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Abstract—Industrial robots play a critical role in modern
industrial production. They are widely used in tasks requiring
high precision and efficiency, such as manufacturing, assembly,
and material handling. However, since industrial robots often
operate in complex and changing environments, long-term use
inevitably leads to issues such as component aging, wear, or other
potential faults. These faults not only reduce production efficiency
but may also cause equipment damage, production interruptions,
or even safety risks. Industrial robot systems are typically
composed of multiple highly interconnected components and
sensors. Graph Neural Networks (GNNs), which can effectively
model multivariable data, have been widely applied to modeling
and analyzing such systems. However, different methods of graph
construction vary significantly in their ability to capture system
structures, dynamic relationships, and multivariable interactions.
The impact of these differences on downstream fault diagnosis
tasks remains an area that requires further research. To address
these challenges, this study proposes a GNN-based fault diagnosis
framework to demonstrate the practical effects of different graph
construction methods. First, we transformed the state monitoring
data of industrial robots into three different graph structures
using KNN, radius, and path-based methods. Then, we used
a graph attention network to capture the spatial dependencies
among various variables. At the same time, a parallel encoder
with diagonal masking self-attention (DMSA) was designed to
model temporal dependencies. A spatiotemporal attention module
was then applied to extract both spatial and temporal features.
Finally, the type of fault present in the data was determined. Ex-
perimental studies based on real-world industrial robot datasets
show that different graph construction methods significantly
influence fault diagnosis accuracy. The proposed framework
achieved diagnostic accuracies of 87.11%, 88.85%, and 92.68%
under the three graph construction methods, respectively.

Index Terms—Industrial robots, Fault diagnosis, Graph Neural
Networks (GNNs), Spatiotemporal features
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I. INTRODUCTION

Industrial robots are widely used in modern manufacturing.
They significantly enhance production automation with their
high precision, efficiency, and reliability [1]. However, as
robotic systems become more complex, the likelihood of
faults during operation increases. This is particularly true
in complex industrial environments, where mechanical wear,
electrical interference, and environmental changes can affect
robot components. Faults not only reduce performance but can
also cause production delays, economic losses, or safety risks
[2]. Ensuring the stability and reliability of industrial robots
has thus become a critical issue [3].

Fault diagnosis techniques have been developed to address
this problem. These techniques use data-driven methods to
detect anomalies early and locate faults accurately [4]. They
help reduce downtime and maintenance costs while improving
operational efficiency and safety through real-time monitoring
and predictive maintenance. However, with the growing trend
toward intelligent and networked robots, fault diagnosis faces
new challenges [5]. These include integrating multi-source
data, ensuring real-time performance, and improving diagnos-
tic accuracy. Solving these issues is essential for enhancing
the stability of robots, extending their lifespan, and advancing
smart manufacturing [6].

Existing machine learning algorithms have been widely
applied to fault diagnosis in industrial robots. Deep learning
methods, in particular, excel at extracting spatial and temporal
features [7], capturing hidden patterns and relationships from
complex sensor data. Yet, due to the diversity and complexity
of robot faults, current methods face limitations in handling
multi-source heterogeneous data and modeling spatiotemporal
dependencies. For example, convolutional neural networks
(CNNs) are effective at capturing local spatial features, but
recurrent neural networks (RNNs) struggle with gradient van-
ishing issues when modeling long-term dependencies in time-



series data [8]. Thus, there is a pressing need for a diagnostic
framework that can integrate various feature representation
capabilities.

Recently, Graph Neural Networks (GNNs) have gained
attention for their ability to model complex graph-structured
data [9]. Combining GNNs with encoder frameworks can
fully utilize the topological relationships and spatiotemporal
dynamics within industrial robot systems, leading to more
accurate fault diagnosis. Additionally, the diversity of sensor
distributions and component relationships in robots places high
demands on graph construction methods [10]. Studying differ-
ent graph construction designs and their impact on diagnostic
performance not only helps optimize diagnostic frameworks
but also offers new insights into multi-source data integration
[11].Therefore, exploring effective graph construction strate-
gies is crucial for advancing fault diagnosis in industrial
robots, particularly in capturing the intricate interplay between
spatial and temporal dependencies.

