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 A B S T R A C T

This paper addresses a multi-period pickup and delivery problem with time windows, where carriers must 
fulfill committed transport requests while deciding whether to accept additional requests to enhance their 
financial and environmental performance. Given the increasing focus on sustainability, the objective is to 
balance profitability and CO2e emissions. To tackle this bi-objective problem, we propose a mixed-integer 
linear programming formulation that accounts for heterogeneous vehicles and both hard and soft time 
windows. To efficiently solve large-scale instances, we introduce a Hybrid Adaptive Large Neighborhood Search 
(HALNS) algorithm, which integrates population-based Tabu Search with a mutation operator within an ALNS 
framework. The proposed HALNS is benchmarked against multiple existing methods to assess its effectiveness 
and efficiency. Computational experiments demonstrate that HALNS efficiently solves large-scale instances, 
outperforming existing approaches. In addition, our numerical analysis provides key managerial insights 
for companies that want to achieve environmentally sustainable transport operations. Our numerical results 
indicate that imposing stricter emission targets can reduce CO2e emissions by up to 40% while decreasing 
profits by approximately 21%. In contrast, increasing the size of the fleet leads to an increase in profits 15% 
and improves the performance of the delivery, but at the cost of higher emissions. Furthermore, relaxing the 
time window constraints improves operational flexibility, resulting in an increase in average profits of 5% 
while reducing emissions by approximately 7%. These findings highlight the trade-offs involved in sustainable 
logistics planning and offer actionable insights for managers.
1. Introduction

In today’s interconnected supply networks, businesses have shifted 
their priorities beyond mere economic factors. Driven by environmental 
legislation and growing consumer awareness, there is a strong emphasis 
on decarbonizing transportation practices. Logistics service providers 
(LSPs) and retailers, among others, recognize that their transportation 
service choices would directly impact their perceived performance 
along sustainability indicators. As a result, these companies are actively 
looking for innovative ways to adopt cleaner vehicle technologies and 
improve their operational practices.

One of the most used delivery services is pickup and delivery (PD) 
in the less-than-truckload (LTL) sector. In this type of service, multiple 
requests should be transported, and each request involves collecting 
a load from a pickup point and delivering it to a designated drop-off 
point (Vaziri et al., 2019). Given that pickup and delivery points are 
generally unique for each request, these operations are highly prone 
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to inefficiencies, e.g. empty hauls or long routes. This means that 
carriers active in this sector can play a key role in the decarbonization 
of transportation operations by using advance decision-making tools 
and reduce such inefficiencies, and increase utilization rate of their 
capacities.

The general Pickup and Delivery problem (PDP) was first formalized 
by Savelsbergh and Sol (1995) and has been widely studied in the liter-
ature since then, see, e.g., Ropke and Pisinger (2006), Xue (2022), Lyu 
and Yu (2023), Du et al. (2023), and Galiullina et al. (2024). Consider-
ing its wide range of applications in practice, numerous PDP variants 
have been proposed and studied. The most extensively studied variant 
of the PDP is the version with time windows (PDPTW), which requires 
the fulfillment of customers’ orders within specific time windows, see, 
e.g., Ropke and Pisinger (2006), Al Chami et al. (2019), Sartori and 
Buriol (2020), Zhang et al. (2023) and Zhao et al. (2023). Due to its 
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computational complexity, the main focus of the research conducted 
on PDPTW has been the development of approximation algorithms, 
i.e., heuristics and metaheuristics (Sartori and Buriol, 2020; Wolfinger, 
2021; Yang and Li, 2023; Zhao et al., 2023; Meng et al., 2024).

In transportation planning, a shipper requires a carrier to transport 
a set of requests. These requests can be categorized into two groups 
based on their flexibility in delivery time. The first group consists of
reserved requests, which have a fixed delivery date. This means that 
when the shipper offers a reserved request, such as 𝑅1, to a carrier, 
they agree on a specific delivery date, say day 𝑡, on which 𝑅1 must be 
delivered. Consequently, 𝑅1 cannot be delivered on any other day, such 
as 𝑡 + 1 or 𝑡 − 1. The second group consists of selective requests, which 
offer more flexibility in the delivery timing. Instead of a fixed date, the 
shipper allows the carrier to deliver a selective request within a given 
period window. For example, the shipper can make a selective request 
𝑆1 to the carrier and specify that it can be delivered on day 𝑡, 𝑡 + 1, 
or 𝑡 + 2. This flexibility enables carriers to adjust delivery schedules 
and shift selective requests on different dates to optimize capacity 
utilization and improve profitability, unlike reserved requests, which 
must be delivered strictly on their assigned date (Ben-Said et al., 2022). 
Generally, the allocation of selective requests to carriers is determined 
based on the combined profit of the carriers and the resulting impact 
on the customers, i.e., delivery time.

A group of researchers investigated PDPTW models with variable 
travel times aiming at profit maximization; see, e.g., Vaziri et al. (2019) 
and Sun et al. (2020). In the former study, a bi-objective PDPTW model 
was developed to minimize GHG emissions and maximize profit. The 
latter proposed a single-objective PDPTW model along with an ALNS 
algorithm as the solution method. In a recent study, Yang and Li (2025) 
examined the PDP in a single-period setting with time windows and 
handling time in the context of last-mile delivery. Real-life optimiza-
tion problems require complex decision-making processes to find an 
optimal balance among several conflicting objectives (Evans, 1984). 
In their study, Soleimani et al. (2018) focused on green PDP (GPDP) 
for distributing new and re-manufactured products. They observed that 
significant cost reductions and environmental benefits can be achieved 
through the proposed multi-objective non-linear programming model. 
In another study, Christiaens and Vanden Berghe (2020) demonstrated 
the effectiveness of their algorithm in minimizing both travel costs 
and the number of utilized vehicles.  Wang et al. (2023a) proposed 
a bi-objective optimization approach for a pickup and delivery prob-
lem within a two-echelon multi-depot multi-period location-routing 
framework by integrating vehicle sharing, and advanced metaheuristic 
optimization techniques. In a recent study, Santiyuda et al. (2024) 
investigated the bi-objective (i.e., minimization of costs and time) 
time-dependent PDP using learning-based optimization approaches.

Taking into account the increased awareness about sustainability 
constructs (environmental, social, and economic) and the need for 
immediate actions, ‘‘reducing costs’’ and ‘‘shortening delivery times’’ 
are no longer the only objectives that logistics companies are trying 
to achieve (Demir et al., 2022). Given the nature of the transportation 
industry, this sector contributes significantly to climate change, primar-
ily through greenhouse gas (GHG) emissions due to its dependence on 
fossil fuels (McKinnon et al., 2015; Madankumar and Rajendran, 2018). 
The emergence of environmental concerns has also motivated re-
searchers to focus on the emissions generated during transportation op-
erations (Wang et al., 2018; Sun et al., 2019; Zhao et al., 2023). Soysal 
et al. (2018), for instance, investigated an environmentally-friendly 
Pickup and Delivery Problem with Time Windows (PDPTW), incor-
porating explicit fuel consumption, variable vehicle speed, and road 
categorization. Furthermore, Wang et al. (2020) explored multi-echelon 
transport systems within green logistics frameworks. These studies col-
lectively contribute to the broader goal of sustainable urban logistics, 
aligning with ongoing research efforts to develop eco-efficient and cost-
effective transportation networks. For a comprehensive overview of 
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research conducted on green logistics, interested readers are referred 
to Demir et al. (2014b) and Moghdani et al. (2021).

Although there are many studies focusing on PDPTWs, most re-
search overlooks key operational requirements. In practice, the trans-
port services provided by logistics companies operate mainly on a 
rolling horizon. This means that for a carrier, it is important to know 
how its capacity is allocated on a specific day and how many requests 
are not planned for that day, so that they can be considered when 
devising the transportation plan for the upcoming days. However, 
most studies, if not all, focus only on single-period transport planning. 
Such models are indeed helpful for generating insights for practitioners 
and understanding the behavior of the corresponding transportation 
settings, such as specific trade-offs in a pickup and delivery setting. 
Nevertheless, they do not address the challenge that practitioners face, 
which is multi-period planning. Table  1 illustrates the differences 
between single- and multi-period settings. In this example, there are 
two trucks, each with a capacity for two requests. We assume that 
at the beginning of the first period, the planner faces a demand of 
three selective requests and three reserved requests. In a single-period 
setting, since there is no capacity planning for future periods, requests 
𝑆2 and 𝑆3 are lost. This means that the shipper will not wait for 
another time period, as the same situation may occur again. This leads 
to inefficiencies in transportation operations, as the planner misses 
the opportunity to utilize the available capacity in future periods. In 
contrast, if the planner adopts a multi-period model, it can accept 
the selective requests at the beginning of the first period and deliver 
them in subsequent periods. By doing so, it not only improves ca-
pacity utilization, but also serves more requests, ultimately increasing 
revenues.

Logistics companies need to consider multiple objectives when plan-
ning their operations. Ben-Said et al. (2022) studied a bi-objective 
PDPTW with selective requests that considers maximization of profits 
while minimizing travel costs. In another study, PDP with hard time 
windows and time-dependent travel times was studied by Wang et al. 
(2023b). In a more recent study, Santiyuda et al. (2024) investigated a 
bi-objective PDPTW based on time-dependent travel times.

In this paper, we analyze a green multi-period request assignment 
problem in road freight transport (GMP-RAP) for less-than-truckload 
freight operations. Moreover, we assess the performance of this vari-
ant of PDPTW based on two main criteria, namely profit and CO2e 
emissions. In GMP-RAP, each carrier has a set of reserved requests 
(mandatory service) and can handle additional selective requests from 
other carriers. Each request involves pickup and delivery operations, 
associated with origin, destination, quantity, two time windows, and 
profit. In this problem, the revenues generated from reserved requests 
are fixed whereas the revenues obtained from selective requests depend 
on the timing of the delivery operations. The second objective function 
serves to incorporate environmental considerations by reducing the 
production of CO2e emissions. When addressing a bi-objective problem, 
a set of non-dominated solutions is specified, known as the Pareto 
front, allowing the decision-maker to express preferences. To solve 
GMP-RAP, we propose a hybrid adaptive large neighborhood search 
(HALNS) method, which is a three-phase algorithm consisting of an 
adaptive large neighborhood search (ALNS) algorithm, local search (for 
intensification), and population-based Tabu Search algorithm (TS𝑝𝑜𝑝) 
(for diversification) with a mutation. The bi-objective problem is solved 
using ALNS after parameter tuning with Taguchi approach, followed by 
four local search methods to further improve the results. The solutions 
obtained are then fed into a population-based Tabu Search algorithm 
to enhance diversification within the solution space.

The main contributions of this paper is three-fold. First, this paper 
extends the PDP by incorporating a multi-period setting, addressing the 
complexities of real-world logistics operations over multiple time pe-
riods. Unlike traditional single-period models, our approach considers 
interdependencies between different time windows. Second, we intro-
duce a bi-objective optimization framework that explicitly balances 
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Table 1
Single-period vs. multi-period planning.
 Scenario Requests available Truck assignments Remaining requests  
 Scenario 1: Repeated single-period planning (short-sighted)
 Period 1 R1, R2, R3, S1, S2, S3 (R1, R2), (R3, S1) S2, S3 (Lost)  
 Period 2 R4 + (S2, S3) (R4, Empty)  
 Period 3 R5 (R5, Empty)  
 Scenario 2: Multi-period planning (strategic)
 Period 1 R1, R2, R3, S1, S2, S3 (R1, R2), (R3, S1) S2, S3 (Scheduled for later) 
 Period 2 R4 + S2 (carried over) (R4, S2)  
 Period 3 R5 + S3 (carried over) (R5, S3)  
cost and environmental impact. By integrating emissions reduction into 
the decision-making process, our model provides a more sustainable 
approach to logistics, addressing the growing need for environmentally 
conscious transportation strategies. In addition, we incorporate realistic 
operational constraints, such as limited vehicle capacity and dynamic 
route adjustments, to improve the practical applicability of our method. 
Third, we conduct an extensive computational analysis using bench-
mark instances to validate the effectiveness of our approach. The results 
offer valuable managerial insights, illustrating the trade-offs between 
operational cost savings and sustainability goals in multi-period logis-
tics planning. This study not only advances theoretical modeling, but 
also provides actionable strategies for logistics professionals seeking to 
optimize both efficiency and environmental impact.

