
Hybrid fuzzy logic approach for 
enhanced MPPT control in PV 
systems
Mustapha Melhaoui1, Mohammed Rhiat2,3, Mohammed Oukili1, Ilias Atmane2,3, 
Kamal Hirech2,3, Badre Bossoufi4, Mishari Metab Almalki5, Thamer A. H. Alghamdi6,7 & 
Mohammed Alenezi6

This paper provides an in-depth analysis of photovoltaic (PV) system control within the MATLAB/
Simulink environment, focusing on optimizing Maximum Power Point Tracking (MPPT) algorithms 
for enhanced efficiency under dynamic conditions. While conventional algorithms are widely used, 
their performance is limited under fluctuating conditions. To address this, we propose a novel hybrid 
approach combining Incremental Conductance with Fuzzy Logic Control (FLC), utilizing two innovative 
input variables: the sum of Conductance and Incremental Conductance (SInC) and its rate of change 
(CSI). The performance of the proposed algorithm, in comparison to other hybrid FLC methods, is 
evaluated through simulations using a boost converter under dynamic conditions, including abrupt 
irradiance changes and load variations. The results demonstrate that the proposed hybrid algorithm 
achieves superior performance, with an average MPPT efficiency of 97.7%, a convergence time of 
53.5 ms, and an RMS of 97.8%, outperforming both conventional and other hybrid techniques. This 
work advances PV system control by providing a robust and adaptive solution for maximizing power 
extraction under diverse operating conditions.
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Abbreviations
CE	� Changing error
CSI 	� Rate of change of SInC

D 	� Duty cycle
FLC	� Fuzzy logic control
InC	� Incremental conductance
MPPT	� Maximum power point tracking
P&O	� Perturbation and observation
PWM	�  Pulse width modulation
RMS	� Root mean square
RMSE	� Root mean square error
SInC 	� Sum of conductance and incremental conductance
STC	� Standard test condition
CP V 	� Conductance of PV panel
PP V 	� Power of PV module
Rmpp	� Optimal resistance of PV panel
VP V 	� PV panel’s voltage
IP V 	� PV panel’s current
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∆V 	� Changing of VP V

∆P 	� Changing of PP V

∆D	� Duty cycle increment

The mounting global demand for energy, fueled by industrial expansion and increased consumption, has 
intensified the need for improved energy efficiency and the adoption of sustainable, renewable energy sources. 
The depletion of conventional energy reserves, coupled with environmental concerns and geopolitical challenges, 
has driven up energy costs, underscoring the urgency of transitioning to renewables such as solar and wind 
power. However, this transition requires not only the deployment of renewable energy systems but also the 
efficient extraction and delivery of power at competitive costs1–4.

Photovoltaic (PV) systems, while environmentally beneficial, face significant challenges that limit their 
widespread adoption. Industrial PV panels typically suffer from low energy conversion efficiencies (below 20%). 
Changes in sunlight intensity, ambient temperature, and even partial shading can drastically impact their electrical 
output. Additionally, the natural degradation of PV panels over time, leading to reduced energy production, 
further contributes to suboptimal performance, particularly in large-scale PV farms5. These combined factors 
often lead to reduced efficiency and reliability, significantly limiting the overall effectiveness of PV systems6,7.

A critical challenge in PV systems lies in their nonlinear electrical characteristics. The Maximum Power Point 
(MPP) represents the optimal operating condition where the product of voltage (Vmpp) and current (Impp) is 
maximized, leading to the highest power output (Pmpp). Achieving MPP operation requires precise impedance 
matching, where the load resistance equals the panel’s internal resistance (Rmpp = Vmpp/Impp). However, load 
resistance inevitably fluctuates with varying demands, causing the operating point to deviate from the MPP and 
resulting in significant power losses.

To address this challenge and ensure efficient power transfer, DC/DC power converters (e.g., Boost, Buck, 
SEPIC) are used, acting as an impedance transformer8,9. These converters use power switches controlled by 
a Pulse Width Modulation (PWM) signal with a fixed frequency and variable duty cycle. Maximum Power 
Point Tracking (MPPT) algorithms are vital for ensuring optimal power extraction from photovoltaic systems 
by accurately controlling the duty cycle.

