
Advances in Mathematics 475 (2025) 110325

Contents lists available at ScienceDirect

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Grothendieck-Verdier module categories, Frobenius 

algebras and relative Serre functors

Jürgen Fuchs a, Gregor Schaumann b, Christoph Schweigert c,∗, 
Simon Wood d

a Teoretisk fysik, Karlstads Universitet, Universitetsgatan 21, S – 651 88 Karlstad, 
Sweden
b Mathematische Physik, Institut für Mathematik, Universität Würzburg, 
Emil-Fischer-Straße 31, D – 97 074 Würzburg, Germany
c Fachbereich Mathematik, Universität Hamburg, Bereich Algebra und 
Zahlentheorie, Bundesstraße 55, D – 20 146 Hamburg, Germany
d School of Mathematics, Cardiff University, Abacws, Senghennydd Road, Cardiff, 
CF24 4AG, United Kingdom of Great Britain and Northern Ireland

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 17 December 2024
Received in revised form 24 April 
2025
Accepted 26 April 2025
Available online 14 May 2025
Communicated by Ross Street

Keywords:
Grothendieck-Verdier categories
*-Autonomous categories
Module categories
Frobenius algebras

We develop the theory of module categories over a Gro-
thendieck-Verdier category C, i.e. a monoidal category with 
a dualizing object and hence a duality structure more general 
than rigidity. Such a category comes with two monoidal struc-
tures ⊗ and �× which are related by non-invertible morphisms 
and which we treat on an equal footing. Quite generally, non-
invertible structure morphisms play a dominant role in this 
theory. In any Grothendieck-Verdier module category M we 
find two distinguished subcategories M̂�× and M̂⊗, which 
can be characterized by certain structure morphisms being 
actually invertible. The internal Hom Am := Hom(m,m) of 
an object m in M̂⊗ that is a C-generator is an algebra such 
that mod-Am is equivalent to M as a module category. Cru-
cially, the subcategories M̂�× and M̂⊗ are precisely those on 
which a relative Serre functor can be defined. This relative 
Serre functor furnishes an equivalence S : M̂⊗  −→M̂�×, and 
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any isomorphism m 
∼ =  −−→S(m) endows the algebra Am with 

the structure of a Grothendieck-Verdier Frobenius algebra.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. GV-module categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Module categories and module functors for GV-categories . . . . . . . . . . . . . . . . . . . 9
3.2. Conjugated pairs of lax and oplax module functors . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3. Adjoints of GV-module functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Applications: distributors and duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5. Internal Homs and weak module functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Frobenius algebras and admissible objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1. Algebras and Frobenius algebras in GV-categories . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2. Symmetric Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3. GV-module categories versus categories of modules . . . . . . . . . . . . . . . . . . . . . . . . 47

5. Relative Serre functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1. Internal Homs and representable functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2. The relative Serre functor of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3. Relative Serre functors and Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1. Introduction

Monoidal categories arise in a wide variety of contexts, for instance as cobordism 
categories and as representation categories of diverse algebraic structures. Accordingly, 
monoidal categories have found numerous applications, ranging from representation the-
ory to quantum topology and logic. Rigidity is a natural duality property for an object 
in a monoidal category. A rigid monoidal category is a monoidal category in which every 
object has rigid duals; such categories are pervasive in quantum topology.

To motivate the results of this paper, consider the following subclass of rigid cate-
gories: Let k be an algebraically closed field. A finite tensor category over k is a k-linear 
abelian rigid monoidal category that is finite, i.e. is equivalent, as an abelian category, 
to the category of finite-dimensional modules over a finite-dimensional k-algebra. The 
class of finite tensor categories includes e.g. categories of finite-dimensional modules 
over finite-dimensional Hopf algebras; for these, rigidity is rather directly inherited from 
basic properties of finite-dimensional vector spaces. Finite tensor categories are well un-
derstood [11]. In particular there is a satisfactory theory of exact module categories over 
finite tensor categories. This theory is deeply linked with rich algebraic notions like Drin-
feld centers and relative Serre functors. In fact, the bicategory of exact module categories 
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is as indispensable for the understanding of a finite tensor category as the category of 
modules is for the understanding of a ring.

On the other hand, for a general monoidal category rigidity is a highly restrictive 
property. For instance, it forces the tensor product of a finite tensor category to be an 
exact functor. It should therefore not come as a surprise that many concrete monoidal 
categories arising in representation theory, algebraic geometry or linear logic are not 
rigid. However, many interesting tensor categories still exhibit the more general duality 
structure of a star-autonomous or Grothendieck-Verdier duality. The primary purpose 
of this paper is to develop a theory of module categories over Grothendieck-Verdier 
categories. We are motivated by the desire to reach a deeper structural understanding of 
Grothendieck-Verdier categories, as well as by potential applications of module categories 
in the construction of two-dimensional conformal field theories. (The latter application 
actually requires pivotal structures, which we also touch upon.)

Roughly speaking, a Grothendieck-Verdier category is a monoidal category (C,⊗)
together with the additional structure of a dualizing object K ∈C (see Definition 2.1), 
which entails a contravariant duality functor G : C  −→Copp that is an anti-equivalence. 
Examples of Grothendieck-Verdier categories include suitable representation categories 
of Hopf algebroids [1] and of a large class of vertex algebras [2], as well as categories 
of finite-dimensional bimodules over finite-dimensional algebras, see e.g. the discussion 
in [13]. Apart from naturally arising as representation categories for large classes of 
algebraic structures, Grothendieck-Verdier categories also have several other appealing 
features. In particular, while their tensor product is not necessarily exact, the structure 
is still sufficiently restrictive so as to guarantee the existence of internal Homs. Owing to 
the fact that the duality functor G of a Grothendieck-Verdier category (C,⊗,K) is not 
necessarily monoidal, C naturally comes with a second tensor product �× that is left exact. 
This also explains why such categories have been considered in categorical approaches 
to logic, which require two monoidal operations “and” and “or” that are related by a 
negation G. Each of the two tensor products come with associator isomorphisms obeying 
respective pentagon identities. In addition they are linked by “mixed associators”, called 
distributors, which, unlike ordinary associators, need not be isomorphisms, but still obey 
pentagon identities. Structure morphisms that are not isomorphisms will be ubiquitous 
in our discussion.

We now summarize the most significant results of this paper. We consider left module 
categories (M,▷) over a Grothendieck-Verdier category (C,⊗,K) for which the functors

c ▷− : M  −−→ M and −▷m : C  −−→ M (1.1)

have a right adjoint for every c ∈C and m ∈M. (The action of C on itself, the regular 
module, gives an example of such a module category.) If C is even rigid, then this reduces 
to the class of exact module categories considered in [11]. We show in Proposition 3.5
that any ⊗-module category (M, ▷ ) also comes with a natural structure of a module 
category (M, ▶ ) over the monoidal category (C,�×) with monoidal structure given by 
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the left exact tensor product on C. In fact, we take it as a guiding principle of our 
analysis that the two monoidal structures of a Grothendieck-Verdier category should be 
treated on an equal footing. In particular, constructions that are defined using one of the 
two monoidal structures, such as module categories and module functors, should exhibit 
corresponding features with respect to the other monoidal structure as well.

Next we study module functors. Given two module categories M and N over the 
same Grothendieck-Verdier category C, these are functors F : M  −→N with additional 
constraint data. In our setting it is not reasonable to require that these constraints 
are isomorphisms. This leads us to consider four classes of module functors, being lax 
or oplax for either of the two actions ▶ and ▷, respectively, constituting four a priori 
different bicategories. In Theorem 3.13 we show that two of these bicategories can be 
naturally identified. Our insights about module functors allow us to introduce, in Defini-
tion 3.17, module distributors which relate the two actions ▶ and ▷. In Section 3.3, we 
use profunctors and adjoints to exhibit numerous relations between different classes of 
module functors; these are summarized in Table (3.58). Our theory allows us to exhibit 
a plentitude of six pentagon diagrams for Grothendieck-Verdier module categories, and 
32 pentagon diagrams for Grothendieck-Verdier bimodule categories.

It is well known that Grothendieck-Verdier categories admit evaluation and coeval-
uation morphisms. Our constructions allow for a concise proof that these obey snake 
relations that involve the distributors. We finally reveal in Proposition 3.45 in which 
way the internal Hom (and coHom) functors possess natural structures of module func-
tors.

The structure of an algebra in a Grothendieck-Verdier category is naturally defined 
with respect to the monoidal structure (C,⊗), and the structure of a coalgebra with 
respect to (C,�×). It is then immediate that internal (co)Homs of Grothendieck-Verdier 
module categories provide examples. As is well known, Frobenius algebras in monoidal 
categories play a significant role in many different contexts (for a few of them see e.g. 
the list given in the introduction of [14]). This motivates us to investigate, in Section 4, 
also Frobenius algebras in Grothendieck-Verdier categories. We introduce three possible 
definitions of the notion of a Frobenius algebra and show in Theorem 4.14 that they 
are equivalent. Since both monoidal structures enter, this proof is substantially more 
involved than in the case of rigid tensor categories. We then consider the following issue: 
While it is obvious that for any algebra A in a Grothendieck-Verdier category C the 
category mod-A of right A-modules is a C-module category, it turns out to be a much 
more subtle question whether a given C-module category M can be represented as a 
category of modules over some algebra in C. And indeed generically this is not possible 
(see Example 4.28 for a counterexample); we call those module categories which can be 
represented in this way algebraic.

When investigating this question we are led to the Definition 4.23 of two interesting 
subcategories of M: one of these is the full subcategory M̂⊗ of ⊗-admissible objects, 
consisting of those objects m ∈M for which the functor Hom(m,−) : M  −→C is a strong 
▷-module functor and has a right adjoint. Our principle to treat the two monoidal 
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structures ⊗ and �× on the same footing leads us to also consider the corresponding 
structures for the ▶ -action. We thus obtain another subcategory M̂�× of objects m ∈M
for which the functor coHom(m,−) : M  −→C is a strong ▶-module functor and has a left 
adjoint.

The categories M̂⊗,�× need not be abelian; nevertheless they are still nicely compatible 
with the monoidal structure on C. As we show in Proposition 4.24, by restriction of 
the action of C on M the category M̂⊗ is a left Ĉ⊗-module category, while M̂�× is a 
left Ĉ�×-module category. In particular, the subcategories Ĉ⊗ and Ĉ�× of a Grothendieck-
Verdier category C are monoidal subcategories. With these subcategories at hand, we are 
in a position to characterize, in Proposition 4.26 and Theorem 4.32, algebraic module 
categories: objects m ∈M̂⊗ which are C-generators are precisely those for which the 
internal End Am = Hom(m,m) is an algebra such that mod-Am is equivalent to M. A 
dual statement holds for C-cogenerators m ∈M̂�×, the coalgebra Cm =coHom(m,m) and 
Cm-comodules.

We consider the existence of the subcategories M̂⊗ and M̂�× as one of the main insights 
of this paper. They constitute a profound structure with important consequences. In 
particular, they enter into the definition of relative Serre functors which we introduce in 
Section 5.1: two functors

S : M̂⊗  −−→ M and S̃ : M̂�×  −−→ M , (1.2)

characterized by

Hom(n, Sm) ∼ = G(Hom(m,n)) and Hom(S̃m, n) ∼ = G(Hom(n,m)) . (1.3)

Note that it is a priori not at all clear that the subcategories M̂⊗ and M̂�× admit 
the isomorphisms required in (1.3). Theorem 5.7 then asserts that S and S̃ provide an 
equivalence of categories between M̂⊗ and M̂�×. This allows us to generalize the insights 
of [19] to show that every choice of isomorphism p : m  −→Sm in M induces the structure 
of a Frobenius algebra on the algebra Hom(m,m).

In the present paper we discuss pivotal Grothendieck-Verdier categories only in two 
specific contexts: In Section 4.2 we characterize symmetric Frobenius algebras in pivotal 
Grothendieck-Verdier categories, and at the end of Section 5.3 we explain how rigid duals 
and Grothendieck-Verdier duals are related in pivotal categories. In view of potential 
applications to modular functors and conformal field theories, pivotal Grothendieck-
Verdier categories deserve a further study.

2. Preliminaries

We assume that the reader is familiar with the concept of rigid duality in monoidal 
categories. In the present section we review the notion of Grothendieck-Verdier duality, 
contrast it to rigid duality, and recall concepts and results from the theory of module 
categories over monoidal categories.
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In our discussion we consider simultaneously two types of categories – linear and 
not necessarily linear ones. More explicitly, if no extra assumptions are made, then 
categories and functors will be arbitrary. If instead we deal with a linear category, then 
we assume that k is an arbitrary but fixed field and that the category is k-linear without 
any further finiteness assumptions: a functor between linear categories is assumed to 
be linear, natural transformations are linear maps, and for a module category over a 
linear monoidal category the action functor is assumed to be bilinear. Following [11, 
Defs. 1.8.5 & 1.8.6], a finite category is for us a linear category that is equivalent as an 
abelian category to the category of finite-dimensional modules over a finite-dimensional 
k-algebra.

Definition 2.1. 

1. An object K in a monoidal category (C,⊗, 1, α, l, r) is said to be a dualizing object 
if, for every y ∈C, the functor x �→Hom(x ⊗ y,K) is representable by some object 
Gy ∈C and the so defined contravariant functor G : C  −→C is an anti-equivalence, so 
that there are isomorphisms

�x,y : Hom(x ⊗ y,K)
∼ =  −−→ Hom(x,Gy) (2.1)

natural in x, y ∈C. G is called the duality functor with respect to K.
2. A Grothendieck-Verdier category – or GV-category for short – is a monoidal category 

together with a choice of a dualizing object K ∈C.

The assignment of the functor G on a morphism f : x  −→ y is obtained by noting that 
the pullback induces the natural transformation in the left column of the diagram

Hom(− ⊗ y,K) Hom(−, Gy)

Hom(−⊗ x,K) Hom(−, Gx)

�−,y

(id⊗f)∗ Gf∗

�−,x

(2.2)

Transporting this natural transformation to the one in the right column of (2.2) defines, 
by the Yoneda lemma, the morphism Gf .

In general, G(y) ⊗G(x) is not isomorphic to G(x ⊗ y). However, the covariant functor 
G2 comes with a canonical monoidal structure [4, Prop. 5.2]. The choice of K is structure. 
The following result [4, Prop. 2.3] clarifies the freedom given by this structure:

Proposition 2.2. Let (C,K) be a Grothendieck-Verdier category with duality functor 
G ≡GK .
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1. The functor G is an anti-equivalence between the full subcategory of invertible 
objects U in C and the full subcategory of dualizing objects. Indeed, G satisfies 
G(U) =K ⊗U−1 for any invertible object U ∈C.
Analogous statements hold for the functor G−1, with G−1(U) =U−1 ⊗K.

2. If an object U ∈C is invertible, then G2(U) is invertible as well, and one has a 

canonical isomorphism K ⊗U−1 ∼ =  −→ (G2U)−1 ⊗K.

The duality functor G allows for the following definition, which is central to our work.

Definition 2.3. The functor �× : C ×C  −→C is defined by the mapping

x �× y := G−1(Gy ⊗Gx) (2.3)

on objects, and analogously on morphisms.

This functor provides a second monoidal structure on C:

Proposition 2.4. Let (C,⊗, 1, α, l⊗, r⊗,K) be a GV-category. Then the functor �× : C ×C →
C defined by (2.3) together with unit constraints

l�×x := G−1((r⊗Gx)−1) and r�×x := G−1((l⊗Gx)
−1) (2.4)

and associator

α�×x,y,z := G−1(α−1
Gz,Gy,Gx) (2.5)

endows C with the structure of a monoidal category (C,�×,K, α�×, l�×, r�×) with monoidal 
unit K.

One may also define a functor �×′ : C ×C  −→C by x�×′y :=G(G−1y ⊗G−1x). This is not 
independent, however: The ⊗-monoidal structure on the functor G2 implies a canonical 
identification of �× and �×′ [4, Sect. 4.1]. The functors ⊗ and �× are isomorphic if and 
only if G is monoidal, and thus in particular if C is rigid. Also note that the functor G2

is monoidal both for ⊗ and for �×.
If we change the choice of dualizing object from K to K̃ := g ⊗K for an invertible 

object g ∈C, then the monoidal functor G2 gets replaced by G̃2 defined as

G̃2(y) := g ⊗G2(y) ⊗ g−1 (2.6)

for y ∈C. To see this, just note that the functor G2 is determined by the isomorphism 
Hom(x⊗ y,K) ∼ = Hom(G2y ⊗x,K) for all x, y ∈C and that we have
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Hom(x ⊗ y, K̃) = Hom(x ⊗ y, g ⊗K) ∼ = Hom(g−1 ⊗x ⊗ y,K)
∼ = Hom(G2y ⊗ g−1 ⊗x,K)
∼ = Hom(g ⊗G2y ⊗ g−1 ⊗x, g ⊗K) = Hom(G̃2y ⊗x, K̃)

(2.7)

for x, y ∈C.
For a, b, c ∈C we have

Hom(a ⊗ b, c) ∼ = Hom(a, c �×Gb) (2.8)

and

Hom(a ⊗ b, c) ∼ = Hom(b,G−1a �× c) . (2.9)

Informally, G behaves like a right duality and G−1 like a left duality if we take the ⊗-
tensor product in the domain and the �×-tensor product in the codomain of a morphism.

In general the two monoidal structures are different. However, there are mixed 
associators, called distributors, which relate them. These are coherent morphisms 
(a �× b) ⊗ c  −→ a �× (b ⊗ c) and a ⊗ (b �× c)  −→ (a ⊗ b) �× c, for a, b, c ∈C; they are not nec-
essarily isomorphisms. In Section 3.4 we will examine the distributors in detail and in 
particular prove the coherence diagrams satisfied by them.

Example 2.5. Let A be a finite-dimensional k-algebra. The category A-bimod of finite-
dimensional A-bimodules is a GV-category with the usual tensor product over A as 
the right exact tensor product and with the dualizing functor given by G(m) =m∗ for 
m ∈A-bimod, with m∗ denoting the linear dual [13]. If A is in addition commutative, 
then the category mod-A of finite-dimensional right A-modules is a full subcategory of 
A-bimod by regarding a right module as a bimodule in the natural way. Moreover, the 
GV-structure on A-bimod then induces the structure of a GV-category on mod-A.

Other examples of GV-categories include representation categories of vertex operator 
algebras [2] and of Hopf algebroids [1].

Remark 2.6. In an abelian GV-category C, x ∈C is projective if and only if G(x)
is injective: x is projective if and only if Hom(x,−) is exact, which is the case iff 
Hom(G(−), G(x)) is exact, which (since G is an equivalence) is the case iff Hom(−, G(x))
is exact, which is the case if and only if G(x) is injective.

Crucial for our work is the connection between module categories and categories of 
modules.

Definition 2.7. Let C be a monoidal category. A left module category over C is a category 
M together with a functor

▷: C ×M  −−→ M , (2.10)
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called the action functor, together with a natural family of isomorphisms c ▷ (d ▷m) 
∼ =  −→

(c⊗ d) ▷m for all c, d ∈C and all m ∈M and isomorphisms 1 ▷m 
∼ =  −→m for all m ∈M, 

which obey the appropriate pentagon and triangle constraints.

Analogously one considers right module categories over C. For D another monoidal 
category, a (C,D)-bimodule category is a left C- and a right D-module category with 
an additional family of coherent isomorphisms that interchange the ordering of the two 
actions.