The remainder of this paper is organized as follows. Section 2 fo-
cuses on the description of the problem and the resulting mathematical 
model. The solution methodology is provided in Section 3. Section 4 
is devoted to computational experiments, and in Section 5 managerial 
insights are discussed. Finally, Section 6 summarizes the concluding 
remarks.

2. Problem description and mathematical formulation

The GMP-RAP consists of two objective functions. The economic 
aspect is included through the maximization of total profits and the 
environmental aspect is considered through the minimization of GHG 
emissions.

We now present the details of the GMP-RAP in which each service 
(i.e., pickup or delivery) is constrained with hard time windows. In 
this problem, a number of independent small road freight carriers form 
an alliance and aim to serve a total number of 𝑛 requests. Within this 
context, there are two distinct types of requests: reserved and selective 
requests. The key difference between these two categories lies in the 
flexibility of the delivery date. Reserved requests must be served during 
a pre-defined period (i.e., a specific day), whereas selective requests 
come with the flexibility of being served within a given period. The 
allocation of selective requests is optimized to ensure fair distribution 
of profits and a reduction in GHG emissions. The GMP-RAP is defined 
on a directed graph  = (, ), where  = {0,… , 2𝑛 + 1} and  =
{(𝑖, 𝑗),∀𝑖, 𝑗 ∈ ; 𝑖 ≠ 𝑗} respectively represent the node and arc sets. 
In this graph, nodes 0 and {2𝑛 + 1} represent the depot. To meet 
transportation demand, a set of heterogeneous vehicles is considered, 
where each vehicle 𝑘 ∈  = {1, 2,… , 𝑣} has a capacity of 𝑓𝑘 and is 
available on certain days. During the planning horizon, if assigned, a 
vehicle starts at node 0 and ends its journey at node 2𝑛+1 after serving 
one or more requests.

In our problem setting, request 𝑟 ∈  is associated with two nodes; 
a pickup node 𝑟 ∈  and a delivery node (𝑛 + 𝑟) ∈ . We use 𝑑𝑟 to 
denote the quantity associated with the request 𝑟 ∈ , i.e. the quantity 
that should be loaded at the pickup node when serving a request. Since 
we do not consider split deliveries, the quantity loaded for request 𝑟
should be fully unloaded at the delivery node 𝑛+ 𝑟. This indicates that 
𝑑𝑛+𝑟 = −𝑑𝑟. The node 𝑖 ∈  is preferably accessible for pickup and 
delivery operations only during the time window [𝑎𝑖, 𝑏𝑖]. Each reserved 
request has a specific period for pickup and delivery operations. In 
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contrast, for the selective request 𝑟 ∈ 𝑠, carriers can choose from a set 
of days to deliver the request, which is called a period window [𝛼𝑟, 𝛽𝑟]. 
The period window of pickup node is the same as that of delivery 
node.We assume that transportation along the arc (𝑖, 𝑗) ∈  incurs 
a cost of 𝑐𝑖𝑗 and that each vehicle emits a specific amount of 𝐶𝑂2e 
emissions per km. The shipper, as the customer for the transportation 
service, pays an amount of 𝑚𝑟 to deliver the request 𝑟. In short, we 
have the following assumptions: (𝑖) each service (pickup or delivery) is 
constrained by hard time windows; (𝑖𝑖) there are two types of requests: 
reserved and selective. Reserved requests must be served during a pre-
defined period. Selective requests can be served within a given period 
window; (𝑖𝑖𝑖) allocation of selective requests is based on the resulting 
profits and emissions.

The problem at hand aims to maximize profits and minimize the 
generated emissions. The profit function considers the revenues, costs, 
and rewards that carriers may receive for delivering a selective request 
earlier within the corresponding period window. The second objective 
is to minimize the total 𝐶𝑂2e emissions produced by the transportation 
service. Table  2 lists all the notation used in the mathematical model.
Maximize 
∑

𝑟𝑝𝑑∈

∑

𝑘∈

∑

ℎ∈
𝑚𝑟𝑝𝑑 𝑦

𝑟𝑝𝑑
𝑘ℎ −

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑙𝑘𝑥

𝑘
0𝑗ℎ

−
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗ℎ

+ 𝜆
∑

𝑟𝑝𝑑∈𝑠

∑

𝑘∈

∑

ℎ∈[𝛼𝑟𝑝𝑑 ,𝛽𝑟𝑝𝑑 ]
𝑚𝑟𝑝𝑑

[

𝛽𝑟𝑝𝑑 − 𝛼𝑟𝑝𝑑 − 𝑚𝑎𝑥{0, ℎ𝑦
𝑟𝑝𝑑
𝑘ℎ − 𝛼𝑟𝑝𝑑 }

]

(1)

Minimize 
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑐𝑑𝑖𝑗𝑥

𝑘
𝑖𝑗ℎ𝑞

𝑘
𝑖ℎ𝑔 (2)

Subject to: 
∑

𝑖∈
𝜔≠𝑖

𝑥𝑘𝑖𝜔ℎ −
∑

𝑗∈
𝜔≠𝑗

𝑥𝑘𝜔𝑗ℎ = 0 ∀𝜔 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  (3)

∑

𝑗∈
𝑗≠0

𝑥𝑘0𝑗ℎ ≤ 1 ∀𝑘 ∈  ,∀ℎ ∈  (4)

∑

𝑖∈
𝑖≠2𝑛+1

𝑥𝑘𝑖(2𝑛+1)ℎ ≤ 1 ∀𝑘 ∈  ,∀ℎ ∈  (5)

∑

𝑗∈
𝑗≠𝑟𝑝𝑑

𝑥𝑘𝑟𝑝𝑑 𝑗ℎ = 𝑦𝑟𝑝𝑑𝑘ℎ ∀𝑟𝑝𝑑 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  (6)

∑

𝑗∈
𝑗≠𝑛+(𝑟𝑝𝑑 )

𝑥𝑘𝑗(𝑛+(𝑟𝑝𝑑 ))ℎ = 𝑦𝑟𝑝𝑑𝑘ℎ ∀𝑟𝑝𝑑 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  (7)

∑

𝑘∈

∑

ℎ∈
𝑦𝑟𝑝𝑑𝑘ℎ = 1 ∀𝑟𝑝𝑑 ∈ 𝑧 (8)

∑

𝑘∈

∑

ℎ∈[𝛼𝑟𝑝𝑑 ,𝛽𝑟𝑝𝑑 ]
𝑦𝑟𝑝𝑑𝑘ℎ ≤ 1 ∀𝑟𝑝𝑑 ∈ 𝑠 (9)

∑

𝑟𝑝∈
𝑦𝑟𝑝𝑑𝑘ℎ ≤ 𝜁𝑘ℎ ∀𝑘 ∈  ,∀ℎ ∈  (10)

𝑢𝑘𝑖ℎ + 𝑡𝑖(𝑛+𝑖) + 𝑒𝑖 ≤ 𝑢𝑘(𝑛+𝑖)ℎ ∀𝑖 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  (11)
𝑢𝑘 ≥ 𝑢𝑘 + 𝑒 + 𝑡 𝑥𝑘
𝑗ℎ 𝑖ℎ 𝑖 𝑖𝑗 𝑖𝑗ℎ
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Table 2
Notations used.
 Sets  
  = {1, 2,… , 𝑛} Set of all pickup nodes (reserve 𝑧 and selective 𝑠 )  
  = {𝑛 + 1,… , 2𝑛} Set of all delivery nodes (reserve 𝑧 and selective 𝑠 )  
  = {0,… , 2𝑛 + 1} Set of nodes including the depots  
  = ∖{0, 2𝑛 + 1} set of nodes excluding the depots  
  Set of periods measured in days  
  Set of vehicles  
 𝑧 = 𝑧 ∪𝑧 Set of reserve requests which is included pickup points (𝑧) and delivery points (𝑧)  
 𝑠 = 𝑠 ∪𝑠 Set of selective requests which is included pickup points (𝑠) and delivery points (𝑠)  
  = 𝑧 ∪𝑠 =  ∪ Set of selective 𝑠 and reserve 𝑧 requests (all requests)  
 Parameters  
 𝑓𝑘 Capacity of vehicle 𝑘  
 𝑙𝑘 Fixed cost of vehicle 𝑘  
 𝜁𝑘ℎ Availability of vehicle 𝑘 in period ℎ. This binary parameter equals to 1 if the vehicle 𝑘 is available in period ℎ. 
 𝑟𝑝𝑑 pickup or delivery nodes of a request 𝑟𝑝𝑑 ∈ ( ∪).  
 𝑚𝑟𝑝𝑑 Allocated revenue for a pickup of request 𝑟 (𝑟𝑝𝑑 ∈ ). If 𝑟𝑝𝑑 ∈ , then 𝑚𝑟𝑝𝑑 = 0.  
 𝑝𝑑𝑟𝑝𝑑 Time period in which node 𝑟𝑝𝑑 ∈ 𝑧 should be served  
 𝑟𝑝 Pickup node of request 𝑟 ∈   
 𝑟𝑑 Delivery node of request 𝑟 ∈   
 𝜆 Reward rate (%) for the early delivery of selective requests  
 𝛥 Penalty cost for arriving time after or before the time window  
 𝑔 Represents the emissions produced per kilometer per kilogram of vehicle load (g/km/kg)  
 [𝑎𝑖 , 𝑏𝑖] Time windows (hours) of node 𝑖 ∈   
 [𝛼𝑟𝑝𝑑 , 𝛽𝑟𝑝𝑑 ] Period window (days) of selective request which is the same for its pickup and delivery nodes (𝑟 ∈ 𝑠)  
 𝑡𝑖𝑗 Travel time (s) of a vehicle along arc (𝑖, 𝑗) ∈   
 𝑐𝑖𝑗 = 𝑡𝑖𝑗 Travel cost (Euro) along the arc (𝑖, 𝑗) ∈   
 𝑐𝑑𝑖𝑗 Travel distance along the arc (𝑖, 𝑗) ∈  (km)  
 𝑒𝑖 Service time at node 𝑖 ∈   
 𝑑𝑝 Demand at pickup node 𝑝 ∈   
 𝑑𝑝+𝑛 = −𝑑𝑝 Demand at delivery node (𝑝 + 𝑛) ∈   
 𝑑0 = 𝑑2𝑛+1 = 0 Demand at the depot  
 𝑀 A very large number  
 Decision variables  
 𝑢𝑘𝑖ℎ Arrival time of vehicle 𝑘 ∈  in period ℎ ∈   at node 𝑖 ∈   
 𝑞𝑘𝑖ℎ Current load of vehicle 𝑘 ∈  when it leaves node 𝑖 ∈  in period ℎ ∈   
 𝑥𝑘𝑖𝑗ℎ 1, if and only if node 𝑖 ∈  is visited before 𝑗 ∈  in period ℎ ∈   by vehicle 𝑘 ∈  ; 0, otherwise  
 𝑦𝑟𝑝𝑑𝑘ℎ 1, if and only if node 𝑟𝑝𝑑 ∈ ( = ( ∪) = 𝑟 ∪𝑠) is served by the vehicle 𝑘 ∈  ; in period ℎ ∈   0, otherwise 
 Auxiliary variables  
 𝜂𝑟𝑝𝑑𝑘ℎ Difference between the scheduled service time ℎ ∈   and the lower bound  
 of the period window [𝛼𝑟𝑝𝑑 , 𝛽𝑟𝑝𝑑 ] for selective request 𝑟𝑝𝑑 ∈ 𝑠 served by vehicle 𝑘 ∈  .  
 𝜃𝑘ℎ𝑖𝑗 Load-dependent emissions for vehicle 𝑘 ∈  moving from node 𝑖 ∈  to 𝑗 ∈  in period ℎ ∈  .  
 𝛤 𝑘