Diverse studies have explored various MPPT techniques to increase the efficiency and robustness of 
photovoltaic PV systems under dynamic operating scenarios. Conventional algorithms such as Perturb and 
Observe (P&O)9,10, Hill Climbing11,12 and Incremental Conductance (InC)13–15 are widely used due to their 
simplicity. However, these methods rely on fixed step sizes for duty cycle adjustments, leading to compromise 
between tracking speed and accuracy near the MPP. While these methods perform reasonably well under stable 
conditions, their effectiveness decrease under changing environmental conditions or abrupt load variations, 
resulting in power losses and reduced efficiency16–18. Recent research highlights the limitations of traditional 
MPPT techniques under partial under fluctuating sun irradiance, under partial shading conditions and load 
variations, emphasizing the need for adaptive or intelligent MPPT strategies capable of maintaining optimal 
performance across diverse operating scenarios19–21.

Recent advancements in intelligent MPPT techniques, including Fuzzy Logic Control (FLC) and neural 
networks22–30, have demonstrated significant potential in overcoming these limitations. However, many of these 
approaches either lack adaptability under extreme conditions or require complex computational resources, 
limiting their practical implementation. Unlike traditional nonlinear controllers, fuzzy logic controllers offer 
the advantage of dynamically adapting the duty cycle step size based on expert knowledge, even in the absence 
of a precise mathematical model. This feature enables fuzzy-based algorithms to respond swiftly to changing 
operation conditions. The performance and design of fuzzy MPPT algorithms are critically influenced by the 
choice of input and output variables. While the variation in duty cycle (∆D) is commonly chosen as the output 
variable, various input variables have been explored in the literature, depending on the approach used to track 
the MPP. Some authors selected P–V slope (∆P/∆V ) and the variation of power (∆P ) as input variables31. In 
other study, the chosen inputs were P–V slope (∆P/∆V ) and changes of this slope30–34, while other works opted 
for PV variations in power and voltage (∆P  and ∆V ) or PV variations in power and current (∆P  and ∆I)25.

This research centers on the development and assessment of advanced MPPT control strategies, with a 
specific focus on fuzzy logic-based MPPT control (Hybrid FLC) approaches. For each algorithm, we analyzed 
theirs inputs under various operating conditions and established the corresponding membership functions 
and FLC rules to ensure optimal system performance. We conducted a comprehensive investigation of various 
Hybrid FLC methods and compared them with conventional techniques.

Furthermore, we propose a novel hybrid approach that integrates Incremental Conductance (InC) MPPT 
with fuzzy logic control. This method leverages two innovative input variables: the sum of Conductance and 
Incremental Conductance (SInC) and its rate of change (CSI), to enhance system performance. Through 
extensive simulations in MATLAB/Simulink, we evaluate the tracking speed, accuracy, and stability of these 
algorithms around the MPP using key performance metrics such as RMS, RMSE, and efficiency. The evaluation 
is conducted under extreme operating conditions, including abrupt irradiance changes and sudden load 
variations, to rigorously test the robustness and adaptability of each algorithm35–38.

This work contributes to the ongoing efforts to improve the efficiency and adaptability of PV systems, offering 
a robust solution for maximizing power extraction under diverse and dynamic operating conditions with a lower 
cost. By combining the strengths of Incremental Conductance and fuzzy logic control, our proposed approach 
addresses the limitations of traditional MPPT methods, providing a significant advancement in the field of 
renewable energy systems.
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PV System description
The complete PV system consist of PV panel, a DC-DC converter regulated by a 10 kHz PWM signal, and a 50 
Ω resistive load. The system schematic is depicted in Fig. 1.

A SunPower SPR-210 PV panel was employed for this study. An increase in irradiance results in higher PV 
power output, whereas an increase in temperature conversely decrease its performance. Figure 2 illustrates the 
P–V and I–V characteristics under various irradiance conditions. Detailed electrical specifications at STC of the 
210W SunPower PV module are presented in Table 1.

A DC–DC converter is interposed between the PV panel and the load to independently regulate the PV 
voltage from load conditions and maintain operation at the MPP, as determined by the MPPT controller. The 
converter topology, as illustrated in Fig. 1, utilizes a MOSFET as the power switch, controlled via a PWM signal.

Under steady-state conditions, a boost converter sustains a constant output voltage. The relationship between 
the input and output voltages and currents are described by:

	
Vout = 1

1 − D
VP V � (1)

Open circuit voltage Voc (V) 47.8

Short circuit current Isc (A) 5.65

Voltage at maximum power point Vmp (V) 40

Current at maximum power point Imp (A) 5.25

Maximum power (W) 210

Temperature coefficient of Voc (%/deg.C) − 0.2792

Temperature coefficient of Isc (%/deg.C) 0.035894

Table 1.  Electrical characteristic of PV panel at STC (SunPower SPR-210).

