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A B S T R A C T

Auxetic structures have been utilized in various fields due to their unique deformation patterns and functional 
versatility. However, most research has focused on isotropic auxetic structures. Orthogonal anisotropic auxetic 
structures, which can exhibit a negative Poisson’s ratio below -1 in a single direction, have not been thoroughly 
investigated, despite their unique applications in vascular stents, sensors, piezoelectric energy harvesters and 
many other fields. In this study, a novel orthogonal anisotropic auxetic structure with enhanced auxeticity 
(ASEA) was obtained through topology optimization using a modified SIMP method and an energy-based ho-
mogenization approach. Different initial design domains and varied topology optimization parameters were 
employed to mitigate the influence of optimization parameters on the final results and to discover more topo-
logical configurations. The Poisson’s ratios of the obtained unit cells were calculated using the energy homog-
enization method. The unit cell with the minimum auxetic ratio was selected and simplified for subsequent 
parametric design and analysis. Subsequently, quasi-static compression tests and finite element simulations were 
conducted to investigate the deformation, energy absorption, and Poisson’s ratio properties of the structure. The 
influence of structural parameters on the structural properties was thoroughly studied. Results show that the 
Poisson’s ratio of the structure could reach -4 to -6 in the elastic stage and then decay rapidly to 0 with increasing 
strain. The mechanical properties of the structure are programmable by altering the structural parameters. This 
study provides a new approach to designing anisotropic auxetic structure with enhanced auxeticity.

1. Introduction

Mechanical metamaterials are a class of special artificially designed 
materials that achieve exceptional properties unattainable by conven-
tional materials through the unique design of their geometric structure 
and distribution of constituent materials [1–4]. The development of 
additive manufacturing has made it feasible to fabricate structures with 
complex geometries [5,6]. Numerous studies have realized mechanical 
metamaterial with counterintuitive properties such as negative stiffness 
[7,8], zero stiffness [9,10], negative thermal expansion coefficient 
[11–13], zero thermal expansion coefficient [14,15], zero Poisson’s 
ratio [16,17], and negative Poisson’s ratio [18–21]. Among these, 
structures with negative Poisson’s ratio, commonly known as auxetic 
structures, are one of the most extensively studied types of mechanical 
metamaterials. When auxetic structures are subjected to axial 
compression, they exhibit contraction in the transverse direction, and 
vice versa. This distinctive deformation mechanism endows auxetic 
structures with superior crashworthiness [22], improved fracture 

toughness [23], and increased shear resistance [24]. However, most 
existing research focuses on designing isotropic negative Poisson’s ratio 
structures that approach the lower bound (-1) [25–27], while studies on 
anisotropic structures with enhanced auxeticity (ASEA) remain limited.

Isotropic materials exhibit uniformity in all directions, with a theo-
retical Poisson’s ratio limit ranging from -1 to 0.5. In contrast, aniso-
tropic materials show different properties in different directions. 
According to the orthotropic constitutive law, thermodynamics predicts 
a general limit on Poisson’s ratios within the linear and stable elastic 
regime: 0 ≤ νijνji< 1, where νij and νji are the Poisson’s ratios in two 
orthogonal directions [28]. Therefore, anisotropic structures can ach-
ieve arbitrarily large positive or negative Poisson’s ratios in a single 
direction, which makes them highly promising for a wide range of ap-
plications across various fields. Anisotropic auxetic structures can offer 
great axial stiffness and lateral deformation capabilities [29,30]. 
Vascular stents designed with highly anisotropic auxetic structures 
(Fig. 1(a)) exhibit excellent expansion deformation capabilities. These 
stents show significant radial contraction when axial pressure is applied 

* Corresponding author.
E-mail address: wuz12@cardiff.ac.uk (Z. Wu). 

Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

https://doi.org/10.1016/j.tws.2025.113478
Received 7 February 2025; Received in revised form 28 April 2025; Accepted 19 May 2025  

Thin–Walled Structures 215 (2025) 113478 

Available online 20 May 2025 
0263-8231/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0009-0001-9597-4961
https://orcid.org/0009-0001-9597-4961
https://orcid.org/0000-0001-7100-3282
https://orcid.org/0000-0001-7100-3282
mailto:wuz12@cardiff.ac.uk
www.sciencedirect.com/science/journal/02638231
https://www.elsevier.com/locate/tws
https://doi.org/10.1016/j.tws.2025.113478
https://doi.org/10.1016/j.tws.2025.113478
http://creativecommons.org/licenses/by/4.0/


and remain stable axially under radial pressure [31–33]. Auxetic 
structures exhibit exceptional energy absorption capabilities and have a 
high specific energy absorption capacity due to the unique deformation 
pattern [34]. Therefore, they can be used as fillers in energy-absorbing 
devices as shown in (Fig. 1(b). Because the Poisson’s ratio of highly 
anisotropic auxetic structures can be less than -1, these structures can 
exhibit greater deformation in one direction when subjected to defor-
mation in another direction, thus amplifying strain. Auxetic piezoelec-
tric energy harvesters (see Fig. 1(c)) can simultaneously activate the d31 
and d32 modes, thereby increasing the charge transfer pathways in the 
piezoelectric material and improving energy harvesting efficiency [35,
36]. The piezoelectric power output is related to the magnitude of stress 
in two directions; the greater the stress, the higher the power output. 
Thus, piezoelectric energy harvesters with enhanced auxeticity can 
generate greater stress perpendicular to the force direction, enhancing 
power output. As shown in Fig. 1(d), piezoresistive strain sensors with 
enhanced auxetic substrates can exhibit improved sensitivity, and the 
piezoresistive sensitivity of the sensor increases with the decrease in the 
substrate’s Poisson’s ratio [37,38].