𝑗ℎ Difference between the arrival time of vehicle 𝑘 ∈  at node 𝑗 ∈  and the upper bound  
 of a soft time window in period ℎ ∈  , when the vehicle is late.  
 𝛾𝑘𝑗ℎ Difference between the arrival time of vehicle 𝑘 ∈  at node 𝑗 ∈  and the lower bound of  

 the soft time window in period ℎ ∈  , when the vehicle is early.  
−𝑀(1 − 𝑥𝑘𝑖𝑗ℎ) ∀𝑖 ∈ ,∀𝑗 ∈ , 𝑖 ≠ 𝑗,

∀𝑘 ∈  ,∀ℎ ∈  (12)

𝑎𝑖 ≤ 𝑢𝑘𝑖ℎ ≤ 𝑏𝑖 ∀𝑖 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (13)
𝑞𝑘𝑗ℎ ≥ 𝑞𝑘𝑖ℎ + 𝑑𝑗 − (𝑓𝑘 + 𝑑𝑗 )

(1 − 𝑥𝑘𝑖𝑗ℎ) ∀𝑖 ∈ ,∀𝑗 ∈ , 𝑗 ≠ 𝑖,∀𝑘 ∈  ,

∀ℎ ∈  (14)
𝑞𝑘𝑖ℎ ∈ {max{0, 𝑑𝑖},

min{𝑓𝑘, 𝑓𝑘 + 𝑑𝑖}} ∀𝑖 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (15)
𝑥𝑘𝑖𝑗ℎ ∈ {0, 1} ∀𝑖 ∈ ,∀𝑗 ∈ ,∀𝑘 ∈  ,

∀ℎ ∈  (16)

𝑢𝑘𝑖ℎ ≥ 0 ∀𝑖 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (17)
𝑦𝑟𝑝𝑑𝑘ℎ = 0 ∀𝑟𝑝𝑑 ∈ 𝑠,∀𝑘 ∈  ,

∀ℎ ∉ [𝛼𝑟𝑝𝑑 , 𝛽𝑟𝑝𝑑 ] (18)

𝑦𝑟𝑝𝑑𝑘ℎ = 0 ∀𝑟𝑝𝑑 ∈ 𝑧, 𝑝𝑑𝑟𝑝𝑑 ≠ ℎ,∀𝑘 ∈  ,

∀ℎ ∈  (19)
4 
The objective function has two components. The first objective, 
defined in (1), seeks to maximize total profits. The first term of the 
objective function represents revenue, the second term accounts for 
the fixed costs associated with vehicle usage, and the third term corre-
sponds to transportation costs. The final term in the objective function 
represents the incentive mechanism, which encourages the fulfillment 
of selective requests as early as possible within their designated time 
window. The second objective, defined in (2), aims to minimize the 
total emissions produced during transport. Degree constraints are pre-
sented in (3). Constraints (4) and (5) ensure that a vehicle starts its 
journey from the depot and ends up at the depot. Constraints (6) and 
(7) ensure that, if a request is fulfilled, its delivery node is visited 
after its pickup node by the same vehicle within the same period. 
Constraints (8) restrict the model to serve reserved requests in their pre-
specified periods. Selective requests are served within a pre-specified 
period window. These requirements are enforced by constraints (9). 
Constraints (10) ensure that a request can be served by a certain vehicle 
during the period ℎ if the vehicle is available during that same period. 
We use constraints (11) to ensure that if a request is served, its delivery 
point is visited, considering the service time at the pickup point plus 
the travel time. Constraints (12) guarantee that travel time is respected 
if two nodes are visited consecutively. Time window constraints at the 
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pickup and delivery nodes are enforced by (13). Constraints (14)–(15) 
ensure that the outgoing payloads from different nodes are set correctly 
for each node’s demand and vehicle’s capacity. Finally, Constraints 
(16)–(19) guarantee integrality and non-negativity conditions for the 
decision variables.

2.1. Linearization of the GMP-RAP

We linearize the objective function presented in objective function 
(1) by adding the additional variable 𝜂𝑟𝑝𝑘ℎ and constraints (21) and (22) 
as follows. 

max(
∑

𝑟𝑝𝑑∈

∑

𝑘∈

∑

ℎ∈
𝑚𝑟𝑝𝑑 𝑦

𝑟𝑝𝑑
𝑘ℎ

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑙𝑘𝑥

𝑘
0𝑗ℎ

−
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗ℎ + 𝜆

∑

𝑟𝑝𝑑∈𝑠

∑

𝑘∈

∑

ℎ∈[𝛼𝑟𝑝𝑑 ,𝛽𝑟𝑝𝑑 ]
𝑚𝑟𝑝𝑑

[

𝛽𝑟𝑝𝑑 − 𝛼𝑟𝑝𝑑 − 𝜂
𝑟𝑝𝑑
𝑘ℎ

]

)

(20)

𝜂
𝑟𝑝𝑑
𝑘ℎ ≥ ℎ𝑦

𝑟𝑝𝑑
𝑘ℎ − 𝛼𝑟𝑝𝑑 ∀𝑟𝑝𝑑 ∈ 𝑠,∀𝑘 ∈  ,∀ℎ ∈  (21)

𝜂
𝑟𝑝𝑑
𝑘ℎ ≥ 0 ∀𝑟𝑝𝑑 ∈ 𝑠,∀𝑘 ∈  ,∀ℎ ∈  (22)

We define variable 𝜃𝑘ℎ𝑖𝑗  and constraints (24)–(27) to linearize the 
second objective function as follows. 
min(

∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑐𝑑𝑖𝑗𝜃

𝑘
𝑖𝑗ℎ𝑔) (23)

𝜃𝑘𝑖𝑗ℎ ≤ 𝑀𝑥𝑘𝑖𝑗ℎ ∀𝑖, 𝑗 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (24)

𝜃𝑘𝑖𝑗ℎ ≤ 𝑞𝑘𝑖ℎ ∀𝑖, 𝑗 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (25)

𝜃𝑘𝑖𝑗ℎ ≥ 𝑞𝑘𝑖ℎ − (1 − 𝑥𝑘𝑖𝑗ℎ)𝑀 ∀𝑖, 𝑗 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (26)

𝜃𝑘𝑖𝑗ℎ ≥ 0 ∀𝑖, 𝑗 ∈ ,∀𝑘 ∈  ,∀ℎ ∈  (27)

2.2. The GMP-RAP with soft time windows

We now present an alternative MILP formulation for the GMP-
RAP with soft time windows. In practice, strict adherence to hard 
time windows where customers must be visited within specific time 
intervals can be challenging due to the factors such as traffic, weather 
conditions, or operational disruptions. In many cases, some flexibility is 
desirable while still aiming at minimizing the deviations from specified 
time windows. Soft time windows allow for slight deviations from the 
prescribed time windows, where penalties are imposed for violations 
but are not as restrictive as hard time window constraints. This flex-
ibility is essential in scenarios where it is impractical to always meet 
exact time windows, such as in dynamic or congested environments. 
To this end, we introduce two new variables, 𝛤 𝑘

𝑗ℎ and 𝛾𝑘𝑗ℎ, which 
measure the deviation between the visit time and the bounds of the 
corresponding time window when a customer is visited either before or 
after the time window. We modify the first objective function in (20) to 
account for the penalty cost incurred when time window constraints are 
violated. This adjustment allows for a balance between flexibility and 
operational efficiency. The second objective function, which is focused 
on the core operational goals, remains unchanged, ensuring that the 
main objectives of cost minimization and service level optimization are 
preserved. 

max(
∑

𝑟𝑝𝑑∈

∑

𝑘∈

∑

ℎ∈
𝑚𝑟𝑝𝑑 𝑦

𝑟𝑝𝑑
𝑘ℎ −

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑙𝑘𝑥

𝑘
0𝑗ℎ

−
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗ℎ + 𝜆

∑

𝑟𝑝𝑑∈𝑠

∑

𝑘∈

∑

ℎ∈[𝛼𝑟𝑝𝑑 ,𝛽𝑟𝑝𝑑 ]
𝑚𝑟𝑝𝑑

[

𝛽𝑟𝑝𝑑 − 𝛼𝑟𝑝𝑑 − 𝜂
𝑟𝑝𝑑
𝑘ℎ

]

−𝛥
∑

𝑗∈

∑

𝑘∈

∑

ℎ∈
(𝛤 𝑘

𝑗ℎ + 𝛾𝑘𝑗ℎ))

(28)
5 
Additionally, the hard time window constraints presented in (13) 
are replaced by soft time window constraints, specifically constraints 
(29)–(32), which integrate these deviations into the model and enforce 
non-negative penalty costs for violating time windows. This formula-
tion provides a practical solution that can be applied in settings where 
perfect adherence to time windows is not always possible, but still 
needs to be controlled to maintain service quality and operational 
efficiency.

𝛾𝑘𝑗ℎ ≥ 𝑎𝑗
∑

𝑖∈

∑

𝑘∈
𝑥𝑘𝑖𝑗ℎ − 𝑢𝑘𝑗ℎ ∀𝑗 ∈  ,∀ℎ ∈  (29)

𝛤 𝑘
𝑗ℎ ≥ 𝑢𝑘𝑗ℎ − 𝑏𝑗

∑

𝑖∈

∑

𝑘∈
𝑥𝑘𝑖𝑗ℎ ∀𝑗 ∈  ,∀ℎ ∈  (30)

𝛾𝑘𝑗ℎ ≥ 0 ∀𝑗 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  (31)

𝛤 𝑘
𝑗ℎ ≥ 0 ∀𝑗 ∈  ,∀𝑘 ∈  ,∀ℎ ∈  . (32)

Given the NP-hard nature of the problem under investigation, we 
introduce a novel hybrid metaheuristics algorithm in the next section.

3. Solution method

This section proposes a hybrid solution approach that combines the 
ALNS and a population-based TS with a mutation operator (TS𝑝𝑜𝑝) to 
solve the multi-objective problem. We name this hybrid algorithm as 
HALNS and use it to efficiently solve the GMP-RAP and produce high-
quality solutions even for large-sized instances. Algorithm 1 presents 
the basic steps of HALNS. In addition to Algorithm 1, we provide the 
flowchart in Appendix  A. In the following sections, we elaborate on the 
different steps of our solution methodology.

The solution method starts with the Randomized Clarke and Wright 
(RCW) algorithm and generates reasonably good initial feasible solu-
tions. Subsequently, the ALNS algorithm, introduced by Ropke and 
Pisinger (2006), is used to explore the feasible region and generate 
multiple new and improved solutions. ALNS uses multiple removal and 
insertion operators. The newly generated solutions are then merged 
with a set of randomly generated solutions and provided as input 
to the TS𝑝𝑜𝑝 algorithm to identify high-quality solutions as the fine-
tuning mechanism. The TS𝑝𝑜𝑝 algorithm also incorporates a mutation 
operator to avoid premature convergence to a suboptimal solution. This 
operator introduces controlled solution variations, ensuring that the 
search explores different facets of the solution space.

Algorithm 1: Pseudocode of HALNS algorithm.
1: procedure The hybrid ALNS algorithm
2:  Initialize and tune the parameters of both ALNS and TS𝑝𝑜𝑝
algorithms

3:  Generate an initial solution using RCW algorithm (section 3.1)
4:  Execute ALNS algorithm using weighting method (section 3.2)
5:  Generate a set of random solutions
6:  Combine the solutions of the ALNS and the randomly generated
ones

7:  Execute TS𝑝𝑜𝑝 on the population (section 3.3)
8:  Return final solution

3.1. An initial solution

In the proposed method, a solution is composed of three vectors, 
i.e., 𝑋, 𝑌 , and 𝑍, respectively, present pickup and delivery points of 
requests, periods to serve requests, and vehicles to serve requests. The 
length of the vector 𝑋 is equal to the number of pickup and delivery 
points, and the size of the other two vectors is the number of pickup 
points.

