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Abstract 
Motivation: The analysis of complex biomedical datasets is becoming central to understanding dis-
ease mechanisms, aiding risk stratification and guiding patient management. However, the utility of 
computational methods is often constrained by their lack of interpretability, which is particularly rele-
vant in clinically critical areas where rapid initiation of targeted therapies is key. 
Results: To define diagnostically relevant immune signatures in peritoneal dialysis patients present-
ing with acute peritonitis, we analysed a comprehensive array of cellular and soluble parameters in 
cloudy peritoneal effluents. Utilising Tsetlin Machines, a logic-based machine learning approach, we 
identified pathogen-specific immune fingerprints for different bacterial groups, each characterised by 
unique biomarker combinations. Unlike traditional ‘black box’ machine learning models, Tsetlin Ma-
chines identified clear, logical rules in the dataset that pointed towards distinctly nuanced immune 
responses to different types of bacterial infection. Importantly, these immune signatures could be 
easily visualised to facilitate their interpretation, thereby allowing for rapid, accurate and transparent 
decision-making. This unique diagnostic capacity of Tsetlin Machines could help deliver early patient 
risk stratification and support informed treatment choices in advance of conventional microbiological 
culture results, thus guiding antibiotic stewardship and contributing to improved patient outcomes. 
Availability and implementation: All underlying tools for the present analysis are available at 
https://github.com/anatoliy-gorbenko/biomarkers-visualization. The anonymised data underlying this 
article will be shared on reasonable request to the corresponding authors. 
 
Keywords: Biomarkers, infection diagnosis, point of care, peritoneal dialysis, explainable machine 
learning, visualisation, Tsetlin Machine 
 

 
 
1 Introduction  
Reliable, rapid and accurate diagnosis of infection remains an unmet 
clinical need. Microbiological culture can take several days to generate 
results and is often impacted by inadequate sample quality, contamina-
tion and problems with fastidious or slow-growing organisms (Chakera 
et al., 2018). Molecular techniques to detect pathogens such as mass 
spectrometry or polymerase chain reaction equally depend on sample 

quality, may yield negative results at low pathogen numbers and do not 
discriminate between live and dead organisms. Finally, host biomarkers 
in patients presenting with suspected infections are often relatively un-
specific due to the highly dynamic and individual nature of the early 
immune response. Despite promising advances, no single biomarker is 
sufficiently specific or sensitive to accurately predict the presence of an 
infection or indeed the type or even species of causative pathogen 
(Chakera et al., 2018). Factors such as patient age and gender, comorbid-

Page 1 of 22 Manuscripts submitted to Bioinformatics Advances

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

© The Author(s) 2025. Published by Oxford University Press.  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbaf140/8169170 by guest on 26 June 2025

mailto:olga.tarasyuk@newcastle.ac.uk
mailto:EberlM@cardiff.ac.uk
https://github.com/anatoliy-gorbenko/biomarkers-visualization


O.Tarasyuk, A.Gorbenko, M.Eberl, N.Topley, J.Zhang, R.Shafik and A.Yakovlev 

ities, infection severity, pathogen type and virulence can all influence 
biomarker expression patterns, as can medication. This creates a chal-
lenge for the accurate identification of robust immune signatures that 
could guide more rapid diagnosis and targeted antibiotic treatment 
(Aufricht et al., 2017). The complexity of biomarker profiles necessitates 
sophisticated multi-parameter analysis techniques, leading to an in-
creased interest in applying machine learning (ML) methods to biomedi-
cal datasets, aiming to improve patient stratification and tailor therapies 
more effectively. 

ML models such as support vector machines (SVMs), artificial neural 
networks (ANNs) and random forests (RFs) have been successfully 
applied to biomedical datasets (Peiffer-Smadja et al., 2020; Ahsan et al., 
2022), including those from our own work in patients with urinary tract 
infection (Gadalla et al., 2019), peritoneal dialysis (PD)-related peritoni-
tis (Zhang et al., 2017) and sepsis (Burton et al., 2024). However, the 
lack of explainability in most ML models, i.e. the lack of understanding 
and hence of confidence in what they show, is a major barrier to their 
wider clinical adoption. Many ML methods, especially intricate ones like 
ANNs, often function as ‘black boxes’ (Rudin, 2019), making it difficult 
for scientists, healthcare professionals and regulatory authorities to un-
derstand and trust the basis of ML-based predictions. 

New ML techniques that are better interpretable are being developed 
to bridge this gap, such as approaches using decision trees (Mienye and 
Jere, 2024), probabilistic and fuzzy logic (Zheng et al., 2024), or focus-
ing on explainable artificial intelligence tools and post-hoc interpretabil-
ity methods like SHapley Additive exPlanations (SHAP) (Salih et al., 
2024; Burton et al., 2024). However, their computational demands, 
difficulty of standardisation and challenges in usability continue to hin-
der their widespread adoption. Indeed, current explainable artificial 
intelligence tools often provide explanations in technical or abstract 
terms that may not align with the clinical reasoning process. The creation 
of user-friendly interfaces and clinical decision-support systems that 
integrate seamlessly with existing workflows remains an area of active 
research. 

This paper aims at providing explainability in decision making via 
employing a relatively new logic-based ML algorithm called Tsetlin 
Machine (TM), for which explainability is an intrinsic feature. TMs rely 
on the collective behaviour of learning automata (Tsetlin, 1973; Var-
shavsky and Pospelov, 1988; Narendra and Thathachar, 2012). As part of 
their training and inference, TMs generate a set of conjunctive logical 
statements (logical clauses that can be viewed as directly interpretable 
inference rules), which vote for or against each class, thus justifying the 
decision making. TMs have considerably fewer hyperparameters to tune 
than other ML methods. These are highly interpretable since their model 
prediction is carried out via proposition logic clauses. The logical rules 
can be naturally visualised, which further eases their understanding and 
interpretation by specialists. The fact that TMs use Boolean (i.e. semi-
quantitative) features as input data, unlike other ML methods that oper-
ate with continuous numerical values, makes them particularly attractive 
for deciphering biological processes. As a consequence, for clinical use, 
they may allow easier translation of complex datasets generated using 
laborious techniques into the design of simpler methods such as lateral 
flow tests, while maintaining competitive accuracy. 

We describe the application of TM-based analysis techniques to a set 
of soluble and cellular biomarkers measured previously in individuals 
presenting with acute PD-related peritonitis (Zhang et al., 2017). PD is a 
life-saving renal replacement therapy used to manage end-stage kidney 
disease by removing waste products, excess fluid and toxins from the 
body, utilising the peritoneal membrane lining the abdominal cavity as a 

semipermeable filter. Despite its effectiveness and convenience for many 
patients, PD carries the risk of peritonitis, a severe infection of the peri-
toneal cavity (Li et al., 2022). Peritonitis is a significant complication 
that can arise from contamination during catheter handling, bowel leak-
age and other reasons, and is associated with significant morbidity, 
treatment failure and in some cases death (Cho et al., 2024). Moreover, 
any inflammatory episode of peritonitis may cause scarring and thicken-
ing of the peritoneal membrane (Fielding et al., 2014) and potentially 
contribute to treatment failure. Timely diagnosis and antimicrobial inter-
vention are thus key to successful treatment (Chakera et al., 2018). How-
ever, despite the recognition more than three decades ago that levels of 
inflammatory markers are elevated in the peritoneal effluent hours prior 
to the manifestation of overt clinical symptoms (Betjes et al., 1996), a 
simple biomarker-based lateral flow test for early peritonitis was only 
recently developed (Goodlad et al., 2020; Htay et al., 2024) and has not 
been widely adopted. 