Despite the promising applications of ASEA across various fields, 
research on their design methodologies and mechanical properties re-
mains limited. In recent years, a variety of basic auxetic unit cells have 
been proposed, including chiral [39], arrow-head [40], re-entrant [41], 
star [42], and origami [43] structures. Many new auxetic structures 
were developed based on these unit cells. Zhang et al [44] studied the 
negative Poisson’s ratio effect of re-entrant structures under tension, 
finding that their Poisson’s ratio can reach as low as -4. Zhang et al [45] 
and Xu et al [46] replaced the inclined beams of re-entrant structures 
with cosine-shaped buckling beams and the auxeticity of the structure 
was improved by 28 %. Lu et al [41] combined star and circular shapes 
to enhance both the Young’s modulus and auxeticity effect, achieving a 
minimum negative Poisson’s ratio of -2.5 through structural parameter 
adjustments. Beyond these foundational auxetic structures, researchers 
have introduced more complex and novel auxetic structures inspired by 
biomimetic concepts. For instance, inspired by the shape of butterfly 
wings, Alomarah et al [47] proposed a new type of auxetic structure 
with two plateau stages and high specific energy absorption. Ma et al 
[48] developed lattice structures with a tunable Poisson’s ratio based on 
the shape of a horseshoe. Zhang et al [49] studied the horseshoe lattice 
structures with different unit cells, and investigated the effect of the cell 
wall angle on the energy absorption and failure mechanisms. Chen et al 

[50], inspired by hedgehog spines, invented a novel helmet design with 
excellent protective properties. Jiang et al [51] proposed a biomimetic 
self-similar negative Poisson’s ratio structure with enhanced crashwor-
thiness and energy absorption capacity according to the shape of the 
microstructure of coconut palm.

Although the approaches mentioned above can obtain novel and 
high-performance metamaterials, the structural topology and design 
space may be confined to a limited range. Topology optimization, which 
seeks the optimal distribution of material within a design domain, has 
demonstrated significant success in designing metamaterials with target 
or extreme properties subject to specific constraints [52]. Zheng et al 
[53] utilized the bi-directional evolutionary structural optimization 
(BESO) method and energy-based homogenization method (EBHM) to 
design mechanical metamaterials with auxetic properties. Gupta et al 
[54] designed multi-material auxetic structures based on topology 
optimization while considering stress constraints. Li et al [27] employed 
a discrete topology optimization method to achieve metamaterials with 
extreme isotropy and negative Poisson’s ratio which is close to the lower 
bound -1. Auxetic mechanical metamaterials with gradually stiffer 
property were obtained through topology optimization and parametric 
optimization [55,56]. Most of the research mentioned above focuses on 
isotropic auxetic structures, and very few have investigated orthogonal 
anisotropic auxetic structures.

In this paper, a novel auxetic structure with enhanced auxeticity is 
developed. Topology optimization method is utilized to obtain the 
optimal topology of the structure with the objective of minimizing the 
structural Poisson’s ratio. In order to explore more structural topologies 
with enhanced auxeticity, the topology optimization was carried out 
using different initial design domains and optimization parameters. The 
optimized structure with lowest negative Poisson’s ratio was selected for 
further study. Axial compression tests and finite element analysis were 
carried out to investigate the deformation mechanism, Poisson’s ratio 
and energy absorption properties of the structure under in-plane 
compression. Parametric analysis was carried out to investigate the ef-
fect of geometric parameters on the Poisson’s ratio and compression 
performance of the structure.

2. Design methodology

In order to obtain the structural configuration with enhanced aux-
eticity, topology optimization methods were employed to find the 

Fig. 1. The applications of anisotropic auxetic structures with enhanced negative Poisson’s ratio. (a) Auxetic vascular stent. (b) Energy absorber. (c) Piezoelectric 
energy harvesters [35]. (d) High performance stretchable stain sensors.
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optimal configuration. Different topology optimization parameters were 
employed to obtain a variety of topology configurations. The structural 
topology with minimum negative Poisson’s ratio was selected and 
simplified for further research.

2.1. Topology optimization method

Topology optimization methods are often employed to discover 
optimal topologies that satisfy specific constraints. In this paper, to-
pology optimization methods based on energy homogenization [57] and 
modified solid isotropic material with penalization (SIMP) method are 
used to obtain periodic unit cell with negative Poisson’s ratio effect. 
Based on the homogenization theory, the effective uniform elasticity 
tensor of a periodic structure can be expressed in the following form 
[58]: 

EH
ijkl =

1
|Y|

∫

Y
Epqrs

(
ε0(ij)

pq − ε(ij)pq

)(
ε0(kl)

rs − ε(kl)
rs

)
dV, (1) 

where Y denotes the area of the unit cell, Epqrs is the locally varying 
stiffness tensor, ε0(ij)

pq is the applied macroscopic strain fields which in-
duces the locally varying strain fields. In finite element analysis, the 
design domain is discretized into N finite elements, and Eq. (1) can be 
further calculated as follows 

EH
ijkl =

1
|V|

∑N

e=1

(
uA(ij)

e
)TkeuA(kl)

e , (2) 

where uA(kl)
e are the element displacement solutions to the macro strain 

fields ε0(ij)
pq and ke is the element stiffness matrix. The modified SIMP 

method [59] is used here and the element Young’s modulus is defined as 

Ee(ρe) = Emin + ρe
p(E0 − Emin), (3) 

where E0 is the Young’s modulus of solid material and Emin is a very 
small Young’s modulus assigned to void element to avoid singularity of 
the stiff matrix, ρerepresents the element density, p is the penalty factor 
used to improve the stability of the algorithm. The mathematical 
formulation of the optimization problem is formulated as follows 

min
ρ

: g
(

EH
ijkl(ρ)

)

s.t. : KUA(kl) = F(kl)