Definition 2.8. A (unital, associative) algebra in a monoidal category (C,⊗) is an alge-
bra object in C, i.e. a triple (A,μ, η) with A ∈C, μ ∈Hom(A ⊗A,A) and η ∈Hom(1, A)
satisfying (including the associator αA,A,A : (A ⊗A) ⊗A  −→A ⊗ (A ⊗A) and unitors 
lA : 1 ⊗A  −→A and rA : A ⊗ 1  −→A)

μ ◦ (μ ⊗ idA) = μ ◦ (idA ⊗μ) ◦ αA,A,A (2.11)

as morphisms in Hom((A ⊗A) ⊗A,A) and

μ ◦ (η ⊗ idA) ◦ l−1
A = idA = μ ◦ (idA ⊗ η) ◦ r−1

A (2.12)

as morphisms in End(A).
Dually, a (counital, coassociative) coalgebra in (C,⊗, 1, α, l, r) is a triple (C,Δ, ε) with 

C ∈C, Δ ∈Hom(C,C ⊗C) and ε ∈Hom(C, 1) such that (Δ ⊗ idC) ◦Δ =(αC,C,C)−1◦
(idC ⊗Δ) ◦Δ as morphisms in Hom(C, (C ⊗C) ⊗C) and lC ◦ (ε ⊗ idC) ◦Δ = idC = rC ◦
(idC ⊗ ε) ◦Δ as morphisms in End(C).

Similarly one defines for a (co)algebra in C the notion of a (co)module. It is well known 
that for any algebra A ∈C the category mod-A of right A-modules is a left C-module 
category. The category comod-C of right C-comodules over a coalgebra C ∈C is a left 
C-module category, too.

3. GV-module categories

In this section we develop the theory of module categories over GV-categories. Ac-
cording to our guiding principle, module categories and module functors should exhibit 
similar features with respect to both monoidal structures of a GV-category.

3.1. Module categories and module functors for GV-categories

Definition 3.1. Let C be a GV-category. A left GV-module category is a left module 
category over (C,⊗) with action functor ▷ : C ×M  −→M, such that the functors

c ▷− : M  −−→ M and −▷m : C  −−→ M (3.1)
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have a right adjoint for all objects c ∈C and m ∈M.

Remark 3.2. This definition could be formulated for an arbitrary monoidal category C, 
as the GV-structure of C is not used at all. Nevertheless the separate terminology ‘GV-
module category’ is legitimate: it is justified by the results that we will obtain below, such 
as Proposition 3.5. Also note that a functor that has a right adjoint preserves colimits 
and is thus in particular cocontinuous. Demanding the existence of adequate adjoints 
allows us to work simultaneously in the set-theoretic and linear setting, while in the 
latter case it generalizes certain exactness assumptions, see Lemma 3.4.

Remark 3.3. Twisting an action of a monoidal category by a monoidal endofunctor yields 
again an action. In the case of a GV-category we can in particular twist the action by any 
even power of the functor G. Thus with any GV-module category over a GV-category C
there comes a whole family of GV-module categories over C.

The internal Hom functor Hom is the right adjoint of the functor − ▷m, which exists 
by the assumptions in Definition 3.1:

HomM(c ▷m,m′) ∼ = HomC(c,Hom(m,m′)) (3.2)

for c ∈C and m,m′ ∈M. These will be examined in detail in Section 3.5.
In case C is a rigid finite category, then for a module category M one requires exactness 

in the first variable (see Definition 7.3.1 of [11]); exactness in the second variable is then 
automatic (Exercise 7.3.2 in [11]). Indeed, existence of the respective adjoints follows in 
this case as well:

Lemma 3.4. If C is a rigid finite category, then a GV-module category over C is the 
same as a C-module category in the sense of [11, Def. 7.3.1], i.e. the action functor 
▷ : C ×M  −→M is exact in the first variable.

Proof. Let M be a module category, in the sense of [11], over a rigid finite category. 
A functor between finite categories has a right/left adjoint if and only if it is right/left 
exact (see e.g. Corollary 2.3 in [12]). Thus if − ▷n : C  −→M is exact, then it has in 
particular a right adjoint. Hence by [11, Exc. 7.3.2], the functors c ▷− : M  −→M have a 
right adjoint. Conversely, if the module category M is a GV-module category, then the 
functors − ▷n have a right adjoint and are thus right exact. Further, the isomorphisms

Hom(m, c ▷n) ∼ = Hom(c∨ ▷m,n) ∼ = Hom(c∨,Hom(m,n)) ∼ = Hom(∨Hom(m,n), c)
(3.3)

for m,n ∈M and c ∈C show that − ▷n also has a left adjoint and is thus also left exact. 
(Note that in (3.3) rigidity is only used in the first step.) �
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For a GV-module category, by definition for every c ∈C the endofunctor ρ⊗M(c) := c ▷−
of M has a right adjoint. In the special case M = C, i.e. the regular module category 
of C acting on itself by ⊗, according to the isomorphisms (2.9) we already have such a 
right adjoint, namely G−1(c) �×−; by convention we will work with this particular right 
adjoint. In all other cases we fix some right adjoint, which we denote by Hc : M →M, 
i.e. we have a natural family

HomM(c ▷m,n)
∼ =  −−→ HomM(m,Hc(n)) (3.4)

of isomorphisms for m,n ∈M. The endofunctor Hc defines via c  �−→HGc(−) a functor

ρ�×M : C  −−→ Funl.e.(M,M) (3.5)

from C to the category of left exact endofunctors of M, i.e. ρ�×M(c)(m) =HGc(m). The 
functor HGc appearing here furnishes an action of the monoidal category (C,�×) on M:

Proposition 3.5. Let M be a left GV-module category over a GV-category (C,⊗,K). Then 
the bifunctor ▶ : C ×M  −→M defined by

c ▶m := HGc(m) (3.6)

for c ∈C and m ∈M has a left adjoint (and thus preserves limits, and is in particular 
continuous) in each variable and defines a left module category structure over (C,�×).

Proof. The left adjoint of c ▶− is by definition the endofunctor Gc ▷−. For the adjoint 
in the second variable we use the family of isomorphisms

HomM(m, c ▶n) = HomM(m,HGc(n)) ∼ = HomM(Gc ▷m,n)
∼ = HomC(Gc,Hom(m,n)) ∼ = HomC(G−1Hom(m,n), c)

(3.7)

to conclude that − ▶n has G−1Hom(−, n) as left adjoint. The module category structure 
is established as follows. The module constraint of ▶ is the natural family of isomorphisms 
that are obtained by the Yoneda lemma from the isomorphisms

HomM(m, b ▶ (c ▶n)) ∼ = HomM(Gb ▷m, c ▶n) ∼ = HomM(Gc ▷ (Gb ▷m), n)
∼ = HomM((Gc ⊗Gb) ▷m,n)
∼ = HomM(m,G−1(Gc⊗Gb) ▶n) = HomM(m, (b �× c) ▶n)

(3.8)

for m,n ∈M and b, c ∈C. Moreover, the Yoneda embedding transports the pentagon 
relation for the module constraint of ▷ to the pentagon relation for the module constraint 
of ▶. �
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By construction we have the adjunction formula

HomM(m,G−1c ▶m′) ∼ = HomM(c ▷m,m′) . (3.9)

The resulting module structure depends on the choice of right adjoints. However, we 
have

Lemma 3.6. The module categories over (C,�×) for different choices of right adjoints (3.4)
are canonically equivalent.

Proof. Let M = (M,▷) be a left GV-module category over (C,⊗), and let HGc and 
H̃Gc, for c ∈C, be two families of right adjoints (3.4); this provides us with two (C,�×)-
module categories, which we denote by (M,▶) and (M, ▶̃), with respective module 
structures c ▶m =HGc(m) and c ▶̃m = H̃Gc(m). The following considerations show that 
the identity functor idM has a canonical structure of a module functor and thus pro-
vides an equivalence of module categories: By the uniqueness of right adjoints we 
get for every c ∈C a unique natural isomorphism ϕc : HGc

 −→ H̃Gc with components 
ϕc,m : c ▶m =HGc(m)  −→ H̃Gc(m) = c ▶̃m for all m ∈M. These morphisms are natu-
ral in m ∈M as well as natural in c ∈C: For any morphism f : c  −→ d in C we are given 
a natural transformation ψf = (G(f) ▷−) : (G(d) ▷−) =⇒ (G(c) ▷−), which defines two 

natural transformations

ψ∗
f : HGc =⇒ HGd and ψ̃∗

f : H̃Gc =⇒ H̃Gd (3.10)

between the respective right adjoints. By a general fact about the isomorphism relating 
different right adjoints, for all c, d ∈C and all f : c  −→ d we have the equality

ψ̃∗
f · ϕc = ϕd · ψ∗

f (3.11)

between vertical composites of natural transformations. This directly implies that the 
isomorphisms ϕc,m : c ▶m  −→ c ▶̃m are also natural in c ∈C. To conclude that (id, ϕ) is a 
module functor from (M,▶) to (M, ▶̃), it thus remains to verify the coherence diagrams 
for ϕ. These readily follow from the uniqueness of the natural isomorphism that relates 
two different right adjoints. �

For the opposite category of a GV-module category over C we get analogously right 
C-actions:

Proposition 3.7. Let C be a GV-category and M a left GV-module category over C. Then 
Mopp is a right GV-module category over (C,⊗) and a right module category over (C,�×), 
with left and right exact action bifunctors given by

◁ : Mopp ×C  −−→ Mopp ,

(m, c)  �−−→ G−1c ▶m
and

◀ : Mopp ×C  −−→ Mopp ,

(m, c)  �−−→ G−1c ▷m ,
(3.12)
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respectively, for c ∈C and m ∈M.

Proof. First note that we only need to define the ◁ -action; the ◀-action is then fixed by 
the adjunction HomMopp(m′,m ◀Gc) ∼ = HomMopp(m′ ◁ c,m) which follows directly from 
(3.9). Further, the proposed bifunctor ◁ is well defined due to G being contravariant, 
and it inherits the asserted right and left exactness from ▶. Again we determine the 
module constraint with the help of the Yoneda lemma. We have

HomM(m,n ◁ (b ◁ c)) ∼ = HomM(m,G−1c ▶ (G−1b ▶n))
∼ = HomM(m, (G−1c �×G−1b) ▶n)
∼ = HomM(m,G−1(b ⊗ c) ▶n) ∼ = HomM(m,n ◁ (b ⊗ c))

(3.13)

for b, c ∈C and m,n ∈M. The pentagon axiom for this action constraint follows from 
the injectivity of the Yoneda embedding and the fact that it holds for the constraints of 
▶. �
Remark 3.8. 

1. In accordance with our guiding principle, if (C,⊗, 1,K) is a GV-category, then 
(C,�×,K, 1) is an ‘op-GV-category’, for which the primary monoidal structure is 
left exact and has K as monoidal unit, and for which the defining isomorphisms 
are Hom(1, b �× c) 

∼ =  −→Hom(Gc, b) in place of (2.1). Similarly there is a notion of op-
GV-module category over (C,�×), for which the action functors that are analogous 
to (3.1) are required to admit left adjoints. Analogously to Proposition 3.5 there is 
then an associated GV-module category over (C,⊗). In this terminology, (Mopp,◀)
is a right op-GV-module category over (C,�×).

2. Recall from Remark 3.3 that for a module category (M,▷) also G2n(−) ▷m is a 
C-action on M. Since G2 is also a monoidal autoequivalence of (C,�×), an analogous 
statement applies to ▶: for any integer n, also G2n(−) ▶m defines a (C,�×)-action 
on M.

Example 3.9. C is a (C,⊗)-module – the regular module – with action given by the right 
exact tensor product ⊗. The corresponding left exact action is given by the �×-tensor 
product.

For M a left module category over a GV-category C we write the associated endo-
functors of M that result from the left action as

L▷
c : M  −−→ M ,

m
 �−→ c ▷m

and
L▶
c : M  −−→ M ,

m
 �−→ c ▶m .

(3.14)

The basic adjunction (3.9) for the left C-GV-module category M then reads
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HomM(m,L▶
c (n)) ∼ = HomM(L▷

Gc(m), n) . (3.15)

The counit and unit of this adjunction are

evc,m : G(c) ▷ (c ▶m)  −−→ m and coevc,m : m
 −−→ c ▶ (Gc ▷m) , (3.16)

while

c ▶m c ▶ (G(c) ▷ (c ▶m)) c ▶mcoevc,c▶m

id

c▶evc,m
(3.17)

and

Gc ▷m Gc ▷ (c▶(Gc ▷m)) Gc ▷m
Gc ▷ coevc,m

id

evc,Gc▷m
(3.18)

are the snake identities of the adjunction.
The ▶-action provides us with distinguished natural isomorphisms L▶

c ◦L▶
d

∼ =  −→L▶
c�×d

for c, d ∈C. Likewise, the ▷-action gives distinguished natural isomorphisms L▷
Gd ◦L▷

Gc

∼ =  −→
L▷
G(c�×d). We denote the right adjoint of a functor F by F r.a.. Using that for com-

posable functors F1 and F2 that have right adjoints there is a commuting diagram 
(F1 ◦F2) ◦ (F1 ◦F2)r.a. id of counits, we thus have a commuting diagram

G(c �× d) ▷ ((c �× d) ▶m) m

Gd ▷ (Gc ▷ (c ▶ (d ▶m))) Gd ▷ (d ▶m)

evc�×d,m

∼ = 
Gd▷evc,d▶m

evd,m (3.19)

A similar coherence diagram holds for the collection of morphisms coevc,m.

3.2. Conjugated pairs of lax and oplax module functors

The following provides a meaningful notion of GV-module functors:

Definition 3.10. Let C be a GV-category and let (M,▷) and (N ,▷′) be left GV-module 
categories over (C,⊗).

A lax ▷-module functor from M to N is a functor F : M →N together with a family 
of morphisms fc,m : c ▷′ F (m)  −→F (c ▷m) for c ∈C and m ∈M that obeys coherence 
conditions in the form of the commutativity of the pentagon and triangle diagrams



J. Fuchs et al. / Advances in Mathematics 475 (2025) 110325 15

F ((c⊗ d) ▷m)

F (c ▷ (d ▷m)) (c ⊗ d) ▷′ F (m)

c ▷′ F (d ▷m) c ▷′ (d ▷′ F (m))

∼ = 
F (αc.d.m) fc⊗d,m

fc,d▷m α′
c,d,F (m)∼ = 

idc ▷′ fd,m

(3.20)

and

F (1 ▷m) 1 ▷′ F (m)

F (m)

f1,m

∼ = 
F (λm) λ′

F (m)

∼ = (3.21)

(with α, λ and α′, λ′ the module constraints for the actions ▷ and ▷′, respectively) with 
respect to the action of (C,⊗).

An oplax ▷-module functor is a functor F : M  −→N , together with an analogous 
coherent family of morphisms fc,m : F (c ▷m)  −→ c ▷′ F (m).

Similarly, a lax (oplax) ▶-module functor is a functor F : M →N , together with an 
analogous family of morphisms that are coherent with respect to the action ▶ of (C,�×).

Note that no assumption on the existence of adjoints of such functors is made. To a 
monoidal category with exact tensor product one associates a bicategory with module 
categories as objects and strong module functors as 1-morphisms. If C is instead a GV-
category, we can naturally associate to it four different bicategories GV-Mod▷,lax(C), 
GV-Mod▷,oplax(C), GV-Mod▶,lax(C) and GV-Mod▶,oplax(C):

Lemma 3.11. Let C be a GV-category. GV-module categories as objects, lax, respec-
tively oplax, ▷-module functors as 1-morphisms, and ▷-module natural transformations 
as 2-morphisms form a bicategory GV-Mod▷,lax(C), respectively GV-Mod▷,oplax(C). 
Analogously, GV-module categories, lax, respectively oplax, ▶-module functors and 
▶-module natural transformations form a bicategory GV-Mod▶,lax(C), respectively 
(GV-Mod▶,oplax(C)).

Proof. The composition of lax ▷-module functors is canonically a lax ▷-module functor; 
analogous arguments apply in the oplax case and for ▶-module functors. The claim 
thus follows from the fact that, for BD the delooping of any monoidal category D, 
the bicategory Lax(BD, Cat) of strong 2-functors, lax natural 2-transformations and 
modifications is canonically isomorphic to the bicategory of D-module categories, lax 
module functors and module natural transformations. The case of oplax module functors 
is treated analogously. �
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According to our guiding principle a functor that has a compatibility with the ▷-action 
should have a compatibility with the corresponding ▶-action as well. The details depend, 
however, crucially on whether the considered compatibility is strong, lax or oplax. In 
the situation at hand, for a functor F : M  −→N between left GV-module categories 
M and N , lax ▷-module functor structures and oplax ▶-module functor structures 
on F are in bijection with each other. This can be seen as follows. Given a collection 
of morphisms f▷

c,m : c ▷F (m) →F (c ▷m) for c ∈C and m ∈M, define the conjugated 
collection of morphisms f▶

c,m : F (c ▶m)  −→ c ▶F (m) as the family whose members are 
the composites

F (c ▶m)
coevc,F (c▶m)  

−−−−−−−−−−→ c ▶ (Gc ▷F (c ▶m))
c ▶ f▷

Gc,c▶m  
−−−−−−−−−→ c ▶F (Gc ▷ (c ▶m))

c ▶F (evc,m)   −−−−−−−−−→ c ▶F (m)
(3.22)

with the morphisms ev and coev as defined in (3.16). Note that different choices of 
adjunction data lead to different conjugated functors; however, these can be shown to 
be related by the functors from Lemma 3.6. Under the adjunction

Hom(F (c ▶m), c ▶F (m)) ∼ = Hom(Gc ▷ (F (c ▶m)), F (m)) (3.23)

the composite (3.22) corresponds to the morphism

Gc ▷ (F (c ▶m)) f▷  −−−→ F (Gc ▷ (c ▶m)) F (evc,m)   −−−−−−−→ F (m) . (3.24)

Conversely, for a collection of morphisms g▶c,m : F (c ▶m) → c ▶F (m), we define the con-
jugated collection of morphisms g▷Gc,m : Gc ▷F (m) →F (Gc ▷m) by

Gc ▷F (m) Gc▷F (coevc,m)   −−−−−−−−−−−→ Gc ▷F (c ▶ (Gc ▷m)) g▶  −−−→ Gc ▷ (c ▶F (Gc ▷m))
evc,F (Gc▷m)  

−−−−−−−−−→ F (Gc ▷m) .
(3.25)

Proposition 3.12. Let F : M →N be a functor between left GV-module categories M and 
N .

1. A collection of morphisms f▷
c,m : c ▷F (m)  −→F (c ▷m), for c ∈C and m ∈M, defines 

the structure of a lax ▷-module functor on F if and only if the conjugated collection 
f▶
c,m as given in (3.22) defines the structure of an oplax ▶-module functor on F .

We denote F with the latter oplax structure by F▷ �→▶.
2. A collection of morphisms g▶c,m : F (c ▶m)  −→ c ▶F (m) defines the structure of an 

oplax ▶-module functor on F if and only if the conjugated collection g▷c,m as given 
in (3.25) defines the structure of a lax ▷-module functor on F .
We denote F with the latter oplax structure by F▶�→▷.
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3. The prescriptions (3.22) and (3.25) are mutually inverse, in the sense that

((F, f▷)▷ �→▶)▶ �→▷ = (F, f▷) and ((F, g▶)▶ �→▷)▷ �→▶ = (F, g▶) . (3.26)

Proof. Suppose that f▷
c,m : c ▷F (m) →F (c ▷m) is a lax ▷-module functor structure on 

F . Let f▶ be the corresponding structure under the adjunction given in Equation (3.24). 
For objects x, y ∈C, the morphism

G(x �× y) ▷ F ((x �× y) ▶m) f▷  −−−→ F (G(x �× y) ▷ ((x �× y) ▶m)) F (ev)   −−−−−→ F (m) (3.27)

corresponds under the adjunction (3.23) to the morphism F ((x �× y) ▶m) 
f▶
x�×y,m 

−−−−−→
(x �× y) ▶F (m), while the composite

G(x �× y) ▷ F ((x �× y)▶m)
∼ =  −−→ G(y) ▷ (G(x) ▷F (x ▶ (y ▶m)))
Gy ▷ f▷  −−−−−−→ G(y) ▷ F (Gx ▷ (x ▶ (y ▶m)))
Gy ▷F (ev)  −−−−−−−→G(y) ▷F (y ▶m)
f▷  −−−→ F (G(y) ▷ (y ▶m)) F (ev)  −−−−→ F (m)

(3.28)

corresponds under the adjunction to the composite

F ((x �× y) ▶m) 
∼ =  −→F (x ▶ (y ▶m)) f▶ −−→x ▶F (y ▶m) x▶f▶ −−−−→x ▶ (y ▶F (m))

∼ =  −−→ (x �× y) ▶F (m) .
(3.29)

Using that f▷ is coherent and that the diagram (3.19) commutes, it follows that the 
morphisms (3.27) and (3.28) are equal, and thus that f▶ satisfies the pentagon diagram 
that is required for the structure of an oplax ▶-module functor. For the corresponding 
triangle diagram, note that for c =K we can choose as the adjunction data evK,m and 
coevK,m in (3.16) a combination of the unitors. When doing so, then clearly the triangle 
identity for f▷ implies the triangle identity for f▶. It follows that f▶ defines an oplax 
▶-module functor structure on F . Starting with an oplax ▶-module functor structure 
g▶, one sees analogously that (3.25) defines a lax ▷-module functor structure on F . 
Using the triangle identities (3.17) and (3.18) we conclude that the two constructions 
are mutually inverse. �

According to this proposition we can equip every lax ▷-module functor with a corre-
sponding conjugated oplax ▶-module functor structure. This assignment is functorial:

Theorem 3.13. Let C be a GV-category. The assignments in Proposition 3.12 are func-
torial in the following sense:
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1. Let η : F =⇒H be a natural transformation between functors F,H : M  −→N . Given 

lax ▷-module functor structures on F and H, η is a ▷-module natural transformation 
if and only if it is an oplax ▶-module natural transformation for the conjugated oplax 
▶-structures on F and H.