It is well recognised that different classes (Gram-positive and Gram-
negative bacteria) and species of micro-organisms result in different 
patient outcomes and that infections with them give rise to distinct sets 
of biomarkers (‘immune fingerprints’) (Zhang et al., 2017; Liuzzi et al., 
2016). Immune fingerprints have shown promise for rapid point of care 
prediction of infection (Gadalla et al., 2019) and causative pathogen 
(Burton et al., 2024; Zhang et al., 2017) in other infectious contexts, 
potentially allowing early risk stratification and targeted antibiotic treat-
ment. By combining biomarker measurements during acute peritonitis 
and logic-based inference approaches as offered by TMs, we now 
demonstrate the power of interpretable ML models to analyse complex 
biomarker signatures and guide decision making processes. Our findings 
may have immediate diagnostic implications, potentially guiding appro-
priate antibiotic treatment before conventional microbiological culture 
results become available. 

2 Materials and Methods 
2.1 Patients and Biomarker Dataset 
The study cohort comprised 82 adults receiving peritoneal dialysis (PD) 
who were admitted between 2008 and 2016 to the University Hospital of 
Wales in Cardiff (UK) with acute peritonitis. Clinical diagnosis of peri-
tonitis was based on the presence of abdominal pain and cloudy perito-
neal effluent with >100 white blood cells per mm3 (Li et al., 2022). 
According to the microbiological analysis of the effluent, peritonitis 
episodes were defined as culture-negative or as confirmed bacterial 
infections by a Gram-positive or Gram-negative organism (Supplemental 
Tables S1 and S2). Cases of fungal infection and mixed or unclear cul-
ture results were excluded. The study was approved by the South East 
Wales Local Ethics Committee (04WSE04/27) and registered on the UK 
Clinical Research Network Study Portfolio under reference number 
#11838 “Patient immune responses to infection in peritoneal dialysis” 
(PERIT-PD). All individuals provided written informed consent. 

To identify organism-specific immune fingerprints and predict the 
causative pathogen, a wide range of 9 cellular and 40 soluble immune 
biomarkers was measured in the cloudy effluent of all 82 PD patients 
presenting with acute peritonitis (Supplemental Tables S1 and S2). These 
biomarkers included frequencies and total numbers of infiltrating leuko-
cyte populations as well as levels of inflammatory mediators and tissue 
damage-associated molecules, covering the breadth and complexity of 
the local immune response to infection (Zhang et al., 2017) (Supple-
mental Table S3).  
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2.2 Machine Learning with Interpretable Tsetlin Machine 
TMs leverage the collective behaviour of learning automata and bases its 
inference on interpretable logic-based rules, specifically conjunctive 
clauses (Granmo, 2018; Lei et al., 2020). These clauses logically link 
together input features, thereby creating distinct patterns that represent 
different classes, enabling TMs to make transparent and interpretable 
predictions of infecting organisms in peritoneal dialysis patients with 
acute peritonitis. TMs are an actively evolving field of research where 
novel architectures and training methods are being developed and be-
coming available via the GitHub repository (Centre for Artificial Intelli-
gence Research, 2018). Here, the Python implementation of the basic 
MulticlassTsetlinMachine from the pyTsetlinMachineParallel package 
(v.0.2.1) was used. The source code is available at 
https://github.com/cair/pyTsetlinMachineParallel. 

A TM has three major hyperparameters affecting its performance and 
defining a balance between clauses generalisation and specialisation, 
namely: the number of clauses per class C (i.e. the number of logical 
rules used for inference), the voting threshold T and the learning sensitiv-
ity s that regulates the trade-off between clauses generalisation and spe-
cialisation. When data samples of different classes share a higher degree 
of similarity, a higher value of s enables the TM to effectively distin-
guish subtle class-specific patterns. During the tuning of TM hyperpa-
rameters, the number of clauses C was set to 20 in the present study, with 
ten positive clauses creating class patterns and ten negative clauses gen-
erating patterns for the counter-class(es). This provided a reasonable 
balance between achieving high classification accuracy and maintaining 
ease of comprehension and interpretation of the resulting logical rules. 
The voting threshold T and the learning sensitivity s were set to their 
optimum values as described (Tarasyuk, Rahman, et al., 2023). In par-
ticular, the global optimum of the voting threshold T for the given num-
ber of clauses C approximates to the square root of C/2, which maximis-
es voting power of each clause according to Jagiellonian compromise for 
qualified majority in the Penrose’s square root voting system (Penrose, 
1946). When data samples of different classes share a higher degree of 
similarity, a higher value of s enables the TM to effectively distinguish 
subtle class-specific patterns. 

Tsetlin automata (Narendra and Thathachar, 2012) in the TM serve as 
fundamental units for decision-making and learning, similar to artificial 
neurons in ANNs, although their roles and mechanisms differ signifi-
cantly (Lei et al., 2020; Tarasyuk et al., 2023a). The ANNs used in our 
previous study (Zhang et al., 2017) were adopted here as reference ML 
model, configured with 40,000 neurons in the hidden layer for multi-
class classification and 13,000 neurons for binary classification. This 
setup ensured comparable complexity to TMs configured with 20 clauses 
per class, utilising up to 39,200 and 12,800 Tsetlin automata at maxi-
mum configuration, respectively. 

2.3 Data Preprocessing 
2.3.1 Data imputation 

The original dataset had some missing biomarker values due to incom-
plete or failed measurements (Supplemental Table S4) (Zhang et al., 
2017). Missing data were imputed to fit gaps by adopting Multivariate 
Imputation by Chained Equations (MICE) implemented in R package 
mice (v.3.17.0), which imputes an incomplete feature by generating 
synthetic values considering their relationship with other biomarkers 
(van Buuren and Groothuis-Oudshoorn, 2011). Only one imputation was 
conducted by using RF for each individual column. The random seed 
was set to 500 to ensure reproducibility of results, and the maximum 

number of iterations for the chained equations algorithm was set to 50 in 
refining the imputed values. 

2.3.2 Data Booleanisation 

TMs operate on Boolean input data where input variables should be 
transformed into a set of Boolean literals, each signalling whether the 
value is within or outside a certain range. TMs naturally thus align with 
laboratory techniques such as lateral flow tests (LFTs) that present re-
sults in binary or low-level semi-quantitative bands. In contrast, continu-
ous values such as biomarker levels determined by ELISA as used in this 
study) must first be discretised into bins (quartiles or semi-quantitative 
intervals) that reflect clinically meaningful ranges like “baseline”, “mod-
erate”, “elevated” and “hyperinflammatory”. Such Booleanisation can be 
viewed as a kind of data pre-processing similar to normalisation proce-
dures required for other ML algorithms. 

Booleanisation simplifies datasets by reducing feature granularity, 
making it easier to analyse and interpret in certain applications, such as 
rule-based ML or visualisation. Too few bins, however, may blur fine 
biochemical dynamics of immune responses and affect classification 
accuracy, while too many bins expand the Boolean feature set, so that the 
TM must allocate more Tsetlin Automata, increasing memory footprint, 
used computational resources and training time. Our experiments with 
different numbers of semi-quantitative ranges illustrate this three-way 
trade-off: coarser Booleanisation improves interpretability and resource 
efficiency, whereas finer binning demands greater computational re-
sources, but mayyield higher predictive performance. 