:
∑N

e=1
veρe

/

|Y| ≤ ϑ

: 0 ≤ ρe ≤ 1, e = 1,…,N

(4) 

where g
(

EH
ijkl(ρ)

)
is the optimization objective function based on the 

effective elasticity tensor as a function of the relative density ρ, Kis the 
global stiffness matrix, UA(kl) and F(kl) are the global displacement vector 
and the external force vector for the test case (kl), respectively. ρe rep-
resents the element volume fraction and ϑ is the upper bound on the 
volume fraction. Based on the definition of Poisson’s ratio, it can be 
determined as follows 

μ =
E1122

E1111
. (5) 

However, if the above formula is directly used as the optimization 
objective, the optimization process may be unstable [58]. Therefore, an 
additional bulk modulus constraint is added, and the final optimization 
objective function can be written as 

g = E1122 − βl(E1111 + E2222), (6) 

where β is a fixed parameter and is defined as 0.8 in this paper and l is 
the iteration number. Using this optimization objective function, the 

optimizer initially focuses on maximizing both the horizontal and ver-
tical stiffness of the material. As the optimization process continues, the 
optimizer then shifts its focus towards minimizing E1122 to achieve a 
negative Poisson’s ratio. The sensitivity analysis can be calculated as 

∂g
∂ρe

=
∂E1122

∂ρe
− βl

(
∂E1111

∂ρe
+

∂E2222

∂ρe

)

, (7) 

and the sensitivity for the homogenized elasticity tensor can be formu-
lated as 

∂EH
ijkl

∂ρe
=

1
|Y|

pρp− 1
e (E0 − Emin)

(
uA(ij)

e

)Tk0uA(kl)
e . (8) 

The optimization parameters, such as the initial design domain, the 
penalization factor (p) and the filter radius (r), have significant impacts 
on the final design. Based on previous research [60], different initial 
design domain could lead to totally different final results. An increased 
number of holes signifies a more complex topology, resulting in a more 
intricate final structure, which could have better properties. Therefore, 
we employed ten distinct initial configurations of the design domain, as 
depicted in Fig. 2, to conduct comprehensive topology optimization 
studies aimed at expanding design space. These structures are uniaxially 
symmetric and were generated by varying the position and size of the 
holes. According to the study [57], different filter radius and penaliza-
tion factor could result in different structures. Topology optimization 
with smaller filter radius can generate structures with richer details. A 
larger penalization factor accelerates algorithm convergence, producing 
clearer structures; however, it may also cause the algorithm to become 
trapped in local minima. Therefore, we selected a range of optimization 
parameters based on existing research and experience. The target den-
sity was varied from 0.1 to 0.7 in increments of 0.05, the filter radius 
ranged from 2 to 6 in steps of 1, and the penalization factor was set at 3, 
5, and 7. After excluding non-convergent and redundant structures, a 
total of 841 distinct optimized topologies were obtained. Their corre-
sponding Poisson’s ratios and representative unit cell structures are 
depicted in Fig. 3. It can be observed that most optimized structures 
exhibit Poisson’s ratios between 0 and -1, with only a few configurations 
demonstrating enhanced negative Poisson’s ratio characteristics. This 
indicates that conducting extensive topology optimization with varied 
parameters can yield structures with extreme mechanical properties. 
Table 1 shows a series of optimized structural topologies with different 
optimization parameters. Some typical convergence curves during the 
optimization process are illustrated in Fig. 4, and the curve number 
corresponds to the optimization parameters and structures shown in 
Table 1. The iteration process of the structure with minimal Poisson’s 
ratio is shown in Fig. 5. It can be seen that the optimized structures 
exhibit negative Poisson’s ratio effects and possess diverse and complex 
topologies that are difficult to achieve through biomimetic design or 
intuition-based methods. It is noteworthy that structures 1–3 exhibit 
extreme negative Poisson’s ratio effects (-15.434). The elasticity tensor 
matrices of these structures possess four independent components, and 
the Poisson’s ratio is different along x- and y- directions. This reflects 
that these structures are orthotropic anisotropic structures with 2 sym-
metry axes, contrasting with the majority of studied configurations that 
exhibit orthogonally isotropic behavior. Further experiments and finite 
element analysis were conducted to study this unique structure 
comprehensively.

2.2. Design parameters

The obtained topology is further simplified to facilitate parametric 
analysis and improve manufacturability. Although additive 
manufacturing allows the fabrication of highly complex structures, 
intricate designs are challenging to analyze using simpler methods and 
are difficult to accurately print [61]. The structure shown in Fig. 6 (a) 
has non-uniform thickness, which significantly increases the complexity 

K. Gao et al.                                                                                                                                                                                                                                     Thin-Walled Structures 215 (2025) 113478 

3 



of design analysis and manufacturing. Therefore, we adopt the simpli-
fied structure depicted in Fig. 6 (b), where the most significant modifi-
cation is transforming the structure into one with uniform thickness.

The simplified unit cell resembles a combination formed by con-
necting two elongated re-entrant structures and one short, wide re- 
entrant structure with straight rods. The dimensions of the unit cell 
are defined L = 30mm considering the printing precision. The primary 
design parameters include the thickness of the cell walls t, the width of 
sub-structures a1, a2, the length of inclined and vertical rods in the 
elongated sub-structure b1,b2,b3, the length of inclined and vertical rods 
in the short, wide sub-structure c1, c2, c3, the angle of inclined rods in 
both sub-structuresα1, α2, and the distance from the center of the 
elongated substructure to the left boundary of the unit cell d. To further 
simplify the parameters of the unit cell, we assume a1 = a2 = a,b1 = b2 
= b3 = b, c1 = c2 = c3 = c, α1 = α2 = α, d = L