2. Let J : N  −→O be a functor to another left GV-module category O. Given lax ▷-
module functor structures on F and J , the composite of the conjugated oplax ▶-
module functor structures of F and J equals the conjugated oplax ▶-module functor 
structure of J ◦F , i.e.

J▷ �→▶ ◦ F▷ �→▶ = (J ◦F )▷ �→▶. (3.30)

The correspondence between lax ▷-module functors and oplax ▶-module functors extends 
to an equivalence

GV-Mod▷,lax(C) 	   −−→ GV-Mod▶,oplax(C) (3.31)

of bicategories which is the identity on objects and on 2-morphisms as well as the identity 
on the functors that underly the module functors.

Proof. Assume that η : F =⇒H is a ▷-module natural transformation between lax ▷-
module functors (F, f▷) and (H,h▷). Then the diagram

Gx ▷F (x ▶m) F (m)

F (Gx ▷ (x ▶m))

H(Gx ▷ (x ▶m))

Gx ▷H(x ▶m) H(m)

f▷
Gx,x▶m

Gx ▷ ηx▶m
ηm

F (evx,m)

ηGx▷(x▶m)

H(evx,m)
h▷
Gx,x▶m

(3.32)

commutes: The triangles define the horizontal arrows; the left quadrilateral commutes 
because η is a ▷-module natural transformation; and the right quadrilateral commutes 
by naturality. By (3.23), the resulting commutativity of the outer square shows that η
is a ▶-module natural transformation for the oplax ▶-module functor structures on F
and H.

To prove the second assertion, consider the oplax ▶-module functor structure on 
J▷ �→▶◦F▷ �→▶. If the composite (3.22) (for F and for J , respectively) is inserted for 
the two arrows in JF (x ▶m)  −−→J(x ▶F (m))  −−→x ▶JF (m) and the triangle identity 
(3.17) is used in the middle, we arrive at the ▶-module functor structure of (JF )▷ �→▶. 
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Thus the two structures coincide. The equivalence of bicategories follows now directly 
from these two statements and Proposition 3.12. �
Remark 3.14. The two bicategories in Theorem 3.13 are distinguished by the existence 
of this correspondence: There is no analogous biequivalence between GV-Mod▷,oplax(C)
and GV-Mod▶,lax(C). This can be traced back to the fact that, generically, the functors 
c ▷− admit only right adjoints.

We can give a symmetric characterization of the 1-morphisms in the bicategories of 
Theorem 3.13:

Definition 3.15. Let M and N be left GV-module categories over a GV-category C.

1. A GV-module functor F : M  −→N is a functor with a conjugate pair of lax ▷- and 
oplax ▶-module functor structures.

2. For two GV-module functors F,H : M  −→N , a GV -module natural transformation 
η : F ⇒H is a natural transformation that is equivalently a lax ▷-module natural 
transformation or an oplax ▶-module natural transformation.

Clearly there is a bicategory GV-ModC of GV-module categories, GV-module functors 
and GV-module natural transformations, which is equivalent to the two bicategories in 
Theorem 3.13.

Now recall the counit and unit (3.16) of the adjunction (3.15). For later use we record 
compatibilities between the two weak module structures for a GV-functor:

Lemma 3.16. Let F : M  −→N be a GV-functor between left C-GV-module categories. The 
diagrams

F (m) c ▶ (Gc ▷F (m))

F (c ▶ (Gc ▷m)) c ▶F (Gc ▷m)

coevc,F (m)

F (coevc,m) c ▶ f▷
Gc,m

f▶
c,Gc▷m

(3.33)

and

Gc ▷F (c ▶m) Gc ▷ (c ▶F (m))

F (Gc ▷ (c ▶m)) F (m)

Gc▷f▶
c,m

f▷
Gc,c▶m

evc,Fm

F (evc,m)

(3.34)

commute for all m ∈M and c ∈C.
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Proof. Consider in (3.33) the composite f▶
c,Gc▷m ◦F (coevc,m) : F (m)  −→ c ▶F (Gc ▷m). 

Using the definition (3.22) of f▶ in terms of f▷ and the naturality of the coevaluation 
it follows that this morphism is equal to the composite

F (m) coevc,Fm  −−−−−−−→ c ▶ (Gc ▷Fm)
c ▶ f ▷

Gc,m  
−−−−−−−→ c ▶F (Gc ▷ m)

c ▶F (Gc ▷ coevc,m)   −−−−−−−−−−−−−−→ c ▶F (Gc ▷ (c ▶ (Gc ▷m)))
c ▶F (evc,Gc▷m)   −−−−−−−−−−−−→ c ▶F (Gc ▷m) .

(3.35)

By the triangle identity (3.18) this is, in turn, equal to the composite of the other two 
arrows in (3.33). The commutativity of the diagram (3.34) is seen analogously. �

Next we note that, given a GV-module M over a GV-category C, for every object 
m ∈M we have a strong ▷-module functor

R▷
m : ⊗

C C ≡ CC  −−→ CM , c
 �−→ c ▷m (3.36)

and a strong ▶-module functor

R▶
m : �×

C C
 −−→ CM , c

 �−→ c ▶m . (3.37)

We are now in a position to introduce distributors for general GV-module categories. 
Combining the strong module functors R▷

m and R▶
m defined in (3.36) and (3.37) we get

Definition 3.17. Let M be a left GV-module category over C. The oplax ▶-module struc-
ture of the functor R▷

m defines the right module distributor

δr
x,y,m : (x �× y) ▷m

 −−→ x ▶ (y ▷m) , (3.38)

and the lax ▷-module structure of R▶
m defines the left module distributor

δl
x,y,m : x ▷ (y ▶m)  −−→ (x ⊗ y) ▶m , (3.39)

for x, y ∈C and m ∈M.

Module distributors for a right GV-module category are defined analogously. We will 
examine the module distributors in detail in Section 3.4.

With the help of the strong module functor R▶
m we can show that the two weak module 

functor structures for a GV-module functor are compatible in the following sense:

Proposition 3.18. Let F : M  −→N be a GV-module functor. The weak module functor 
structures f▷ and f▶ of F obey four pentagon relations: Commutativity of the ordinary 
pentagon diagrams
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x ▷ (y ▷F (m)) F (x ▷ (y ▷m)) (3.40)

and

F (x ▶ (y ▶m)) x▶(y ▶F (m)) (3.41)

for x, y ∈C and m ∈M, each of which involves just one of the two actions, and commu-
tativity of

x ▷F (y ▶m) F (x ▷ (y ▶m)) F ((x ⊗ y) ▶m)

x ▷ (y ▶F (m)) (x ⊗ y) ▶F (m)

(3.42)

and

(x �× y) ▷F (m) F ((x �× y) ▷m) F (x ▶ (y ▷m))

x ▶ (y ▷F (m)) x ▶F (y ▷m)

(3.43)

which involve both of them.

Proof. The two diagrams (3.40) and (3.41) are just the coherence diagrams for the 
individual weak module functors. For the third diagram consider, for m ∈M, the com-
posite CC 

R▶
m −−−→ CM F  −−→ CN of module functors, which maps x ∈C to F (x ▶m). On the 

other hand, the module functor R▶
F (m) : CC  −→ CN maps c to c ▶F (m). The oplax ▶-

module structure of F provides a collection of morphisms f▶
c,m : F ◦R▶

m(c) =F (c ▶m)  −→
c ▶F (m) =R▶

F (m)(c). These morphisms are coherent with respect to the ▶-module 
structure, which is equivalent to the statement that f▶

−,m : F ◦R▶
m

 −→R▶
F (m) is a ▶-

module natural transformation. By Theorem 3.13.1, f▶
−,m is a also a ▷-module natural 

transformation. The corresponding coherence diagram is precisely the diagram (3.42). 
Analogously, the lax ▷-structure f▷

x,m of F provides an oplax ▶-module natural trans-
formation R▷

F (m)
 −→F ◦R▷

m, thus proving the commutativity of the diagram (3.43). �
Results analogous to those above hold for C-right module categories and functors 

between them. Indeed, a right module category M can be seen as a left C⊗opp-module cat-
egory, where C⊗opp is the category C with reversed monoidal structure. Consider finally 
the case of a GV-bimodule category CMD: The categories C and D are GV-categories 
and M is a bimodule category that is a left C- and right D-GV-module category. Equiv-
alently, M is a left C×D⊗opp-module category, where D⊗opp has the opposite monoidal 
product. It is easily seen that D⊗opp as well as C ×D⊗opp are GV-categories and that 
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M is a left C×D⊗opp-GV-module category. It therefore follows from Proposition 3.5 that 
M has the structure of a (C,�×)-(D,�×)-bimodule category. In particular we thus obtain

Lemma 3.19. Let F : M → N be a functor between (C,D)-bimodule categories. For each 
lax ▷-bimodule functor structure on F there is a conjugated oplax ▶-bimodule functor 
structure, and vice versa, such that analogous statements to those in Proposition 3.12
and Theorem 3.13 are valid.

3.3. Adjoints of GV-module functors

We now discuss aspects of adjoints of GV-module functors. The structures we find 
will be used in the next subsection to obtain snake relations for GV-duality. In general 
the adjoint of a GV-module functor is not a GV-module functor. However, there are 
interesting transports of (weak) module functor structures to the adjoints. The first of 
these, which we call flipping transport is as follows:

Lemma 3.20 (Flipping transport). Let F : M  −→N be a left (op)lax ▷-module functor 
between module categories over (C,⊗) which admits a right adjoint F r.a. : N  −→M. Then 
F r.a. is canonically a left (op)lax ▶-module functor with respect to the left exact action 
(C,▶). Analogously, if F is an (op)lax ▶-module functor admitting a left adjoint F l.a., 
then F l.a. is an (op)lax ▷-module functor. Moreover, the ▷-module functor structure of 
F is strong if and only if the ▶-module functor structure of F r.a. is strong.

Proof. Given a functor F : M  −→N with right adjoint F r.a., for m,n ∈M and c ∈C we 
have the composite isomorphisms

HomN (c ▷F (m), n)
∼ =  −−→ HomN (F (m), G−1c ▶n)

∼ =  −−→ HomM(m,F r.a.(G−1c ▶n))
(3.44)

and

HomN (F (c ▷m), n)
∼ =  −−→ HomM(c ▷m,F r.a.(n))

∼ =  −−→ HomM(m,G−1c ▶F r.a.(n)) .
(3.45)

Using them as horizontal arrows in the diagram

HomN (F (c ▷m), n) HomM(m,G−1(c) ▶F r.a.(n))

HomN (c ▷F (m), n) HomM(m,F r.a.(G−1(c) ▶n))

∼ = 

∼ = 

(3.46)

any one of the vertical arrows defines the other one. Moreover, the Yoneda lemma pro-
vides the corresponding structure on F or on its adjoint: In case that F is a lax ▷-module 
functor, the module constraint fc,m provides the left vertical arrow, so that the right 
vertical arrow gives a natural morphism c ▶F r.a.(n)  −→F r.a.(c ▶n). By the injectivity of 



J. Fuchs et al. / Advances in Mathematics 475 (2025) 110325 23

the Yoneda embedding, this satisfies its required coherence conditions because fc,m does. 
The oplax case is analogous, with the vertical arrows now pointing upwards. The last 
statement follows from the fact that in the commuting diagram (3.46) any one vertical 
arrow is an isomorphism if and only if the other one is an isomorphism. �

The second transport mechanism, to be called profunctor-transport, is obtained with 
the help of C-module profunctors; it does not require the setting of GV-categories. Fol-
lowing [19, Def. 2.1] we give

Definition 3.21 (Profunctor-transport). Let M and N be left module categories over a 
linear monoidal category C. A C-module profunctor from M to N is a bilinear functor 
H : Mopp ×N  −→ vect together with a family

θm,n,c : H(m,n)  −−→ H(c ▷m, c ▷n) (3.47)

of morphisms that is natural in m ∈M and in n ∈N , is dinatural in c ∈C, and is coherent 
with respect to the monoidal structure and the monoidal unit 1 of C, i.e. (suppressing 
associators and unitors) satisfies

θm,n,c⊗d = θd▷m,d▷n,c ◦ θm,n,d and θm,n,1 = idH(m,n) (3.48)

for all m ∈M, n ∈N and c, d ∈C.
Given two C-module profunctors H1 and H2 from M to N , a morphism ϕ : H1

 −→H2
of module profunctors is a natural transformation that commutes with the respective 
(di)natural transformations.

Our main use of this notion is

Proposition 3.22. [19, Lemma 2.3] Let F : M  −→N and J : N  −→M be linear functors 
between C-module categories. There are canonical bijections

1. between oplax module functor structures on F and C-module profunctor structures 
on

HomN (F (−),−) : Mopp ×N  −−→ vect ; (3.49)

2. between lax module functor structures on J and C-module profunctor structures on

HomM(−, J(−)) : Mopp ×N  −−→ vect . (3.50)

Proof. The proof is constructive: If fc,m : F (c ▷m)  −→ c ▷F (m) is the oplax module 
structure on F , the C-module profunctor structure on HomN (F (−),−) is the composite



24 J. Fuchs et al. / Advances in Mathematics 475 (2025) 110325 

θm,n,c : Hom(F (m), n) c ▷− −−−−→ Hom(c ▷F (m), c ▷n)
f∗
c,m 

−−−→ Hom(F (c ▷m), c ▷n) .
(3.51)

Conversely, given θ, the oplax module structure is the image of the identity under the 
map

θm,Fm,c : Hom(Fm,Fm)  −−→ Hom(F (c ▷m), c ▷F (m)) . (3.52)

These two constructions are clearly inverse, and it is straightforward to check that the 
respective coherence and naturality diagrams correspond to each other. The second bi-
jection follows from the first by considering opposite categories. �

As an immediate consequence we obtain the profunctor-transport of weak module 
functor structures:

Corollary 3.23. Let F : M  −→N be a linear functor with right adjoint F r.a. : N  −→M. 
There is a canonical bijection between oplax C-module functor structures on F and lax 
C-module structures on F r.a., such that the adjunction

ϕm,n : HomN (F (m), n)  −−→ HomM(m,F r.a.(n)) (3.53)

is an isomorphism of C-module profunctors.

In this situation, it is natural to expect a compatibility between the unit and counit of 
the adjunction and the module action. Note, however, that in general the weak module 
structures of F and F r.a. go in opposite directions, so that it does not make sense to 
require the unit and counit to be module natural transformations. Instead, they have 
the following coherence properties with respect to the module action:

Lemma 3.24. Let F : M  −→N be an oplax module functor having a right adjoint, and let 
η : id =⇒F r.a.F and ε : FF r.a. =⇒ id be the unit and counit of the adjunction (3.53). Then 

the diagrams

c ▷m F r.a.F (c ▷m) c ▷FF r.a.(n) c ▷n

F r.a.(c ▷F (m)) and F (c ▷F r.a.(n))

c ▷m c ▷F r.a.F (m) F (F r.a.(c ▷n)) c ▷n

ηc▷m

=

c ▷ εn

=

c ▷ ηm εc▷n

(3.54)

commute for all m ∈M, n ∈N and c ∈C, using the oplax and lax module functor struc-
tures of F and F r.a., respectively.
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Proof. Denote the lax module functor structure of F by f and the oplax structure of 
F r.a. by g. Since ϕ is an isomorphism of C-module profunctors, the diagram

Hom(Fm,n) Hom(c ▷F (m), c ▷n) Hom(F (c ▷m), c ▷n)

Hom(m,F r.a.(n)) Hom(c ▷m, c ▷F r.a.(n)) Hom(c ▷m,F r.a.(c ▷n))

c ▷

ϕm,n

f∗

ϕc▷m,c▷n

c ▷ g∗

(3.55)
commutes for all m,n. Evaluating (3.55) at n =F (m) gives the commutative diagram

Hom(Fm,F (m)) Hom(c ▷F (m), c ▷F (m)) Hom(F (c ▷m), c ▷F (m))

Hom(m,F r.a.(F (m))) Hom(c ▷m, c ▷F r.a.(F (m))) Hom(c ▷m,F r.a.(c ▷F (m)))

c ▷

ϕm,F (m)

f∗

ϕc▷m,c▷F (m)

c ▷ g∗

(3.56)
Taking the identity morphism in the upper left corner, this yields the left diagram in 
(3.54). The other diagram in (3.54) follows by duality. �

Profunctor transport is compatible with composition:

Lemma 3.25. Let F1 : M  −→N and F2 : N  −→O be oplax C-module functors between left 
C-module categories. The canonical natural isomorphism (F2F1)r.a. ∼ = F r.a.

1 F r.a.
2 is an iso-

morphism of lax module functors.

Proof. The claim follows from the definition of the transport: all morphisms in the 
diagram

HomO(F2F1m, o) HomM(m, (F2F1)r.a.o)

HomN (F1m,F r.a.
2 o) HomM(m,F r.a.

1 F r.a.
2 o),

∼ = 

∼ = ϕ

∼ = 

(3.57)

are isomorphisms, and all of them except for possibly the one labeled ϕ are isomorphisms 
of C-module profunctors. But since the diagram commutes, ϕ is in fact an isomorphism of 
C-module profunctors, too. By the Yoneda Lemma, ϕ provides the canonical isomorphism 
(F2F1)r.a. ∼ = F r.a.

1 F r.a.
2 , which is thus an isomorphism of lax module functors. �

We can summarize the constructions given above as follows. Let C be a GV-category, 
let M and N be left GV-module categories over C, and let F : M  −→N be a functor. 
The transport constructions are the rows in the following table:
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(T1) profunctor-transport F oplax-▷ F r.a. lax-▷
(T2) profunctor-transport F oplax-▶ F r.a. lax-▶
(T3) flipping transport F oplax-▷ F r.a. oplax-▶
(T4) flipping transport F lax-▷ F r.a. lax-▶
(T5) flipping transport F strong-▷ F r.a. strong-▶

(3.58)

Each of these transport constructions can be applied from left to right as well as from 
right to left, i.e. if F has a left adjoint, then F l.a. acquires transported structure from 
F . In parallel with Proposition 3.12, for a functor F : M  −→N this provides a pairing 
between lax ▷- and oplax ▶-module structures:

Corollary 3.26. Let M and N be left-module categories over a GV-category C, and let 
F : M  −→N be a functor admitting a right adjoint. Then the transports via the right 
adjoint provide a bijection between lax ▷-module functor structures and oplax ▶-module 
functor structures on F . In case that F admits a left adjoint, the transports via the left 
adjoint provide a (potentially different) bijection between lax ▷-module functor structures 
and oplax ▶-module functor structures on F .