To Booleanise the input dataset and convert biomarker values from 
quantitative to semi-quantitative Boolean features we used a simple 
binning method. For each biomarker we determined its range as the 
difference between the measured maximum and minimum values, which 
was then divided into equal intervals (bins). These intervals were then 
encoded using ‘one-hot encoding’ method, so that each biomarker is 
represented by a unique binary vector with the same length as the num-
ber of intervals. In this vector, only one element is set to 1 (True), indi-
cating the presence of the biomarker value in that specific interval, and 
all other elements are set to 0 (False). For instance, using four semi-
quantitative intervals per value, each of the 82 patient samples compris-
ing 49 biomarkers was represented by 196 Boolean features (four 
bits/Boolean features per biomarker) (Supplemental Figure S1). 

2.3.3 Data balancing and model cross-validation 

The peritonitis cohort contained an unequal distribution of patients 
across different classes (Fig. 1), which resulted in an unbalanced dataset. 
To avoid biasing ML models toward the majority class(es) and poor 
performance on the minority class(es) and to ensure that TM learning 
automata of different classes receive equal reinforcements, we evaluated 
classification performance of the TMs and reference ANN models using 
stratified 5-fold cross-validation, so that each fold preserved the original 
class proportions. Within each fold, data were partitioned into a training 
(80%) and a validation set (20%) combined with oversampling inside 
each training fold using RandomOverSampler from imblearn Python 
package (v.0.0). This stratified split allowed relative class frequences to 
be preserved in training and validation subsets. Random over-sampling 
was applied to the minority classes by selecting samples at random with 
replacement, thus keeping the probability of selecting any specific sam-
ple constant. This approach ensured more reliable performance estimates 
and provided a balanced training dataset within each fold, facilitating 
equal reinforcement opportunities across classes. 
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3 Results 
3.1 Simultaneous Discrimination Through Multiclass  

Classification 
To identify organism-specific immune fingerprints and predict the causa-
tive pathogen, a wide range of cellular and soluble immune biomarkers 
was measured in the cloudy effluent of PD patients presenting with acute 
peritonitis (Supplemental Tables S1 and S2). These biomarkers included 
frequencies and total numbers of infiltrating leukocyte populations as 
well as levels of inflammatory mediators and tissue damage-associated 
molecules, covering the breadth and complexity of the local immune 
response to infection (Zhang et al., 2017) (Supplemental Table S3).  

An earlier attempt to define immune fingerprints that would simulta-
neously discriminate patients with all major groups of infecting organ-
isms showed relatively low validation performance for different ML 
techniques such as SVMs, RFs and ANNs, despite high training accuracy 
(Zhang et al., 2017). Reassuringly, TMs demonstrated considerable 
improvement in multiclass classification and allowed to reach 59.63 ± 
8.82% of validation accuracy on average across 5 folds while maintain-
ing 98.59 ± 1.88% train accuracy on the whole dataset (Table 1).  

Table 1. Multi-class classification train and validation accuracy of TM 

Dataset Data 
split 

TM (C=20, T=3, s=3) performance (%) 
Accuracy Precision Recall F1 Score 

Full dataset  
(40 soluble,  
9 cellular  
biomarkers) 

train 98.59 
  ± 1.88 

98.74 
  ± 1.68 

98.59  
  ± 1.88 

98.55 
  ± 1.95 

val. 
59.63 
  ± 8.82 

54.87  
  ± 9.99 

56.40  
  ± 9.43 

52.71 
  ± 8.80 

Soluble  
biomarkers  
(excl. Zym, incl. 
TotalCellCount) 

train 96.18  
  ± 1.42 

96.53 
  ± 1.21 

96.18 
  ± 1.42 

96.11 
  ± 1.45 

val. 
54.85 
  ± 9.61 

60.69 
  ± 10.71 

54.20 
  ± 8.49 

54.49 
  ± 9.87 

The table shows the accuracy of a single TM trained to discriminate between five 
classes (No growth, Gram-negative, streptococcal, coagulase-negative Staphylo-
coccus, and other Gram-positive bacteria) at once, using the whole biomarkers 
dataset and a subset of soluble biomarkers (excluding Zym and including Total-
CellCount). TM accuracy was determined for 20 logical clauses per class across 4 
biomarker ranges and a total of 39,200 learning automata.  The table reports the 
mean values of training and validation results, as well as their standard deviation 
calculated over 5 folds of the stratified K-fold cross-validation. 

For comparison, ANNs of a comparative complexity with 40,000 hidden 
nodes achieved an average validation accuracy of only 36.62 ± 8.49% 
(Supplemental Table S5). Combined with 100% training accuracy this 
indicated model overfitting. Whilst providing encouraging proof of con-
cept for the validity of a TM-based approach, the multi-class accuracy 
fell short of clinical requirements. The limited size of the training set and 
the complex interdependencies among biomarkers constrained the effec-
tiveness of early-stopping or regularisation strategies, inspiring us to 
explore alternative strategies for improving model generalisation. 

3.2 Hierarchical Binary Classification and Performance of 
the Tsetlin Machine 

To deal with the unsatisfactory accuracy of multi-class classification we 
next adopted a binary classification approach that focussed on discrimi-
nating between a certain class of bacterial infection and other cases of 
peritonitis, and which had already returned promising results for support 
vector machines (Zhang et al., 2017). We improved it further by structur-
ing it in a hierarchical stepwise manner, resembling a binary decision 
tree attempting to predict the causative organism in the following order 
(Fig. 1): 

i. Discrimination between episodes of peritonitis that yielded no 
microbiological culture result (‘no growth’; n=19) and episodes 
where a bacterial pathogen was identified (‘culture-positive’; 
n=63). 

ii. Within the culture-positive group, discrimination between epi-
sodes caused by Gram-negative bacteria (Acinetobacter bau-
mannii, Enterobacter spp., Escherichia coli, Morganella mor-
ganii, Proteus vulgaris, Pseudomonas aeruginosa and others; 
n=17) and episodes caused by Gram-positive bacteria (n=46). 

iii. Within the confirmed infections caused by Gram-positive bacte-
ria, discrimination between episodes caused by streptococcal 
organisms (Streptococcus spp. and Enterococcus spp.; n=15) 
and episodes caused by other, non-streptococcal Gram-positive 
bacteria (n=31). 

iv. Within the confirmed infections caused by non-streptococcal 
Gram-positive bacteria, discrimination between episodes caused 
by coagulase-negative Staphylococcus (CNS; n=21) and epi-
sodes caused by other Gram-positive bacteria (Staphylococcus 
aureus, Corynebacterium spp. and others; n=10). 

 

Figure 1. Hierarchical classification methodology to identify local immune fingerprints associated with peritonitis caused by different types of bacteria. A binary decision tree attempts to 
predict the causative organism in the following order: (a) discrimination between episodes of peritonitis that yielded no microbiological growth versus culture-positive episodes;  
(b) discrimination between episodes caused by Gram-negative bacteria within the culture-positive group of patients; (c) discrimination between episodes caused by streptococcal organ-
isms versus episodes caused by non-streptococcal Gram-positive bacteria; (d) discrimination between episodes caused by coagulase-negative Staphylococcus versus episodes caused by 
other Gram-positive bacteria. The TM learning sensitivity 𝑠𝑠 was optimised individually at each step for maximum performance. 
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The hierarchical binary scheme we employed aligns with microbial 
taxonomy and was directly informed by results of the microbiological 
analysis of the effluent performed during clinical diagnosis of peritonitis. 
Each binary decision therefore corresponded both to established patho-
gen groupings and to known immune‐detection mechanisms studied in 
peritoneal dialysis patients. Employing a hierarchical binary classifica-
tion facilitated individual optimisation of TM hyperparameters at each 
classification step, resulting in significant accuracy improvements over a 
flat multiclass classification approach when using a specialised TM with 
its learning sensitivity 𝑠𝑠 optimised for maximum performance. The re-
maining hyperparameters (the number of logical clauses per class C=20 
and the voting threshold T=3) were kept constant across all TMs. 