To address these key challenges, this study explores a fault
diagnosis method for industrial robots based on GNNs. Three
different graph construction methods are employed: K-Nearest
Neighbors (KNN), radius-based, and path-based. These meth-
ods transform raw data into three types of graph structures. A
Bidirectional Graph Attention Network is then used to capture
spatial dependencies among variables. A parallel encoder,
integrated with a Diagonal Masked Self-Attention (DMSA)
mechanism [12], is designed to model temporal correlations.

A spatiotemporal attention module is designed as the core
component of the proposed framework, aiming to effectively
capture the complex dependencies between sensor nodes and
time steps. In this module, spatial features extracted by the
Bidirectional Graph Attention Network (Bi-GAT) are used
as query vectors, while temporal features encoded by the
Transformer-based encoder serve as keys and values. This
design choice is motivated by the assumption that fault patterns
are primarily localized in the spatial domain and are influenced
by interactions among different sensor nodes. Using spatial
features as queries enables the model to actively attend to
relevant temporal dynamics that may vary across locations.
In contrast, representing temporal features as keys and values
allows the model to provide context-aware information over
time. By integrating spatial queries with temporal context
through self-attention, the model learns joint spatiotemporal
representations that improve the accuracy and robustness of
fault diagnosis.

The remaining sections of this paper are organized as fol-
lows: Section 2 reviews the application of GNNs in industrial
fault diagnosis. Section 3 introduces the proposed GNN-based
fault diagnosis method. Section 4 reports the experimental
results and analysis. Section 5 discusses the findings, and
Section 6 concludes the study.

II. RELATED WORK

Traditional methods for fault diagnosis in industrial systems
often rely on deep neural networks (DNNs) and principal
component analysis (PCA) to extract temporal features from

collected signals [13]. Wen et al. [14] proposes a hybrid
fault diagnosis method based on ReliefF, PCA, and DNNs.
First, the ReliefF method is used to select fault features
and reduce the data dimensions. Then, PCA is applied to
further reduce the dimensions, removing data redundancy and
improving diagnosis accuracy. Finally, the ReliefF-PCA-DNN
model is built and optimized for fault diagnosis using real field
data. However, these methods typically overlook the spatial
relationships between samples or sensors. To address this, re-
searchers have explored convolutional neural networks (CNNs)
to capture spatial features. Despite this, CNNs struggle to
encode the latent relationships between samples or sensors
into spatial representations due to their inherent limitations
[15]. Consequently, there is a pressing need for more advanced
methodologies that can effectively model both spatial and
temporal dependencies to enhance fault diagnosis performance
in complex industrial systems.

Recurrent neural networks (RNNs) are effective for han-
dling time-series data but face challenges like vanishing or
exploding gradients when capturing long-term dependencies.
Additionally, their sequential computation process makes them
inefficient for large-scale industrial data, limiting their appli-
cation in real-time fault diagnosis [16].

Graph neural networks (GNNs) offer a promising alternative
by providing a framework to capture both spatial and tem-
poral information. In GNNs, edges represent connections or
relationships between samples or sensors, while graph convo-
lution aggregates information from neighboring nodes. This
enables GNNs to integrate relational information effectively,
making them highly suitable for advancing fault diagnosis and
prediction [17].

Graph convolutional networks (GCNs) are particularly ef-
fective in capturing local structures and relationships within
systems by aggregating information from adjacent nodes.
However, their local aggregation mechanism makes it difficult
to detect subtle signal features under varying load conditions.
As a result, GCNs may not fully extract global features,
limiting their performance in complex fault diagnosis tasks.
To address this, Chen et al. [18] proposed a GCN-based fault
diagnosis method that combines available measurement data
and prior knowledge. First, fault prediction is performed using
structural analysis (SA), and the results are converted into an
association graph. This graph, along with the measurement
data, is fed into a GCN model, which adjusts the influence
of measurement data and prior knowledge using weighted
coefficients.

Unlike GCNs, graph attention networks (GATs) use atten-
tion mechanisms to dynamically adjust the weights of adjacent
nodes. This allows them to flexibly identify and focus on
important nodes and features. Tang et al. [19] proposed a
fault diagnosis method combining GATs with semi-supervised
conditional random fields (CRFs). This approach leverages the
strengths of CRFs and GATs to model label dependencies and
learn object representations, enabling semi-supervised fault
diagnosis with limited labeled data.