 

Fig. 2.  I–V and P–V curves of PV array under different illumination conditions.

 

Fig. 1.  Schematic diagram of PV system.
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	 Iout = (1 − D) · IP V � (2)

Under optimal operating conditions, where the PV generator is interfaced with the load via a DC–DC boost 
converter, the following relationship holds true:

	
Dmpp = 1 −

√
Rmpp

R
; Rmpp = Vmpp

Impp

� (3)

DC/DC boost converter parameters were determined under standard test conditions (STC). The PV optimal 
resistance (Rmpp) was calculated as 7.62 Ω, with an optimal Duty Cycle (Dmpp) of 0.61, resulting in an output 
DC/DC voltage (Vout) of 102 V and current (Iout) for 2.04 A.

The inductance value (L) is established according to the required current ripple, as determined by the 
following equation:

	
L ≥ Vmpp · Dmpp

f · ∆IL
� (4)

The output capacitance value (Co) is determined based on the allowable voltage ripple, calculated using the 
following equation:

	
Co ≥ Vout · Dmpp

R · f · ∆Vout
� (5)

The input capacitor (Ce) in a DC-DC boost converter is essential for stabilizing the input voltage and reducing 
voltage ripple. Its sizing is influenced by several factors, including the inductor (L), the damping factor (ξ), 
and RMP P . The relationship between these components can be understood through the transfer function that 
describes how the duty cycle (D) affects the photovoltaic voltage (Vpv)39:

	

VP V (p)
D (p) = − Vout

LCe · p2 + L
Rpv

· p + 1 � (6)

The Eq. (6) present the transfer function that can be compared to the general form of a second-order system. By 
rearranging the damping factor equation, we obtain the expression for the input capacitor (Ce) as40:

	
Ce = 1

4 · (RMP P )2 × L

ξ2 � (7)

For 4% current ripple and 0.5% voltage ripple respectively, we can calculate L ≈ 12 mH and Cs ≈ 250 
µF. To achieve a fast response time with an acceptable overshoot of 4.6%, we selected a damping factor of 
ξ = 0.7. Substituting the values (RpV = Rmpp) into the equation, we calculated: Ce = 131, 6 µF. For practical 
implementation, we chose a standard capacitor value of: Ce = 150 µF.

Conventional MPPT control
The nonlinear behavior of PV systems causes variations in power output, which are affected by fluctuations in 
cell temperature and solar irradiance. For each operating condition, an optimal point exists, as shown in Fig. 2, 
where the PV array attains its maximum power output and efficiency.

This study explores various MPPT algorithms, including a hybrid approach combining Incremental 
Conductance and fuzzy control. These algorithms are compared to assess their performance in optimizing PV 
system power output.

The Perturb and Observe (P&O) method is an intuitive and effective MPPT technique that involves making 
small perturbations to the system and monitoring the resulting changes in power output to determine the 
subsequent control action. If the PV power increases (∆P/∆V > 0), the PV reference voltage (Vref ) is 
incremented; otherwise, it is decremented (Fig. 3).

The MPPT controller’s schematic and Simulink implementation are shown in Fig. 4. To ensure proper control 
direction in the inverter-boost converter system, an inverter block was added before the PI controller, as the 
system with the boost converter operates inversely40.

The Incremental Conductance (InC) algorithm offers a more advanced approach to MPPT compared to the 
P&O method28. By evaluating both the instantaneous conductance and the incremental conductance of the PV 
panel, this algorithm achieves more accurate and efficient MPP tracking. The optimal operation occurs when the 
derivative of the PV power with respect to the PV voltage is zero, defined as:

	
dPP V

dVP V
= 0 ⇒ IP V + VP V · dIP V

dVP V
= 0 ⇒ IP V

VP V
+ dIP V

dVP V
= 0� (8)

The P–V slope is zero at the MPP, positive to the left of the MPP, and negative to the right of the MPP. In InC 
algorithm, this translates to:

•	 InC = −CP V , the operating point is at the MPP;
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Fig. 4.  MPPT schematic diagram.

 

Fig. 3.  P&O MPPT algorithm.
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•	 InC > − CP V , the operating point is to the left of the MPP;
•	 InC < − CP V , the operating point is to the right of the MPP;

where CP V = IP V
VP V

 is the instantaneous Conductance, and InC is its rate of change, also known as the 
Incremental Conductance.