Three quantitative ranges per biomarker at each classification step 
were usually sufficient to reliably distinguish between different types of 
bacterial infection; using only two ranges failed to ensure 99% training 
and 90% validation accuracy on average, while employing more than 
four ranges added unnecessary redundancy and data/computational over-
heads (Table 2). Notably, starting with four semi-quantitative ranges 
used to Booleanise biomarker values, the TMs persistently achieved a 
perfect 100% accuracy on both the training and validation sets in at least 
one fold of the stratified 5-fold cross-validation used at each classifica-
tion step. The best-performing TMs were selected and then used in the 
rest of the present study to identify and visualise biomarker fingerprints 

associated with each bacterial infection. 
Of note, TMs sustained high accuracy by tuning its learning sensitivi-

ty 𝑠𝑠 at each hierarchical step. Optimal s-values were identified experi-
mentally for each binary classification step (Table 3). Increasing 𝑠𝑠 at 
lower classification levels sharpened clause specificity, enabling the 
TMs to capture more fine-grained distinctions in immune fingerprints, 
and thus maintained robust performance as opposed to ANNs (Supple-
mental Table S6). In fact, when using four semi-quantitative Booleanisa-
tion ranges of biomarker values TMs considerably outperformed ANNs 
of comparable complexity, particularly in distinguishing Gram-positive 
from Gram-negative bacteria, and coagulase-negative Staphylococcus 
from other non-streptococcal Gram-positive bacteria. TMs also exhibited 
smaller standard deviations of training and validation accuracies across 
the five stratified folds (Table 3, Supplemental Table S6). This might be 
explained by the fact that TMs operate by constructing propositional 
logic clauses over Booleanised (discretised) input features, learning 
which semi-quantitative ranges each biomarker consistently falls into 
and how these bin-patterns co-occur for each class. In contrast, ANNs 
model each biomarker’s exact real-valued contribution via learned 
weights and nonlinear activations. As a result, TMs are inherently more 
tolerant of noisy, void or imprecise measurements, as well as imputed or 
partially missing values, and can therefore outperform ANNs when input 
data exhibit such imperfections. 

Table 2. Train and validation accuracy of TMs at different stages of the hierarchical binary classification depending on the Booleanisation precision 

 # Classification step Data split 
TM accuracy (%) 

ANN accuracy (%) 
2 ranges (6,400 TAs) 

 3 ranges (9,600 TAs)  4 ranges (12,800 TAs) 

 1 No growth  
vs Culture-positive cases 

train 96.04 ± 2.09  98.40 ± 2.25  99.20 ± 1.17 100 
validation 87.72 ± 6.66  93.82 ± 6.85  92.57 ± 7.30 81.84 ± 7.46 

 2 Gram-positive  
vs Gram-negative bacteria 

train 94.02 ± 1.64  99.72 ± 0.56  100 100 
validation 89.10 ± 7.80  93.72 ± 3.15  92.05 ± 4.88 69.87 ± 8.86 

 3 Gram-pos. streptococcal 
vs non-streptococcal bacteria 

train 97.15 ± 2.12  99.20 ± 0.98  100 100 
validation 88.89 ± 7.03  93.33 ± 5.44  93.56 ± 8.79 71.56 ± 9.26 

 4 
Coag.-neg. Staphylococcus  
vs other Gram-pos. bacteria 

train 98.24 ± 2.35  100  100 92.90 ± 4.75 
validation 97.14 ± 5.71  97.14 ± 5.71  100 67.62 ± 10.71 

The table shows how the accuracy of a TM with 20 logical clauses per class depends on the number of semi-quantitative intervals used to Booleanise values of soluble bi-
omarkers (excluding Zym and including TotalCellCount) at each classification step. The rightmost column reports the accuracy achieved by an ANN) of comparable com-
plexity (13,000 neurons vs Tsetlin automata (TAs)), which was used as a benchmark value. The table reports the mean values of training and validation accuracy, as well as 
their standard deviation calculated over 5 folds of the stratified K-fold cross-validation used at each classification step. 

Table 3. Train and validation performance of TMs at different stages of the hierarchical binary classification using four semi-quantitative Booleanisa-
tion ranges of biomarker values 

 # Classification step (C, T, s) Data split 
TM (12,800 TAs) performance (%) 
Accuracy Precision Recall F1 Score 

 1 No growth  
vs Culture-positive cases 

(20, 3, 2.4) train 99.20 ± 1.17 99.24 ± 1.10 99.20 ± 1.17 99.20 ± 1.17 
validation 92.57 ± 7.30 88.99 ± 10.17 90.96 ± 9.60 89.75 ± 9.90 

 2 Gram-positive  
vs Gram-negative bacteria (20, 3, 3) train 100 100 100 100 

validation 92.05 ± 4.88 95.18 ± 2.88 85.83 ± 8.16 88.66 ± 6.94 

 3 Gram-pos. streptococcal 
vs non-streptococcal bacteria (20, 3, 4) train 100 100 100 100 

validation 93.56 ± 8.79 95.89 ± 3.37 90.00 ± 8.16 91.79 ± 6.70 

 4 
Coag.-neg. Staphylococcus 
vs other Gram-pos. bacteria (20, 3, 5) 

train 100 100 100 100 
validation 100 100 100 100 

The table shows the average TM performance (accuracy, precision, recall and F1 score) over 5 folds of the stratified K-fold cross-validation used at each classification step 
and reports used TM hyperparameters: C, T and s. In at least one fold, the TMs consistently achieved 100% accuracy on both the training and validation sets. Increasing 
learning sensitivity 𝑠𝑠 at lower classification levels sharpened clause specificity, enabling the TMs to capture more fine-grained distinctions in biomarker patterns (immune 
fingerprints) and thus maintain robust performance as contrast to ANNs (see Table 5). 

Page 5 of 22

https://mc.manuscriptcentral.com/bioadv

Manuscripts submitted to Bioinformatics Advances

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbaf140/8169170 by guest on 26 June 2025



O.Tarasyuk, A.Gorbenko, M.Eberl, N.Topley, J.Zhang, R.Shafik and A.Yakovlev 

3.3 Interpretability and Visualisation of Tsetlin Machine 
Clauses 

The major advantage of TMs as compared to other ML algorithms is 
their natural interpretability and explainability. TMs make predictions 
based on a set of logical rules (clauses) generated during training, which 
explain the decision making and can be verified by specialists. A frag-
ment of such rules created by the TMs to predict the presence of Gram-
negative bacteria in patients presenting with acute peritonitis is shown as 
example in Supplemental Figure S2. These rules are represented in the 
form of conjunctive statements that include specific input features or 
their negations, thus creating a set of persistent sub-patterns (immune 
fingerprints) of the target class. 