Proof. Suppose that F is a lax ▷-module functor with a right adjoint F r.a.. Then by 
the transport (T4), F r.a. is a lax ▶-module functor, while by (T2) F acquires an oplax 
▶-module functor structure. Since both steps are bijections of structures, the structures 
are in bijection.

If F has a left adjoint, then the transports (T1) and (T3) provide again a bijection 
between the same structures: If F is a lax ▷-module functor, then by (T1) F l.a. is a 
oplax ▷-module functor, and by (T3) F is an oplax ▶-module functor. �

In case that a lax ▷-module functor F admits both a right and a left adjoint, the 
transported structures coincide:

Proposition 3.27. Let F : M  −→N be a lax ▷-module functor admitting a right adjoint. 
Then the oplax ▶-module functor structure on F given in Proposition 3.12 coincides with 
the transported oplax ▶-module functor structure given in Corollary 3.26. Analogously, 
if F admits a left adjoint, then both oplax ▶-module functor structures coincide. In 
particular, if F has both a right and a left adjoint, then both transported module structures 
from Corollary 3.26 are the same.

Proof. Assume that F is a lax ▷-module functor and has a right adjoint F r.a.. Un-
der the adjunction HomM(F (c ▶m), c ▶F (m)) ∼ = Hom(Gc ▷F (c ▶m), F (m)), the con-
jugated oplax ▶-module functor structure f▶ of F is the composite

Gc ▷F (c ▶m)
f▷
Gc,c ▶m  

−−−−−−−→ F (Gc ▷ (c▶m)) F (evc,m)   −−−−−−−→ F (m) . (3.59)
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On the other hand, the transported module functor structure f̃▶ is the image of the iden-
tity under the (C,�×)-profunctor structure HomM(Fm,Fm) θm,Fm,c −−−−−−→Hom(F (c ▶m), 
c ▶F (m)) that is obtained by the diagram

Hom(Fm,n) Hom(F (c ▶m), c ▶n)

Hom(m,F r.a.(n)) Hom(Gc ▷F (c ▶m), n)

Hom(c ▶m, c ▶F r.a.(n)) Hom(Gc ▷ (c ▶m), F r.a.(n)) Hom(F (Gc ▷ (c ▶m)), n)

θm,n,c

c ▶− f ▷

(3.60)
Taking n =F (m) and the identity morphism in the upper left corner yields the mappings

idFm f̃ ▶
c,m

εF (m) evc,m ◦ f ▷
Gc,c ▶m

c ▶ εF (m) εF (m) ◦ evc,m F (evc,m)

(3.61)

(εF : id =⇒F r.a.F is the unit of the adjunction). Thus in view of Equation (3.59) the 

two oplax ▶-module functor structures coincide. The remaining statements follow by 
duality. �
3.4. Applications: distributors and duality

Recall the right and left module distributors from Definition 3.17. The fact that the 
module distributors come from weak module structures implies the commutativity of 
two pentagon diagrams for the right module distributor and of two pentagons for the 
left module distributor, while the two coherence diagrams involving both the right and 
the left module distributors follow from the two mixed pentagons in Proposition 3.18. 
Altogether we have the following coherences for the module distributors:

Proposition 3.28. Let M be a left GV-module category over C. The following six pentagon 
diagrams commute for all x, y, z ∈C and m ∈M:

1. The pentagons

((x�×y) �× z) ▷ m x ▶ (y ▶ (z▷m)) (3.62)

and
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(x�×y) ▷ (z▷m) x ▶ (y ▷ (z▷m)) (3.63)

for the distributor δr;
2. the pentagons

(x⊗y) ⊗ (z▶m) (x ⊗ (y⊗z)) ▶m (3.64)

and

x ▷ ((y�×z) ▶m) (x⊗y) ▶ (z▶m) (3.65)

for the distributor δl;
3. the two mixed pentagons

x ▷ ((y�×z)) ▷ m) (x⊗y) ▶ (z ▷m) (3.66)

and

(x�×y) ▷ (z▶m) (x �× (y⊗z)) ▶m . (3.67)

Proof. The commutativity of the diagram (3.62) expresses the fact that δr is an oplax 
▷-module structure on the functor R▷

m; commutativity of (3.63) follows from (3.43) for 
F = R▷

m. The commutativity of (3.64) expresses the fact that δl is a lax ▷-module struc-
ture on R▶

m, while commutativity of (3.65) follows from (3.42) for F = R▶
m. Finally, the 

diagram (3.66) is (3.42) for F = R▷
m, while the diagram (3.67) is (3.43) for F =R▶

m. �
We now specialize to the case of the regular C-module category CC. From the module 

distributors we then obtain natural isomorphisms

δr
x,y,z : (x �× y) ⊗ z

 −−→ x �× (y ⊗ z) and δl
x,y,z : x ⊗ (y �× z)  −−→ (x ⊗ y) �× z .

(3.68)
By Proposition 3.28 these morphisms obey all coherence conditions that the left and 
right distributors in a linearly distributive category (see e.g. [6,18]) have to satisfy. Thus 
our result is stronger than Proposition 4.11 of [13], in which it was shown that all 
these conditions except for the two pentagon equations that involve both left and right 
distributors can be derived from the definition of distributors in terms of weak module 
functors.

We can equally well treat C as a right GV-module category CC. The lax ▷-module 
functor structure of L◀

y : CC  −→CC consists again of morphisms δ̃r
x,y,z : (x �× y) ⊗ z  −→x �×

(y ⊗ z), and analogously we obtain morphisms δ̃l
x,y,z : x ⊗ (y �× z)  −→ (x ⊗ y) �× z. Again it 

follows that these satisfy all coherence diagrams for distributors. However, they do not 
constitute new structures:
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Lemma 3.29. For all objects x, y, z in a GV-category C we have δ̃r
x,y,z = δr

x,y,z and 

δ̃l
x,y,z = δl

x,y,z.

Proof. By construction, δr
x,y,z is the image of the morphism evx,y ⊗ idz under the ad-

junction

Hom(G(x) ⊗ ((x �× y) ⊗ z), y ⊗ z) ∼ = Hom((x �× y) ⊗ z, x�×(y ⊗ z)) , (3.69)

while under the adjunction

Hom((G(x) ⊗ (x �× y)) ⊗ z, y ⊗ z) ∼ = Hom(G(x) ⊗ (x �× y), (y ⊗ z) �×G(z)) (3.70)

it is mapped to c̃oevy,Gz ◦ evx,y. On the other hand, δ̃r
x,y,z is the image of idx�× c̃oevy,Gz

under

Hom(x �× y, (x �× (y ⊗ z)) �×G(z)) ∼ = Hom((x �× y) ⊗ z, x �× (y ⊗ z))) , (3.71)

and under the adjunction

Hom(x �× y, x �× ((y ⊗ z)�×G(z))) ∼ = Hom(G(x) ⊗ (x �× y), (y ⊗ z) �×G(z)) (3.72)

it gets mapped to the morphism c̃oevy,Gz◦evx,y as well. It thus follows that δ̃r
x,y,z = δr

x,y,z. 
The second statement is shown analogously. �

The distributors also possess another symmetry: applying the anti-equivalence G to 
δr
x,y,z, we obtain a morphism

(Gz �×Gy) ⊗Gx ∼ = G(y⊗z) ⊗Gx ∼ = G(x �× (y⊗z))  −−→ G((x�×y) ⊗ z) ∼ = Gz �× (Gy ⊗Gx) .
(3.73)

Proposition 3.30. The distributors of a GV-category C satisfy

G(δr
x,y,z) = δr

Gz,Gy,Gx and G(δl
x,y,z) = δl

Gz,Gy,Gx (3.74)

for all x, y, z ∈C.

Proof. We equip G with the structure of a module functor, so that we can use the 
general results on lax/oplax module functor structures. The category Copp is a left C-
module category with action x ▷ y= y �×G(x) for x ∈C and y∈Copp, and similarly it is a 
right module category with action y◁x =Gx �× y. By a direct computation one sees that 
the CC-module endofunctor G ◦R◁

G−1(x) ◦G−1, with R◁
G−1(x) the left module endofunctor 

that maps y to x �× y, is isomorphic to R▷
G(x) as a ▷-module functor. These two functors 

are then also equivalent as oplax ▶-module functors. This translates directly into the 
equality G(δr

x,y,z) = δr
Gz,Gy,Gx. The second equality in (3.74) follows analogously. �
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As observed by Max Demirdilek, equipping Copp with the canonical GV-structure 
corresponding to the monoidal product x ⊗̃ y = y �×x on objects x, y ∈Copp, the result in 
Proposition 3.30 shows that G : C  −→Copp is a strong linear distributive functor in the 
sense of [7, Def. 1].

Module functors preserve the distributors in the following sense:

Proposition 3.31. Let F : M  −→N be a strong ▷-module functor. Then F preserves the 
distributor δr in the sense that the pentagon

F ((d �× c) ▷m) F (d ▶ (c ▷m)) d ▶F (c ▷m)

(d �× c) ▷F (m) d ▶ (c ▷F (m))

F (δr
d,c,m) 

f▷
d�×c,m

f▶
d,c▷m

d▶f▷
c,m

δr
d,c,F (m)

(3.75)

commutes for all c, d ∈C and all m ∈M. A strong ▶-module functor preserves the dis-
tributor δl in an analogous manner.

Proof. With the strong ▷-module functor structure on R▷
m : �×C C 

 −→ CM, the module func-
tor constraint of F provides an isomorphism R▷

Fm
∼ = F ◦R▷

m of module functors from C
to N . By Theorem 3.13 this isomorphism is also an isomorphism of the conjugated 
oplax ▶-structures on these functors. This is precisely the commutativity of the diagram 
(3.75). �

Let now CMD be a GV-bimodule category over GV-categories C and D. Since for 
every c ∈C the functor L▷

c : M  −→M with L▷
c (m) = c ▷m is a D-◁-module functor, we 

obtain from its oplax ◀-module structure the distributor

δl
c,m,d : c ▷ (m ◀ d)  −−→ (c ▷m) ◀ d . (3.76)

Analogously we obtain the natural morphisms

δr
c,m,d : (c ▶m) ◁ d

 −−→ c ▶ (m ◁ d) . (3.77)

There are in total 8 · 4 =32 pentagon diagrams for the distributors of a GV-bimodule 
category M; they can be schematically symbolized as M���, �M��, ��M� and 
���M, with � ∈{⊗,�×}. For example, the pentagon of type ⊗M�×⊗ is assembled from 

the two possible composite morphisms (c ▷ (m ◀ d)) ◁ d′
 −−−−⇒ (c ▷m) ◀ (d ⊗ d′) for all 

c ∈C, d, d′ ∈D and m ∈M.

Corollary 3.32. Let M be a GV-bimodule category. Each of the 32 pentagon diagrams 
for the distributors of M commutes.
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Proof. The commutativity of the 16 pentagons of type M��� or ���M follows by re-
garding M just as a left or right module category. The commutativity of all 16 pentagons 
of type �M�� or ��M� follows from Proposition 3.18. The pentagon of type ⊗M�×⊗, 
for example, is obtained by applying Proposition 3.18 to the D-◁-module functor L▷

c . �
Next we introduce GV-analogues of the evaluation and coevaluation morphisms of a 

rigid duality. To this end we make use of the distinguished isomorphisms

Hom(Gy ⊗ y,K)
∼ =  −−→ Hom(Gy,Gy) (3.78)

and

HomC(y ⊗G−1y,K) ∼ = HomC(y,GG−1y) = Hom(y, y) , (3.79)

which are special cases of the defining isomorphisms (2.1) of the GV-structure.

Definition 3.33. The right and left GV-evaluation morphisms

evr
y : Gy ⊗ y

 −−→ K and evl
y : y ⊗G−1y

 −−→ K (3.80)

are the pre-image of the identity morphisms idGy and idy under the isomorphisms (3.78)
and (3.79), respectively. Analogously, the right and left GV-coevaluation morphisms

coevr
x := G(evl

x) : 1  −−→ x �×G(x) (3.81)

and

coevl
x := G−1(evr

x) : 1  −−→ G−1(x) �×x (3.82)

are obtained from the isomorphisms

HomC(1, x �×Gy) ∼ = HomC(GK,G(y ⊗G−1x)) ∼ = HomC(y ⊗G−1x,K) . (3.83)

We now show that when complemented with the distributors (3.68), the GV-evaluation 
and GV-coevaluation morphisms evl, evr and coevl, coevr obey snake relations which 
involve distributors and generalize the familiar duality structure of a rigid monoidal 
category. For the monoidal case this was already observed in Theorem 4.5 of (the re-
vised version of) [6]. The proof given there involves “a straightforward verification to 
check that *-autonomous categories are weakly distributive, though the diagrams can be 
pretty horrid.” Our approach generalizes the statement to the case of module categories 
and provides a conceptual understanding of the diagrams. We work in the setting of 
a left C-module category M. Recall from Equation (3.16) the collection of morphisms 
coevc,m : m  −→ c ▶ (Gc ▷m). It follows from our convention concerning the adjunction 
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(3.4) for the case M = C that in this case the composite 1 
coevc,1 −−−−−→ c �× (Gc ⊗ 1) ∼ = c �×Gc

coincides with the GV-coevaluation coevr
c : 1  −→ c �×Gc, and analogously for evc,K :

coevc,1 = coevr
c and evc,K = evr

c . (3.84)

The GV-(co)evaluations and the module distributors determine all (co)evaluations:

Lemma 3.34. Let M be a GV-module category. For all m ∈M and c ∈C the diagrams

m c ▶ (Gc ▷m)

1 ▷m (c �×Gc) ▷m

coevc,m

∼ = 
coevc▷m

δr
c,Gc,m

and
Gc ▷ (c ▶m) m

(Gc ⊗ c) ▶m K ▶m

evc,m

δl
Gc,c,m

evc ▶m

∼ = (3.85)

commute.

Proof. Applying Lemma 3.16 to the GV-module functor Rm : C  −→M and the object 
1 ∈C directly shows the commutativity of the diagram

Rm(1) = 1 ▷m c ▶ (Gc ▷ (1 ▷m))

(c �× (Gc ⊗ 1)) ▷m c ▶ ((Gc ⊗ 1) ▷m)

coevc,1▷m

Rm(coevc,1) ∼ = ∼ = 
δr
c,Gc⊗1,m

(3.86)

Inserting the unitors, this implies the commutativity of the first of the diagrams (3.85). 
The commutativity of the second diagram is shown analogously. �

It is worth pointing out that in view of the fact that the distributors are generically 
not isomorphisms, it is not obvious that the GV-(co)evaluations obey appropriate snake 
relations. However, with the help of Lemma 3.34 we can show that this is indeed the 
case:

Proposition 3.35 (Snake relations). Let C be a GV-category. For every c ∈C the diagrams

c (c �×Gc) ⊗ c c �× (Gc⊗ c) c
coevr

c ⊗ id

idc

δr
c,Gc,c id�× evr

c

(3.87)

and
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Gc Gc ⊗ (c �×Gc) (Gc ⊗ c) �×Gc Gc
id⊗ coevr

c

idGc

δl
Gc,c,Gc

evr
c �× id

(3.88)

commute.

Proof. By Lemma 3.34 the diagram

c �×K ∼ = c c �× (Gc ▷ (c �×K)) c �×K ∼ = c

(c �×Gc) ⊗ c c �× (Gc ⊗ c) c �×K

coevc,c�×K

coevr
c ⊗ 1 ∼ = 

c �× evc,K

=

δr c �× evr
c

(3.89)

commutes. By Equation (3.17) the horizontal arrows in the first row compose to idc. 
This yields commutativity of (3.87). Commutativity of (3.88) is shown analogously. �
Remark 3.36. In particular, the evaluation and coevaluation morphisms endow every 
object of a GV-category with the structure of a (left and right) nuclear object in the 
sense of Definition A.1 of [7].

As a consequence of these snake identities, we can express the defining isomorphisms 
(2.1) of C also as follows:

Proposition 3.37. Let C be a GV-category, and let �x,y : Hom(x ⊗ y,K) 
∼ =  −→Hom(x,Gy)

be defined as in (2.1).

1. The image of a morphism f : x  −→Gy under the isomorphism �−1
x,y equals evr

y ◦
(f ⊗ id).

2. The image of a morphism ξ : x ⊗ y  −→K under the isomorphism �x,y equals the 
composite (omitting unitors)

x
id⊗ coevr

y  
−−−−−−−−→ x ⊗ (y �×Gy) δl  −−→ (x ⊗ y) �×Gy

ξ �× id  −−−−−→ Gy . (3.90)

3. For a morphism f : x  −→ y, the morphism Gf is equal to the composite

Gy
id⊗ coevr

x  −−−−−−−−→ Gy ⊗ (x �×Gx) δl  −−−−−→ (Gy ⊗x) �×Gx

(id⊗ f) �× id  −−−−−−−−−→ (Gy ⊗ y) �×Gx
evr

y �× id  
−−−−−−→ Gy .

(3.91)

Proof. The first statement is just the usual expression of the adjunction in terms of 
the unit. The second statement follows by combining the first with the triangle identity 
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(3.87): Composing (3.90) with the isomorphism from the first part gives, by (3.87), the 
identity. The last statement follows by combining the first two with the definition of the 
functor G via the commuting diagram (2.2). �
Remark 3.38. It follows from Lemma 3.34 that we can extend part 2 of Proposition 3.37
as follows: for all x, y, z ∈C the adjunction Hom(x ⊗ y, z) 

∼ =  −→Hom(x, z �×Gy) can be de-
scribed as a composition with the coevaluation coevr

y and an appropriate distributor.

We finally have a compatibility of the evaluation and coevaluation morphisms with 
the monoidal structure of C:

Proposition 3.39. Let C be a GV-category and x, y ∈C. The right coevaluation coevr
x⊗y

of the object x ⊗ y is equal to the composite

1 coevr
x  −−−−−→ x �×Gx

(id⊗ coevr
y) �× id  

−−−−−−−−−−−→ (x ⊗ (y �×Gy)) �×Gx
δl �× id  −−−−−→ (x ⊗ y) �×Gy �×Gx

∼ =  −−−−−→ (x ⊗ y) �×G(x ⊗ y) .
(3.92)

Analogous expressions are valid for the left coevaluation and for the evaluations.

Proof. To show the claim for the right coevaluation, notice that the diagram

Hom(x ⊗ y, z) Hom(1, z �×G(x ⊗ y))

Hom(x, z �×Gy)

Hom(1, (z �×Gy) �×Gx) Hom(1, z �× (Gy �×Gx))

∼ = 

∼ = 

∼ = 
∼ = 

∼ = (3.93)

commutes: The isomorphism from the upper to the middle row can be expressed as the 
composite

Hom(x ⊗ y, z)
�−1

x⊗y,G−1z
 

−−−−−−−−→ Hom((x ⊗ y) ⊗G−1z,K)
∼ =  −−−→ Hom(x ⊗ (y ⊗G−1z),K)

�
x,y⊗G−1z  

−−−−−−−−→ Hom(x,G(y ⊗G−1z)) = Hom(x, z �×Gy)
(3.94)

with the isomorphisms � as defined in (2.1); commutativity of (3.93) is a consequence 
of the resulting cancellation in the composition of the two downwards arrows. Now when 
taking z =x ⊗ y and the identity morphism in the upper left corner, the isomorphism 
in the upper row yields the coevaluation coevr

x⊗y, while by Remark 3.38 the other path 
gives the composite (3.92). The other cases are shown analogously. �
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3.5. Internal Homs and weak module functors

The definition of GV-module category ensures the existence of internal Homs and 
coHoms as suitable adjoints of action functors. We now discuss various aspects of these 
functors.

Definition 3.40. Let C be a GV-category and (M,▷) a left GV-module category over 
(C,⊗), and let m ∈M. Then the internal Hom Hom(m,−) is the right adjoint of the 
functor from C to M that maps objects as c  �−→ c ▷m. The internal coHom coHom(m,−)
is the left adjoint of the functor from C to M that maps objects as c  �−→ c ▶m. In more 
detail, we have isomorphisms

HomM(c ▷m,m′) ∼ = HomC(c,Hom(m,m′)) (3.95)

and

HomM(m′, c ▶m) ∼ = HomC(coHom(m,m′), c) (3.96)

for all c ∈C and m,m′ ∈M.