For irregular time-series data with unequal intervals be-



tween observations, Zhang et al. [20] proposed a graph
neural network model named RAINDROP. This model con-
structs a sensor-level graph for each sample and introduces
a customized message-passing mechanism to capture tempo-
ral dependencies among sensors. The resulting node embed-
dings are then aggregated into fixed-length representations for
downstream tasks such as fault diagnosis.While RAINDROP
demonstrates effectiveness in handling irregular sampling and
local temporal patterns, it shows limitations in scenarios
involving dynamic sensor networks. Specifically, its sample-
wise graph construction leads to increased computational
overhead and limited scalability when dealing with large-scale
or continuously evolving sensor configurations.

While existing GNN-based methods can capture spatial re-
lationships, most rely on a single graph construction approach.
This limits their ability to reflect diverse spatial characteristics
in data. In complex industrial environments, varying operat-
ing conditions and differences in sensor configurations make
single graph structures insufficient to adapt to dynamic data
patterns. This can lead to reduced performance and lower
diagnostic accuracy across different conditions. Furthermore,
current models often focus on a single feature dimension,
such as time or space, failing to fully capture the complex
behaviors and dynamic changes in industrial robots under fault
conditions [21].

To improve the accuracy and robustness of fault diagnosis
for industrial robots, there is a need for models that integrate
multiple graph construction methods and effectively combine
spatial and temporal features. Such models can address the
shortcomings of existing approaches, providing more precise
and reliable fault diagnosis solutions in complex and dynamic
industrial environments.

III. METHODOLOGY

This section provides a detailed description of the proposed
industrial fault diagnosis method. As shown in Figure 1, the
method involves several key steps.

First, data collection and preprocessing are performed. Fault
scenarios are simulated by replacing functional motors and
gearboxes in industrial robots with faulty ones. Voltage sensors
are used to directly collect voltage data from the industrial
robot. The collected data is then used to construct three types
of graph data: KNN, radius, and path graphs.Next, the graph
data and raw data are fed into the GAT layer and the encoder
layer. The GAT layer outputs node-level hidden features, while
the encoder layer produces time-level hidden features.Finally,
a spatiotemporal graph attention mechanism is applied to fuse
the node features and time features. This generates the final
fault diagnosis results.

A. Graph Construction Method

In this section, we present three distinct methods for
constructing graphs from data: K-Nearest Neighbors (KNN),
radius-based, and path-based approaches. Each construction
method captures different aspects of local or global data
similarity, leading to distinct graph topologies. KNN and

radius-based graphs typically emphasize local connections,
while path-based methods may incorporate more global con-
text. As a result, the choice of construction method not only
influences the expressive power of the graph but also affects
the computational complexity of the model. Simpler graphs
may reduce training time but risk missing important structural
patterns, whereas more complex graphs can better capture data
relationships at the cost of increased computational burden. By
comparing all three methods, we aim to evaluate their respec-
tive advantages in revealing informative structures within the
data, and to assess how these structural differences influence
the overall diagnostic accuracy and efficiency.

We begin with the KNN method, which is widely used
due to its flexibility and effectiveness in capturing local data
structures.

K-Nearest Neighbors Graph Construction:In the KNN-
based graph, each node is connected to its k nearest neigh-
bors based on feature similarity. This method is effective
for capturing local patterns in the data and is particularly
suitable when the underlying structure is dense and smooth.
In this method, nodes represent data samples, and edges
indicate similarity between samples. For each sample, the
method selects its K nearest samples to form graph edges.
KNN graph construction effectively captures local structures
between samples and models complex relationships in high-
dimensional spaces.

Given X = {x1, x2, . . . , xN}, where xi ∈ Rd is a feature
vector of dimension d, the distance d(xi, xj) between xi and
any other sample xj (j ̸= i) is computed as:

d(xi, xj) = ∥xi − xj∥ (1)

Here, ∥ · ∥ represents the Euclidean distance. Next, the K
samples closest to xi are selected, defined as:

KNN(xi) = {xj | j ∈ topK(d(xi, x1), . . . , d(xi, xN ))}
(2)

The adjacency matrix A of the KNN graph is defined as:

Aij =

{
1, if xj ∈ KNN(xi) or xi ∈ KNN(xj)

0, otherwise
(3)

In other words, an element Aij = 1 indicates an edge
between xi and xj .