Although these rules were machine readable and easily interpretable, 
in their raw form they might still be difficult for humans to comprehend 
and explain, especially if the number of clauses and Boolean features 
involved was large. To solve this issue, we proposed a clause visualisa-
tion framework, which represented each clause as a biomarker-wise 
mask or stencil. For instance, Supplemental Figure S3 presents an exam-
ple of interpreting a clause stencil supporting a decision in favour of 
Gram-negative bacterial infection; the interpretation of TM clauses for 
other bacterial classes follows the same principle. Each row of this sten-
cil corresponded to a certain biomarker, while each biomarker was repre-
sented by a group of bits/pixels corresponding to different value ranges 
or concentration levels. These ranges were identified for each biomarker 
during the Booleanisation step as part of data pre-processing.  

A blue pixel meant that the biomarker value must be within that spe-
cific range to match the clause rule. Red meant that the biomarker value 
must not be in that range. Finally, white meant ‘ambivalent’, i.e. the 
biomarker value may or may not be in that range. An individual clause 
could thus be seen as a class template generalising certain common fea-
tures of class samples from the training dataset. Each clause formulated a 
rule by identifying general patterns shared among a subset of patient 
samples within the same class, for which the clause would output True 
(Supplemental Figure S3). Collectively, the team of TM clauses deter-
mined the type of bacterial infection by evaluating the number of clauses 
that supported each classification hypothesis. 

3.4 Tsetlin Machine Inference and Decision-Making 
During TM inference, the input data sample was matched against all 
clauses of all classes. If a data sample perfectly aligned with the clause 
stencil, the clause would output True, indicating that the clause cast a 
vote suggesting the sample belonged to the designated class. Otherwise, 
the clause would output False, which means it abstained from voting. 
The class with the maximum sum of clause votes was returned as TM 
prediction. In this sense, TM inference based on clauses voting for and 
against each class fostered collaborative decision-making and ensured a 
thorough and holistic assessment. As example, Figures 2 and 3 illustrate 
the inference process that enabled differentiation between Gram-negative 
and Gram-positive bacterial infections. 

 

Figure 2. Example of TM inference supporting decision making in favour of Gram-positive bacterial infection. The figure shows the inference process using TM2 clauses trained to 
recognise Gram-positive (Class-0) bacterial infection by matching the patient sample against clause stencils followed by clause output summation and voting. Here, none of the clauses 
supported the hypothesis. F, biomarkers whose values lay outside the target range specified by the clauses, indicating the corresponding conjunct was False. Accuracy labels above each 
clause show the percentage of True Positive (TP) and False Positive (FP) predictions of individual clauses. 

0

F

∑0

Matching

Votes for:

F

F

F

F

F

F F

0 00 0 0 0 0 0 0

F
F

F

F
F

F

F

F

F
F

F

F

F

F

F

F

F

F

Patient #005-2 Positive clauses of Class-0 (Gram-positive bacteria)
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9Biomarker : Value TP/FP, %

Page 6 of 22

https://mc.manuscriptcentral.com/bioadv

Manuscripts submitted to Bioinformatics Advances

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbaf140/8169170 by guest on 26 June 2025



Prediction of the infecting organism in peritoneal dialysis patients with acute peritonitis using interpretable Tsetlin Machines 

Figure 2 shows how the data sample from patient 005-2 was matched 
against ten positive TM clauses trained to recognise and vote for Class-0 
(Gram-positive bacteria). In this particular example, there was no match 
with any of these ten positive clauses. Biomarkers whose values lay 
outside the target range specified by the clauses were labelled ‘F’, indi-
cating that the corresponding conjunct was False. Consequently, all ten 
clauses abstained from supporting the decision that patient 005-2 was 
infected with Gram-positive bacteria. The results of matching the same 
patient sample against positive clauses of Class-1 (Gram-negative bacte-
ria) are shown in Figure 3. The data sample matched three clauses (C0, 
C1 and C3) out of ten. Ultimately, with three votes to zero, the patient 
005-2 was classified as having a Gram-negative bacterial infection. 
Voting margin could be seen as an additional measure of confidence 
offered by TMs in decision making. TMs thus offered a useful mecha-
nism of logical clauses which justified decision-making and could be 
easily interpreted, visualised and verified. 

3.5 Identification of Key Biomarkers and Clause  
Minimisation 

TMs facilitate the identification and ranking of key features (in this case, 
biomarkers) based on their impact on decision-making, whilst preserving 
logical relations between them. The initial step involves calculating the 
frequency with which each feature appears in the positive clauses of each 
class and negative clauses of the opposing class(es). Features that occur 

equally often in the clauses of either class carry the least discriminatory 
power; the most significant are those that are unique to each class. 

Here, the importance of each feature (a feature rank) was calculated 
by taking the absolute difference between the sum of occurrences of the 
feature in logical clauses that predicted the target class, and the sum of 
appearance of the feature in clauses in clauses that predicted the oppos-
ing class. A higher feature rank indicated that the feature had a strong 
association with one class over the other, making it highly influential in 
distinguishing between the two classes. Since each feature xi encoded a 
certain semi-quantitative interval for a particular biomarker, once the key 
features were identified, they were mapped back to their corresponding 
biomarkers. Finally, we assembled the minimised biomarker set by start-
ing with the single most influential biomarker and progressively includ-
ing other top-ranked biomarkers until the TM accuracy reached the spec-
ified threshold. 

Supplemental Figure S4 presents the minimal subsets of biomarkers 
that achieved an overall prediction accuracy of 90%, 95% and 100%, 
respectively, using the top-performing TM from 5-fold cross-validation 
at each classification step when each biomarker value was encoded into 
four semi-quantitative intervals. Perhaps not surprisingly, achieving 
higher accuracy required more biomarkers to be taken into consideration. 
For example, distinguishing between culture-positive infections and 
cases of no microbiological growth could be done with 90% accuracy 
using only 11 biomarkers. Achieving 95% required 13 biomarkers, while 
considering 21 biomarkers allowed to reach 100% accuracy.  

 

Figure 3. Example of TM inference supporting decision making in favour of Gram-negative bacteria infection. The figure shows the inference process using TM2 clauses trained to 
recognise Gram-negative (Class-1) bacteria by matching the patient sample against clause stencils followed by clause output summation and voting. Here, three out of ten clauses support-
ed the hypothesis. F, biomarkers whose values lay outside the target range specified by the clauses, indicating the corresponding conjunct was False. Accuracy labels above each clause 
show the percentage of True Positive (TP) and False Positive (FP) predictions of individual clauses. 
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Figure 4. Minimised sets of soluble biomarkers (excluding Zym and including TotalCell-
Count). Figure shows the minimised set of soluble biomarkers needed to make predictions 
at different classification stages with the target accuracies of 90%, 95%, and 100% for the 
case where each biomarker value is represented by four semi-quantitative ranges. 

At the same time, the later stages of hierarchical binary classifications 
required progressively fewer biomarkers. Taken together, these findings 
demonstrated that each type of microbiologically confirmed infection 
was associated with a distinct set of biomarkers that set it apart from 
infections with other organisms. For instance, accurate prediction of 
culture-positive episodes of peritonitis required cellular parameters such 
as the total cell count (TotalCellCount), the proportion of neutrophils 
amongst infiltrating immune cells (CD15+live(%)) and the proportion of 
Vδ2+ T cells amongst T cells (d2T/CD3), as well as a distinct set of 
cytokines and chemokines (Supplemental Figure S4). 