In view of the definition of the action ▶ in terms of ▷ (see Proposition 3.5), it is not 
surprising that the internal coHom can be expressed in terms of the internal Hom:

Lemma 3.41. Let M be a GV-module category. Then the internal coHom can be expressed 
as

coHom(m,m′) ∼ = G−1(Hom(m′,m)) (3.97)

for all m,m′ ∈M.

Proof. This follows directly from the definition of ▶, compare the calculation in (3.7). �
Being defined via the adjunctions (3.95) and (3.96), the internal (co)Hom functors 

come with canonical (co)evaluation morphisms

evm,n : Hom(m,n) ▷m
 −−→ n (3.98)

and

coevm,n : m
 −−→ coHom(n,m) ▶n . (3.99)

These, in turn, give rise to canonical multiplications

μm,n,l : Hom(n, l) ⊗Hom(m,n)  −−→ Hom(m, l) (3.100)
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and comultiplications

Δm,n,l : coHom(l,m)  −−→ coHom(n,m) �× coHom(l, n) (3.101)

via the compositions (suppressing the associator)

evn,l ◦ (idHom(n,l) ▷ evm,n) : Hom(n, l) ▷Hom(m,n) ▷m
 −→ Hom(n, l) ▷n

 −→ l

(3.102)
and

(id▶ coevn,l) ◦ coevm,n : 

m
 −→ coHom(n,m) ▶n

 −→ coHom(n,m) ▶ coHom(l, n) ▶ l ,
(3.103)

respectively. The following result is standard:

Lemma 3.42. The (co)multiplications (3.100) and (3.101) equip Hom(m,m) with the 
structure of an associative algebra in (C,⊗) and coHom(m,m) with the structure of 
a coassociative coalgebra in (C,�×). Moreover, for all m, l ∈M the objects Hom(m, l) are 
canonically right Hom(m,m)-modules and the objects coHom(l,m) are canonically right 
coHom(m,m)-comodules.

In the case of the regular module category we can compute the internal Homs by mak-
ing use of the isomorphisms Hom(c ⊗ d,K) ∼ = Hom(c,Gd) ∼ = Hom(d,G−1c). This gives

Lemma 3.43. The internal (co)Homs of the regular module category C are given by

Hom(c, d) ∼ = G(c ⊗G−1d) = d �×Gc and coHom(c, d) ∼ = d⊗G−1c . (3.104)

Further we have

Lemma 3.44. Let M be a left GV-module category over a GV-category C. Then the in-
ternal Hom satisfies

Hom(b ▷m, c ▶m′) ∼ = c �×Hom(m,m′) �×Gb (3.105)

for b, c ∈C and m,m′ ∈M. In particular, the internal Hom is a strong module functor 
with respect to �×. Similarly, the internal coHom satisfies

coHom(c ▶m, b ▷m′) ∼ = b⊗ coHom(m,m′) ⊗G−1c (3.106)

for b, c ∈C and m,m′ ∈M.
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Proof. Making use of (3.9) and of the easily established adjunction formulas HomC(Ga ⊗
b, c) ∼ = HomC(b, a �× c) and

HomC(a ⊗G−1b, c) ∼ = HomC(a, c �× b) , (3.107)

for any b, c, d ∈C and m,n ∈M we obtain the sequence

HomC(d,Hom(b ▷m, c ▶n)) ∼ = HomM(d ▷ b ▷m, c ▶n)
∼ = HomM(Gc ▷ d ▷ b ▷m,n) ∼ = HomM((Gc ⊗ d ⊗ b) ▷ m,n)
∼ = HomC(Gc ⊗ d ⊗ b,Hom(m,n)) ∼ = HomC(d, c �×Hom(m,n) �×Gb)

(3.108)
of isomorphisms. Then (3.105) follows by the Yoneda lemma. Similarly, for internal 
coHoms we get

HomC(coHom(c ▶m, b ▷n), d) ∼ = HomM(b ▷n, d ▶ c ▶m)
∼ = HomM(n,G−1b ▶ d ▶ c ▶m) ∼ = HomM(n, (G−1b �× d �× c) ▶m)
∼ = HomC(coHom(m,n), G−1b �× d �× c)
∼ = HomC(b ⊗ coHom(m,n) ⊗G−1c, d) ,

(3.109)

which shows (3.106). �
In the following we use the symbol m for the object in Mopp that corresponds to 

m ∈M, whereby e.g. the module structures on Mopp from Proposition 3.7 read

m ◁ c = G−1c ▶m and m◀c = G−1c ▷m. (3.110)

Proposition 3.45. Let M be a left GV-module category over a GV-category C. The inter-
nal Hom Hom: Mopp ×M  −→C carries the following (weak) module functor structures. 
For m,n ∈M and c ∈C there are

1. coherent morphisms

c⊗ Hom(m,n)  −−→ Hom(m, c ▷n) (3.111)

which endow the functors Hom(m,−) : M →C with the structure of lax ▷-module 
functors;

2. coherent isomorphisms

Hom(m, c ▶n)
∼ =  −−→ c �×Hom(m,n) (3.112)

which endow the functors Hom(m,−) : M →C with the structure of strong ▶-module 
functors;
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3. coherent morphisms

Hom(m,n) ⊗ c
 −−→ Hom(m◁ c, n) (3.113)

which endow the functors Hom(−, n) : Mopp →C with the structure of lax ◁-module 
functors;

4. coherent isomorphisms

Hom(m◀ c, n)
∼ =  −−→ Hom(m,n) �× c (3.114)

which endow the functors Hom(−, n) : Mopp →C with the structure of strong ◀-
module functors.

In addition there are the following compatibilities: The corresponding lax and strong 
module functor structures in each argument form a conjugated pair of lax and oplax 
module functor structures. In particular the module functors Hom(m,−) : M  −→C and 
coHom(m,−) : M  −→C are GV-module functors.

Furthermore we have, for m,n ∈M and c, d ∈C:

5. The strong module functor structures commute, in the sense that the two obvious 
isomorphisms

Hom(m◀ c, d ▶n)
∼ =  −−−−−−⇒∼ =  

d �×Hom(m,n) �× c (3.115)

are equal. Thus Hom: Mopp ×M  −−→ C is a strong �×-bimodule functor.
6. The lax module functor structures commute, in the sense that the two obvious mor-

phisms

d⊗ Hom(m,n) ⊗ c
 −−−−⇒ Hom(m◁ c, d ▷n) (3.116)

are equal. Thus Hom: Mopp ×M  −−→ C is a lax ⊗-bimodule functor.
7. The natural isomorphism HomM(c ▷m,−) ∼ = HomC(c,HomM(m,−)) ∼ = HomM(m,−) 
�×Gc obtained from the isomorphisms (3.105) is an isomorphism of lax ▷-module 
functors.
Similarly, the natural isomorphism coHomM(c ▶m,−) ∼ = coHomC(c, coHomM(m,−))
is an isomorphism of oplax ▶-module functors.

Dual statements hold for the internal coHom.

Proof. Recall that the functor R▷
m : CC  −→ CM given in (3.36) is a strong ▷-module 

functor; its right adjoint is the functor Hom(m,−) : CM → CC. The profunctor trans-
port from Corollary 3.23 thus provides us with the lax ▷-module functor structure of 
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Hom(m,−). The strong ▶-module functor structure is obtained by the flipping transport 
from Lemma 3.20. The remaining structures are obtained with the help of Lemma 3.44
from the corresponding structures of the internal coHom. By Proposition 3.27, the re-
sulting strong and lax module functor structures correspond to the lax/oplax functor 
structure pair of a GV-functor. By the proof of Lemma 3.44, the two strong module 
functor structures are compatible in the form of statement 5.

By the transport of structures in a GV-bimodule functor, as described in Lemma 3.19, 
it follows that the lax module functor structures are compatible as well. For statement 7, 
consider the strong ▷-module functors R▷

c : C  −→C and R▷
m : C  −→M. The right adjoint 

lax module functor of their composite is (R▷
mR▷

c )r.a. ∼ = Hom(c ▷m,−). By Lemma 3.25, 
the isomorphism (R▷

mR▷
c )r.a. ∼ = (R▷

c )r.a.(R▷
m)r.a. is an isomorphism of lax module func-

tors. This proves the claim concerning the internal Hom; the statement about the internal 
coHom follows analogously. �

In the case of C as a left module category over itself, the internal Hom is canonically 
identified with Hom(x, y) ∼ = y �×Gx =R�×Gx(y). The lax ▷-module functor structure of 
Hom(x,−) is given in Proposition 3.45. On the other hand, R�×Gx : C  −→C is a strong 
▶-module functor with respect to the left action of (C,�×), hence by Proposition 3.12
it is also a lax ▷-module functor with the conjugated module functor structure. In 
this case the lax ▷-module functor structures can also serve as a means for defining 
the distributors of the GV-category C [13, Sect. 4]. The so obtained definition of the 
distributors is equivalent to the one given in Definition 3.17:

Corollary 3.46. The natural isomorphism Hom(x,−) ∼ = R�×Gx is an isomorphism of lax 
▷-module functors.

Proof. The left adjoint of R�×Gx is the functor R⊗
x : C  −→C. Under the flipping transport, 

the strong ▶-module functor structure of R�×Gx corresponds to the strong ▷-module func-
tor structure of R⊗

x . The profunctor transport of this structure yields, in turn, the lax 
▷-module functor structure of Hom(x,−). By Proposition 3.27, this structure coincides 
with the conjugated lax ▷-module functor structure of R�×Gx. �

Besides the internal Hom Hom≡Homr for the regular left module category, for which 
in the adjunction Hom(c ⊗ d, d′) ∼ = Hom(c,Hom(d, d′)) the right tensor factor changes 
place, analogously there is an internal Hom Homl for the regular right module category 
1 for which the adjunction keeps the right tensor factor,

Hom(c ⊗ d, c′) ∼ = Hom(d,Homl(c, c′)) . (3.117)

It computes as Homl(c, d) ∼ = G−1(Gd ⊗ c) =G−1c �× d. Analogously there is a second in-
ternal coHom coHoml. In accordance with our guiding principle, for every statement 

1 As compared to [5], in our notation the use of the superscripts l and r is interchanged.
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involving Hom or coHom there is an analogous statement for Homl, respectively coHoml. 
This observation applies not just to the regular right module, but likewise to every right 
GV-module category over C. In particular there are evaluations

ev′
m,n : m ⊗Homl(m,n)  −→ n , (3.118)

and multiplication morphisms

μ′
m,n,l : Homl(m,n) ⊗Homl(n, l)  −→ Homl(m, l) (3.119)

via

ev′
n,l ◦ (ev′

m,n ⊗ idHoml(n,l)) : m ⊗Homl(m,n) ⊗Homl(n, l)  −→ m ⊗Homl(m, l)  −→ l

(3.120)
analogously to (3.98) and (3.100).

4. Frobenius algebras and admissible objects

4.1. Algebras and Frobenius algebras in GV-categories

Throughout this section (C,⊗) =(C,⊗, 1, α, l, r,K) is a GV-category. Recall the no-
tions of algebras and coalgebras in C as given in Definition 2.8.

Example 4.1. As seen in Lemma 3.42, for any object m in a GV-module category over 
C, the internal End Hom(m,m) carries the structure of an algebra in (C,⊗, 1), while the 
internal coEnd coHom(m,m) carries the structure of a coalgebra in (C,�×,K).

Definition 4.2. In a GV-category C a GV-algebra is an algebra in the monoidal cate-
gory (C,⊗, 1, α⊗, l⊗, r⊗). A GV-coalgebra in C is a coalgebra in the monoidal category 
(C,�×,K, α�×, l�×, r�×).

Lemma 4.3. In a GV-category C, GV-algebras and GV-coalgebras are in bijection under 
both the dualizing functor G and its inverse G−1.

Proof. We show that if (A,μ, η) is a GV-algebra (that is an algebra in (C,⊗, 1)), 
then G(A) naturally inherits the structure of a coalgebra in (C,�×,K); the argu-
ment for G−1(A) is analogous. The reverse statement for GV-coalgebras then im-
mediately follows from G being an antiequivalence. One checks that the morphism 

Δ : GA 
G(μ)  −−−→G(A ⊗A) 

∼ =  −−−→GA �×GA obtained via the composite isomorphism

Hom(A ⊗A,A)
∼ =  −−→ Hom(GA,G(A ⊗A))

∼ =  −−→ Hom(GA,GA �×GA) (4.1)

is a coassociative comultiplication. Furthermore, the morphism ε : GA 
id⊗ η  −−−−→GA ⊗

A 
evA −−−→K is a counit for this comultiplication. �
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Given the notions of algebras and coalgebras it is natural to also consider Frobenius 
algebras, which we do following Definition 2.3.2 of [10].

Definition 4.4. A GV-Frobenius algebra in C is a quintuple (A,μ, η,Δ, ε) such that 
(A,μ, η) is an algebra in C, (A,Δ, ε) is a GV-coalgebra in C, and

(μ �× idA) ◦ δl
A,A,A ◦ (idA ⊗Δ) = Δ ◦ μ = (idA�×μ) ◦ δr

A,A,A ◦ (Δ ⊗ idA) (4.2)

as morphisms in Hom(A ⊗A,A �×A).
A morphism f of GV-Frobenius algebras between GV-Frobenius algebras (A,μA, ηA, 

ΔA, εA) and (B,μB , ηB ,ΔB , εB) is a morphism f : A  −→B that is compatible with 
the algebra and coalgebra structures, i.e. satisfies μB ◦ (f ⊗ f) = f ◦μA, f ◦ ηA = ηB , 
(f �× f) ◦ΔA = ΔB ◦ f and εB ◦ f = εA.

Remark 4.5. The two equalities postulated in Equation (4.2) are not independent. Indeed, 
it suffices to require that the left and right most expression are the same morphism. This 
fact is well known for Frobenius algebras in rigid monoidal categories. In the present 
setting the proof is considerably more subtle, since non-invertible distributors enter. A 
proof has been given in [8] with the help of a three-dimensional graphical calculus.

Note that this definition does not assume that the distributors δl
A,A,A and δr

A,A,A

are isomorphisms. Just as with Frobenius algebras in a monoidal category we can also 
consider their morphisms.

Lemma 4.6. Every morphism of GV-Frobenius algebras is an isomorphism.

Proof. Let f : A  −→B be a morphism of GV-Frobenius algebras. It is not hard to check 
that the morphism

f− := l�×A ◦
(
(εB ◦μB) �× idA

)
◦δr

B,B,A◦(idB ⊗ (f �× idA))◦
(
idB ⊗ (ΔA ◦ ηA))◦(r⊗B )−1 (4.3)

is both left and right inverse to f . As compared to the calculation for ‘ordinary’ Frobenius 
algebras, the only new ingredient is the use of the naturality of the distributor δr in place 
of the naturality of the associator (which one would normally just suppress). �

Next we establish alternative characterizations of GV-Frobenius algebras that are 
equivalent to Definition 4.4 by preparing some suitable notions.

Definition 4.7. Let c be an object in a GV-category C. A GV-pairing on c is a morphism 
κc ∈Hom(c ⊗ c,K); a GV-copairing on c is a morphism κc ∈Hom(1, c �× c). A GV-pairing 
on c is called non-degenerate if and only if there exists a GV-copairing κc that is side-
inverse to κ, i.e. such that
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l�×c ◦ (κc�× idc) ◦ δl
c,c,c ◦ (idc ⊗ κc) ◦ r−1

c

= idc = r�×c ◦ (idc�×κc) ◦ δr
c,c,c ◦ (κc ⊗ idc) ◦ l−1

c

(4.4)

as morphisms in End(c).

It readily follows that the adjunctions Hom(c ⊗ c,K) ∼ = Hom(c,Gc) ∼ = Hom(1, Gc �×Gc)
provide a bijection between the sets of GV-pairings for c and of GV-copairings for Gc. 
Under this bijection, non-degenerate (co)pairings correspond to each other.

Definition 4.8. Let A be an algebra in a GV-category C. An invariant GV-pairing on A
is a GV-pairing κA on A such that

κA ◦ (μ⊗ idA) = κA ◦ (idA ⊗ μ) ◦ αA,A,A (4.5)

as morphisms in Hom((A ⊗A) ⊗A,K).

As is familiar from ordinary Frobenius algebras, invariant GV-pairings provide an 
alternative means of characterization:

Proposition 4.9. For an algebra A in C there is a bijection between the GV-Frobenius 
algebra structures on A (in the sense of Definition 4.4) and the invariant non-degenerate 
pairings for A.

Proof. Assume that (A,μ, η,Δ, ε) is a GV-Frobenius algebra. Define a GV-pairing κ
and a GV-copairing κ on A by κ := ε ◦μ and κ := Δ ◦ η. By the associativity of μ, the 
GV-pairing κ is invariant. Moreover, the calculation

l�×A ◦ (κ �× idA) ◦ δl
A,A,A ◦ (idA ⊗κ) ◦ r−1

A

= l�×A ◦ (ε �× idA) ◦ (μ �× idA) ◦ δl
A,A,A ◦ (idA ⊗Δ) ◦ (idA ⊗ η) ◦ r−1

A

(4.2)= l�×A ◦ (ε �× idA) ◦ Δ ◦ μ ◦ (idA ⊗ η) ◦ r−1
A = idA

(4.6)

shows that κ =κA and κ=κA satisfy the first of the equalities (4.4) for c =A. The second 
of those equalities follows analogously. Thus the GV-pairing κ is non-degenerate.

To show the converse, define, for (A,μ, η) an algebra in C and κ an invariant non-
degenerate GV-pairing on A with side-inverse κ,

Δ := (μ �× idA) ◦ δl
A,A,A ◦ (idA ⊗κ) ◦ r−1

A and ε := κ ◦ (idA ⊗ η) ◦ r−1
A . (4.7)

Then with the help of the invariance property (4.5) of κ one sees that ε can alternatively 
be written as ε =κ ◦ (η ⊗ idA) ◦ l−1

A . Similarly, for brevity suppressing for the moment 
unitors as well as associators, one has

μ = (κ �× idA) ◦
(
(idA ⊗μ) �× idA

)
◦ δl

A,A⊗A,A ◦ (idA ⊗ δl
A,A,A) ◦ (idA ⊗ idA ⊗κ) (4.8)
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which, in turn, implies that Δ can alternatively be written as

Δ = (idA�×μ) ◦ δr
A,A,A ◦ (κ⊗ idA) . (4.9)

The calculation

(idA�× ε) ◦ Δ ≡ (idA�×κ) ◦ δr
A,A,A ◦

(
(μ �× idA) ⊗ η

)
◦ δl

A,A,A ◦ (idA ⊗κ)

= μ ◦ (idA ⊗ η) = idA
(4.10)

then proves one of the counit properties. Analogously one shows that (ε �× idA) ◦Δ = idA. 
Next we calculate, denoting for better distinction the two expressions (4.7) and (4.9) for 
Δ by different symbols Δ1 and Δ2, respectively,

(idA�×Δ1) ◦ Δ2 = (idA�× (μ �× idA)) ◦ (idA�× δl
A,A,A) ◦ (idA�× (idA ⊗κ))

◦ (idA�× r−1
A ) ◦ (idA�×μ) ◦ δr

A,A,A ◦ (κ⊗ idA) ◦ l−1
A

=
[
idA�× [(

μ ◦ (μ ⊗ idA)
)�× idA

]]
◦ (idA�× δl

A⊗A,A,A) ◦ δr
A,A⊗A,A�×A

◦ (δr
A,A,A ⊗ idA�×A) ◦ ((κ⊗ idA) ⊗ κ) ◦ ((l−1

A ⊗ idA) ⊗ id1) ◦ r−1
A ,

(4.11)
where we use naturality of the distributors (as well as of the unitors). Similarly we obtain

(Δ2�× idA) ◦ Δ1 = ((idA�×μ) �× idA) ◦ (δr
A,A,A�× idA) ◦ ((κ⊗ idA) �× idA)

◦ (l−1
A �× idA) ◦ (μ �× idA) ◦ δl

A,A,A ◦ (idA ⊗κ) ◦ r−1
A

=
[[

idA�× (
μ ◦ (idA ⊗μ)

)]�× idA
]
◦
(
(idA�×α⊗

A,A,A) �× idA
)

◦ α�×A,(A⊗A)⊗A,A ◦ (δr
A,A⊗A,A�× idA) ◦ δl

A�×(A⊗A),A,A

◦ (δr
A,A,A ⊗ idA�×A) ◦ ((κ⊗ idA) ⊗ κ) ◦ ((l−1

A ⊗ idA) ⊗ id1) ◦ r−1
A ,

(4.12)
where now besides naturality we also make use of the pentagon identity (3.64) for 
the left distributor, specialized to the regular GV-module category and x =A �×A and 
y = z =m =A, followed by the pentagon identity (3.63) for the right distributor with 
x = y = z =m =A (�×-multiplied with idA). Invoking now the mixed pentagon identity 
(3.67) with x = z =m =A and y =A ⊗A, and associativity of μ, it follows that

(idA�×Δ) ◦Δ = α�×A,A,A ◦ (Δ �× idA) ◦Δ , (4.13)

i.e. that Δ is a coassociative comultiplication for the �×-tensor product.
The validity of the Frobenius relations (4.2) follows similarly as coassociativity, by 

expressing the coproduct Δ suitably either as in (4.7) or as in (4.9) and then making 
use of associativity of μ and of the properties of the distributors. �

The result of Proposition 4.9 can be promoted to an equivalence of categories (in fact, 
by Lemma 4.6, of groupoids):
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Definition 4.10. For C a GV-category, AlgκC is the following category: An object in AlgκC
is a pair (A, κ) consisting of an algebra A in C and an invariant non-degenerate pairing 
κ on A. A morphism f : (A, κA)  −→ (B, κB) in AlgκC is an algebra morphism f : A  −→B

such that κB ◦ (f ⊗ f) =κA.