Radius-Based Graph Construction: The radius-based
graph connects nodes that fall within a predefined Euclidean
distance threshold. This method emphasizes spatial proximity
and is sensitive to variations in data density. It performs well
when meaningful relationships are expected to occur within
localized regions but may fail to capture connections in sparse
or unevenly distributed data. Each node is connected only
to other nodes within a specified radius. By selecting an
appropriate radius r, the method captures local relationships
between data samples. This approach is suitable for dense
datasets with similar samples.
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Given a dataset X = {x1, x2, . . . , xN}, the adjacency
matrix A for the radius graph is defined as follows:

Aij =

{
1, if ∥xi − xj∥ ≤ r

0, otherwise
(4)

Here, r is the fixed radius that represents the maximum
distance for connecting two samples. ∥xi − xj∥ denotes the
Euclidean distance between samples xi and xj .

Path-Based Graph Construction: The path-based graph
is constructed based on the known physical or functional
topology of the system, such as the wiring or sensor layout
in industrial equipment. Unlike the other two methods, it does
not rely on feature similarity or distance but instead encodes
domain-specific prior knowledge. This makes it particularly
effective in scenarios where the spatial arrangement or signal
flow is crucial to understanding system behavior. Unlike
KNN or radius-based graphs, the Path Graph connects nodes
sequentially to form a chain-like structure. Each node is linked
to its neighboring nodes through edges. This method captures
the order dependency between nodes and is commonly used
for time-series or sensor data processing.

In industrial robot fault diagnosis, the Path Graph is con-
structed based on sensor data. Each node represents a sensor
measurement, while edges represent the relationships between
neighboring sensors. This structure captures the spatiotemporal
dependencies between adjacent sensors, making it an effective
input for graph neural networks. It supports feature learning
and fault prediction.

For input data X = {x1, x2, . . . , xN}, the connections
between nodes are based on their sequence. An edge exists
between nodes xi and xj if they are adjacent. The adjacency
matrix A is constructed as follows:

Aij =

{
1, if j = i+ 1 or i = j + 1

0, otherwise
(5)

This structure forms a simple chain with N−1 edges, where
each edge connects two neighboring nodes.

B. Fault Diagnosis Method

This section presents our fault diagnosis framework that
combines three key components: a Graph Attention Network
(GAT), an encoder with diagonal masked self-attention, and a
spatiotemporal attention mechanism. These components work
together to process and analyze sensor data from industrial
robots. The GAT serves as our primary feature extractor, cap-
turing both local and global patterns in the data. By combining
these three components, our method can effectively identify
subtle fault patterns while maintaining robustness against noise
in real-world industrial settings. We first describe the GAT
component, which forms the foundation of our diagnostic
framework.

Graph Attention Network (GAT) Processing: To effec-
tively capture the temporal patterns in time-series data and the
complex relationships between nodes, this study uses a Graph
Attention Network (GAT) as the core module. GAT employs a
learnable attention mechanism to dynamically assign weights
to interactions between nodes. This allows the model to
preserve local information while extracting global features,
enabling high-quality feature representation for downstream
tasks.

In the graph attention layer, attention scores are calculated
based on concatenated node features. For nodes xi and xj in
the adjacency matrix A, the attention score is defined as:

αij = softmax
(
LeakyReLU

(
a⊤ [W1vi ∥ W1vj ]

))
(6)



Here, [hi ∥ hj ] denotes the concatenation of features from
nodes vi and vj . The vector a⊤ and matrix W1 are learnable
parameters, while the LeakyReLU function introduces non-
linearity. The softmax function ensures that the attention
scores are normalized.

The attention scores are used to weight and aggregate the
features of neighboring nodes. The updated representation of
node vi, denoted as h′

i, is computed as:

h′
i = σ

 ∑
j∈N (i)

αijhj

 (7)

where N (i) represents the set of neighbors for node vi, and
σ(·) is the ReLU activation function. After updating all nodes,
the resulting feature matrix H0 is:

H0 =


h′
1

h′
2
...

h′
N

 ∈ RN×d (8)

In the final layer, the output of the graph neural network is
given by:

Ĥ1 = LeakyReLU (W2H0 + b) (9)

where W2 is a learnable parameter matrix, and b is the bias
term.

Encoder with Diagonal Masked Self-Attention (DMSA):
In the standard Transformer encoder, the self-attention mech-
anism allows each position in the sequence to attend to all
others, including itself. However, allowing self-attention may
lead to redundancy and potentially cause overfitting, especially
in time-series tasks where each time step ideally aggregates
contextual information from surrounding steps rather than
reinforcing its own features. To mitigate this, we introduce
a Diagonal Masked Self-Attention mechanism that explicitly
prevents each time step from attending to itself.