6, resulting in a 
centrosymmetric unit cell. The lengths of the upper and lower con-
necting rods in the elongated sub-structure are denoted as m1 and m2, 
and can be calculated as Eq. (9), while the lengths of the upper and lower 
connecting rods in the short, wide sub-structure are denoted as n1 and 
n2, and can be derived by Eq. (10). The length of the left connecting rod 
(p) can be calculated by Eq. (11), and the length of the right connecting 
rod (q) can be derived by Eq. (12). Furthermore, the relative density of 
the structure (ρ∗) can be estimated through the lengths and thickness of 
various cell walls, as provided in Eq. (13). It should be noted that the 
width of sub-structures has no impact on the relative density. 

m1 = m2 = m =
L − 3b

2
(9) 

n1 = n2 = n =
L − 3c

2
(10) 

p = d −
a
2
+

b
tanα (11) 

q =
L
3
− a +

(b + c)
tanα (12) 

ρ∗ =

t ×
(

14L − 20b − 10c + 8b
sinα +

8b
tanα +

4c
sinα +

4c
tanα

)

L2 (13) 

3. Experiment and numerical methods

In this section, the experiment and finite element analysis (FEA) are 
conducted to study the structure’s deformation pattern and mechanical 
responses.

3.1. Experimental setup

The novel structures were fabricated through 3D printing with Poly 
lactic acid (PLA) material. Three dog-bone were fabricated using the 

Fig. 2. Selected configurations of initial design domain.

Fig. 3. The Poisson’s ratio of the optimized structures with various initial design domain and optimization parameters. Some typical topologies are displayed.
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Table 1 
Optimal microstructures and effective elasticity matrices of optimized structures for various target density, penalization factor and filter radius.
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same base material to assess the material property. The uniaxial tensile 
test was conducted using Instron 3367 testing machine and the stress- 
strain curves are shown in Fig. 7. The obtained material property is 
presented in Table 2. As shown in Fig. 8 quasi-static uniaxial compres-
sion tests were conducted on the novel structures using SHT4605 testing 
machine, with a loading speed of 2 mm/min. The samples contained 5 ×
5 unit cells in-plane and had an out-of-plane length of 40 mm to prevent 
buckling during compression. The designed structural parameters were: 
a = 7.2mm, b = 9.0mm, c = 5mm, α = 80∘, and t = 1mm. A digital 
camera was used to capture the deformation process during the 
experiment.

3.2. Finite element model

Abaqus/Explicit was used for finite element analysis in this study. A 
schematic diagram of the finite element model is shown in Fig. 9(a). The 
structure is placed between two rigid plates to simulate the fixed and 

compression platforms of the experiment. The top plate was applied a 
downward displacement and the bottom rigid plate is fixed. The model 
is meshed using 8-node brick element with reduced integration 
(C3D8R). All surfaces are modeled with general contact interaction, 
with tangential behavior modeled using a penalty method and a friction 
coefficient of 0.4, and normal behavior modeled as hard contact. A mesh 
sensitivity analysis was conducted to select the optimal mesh size, as 
shown in Fig. 9(b), and a final average mesh size of 0.4 mm was chosen 
for the model. Additionally, to calculate the structure’s negative Pois-
son’s ratio, 16 nodes (a-p) were identified in the middle region of the 
structure, and the lateral and vertical displacements of these nodes were 
tracked during the computation. Then, Poisson’s ratio can be calculated 
with the formula shown in Eq. (14) to Eq. (16): 

ν = −
εx

εy
, (14) 

Fig. 4. The iterative curve of microstructures for different optimization parameters. The number corresponds to the optimization parameters and structures shown 
in Table 1.

Fig. 5. Initial design domain and iteration process.

Fig. 6. Simplification and design parameters of novel auxetic structures. (a) Original optimized topology. (b) Simplified unit cell topology with design parameters. 
(c) 5 × 5 array of the unit cells.
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εx =
εaf + εpg + εoh + εni

4
, (15) 

εy =
εan + εbm + εci + εdh + εej + εfi

6
, (16) 

where εaf represents the strain between node a and node f.

4. Results and discussion

4.1. Mechanical responses and deformation mode

Energy absorption indicators are commonly used to evaluate the 
mechanical properties of honeycomb structures [61]. These indicators 
primarily include plateau stress (σp), densification strain (εd) energy 
absorption (EA), and specific energy absorption (SEA). Plateau stress 
reflects the average stress experienced by the structure before reaching 
densification strain during compression, and is defined as: 

σp =

∫ εd
0 σ(ε)dε

εd
(17) 

where εd is the densification strain and is usually determined by the 

highest point of the energy absorption efficiency curve. The energy 
absorption efficiency (η) is defined as the ratio of the energy absorbed by 
the porous structure to the nominal stress and is calculated as 

η(ε) =
∫ ε

0 σ(ε)dε
σ(ε) (18) 

where ε is the nominal strain and σ is the nominal stress. The energy 
absorption (EA) is the energy absorbed by the structure before the 
densification strain, and is defined as follows: 

EA =

∫ δ

0
F(x)dx (19) 

where F(x) is the compression force, xis the compression displacement, 
andδis the displacement corresponding to the densification strain. The 
specific energy absorption (SEA) is the energy absorbed per unit mass, 
and is defined as: 

SEA =
EA
M

(20) 

where M is the total mass of the structure.
Fig. 10 shows the stress-strain responses obtained from both exper-

iments and FEA. The entire deformation process can be divided into 
three distinct stages: elastic stage, plateau stage, and densification stage. 
The elastic stage is defined as the linear region before the initial peak 
stress, while the plateau stage is defined as the region between the peak 
stress strain and the densification strain. The region after the densifi-
cation strain is referred to as the densification stage. The stress-strain 
and energy absorption efficiency curves from the experiments and FEA 

Fig. 7. (a) Experimental setup of structures; (b) Stress-strain curve of base material and geometric parameters of dog-bone-shaped specimen.

Table 2 
Specific physical and mechanical properties of PLA.