Proposition 4.11. The category AlgκC is equivalent to the category of GV-Frobenius alge-
bras in C. In particular, AlgκC is a groupoid.

Proof. Using the formulas relating the two equivalent definitions of Frobenius algebra 
one directly checks that an algebra morphism f in AlgκC is a coalgebra morphism (and 
thus a morphism of Frobenius algebras) iff κB ◦ (f ⊗ f) =κA. �

A third equivalent definition of the notion of a GV-Frobenius algebra is obtained with 
the help of the following structure:

Definition 4.12. Let A ∈C be an algebra in a GV-category C. A Frobenius form for A is 
a morphism λ : A  −→K such that the morphism

Ψ ≡ Ψλ : A
(r⊗A )−1  −−−−−−→ A⊗ 1 idA ⊗ coevr

A  −−−−−−−−→ A⊗ (A �×G(A))

δl
A,A,GA  

−−−−−−→ (A ⊗A) �×G(A)
(λ◦μ) �× idG(A)  

−−−−−−−−−−→ K �×G(A)
l�×GA  −−−→ G(A)

(4.14)

is invertible.

Proposition 4.13. Let A ∈C be an algebra in a GV-category C. If λ is a Frobenius form 
for A, then the morphism

κ := λ ◦ μ (4.15)

is a non-degenerate invariant GV-pairing on A. Conversely, for κ a non-degenerate 
invariant GV-pairing on A, the morphism

λ := κ ◦ (idA ⊗ η) (4.16)

is a Frobenius form for A.

Proof. Let λ be a Frobenius form and define κ by (4.15). By associativity of μ, κ is 
invariant. Further, set

κ := (idA�×Ψ−1) ◦ coevr
A : 1  −→A �×A (4.17)

with Ψ−1 the inverse of Ψ ≡Ψλ. By naturality of l�× and of δl we have

idA ≡ Ψ−1 ◦Ψ = l�×A ◦ (κ �× idA) ◦ δl
A,A,A ◦

(
idA ⊗ [(idA�×Ψ−1) ◦ coevr

A)]
)
◦ (r⊗A )−1, (4.18)
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which means that κ satisfies the first of the side-inverseness equalities (4.4). Similarly, 
using naturality of r−1 and δl one sees that the identity Ψ ◦Ψ−1 = idA amounts to κ
satisfying the second of those equalities. Thus κ is non-degenerate.

Conversely, let κ be a non-degenerate invariant GV-pairing on A and define λ by 
(4.16). Then we have Ψ =(κ �× idGA) ◦ δl

A,A.GA ◦ (idA ⊗ coevr
A). We claim that Ψ has a 

two-sided inverse given by

Ψ−1 = (evr
A�× idA) ◦ δr

GA,A,A ◦ (idGA ⊗κ) . (4.19)

That this morphism is a right inverse is seen by computing

Ψ ◦Ψ−1 = (evr
A�× idA) ◦ δl

GA,A,GA ◦
(
idGA ⊗

[
(idA�×κ) ◦ δr

A,A,A ◦ (κ⊗ idA)
]�× idGA

)

◦ (idGA ⊗ coevr
A)
(4.20)

and noticing that the term in square brackets in this expression equals idA by the second 
of the equalities (4.4), so that after invoking the snake identity (3.88) we end up with 
idGA. That the morphism (4.19) is also a left inverse of Ψ follows similarly with the help 
of the snake identity (3.87) and the first of the equalities (4.4). �

Together with Proposition 4.11 we have thus arrived at:

Theorem 4.14. For a GV-category C the following three groupoids are equivalent:

1. The category of Frobenius algebras in C as described in Definition 4.4.
2. The category AlgκC introduced in Definition 4.10.
3. The category of pairs (A, λ) consisting of an algebra A in C and a Frobenius form λ

on A.

Remark 4.15. Replacing Ψ in the Definition 4.12 of a Frobenius form by the morphism

Ψ′ := r�×G−1A ◦ (idG−1A�×κ) ◦ δr
G−1A,A,A ◦ (coevl

A ⊗ idA) ◦ l−1
A (4.21)

from A to G−1A one obtains statements analogous to Proposition 4.13 in which the 
equality (4.16) is replaced by λ =κ ◦ (η ⊗ idA).

4.2. Symmetric Frobenius algebras

Like in the rigid case there is a notion of symmetric Frobenius algebra, provided that 
the GV-category C is endowed with a pivotal structure.

Definition 4.16. [4, Def. 6.1] A pivotal structure on a GV-category C is a natural family 
of isomorphisms
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ψc,d : Hom(c ⊗ d,K)
∼ =  −−→ Hom(d ⊗ c,K) (4.22)

for c, d ∈C such that (suppressing associators)

ψd,c ◦ ψc,d = id and ψb⊗c,d ◦ ψc⊗d,b ◦ ψd⊗b,c = id (4.23)

for b, c, d ∈C. A pivotal GV-category is a GV-category together with a choice of a pivotal 
structure.

As shown by the transformation behavior (2.6) of the functor G2 under a change of 
dualizing object, the notion of a pivotal structure depends on the choice of dualizing 
object. Being pivotal is thus not a property of the underlying monoidal category only. 
In particular, the existence of a pivotal structure for one choice of dualizing object does 
not guarantee that a pivotal structure also exists for a different choice.

Pivotal structures on C are in bijection with monoidal isomorphisms π : idC ⇒G2 for 
which πK : K 

∼ =  −→G2(K) coincides with the canonical isomorphism K 
∼ =  −→G1 =G2G−11 

∼ =  −→G2K [4, Prop. 6.7]. Conveniently, this monoidal isomorphism π allows us to construct 
Nakayama automorphisms:

Definition 4.17. Let A be a Frobenius algebra in a pivotal GV-category C. Then the left 
and right Nakayama automorphisms of A are the invertible endomorphisms

�l
A := Ψ′−1 ◦π−1

G−1A ◦Ψ and �r
A := (�l

A)−1 = Ψ−1 ◦πG−1A ◦Ψ′ (4.24)

of A, respectively, with Ψ and Ψ′ as defined in (4.14) and (4.21).
A symmetric Frobenius algebra A in C is a Frobenius algebra in C for which the 

Nakayama automorphisms are identities, �l
A = idA.

Proposition 4.18. A Frobenius algebra A in a pivotal GV-category is symmetric if and 
only if the corresponding invariant GV-pairing κ is symmetric, in the sense that the 
equality

evA ◦
[
idA ⊗

(
π−1
G−1A ◦ r�×GA ◦ (κ �× idGA) ◦ δl

A,A,GA ◦ (idA ⊗ coevA)
)]

= κ (4.25)

holds.

Proof. The claim follows directly by using the relation (4.19) between Ψ and κ and the 
corresponding relation for Ψ′. �
Remark 4.19. (i) The proof is fully analogous to the rigid case, which is treated in Section 
4 of [14].

(ii) Symmetric Frobenius algebras in symmetric linearly distributive categories have 
been considered, under the name Girard monoids, in [10]. In that case the definition of 
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the algebra being symmetric can be expressed in terms of the (symmetric) braiding of 
the category.

4.3. GV-module categories versus categories of modules

A natural question to ask is under which conditions the category of modules over an 
algebra in a GV-category is a GV-module category, and conversely, under which condi-
tions a GV-module category comes from an algebra. To investigate the first issue, recall 
from Lemma 4.3 that, given an algebra A ∈ (C,⊗), the object G(A) has a canonical struc-
ture of a coalgebra in (C,�×). The analogous result interrelating modules and comodules 
holds as well:

Lemma 4.20. Let C be a GV-category, A ∈C a GV-algebra and m ∈C. There are canonical 
bijections of

1. right A-actions on m and right G(A)-coactions on m;
2. left A-actions on m and left G−1(A)-coactions on m;
3. right A-actions on m, left G(A)-coactions on G(m) and left G−1(A)-coactions on 

G−1(m);
4. left A-actions on m, right G(A)-coactions on G(m) and right G−1(A)-coactions on 

G−1(m).

Proof. The bijection in Part 1 is given by the adjunction Hom(m ⊗A,m) ∼ = Hom(m, 
m �×G(A)). To see this, first note that the comultiplication Δ considered in the proof of 
Lemma 4.3 coincides with the image of μ under the sequence

Hom(A ⊗A,A)
∼ =  −−→ Hom(A,A �×GA)

∼ =  −−→ Hom(1, A �×GA �×GA)
∼ =  −−→ Hom(GA,GA �×GA)

(4.26)

of adjunctions. This follows directly from Part 3 of Proposition 3.37 together with Propo-
sition 3.39. Then one sees that the associativity constraint on one side is mapped to the 
coassociativity constraint on the other. Part 2 follows analogously. Parts 3 and 4 are 
obtained by applying G or G−1 to (co)actions and using the fact that G is an antiequiv-
alence. �
Proposition 4.21. Let C be a GV-category with equalizers. For any algebra A ∈C the 
category M =mod-A is a left GV-module category over C. The module distributors of 
mod-A are the distributors of C.

Proof. According to Definition 3.1 we must show that the functors −▷m and c ▷−
admit right adjoints, for m ∈M and c ∈C, respectively. To see that −▷m has a right 
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adjoint, define for (n, ρ) a right GA-comodule and (x, ρ) a left GA-comodule the object 
n �×A x as the equalizer

n �×A x n�×x n �×GA �×x .
qn,x

ρ�× idx

idn �× ρ 
(4.27)

Then for m,n ∈mod-A consider the diagram

HomA(c ⊗m,n) HomC(c, n �×A G(m))

HomC(c ⊗m,n) HomC(c, n �×G(m))

HomC(c,qn,G(m))
∼ = 

(4.28)

where the left vertical arrow is obtained from the forgetful functor and the isomorphism 
in the bottom row is the adjunction (2.8). Using the universal property of the equalizer 
one sees that this diagram commutes, with the horizontal arrow in the top row an 
isomorphism. Thus we have

HomA(c ⊗m,n) ∼ = HomC(c, n �×A G(m)) (4.29)

for m,n ∈mod-A, which shows that −▷m has Hom(m,−) =−�×A G(m) as a right ad-
joint.

It remains to show that the action of c ∈C on mod-A has a right adjoint. To this end 
we first note that for c ∈C and (m, ρ) ∈mod-A the composite

(c �×m) ⊗A
δr  −−→ c �× (m ⊗A) id�× ρ −−−−−→ c �×m (4.30)

furnishes a right A-module structure on the object c �×m. From the basic adjunction 
(2.9) we then directly get the desired adjunction

HomA(c ⊗m,n) ∼ = HomA(m,G−1c �×n) . (4.31)

Thus indeed M =mod-A is a GV-module category. The statement about the module 
distributors is obtained by applying Proposition 3.31 to the strong ▷-module functor 
U : mod-A  −→C that forgets the A-module structure. �

Next we ask, conversely, when a GV-module category over a GV-category C comes 
from an algebra in C. To analyze this issue, first recall that for an algebra A ∈ (C,⊗) the 
C-module category mod-A of right A-modules comes with a forgetful functor

U : M 
 mod-A  −−→ C . (4.32)

The left adjoint of U is the induction functor IndA : C  −→M, mapping objects as 
x �→x ⊗A. Dual statements hold for comodules and coinduction.
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We also note that a C-generator [9, Lemma 2.22] of a GV-module category M over 
C is an object m0 ∈M such that for every m ∈M there exists an object c ∈C with an 
epimorphism c ▷m0

 −→m. Analogously we call an object n0 ∈C a C-cogenerator of M if 
for every m ∈M there exists an object d ∈C with a monomorphism m  −→ d ▶m0.

Lemma 4.22. Any algebra A =(A,μA, ηA) in a monoidal category (C,⊗) is a C-generator 
of the C-module category mod-A of right A-modules.

Proof. For any object m ∈mod-A the A-action m ⊗A 
ρ  −→m on m amounts to a mor-

phism ρ : IndA(U(m))  −→m which is a morphism in mod-A. This morphism has the unit 
as a right inverse and is thus an epimorphism. �

Now let M be a GV-module category. For any m0 ∈M, the object Am0 := Hom(m0, 
m0) ∈C has a natural structure of an algebra in C, and there is a natural functor

Hom(m0,−) : M  −−→ mod-Am0 ,

m
 �−−→ Hom(m0,m) .

(4.33)

Similarly there is a functor coHom(m0,−) from M to the category comod-Cm0 of Cm0 -
comodules. Our goal is now to specify conditions under which these functors give us 
equivalences of GV-module categories.

To get in a position to do so we introduce a particular subclass of objects in a GV-
module category M, namely those for which the internal Hom is a strong module functor. 
This allows us to generalize the notion of dualizability to the module setting. We will 
use the abbreviations

Hom(m,−) =: Ym and coHom(m,−) =: Wm . (4.34)

Definition 4.23. Let M be a GV-module category over a GV-category C.

1. An object m ∈M is called ⊗-admissible if the lax ▷-module functor Ym : M  −→C is 
in fact a strong ▷-module functor and has a right adjoint.

2. An object m ∈M is called �×-admissible if the oplax ▶-module functor Wm : M  −→C
is in fact a strong ▶-module functor and has a left adjoint.

3. We denote by M̂⊗ and M̂�× the full subcategories of M on the ⊗- and �× -admissible 
objects, respectively.

4. In particular, the subcategories Ĉ⊗ and Ĉ�× of C are the full subcategories on the 
⊗- and �× -admissible objects that are obtained by regarding C as a left GV-module 
category over itself.

Note that the functor Ym =Hom(m,−) always has a left adjoint and that Wm =
coHom(m,−) has a right adjoint. In general, a strong module functor need not have an 
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adjoint. For instance, a linear functor F : M  −→ vect from a linear category M is a strong 
vect-module functor, but having a left adjoint requires F to be representable.

Also note that by (3.104) we have

Y1 = HomC(1,−) ∼ = idC ∼ = coHomC(K,−) = WK (4.35)

and hence

1 ∈ Ĉ⊗ and K ∈ Ĉ�×. (4.36)

Proposition 4.24. 

1. The subcategories Ĉ⊗ and Ĉ�× of a GV-category C are monoidal subcategories.
2. Let M be a left GV-module category over C. By restriction of the action of C on 

M, the category M̂⊗ is a left Ĉ⊗-module category, while M̂�× is a left Ĉ�×-module 
category.

3. Let C and M be in addition abelian. Then for any projective object p ∈C and any 
m ∈M̂⊗ the object p ▷m is projective, and for any injective object q ∈C and any 
n ∈M̂�× the object q ▶n is injective.

Proof. According to Proposition 3.45.7, for all b, c ∈C and all m ∈M there are natural 
isomorphisms HomC(b ▷ c,−) ∼ = HomC(b,HomC(c,−)) and HomM(b ▷m,−) ∼ = HomC(b, 
HomM(m,−)) which are isomorphisms of lax ▷-module functors. The composition of 
strong ▷-module functors having a right adjoint is again a strong ▷-module functor hav-
ing a right adjoint. Hence together with (4.36), the first of those isomorphisms implies 
that Ĉ⊗ is monoidal, while the second isomorphism shows that M̂⊗ is a left Ĉ⊗-module 
category. The statements about Ĉ�× and M̂�× follow in an analogous manner from Propo-
sition 3.45 as well. Statement 3 follows in the projective case directly from the fact that 
the composition of the exact functors HomC(p,−) and Hom(m,−) is again exact; an 
analogous argument applies in the injective case. �
Remark 4.25. If in the definition of a projective (injective) object we think of a right 
(left) exact functor as a functor that preserves finite colimits (limits), then part 3 of 
Proposition 4.24 remains valid without the assumption that C and M are abelian.

We are now in a position to give sufficient conditions for a GV-module category to be 
equivalent to a category of modules or comodules.

Proposition 4.26. Let C be a finite abelian GV-category and M a finite abelian GV-module 
over C.

1. For m0 ∈M, the functor F := Hom(m0,−) : M  −→mod-Am0 is an equivalence of 
(C,⊗)-module categories if and only if m0 ∈M̂⊗ and m0 is a C-generator of M.
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2. For n0 ∈M, the functor coHom(n0,−) : M  −→ comod-Cn0 is an equivalence of 
(C,�×)-module categories if and only if n0 ∈M̂�× and n0 is a C-cogenerator of M.

Proof. We employ the strategy of [11, Thm 7.10.1]. We only show the first statement, 
the second follows by duality. Suppose that m0 ∈M̂⊗ is a C-generator.

1. Assume first that m ∈M is of the form m = c ▷m0 with some c ∈C. Using the fact 
that owing to m0 ∈M̂⊗ the functor Hom(m0,−) is a strong module functor, we then 
have

F (m) = Hom(m0, c ▷m0) ∼ = c⊗ Hom(m0,m0) = c ▷Am0 = IndAm0
(c) . (4.37)

Thus any object of M of the form c ▷m0 is mapped by F to an induced Am0-module. 
Henceforth we drop the index m0 and write A :=Am0 .

2. For all m1 ∈M of the form c ▷m0 with c ∈C and all m2 ∈M we have

HomA(F (m1), F (m2)) ∼ = HomA(IndA(c), F (m2)) ∼ = HomC(c, UF (m2))

= HomC(c,Hom(m0,m2)) ∼ = HomM(c ▷m0,m2)

= HomM(m1,m2) .

(4.38)

Hence for such objects m1 and m2 the map F : HomM(m1,m2) 
 −→HomA(F (m1), 

F (m2)) is an isomorphism.
3. By assumption, for every m1 ∈M there is an exact sequence c1 ▷m0

 −→ c2 ▷m0
 −→

m1
 −→ 0 for some c1, c2 ∈C. Since F is exact, the sequence F (c1 ▷m0) 

 −→F (c2 ▷
m0) 

 −→F (m1) 
 −→ 0 is exact as well. Moreover, since for any m ∈M, the functor 

HomM(−,m) is left exact, the rows of the diagram

0 HomM(m1,m2) HomM(c1 ▷m0,m2) HomM(c2 ▷m0,m2)

0 HomA(F (m1), F (m2)) HomA(F (c1 ▷m0), F (m2)) HomA(F (c2 ▷m0), F (m2))

F F F

(4.39)
are exact. By step 2 the second and the third vertical arrow in this diagram are 
isomorphisms. Thus (the four-version of) the five-lemma implies that the first vertical 
arrow is an isomorphism as well. Thus the map F : HomM(m1,m2) 

 −→HomA(F (m1), 
F (m2)) is an isomorphism for arbitrary m1,m2 ∈M.