3.6 Focus on Soluble Biomarkers for Better Clinical  
Applicability 

To enhance the clinical applicability of our research, we next attempted 
to streamline the dataset by reducing the number of semi-quantitative 
ranges used to quantize biomarker values, and by considering only solu-
ble immune mediators, i,e. biomarkers that can easily be quantified using 
ELISA-based techniques. We therefore excluded the measurement of 
matrix metalloproteinase (MMP)-9 activity using gelatin zymography 
(Zym) as well as all flow cytometric characterisations of immune cell 
subsets, methods which would be too complex for routine diagnostic 
application (Supplemental Table S3). As only cellular biomarker, we did 
keep the total cell count in the ‘soluble’ dataset (TotalCellCount) as this 
parameter is determined routinely in the clinic and thus readily accessi-
ble to guide treatment decisions. Importantly, using this reduced set of 
biomarkers, correct classification was still possible (Fig. 4). However, 
distinguishing between culture-positive infections and cases of no 
growth with 90%, 95% and 100% accuracy now required more individu-
al biomarkers than before – 12, 15 and 25, respectively.  

Overall, our calculations demonstrated that reducing the number of 
semi-quantitative ranges lowered the dimensionality of the input space, 
enhanced clause interpretability and might simplify future biomarker tests. 
However, this simultaneously increased the number of biomarkers required 
to achieve the desired target accuracy. As such, these findings underscored 
the importance of cellular biomarkers that contributed key information 
needed for accurate classification using the smallest possible biomarker 
combination. Table 4 summarises the minimal number of biomarkers for 
both the full original dataset versus the reduced but clinically more tracta-
ble dataset consisting of only soluble biomarkers, in relation to the numbers 
of semi-quantitative intervals used to Booleanise and discretise continuous 
biomarker values (Supplemental Figs. S4–S6). 

3.7 Clause Pruning 
In addition to minimisation of the number of biomarkers used in a logical 
clause, the set of clauses can also be minimised, or pruned (Liu et al., 
2021), based on clause precision and their contribution to the accurate 
inference. Precision was estimated by the ratio between True (TP) and 
False (FP) predictions made by each individual clause (i.e. a logical 

No growth vs Culture positive cases 

Gram-negative vs Gram-positive bacteria

Gram-positive streptococcal vs Gram-positive non-streptococcal bacteria

Gram-positive coagulase-negative Staphylococcus (CNS) vs other Gram-positive bacteria

(d) 

(c) 

(b) 

(a) 

Table 4. Minimal number of biomarkers required to achieve the target accuracy for different datasets and numbers of semi-quantitative value ranges 

 # Classification step 
Overall  
classification 
accuracy 

Full dataset  
(40 soluble + 9 cellular biomarkers)   Soluble biomarkers  

(excl. Zym, incl. TotalCellCount) 
4 ranges   4 range  s  3 ranges   2 ranges 

 1 No growth  
vs Culture-positive cases 

≥ 90% 11 (9 soluble + 3 cellular)  12  12  19 
≥ 95% 13 (10 soluble + 3 cellular)  15  16  24 
≥ 99% 21 (16 soluble + 5 cellular)  25  33  33 (96.3% max. accuracy) 

 2 Gram-positive  
vs Gram-negative bacteria 

≥ 90% 6 (6 soluble)  6  12  17 
≥ 95% 8 (6 soluble + 2 cellular)  8  16  20 
≥ 99% 16 (11 soluble + 5 cellular)  17  22  20 (96.8% max. accuracy) 

 3 Gram-positive streptococcal  
vs non-streptococcal bacteria 

≥ 90% 5 (3 soluble + 2 cellular)  6  10  11 
≥ 95% 9 (7 soluble + 2 cellular)  9  13  13 
≥ 99% 12 (9 soluble + 3 cellular)  13  18  15 (97.8% max. accuracy) 

 4 Coag.-neg. Staphylococcus 
vs other Gram-positive bacteria 

≥ 90% 3 (3 soluble incl. Zym)  5  6  8 
≥ 95% 6 (4 soluble + 2 cellular)  7  7  16 
≥ 99% 7 (4 soluble + 3 cellular) 

 
8 

 
8 

 
21 

The table reveals a trade-off between the biomarker values granularity (i.e. the number of semi-quantitative ranges used to quantise biomarkers) and the number of  
biomarkers needed to achieve the target accuracy. The exact identify of the corresponding biomarkers is shown in Figure 4 and in Supplemental Figures S4–S6. 
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inference rule): TP / (TP+FP), after each training round and after testing. 
The proportion between TP and FP is shown at the top of each TM 
clause in Figures 2 and 3. Clauses with the minimal contribution to the 
true predictions (e.g. clauses C7 and C9 in Figure 2) or with a considera-
ble portion of false predictions (e.g. clause C5 in Figure 2 and clause C9 
in Figure 3) could be pruned from the TMs. Clause pruning began with 
the least precise clauses and continued iteratively until TM performance 
stayed above the specified accuracy threshold (i.e. 90%, 95% or 99%).  

Figures 5–8 present the optimised sets of TM clauses used at each 
classification step after minimising the number of biomarkers and re-
moving less efficient clauses.  

 

Figure 5. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes of peritonitis that yielded no microbiological growth (a) versus culture-
positive episodes (b) with 95.12% accuracy for the case where each biomarker value was 
represented by four semi-quantitative ranges. Accuracy labels under each clause show the 
percentage of True Positive (TP) and False Positive (FP) predictions of individual clauses. 
A balance between clause generalisation and specialisation, which defines a ratio between 
True and False predictions made by each clause is controlled by TM hyper-parameters 
(Tarasyuk, Rahman, et al., 2023) and affects the overall classification accuracy. 

 

Figure 6. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by Gram-negative (a) versus Gram-positive bacteria (b) within 
the culture-positive group of patients with 95.24% accuracy for the case where each 
biomarker value was represented by four semi-quantitative ranges. Accuracy labels under 
each clause define the percentage of True Positive (TP) and False Positive (FP) predic-
tions of individual clauses. 

 

Figure 7. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by streptococcal organisms (a) versus episodes caused by non-
streptococcal Gram-positive bacteria (b) with 95.65% accuracy for the case where each 
biomarker value was represented by four semi-quantitative ranges. Accuracy labels under 
each clause define the percentage of True Positive (TP) and False Positive (FP) predic-
tions of individual clauses. 

 

Figure 8. Minimised set of TM clauses and soluble biomarkers used to discriminate 
between episodes caused by coagulase-negative Staphylococcus versus episodes caused 
by other Gram-positive bacteria with 96.77% accuracy for the case where each biomarker 
value was represented by four semi-quantitative ranges. Accuracy labels under each 
clause define the percentage of True Positive (TP) and False Positive (FP) predictions of 
individual clauses. 

For example, the number of soluble biomarkers was reduced from 40 to 
8, followed by further pruning of the clauses from 20 per class to just 6 
clauses for detecting Gram-positive bacteria and 10 clauses for identify-
ing Gram-negative bacteria (Fig. 6). 

Despite considerable minimisation, the pruned model could still suc-
cessfully distinguish between Gram-positive and Gram-negative bacteria 
with 95% accuracy. Similar TM optimisation could be applied to all 
other steps of the hierarchical classification approach used in this study 
(Figs. 5–8), yielding a comprehensive and overlapping set of biomarkers 
that defined immunologically distinct local responses during early peri-
tonitis in patients presenting with acute symptoms (Fig. 9). In our earlier 
study (Zhang et al., 2017), the caret package (v. 2.27) in R, which im-
plements the Recursive Feature Elimination (RFE) method, was applied 
to identify the most influential biomarkers for SVM, RF and ANN mod-
els. The resulting feature subsets shown in Figure 9 overlapped largely 
(by 84.6%) with the top biomarkers associated with different types of 
causative organisms reported previously (Zhang et al., 2017), further 
validating the present TM findings. 