The masking is applied during the computation of the
attention score matrix. First, the raw attention score between
query vector qi and key vector kj is computed as:

ei,j =
qi · kj√

dk
. (10)

Next, diagonal elements of the score matrix (i.e., where i =
j) are set to a large negative value (e.g., −109) to effectively
mask self-attention:

ei,j =

{
qi·kj√

dk
, if i ̸= j,

−109, if i = j.
(11)

Finally, the masked attention scores are normalized using
the softmax function to obtain the attention weights:

Ãi,j =
exp(ei,j)

L∑
k=1

exp(ei,k)

. (12)

Through this design, each time step aggregates information
from all other steps except itself. This encourages the model
to focus on temporal dependencies across different positions
and helps enhance generalization by reducing redundancy in
the learned representations.

In the encoder layer, the input data X ∈ RL×d and the mask
M ∈ {0, 1}L×d are concatenated. The concatenated input
is then passed through a linear transformation and position
encoding to obtain intermediate representations:

H1 = Linear([X;M]) +B + PE (13)

where [X;M] denotes the concatenation of the input data
and mask, B is a learnable bias term, and PE represents
position encoding.

The intermediate representation H1 is then fed into the
DMSA module. The module performs multi-head attention,
followed by ReLU activation, a linear transformation, and bias
addition. This produces the updated hidden representation:

Ĥ2 = DMSA(H1) + ReLU(Linear(H1 +B)) (14)

Spatiotemporal Attention: In fault diagnosis tasks, an
attention mechanism is used to dynamically focus on the key
features of each module. This approach enhances the ability
to model interactions between features, improving diagnostic
accuracy. The outputs of the GAT layer and the encoder layer
are denoted as Ĥ1 ∈ RN×d1 and Ĥ2 ∈ RN×d2 , respectively.
To ensure consistent dimensions, d1 is set equal to d2. The
hidden states are projected into the query (Q), key (K), and
value (V) vector spaces using learnable linear transformations:

Q = WqĤ1, K = WkĤ2, V = WvĤ2. (15)

Next, multi-head attention uses scaled dot-product attention
to fuse features from the hidden states. This produces the
output H3:

H3 = Concat(head1, head2, . . . , headm)W3. (16)

Here, W3 is the output transformation matrix, and m is the
number of attention heads. The i-th attention head is defined
as:

headi = Softmax

(
QK⊤
√
dk

)
V, (17)

where dk represents the feature dimension of each head.
Finally, the hidden states are mapped to the target space

using a learnable matrix W4 ∈ RC×dout , producing the final
fault diagnosis result HFD:

HFD = W4H3 + b. (18)

Here, W4 is the transformation matrix, and HFD ∈ RC ,
where C is the number of fault categories.



C. Loss Function for Fault Diagnosis Task

In the fault diagnosis task for industrial six-axis robots, there
are seven fault types, each corresponding to a distinct category.
Let C represent the total number of categories, and let yi
denote the true label. The true label is encoded using one-hot
encoding, where the value is 1 for the actual category and 0
for all others. Let ŷi represent the predicted probability for
category i. Based on this, the loss function is defined as:

L (y, ŷ) = −
C∑
i=1

yi log ŷi. (19)

This cross-entropy loss function optimizes the model’s
classification performance by maximizing the predicted proba-
bility for the true category. It helps improve both the accuracy
and robustness of fault diagnosis.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

To validate the proposed method, experiments were con-
ducted on a six-axis industrial robot platform. Faulty compo-
nents were randomly used to replace functional reducers and
motors to simulate real-world industrial scenarios. These faulty
components exhibited early-stage failure characteristics, such
as slight temperature anomalies and unusual noises. During
the operation of the robot with faulty components, feedback
voltage signals were collected from the motor drives of four
axes. Seven fault types were simulated in the experiments.

The dataset includes 655 samples labeled as “Normal”
for normal operation. Additionally, six fault categories were
included:

1) A composite fault involving a reducer fault in axis one
and a motor fault in axis two, with 655 samples labeled
as “Composite Fault 1.”

2) A composite fault involving a reducer fault in axis one
and a motor fault in axis three, with 655 samples labeled
as “Composite Fault 2.”

3) A composite fault involving a reducer fault in axis three
and a motor fault in axis four, with 655 samples labeled
as “Composite Fault 3.”