4. For any L ∈mod-A there exists an object c1 ∈C with a surjection IndA(c1) 
 −→L (e.g. 

one can take c1 =U(L)). Thus there is an exact sequence

IndA(c2)
fA  −−−→ IndA(c1)

 −−→ L
 −−→ 0 (4.40)

for some c2 ∈C, by which L is written as the cokernel of a morphism of induced mod-
ules. Further, using first step 2 and then step 1 we obtain a composite isomorphism
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HomA(IndA(c2), IndA(c1))
∼ =  −−→ HomM(c2 ▷m0, c1 ▷m0) . (4.41)

Denote by fM ∈HomM(c2 ▷m0, c1 ▷m0) the image of the morphism fA from (4.40)
under the linear map (4.41). Let m̃∈M be the cokernel of fM. Since F is exact, we 
have F (m̃) ∼ = L. We have thus shown that the strong module functor F =Hom(m0,−)
is essentially surjective.

Suppose now conversely that m0 ∈M is such that the internal Hom functor F =
Hom(m0,−) is an equivalence of C-module categories. Then F is, by definition, a strong 
module functor and thus, as it is an equivalence, F is exact. Since the forgetful func-
tor U : mod-Am0

 −→C is exact, too, it follows that the composite UF is exact as well, 
and hence that m0 ∈M̂⊗. Further, the object Am0 =F (m0) is clearly a C-generator in 
mod-Am0 ; thus, since F is an equivalence, m0 ∈M is a C-generator in M. �
Remark 4.27. An alternative proof of Proposition 4.26 can be obtained with the help of 
monadicity theorems. 2 First note that for every m0 ∈M we have an adjunction

HomM(c ▷m0,−) ∼ = HomC(c,Hom(m0,−)) , (4.42)

which induces a monad c  �−→Hom(m0, c ▷m0) on C. Now for m0 ∈M̂⊗, the internal Hom 
functor Hom(m0,−) is a strong module functor, so we have an isomorphism

Hom(m0,−▷m0) ∼ = −⊗Hom(m0,m0) = −⊗Am0 (4.43)

of functors. This is in fact an isomorphism of monads on C. Thus the comparison 
functor H : M  −→mod-Am0 sends m ∈M to the object Hom(m0,m) with the expected 
Am0 -module structure. According to the crude monadicity theorem [3, p. 108], the com-
parison functor H is an equivalence of categories if the following conditions are satisfied: 
U := Hom(m0,−) has a left adjoint and reflects isomorphisms, M has coequalizers of 
those reflexive pairs (f, g) for which (Uf,Ug) is a coequalizer, and U preserves those 
coequalizers. These conditions are indeed met: The left adjoint of U is, by definition, the 
action functor −▷m0; assuming M to be abelian guarantees the existence of coequal-
izers; and because of m0 ∈M̂⊗, U is exact and thus in particular preserves coequalizers. 
Finally, faithful functors between abelian categories reflect isomorphisms, and by the 
argument that proves the implication (1) =⇒ (2) of Lemma 2.22 in [9], the functor U is 
faithful.

It can happen that the subcategory M̂⊗ does not contain a C-generator, e.g. it can 
be zero. In this case the C-module category M cannot be written as the category of 
modules over any algebra in C. As an illustration, consider the following example:

2 We thank the anonymous referee for sharing this proof with us.
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Example 4.28. Consider the semisimple category C with two isomorphism classes of 
simple objects, represented by objects 1 and x, and with tensor product x ⊗x =0
[9, Example 2.20]. The category M =vectk becomes a C-module by setting x ▷k := 0
for the one-dimensional vector space k. Now suppose that we had vectk = mod-A
for some unital associative algebra A in C. The underlying object of A is a di-
rect sum 1⊕n1 ⊕x⊕nx with n1 ≥ 1. For the regular right A-module AA we thus have 
x ▷AA =x ⊗ (1⊕n1 ⊕x⊕nx) =x⊕n1 = 0, which contradicts the action x ▷ 1 =0 on objects 
of vectk. Hence vectk cannot be written as a category of right modules over an algebra 
in C.

Next we determine the subcategory v̂ect
⊗
k

. Since the relevant categories are semisim-
ple, the linear functor Hom(m,−) is exact for every m ∈ vectk. The adjunctions

HomC(1,Hom(k, k)) ∼ = HomM(k, k) ∼ = k

and HomC(x,Hom(k, k)) ∼ = HomM(x ▷k, k) = 0
(4.44)

show that Hom(k, k) ∼ = 1. Finally, by comparing the equalities Hom(k, x ▷k) =Hom(k, 0) 
= 0 and x ⊗Hom(k, k) ∼ = x ⊗ 1 =x we conclude that Hom(k,−) cannot be a strong mod-
ule functor, and hence that v̂ect

⊗
k

is zero.
Also note that, as a direct consequence of Proposition 5.9, the ⊗-admissible objects 

of C, seen as a left module category over itself, are just the direct sums of copies of the 
monoidal unit 1.

The following result supplies us with specific objects in the subcategory M̂⊗:

Lemma 4.29. Let M be a GV-module category over C. Assume that the subcategory 
M̂⊗ of M contains a C-generator, and thus in particular is not zero, so that we have 
an equivalence M 
mod-A for some algebra A in C. Let U be the forgetful functor 
U : M 
mod-A  −→C, with left adjoint IndA : C  −→M. For any x ∈C we have an isomor-
phism

HomM(IndA(x),−) ∼ = HomC(x, U−) (4.45)

of C-module functors.

Proof. This follows by direct calculation: we have

HomC(c,Hom(IndA(x),m)) ∼ = HomC(c ⊗x, U(m)) ∼ = HomC(c,Hom(x, U(m))) (4.46)

for all x, c ∈M and all m ∈M. �
Corollary 4.30. In the situation of Lemma 4.29 we have IndA(x) ∈M̂⊗ for every x ∈ Ĉ⊗.
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Proof. Let x ∈ Ĉ⊗. We must show that Hom(IndA(x),−) : M  −→C is an exact strong 
C-module functor. Since the forgetful functor U : M  −→C is an exact strong C-module 
functor, this follows from Lemma 4.29. �

In view of the discussion above, it is desirable to have “enough” objects in the sub-
category M̂⊗, and there is the following option for making this idea precise:

Definition 4.31. We call a GV-module category M algebraic if it is equivalent to a GV-
module category of the form mod-A for some algebra A in C.

In terms of this notion, Proposition 4.26 amounts to

Theorem 4.32. Let M be a GV-module over a GV-category C. M is algebraic if and 
only if the subcategory M̂⊗ of M contains a C-generator (and is thus in particular not 
zero). If in addition C and M are finite abelian, then the objects in m ∈M for which 
mod-Hom(m,m) is equivalent to M as a (C,⊗)-module are precisely the C-generators 
in M̂⊗, while the objects n ∈M for which comod-coHom(n, n) is equivalent to M as a 
(C,�×)-module are precisely the C-cogenerators in M̂�×.

Working with algebraic GV-module categories, one can generalize the statement in 
Corollary 4.30 to a sufficient criterion for objects in M̂⊗:

Lemma 4.33. Let C be a GV-category and M a GV-module category over C. In case C
and M are additive, the subcategory M̂⊗ is closed under direct sums and under direct 
summands. Moreover, if M = mod-A for an algebra A in C, then the following holds: If 
for m ∈M there exist objects m′ ∈M and x ∈ Ĉ⊗ with an isomorphism

m⊕m′ ∼ = IndA(x) = x ⊗A (4.47)

in M, then we have m ∈M̂⊗.

Proof. As is well known (compare e.g. Lemmas 12.17.2 and 12.17.3 of [20]), the direct 
sum F ⊕G of functors F and G has a right adjoint if and only if both F and G have a 
right adjoint. Moreover, if F and G are weak module functors, then F ⊕G is a strong 
module functor if and only if both F and G are strong module functors. The first claim 
follows by applying this result to the functor Hom(m ⊕m′,−). The second claim follows 
from the first and Corollary 4.30. �

Note that for C =vectk, this result reproduces the familiar condition for m to be 
projective.

In the remainder of this section we treat the case of the GV-category of finite-
dimensional right modules over a commutative algebra A from Example 2.5 in detail 
and classify the algebraic module categories over mod-A.
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Proposition 4.34. Let A be a commutative k-algebra. For any abelian module category M
over the category C =mod-A of finite-dimensional A-modules we have:

(i) Any m ∈M̂⊗ is projective in M.
(ii) Any m ∈M̂�× is injective in M.

Proof. (i) The object 1 =AA is free and thus projective in C =mod-A. It thus follows 
from Proposition 4.24.3 that m ∼ = 1 ▷m is projective for m ∈M̂⊗.

(ii) The statement follows from Proposition 4.24.3 as well, since K ∼ = G(1) is injective 
by Remark 2.6. �
Remark 4.35. The argument would fail for C =A-Bimod, since the monoidal unit AAA

is, in general, not projective as a bimodule.

Proposition 4.36. Let A be a finite-dimensional commutative k-algebra. The algebraic 
module categories over the category mod-A of finite-dimensional A-modules are, up to 
equivalence, given by mod-B, where B is an algebra extension of A: B is a k-algebra 
together with a unital algebra morphism ι : A  −→Z(B) from A to the center of B.

Proof. Recall that for a commutative ring R, an algebra object in the category mod-R
is the same as an R-algebra [16, Ch. VII.3]. Analogously, denoting the forgetful func-
tor from C to vect by U , an algebra object B in C is the same as a k-algebra U(B)
together with a unital algebra morphism ι : A  −→Z(U(B)). Given such an algebra 
B, the category modC-B of right B-modules in C = mod-A is equivalent to the cat-
egory mod-U(B) of B-modules in vect. Indeed, every m ∈modC-B defines an object 
U(m) ∈mod-U(B) as follows. As a vector space, U(m) =m, and the action of B is the 
composite U(m) ⊗B  −→m ⊗A B  −→m of the canonical projection and the B-action on 
m ∈modC-B. Conversely, given an object n ∈mod-U(B), by restriction n is also an A-
module, hence n ∈C. Moreover, the action n ⊗B  −→n is A-balanced so that n naturally 
has the structure of an object in modC-B. The two constructions are readily seen to be 
functorial and to provide an equivalence of categories. �

In the case at hand we have the following description of the objects in M̂⊗.

Proposition 4.37. Let M =mod-B be a module category over C = mod-A as in Proposi-
tion 4.36. The objects in M̂⊗ are precisely the projective B-modules.

Proof. If m is projective, then there are objects n ∈M and V ∈ vect with an isomor-
phism m ⊕n ∼ = V ⊗k B ∼ = (V ⊗k A) ⊗A B. Since we have V ⊗k A ∈ Ĉ⊗, it follows from 
Lemma 4.33 that m ∈M̂⊗. Conversely, if m ∈M̂⊗, then by Proposition 4.34, m is pro-
jective. �
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5. Relative Serre functors

The prototypical idea behind relative Serre functors is the following. Let C be a 
monoidal category with a duality functor D : C  −→Copp – where D could for instance arise 
from a rigid duality or from a GV-duality on C. Let furthermore H : Mopp ×M  −→C be 
a functor, such as a Hom functor or an internal Hom. Then a relative Serre functor 
S : M  −→M (for C with respect to the functor H) is an endofunctor together with a 
natural family

H(n, S(m)) ∼ = D(H(m,n)) (5.1)

of isomorphisms for all m,n ∈M. In the situation of our interest we will encounter the 
weaker variant [17, Def. 3.2] of a partially defined relative Serre functor

S : M̂  −−→ M (5.2)

with an isomorphism (5.1) for n ∈M and m ∈M̂, for M̂⊂M a subcategory. As we will 
see, the subcategory M̂ relevant to us is the subcategory M̂⊗ of a GV-module category 
M as introduced in Definition 4.23. Note that M̂⊗ was only designed for objects whose 
internal Ends provide algebras representing the module category M. It is therefore quite 
remarkable that the same subcategories appear naturally in the definition of relative 
Serre functors.

5.1. Internal Homs and representable functors

The internal (co)Homs can be used to discuss (co)representability of module functors. 
Recall for a GV-module category M over C the module functors R▷

m : CC  −→ CM and R▶
m

from (3.36) and (3.37).

Lemma 5.1. Let C be a GV-category and let M be a left GV-module category over C.

1. Let F : C →M be a strong ▷-module functor. Then there exists an object m ∈M
with a module natural isomorphism F 

∼ =  −→R▷
m. The object m is unique up to unique 

isomorphism. Furthermore, F has a right adjoint.
2. Let J : C →M be a strong ▶-module functor. Then there exists an object m ∈M

with a module natural isomorphism J 
∼ =  −→R▶

m. The object m is unique up to unique 
isomorphism. Furthermore, J has a left adjoint.

3. Let H : M →C be a strong ▶-module functor that admits a left adjoint. Then there 
exists a (unique up to unique isomorphism) object m ∈M with a module natural 
isomorphism H 

∼ =  −→Hom(m,−).
4. Let H : M →C be a strong ▷-module functor admitting a right adjoint. Then there 

exists a (unique up to unique isomorphism) object m ∈M with a module natural 
isomorphism H 

∼ =  −→ coHom(m,−).
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Proof. To obtain the first statement, set m :=F (1). From the module constraint f of 
F we obtain a natural isomorphism fc,1 : F (c) =F (c ⊗ 1) 

∼ =  −→ c ▷F (1) = c ▷m for every 
c ∈C. The pentagon axiom for the module constraint implies that this family of iso-
morphisms constitutes a module natural isomorphism F 

∼ =  −→R▷
m. Since R▷

m has a right 
adjoint, we conclude that F has a right adjoint as well. The second statement follows 
analogously.

To show the third statement, we invoke Lemma 3.20 to conclude that H l.a. : C  −→M
is a strong ▷-module functor, so that by the first statement there is a module natural 
isomorphism H l.a. ∼ =  −→R▷

m for some m ∈M. But then from the isomorphisms

HomC(c,H(n)) ∼ = HomM(H l.a.(c), n) ∼ = HomM(c ▷m,n) ∼ = HomC(c,Hom(m,n)) (5.3)

we conclude with the Yoneda Lemma that there is a natural isomorphism H 
∼ =  −→

Hom(m,−). Since all isomorphisms in Equation (5.3) are module natural isomorphisms, 
we thus have H ∼ = Hom(m,−) as module functors. The last statement follows analo-
gously. �

In view of Lemma 5.1 the following terminology makes sense, for C a finite GV-category 
and M a GV-module category:

Definition 5.2. A left exact (▶-module) functor F : M  −→C is called internally repre-
sentable if it is isomorphic (as a ▶-module functor) to a functor of the form

M  −−→ C ,
m �−→ Hom(m0,m)

(5.4)

for some m0 ∈M.
We call a right exact (▷-module) functor F : M  −→C internally representable if it is 

isomorphic (as a ▷-module functor) to a functor of the form

M  −−→ C ,
m �−→ coHom(m0,m)

(5.5)

for some m0 ∈ M.

Note that a necessary condition for a lax module functor to be internally representable 
is that the module structure is strong.

Remark 5.3. Dually to Definition 5.2 we call a left exact (▶-module) functor F : Mopp  −→
C internally corepresentable if it is isomorphic (as a ▶-module functor) to a functor from 
Mopp to C that maps objects as m  �−→Hom(m,m0) for some m0 ∈M. Analogously we 
call a right exact (▷-module) functor F : Mopp  −→C internally corepresentable if it is iso-
morphic (as a ▷-module functor) to a functor that maps objects as m  �−→ coHom(m,m0)
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for some m0 ∈M. The statements about internal representability shown below have 
obvious analogues for corepresentable functors.

We next examine a suitable subcategory of objects, on which the internal Hom functor 
is internally representable. Recall from Definition 4.23 the subcategories M̂⊗ and M̂�×
of ⊗- and �×-admissible objects of a GV-module category M.

Lemma 5.4. Let m ∈M, and let Ym and Wm be the internal Hom and coHom functors 
as defined in (4.34).

1. The object m is ⊗-admissible if and only if the ▷-module functor Hom(m,−) is 
internally representable in the form of (5.5), i.e. if and only if there exist an ob-
ject S(m) ∈M and an isomorphism φm : Hom(m,−) 

∼ =  −→ coHom(Sm,−) of ▷-module 
functors. If this is the case, then we can choose

S(m) = Y r.a.
m (K) . (5.6)

2. The object m is �×-admissible if and only if the ▶-module functor coHom(m,−) is 
internally representable as in (5.4), i.e. if and only if there exist an object S̃(m) ∈M
and an isomorphism ψm : coHom(m,−) 

∼ =  −→Hom(S̃m,−) of ▶-module functors. If 
this is the case, then we can choose

S̃(m) = W l.a.
m (1) . (5.7)

The objects S(m) and S̃(m) are unique up to unique isomorphism.

Proof. This is a direct consequence of Lemma 5.1. �
In particular we obtain natural isomorphisms

ρm(n) : Hom(n, S(m)) ∼ = Hom(Hom(m,n),K) (5.8)

for m ∈M̂⊗ and n ∈M. Since the objects S(m) for m ∈M̂⊗ internally represent func-
tors, the assignment m  �−→S(m) extends to a functor

S : M̂⊗  −→ M . (5.9)

Analogously we obtain a functor

S̃ : M̂�×  −→ M . (5.10)

The functors S and S̃ are indeed relative Serre functors:
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Corollary 5.5. For every m ∈M̂⊗ and every n ∈M there is a natural isomorphism

φ̃m(n) : Hom(n, Sm)
∼ =  −−→ G(Hom(m,n)) . (5.11)

Analogously, for every m ∈M̂�× and every n ∈M there is a natural isomorphism

Hom(S̃m, n)
∼ =  −−→ G(Hom(n,m)) . (5.12)

Proof. By Lemma 3.41 we have an isomorphism coHom(Sm, n) ∼ = G−1Hom(n, Sm). The 
isomorphisms (5.11) and (5.12) thus follow directly by invoking the isomorphisms from 
the definitions of S and S̃. �
Definition 5.6. The functors S : M̂⊗  −→M and S̃ : M̂�×  −→M defined by the formulas 
(5.6) and (5.7) are called the relative Serre functor S of M and the inverse relative Serre 
functor S̃, respectively. Considering C as a left C-module category defines the relative 
Serre functor S of C.

There is also a variant of a relative Serre functor for C when considering C as right 
C-module category.

Theorem 5.7. The relative Serre functors provide an equivalence of categories between the 
subcategories M̂⊗ and M̂�× of M, i.e., slightly abusing notation by keeping the symbols 
S and S̃, we have

S : M̂⊗ 	   −−→ M̂�× and S̃ : M̂�× 	   −−→ M̂⊗. (5.13)

In particular, for every m ∈M̂⊗ the object S(m) is in the subcategory M̂�× of M, and 
analogously, S̃(n) ∈M̂⊗ for every n ∈M̂�×.

Proof. Let m be ⊗-admissible. According to Proposition 3.45 the two functors 
Hom(m,−) and coHom(Sm,−) are GV-module functors. Hence it follows from The-
orem 3.13 that the ▷-module natural isomorphism φm : Hom(m,−) 

∼ =  −→ coHom(Sm,−)
is also a natural isomorphism of ▶-module functors. As a consequence, for m ∈M̂⊗ one 
has S(m) ∈M̂�×, using that coHom(Sm,−) ∼ = Hom(m,−) is a strong ▶-module functor, 
and by the same isomorphism we see that S̃(S(m)) ∼ = m. Analogously it follows that 
S(S̃(m)) ∼ = m. Thus S and S̃ define an equivalence of categories. �
Proposition 5.8. Let C be a GV-category and M a left GV-module category over C.