Material Elastic modulus 
(MPa)

Poisson’s 
ratio

Density (g/ 
cm3)

Yield stress 
(MPa)

PLA 2400 0.42 1.13 31

Fig. 8. Set up of the quasi-static compression experiment.
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exhibit good agreement.
Table 3 compares the calculated values of plateau stress, densifica-

tion strain, EA, and SEA which are very close, indicating that the 
developed finite element model is accurate and capable of providing 
reliable results for subsequent parametric analysis.

Fig. 11 compares the deformation processes from the experiment and 
the FEA model, with the compression displacement up to 90 mm, cor-
responding to a nominal axial strain of 0.6. The deformation process of 
the structure can also be divided into three stages: elastic stage, plateau 
stage, and densification stage. During the initial elastic stage, the 
deformation is elastic and reversible and the nominal stress increases 
linearly. Meanwhile, significant contraction occurs in the middle part of 
the structure, demonstrating a distinct negative Poisson’s ratio behavior. 

As the strain increases, some of the longer inclined ligaments begin to 
experience local buckling and the cell walls of the structure start to 
contact with each other. The nominal stress drops rapidly at this stage. 
Subsequently, it enters the plateau stage, during which numerous plastic 
hinges form in the central region, leading to overall buckling and 
instability. As the compressive displacement increases, the structure 
begins to rotate around these plastic hinges, and continuous contact 
occurs between the cell walls, forming two distinct shear bands. The 
deformation of the structure is in the shape of "S", during which the 
plateau stress slightly increases. Subsequently, the two shear bands 
become connected, buckling then occurs at the ends of the structure, 
accompanied by the formation of plastic hinges, and the ends begin to 
rotate around these hinges. As the structure is further compressed, more 
and more parts of the structures contact with each other. The stress 
continues to rise, while the rate of increase in energy absorption effi-
ciency gradually decreases. Finally, a peak of the energy absorption 
efficiency is reached, indicating the transition to the densification stage. 
The structure is considered to be compacted at this stage, because the 
stress grows steeply and it can hardly contribute to further energy 
absorption.

Fig. 12(b) shows the deformation of the unit cell located in the center 
of the structure throughout the compression process. At a global strain of 
0.0067, the structure is in the elastic stage, and the unit cell undergoes 
elastic deformation. Significant lateral deformation can be observed in 
the elongated substructures on both sides, while the lateral deformation 
in the central substructure is relatively small. When the strain reaches 
0.0129, the lateral deformation of the substructures on both sides con-
tinues to increase, causing contact in the rod, at which point the Pois-
son’s ratio of the entire structure reaches its minimum. Subsequently, 
the unit cell enters the plastic stage, buckling occurs in the rod, and 
simultaneously, the entire unit cell begins to rotate, leading to an in-
crease in Poisson’s ratio for the whole structure. As strain increases, the 
unit cell continues to rotate and gradually crushes. When strain reaches 
0.6, most parts of the unit cell begin to contact each other and become 
densely crushed, and the entire structure reached the dense stage. 
Fig. 12 (a) compares the external contours of the unit cell at strains of 0, 
0.0067, and 0.0129; it can be observed that the lateral contraction 
deformation of the unit cell is significantly greater than its vertical 
compressive deformation, confirming that the negative Poisson’s ratio 
of the structure is very small. As shown in Fig. 13(d), during its initial 
elastic stage, negative Poisson’s ratio of the structure continuously de-
creases until reaching a minimum and then gradually increases until 
stabilization; this is consistent with what was observed for unit cell 

Fig. 9. (a) Finite element model and displacement tracking points (b) Mesh sensitivity analysis.

Fig. 10. Comparison of stress-strain curve and energy absorption efficiency 
curve of experiments and numerical simulation.

Table 3 
Comparison of energy index of experiments and numerical simulation.

σp(MPa) εd EA(J) SEA(J/g)

Experiment 0.739 0.543 361.2 1.274
FEA 0.737 0.542 359.8 1.269
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deformation. It can be concluded that during this initial elastic stage, a 
small negative Poisson’s ratio in structures is caused by inherent nega-
tive Poisson’s ratio effects of individual unit cells; thereafter, an 
increasing negative Poisson’s ratio results from structural buckling and 
rotation.

4.2. Parametric analysis

In this section, the parametric analyses are carried out utilizing the 
validated finite element model to investigate the effect of structural 
parameters on the structural deformation, energy absorption, and 
Poisson’s ratio.

4.2.1. Effect of cell wall thickness (t)
The compressive stress-strain response curves of structures with 

different cell wall thicknesses (t), are shown in Fig. 13 (a). The other 
geometric parameters are set as: a = 7.2mm, b = 8.0mm,α = 80∘. The 
initial peak stress and compressive stress increase with increasing t. As 
shown in Fig. 13 (b), the plateau stress increases monotonically as t 
increases, while the densification strain decreases monotonically with 
increasing t. EA and SEA prior to densification strain are presented in 
Fig. 13 (c). EA increases monotonically as t increases, which is due to the 
greater stress response of the structure with larger t. However, SEA first 
increases and then decreases with increasing t, reaching a peak at t = 1.1 
mm. When t > 1.2 mm, SEA decreases because the mass of the structure 
also increases with t, and the structure becomes more prone to entering 
the densification stage. Fig. 13 (d) compares the Poisson’s ratio curves of 
auxetic structures with different cell wall thicknesses. The minimum 
Poisson’s ratio ranges between -4 and -6. It should be noted that as the 

structure is derived from a simplified configuration, the Poisson’s ratio is 
higher than the optimized structure calculated using the homogeneous 
method, as shown in Table 1. It can be observed that, as t decreases, the 
minimum negative Poisson’s ratio of the structure becomes smaller. This 
is because a larger t results in greater lateral constraint forces within the 
structure, thereby reducing lateral deformation. Fig. 14 illustrates the 
deformation process of structures with different cell wall thicknesses. It 
can be seen that for t = 0.8mm − 1.0mm, at a strain of 0.2, two shear 
bands appear in the middle of the structure, which then gradually 
propagate throughout the structure as compression continues. For t =
1.1 mm, only one shear band appears at a strain of 0.2, and a second 
shear band forms at a strain of 0.3 before the structure enters the 
densification stage. For t = 1.2 mm and t = 1.3 mm, no distinct shear 
bands are observed, and the structure exhibits overall buckling defor-
mation. This indicates that as the cell wall thickness increases, the 
structure’s ability to resist local buckling deformation also strengthens.