To obtain a feasible, high-quality initial solution, we use the RCW 
algorithm introduced by Prodhon (2011). Given the presence of selec-
tive requests, the algorithm is tailored to ensure that selective requests 
can be incorporated into the initial solution. To end this, the algorithm 
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introduces a random element. When a randomly generated number 
exceeds a predefined threshold, selective requests are added to the 
initial solution, but only after all reserved requests are considered. 
In contrast, only reserved requests are included in the initial solution 
when the random number falls below the specified threshold.

The criterion based on which a request is chosen to be included in 
the initial solution is profitability, i.e., requests with higher profit are 
chosen first. When adding a request to the initial solution is feasible, 
its pickup and delivery points are inserted back into the same route. 
If adding a request makes the solution unfeasible, that request takes 
precedence, as the algorithm initiates the construction of a new route. 
Creating new routes continues until there are no more pending requests 
to be fulfilled.

3.2. ALNS algorithm

We use the weighted-sum method to consider both objectives (𝐾1
and 𝐾2). More specifically, we assign a corresponding weight to each 
objective. In this problem, the first objective should be maximized, 
and the second one should be minimized. To consider both objective 
functions in the same objective function, we choose the following 
structure:

𝑀𝑖𝑛 (−𝑤1𝐾1 +𝑤2𝐾2) (33)

𝑤1 +𝑤2 = 1 (34)

To better search for the feasible region, we apply two types of 
operators on the initial and each current solution: removal and in-
sertion operators. At the beginning of the ALNS, all operators have 
equal probability to be selected. After a certain number of iterations 
(i.e., one segment), the probabilities are updated according to the 
operators’ performance. We adopted the roulette wheel mechanism 
proposed by Ghiami et al. (2019) to select operators and update their 
scores. Before starting the next segment, the algorithm also performs a 
local search procedure to improve a current solution. The detailed steps 
of ALNS are given in Algorithm 2.

Algorithm 2: Pseudocode of ALNS algorithm
1: procedure ALNS Algorithm
2:  Select the best solution S𝑏𝑒𝑠𝑡 as a initial solution
3:  Initialize the weights and scores of all operators
4:  In each segment
5:   Choose the policies for the selection of requests
6:   In each iteration
7:   Apply ALNS operators (Section 3.2.1 and Section 3.2.2 )
8:   If the solution is better than the last one
9:   Update performance score of the selected operator 3.2
10:   End if
11:   End of iteration
12:   Update the weights
13:   Call local search procedure (Section 3.2.3)
14:  End of segment
15:  Update the global best solution (S𝑏𝑒𝑠𝑡)

To have a population of solutions at the end of the ALNS process, 
rather than just a single solution at the end of each segment, we retain 
the feasible ‘‘current solution’’ after the end of fifty iterations. Conse-
quently, after completion of the ALNS algorithm, rather than obtaining 
a single solution, we generate a population of solutions that are used 
during the subsequent phase when running the TS𝑝𝑜𝑝 algorithm.

3.2.1. Removal operators
Removal operators remove one or more requests from an existing 

solution. In each iteration, we generate a random number and, on the 
basis of its value, the algorithm chooses one of the removal operators. 
We employ two rules to remove a set of requests from a solution; either 
6 
(𝑖) both types of requests have an opportunity to be removed, or (𝑖𝑖)
only selective requests can be removed from the solution. The selection 
between these two cases is made randomly.

We have adopted six removal operators from the literature and 
introduced three new ones (the last three in the following list). Each of 
these operators helps to increase the diversification or intensification 
of the solution method. In the following, we elaborate on the removal 
operators used in the solution method.

1. Random removal operator: It chooses a random set of requests to 
remove from a solution (Ghiami et al., 2019).

2. Least profit removal operator: This operator removes a random 
number of requests with the lowest profit (Li et al., 2016)

3. Least paid removal operator: This operator removes a group of 
requests that have the lowest revenue (Li et al., 2016).

4. Most expensive removal operator: The operator targets the most 
costly requests in a solution and removes them. (Li et al., 2016)

5. Shaw removal operator: This operator removes all requests similar 
to a seed request in terms of distance, time, and load (Shaw, 1998).

6. Similar price removal operator: This operator removes requests 
with similar prices (Li et al., 2016).

7. Highest emission removal operator: This operator removes a selec-
tive request from the list of requests based on the amount of CO2e 
emissions. In other words, it targets and removes the selective request 
with the highest emissions.

8.Time removal operator: This operator removes selective requests 
from a route based on their arrival and departure times. For selective 
request 𝑖, two values are calculated: 𝐴𝑖, the absolute difference between 
the arrival time and the lower bound of the time window, and 𝐵𝑖, the 
absolute difference between the departure time and the upper bound. 
The selective request with the highest score 𝐴𝑖 + 𝐵𝑖 is then removed 
from its route.

9. Longest period window removal operator: The operator removes a 
group of selective requests with the longest period windows.

3.2.2. Insertion operators
To build a new solution, we use a set of four insertion operators, out 

of which three are adopted from the literature. The algorithm generates 
a random number to choose one of the operators. Initially, these opera-
tors have the same chance of being chosen. Once an operator is chosen, 
the algorithm randomly selects a policy for insertion. For example, (𝑖)
does not distinguish between selective and reserved requests, or (𝑖𝑖)
only profitable selective requests are inserted, and (𝑖𝑖𝑖) the priority is 
given to reserved requests. When the stopping criteria are met, the 
solution method checks the feasibility of the solution at hand. The 
solution method uses the following insertion operators:

1. Basic greedy insertion operator: This operator inserts each removed 
request into the best possible position in the solution (Ghiami et al., 
2019).

2. 2-Regret insertion operator: This operator, first, finds the best and 
second best positions for each request in the removed list. Then, it finds 
the request with the highest difference between the best and second 
best position and inserts it into the best possible position (Demir et al., 
2012).

3. 3-Regret insertion operator: This operator finds the removed re-
quest with the highest difference between its best, second, and third 
best positions, and inserts it in the best position (Parragh and Schmid, 
2013).

4. Selective request insertion: This operator sorts the unfulfilled se-
lected requests based on their profits and inserts the best one into the 
current solution.
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3.2.3. Local search procedure
At the end of each segment, the algorithm randomly selects one of 

the following local moves to search for a better solution; (𝑖) it randomly 
picks one of the selective requests and changes the order of either its 
pickup or delivery point in its route, (𝑖𝑖) it performs a similar move to 
the previous one but on a reserved request, (𝑖𝑖𝑖) the algorithm moves the 
positions of both the pickup and delivery points of a randomly selected 
request on its route, (𝑖𝑣) it randomly removes one of the selective 
requests from the solution. The new solution is accepted only if it 
improves the objective function.

3.3. Population-based tabu search algorithm with a mutation operator 
(TS𝑝𝑜𝑝)

Tabu search (TS) algorithm is proposed by Glover (1989), and more 
information on the algorithm can be found in Grendreau and Potvin 
(2010). Using different operators, the TS algorithm locally searches 
a neighborhood for potentially better solutions. We implement TS𝑝𝑜𝑝
on a population of solutions. We use the solutions generated by the 
ALNS and, in addition to that, we randomly produce a set of feasible 
solutions. Three Tabu lists are introduced and defined as vectors 𝑋, 𝑌 , 
and 𝑍. Additionally, we benefit from three operators: swap, reversion, 
and reinsertion. The details of the TS𝑝𝑜𝑝 are provided in Algorithm 3.

Algorithm 3: Pseudocode of TS𝑝𝑜𝑝.
1: procedure TS𝑝𝑜𝑝 Algorithm
2:  In each iteration
3:   While the number of examined operation < the number of 
operations on vector 𝑋 (𝑌  and 𝑍)

4:   Choose an un-examined operation (from vectors 𝑋, 𝑌 , and 
𝑍) and obtain a new solution

5:   Update the current solution
6:   If the current solution is better than the best solution and 
the operation is not in tabu list

7:   Update the best solution and put the operation in the
tabu list

8:   End if
9:   End while
10:   If the random number generated from [0,1] < mutation 

probability
11:   Execute mutation operator
12:   End if
13:   Update best solution by the current solution if the current 

solution has a better value
14:  End iteration

3.3.1. Diversification operators
A mutation operator is used to add diversification. Depending on the 

structure of the vectors, two mutation operators are implemented. The 
first operator is proposed for the vector 𝑋, and the second is developed 
for the vectors 𝑌  and 𝑍.

Due to the structure of vector 𝑋 (permutation structure), two el-
ements are randomly selected at first. In the next step, one swap, 
reversion, or relocation operator is selected to apply to the two chosen 
elements. The mutation operator on vector 𝑍 (vector 𝑌 ) is implemented 
in Algorithm 4.

The same approach is used to implement the mutation operator 
in the vector 𝑌  by adapting the algorithm. Each selected element of 
vector 𝑍 in Algorithm 4 is substituted with a random integer generated 
between one and the length of the period, inclusive. This dual mutation 
strategy improves the exploration of the solution space by introducing 
variability in both vector 𝑌  and vector 𝑍. By diversifying the elements 
in these vectors, the algorithm increases its chances of escaping local 
optima and finding more robust solutions. Consequently, this process 
contributes to the overall effectiveness and efficiency of the HALNS 
algorithm.
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Algorithm 4: Mutation operator on vector 𝑍 (and vector 𝑌 ).
1: The number of mutation elements (𝑒) are determined. The procedure is 
described in the following:

2:  A random integer number (𝑟) is produced between 1 and the 
maximum number of vehicles.

3:  Mutation rate is considered as 𝑟′ and multiplies 𝑟.
4:  Finally, round the value of 𝑟 × 𝑟′ to smallest integer greater than
its value.

5: 𝑒 elements of vector 𝑍 is selected (Same for vector 𝑌 ).
6: 𝑒 random integer number is produced between 1 and the maximum 
number of vehicles.

7: The elements produced in the previous step are replaced by the 
generated elements in the previous step.

4. Computational experiments

This section provides the detailed results obtained with the HALNS 
algorithm. We applied our solution algorithm to the benchmark in-
stances used by Li et al. (2016). When possible, we compared the results 
of our algorithm to that of Li et al. (2016) based on four different 
metrics. The proposed algorithm is coded in MATLAB 2017 and has 
been used to solve 50 instances. The numerical experiments were 
performed on a laptop with an i5 core, 4 GB RAM, and 4.3 GHz speed. 
It is important to note that, for each instance, to ensure the robustness 
and reliability of our results, we conducted three independent runs. 
This approach helps mitigate the impact of problem size variations 
on algorithmic performance. The primary motivation for performing 
multiple runs is to reduce variability that may arise due to differences 
in instance structures, thereby providing more stable and generalizable 
results.  Then, the average of these three runs is reported in this section. 
To this end, the instances are categorized into small, medium, and large 
categories. Small-size instances include 10 and 20 requests. Medium-
size instances consist of instances with 30, 40, and 50 requests. Finally, 
the instances with 100 requests are classified as large-sized instances. 
In Table  3, we provide the details of all 50 instances.

In our experiments, each instance is identified as 𝑅-𝑅𝑧-𝑅𝑠, where 𝑅
represents the total number of requests, 𝑅𝑧 is the number of reserved 
requests and 𝑅𝑠 describes the number of selective requests. Since we 
are utilizing benchmark instances from Li et al. (2016), designed as a 
single-period problem, we randomly determine the number of periods 
and set lower and upper bounds for selective requests’ periods. More-
over, we keep the original values of the time windows. When multiple 
instances have the same number of selective and reserved requests, we 
differentiate them by appending a letter to their names. Notably, these 
instances differ in various attributes, including period windows, time 
windows, and vehicle capacities.