1. The relative Serre functor of C is canonically a monoidal equivalence

SC : Ĉ⊗  −−→ Ĉ�× (5.14)

with inverse monoidal functor S̃C.
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2. The relative Serre functor SM of M is a twisted module functor, in the sense that 
there are natural isomorphisms

SM(c ▷m)
∼ =  −−→ SC(c) ▶SM(m) (5.15)

for c ∈ Ĉ⊗ and m ∈M̂⊗.
Analogously we have S̃M(d▶n) ∼ = S̃C(d) ▷ S̃M(n) for d ∈ Ĉ�× and n ∈M̂�×.

Proof. To obtain the first statement, first note that the isomorphisms (4.35) imply that 
SC(1) ∼ = K. The isomorphism SC(x ⊗ y) ∼ = SC(x) �×SC(y) for x, y ∈ Ĉ⊗ follows by applying 
the Yoneda Lemma to the composite of the isomorphisms

Hom(x ⊗ y,−) ∼ = Hom(x,Hom(y,−)) ∼ = coHom(SCx, coHom(SCy,−))
∼ = coHom(SCx �×SCy,−)

(5.16)

of module functors from Proposition 3.45 together with the isomorphism Hom(x ⊗ y,−) 
∼ = Hom (SC(x ⊗ y),−). All isomorphisms in the sequence (5.16) are coherent, hence SC
is a monoidal equivalence.

The natural isomorphisms follow from the analogous computation for Hom(x ▷m,−)
with x ∈ Ĉ⊗ and m ∈M̂⊗. The statements for S̃ are shown analogously. �

For the case that the module category is algebraic we will obtain a stronger statement 
in Proposition 5.15.

5.2. The relative Serre functor of C

We now restrict our attention to the important regular case, already considered in 
Proposition 5.8, of C as a left GV-module category over itself. Since the internal Homs 
of C can now be expressed in terms of the monoidal structures, we can compute S as 
follows.

Proposition 5.9. Let C be a GV-category and c ∈C. For any c ∈C the following statements 
are equivalent:

1. c ∈C is ⊗-admissible.
2. For all x, y ∈C the distributors c ⊗ (x �× y)  −→ (c ⊗x) �× y are isomorphisms.
3. c has a right ⊗-rigid dual object.

Proof. By applying G to the distributors in statement 2 and invoking Proposition 3.30
we see that these distributors are all isomorphisms if and only if the oplax ▶-module 
functor Yc is strong. Statement 3 means that there exists an object c∨ together with 
morphisms c∨ ⊗ c  −→ 1 and 1  −→ c ⊗ c∨ that obey the snake identities. The equivalence of 
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this statement with statement 1 is shown in [13, Prop. 5.2]. Thus all three statements 
are equivalent. �

By analogously working with the right module category CC and/or the left exact tensor 
product �× one finds that the statement in Proposition 5.9 has in total four incarnations: 
For instance, for CC with the monoidal structure ⊗ we obtain the statement that the ob-
jects c that have a left ⊗-rigid dual are those whose distributors (x �× y) ⊗ c  −→x �× (y ⊗ c)
are isomorphisms. In the case of CC and �×, we see that the following statements are 
equivalent for every c ∈C:

1. c ∈C is �×-admissible.
2. For all x, y ∈C the distributors (c �×x) ⊗ y  −→ c �× (x ⊗ y) are isomorphisms.
3. c has a left �×-rigid dual object.

In view of the third characterization of admissibility in Proposition 5.9, by applying G or 
G−1 to the evaluation and coevaluation one sees that for any c ∈ Ĉ⊗ the object G(c∨) is 
a right �×-rigid dual of G(c). Analogous statements hold for the other three incarnations 
of Proposition 5.9.

Corollary 5.10. The functor G2 preserves the ⊗- as well as the �×-admissible objects; that 
is, the functors

G2 : Ĉ⊗  −−→ Ĉ⊗ and G2 : Ĉ�×  −−→ Ĉ�× (5.17)

are monoidal equivalences.

Proof. Since G2 is a monoidal equivalence for ⊗ as well as of �×, it preserves the class 
of objects that have a right ⊗-rigid dual, as well as the class of objects that have a left 
�×-rigid dual. �
Lemma 5.11. Let C be a GV-category and c ∈C be an object for which the three equivalent 
conditions in Proposition 5.9 are satisfied. Then Yc has

Y r.a.
c = −�× (G2(c) ⊗K) (5.18)

as a right adjoint functor. Moreover, the right ⊗-rigid dual of c is given by

c∨ ∼ = 1 �×Gc (5.19)

and we have

y �×Gc ∼ = y ⊗ c∨ (5.20)
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as well as

c �× y ∼ = c ⊗ (1 �× y) (5.21)

for every y ∈C.

Proof. The isomorphism Yc(y) = y �×Gc ∼ = (y ⊗ 1) �×Gc ∼ = y⊗(1 �×Gc) implies that Yc has 
the functor (5.18) as a right adjoint. The expression (5.19) for c∨ is shown in [13, Prop. 
5.2]. The isomorphism (5.20) follows, for instance, from the fact that the two functors 
−�×Gc and − ⊗ c∨ are both right adjoint to − ⊗ c. Finally, (5.21) is the special case 
x =1 of the isomorphism in the second statement of Proposition 5.9. �

Next we describe the relative Serre functor of C explicitly:

Proposition 5.12. The relative Serre functor S of C is given by

S(c) ∼ = G2(c) ⊗K (5.22)

for c ∈ Ĉ⊗. This natural isomorphism is monoidal in the sense that the diagram

S(c ⊗ d) G2(c ⊗ d) ⊗K

G2(c) ⊗G2(d) ⊗K

G2(c) ⊗ (K �× (G2(d) ⊗K))

S(c) �×S(d) (G2(c) ⊗K) �× (G2(d) ⊗K)

∼ = 

∼ = 

∼ = 

∼ = 

δ∼ = 

(5.23)
with δ = δl

G2c,K,G2d⊗K (which is an isomorphism) commutes for all c, d ∈ Ĉ⊗. The inverse 
of S is given by

S̃(c) ∼ = G2(c) �× 1 (5.24)

for c ∈ Ĉ�×.

Proof. Note that because of G2(c) ∈ Ĉ⊗ the distributor δl
G2c,K,G2d⊗K is an isomorphism. 

The expression (5.22) for the relative Serre functor follows from S(c) =Y r.a.
c (K). The 

monoidality follows from (5.16), which expresses the monoidal structure of S; this is 
seen as follows. For c ∈ Ĉ⊗ we have by Equation (5.11) the isomorphism

G(Hom(c, x)) ∼ = Hom(x, Sc) (5.25)

for every x ∈C. If we insert Sc ∼ = G2c ⊗K, the isomorphism (5.25) computes as
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G(x�×c) ∼ = Gc ⊗Gx ∼ = (G2c⊗K) �×Gx ∼ = Sc �×Gx , (5.26)

where the second isomorphism is a distributor. For the isomorphisms (5.26) the coherence 
diagram (5.16) translates to the diagram (5.23). The expression (5.24) for S̃ follows 
analogously. �
Remark 5.13. Also, upon a change of dualizing object from K to K̃ = g ⊗K with invert-
ible g ∈C, combining the formula (5.22) for the relative Serre functor with the resulting 
change (2.6) in G2 shows that S changes to

S′(c) = G̃2(c) ⊗ K̃ = g ⊗G2c ⊗ g−1 ⊗ g ⊗K ∼ = g ⊗G2c ⊗K ∼ = g ⊗S(c) . (5.27)

It follows e.g. that if S(c) ∼ = c, then there exists an isomorphism S′(c) ∼ = c if and only if 
g ⊗ c ∼ = c.

Since G2 : C  −→C is a monoidal equivalence both for ⊗ and for �×, by composing S
with its inverse we obtain directly

Corollary 5.14. Let C be a GV-category. The functor

−⊗K : Ĉ⊗  −−→ Ĉ�× (5.28)

is a monoidal equivalence with inverse functor −�× 1.

We can now conclude that for algebraic module categories the relative Serre functor 
is twisted by G2, a situation familiar from the rigid case [12, Lemma 4.23]:

Proposition 5.15. Let M be an algebraic left C-module category. Then SM : M̂⊗  −→M
is a twisted module functor in the sense that there are coherent natural isomorphisms

SM(c ▷ m) ∼ = G2c ▷ SM(m) (5.29)

for all c ∈ Ĉ⊗ and m ∈M̂⊗.

Proof. By Proposition 4.21 the module distributors of M can be obtained from the 
distributors of C, which together with Proposition 5.9 implies that for all c ∈ Ĉ⊗, all 
d ∈C and all m ∈M the distributor

c ▷ (x ▶m)  −−→ (c ⊗x) ▶m (5.30)

is an isomorphism. But then we obtain with Proposition 5.8 for all c ∈ Ĉ⊗ and m ∈M̂⊗

an isomorphism
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SM(c ▷m) ∼ = SC(c) ▶SM(m) ∼ = (G2c ⊗K) ▶SM(m)
∼ = G2c ▷ (K ▶SM(m)) ∼ = G2c ▷SM(m) .

(5.31)

It follows from Proposition 5.12 that the composite isomorphism is also coherent. �
The following example shows that the category of admissible objects is in general not 

abelian, even if C is:

Example 5.16. [13, Lemma 5.5] Let A be a finite-dimensional k-algebra and C =A-bimod
the corresponding GV-category. The following statements are equivalent for AMA ∈C:

(i) M is admissible, i.e. M ∈ Ĉ⊗.
(ii) M has a ⊗A-right dual.
(iii) MA is projective as a right A-module.

5.3. Relative Serre functors and Frobenius algebras

Finally, generalizing an argument from [19], we show that a trivialization of the relative 
Serre functor equips the internal End algebra with a Frobenius structure. Recall from 
Equation (5.11) the isomorphism φ̃m(n) : Hom(n, S(m)) 

∼ =  −→G(Hom(m,n)).

Lemma 5.17. Let m ∈M̂⊗. For all objects c ∈C and m,n ∈M the diagram

HomC(c,Hom(n, S(m))) HomM(c ▷n, S(m))

Hom(Hom(m, c ▷n),K)

Hom(c,G(Hom(m,n))) Hom(c⊗ Hom(m,n),K)

φ̃m(n)

ρm(c ▷n)

∼ = 

(5.32)

commutes.

Proof. From the proof of Lemma 5.1 we obtain a commuting diagram

Hom(Hom(m,n), c) Hom(n, Y r.a.
m (c))

Hom(coHom(Y r.a.
m (K), n), c) Hom(n, c ▶Y r.a.

m (K))

(φm(n))∗

∼ = 

∼ = 
∼ = 

(5.33)

Inserting the definition of the strong ▶-module functor structure of Y r.a.
m , it follows that 

the outer hexagon in the diagram
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Hom(coHom(Sm,n), c) Hom(n, c ▶S(m))

Hom(Gc,Hom(n, Sm))

Hom(Hom(m,n), c) Hom(Gc,G(Hom(m,n))) Hom(Gc ▷n, Sm)

Hom(Gc,⊗Hom(m,n),K) Hom(Hom(m,Gc ▷n),K)

∼ = 

G−1

φm(n)∗ ∼ = 

φ̃
∼ = 

∼ = 

G−1

∼ = 
∼ = 

∼ = 

(5.34)
commutes. It is also readily seen that the inner triangle and the two inner quadrangles 
commute. Thus the pentagon in the lower right corner commutes as well; this yields the 
diagram (5.32). �

Following [19, Def. 3.7] we give

Definition 5.18. Let m ∈M̂⊗. The trace of m is the composite morphism

trm : Hom(m,S(m)) φ̃m(m)   −−−−−−→ G(Hom(m,m)) G(um)   −−−−−→ G(1) = K (5.35)

with the unit um : 1  −→Hom(m,m).

We then obtain the following analogue of [19, Lemma 3.8]:

Lemma 5.19. Let m ∈M̂⊗. With respect to the multiplication μm,n,k : Hom(n, k) ⊗
Hom(m,n)  −→ Hom(m, k) we have a commuting diagram

Hom(n, Sm) ⊗ Hom(m,n) Hom(m,Sm) K

G(Hom(m,n)) ⊗Hom(m,n)

μm,n,Sm

φ̃m(m)

trm

evHom(m,n)
(5.36)

Proof. This follows, as in [19], by chasing the identity morphism in the upper left 
corner in (5.32) for c = Hom(n, Sm) through the diagram. The downward-right-path 
yields the element evHom(m,n) ◦ φ̃m(m) ∈Hom(Hom(n, Sm) ⊗Hom(m,n),K). Using 
Lemma 5.19, the other path in (5.32) gives the morphism μm,n,Sm ∈Hom(Hom(n, Sm) ⊗
Hom(m,n),K). �

This leads us to the following analogue of Theorem 3.14 of [19]:
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Theorem 5.20. Let m ∈M̂⊗ be such that the object S(m) is isomorphic to m. Then for 
every choice of isomorphism p : m  −→Sm in M, (Hom(m,m), μ =μm,m,m) is a GV-
Frobenius algebra in C with Frobenius form

λ : Hom(m,m) Hom(m,p)   −−−−−−−−→ Hom(m,Sm) trm  −−−→ K . (5.37)

Proof. The proof given in [19] generalizes: By Lemma 5.19 for A =Hom(m,m), the 
composite morphism λ ◦μ : A ⊗A  −→K is equal to the composite

Hom(m,m) ⊗A
Hom(m,p)⊗id  −−−−−−−−−−→ Hom(m,Sm) ⊗A

φ̃m(m)⊗id  −−−−−−−−→ G(Hom(m,m)) ⊗Hom(m,m)
evHom(m,m)  

−−−−−−−−−→ K .
(5.38)

The first two morphisms in this composite are isomorphisms, and the last is the duality 
pairing, which is non-degenerate. Thus in total λ is a Frobenius form on Hom(m,m). �
Remark 5.21. Suppose that there is an isomorphism p : m  −→S(m), i.e. that m is a fixed 
point under the action of the relative Serre functor. Then m is an object in both M̂⊗ and 
M̂�×. (But we do better than just intersecting the classes of objects of these subcategories, 
because we also trivialize the relative Serre functor.) By Theorem 5.20, for such a Serre 
fixed point m the algebra Hom(m,m) is Frobenius. In general it is not symmetric, though 
– there need not even exist a pivotal structure on C.

In the proof of Theorem 5.20 no coherence requirement on the isomorphism p needs 
to be imposed. From Lemma 5.19 and the naturality of the multiplication μm,n,l we can 
directly deduce a stronger non-degeneracy of the Frobenius pairing:

Corollary 5.22. Let m ∈M̂⊗ be an object with an isomorphism S(m) ∼ = m and a corre-
sponding Frobenius form λ : Hom(m,m)  −→K. Then for every n ∈M the pairing

Hom(n,m) ⊗ Hom(m,n)
μm,n,m  

−−−−−−→ Hom(m,m) λ   −−→ K (5.39)

is non-degenerate.

This, in turn, characterizes the Frobenius structures on the algebra Hom(m,m) that 
we obtain this way:

Proposition 5.23. Let m ∈M̂⊗ and λ : Hom(m,m)  −→K a morphism, such that the 
pairing (5.39) is non-degenerate for every n ∈M. Then there exists an isomorphism 

p : m 
∼ =  −→Sm such that λ is constructed from p as the composite (5.37).

Proof. The statement follows directly from the Yoneda lemma applied to the composite 
isomorphism Hom(n,m) 

∼ =  −→G(Hom(m,n)) 
∼ =  −→Hom(n, Sm), in which the first isomor-
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phism comes from the non-degeneracy of (5.39) and the second from the definition of 
the relative Serre functor. �
Corollary 5.24. If x ∈C has a rigid right dual and there is an isomorphism x ∼ = G2(x) ⊗K, 
then the internal End Hom(x, x) ∼ = x �×Gx has the structure of a GV-Frobenius algebra.

Let us finally turn our attention to the situation that the GV-category C admits a 
pivotal structure. Assume that a specific pivotal structure has been fixed.

Corollary 5.25. Let C be a GV-category with a pivotal structure. Then for any c ∈ Ĉ⊗ the 
rigid right dual obeys

c∨ ∼ = 1 �×Gc ∼ = G(c ⊗K) . (5.40)

It follows that c has G(c) as a rigid right dual if and only if there is an isomorphism 
S(c) ∼ = c. In this case the internal End Hom(c, c) has the structure of a Frobenius algebra 
in C.

Proof. The presence of a pivotal structure implies that the relative Serre functor (5.22)
on Ĉ⊗ is given by S(c) ∼ = c ⊗K. By Lemma 5.11 this provides the isomorphism (5.40). It 
follows that there is an isomorphism S(c) ∼ = c if and only if c ⊗K ∼ = c which, in turn, is 
the case if and only if c∨ ∼ = G(c). �

Analogously, by (5.24) in a pivotal GV-category we have S̃(c) ∼ = c �× 1.

Example 5.26. These observations connect nicely with the conditions given in [15, Def. 
3.8] for the subcategory relevant to the classification of boundary conditions in the so-
called logarithmic triplet model of conformal field theory [15, Sect. 3]. There the case 
of a pivotal GV-category with monoidal isomorphism π : idC

 −→G2, as in Section 4.2, is 
considered. Denote the image of π under the GV-adjunction � of (2.1) by

fc = �c,Gc(πc) : c⊗Gc
 −−→ K . (5.41)

The subcategory classifying boundary conditions is constructed in two stages. First there 
is the full subcategory Cr consisting of all objects admitting both a left and a right dual 
(this is a two-handed version of our subcategories of admissible objects). Within Cr there 
is then a further restriction to the full subcategory Cb of all objects c ∈Cr for which Gc

is both a left and a right dual for c (an additional non-degeneracy condition, which is 
not relevant here, is also imposed). It was then noted that for c ∈Cb the internal End 
Hom(c, c) is isomorphic to c ⊗Gc and shown in [15, Thm. 3.10] that the composition 
of such an isomorphism with fc is non-degenerate (the choice of isomorphism was left 
implicit in [15], but from Corollary 5.25 we know that such a choice is equivalent to a 
choice of isomorphism S(c) ∼ = c). This matches Corollary 5.24 asserting that such internal 
Ends admit the structure of a Frobenius algebra.
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Example 5.27. Note that the subcategory Ĉ⊗ of admissible objects of C does not depend 
on the choice of GV-structure, since it only involves the right exact tensor product ⊗. In 
the pivotal case the subcategory of objects c ∈ Ĉ⊗ for which there exists an isomorphism 
c ∼ = c ⊗K is of interest as well: the objects in this subcategory are precisely those for 
which c ∼ = 1 �× c; they also satisfy c ∼ = S(c) and their internal End is a Frobenius algebra. 
This subcategory is obviously very sensitive to the choice of dualizing object K. For an 
abelian group A and choice of normalized abelian 3-cocycle (F,Ω), consider the braided 
monoidal category vect(F,Ω)

k,A : objects of vect(F,Ω)
k,A are finite dimensional A-graded k-vector 

spaces (so the isomorphism classes of simple objects are in bijection with the elements 
of A), morphisms are grade-preserving linear maps, the tensor functor is the standard 
tensor product of graded vector spaces, and the braiding and associativity on simple 
objects are given by Ω and F , respectively. As is well known, this category is rigid (hence 
vect(F,Ω)

k,A = v̂ect(F,Ω),⊗
k,A ) and every simple object kh is invertible. Thus any kh, h ∈A, can 

be taken to be a dualizing object. If we choose k0 to be the dualizing object, then for 
m ∈ vect(F,Ω)

k,A the condition m ∼ = S0(m) ∼ = m ⊗k0 is empty. On the other hand, if we choose 
kh with h = 0 to be the dualizing object, then an isomorphism m ∼ = Sh(m) ∼ = m ⊗kh can 
only exist if m is a direct sum of the form 

⊕
h̃∈〈h〉 kg+h̃, where 〈h〉 is the subgroup of A

generated by h. Note that this sum is contained in vect(F,Ω)
k,A only if h has finite order, 

otherwise completions are required. So objects m admitting isomorphisms m ∼ = Sh(m)
are sums of “cosets of 〈h〉 in A”.
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