4.2.2. Effect of cell wall angle (α)
Fig. 15 presents the compressive response of structures with different 

cell wall angles (α). The other geometric parameters are set as: a =

7.2mm, b = 8.0mm,t = 1.0mm. Smaller values of α lead to overlapping 
cell walls, so we selected α = 75∘ ∼ 85∘ for further analysis. As shown in 
Fig. 15 (a), as α increases, the elastic stage of the structure becomes 
longer. This is because larger α increases the distance between cell walls, 
resulting in later contact between them and delaying the onset of 
buckling.

When α is greater than 80◦, the initial plateau stress of the structure 
is high. This phenomenon arises because the inclined cell walls align 
more closely with the principal compressive stress direction, leading to 

Fig. 11. Comparison of deformation process of experiments and numerical simulation.

Fig. 12. (a) Comparison of contour at elastic stage. (b)The deformation of the unit cell at the middle position.
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stress concentrations at specific nodes. As shown in Fig. 16, this stress 
state triggers the formation of two lateral parallel shear bands during the 
early plateau stage. These localized densification bands enhance the 
overall stiffness through two mechanisms: (1) the reorientation of struts 
within the bands creates a load-redistribution path that resists further 

collapse, and (2) the strain energy is preferentially dissipated through 
progressive buckling of struts along these bands rather than random 
plastic deformation. When α = 80∘, two continuous inclined shear bands 
form in the central region due to symmetric stress distribution, enabling 
more uniform energy dissipation. In contrast, when α < 80∘, the lower 

Fig. 13. Compression responses of structures with different t. (a) Stress-strain curves (b) Plateau stress (PS) and densification strain (DS) values.(c) Energy absorption 
(EA) and specific energy absorption (SEA) values. (d) Poisson’s ratio curves.

Fig. 14. The configuration of unit cell and deformation process of structures with different t.
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cell wall inclination reduces stress localization, resulting in plastic 
deformation without distinct shear band formation and lower plateau 
stress. The energy absorption (EA) and specific energy absorption (SEA) 
initially increase and then decrease, reaching a peak at α = 82∘. Notably, 
according to Eq. (13), increasing α reduces the structural mass, but EA 

still increases, indicating that α has a significant influence on the energy 
absorption performance of the structure. Fig. 15 (d) shows the influence 
of α on the Poisson’s ratio of the structure. It can be observed that as α 
increases, the minimum negative Poisson’s ratio decreases, and the 
strain at which the minimum negative Poisson’s ratio is reached 

Fig. 15. Compression responses of structures with different α. (a) Stress-strain curves (b) Plateau stress (PS) and densification strain (DS) values (c) Energy ab-
sorption (EA) and specific energy absorption (SEA) values. (d) Poisson’s ratio curves.

Fig. 16. The configuration of unit cell and deformation process of structures with different α.

K. Gao et al.                                                                                                                                                                                                                                     Thin-Walled Structures 215 (2025) 113478 

11 



becomes larger.

4.2.3. Effect of sub-structure height (b)
Fig. 17 illustrates the compressive stress response of structures with 

varying sub-structure heights (b). The other geometric parameters are 
set as: a = 7.2mm,α = 80∘, t = 1.0mm. It can be observed that as b in-
creases, the elastic modulus of the structure decreases, and the elastic 
stage becomes shorter. This is because larger values of b make the 
structure more susceptible to buckling. The densification strain initially 
decreases and then increases, which is related to the deformation mode 
of the structure. As shown in Fig. 18, when b is less than 7.0 mm, the 
vertical struts are relatively long and destabilizes before the sub auxetic 
structures. This results in the formation of multiple transverse shear 
bands in the middle region of the structure, enabling more compre-
hensive deformation. When b is greater than 7.0 mm, the sub auxetic 
structures are more likely to destabilize, primarily forming inclined 
shear bands that lead to extensive compression. However, when b = 7.0 
mm, the structure exhibits a mixed deformation mode, preventing it 
from being fully compressed. EA and SEA both reach the peak when b =
6.0 mm and 8.5 mm. As shown in Fig. 17(d), the initial peak Poisson’s 
ratio decreases as b increases.

4.2.4. Effect of sub-structure width (a)
The compressive stress-strain response curves of structures with 

different sub-structure width (a), are shown in Fig. 19(a). The other 
geometric parameters are set as: b = 8.0mm, α = 80∘, t = 1.0mm. 
Overall, the variation of a has a limited impact on the initial peak stress 
and compressive stress. When a = 9.0 mm, the initial peak stress 
significantly increases, exceeding 1.6 MPa, as shown in Fig. 1. (b). With 
the increase of a, the plateau stress fluctuates but remains stable be-
tween 0.6 and 0.75 MPa, indicating that a does not have a significant 
influence on the plateau stress. However, the densification strain 

generally increases with increasing a, but it drops sharply to a minimum 
value of 0.45 when a = 8 mm. Fig. 19(c) presents the energy absorption 
(EA) and specific energy absorption (SEA) before the densification 
strain. Both EA and SEA initially increase, then decrease, and increase 
again with increasing a, reaching their minimum values at a = 8 mm and 
peaking at a = 9 mm. As shown in Fig. 19(d), the minimum Poisson’s 
ratio decreases with the increase of a. Fig. 20 illustrates the deformation 
process of structures with different sub-structure width. It can be seen 
that for a = 7.5–9.0 mm, two shear bands appear in the middle of the 
structure at a strain of 0.2, and these shear bands gradually propagate 
throughout the structure as compression continues. For a = 7.0 mm, no 
distinct shear bands are observed at a strain of 0.2, but two shear bands 
form at a strain of 0.3. For a = 6.0 mm and a = 6.5 mm, no obvious shear 
bands are observed, and the structures exhibit overall buckling defor-
mation. This indicates that as the substructure width increases, the 
structure’s ability to resist local buckling deformation also strengthens.