The InC algorithm, shown in Fig. 5, employs CP V  and ∆CP V  to determine the control action. The algorithm’s 
output is the reference voltage:Vref . If operating point is located to the right of the MPP, Vref  is decreased to 
shift the operating point leftward. Conversely, if the operating point is in the left side, Vref  is increased. A 
PI controller is employed to regulate the photovoltaic voltage (VP V ) to match a reference voltage (Vref ) by 
adjusting the duty cycle of the PWM sign.

Fuzzy logic controller
Traditional control methods often struggle to achieve optimal performance in complex systems with 
nonlinearities or imprecise data. In such scenarios, fuzzy logic offers a valuable alternative by incorporating 
human expertise and domain knowledge into controller design. This approach uses a rule-based system with 
"If–Then" guidelines, where variables are expressed as fuzzy sets with varying degrees of membership rather 
than crisp values. For the DC/DC converter, a Fuzzy Logic Controller (FLC) employing the Mamdani inference 
technique is utilized22–24. Following the fuzzy reasoning process, a defuzzification stage translates the resulting 
fuzzy output into a crisp control signal.

Fuzzy MPPT controllers use real-time voltage and current measurements from the PV panel as input 
variables to regulate the PWM signal, maximizing PV power output. As shown in Fig. 6, the FLC algorithm’s 
structure revolves around three main components40:

•	 Fuzzification This stage converts the crisp input values into fuzzy values using linguistic variables. These lin-
guistic variables facilitate the incorporation of human expertise and domain knowledge into the control strat-
egy.

•	 Knowledge Base This component consists of a set of IF–Then rules, where the rule base is established using 
linguistic functions to define the relationship between fuzzy input variables and the desired output

•	 Defuzzification This process transforms fuzzy values back into crisp, precise values. Various defuzzification 
methods exist, such as the centroid method, to achieve this conversion40,41.

The FLC employs Mamdani’s fuzzy inference system to determine the optimal increment in duty cycle. The 
output, representing the duty cycle increment (∆D), is calculated using the center of gravity method for 
defuzzification, as follows:

	
∆D =

∑n

j=1 ∆Dj · µ (∆Dj)∑n

j=1 µ (∆Dj)
� (9)

Fig. 5.  InC MPPT algorithm.
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The performance of fuzzy MPPT controllers is significantly influenced by the choice of fuzzy input variables. 
This study investigates and compares the effectiveness of FLC-MPPT controllers utilizing various combinations 
of input variables.

Different fuzzy MPPT control methods are discussed in this work, all sharing a common variable output: the 
duty cycle increment (Fig. 6).

Effective fuzzification requires careful selection of membership function intervals for each input of the fuzzy 
logic controller to ensure optimal system control. To determine these intervals, we systematically analyzed input 
variations across the PV system’s operating range, from open circuit to short circuit. This analysis enables a 
detailed study of the system’s behavior, allowing us to accurately define the necessary membership functions and 
rigorously formulate fuzzy inference rules. The resulting control strategy aims to optimize MPPT speed, increase 
tracking accuracy, and enhance system robustness under diverse operating conditions40.

To evaluate the dynamic performance of the PV system and compare different control strategies, a 
standardized operating profile was applied. This profile, depicted in Fig. 7, consists of three distinct phases:

•	 Phase 1 (0–200 ms): System stabilization with a constant duty cycle of 0.1.
•	 Phase 2 (200–350 ms): Linear ramp of the duty cycle from 0.1 to 0.9.
•	 Phase 3 (350–500 ms): Linear reduction of the duty cycle from 0.9 to 0.1.

Experiments were conducted under varying illumination conditions (1000 W/m2, 500 W/m2, and 200 W/m2) 
while maintaining a constant temperature of 25 °C. The temporal evolution of photovoltaic panel power (PP V ) 
under these conditions is illustrated in Fig. 7b.

First Hybrid P&O-FLC algorithm using ∆P/∆V  and ∆P  as input variables
The first proposed hybrid MPPT algorithm integrates the Perturb and Observe (P&O) method with FLC. The FLC 
utilizes the P–V curve slope (∆P/∆V ) and the change in power (∆P ) as input variables.