4) A single fault involving a reducer fault in axis three,
with 655 samples labeled as “Single Fault 1.”

5) A single fault involving a motor fault in axis two, with
655 samples labeled as “Single Fault 2.”

6) A single fault involving a reducer fault in axis four, with
655 samples labeled as “Single Fault 3.”

To investigate the effect of graph construction strategies on
fault diagnosis performance, the raw time-series data were
transformed into three distinct graph structures: K-nearest
neighbor (KNN), radius-based, and path-based graphs. In
the KNN graph, each node was connected to its k = 3
nearest neighbors based on feature similarity, while the radius
graph connected nodes within a Euclidean distance threshold
of 0.5. The path-based graph was defined according to the
physical topology of the sensor layout, capturing the actual

signal transmission pathways among the sensors. These graph
structures were embedded into the proposed fault diagnosis
framework to assess their impact on diagnostic accuracy. By
applying the same model architecture across all graph types,
we ensured a consistent evaluation environment. In addition
to comparing different graph structures, the proposed method
was benchmarked against five commonly used fault diagnosis
algorithms [20], [22]–[25], The details are as follows:

1) GATv2 [22]: GATv2 improves upon the original Graph
Attention Network by introducing a more flexible at-
tention mechanism. It allows attention weights to be
dynamically adjusted based on the features of the target
node, enabling the model to better adapt to varying graph
structures.

2) FourierGNN [25]: This model incorporates a Fourier
Graph Operator (FGO) to perform computations in the
frequency domain. By leveraging spectral representa-
tions, FourierGNN can more efficiently capture patterns
in graphs with complex or rapidly changing structures.

3) Raindrop [20]: Raindrop is designed for irregular and
multivariate time series. It learns the relationships be-
tween sensors by estimating an underlying graph struc-
ture from raw observations, and uses this graph to infer
missing or misaligned data points.

4) TodyNet [24]: TodyNet uses dynamic graphs to model
dependencies between variables. It introduces a temporal
graph pooling module to enhance the hierarchical repre-
sentation of time series, and combines this with temporal
convolutions in a unified framework for classification
tasks.

5) TimeMIL [23]: TimeMIL reformulates time series clas-
sification as a weakly supervised learning problem us-
ing a multiple instance learning approach. It captures
temporal patterns through a Transformer-based model,
enhanced by learnable wavelet position tokens to reflect
sequential dependencies.

To ensure reliable evaluation, the dataset was randomly
divided into training and testing sets using a 7:3 ratio. During
training, the learning rate was set to 0.001, and the number of
attention heads in the model was fixed at 4. All experiments
were carried out on an Ubuntu 16.0 server equipped with
an Intel i9-10920X 3.50GHz CPU and an NVIDIA GeForce
RTX 3090 GPU. The implementation was based on Python
3.8.18, and all models were developed using the PyTorch 2.2.1
framework. These settings were chosen to provide a consistent
environment for benchmarking and to ensure reproducibility
of the experimental results.

B. Experimental Result

This section presents the performance of the proposed
method in the fault diagnosis task. Figure 2 shows the overall
accuracy achieved by various algorithms on the industrial
robot dataset containing seven fault types. The proposed
method outperformed baseline models across all three graph
construction methods, demonstrating its effectiveness in fault
diagnosis tasks. Among the graph structures, the path-based



model achieved the highest accuracy. This result is likely due
to the path construction method’s ability to capture global
information, reduce redundant data, and better align with
the dynamic characteristics and fault propagation patterns of
industrial systems.
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Fig. 2: Comparison of fault diagnosis accuracy across different
algorithms.

Fig. 3: t-SNE Visualization of KNN-Based Graph Fault Diag-
nosis.

We used t-SNE visualization to analyze the classification
performance of the fault diagnosis model under three graph
construction methods on the validation set, as shown in
Figure3, Figure4 and Figure5. Labels 0-6 represent single fault
1, single fault 2, single fault 3, composite fault 1, composite
fault 2, composite fault 3, and normal operation data. In the
t-SNE plot based on KNN, the cluster of single fault 1 is very
close to the composite faults, indicating poorer performance.
This matches the results in Figure2, where the KNN-based
method shows the lowest accuracy compared to the other two
methods.This might be the KNN-based graph construction
method only looks at local connections and does not take
the whole structure into account. This may lead to weak

Fig. 4: t-SNE Visualization of Radius-Based Graph Fault
Diagnosis.