4.2.5. Effect of sub-structure length (c)
The compressive stress-strain response curves of structures with 

different sub-structure height (c), are shown in Fig. 21(a). The other 
geometric parameters are set as: a = 7.2mm,b = 8.0mm,α = 80∘, t =

1.0mm. Generally, the variation of c has a limited impact on the initial 
peak stress and compressive stress. As shown in Fig. 21(b), with the 
increase of c, the plateau stress fluctuates between 0.7 and 0.8 MPa, and 
the densification strain varies between 0.50 and 0.56, indicating that c 
does not significantly affect the plateau stress or densification strain. 
Fig. 21(c) presents the energy absorption (EA) and specific energy ab-
sorption (SEA) before the densification strain. As c increases, EA fluc-
tuates between 300 and 400 J, and SEA varies between 1.2 and 1.4 J/g. 
Neither shows a clear trend, suggesting that c has no significant effect on 
EA or SEA. From Fig. 21(d), it can be seen that as c increases, the min-
imum negative Poisson’s ratio decreases, and the strain required to 

Fig. 17. Compression responses of structures with different b. (a) Stress-strain curves (b) Plateau stress (PS) and densification strain (DS) values. (c) Energy ab-
sorption (EA) and specific energy absorption (SEA) values. (d) Poisson’s ratio curves.
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Fig. 18. The configuration of unit cell and deformation process of structures with different sub-structure height b.

Fig. 19. Compression responses of structures with different a. (a) Stress-strain curves (b) Plateau stress (PS) and densification strain (DS) values. (c) Energy ab-
sorption (EA) and specific energy absorption (SEA) values. (d) Poisson’s ratio curves.
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Fig. 20. The configuration of unit cell and deformation process of structures with different sub-structure width a.

Fig. 21. Compression responses of structures with different c. (a) Stress-strain curves (b) Plateau stress (PS) and densification strain (DS) values. (c) Energy ab-
sorption (EA) and specific energy absorption (SEA) values. (d) Poisson’s ratio curves.
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reach the minimum negative Poisson’s ratio increases. Fig. 22 illustrates 
the deformation process of structures with different sub-structure 
length. For c = 5.0mmandc = 6.0mm, two shear bands appear in the 
middle of the structure at a strain of 0.2, and these bands gradually 
propagate throughout the structure as compression continues. For c =
7.0 mm, 8.0 mm, and 9.0 mm, no distinct shear bands are observed at a 
strain of 0.2, but two shear bands form at a strain of 0.3 and then 
propagate throughout the structure as compression continues.

4.3. Comparison with other researches

In this section, we compared the Poisson’s ratio and the normalized 
Young’s modulus along the principal axes with structures featuring 
enhanced auxeticity from recent studies [62–65]. As illustrated in 
Fig. 23 (a) and (b), similar to the Ashby material selection map, the 
Poisson’s ratio and normalized Young’s modulus are plotted as functions 

of density. The existing structures exhibit negative Poisson’s ratio 
ranging from 0 to -3, whereas the structure proposed in this study 
demonstrated lower values between -4 and -6, representing a 2 fold 
reduction compared to conventional configurations. The relative 
Young’s modulus of these structures was calculated using Eq. (21). 
While other structures show relative Young’s moduli in the range of 0–5, 
our proposed architecture achieves enhanced values of 7–20, corre-
sponding to a 3- to 6-fold improvement over state-of-the-art structures. 
Fig. 23(c) presents the unit cell configurations of these structures. Theses 
unit cell configurations in existing studies are relatively simple, derived 
from re-entrant or star-shaped structures through combinations or 
modifications. In contrast, the structures in this study, obtained through 
topology optimization, are more complex. 

E =
E∗

ES
(21) 

Fig. 22. The configuration of unit cell and deformation process of structures with different sub-structure height c.

Fig. 23. Comparison of structures in this work and other studies related to enhanced auxeticity structures. (a) Comparison of the Poisson’s ratios. (b) Comparison of 
the normalized Young’s modulus. (c) Comparison of the unit cell configurations.
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where E denotes relative Young’s modulus, E∗ is structural Young’s 
modulus and ES is the Young’s modulus of the base material. The 
structural Young’s modulus is the elastic modulus during elastic stage, 
and is calculated as: 

E∗ =
σIP

εIP
(22) 

where σIP represents the initial peak stress and εIP denotes the strain 
corresponding to the initial peak stress.