Figure 8 illustrates the first MPPT block system in MATLAB/SIMULINK employing a hybrid P&O-FLC 
algorithm. This algorithm utilizes the P–V curve slope (∆P/∆V ) and power variation (∆P ) as input variables.

Fig. 7.  PV System Characteristics. (a) Duty cycle variation for system dynamic analysis. (b) PV panel 
characteristics under different illumination conditions.

 

Fig. 6.  Fuzzy MPPT  structure.
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Figure 9a–f, presents the dynamic response of a PV panel to duty cycle variations, as shown in Fig. 7a. The 
slope (E = ∆P/∆V ) and power variation (∆P ) are studied for duty cycles ranging from 0.1 and 0.9, under 
different irradiance levels (200 W/m2, 500 W/m2, 1000 W/m2) while maintaining a constant temperature of 
25 °C.

To optimize MPPT performance, the fuzzy rule base is segmented into distinct regions defined by P–V curve 
slope (E = ∆P/∆V ) and power variation (∆P ) characteristics (Fig. 9a–f). Control strategies are defined as 
follows:

•	 Negative P–V slope region (E < 0): In this region, the operating point is located to the right of the MPP on 
P–V characteristic curve. Consequently, an increase of the duty cycle is necessary to shift the operating point 
towards the MPP. The duty cycle adjustment is based on the distance from the MPP, which is assessed using 
E and ∆P . This adjustment is designed to improve both the speed and accuracy of the search for the MPP:

•	 If E is NB, as shown for example at Point O1 and O2 in Fig. 9a–c, the operating point is far from the MPP. 
Therefore, a significant increase in the duty cycle is required for rapid convergence.

•	 If E is NM, as shown at Point B and Point H in Fig. 9a–d, proximity to the MPP is established. However, 
we can further improve our MPPT control by using the secondary input, ∆P :

•	 If ∆P  is big (Point B in Fig. 9b), a gradual decrease in the increment value is recommended to prevent 
overshooting the MPP.

•	 Otherwise, a moderate increase in the duty cycle can be implemented since the MPP has not yet been 
reached (Point H in Fig. 9d).

•	 If E is NS, as shown at Point C in Fig. 9a–d, the operating point is near the MPP. In this situation, only 
a minor adjustment to the duty cycle is necessary. However, if ∆P  is zero, the duty cycle should remain 
unchanged to prevent overshooting the MPP, especially under low irradiance conditions since the optimal 
duty cycle is close to 0.1( e.g., Dmpp ≈ 0.138 when Le = 200 W/m2).

•	 Zero P–V slope (E is ZE): the operating point coincides with the MPP, as shown at Point M1 and M2 in 
Fig. 9a–f. The duty cycle should remain unchanged. To further improve accuracy, ∆P  can be used:

•	 If ∆P  is very small, the MPP has been reached.
•	 If ∆P  is large, a slight increment in duty cycle can be performed, depending on the sign of ∆P , to match 

the MPP.

•	 Positive P–V slope region the operating point is positioned to the left of the MPP. Therefore, the system must 
decrease the duty cycle value. The same logic, employing Fig. 9, applies for establishing MPPT control laws. 
However, consider the following:

•	 When E is PM, and ∆P  is very small, then a gradual decrease in the increment value is recommended to 
prevent overshooting the MPP.

•	 When E is PM and ∆P  is significant, a moderate decrease in the duty cycle is recommended to improve 
tracking speed under low and high irradiance conditions.

•	 However, under low irradiance conditions (Fig. 9e–f), the duty cycle is adjusted more gradually in response to 
power variation (∆P ). This adjustment is necessary because the slope of the PV curve is significantly smaller 
compared to its values under high irradiance conditions. As a result, the duty cycle variation is less responsive 
to the operating point’s distance from the MPP, necessitating a more refined control approach to maintain 
optimal performance.

The system’s output is the duty cycle value, which is adjusted by the FLC-MPPT controller. Table 2 presents the 
fuzzy rule base designed using these input variables.

Fig. 8.  Simulink Circuit Diagram of the Hybrid P&O-FLC MPPT Controller using  ∆P/∆V  and ∆P  as input 
variables.
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Second Hybrid P&O-FLC algorithm using ∆P/∆V  and CE as input variables
The second proposed hybrid MPPT algorithm integrates also the Perturb and Observe (P&O) method with fuzzy 
logic control. To enhance tracking accuracy, the FLC uses the P–V curve slope (E = ∆P/∆V ) and the change 
in this slope (CE) as primary input variables. These parameters are calculated as follows:"

	
E (k) = ∆PP V

∆VP V
= IP V (k) VP V (k) − IP V (k − 1) VP V (k − 1)

VP V (k) − VP V (k − 1) � (10)

	 CE (k) = E (k) − E (k − 1)� (11)

Figure 10 illustrates the second MPPT block system within the MATLAB/Simulink environment, employing a 
hybrid P&O-FLC algorithm. This algorithm utilizes the P–V curve slope (∆P/∆V ) and its rate of change (CE) 
as input variables40.

