to a real-
world scenario. If participants assume that the same laws of physics present in our world
applied to the game environment, then they should assume that a projectile being fired at a
target should take the same time to reach that target when being fired repeatedly by the
same weapon (assuming that wind speed and direction were constant). Much research
exists that suggests such prior knowledge or experience can generalize to experimental
tasks (Buehner & May, 2002, 2003, 2004; Einhorn & Hogarth, 1986; Waldmann, 1996).
Such mechanism considerations would seem to predispose Young and Nguyen’s
partcipants to expect temporal predictability. The failure to find such an advantage for
fixed intervals in either of Young and N guyen’s experiment thus poses difficulty for the
predictability hypothesis. The discrepancy between these results and those presented in
Chapter 3 clearly warrants further exploration.

4.3.1 An alternative to the predictability hypothesis — The temporal proximity account

One of the difficulties involving causal learning with delays is that competing
agents can come between the cause and the outcome. This is particularly true in a task such
as this, involving choice between multiple identical causal candidates, since the foils canbe
more contiguous with the effect than the true cause. The corollary of this is that incorrect
selection of a foil as the target may arise from an coincidental instance of the foil being
contiguous with the effect. The longer the delay, the more likely this is to occur, and this is
particularly true for a constant, high-delay causal candidate: Whilst for a variabk-long-
delay, there is the possibility on any given trial that there may be a contiguous pairing of
the cause and effect, this cannot occur with fixed-long-delays. Young and Nguyen (2009)
were aware of these complication; in running Monte Carlo simulations prior to the
experiment, they discovered that “highly variable long delays produced a larger number of

experiences of the true cause being more contiguous to the effect whereas consistent long
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delays produced more experiences of one of the foils being more contiguous” (p.300). If
partcipants tend to select as the target the candidate that is most often proximal to the
effect, then this will result in a greater number of errors in a fixed-long-delay condition.
Their results suggest this may well have been the case, with correct identification of the
target for fixed-high-delay causal candidates falling as low as under 20%. According to
such an interpretation, it is not variability per se that is facilitatory, but rather the occasional
contiguous pairing that variability p ermits.

Yet, despite identifying this potential issue prior to conducting their experiments
and predicting this effect of variability, Young and N guyen (2009) still describe this finding
as paradoxical Ths is understandable since Young and colleagues were in fact the initial
proponents of the temporal predictability hypothesis (Young et al, 2005), according to
which consistent delays are indicative of a genuine mechanism connecting cause and e ffect.
Young and Nguyen’s participants however failed to make use of such information, in
violation of this hypothesis, and instead apparently selected as the target the candidate that
was most often contiguous with the effect. Here then, there is apparently a shift in
emphasis between temporal cues, frompredictability to contiguity.

The simple associative model describing the decline of associative strength with
delay as a negatively accelerated function (Figure 2.1) is consistent with and would predict
this behaviour since according to this model, associative strength (and thus impression of
causality) would be most boosted by experience of'a contiguous cause-effect pairing And it
is indeed the case, as the simulations revealed, that variability produces more instances of
the cause being contiguous with the effect, with a greater degree of variability creating a
greater likelihood of contiguous cause-effect pairings. But given that the same is true in
elemental causal induction, why was predictability consistently favoured over variability in
the experiments in the preceding chapter? Evidently, valid accounts can be constructed to
explain facilitatory effects of both predictability and variability; what is unclear is why
there appears to be a shift from on to the other depending on the task. It is not the case that
predictability is simply more important than contiguity in elemental causal induction, since
effect sizes obtained for contiguity in the previous chapter were consistently larger than
those for predictability. There must then be other reasons why interval regularity failed to

produce the same effects in Youngand Nguyen’s study.
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4.3.2 The video game context

Perhaps the most prominent difference between my studies and the paradigm
employed by Young and Nguyen (2009) is the context. The video game presents
partcipants with a virtual world, a highly detailed and involving environment. Young and
Nguyen argued, justifiably, that such scenarios are more representative ofreal-world causal
learning tasks where information will have to be filtered from the rich sensory input
available, placing high demands upon organisms’ cognitive resources. However as a
consequence, muchof the empirical evidence may have been less salient and more difficult
to detect, with many other stimuli to divert attention. In the experiments presented in the
previous chapter, the visual stimuli were simple and there were no alternative behavioural
opportunities besides actively investigating the causal link. In contrast, Young and
Nguyen’s study ceded a great deal of control to the participant, allowing them to freely
explore the virtual world, and choosing from what distance and what angle to view the
relevant events. As a consequence, participants may have been engrossed in simply
navigating the environment and had their attention drawn by other visual features. In
addition, another layer of complexity was added through of auditory stimuli filling the
delay interval. Young and Nguyen acknowledge that “the comsistency of the delays was
likely less evident within our complex dynamic environment™ (p.309). The question thus
arises as to whether the rich detail of the video game captured attention to the extent that
participants were simply unable to recognize interval constancy. Young and Nguyen’s aim
in providing this compkx context was to more closely mirror the richness of the world
within which we make our everyday causal inferences, and thus improve ecological
validity. While such a goal is laudable, it may well be that a more traditional, tightly-
controlled experimental approach is more useful in eliciting the precise role of a more
subtk causal cue such as temporal predictability, before moving forward to see how

complex dynamic environments may alter the influences ofsuch temporal factors.

4.4 Experiment 44
Accordingly, the goalof the next experiment was to constructan amlogue of Young
and Nguyen’s experiment, using a straightforward preparation with simple stimuli. By

doing so, the potential diversion of exploring the 3D virtual world would be eliminated,
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which would then hopefully allow participants to focus specifically on the relevant events.
By devoting greater attention to the candidate causes and effects, the temporal relations
between these events should become more apparent to participants. At the same time, any
effects of prior knowledge or experience that participants may have brought to bear in the
realistic scenario provided by the first-person-shooter game would be eliminated. To this
end, the essential features of Young and N guyen’s task in terms of the timing of stimulus
delivery were retained and recast in a simple experimental protocol using abstract stimuli,
more closely resembling standard contingency judgement problems such as those of Reed
(1992), Shanks et al. (1989) and Wasserman et al. (1983). Participants were presented with
a triangle in the upper portionof the screen, as per the experiments in Chapter 2, and below
this were situated three buttons, in similar arrangement to the ‘orcs’ in Young and
Nguyen’s task. Alongside each button was a pointing hand, which periodically moved and
depressed the button, which constituted an instance ofa candidate cause. Thus, as in Young
and Nguyen’s task, participants took no instrumental action themselves in generating the
button-presses. Instead, the administration of the candidate causes was governed by the
same underlying trial structure with each candidate cause occurring at a random point
within the first 3s of each 4s trial. The triangle illuminated contingent upon one of the
buttons being pressed, with the other two buttons being foils. The interval separating cause
and effect was determined using the same programmed delays and delay variability as for
Young and Nguyen’s task. Buttons were labelled 1, 2 and 3 from left to right, and the
position of the true cause on each condition was randomized on each condition.

Participants thus had only to focus on the timing of the candidate causes and the
effect, and were free from the potential distractions of the complex environment.
Consequently it was hoped that where constancy of delay between cause and effect existed,
that this would become evident to the participants. Results should then reveal whether such
information was beneficial to participants in terms of the accuracy and rapidity of their
choice of cauwsal candidate, or whether they instead tended to prefer the occasiomal

contiguous pairing of cause and effect licensed by interval variability