To further analyze the mechanisms behind the enhanced negative 
Poisson’s ratio and high relative Young’s modulus of the structure 
proposed in this paper, we compared the proposed structure with those 
found in other literature and discussed the enhancement mechanisms 
involved. For ASEA studied here, based on the deformation process 
illustrated in Fig. 12 and the Poisson’s ratio and stress response shown in 
Fig. 13, it can be inferred that the enhanced negative Poisson’s ratio 
effect is primarily associated with the re-entrant-like substructures on 
either side. Additionally, the lateral connecting rods of these sub-
structures further contribute to this effect. The central substructure ex-
periences minimal lateral contraction during compression, and creates 
an effective load transfer path between the upper and lower loading 
plates, which enhances the relative Young’s modulus of the entire 
structure. In contrast, structures presented in references [62,63,65] 
achieve an enhanced negative Poisson’s ratio effect through star-shaped 
configurations. These star structures can be seen as combinations of two 
re-entrant geometries along two axes; their concave features contribute 
to the enhanced negative Poisson’s ratio effect. The Star-circle structure 
[62] integrates a central circle with slanted rods at both ends to enhance 
structural stiffness. The Enhanced star-shape structure [63] utilizes two 
star-shaped designs linked by four connecting rods to boost relative 
Young’s modulus. Meanwhile, Star-shaped re-entrant structures [65] 
achieve greater structural stiffness by utilizing short rods at each corner 
to create stable substructures. While re-entrant design [64] are classic 
examples of negative Poisson’s ratio structures, it will not be discussed 
further here. A summary of relevant findings is provided in Table 4.

5. Conclusion

In this paper, we employed topology optimization using the modified 
SIMP method and energy-based homogenization approach to obtain 
structural topology with negative Poisson’s ratio characteristics. To 
mitigate the impact of local optimal solutions in topology optimization 
and to discover structures with enhanced auxeticity, we used multiple 
initial design domains and optimization parameters to conduct exten-
sive topology optimization. 841 distinct structures exhibiting negative 
Poisson’s ratio properties were generated. Among these, the structural 
topology with lowest negative Poisson’s ratios was selected, and key 
structural parameters were identified for simplifications and further 
study. Experimental and finite element analysis were conducted to study 
the deformation modes, Poisson’s ratio properties, and energy absorp-
tion of the structure. Furthermore, a parametric analysis was carried out 
to investigate the effects of cell wall thickness, cell wall angle, and sub- 
structure height on the structural properties. The key findings of this 
study are summarized as follows: 

1. By using different initial design domains and optimization parame-
ters, structures with enhanced auxeticity (less than -1) can be 
obtained.

2. The Poisson’s ratio of the novel auxetic structure decreases contin-
uously in the initial elastic phase, reaching a minimum value, and 
then increases rapidly, approaching zero at a strain of 0.6.

3. The larger the cell wall thickness (t), the higher the minimum Pois-
son’s ratio, and the smaller the densification strain. When t=1.1 mm, 
the structure achieves the highest specific energy absorption (SEA).

4. Cell wall angle (α) affects the formation of shear bands in the 
structure. A larger α results in a higher minimum Poisson’s ratio. The 
SEA is maximized whenα = 82∘.

5. The sub-structure height (b) mainly influences the buckling modes of 
the structure, . Increasing b lowers the minimum Poisson’s ratio, and 
the SEA is maximized when b=6 mm and 8.5 mm.

6. The larger the sub-structure width (a), the smaller the minimum 
Poisson’s ratio. The specific energy absorption (SEA) of the structure 
is maximized when a=9 mm.

Table 4 
Comparison of Poisson’s ratio, relative Young’s modulus and enhancement mechanism with other structures studied in other papers.

Reference Type Enhancement mechanism Poisson’s 
ratio

Relative Young’s 
modulus(10–2)

Poisson ratio Relative Young’s modulus

This work / Two re-entrant-like substructures and lateral 
connecting rods

The central substructure creates an effective 
load transfer path

-0.32, -0.37,  
-0.44, -0.54,  
-0.67, -0.84,  

-1.03, -1.26,  
-1.51, -1.77,  
-2.04

8.333, 10.265, 
10.557, 11.770, 
13.635, 13.644, 
14.932, 15.385, 
18.001, 18.503, 
19.838

Ref [62] Star-circle Star configuration Central circle and slanted rods -0.24, -0.39, 
-0.58,-0.83, 
-1.16,-1.44

0.443, 0.524, 
0.667, 0.958, 
1.623, 3.313

Ref [63] Enhanced star- 
shape

Star configuration Double star-shaped designs linked by four 
connecting rods

-0.20, -0.29, 
-0.34, -0.42, 
-0.63, -0.78, 
-0.84, -1.03,  
-1.21, -2.36,  

-1.78,

0.164, 0.203, 
0.306, 0.385, 
0.433, 0.518, 
0.589, 0.719, 
0.787, 1.026, 
1.570, 2.748,

Ref [64] Re-entrant / / -0.79, -1.11, 
-1.63, -2.55, 
-2.84

0.0463, 0.0905, 
0.148, 0.181, 
0.226, 0.358, 
0.484, 0.676 
1.556

Ref [65] Star-shaped re- 
entrant

Star configuration Short rods at each corner -0.32, -0.37, 
-0.44, -0.55, 
-0.67, -0.84, 
-1.04, -1.27, 
-1.51, -1.77, 
-2.04

0.260, 0.335, 
0.482, 0.791,  
1.073, 1.296,  
1.357, 1.444,  
1.506, 1.547, 
1.680, 1.857 
2.085
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7. The larger the sub-structure height (c), the smaller the minimum 
Poisson’s ratio. The SEA is maximized when c=6 mm.

8. The Poisson’s ratio is 1–2 times smaller and the normalized Young’s 
modulus is 3–6 times larger other structures in recent studies.

Future research could extend to 3D structures and explore more 
complex topologies. The novel auxetic structure can be further 
employed to develop sensors under small strain conditions due to the 
unique deformation amplification mechanism. The homogenization and 
topology optimization methods employed in this study are tailored for 
the linear elastic stage. Future research could utilize topology optimi-
zation that considers structural and material nonlinearities to consider 
deformation and stress responses of structures during large deformation 
stages. Meanwhile, research can be conducted on the energy absorption 
and damping capabilities of structures with different negative Poisson’s 
ratios under impact loading, taking into account the mechanical char-
acteristics of these structures at various strain rates.
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