(a) (b)

Close to 
Open Circuit

Close to
Short Circuit

MPP

S
MPP

B
C

= .

= .

B

Fig. 9.  Inputs variable (P–V curve slope E = ∆P/∆V  and PV power variation,∆P ) used for Hybrid P&O-
FLC under different illumination conditions: (a–b): under 1000 W/m2 (c–d): under 500 W/m2. (e–f): under 
200 W/m2.
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To evaluate the dynamic performance of the PV system and compare different control strategies, we 
established a consistent profile focusing on the last two phases (Fig. 11):

•	 Phase 1 (200–350 ms): Linear ramp of the duty cycle from 0.1 to 0.9.
•	 Phase 2 (350–500 ms): Linear reduction of the duty cycle from 0.9 to 0.1.

Experiments were conducted under varying illumination conditions (1000 W/m2, 500 W/m2, and 200 W/
m2) while maintaining a constant temperature of 25 °C. The same profile was used for the subsequent MPPT 
algorithms to ensure a fair comparison.

Figure 12 illustrates the dynamic response of a PV panel subjected to the varying duty cycle profile depicted 
in Fig.  11a. The figure analyzes the PV slope (E = ∆P/∆V ) and the rate of change of slope (CE) under 
different irradiance levels at a constant temperature of 25 °C.

For this algorithm, the fuzzy rule base is segmented based on P–V curve slope (E = ∆P/∆V ) and its rate 
of change (CE) (Fig. 12):

Fig. 11.  (a) Duty cycle variation for system dynamic analysis. (b) PV panel characteristics under different 
illumination conditions.

 

Fig. 10.  Simulink Circuit Diagram of the Hybrid P&O-FLC MPPT Controller using  ∆P/∆V  and CE as 
input variables.

 

Fuzzy rules

E (k) = ∆PP V /∆VP V

NB NM NS ZE PS PM PB

∆PP V

NB PB PS PS PS NS NB NB

NM PB PM PS PS NS NM NB

NS PB PM PS ZE NS NS NB

ZE PB PM ZE ZE ZE NS NB

PS PB PM PS ZE NS NS NB

PM PB PM PS NS NS NM NB

PB PB PS PS NS NS NB NB

Table 2.  Fuzzy rule base using P–V Curve Slope and Power variation as input Variables.
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•	 In the negative P–V slope region (E < 0), the operating point is located to the right of the MPP. A duty cycle 
increment is applied, with its magnitude determined by the two inputs E and CE:

•	 If E is NB, as shown at Point O1 and O2 in Fig. 12a–d, the operating point is far from the MPP. Therefore, 
a larger duty cycle is applied to accelerate convergence.

•	 If E si NM, the operating point is near the MPP and the control will improved by using the secondary 
input, CE:

•	 If CE is large, as shown at Point B in Fig. 12b, it mean that the operating point is near the MPP. To pre-
vent  overshooting the MPP and causing system oscillations, the output should be set to PS.

•	 Otherwise, as shown at Point H in Fig. 12d, a moderate increase in the duty cycle can be implemented 
since the MPP has not yet been reached.

Fig. 12.  Inputs variable (E = ∆P/∆V  and CE) for Hybrid P&O-FLC under different illumination 
conditions: (a–b): under 1000 W/m2. (c–d): under 500 W/m2. (e–f): under 200 W/m2.
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•	 If E is NS, as shown at Point C in Fig. 12a, a slight increment in the duty cycle is required, since The op-
erating point is very near the MPP. However, if CE is large, the duty increment of duty cycle is set to ZE 
to prevent overshooting the MPP, especially under low irradiance conditions. This precaution helps avoid 
excessive adjustments that could destabilize the system.

•	 In the Zero P–V slope (E is ZE), the operating point is at the MPP. The duty cycle should remain unchanged. 
To further improve accuracy under low irradiance conditions, where both E and CE are very small, the 
following rule can be added:

•	 If CE is very small and not equal to zero, then an increment of duty cycle is required based on its sign.