4.1. Results of the HALNS algorithm

In this section, we present a detailed analysis of the numerical 
experiments conducted using the HALNS algorithm. We employ the 
Taguchi approach to fine-tune parameters to ensure more robust re-
sults. Given the bi-objective nature of our problem, we focus on conver-
gence and diversity as key performance measures for assessing solution 
quality. To quantify these aspects, we utilize the multi-objective coef-
ficient of variation (MOCV), which integrates the Mean Ideal Distance 
(MID) and diversity metrics. These measures allow us to evaluate the 
trade-offs between solution proximity to the ideal point and solution 
spread along the Pareto frontier.

4.1.1. Parameter tuning with Taguchi approach
The Taguchi approach is a popular method for tuning parameters to 

have more robust results (see, e.g., Sels and Vanhoucke, 2012; Zarandi 
et al., 2013). Given that the problem is a bi-objective, convergence and 
diversity of solutions are the main performance measures to assess the 
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Table 3
The instances used and their respective numbers.
 Instance Number Vehicles Period Instance Number Vehicles Period 
 (#) (#) (#) (#) (#) (#)  
 10-5-5a 1 3 3 40-20-20a 26 12 5  
 10-5-5b 2 3 3 40-20-20b 27 12 5  
 10-5-5c 3 3 3 40-20-20c 28 12 5  
 10-3-7d 4 3 3 40-15-25d 29 12 5  
 10-3-7e 5 3 3 40-15-25e 30 12 5  
 10-3-7f 6 3 3 40-15-25f 31 12 5  
 10-7-3g 7 3 3 40-25-15g 32 12 5  
 10-7-3h 8 3 3 40-25-15h 33 12 5  
 10-7-3i 9 3 3 40-25-15i 34 12 5  
 20-10-10a 10 6 5 50-25-25a 35 15 4  
 20-10-10b 11 6 5 50-25-25b 36 15 4  
 20-10-10c 12 6 5 50-25-25c 37 15 4  
 20-5-15d 13 6 5 50-20-30d 38 15 4  
 20-5-15e 14 6 5 50-20-30e 39 15 4  
 20-5-15f 15 6 5 50-20-30f 40 15 4  
 20-15-5g 16 6 5 50-30-20g 41 15 4  
 20-15-5h 17 6 5 50-30-20h 42 15 4  
 20-15-5i 18 6 5 50-30-20i 43 15 4  
 30-15-15c 19 9 4 100-50-50a 44 30 5  
 30-10-20d 20 9 4 100-50-50b 45 30 5  
 30-10-20e 21 9 4 100-50-50c 46 30 5  
 30-10-20f 22 9 4 100-25-75d 47 30 5  
 30-20-10g 23 9 4 100-25-75e 48 30 5  
 30-20-10h 24 9 4 100-25-75f 49 30 5  
 30-20-10i 25 9 4 100-75-25g 50 30 5  
quality of the values assigned to parameters. We employ MOCV as our 
metric to evaluate both. MOCV considers both the MID and diversity, as 
proposed by Hajipour et al. (2016). In this study, we use the concept 
of diversity to quantify the dispersion of Pareto solutions, a concept 
elaborated in detail by Zitzler (1999) and Moradi et al. (2011).

Diversity: This metric evaluates the spread of solutions on the 
Pareto front obtained by the HALNS algorithm. It offers valuable in-
sights into the extent and consistency of solutions along the established 
Pareto frontier. A higher diversity score indicates a more equitable 
distribution of solutions, implying that the algorithm has comprehen-
sively explored a wide range of potential trade-offs. In contrast, a lower 
diversity score might suggest a clustering of solutions within particular 
areas of the Pareto front.

MID: The MID metric offers valuable insights into the proximity of 
solutions on the Pareto front to the ideal reference point. A lower MID 
value indicates that the solutions closely approximate the ideal point. In 
comparison, a higher MID value suggests that the solutions are distant 
from the ideal point, indicating potential room for improvement within 
the set of solutions. In summary, MID measures the alignment be-
tween solutions and the optimal reference, with lower values signifying 
superior performance.

The MOCV calculation determines the distance between each solu-
tion on the Pareto front and the reference point. This distance can be 
calculated using various metrics, including the Euclidean distance or 
the weighted Euclidean distance. The MOCV can be calculated, using 
the following formula 𝑀𝑂𝐶𝑉 = 𝑀𝐼𝐷

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 .
To reduce the number of experiments, Taguchi proposes fractional 

factorial experiments (FFE) instead of full factorial designs, see, e.g., 
Sadeghi et al. (2014), and Allahyari et al. (2021). In this research, 
we follow the approach proposed by Allahyari et al. (2021) to tune 
the parameters. These parameters are used in multiple algorithms dis-
cussed in this research work. To assess the effectiveness of the HALNS 
developed in this paper, we benefit from several known algorithms, 
namely, the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), 
Multi-Objective Memetic Algorithm (MOMA), Multi-Objective Simu-
lated Annealing Algorithm (MOSA), and Multi-Objective Evolutionary 
Algorithm (MOEA). In total, we define five parameters for HALNS, four 
for NSGA-II, five for MOMA, four for MOEA, and three for MOSA. 
Each parameter is tested at three levels (low, medium, and high). 
Using the Taguchi method, we applied an L9 orthogonal array for 
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all algorithms, resulting in 9 experimental runs per algorithm.  We 
assume 100 segments for the HALNS, each including 150 iterations. 
When updating the score of each operator at the end of a segment, 
we consider an increment of 3 points. The final parameter settings are 
summarized in Table  4.

4.1.2. The effect of the TS𝑝𝑜𝑝 algorithm on the solution quality
This section investigates the effect of the TS𝑝𝑜𝑝 algorithm on the 

performance of the proposed solution method. We use a set of instances 
that contain a total number of 50 requests but are different in terms 
of one or more of the other features, e.g., the number of reserved 
and selective requests, the number of vehicles, their capacities, period 
windows, and time windows. To quantify the effect of ITS, we first run 
the HALNS algorithm on each instance three times and then exclude 
ITS from the algorithm and run the ALNS for three more rounds, 𝐶𝑖, 
𝑖 = 1, 2,… , 6. We then set 𝐶𝑏𝑒𝑠𝑡 equal to the best value of the six outputs. 
To make the results comparable, we calculate the Ratio of Performance 
to Deviation (RPD) for each run as 𝑅𝑃𝐷𝑖 = 100 × |

𝐶𝑏𝑒𝑠𝑡−𝐶𝑖
𝐶𝑏𝑒𝑠𝑡

|.
Table  5 summarizes the results of the analysis. The table shows that, 

on average, HALNS which benefits from the TS𝑝𝑜𝑝 algorithm performs 
better in the instances used in the experiments. In this table, Diversity is 
the spread of solutions on the Pareto front, MID stands for the proximity 
of solutions on the Pareto front to the ideal reference point, and Time is 
the total CPU time required to run an instance. When calculating RPD 
for each metric, a lower value is more desirable for this comparison.

As shown in Table  5, the TS𝑝𝑜𝑝 algorithm consistently improves the 
quality of the solution in all three metrics used in the experiments. 
In particular, notable improvements can be made for instances that 
feature both types of time windows when employing the ITS algorithm 
along with the ALNS heuristic in Diversity and MID metrics.

4.1.3. Performance assessment of the operators
To assess the operators’ performance in the solution method, we 

choose the instance 30-15-15c with both soft and hard time win-
dows. We run these two instances and measure the percentage of 
iterations that each operator is chosen in the removal or insertion 
stages. The result of this experiment is presented in Tables  6 and 7. 
As evident from these two tables, the proposed operators’ performance, 
especially that of the highest emissions operator among the proposed 
removal operators and the insertion of selective requests, has been quite 
impressive.
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Table 4
Parameters, their corresponding ranges, and final calibrated values of the parameters.
 Method Parameter Range Low Medium High Calibrated values 
 HALNS it (iteration) 50–250 50 150 250 150  
 𝑡𝑙𝑥 (Tabu list) 0.20–0.50 0.20 0.35 0.50 0.50  
 𝑡𝑙𝑦 (Tabu list) 0.10–0.40 0.10 0.25 0.40 0.25  
 𝑡𝑙𝑧 (Tabu list) 0.10–0.50 0.20 0.35 0.50 0.20  
 mr (mutation probability) 0.24–0.30 0.24 0.27 0.30 0.30  
 NSGA-II npop (size of population) 100–200 100 150 200 150  
 it (maximum number of iterations) 200–600 200 400 600 60  
 pc (crossover probability) 0.40–0.80 0.40 0.60 0.80 0.60  
 pm (mutation probability) 0.05–0.30 0.05 0.18 0.30 0.05  
 MOMA spop (size of population) 100–300 100 200 300 200  
 nit (maximum number of iterations) 200–400 200 300 400 400  
 cr (crossover rate) 0.40–0.80 0.40 0.60 0.80 0.60  
 mr (mutation rate) 0.05–0.30 0.05 0.175 0.30 0.05  
 lsf (local search frequency) 0.10–0.50 0.10 0.30 0.50 0.30  
 MOEA nop (size of population) 100–300 100 200 300 100  
 mit (maximum number of iterations) 100–500 100 300 500 500  
 crr (crossover rate) 0.50–0.90 0.50 0.70 0.90 0.70  
 mur (mutation rate) 0.05–0.30 0.05 0.175 0.30 0.175  
 MOSA T0 (initial temperature) 100–500 100 200 500 200  
 mnit (maximum number of iterations) 100–500 100 300 500 500  
 cr (cooling rate) 0.90–0.95 0.90 0.925 0.95 0.95  
Table 5
Performance of ALNS and HALNS along the three metrics with hard and soft time 
windows.
 Time Instance Metric

 window Diversity MID Time (s)
 HALNS ALNS HALNS ALNS HALNS ALNS 
 50-25-25a 17.26 20.13 15.06 24.50 19.12 18.93 
 50-25-25b 15.12 17.21 20.14 31.03 30.19 29.31 
 Hard 50-25-25c 20.27 28.07 19.13 28.12 38.88 36.96 
 50-20-30d 17.11 25.40 25.49 33.30 36.22 38.74 
 50-20-30e 10.08 19.05 21.50 25.09 28.87 29.75 
 50-25-25a 18.22 33.67 14.11 15.57 30.83 30.94 
 50-25-25b 13.20 23.15 18.20 24.16 36.91 36.10 
 Soft 50-25-25c 22.64 29.20 19.66 23.72 32.32 33.15 
 50-20-30d 13.65 21.48 27.58 30.40 36.70 35.68 
 50-20-30e 19.33 31.21 25.37 32.74 32.81 36.69 

4.2. HALNS vs. CPLEX

There are several approaches for solving bi-objective problems 
(Demir et al., 2014a). One method is to scalarize the objective func-
tions. This approach converts a bi-objective problem into a single-
objective problem. The weighting and 𝜖-constraint methods are popular 
scalarization approaches to obtain high-quality Pareto solutions. In this 
research, we use the CPLEX solver to solve a set of small-sized instances 
using these methods. To evaluate the efficiency of the proposed HALNS, 
we also solve the same instances using the HALNS heuristic algorithm. 
The results of these analyses are illustrated in Table  8.