Fig. 5: t-SNE Visualization of Path-Based Graph Fault Diag-
nosis

information flow. In contrast, the t-SNE plots based on radius
and path show clear boundaries between single and composite
faults. However, in all three graph construction methods, the
clusters of the three composite faults are not well separated.
This suggests that the proposed model still has limitations in
classifying composite faults.

V. DISCUSSION

Our results show important findings about how different
graph methods affect fault diagnosis in industrial robots. The
three methods we tested—KNN, radius, and path-based—all
worked well, but the path-based approach was the best with
92.68% accuracy. This tells us that the connections between
measurements over time are very important for finding faults.
This makes sense because robot faults usually appear as small
changes in sensor readings that happen over time. However, we
found some problems that need more work. The t-SNE results



showed that the KNN method had trouble telling single faults
apart from composite faults. The radius and path methods
did better at this, showing clear separations between these
fault types. But even these better methods had trouble telling
different composite faults apart from each other. This means
our model still needs improvement for handling complex
faults. There are also some other limits to consider. The path-
based method might not work as well when faults spread
in unexpected ways or when sensor readings aren’t closely
linked in time. Also, while our method successfully combined
spatial and temporal features through the attention mechanism,
processing multiple graph structures at once could be too slow
for systems that need real-time monitoring.

VI. CONCLUSION

This study presents a new way to find faults in industrial
robots using graph neural networks. We looked at three
ways to build graphs—KNN, radius, and path—to make fault
detection better. Our research shows several key findings.

First, we found that the way we build the graph has a
big effect on how well the system finds faults. Each method
showed different strengths. The KNN method was the basic
option but had trouble telling single faults from composite
faults. The radius method did better and showed clearer
boundaries between different types of faults. The path-based
method was the best, with 92.68% accuracy. This method
worked well because it could capture information about the
whole system and remove extra data that wasn’t needed.

Second, our new system design proved effective. We com-
bined graph attention networks with a special self-attention en-
coder, and this helped us capture both the spatial connections
between different parts and how things changed over time.
This new design helped the system learn complex patterns
in the robot’s behavior. The t-SNE analysis showed that our
method could separate different types of faults well, but still
had some problems telling composite faults apart from each
other.

The accuracy numbers were encouraging across all methods:
87.11% for KNN, 88.85% for radius, and 92.68% for path-
based graphs. These results show that our approach works well
for finding faults in industrial robots. But the t-SNE analysis
also showed areas where we need to improve, especially in
handling complex faults where multiple things go wrong at
once. Our findings have important implications for making in-
dustrial robots more reliable. The path-based method’s success
suggests that looking at how sensor measurements connect
over time is crucial for finding faults. This matches what we
know about how faults develop in industrial robots, where
problems often show up gradually over time.

For future work, we see several important directions. We
could test more ways to build graphs that might work even
better. We should also try our system in different types of
industrial settings to make sure it works well in various
situations. More research could focus on making the system
better at telling different composite faults apart, since this is
still a challenge. We could also look at ways to make the

system faster for real-time monitoring, and test how well it
works with different types of robots and equipment.

Using newer deep learning techniques could also help
make fault diagnosis even better. These improvements would
help make industrial robots smarter and more dependable.
As industrial robots become more common, having reliable
ways to find and fix problems quickly will become even more
important.

MATCH & CONTRIBUTION

This contribution aligns closely with the theme of the
ICE IEEE 2025 conference on “AI-driven Industrial Trans-
formation: Digital Leadership in Technology, Engineering,
Innovation & Entrepreneurship”. The paper focuses on en-
hancing fault diagnosis in industrial robot systems through
a graph neural network-based framework that captures both
spatial and temporal patterns in multivariable sensor data. By
comparing three distinct graph construction methods—KNN,
radius, and path-based—the study highlights how the structure
of data representation significantly affects diagnostic perfor-
mance. The integration of graph attention networks with a
diagonal masking self-attention mechanism enables the model
to effectively learn relationships across both space and time,
improving its capacity to identify complex fault patterns. The
proposed method is validated using real-world datasets, with
results showing a clear correlation between graph structure and
diagnostic accuracy. This work contributes to the advancement
of data-driven engineering by demonstrating how intelligent
graph modeling can improve reliability in automated systems.
It addresses the conference’s core interests in leveraging AI
techniques to drive technological innovation and operational
resilience within industrial settings.
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