(a) clauses detecting culture-negative episodes of peritonitis  cases
C0 C1 C2 C3 C4 C5

TP/FP, %:

TP/FP, %:
Biomarker value ranges

(b) clauses detecting culture-positive (i.e. bacterial) episodes of peritonitis 
C0 C1 C2 C3

(a) clauses detecting Gram-negative bacteria

(b) clauses detecting Gram-positive bacteria  

Biomarker value ranges

C0 C1 C2 C3 C5

C0 C1 C2 C3 C4 C6 C8 C9

TP/FP, %:

TP/FP, %:

C4

C5 C7

(a) clauses detecting episodes caused by streptococcal organisms 

Biomarker value ranges

(b) episodes caused by non-streptococcal Gram-positive bacteria
C0 C1 C2

TP/FP, %:

TP/FP, %:

C0 C1 C2

Biomarker value ranges

(a) clauses detecting coagulase-negative Staphylococcus bacteria

(b) clauses detecting episodes caused by other Gram-positive bacteria

TP/FP, %:

TP/FP, %:

C0 C1 C2

C3C0 C1 C2

Biomarker value ranges
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Figure 9. Minimised set of biomarkers defining immune fingerprints associated with 
peritonitis caused by different types of bacteria with an accuracy ≥95%. 1) discrimination 
between episodes of peritonitis that yielded no microbiological growth versus culture-
positive episodes; 2) discrimination between episodes caused by Gram-negative bacteria 
within the culture-positive group of patients; 3) discrimination between episodes caused 
by streptococcal organisms versus episodes caused by non-streptococcal Gram-positive 
bacteria; 4) discrimination between episodes caused by coagulase-negative Staphylococ-
cus versus episodes caused by other Gram-positive bacteria. 

The overall decision-making process implementing the hierarchical 
binary classification of acute peritonitis and using the minimised set of 
soluble biomarkers and TM logical clauses at each classification step is 
shown in Figure 10. Accuracy after each step of the hierarchical classifi-
cation would be no worse than the product of the prediction accuracies 
achieved until that point. Thus, accuracy of predicting a specific group of 
bacterial infections could be controlled by increasing or decreasing the 
number of biomarkers to be determined at a certain layer, as deemed 
necessary or appropriate (Fig. 4). 

4 Discussion 
In this study, we demonstrate the potential of TMs as an effective ML 
model for analysing local immune responses in patients with life-
threatening bacterial infection. By leveraging the logic-based framework 
of TMs, we successfully identified pathogen-specific immune finger-
prints, represented as logical clauses, which are both easily interpretable 
and actionable for clinical decision-making. These logical rules provide 
insights into the distinctive biomarker profiles associated with different 
types of bacterial infections, enabling rapid and precise classification 
even before conventional microbiological results are available. 

At the core, our study reaffirms the notion that different pathogens 
elicit qualitatively and quantitatively distinct immune responses, even 
when infecting the same anatomical location and causing indistinguisha-
ble clinical symptoms (Lin et al., 2013; Zhang et al., 2017). This might 
not come as a surprise considering that each bacterium expresses a 
unique set of pathogen-associated molecular patterns, antigens and viru-
lence factors interacting with a myriad of pattern recognition factors and 
antigen receptors of the immune system (Kroemer et al., 2024; Medzhi-
tov and Iwasaki, 2024). For instance, the outer membrane of Gram-
negative bacteria contains lipopolysaccharides, highly immunogenic 
molecules that trigger inflammatory responses via Toll-like receptor 4 
(TLR4) expressed on monocytes, macrophages, dendritic cell, other 
immune cells and many tissues.  

 

Gram-positive bacteria are free of lipopolysaccharides but can be 
sensed via TLR2 (Colmont et al., 2011), thus defining a clear mechanism 
how the body discriminates between the two main groups of bacteria. 
Similarly, TLR5 recognises flagellin, a principal component of flagella 
carried by bacteria such as Salmonella spp., Pseudomonas aeruginosa, 
Listeria monocytogenes and some strains of E. coli but not others (Liuzzi 
et al., 2015). Many microbial organisms also express the highly potent 
metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-
PP), which specifically activates a small subset of T lymphocytes ex-
pressing a Vγ9/Vδ2 T cell receptor; notable HMB-PP deficient patho-
gens of clinical relevance in PD include streptococcal and staphylococcal 
bacteria (Liuzzi et al., 2015). Together, the unique combination of such 
immunogenic molecules defines each microorganism and is likely to 
result in immunologically distinct activation pathways. 

We believe that the presence of pathogen-specific immune responses 
has never been documented in infected patients as clearly as in the cur-
rent study, demonstrating distinct local immune responses in patients 
with severe infection. Of note, some of these features were particularly 
relevant for predicting the presence of microbiologically confirmed 
bacterial organisms versus cases of no growth, including the total cell 
count, MMP activity (MMPsubstr) and levels of human neutrophil elas-
tase (HNE), IL-4, IL-6 and IL-10 in the peritoneal effluent. Others were 
found to play a role in predicting specific types of bacteria, such as levels 
of IL-18 and surfactant protein D for the discrimination between Gram-
negative and Gram-positive infections; levels of IL-7, IL-12p70, IL-17A 
and CCL2 for the discrimination between streptococcal and non-
streptococcal Gram-positive infection; and levels of calprotectin, GM-
CSF, TGF- β and CCL13 for the prediction of coagulase-negative Staph-
ylococcus infections versus other types of Gram-positive infections. 
Several biomarkers featured in immune fingerprints associated with 
more than one type of peritonitis, suggesting a particularly useful role for 
the differential diagnosis of PD patients, namely HNE activity (HNEsub-
str) and effluent levels of IFN-γ, TNF-α, IL-22, sIL-6R, MMP-8, CCL4, 
CCL11, CCL22 and CXCL10. Reassuringly, despite using entirely dif-
ferent statistical methodologies, these patterns were remarkably similar 
to our earlier analyses associating TNF-α with culture-positive episodes 
and IL-22 and CXCL10 with Gram-positive infections (Lin et al., 2013), 
as well as the importance of the total cell count for culture-positive epi-
sodes, IFN-γ and IL-17A for non-streptococcal Gram-positive infections, 
and sIL-6R for staphylococcal infections (Zhang et al., 2017). Differ-
ences with regard to other biomarkers may in part be due to the fact that 
TMs work with Booleanised semi-quantitative input values rather than 
precise measurements as used in previous studies, and that we here used 
a stepwise classification of patients. 

Our findings highlight the capability of TMs to address critical chal-
lenges in biomedical ML, such as interpretability and efficiency. Unlike 
traditional ‘black boxes’ models, TMs offer a transparent decision-
making process, which is essential in clinical settings where understand-
ing and trust in predictive models are paramount, while maintaining 
accuracy that is competitive, and under certain conditions, superior, to 
other ML classifiers such as SVM, RF and ANN as utilised in our previ-
ous work (Zhang et al., 2017). Additionally, the ability of TMs to operate 
on Booleanised, semi-quantitative data underscores their suitability for 
mass clinical use, particularly in combination with rapid, accessible 
testing methods like lateral flow tests. Recent advances in lateral flow 
technology have already demonstrated the ability to determine multiple 
levels of analyte concentration (Hu et al., 2017; You et al., 2018), rather 
than simply detect the presence (or absence) of an individual biomarker.  
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Prediction of the infecting organism in peritoneal dialysis patients with acute peritonitis using interpretable Tsetlin Machines 

In this respect, a recently developed lateral flow test for diagnosis of 
peritonitis may not only be useful for the detection of early infection 
based on elevated levels of IL-6 and MMP-8 in PD effluent (Goodlad et 
al., 2020) but in a more quantitative way even contribute to the distinc-
tion between culture-positive episodes and cases of no growth, as sug-
gested in the present study. 