The results show that the HALNS heuristic algorithm runs faster 
than the exact method with either 𝜖-constraint and weighting meth-
ods. Finding a feasible solution in one hour is impossible for larger 
instances, such as those with 20 requests. At the same time, the HALNS 
algorithm can converge on a high-quality solution in relatively shorter 
times. To compare the number of Pareto solutions found with each 
method, we present Fig.  1 to illustrate the Pareto fronts of 10-3-7e 
instance. The efficiency of these methods is assessed based on their 
ability to generate a well-distributed Pareto front with a reasonable 
computation time. By efficient, we refer to the method’s ability to 
generate a more continuous and gradual trade-off between the two 
objectives (profit and CO2e emissions), achieve better diversity on the 
Pareto front to offer decision makers a wider range of solutions, and 
improve convergence towards the true Pareto optimal front.
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As seen from Fig.  1, the 𝜀-constraints method provides a more 
gradual trade-off between profit and CO2e emissions compared to the 
weighting method, which tends to cluster solutions. However, the 
HALNS algorithm outperforms both, producing a broader and denser 
Pareto front. HALNS consistently outperforms the other two methods 
in the number of solutions, diversity, and time metrics. Our key obser-
vations indicate that HALNS produces more Pareto solutions (a total of 
25 solutions were obtained by HALNS, compared to 18 solutions with 
the 𝜖-constraint method and 12 solutions with the weighting method), 
ensuring a better representation of trade-offs. The 𝜀-constraint method 
offers smoother trade-offs than the weighting method but comes at a 
higher computational cost. In contrast, the weighting method results 
in fewer and more clustered solutions, limiting the decision-maker’s 
flexibility. HALNS, however, balances computational efficiency with 
high-quality Pareto solutions, making it the preferred approach for 
large-scale instances. These findings reinforce that HALNS is more 
effective and computationally efficient than exact methods.

4.3. HALNS vs. ALNS

To the best of our knowledge, no advanced heuristics algorithm 
has been proposed to solve a multi-period, multi-objective PDP with 
heterogeneous fleet of vehicles. Therefore, to evaluate the performance 
of HALNS, we can only compare it with algorithm designed for single-
objective and single-period settings with homogeneous vehicles. As a 
benchmark, we consider the algorithm proposed by Li et al. (2016). 
Since Li et al. (2016) focuses solely on profit maximization in a single-
period setting with hard time windows and homogeneous vehicles, 
we modify our assumptions to ensure comparability. Specifically, we 
discard the objective on emissions, set the number of periods equal to 
one, and assume a set of a homogeneous fleet of vehicles. We then run 
the algorithm on a set of instances introduced by Li et al. (2016). Table 
9 illustrates the results of this analysis in terms of profit values and CPU 
times.

As shown in Table  9, the proposed HALNS algorithm outperforms 
the algorithm proposed by Li et al. (2016) in most instances. We 
achieved higher profit values for all instances except ‘100-75-25g’. 
Additionally, we observed that the computational times for only a few 
instances were smaller than those of our algorithm. This represents 
a strong performance, especially considering that our algorithm was 
designed for a more complex and practical problem.
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Table 6
Performance of the removal operators used in the HALNS algorithm.
 Time window Random Least Most Shaw Similiar Highest Longest Time  
 removal profit expensive removal price emission period removal 
 (%) (%) (%) (%) (%) (%) (%) (%)  
 Hard 4.30 20 16.60 4.50 3.30 25 13 13.30  
 Soft 5.33 16.60 16.60 5.33 9 18.60 16.60 11.94  
Fig. 1. Performance of the HALNS vs. the two exact methods.
Table 7
Performance of the insertion operators used in the HALNS.
 Time window Basic greedy 2-regret 3-regret Selective requests 
 (%) (%) (%) (%)  
 Hard 18.66 26.71 21.33 33.30  
 Soft 20 21.33 32.10 26.66  

Table 8
A comparison of computational times on small-sized instances.
 Time window Instance CPU time (s)
 Exact solution HALNS 
 Weighting 𝜖-constraint  
 method method  
 10-5-5a 162.14 158.44 23.18  
 10-5-5b 183.16 185.31 25.55  
 10-5-5c 188.20 189.09 20.05  
 10-3-7d 204.14 201.19 21.37  
 Hard time 10-3-7e 187.75 176.25 20.87  
 windows 10-3-7f 205.70 202.59 19.33  
 10-7-3g 196.10 190.66 20.88  
 10-7-3h 195.88 182.60 21.48  
 10-7-3i 208.13 194.12 21.51  
 20-10-10a 3600 3600 31.23  
 20-10-10b 3600 3600 32.75  
 10-5-5a 167.50 115.55 22.20  
 10-5-5b 182.12 211.67 23.68  
 10-5-5c 188.90 194.37 21.10  
 10-3-7d 180.16 208.14 21.72  
 Soft time 10-3-7e 183.31 200.77 22.11  
 windows 10-3-7f 206.20 201.05 21.81  
 10-7-3g 181.60 190.11 22.96  
 10-7-3h 193.17 192.10 22.05  
 10-7-3i 210.96 201.52 21.30  
 20-10-10a 3600 3600 33.17  
 20-10-10b 3600 3600 32.85  

4.4. HALNS vs. NSGA-II

Efficiency and effectiveness are two main criteria for evaluating the 
performance of an algorithm. In single-objective problems, the value 
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Table 9
The efficiency and effectiveness of the proposed algorithm compared with Li et al. 
(2016).
 Instance Profit value (e ) CPU time (s)
 HALNS Li et al. (2016) HALNS Li et al. (2016) 
 30-15-15c 9546.13 9356.80 42.07 35.70  
 30-10-20d 11,747.64 11,596.60 56.19 56.30  
 30-10-20e 10,803.15 10,763.20 44.72 46  
 30-10-20f 7661.06 7478 59.10 60.50  
 30-20-10g 11,635.27 10,056.20 41.10 40.07  
 30-20-10h 11,055.28 10,268.20 46.03 47.80  
 30-20-10i 9039.75 8278.90 42.93 42  
 100-50-50a 77,745.22 74,431.90 727.76 741.23  
 100-50-50b 86,093.82 85,631.40 741.33 766.84  
 100-50-50c 114,216.05 111,717.10 517.61 515.28  
 100-25-75d 90,007.44 86,041.30 1007.52 1023  
 100-25-75e 98,828.63 96,327 914.66 985.18  
 100-25-75f 84,041.70 82,667.60 611.11 602  
 100-75-25g 58,759.19 68,543.20 834.71 866.90  

of objective function and computation time, respectively, indicate the 
effectiveness and efficiency of the algorithm. In bi-objective problems, 
convergence and diversity of Pareto solutions are two important factors 
to evaluate them (Deb, 2011). Time can still be used as a suitable metric 
to assess the algorithm’s efficiency. However, several metrics have been 
introduced in the literature for effectiveness measurement. We use
spacing to quantify the standard deviation of the solution distances in 
the Pareto front (Rahmati et al., 2013). Moreover, we apply the MID 
metric used by Rahmati et al. (2013) to measure the accessibility of 
solutions from an ideal point that is (0, 0) on the Pareto front.

To assess the quality of the proposed algorithm, in this section, 
we compare its performance with the non-dominated sorting genetic 
algorithm-II or NSGA-II applied in Mamaghani and Davari (2020) to 
solve the bi-objective periodic location-routing problem. We chose this 
algorithm as a benchmark because of its efficiency in solving problems 
based on periodic VRP. We solve each instance three times to compare 
the two algorithms. We then calculate the RPD for these six solutions as 
explained in Section 4.1.2. We then take the average of the three RPD 
values obtained from each algorithm. Figs.  2–5 depict the performance 
of each algorithm across various metrics.
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Fig. 2. The Diversity metric for the HALNS and NSGA-II algorithms with hard and soft time windows.
Regarding diversity, as illustrated in Fig.  2(a), it was observed 
that HALNS generally demonstrates better performance in hard time 
windows with lower diversity (in RPD, lower values indicate better 
performance) in all test problems with hard time windows. However, 
when considering soft time windows, as shown in Fig.  2(b) for 8 
instances (1, 2, 5, 7, 9, 10, 12, 43), the performance of NSGA-II exceeds 
HALNS in this metric. In particular, instances 11, 28, 40, and 47 
exhibit identical diversity performance for both algorithms. Fig.  3(a) 
demonstrates that, on average, HALNS outperforms NSGA-II in terms of 
MID in all instances, with the difference being insignificant for large-
sized instances, particularly within instances 38–50. Switching focus to 
soft time windows (as depicted in Fig.  3(b)), the proposed algorithm 
exhibits superior performance in all instances except instances 4 and 
13, where NSGA-II surpasses HALNS. Regarding spacing (Fig.  4), we 
note that HALNS generally exhibits superior performance, displaying 
lower spacing in most instances. Regarding the time metric, in hard 
time windows (Fig.  5(a)), the RPD of the two algorithms aligns closely, 
with an insignificant difference, meaning there is no clear priority 
between them. However, in soft time windows (Fig.  5(b)), the pro-
posed algorithm generally outperforms NSGA-II in most medium- and 
small-sized instances. As for large-sized instances, conclusive remarks 
regarding the running time of the algorithms cannot be made.

4.5. HALNS vs. MOMA

Multi-objective memetic algorithm (MOMA) is an advanced op-
timization technique that combines an evolutionary algorithm with 
local search methods to address problems involving multiple conflicting 
objectives. By integrating global exploration with local refinement, 
MOMA can effectively approximate the Pareto front, offering diverse, 
high-quality solutions . Given these characteristics, MOMA was selected 
as a comparative benchmark in this study. Its hybrid structure, which 
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aligns conceptually with the HALNS framework, makes it particularly 
suitable for evaluating the proposed approach under multi-period, bi-
objective scenarios. Specifically, MOMA’s demonstrated effectiveness 
in multi-objective combinatorial problems, including vehicle routing 
and scheduling, allows for a meaningful assessment of convergence 
behavior, solution diversity, and trade-off quality when compared to 
HALNS. 

In the context of multi-objective optimization for the green multi-
period request assignment problem, a comparative analysis is con-
ducted between the two algorithms. The differences are measured along 
the four performance indicators for two different settings; hard and soft 
time windows. The results are illustrated in Figs.  6–9. The objective is 
to assess the efficiency of MOMA in addressing the same optimization 
challenges and to determine its suitability relative to HALNS.

The diversity metric, which evaluates the extent of solution spread 
along the Pareto frontier, reveals notable differences between HALNS 
and MOMA. HALNS previously demonstrated consistent performance 
with high diversity under hard time window settings, indicating a 
well-distributed set of non-dominated solutions. Analysis of the MOMA 
results under similar constraints shows greater variability and less con-
sistency in solution distribution. The observed clustering of solutions 
in several instances suggests that while MOMA explores a wide range 
of the solution space, its coverage lacks the uniformity necessary for 
robust Pareto approximation. This trend becomes even more evident 
under soft time window scenarios, where MOMA demonstrates incon-
sistent distribution patterns, potentially reducing its effectiveness in 
supporting well-balanced decision-making among trade-off solutions.

Regarding the proximity to the ideal solution, the MID metric 
underscores HALNS’s superior convergence characteristics. The values 
extracted from MOMA’s performance under hard and soft time windows 
indicate generally higher MID scores, implying that its solutions tend to 
deviate more significantly from the ideal reference point. This outcome 
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Fig. 3. The MID metric for the HALNS and NSGA-II algorithms with hard and soft time windows.
Fig. 4. The Spacing metric for the HALNS and NSGA-II algorithms with hard and soft time windows.
suggests a reduced capability of MOMA in consistently identifying so-
lutions that are simultaneously optimal across all objectives. HALNS, in 
contrast, generates solutions that not only effectively span the solution 
space but also remain closely aligned with the theoretical optimum. 
The spacing metric, which measures the uniformity of solution intervals 
on the Pareto front, further supports the comparative advantage of 
HALNS. Lower spacing values are associated with HALNS, indicating a 
more evenly distributed set of solutions and enhancing the algorithm’s 
practicality in real-world applications where consistent trade-offs are 
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critical. In contrast, MOMA’s higher and more dispersed spacing values 
point to inconsistencies in solution spacing, which may hinder the com-
prehensive evaluation of the trade-offs between cost and environmental 
objectives.