The hierarchical classification methodology employed in this study 
achieved high accuracy with minimal biomarker input, emphasising the 
strength of TMs in feature reduction and efficient data utilisation. This 
approach not only enhances diagnostic precision but also minimises the 
overall number of tests required, reducing both costs and time-to-

diagnosis. In conclusion, TMs present a robust framework for decoding 
and visualising complex immune responses, offering a promising avenue 
for real-time, interpretable diagnostics in infectious disease management. 
Future work should focus on validating this approach in independent 
cohorts and expanding the application of TMs to different demographics 
and diverse infectious agents, potentially broadening its utility in clinical 
diagnostics and personalised medicine.  

To accelerate progress, we encourage the broader community to share 
relevant datasets, whether from peritoneal dialysis or other infection 
conditions, and to benchmark classifiers based on the Tsetlin Machine 
against established “black box” methods with post-hoc explanation tools.  

 

Figure 10. Decision-making tree implementing the hierarchical binary classification of acute peritonitis using the minimised set of soluble biomarkers and TM logical clauses ensuring 
95% accuracy at each classification step: (a) No growth vs Culture positive cases; (b) Gram-negative vs Gram-positive bacteria; (c) Gram-positive streptococcal vs Gram-positive non-
streptococcal bacteria; d) Gram-positive coagulase-negative Staphylococcus (CNS) vs other Gram-positive bacteria. 
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O.Tarasyuk, A.Gorbenko, M.Eberl, N.Topley, J.Zhang, R.Shafik and A.Yakovlev 

On the implementation side, engineering low-cost, multiplexed LFTs 
producing results ready for logic-based interpretation and further cali-
brating thresholds would bridge the gap between proof-of-concept and 
point-of-care use. By sharing our code, rules and biomarker sets, we aim 
to catalyse collaborative efforts that validate and refine interpretable 
logic-based classifiers in real-world clinical contexts, ultimately paving 
the way for rapid, trustworthy diagnostics across a range of infectious 
conditions. 
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Figure 1. Hierarchical classification methodology to identify local immune fingerprints associated with 
peritonitis caused by different types of bacteria. A binary decision tree attempts to predict the causative 

organism in the following order: (a) discrimination between episodes of peritonitis that yielded no 
microbiological growth versus culture-positive episodes; (b) discrimination between episodes caused by 

Gram-negative bacteria within the culture-positive group of patients; (c) discrimination between episodes 
caused by streptococcal organisms versus episodes caused by non-streptococcal Gram-positive bacteria; (d) 
discrimination between episodes caused by coagulase-negative Staphylococcus versus episodes caused by 
other Gram-positive bacteria. The TM learning sensitivity �� was optimised individually at each step for 

maximum performance. 
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Figure 2. Example of TM inference supporting decision making in favour of Gram-positive bacterial infection. 
The figure shows the inference process using TM2 clauses trained to recognise Gram-positive (Class-0) 

bacterial infection by matching the patient sample against clause stencils followed by clause output 
summation and voting. Here, none of the clauses supported the hypothesis. F, biomarkers whose values lay 
outside the target range specified by the clauses, indicating the corresponding conjunct was False. Accuracy 

labels above each clause show the percentage of True Positive (TP) and False Positive (FP) predictions of 
individual clauses. 
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Figure 3. Example of TM inference supporting decision making in favour of Gram-negative bacteria infection. 
The figure shows the inference process using TM2 clauses trained to recognise Gram-negative (Class-1) 

bacteria by matching the patient sample against clause stencils followed by clause output summation and 
voting. Here, three out of ten clauses supported the hypothesis. F, biomarkers whose values lay outside the 

target range specified by the clauses, indicating the corresponding conjunct was False. Accuracy labels 
above each clause show the percentage of True Positive (TP) and False Positive (FP) predictions of individual 

clauses. 
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Figure 4. Minimised sets of soluble biomarkers (excluding Zym and including TotalCellCount). Figure shows 
the minimised set of soluble biomarkers needed to make predictions at different classification stages with 
the target accuracies of 90%, 95%, and 100% for the case where each biomarker value is represented by 

four semi-quantitative ranges. 
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Figure 5. Minimised set of TM clauses and soluble biomarkers used to discriminate between episodes of 
peritonitis that yielded no microbiological growth (a) versus cul-ture-positive episodes (b) with 95.12% 
accuracy for the case where each biomarker value was represented by four semi-quantitative ranges. 
Accuracy labels under each clause show the percentage of True Positive (TP) and False Positive (FP) 

predictions of individual clauses. A balance between clause generalisation and specialisation, which defines a 
ratio between True and False predictions made by each clause is controlled by TM hyper-parameters 

(Tarasyuk, Rahman, et al., 2023) and affects the overall classification accuracy. 
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Figure 6. Minimised set of TM clauses and soluble biomarkers used to discriminate between episodes caused 
by Gram-negative (a) versus Gram-positive bacteria (b) within the culture-positive group of patients with 

95.24% accuracy for the case where each biomarker value was represented by four semi-quantitative 
ranges. Accuracy labels under each clause define the percentage of True Positive (TP) and False Positive 

(FP) predictions of individual clauses. 
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Figure 7. Minimised set of TM clauses and soluble biomarkers used to discriminate between episodes caused 
by streptococcal organisms (a) versus episodes caused by non-streptococcal Gram-positive bacteria (b) with 

95.65% accuracy for the case where each biomarker value was represented by four semi-quantitative 
ranges. Accuracy labels under each clause define the percentage of True Positive (TP) and False Positive 

(FP) predictions of individual clauses. 
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Figure 8. Minimised set of TM clauses and soluble biomarkers used to discriminate between episodes caused 
by coagulase-negative Staphylococcus versus episodes caused by other Gram-positive bacteria with 96.77% 

accuracy for the case where each biomarker value was represented by four semi-quantitative ranges. 
Accuracy labels under each clause define the percentage of True Positive (TP) and False Positive (FP) 

predictions of individual clauses. 
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Figure 9. Minimised set of biomarkers defining immune fingerprints associated with peritonitis caused by 
different types of bacteria with an accuracy ≥95%. 1) discrimina-tion between episodes of peritonitis that 
yielded no microbiological growth versus culture-positive episodes; 2) discrimination between episodes 

caused by Gram-negative bacteria within the culture-positive group of patients; 3) discrimination between 
epi-sodes caused by streptococcal organisms versus episodes caused by non-streptococcal Gram-positive 

bacteria; 4) discrimination between episodes caused by coagulase-negative Staphylococcus versus episodes 
caused by other Gram-positive bacteria. 
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Figure 10. Decision-making tree implementing the hierarchical binary classification of acute peritonitis using 
the minimised set of soluble biomarkers and TM logical clauses ensur-ing 95% accuracy at each 

classification step: (a) No growth vs Culture positive cases; (b) Gram-negative vs Gram-positive bacteria; 
(c) Gram-positive streptococcal vs Gram-positive non-streptococcal bacteria; d) Gram-positive coagulase-

negative Staphylococcus (CNS) vs other Gram-positive bacteria. 
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