Finally, computational efficiency remains a significant criterion for 
algorithm selection, especially in large-scale, real-time decision making 
environments. The data on execution time indicates that while MOMA 
is computationally competitive, HALNS maintains a performance ad-
vantage, particularly in instances with increased complexity and scale. 
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Fig. 5. The Time metric for the HALNS and NSGA-II algorithms with hard and soft time windows.
Fig. 6. The Diversity metric for the HALNS and MOMA algorithms with hard and soft time windows.
The relatively higher execution times observed in MOMA are likely 
attributable to its use of intensive local search and genetic operations, 
which, although potentially beneficial for solution quality, do not 
consistently translate into superior performance across the other key 
metrics. 
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4.6. HALNS vs. MOSA

In this section, we perform a comparison between the proposed 
HALNS algorithm and multi-objective simulated annealing (MOSA) to 
evaluate their effectiveness in solving the GMP-RAP. Similar to the 
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Fig. 7. The MID metric for the HALNS and MOMA algorithms with hard and soft time windows.
Fig. 8. The Spacing metric for the HALNS and MOMA algorithms with hard and soft time windows.
previous sections, the assessment focuses on convergence, diversity, 
spacing, and computational time under both hard and soft time window 
settings. In this study, MOSA was implemented using a weighting 
approach to scalarize the bi-objective function, enabling it to explore 
trade-offs within a single-objective simulated annealing framework. 
MOSA maintains a set of non-dominated solutions and employs a 
probabilistic acceptance criterion that supports exploration and pre-
vents premature convergence. Due to its simplicity, adaptability, and 
14 
established success in routing problems, MOSA serves as a relevant and 
robust baseline for evaluating the performance of HALNS.

Figs.  10–13 illustrate the comparative diversity, MID, spacing, and 
computational time performance between HALNS and MOSA in scenar-
ios of hard and soft time windows. The outcomes of the comparative 
analysis reveal several important insights. HALNS consistently achieves 
better diversity than MOSA under hard and soft time window con-
straints. The average RPD value in the diversity metric for HALNS 



E. Jelodari Mamaghani et al. Journal of Cleaner Production 519 (2025) 145855 
Fig. 9. The Time metric for the HALNS and MOMA algorithms with hard and soft time windows.
was considerably lower than that of MOSA, indicating that HALNS-
generated Pareto solutions were more evenly spread and offered better 
trade-offs for decision-makers. As shown in Fig.  10, HALNS maintains 
a more uniform and comprehensive spread across the Pareto front in 
both cases.

In terms of convergence, HALNS significantly outperforms MOSA 
across hard and soft time window settings. The average RPD values 
in the MID metric obtained by HALNS were substantially smaller than 
those achieved by MOSA, as depicted in Fig.  11. This suggests that 
HALNS provides a broader spread of solutions and generates solutions 
much closer to the ideal point, which is essential in multi-objective 
optimization.

In addition to diversity and convergence, the spacing metric further 
validates the quality of solutions obtained by HALNS. In both hard 
and soft time window settings, HALNS achieves significantly lower 
RPD values compared to MOSA. This indicates that HALNS not only 
covers a broader range of trade-offs but also distributes solutions more 
uniformly across the Pareto front. Low RPD values in the spacing 
metric are particularly important in multi-objective optimization, as 
they ensure that decision-makers are offered a well-balanced set of 
alternatives without large gaps. As confirmed by the results, HALNS 
provides consistently uniform and stable Pareto fronts, whereas MOSA-
generated solutions exhibit higher variability in spacing, leading to less 
reliable distributions. 

Investigating the differences between the two methods with respect 
to execution time shows that HALNS dominates MOSA in almost all 
instances. This is crucial particularly for large-scale instances. These 
analyses show that the computational time, as a performance indicator 
of HALNS is not only acceptable but also should be considered efficient 
relative to the quality of solutions achieved.

The remarkable performance of HALNS can be attributed to an 
important factor. HALNS integrates an Adaptive Large Neighborhood 
Search algorithm with a population-based Tabu Search and a mutation 
operator, which together enhance both intensification and diversifica-
tion throughout the search process. In contrast, MOSA predominantly 
relies on restarting local searches, which increases diversification but 
lacks a systematic intensification mechanism to exploit promising areas 
effectively. 
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4.7. HALNS vs. MOEA

This section compares the performance of the HALNS algorithm 
with that of MOEA to further validate the robustness and superiority 
of the proposed method. MOEAs are widely used in multi-objective 
optimization due to their ability to simultaneously approximate the 
Pareto front and maintain population diversity. In this study, the MOEA 
is implemented based on a weighting approach to scalarize the bi-
objective function, enabling the algorithm to evaluate trade-offs be-
tween cost and environmental impact. Despite their simplicity, MOEAs 
often suffer from slow convergence and limited local search capabil-
ities, particularly in large and complex routing problems. However, 
their population-based structure and broad applicability make MOEAs 
a relevant baseline for assessing solution diversity and convergence 
behavior in multi-objective vehicle routing settings. 

The performance of the algorithms is evaluated based on four 
criteria: diversity, convergence (measured by MID), spacing, and com-
putational time, under both hard and soft time window constraints. The 
results are presented in Figs.  14 to 17. As illustrated in the diversity 
comparison (Fig.  14), HALNS consistently outperforms MOEA across 
all problem instances under both hard and soft time window condi-
tions. HALNS achieves lower RPD values, reflecting a more uniformly 
distributed Pareto front. In contrast, MOEA generally exhibits limited 
diversity, particularly as the instance size increases. HALNS continues 
to provide broader and more stable coverage of the Pareto front across 
varying scenarios.

Fig.  15 illustrates the convergence behavior of the algorithms us-
ing the MID metric. HALNS consistently outperforms MOEA across 
all instances, achieving lower RPD values that indicate solutions are 
closer to the ideal reference point. The convergence performance of 
MOEA deteriorates notably in medium-sized instances under soft time 
window constraints and in large-sized instances under hard time win-
dow constraints. This consistent advantage emphasizes the effective-
ness of HALNS’s search intensification mechanisms, attributed to the 
integration of Adaptive Large Neighborhood Search (ALNS) with a 
population-based Tabu Search strategy.



E. Jelodari Mamaghani et al. Journal of Cleaner Production 519 (2025) 145855 
Fig. 10. The Diversity metric for the HALNS and MOSA algorithms with hard and soft time windows.
Fig. 11. The MID metric for the HALNS and MOSA algorithms with hard and soft time windows.
HALNS demonstrates a distinct performance advantage in both 
solution quality and computational efficiency. As illustrated in Fig.  16, 
HALNS achieves significantly lower spacing RPD values, highlighting 
its superior ability to generate uniformly distributed solutions across 
the Pareto front. This reflects the algorithm’s effective balance between 
exploration and exploitation. In terms of computational time (Fig.  17), 
HALNS consistently outperforms MOEA in all instances under soft time 
16 
and hard time windows constraints. Even in larger instances (both 
hard and soft time windows), HALNS maintains better efficiency. These 
results highlight the importance of the strength of HALNS in delivering 
high-quality, well-distributed solutions with lower computational over-
head, making it a robust and scalable approach for solving complex 
multi-objective problems.
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Fig. 12. The Spacing metric for the HALNS and MOSA algorithms with hard and soft time windows.
Fig. 13. The Time metric for the HALNS and MOSA algorithms with hard and soft time windows.
5. Managerial insights

We have performed a detailed analysis on the problem presented in 
the paper to derive practical insights for managers. To achieve this, we 
have examined various components of the problem for which managers 
can make better decisions. Moreover, we have quantified and analyzed 
17 
the impact of such decisions on the results of the system. Specifically, 
our analysis focuses on three key elements, namely emission targets, 
fleet size, and time windows, all of which have significant implications 
for decision-making in practice. Our numerical illustration, supported 
by a real-world-inspired case study (Appendix  B), aims to provide 
additional insights into optimal policies. In this analysis, we compare 
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Fig. 14. The Diversity metric for the HALNS and MOEA algorithms with hard and soft time windows.

Fig. 15. The MID metric for the HALNS and MOEA algorithms with hard and soft time windows.
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Fig. 16. The Spacing metric for the HALNS and MOEA algorithms with hard and soft time windows.
Fig. 17. The Time metric for the HALNS and MOEA algorithms with hard and soft time windows.
the obtained profits resulting from various strategies. Additionally, we 
conduct a sensitivity analysis to examine how optimal profits change 
under different market conditions, particularly concerning parameters.

5.1. Emissions targets

In this section, we study the effect of emission targets on logistics 
operations and allocation of requests. We assume that the carrier 
19 
intends to decrease the emissions produced by a certain level. These 
levels can be determined based on the carrier’s initiatives or following 
the targets set by authorities. To conduct this experiment, we consider 
two instances, 30-15-15c and 100-50-50b, and solve them initially 
without considering any targets for CO2e emissions. This means that 
we focus on maximizing profit while minimizing emissions. In the next 
step, we consider the minimum value obtained for emissions in each 
instance and use this value to set emission targets, i.e., we reduce the 
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Table 10
The impacts of imposing emissions targets on the problem’s solution.
 Instance Reduction CO2e emissions Profit Utilization Selective requests Vehicles 
 (%) (gr) (e ) rate (%) served (#) used (#) 
 – 17,813.07 8989.48 38.26 11 9  
 10 16,031.76 8704.60 40.05 10 8  
 15 15,141.11 8477.33 42.18 9 7  
 30-15-15c with 20 14,250.46 8192.15 45.31 9 7  
 Hard time windows 25 13,359.80 7831.20 46.37 8 6  
 30 12,469.15 7557.04 49.10 7 5  
 35 11,578.49 7306.68 52.72 6 4  
 40 10,687.84 7067.13 55.44 5 3  
 – 17,107.12 9212.17 41.11 11 9  
 10 15,396.41 8923.85 42.56 10 8  
 15 14,541.05 8757.19 44.07 9 7  
 30-15-15c with 20 13,685.69 8431.30 47.38 8 6  
 Soft time windows 25 12,830.34 8161.47 49.15 7 5  
 30 11,974.98 7882.28 53.93 6 4  
 35 11,119.63 7506.38 55.67 5 3  
 40 10,264.27 7383.70 59.48 4 3  
 – 56,046.48 71,158.20 38.15 43 30  
 10 50,441.40 66,413.74 39.47 40 29  
 15 47,639.51 61,745.46 41.33 39 28  
 100-50-50b with 20 44,837.18 55,816.18 43.10 37 28  
 Hard time windows 25 42,034.86 48,443.68 45.19 35 27  
 30 39,232.53 42,175.06 49.57 32 26  
 35 36,430.21 35,971.12 53.09 30 25  
 40 33,627.88 30,775.96 57.73 27 24  
 – 55,171.22 75,309.28 40.18 42 30  
 10 49,654.09 64,434.93 41.56 41 29  
 15 46,895.53 60,963.30 43.80 39 28  
 100-50-50b with 20 44,136.97 55,746.28 44.26 38 28  
 Soft time windows 25 41,378.41 51,788.91 46.68 36 27  
 30 38,619.85 46,440.70 48.12 35 26  
 35 35,861.30 43,638.63 51.03 33 25  
 40 33,102.73 39,131.55 55.71 31 24  
value by 10%, 15%, 20%, 25%, 30%, 35%, and 40%. Finally, we run a 
profit maximization problem while imposing the emission targets. The 
results of this experiment are presented in Table  10.

As illustrated in the table, setting emission targets significantly 
impacts the profits earned. More strict emission targets force the model 
to utilize the vehicles’ capacity as much as possible. This setting also 
increases the utilization rate and decreases the number of vehicles 
used. As such, selective requests that are further away from others 
become less interesting from an environmental perspective, given the 
high amount of CO2e emissions produced due to serving them, even 
if they offer relatively high margins. In such cases, the model seeks 
clusters of requests that are closely located to each other to ensure a 
high utilization rate while minimizing marginal costs.

5.2. Fleet size

One of the most critical decisions managers must make in the trans-
portation sector is to determine the appropriate size of their fleet. Given 
the financial significance of such decisions, it is crucial to understand 
how they impact the system’s performance before taking any action. To 
perform this analysis, we consider one small and one large instance and 
increase their fleet sizes by increments of one and three, respectively. 
This analysis highlights the effects of such investments on a carrier’s 
performance.

In this problem, selective requests could be delivered within a 
specific period window, and indeed, delivering early in that period 
window would create higher value for the customer. We measure the 
improvement of the system in terms of the delivery time of those 
requests by introducing a new metric, delivery performance. This metric 
can take values between 0% and 100%, where 0% means that all selec-
tive requests in the corresponding instance are served during the last 
period of their period window. In contrast, a value of 100% indicates 
that all selective requests are received during the first period of their 
period window. The analysis results are summarized in Table  11.
20 
Intuitively, increasing capacity enables the carriers to serve more 
selective requests, thereby increasing profits. However, it is important 
to note the significance of this increase. This experiment also demon-
strates that expanding the fleet size leads to improved performance in 
terms of delivery time, meaning more customers receive their cargo 
earlier within their period window, especially in large-sized instances. 
However, this improvement comes with the drawback of elevated emis-
sions. Therefore, managers should conduct a detailed analysis before 
making such decisions.

5.3. Time windows

One of the restrictive properties of some VRPs is the time windows 
defined by customers. In the problem discussed in this research, we 
assume that customers can set two types of time windows (hard and 
soft) for their shipments. In this section, we explore the impacts of 
these constraints on the solution. To end this, we investigate two 
scenarios. First, we examine the original constraints, which include 
both hard and soft time window constraints, and then solve the problem 
again without considering the time window constraints. By comparing 
the results from these two scenarios, we quantify the impact of time 
windows on operations. This numerical comparison provides valuable 
insights for managers, helping them understand the implications of 
time windows on their operations. Based on this analysis, managers 
can offer customers incentives to relax time windows when feasible, 
thereby reducing costs and emissions. The results of this analysis are 
presented in Table  12.

Relaxing time windows significantly enhances the performance of 
the transportation plan, as evidenced in Table  12. The improvements 
are found to be substantial. As indicated in the table, when time 
windows were removed for medium-sized instances, profits increased 
by 28.74% for problems with soft time window constraints and by 
30.46% for problems with hard time window constraints. In large 
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Table 11
The impacts of fleet size on the problem’s solution.
 Instance Vehicles Profit CO2e emissions Utilization Selective requests Delivery  
 used (#) (e ) (gr) rate (%) served (#) performance (%) 
 9 8989.48 17,813.07 38.26 11 43.26  
 30-15-15c 10 9850.37 18,721.30 37.20 12 43.87  
 Hard time windows 11 10,760.22 19,861.47 36.77 13 44.61  
 12 10,111.90 21,090.70 36.12 13 45.05  
 13 11,740.71 23,751.33 35.35 14 50.17  
 9 9212.17 17,107.12 41.11 11 48.17  
 30-15-15c 10 9075.31 17,963.12 40.87 11 48.86  
 Soft time windows 11 9765.15 18,455.44 39.26 12 50.24  
 12 10,438.75 19,060.13 38.61 13 51.63  
 13 12,217.41 21,187.59 36.91 14 55.10  
 30 71,158.20 56,046.48 38.15 43 49.92  
 100-50-50b 33 74,869.16 60,205.71 37.47 45 53.54  
 Hard time windows 36 76,020.70 63,384.15 36.29 46 55.08  
 39 81,390.17 67,578.63 35.14 48 58.61  
 42 83,764.25 71,192.58 34.74 49 62.22  
 30 75,309.28 55,171.22 40.18 42 52.47  
 100-50-50b 33 75,960.18 59,620.11 39.37 43 54.60  
 Soft time windows 36 78,547.33 64,719.90 37.94 45 56.17  
 39 83,011.56 67,118.74 35.46 47 59.33  
 42 95,763.66 70,016.42 33.80 49 64.48  
Table 12
Hard versus soft time windows.
 Instance Time Profit CO2e emissions Selective requests Delivery  
 windows (e ) (gr) served (#) performance (%) 
 30-15-15c Hard 8989.48 17,813.07 11 43.26  
 Soft 9212.17 17,107.12 11 48.17  
 – 12,928.21 15,377.56 14 55.33  
 Improvement rate (Hard) +30.46% −13.67%  
 Improvement rate (Soft) +28.74% −10.11%  
 100-50-50b Hard 71,158.20 56,046.48 43 49.92  
 Soft 75,309.28 55,171.22 42 52.47  
 – 90,130.16 43,380.09 45 60.13  
 Improvement rate (Hard) +21.4% −22.60%  
 Improvement rate (Soft) +16.44% −21.37%  
instances, profit improvements were 16.44% for soft time windows and 
21.04% for hard time windows. Furthermore, executing medium-sized 
instances without soft time window constraints led to a noteworthy 
10.11% reduction in CO2e emissions. Similarly, for instances without 
hard time window constraints, there was a significant 13.67% reduction 
in CO2e emissions. Furthermore, when running large-sized instances 
without soft and hard time windows, we observed reductions in CO2e 
emissions of 21.37% and 22.60%, respectively.

Beyond the improvements in the objective functions, there are 
notable delivery times enhancements. This experiment aims to quan-
titatively assess the impact of time windows on solutions, providing 
managers with insights to make informed trade-offs. By analyzing the 
effects of time windows on profit and CO2e emissions, this study helps 
managers to weigh the advantages and disadvantages of implementing 
time windows and make decisions accordingly.

6. Conclusions

We have conducted a comprehensive study addressing a request 
assignment problem within the context of the pickup and delivery 
problem, referred to as A green multi-period request assignment prob-
lem in road freight transport (GMP-RAP). This problem considers two 
distinct requests: reserved requests, which are mandatory to serve 
within predefined periods, and selective requests, which are optional. 
For selective requests, a specific period window exists during which 
they can be accommodated, with a preference for serving them as close 
as possible to their lower bound.

Our formulated problem combines economic and environmental ob-
jectives, framed as a bi-objective mixed-integer programming formula-
tion, featuring hard and soft time windows and a fleet of heterogeneous 
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vehicles. The first objective function seeks to maximize total profit, 
while the second objective aims to minimize CO2e emissions. To tackle 
this problem, we employed various solution methods, including exact 𝜖-
constraint optimization, weighting methods, and, particularly for larger 
instances due to the problem’s NP-hard nature, a novel hybrid Adaptive 
Large Neighborhood Search (HALNS) algorithm incorporating TS𝑝𝑜𝑝
(population-based TS with a mutation operator) and four local search 
strategies. To improve the efficiency of our algorithm, we utilized the 
Taguchi approach to fine-tune the HALNS’s parameters, significantly 
contributing to its improved performance.

Our extensive computational results were compared with NSGA-II, 
MOMA, MOSA, and MOEA across four essential metrics: CPU time, 
diversity, MID, and spacing. The performance of each algorithm was 
assessed against these metrics, highlighting the efficiency and effec-
tiveness of our proposed hybrid algorithm. Furthermore, we provided 
managerial insights, focusing on the influence of key parameters such 
as the number of vehicles, CO2e emissions, and time windows on 
the studied bi-objective formulation. This analysis provides valuable 
guidance for smaller logistics companies by helping them optimize their 
operations by making informed decisions. Companies can strategically 
adjust fleet size and time window settings to maximize profits while 
minimizing CO2e emissions.

Although this study offers valuable contributions, it is important 
to acknowledge certain limitations. First, the problem formulation 
assumes deterministic parameters, such as demand, travel times, and 
costs. However, in real-world road freight transport, these factors are 
often subject to variability. Secondly, while our study focuses on eco-
nomic and environmental objectives, other relevant sustainability fac-
tors, such as social considerations (e.g., driver satisfaction, working 
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Table 13
Problem context overview.
 Aspect Details  
 Planning horizon Five days (Monday–Friday), with reserved requests (pre-assigned orders) and selective requests (optional assignments).  
 Fleet composition 10 heterogeneous vehicles:  
 - 4 electric vans (Capacity: 10 parcels, Cost: e15 per trip, CO2 emissions: 0 g/km).  
 - 6 diesel trucks (Capacity: 40 parcels, Cost: e25 per trip, CO2 emissions: 210 g/km).  
 Pickup and delivery requests  
 - Time-sensitive e-commerce orders must be picked up from suppliers and delivered to customers within specific time windows. 
 - Flexible bulk shipments can be assigned dynamically to improve vehicle utilization.  
 Optimization goals Optimize pickup and delivery assignment, fleet utilization, and routing while maintaining profitability and sustainability.  
hours, and equity in workload distribution), remain unexplored. Inte-
grating such aspects could provide a more holistic approach to sustain-
able logistics planning.

Future research could also explore exact algorithmic approaches, 
such as column generation, to improve solution quality, particularly for 
large-scale instances. Furthermore, implementing the proposed prob-
lem in a real-world setting with realistic parameters would allow a 
more comprehensive evaluation of its tangible impacts on profits and 
CO2e emissions.
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Appendix A. Flowchart

Fig.  18 gives an overview of all the components of the proposed 
solution method.

Appendix B. Case study

We present a case study inspired by real-world operations of an 
urban LTL freight carrier in Amsterdam, managing PD logistics for a 
retailer handling both perishable and ambient goods. Table  13 provides 
an overview of the case. Using the HALNS algorithm, we optimize 
key operational decisions, including request assignment, vehicle se-
lection, PD sequencing, and routing over a five-day planning horizon 
(Monday–Friday). The carrier operates a heterogeneous fleet with vary-
ing capacities, costs, and emissions. Time-sensitive shipments must be 
picked up and delivered within strict time windows, while ambient 
goods can be scheduled dynamically based on vehicle capacity and 
routing efficiency. The objective is to improve vehicle utilization and 
routing strategies while maintaining cost-effectiveness and minimizing 
environmental impact.

Table  14 details the assignment of requests: reserved requests, such 
as perishable goods, follow fixed service days, while selective requests, 
22 
Fig. 18. The flowchart of the solution methodology.

Table 14
Assignment of requests to days of the week.
 Day Total requests Reserved requests Selective requests 
 Monday 48 35 13  
 Tuesday 55 38 17  
 Wednesday 42 30 12  
 Thursday 50 36 14  
 Friday 47 32 15  

such as ambient products, are dynamically scheduled based on vehicle 
capacity and routing efficiency. 

Vehicles are assigned based on cost, capacity, and emission con-
straints to optimize efficiency as shown in Table  15. The HALNS 
algorithm optimizes the order in which requests are served by ensuring 
that pickup always precedes delivery for all shipments. It effectively 
clusters nearby requests, minimizing unnecessary travel and improving 
overall efficiency. For instance, the algorithm consolidates deliveries 
into a single optimized route rather than making three separate trips 
to a distribution hub, significantly reducing travel time and cost.

The optimized routing strategy effectively reduces total travel dis-
tance and minimizes empty mileage, leading to greater efficiency. For 
example, a route initially spanned 140 km was optimized to 105 km, 
resulting in fuel savings and lower emissions (Table  15). 
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Table 15
Vehicle assignment to requests.
 Vehicle type Assigned deliveries Avg. distance (km) CO2 emissions (kg) 
 Electric van 18 12 0  
 Diesel truck 24 50 10.50  

Table 16
Optimized routing.
 Metric Before 

optimization
After 
optimization

Improvement (%) 

 Total distance (km) 140 105 25  
 Empty mileage (km) 40 18 55  
 CO2 emissions (kg) 18.20 12.50 31  
 Fuel cost (e) 120 98 18  

The optimized PD schedule brings significant improvements, includ-
ing a 31% reduction in CO2e emissions, aligning with sustainability 
goals (Table  16). Additionally, vehicle utilization improved by 28%, 
resulting in fewer trips and cost savings, while operational costs de-
creased by 18%, enhancing profitability without compromising service 
levels. Furthermore, fleet efficiency increased, enabling the company 
to handle 15% more requests using the same resources. This case 
study demonstrates how the proposed approach optimizes PD logistics, 
serving as a practical decision-making tool for logistics providers and 
freight carriers.

Data availability

Data will be made available on request.
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