•	 In the Positive P–V slope region, the operating point is positioned on the left side of the MPP. The system 
should decrease the duty cycle value using inputs variables: E and CE( Fig. 12) to adjust the duty cycle mag-
nitude. To enhance controller performance under low irradiance conditions, especially when the operating 
point is distant from the MPP, the following rule can be incorporated:

•	 When E is PM, and CE is ZE: A large decrease in the increment value is then applied to reach the PPM 
faster.

•	 In cases where the operating point is near to the MPP, ∆P  and ∆P  can approach zero, resulting in large E 
and CE. In these situations, the output can be set to P S or NS as appropriate.

The FLC-MPPT controller’s operation is determined by the fuzzy rule base presented in Table 3, ensuring 
smooth system operation.

Third Hybrid InC-FLC algorithm using SCIC  as input variable
The third hybrid FLC-MPPT method uses the InC algorithm’s foundation, which relies on the Eq. 8. This FLC-
MPPT method  utilizes a single fuzzy input variable, the Sum of Conductance and Increment of Conductance (
SInC = IP V

VP V
+ dIP V

dVP V

)
, as the input to the fuzzy logic MPPT controller, to modulate the PWM signal’s duty 

cycle40.
To evaluate the dynamic performance of the system, the same consistent profile as described in the previous 

paragraph was employed, as illustrated in Fig. 11. Figure 13 illustrates the evolution of SInC  under various 
irradiance levels and operating points. SInC  serves as the sole input for the third MPPT algorithm. Additionally, 
the figure presents the rate of change of SInC( CSI) used in the fourth FLC-MPPT method.

The algorithm employs a single fuzzy input variable (SInC) (Fig. 13), with the fuzzy rule base segmented 
as follows:

•	 SInC < 0: Operating point is right of the MPP. A duty cycle increment is applied, with magnitude deter-
mined by Inc value:

•	 SInC  is NB, as shown at Point O1 and O2 in Fig. 13a–c: a substantial increment in the duty cycle should 
be introduced.

	 If SInC  is NM, as shown at Point B in Fig. 13a and Point H in Fig. 13c: A moderate increase in the duty 
cycle should be implemented. This adjustment is necessary because the operating point is approaching the 
MPP and a balanced approach helps fine-tune the system’s performance without overshooting the MPP.

•	 If SInC  is NS, as shown at Point C in Fig. 13a: a slight duty cycle increment is required to prevent system 
oscillation.

•	 SInC  is ZE: Operating point at the MPP. The the duty cycle value should be maintained.
•	 SInC > 0: Operating point is left of the MPP. The duty cycle should be decreased based on the value of 

SInC .

Figure 14 depicts the Simulink implementation of the hybrid InC-FLC MPPT algorithm. This algorithm employs 
SInC  as the sole input variable. The MPPT controller’s operation is set by the fuzzy rule base presented in Table 
4.

Fuzzy rules

E (k) = ∆PP V /∆VP V

NB NM NS ZE PS PM PB

CE (k)

NB PS PS ZE ZE ZE NS NB

NM PB PS ZE PS ZE NS NB

NS PB PM PS ZE NS NM NB

ZE PB PM PS ZE NS NB NB

PS PB PM PS ZE NS NM NB

PM PB PS ZE NS ZE NS NB

PB PS PS ZE ZE ZE NS NS

Table 3.  Fuzzy rule base using P–V Curve Slope and the change in this slope as input variables.
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The proposed Hybrid InC-FLC algorithm using SInC  and CSI as input variables
To enhance MPPT tracking speed and accuracy, especially under low irradiance conditions, a second hybrid 
algorithm incorporating SInC  and its rate of change (CSI) as fuzzy inputs is proposed (Fig. 13). The fuzzy rule 
base is expanded upon the initial approach with the following modifications:

•	 Negative SInC : Duty cycle is increased. Increment magnitude is adjusted based on SInC  value. To prevent 
overshooting the MPP, the duty cycle is maintained when SInC  is NS and CSI is large.

•	 SInC = 0: Duty cycle maintained.
•	 The same reasoning is applied when SInC  is positive, except with specific rules to enhance the performance 

under low irradiance conditions:

•	 SInC  is PS and CSI is ZE, as shown at Point I in Fig. 13e–f: In this condition, the operating point is mod-
erately distant to the left of the MPP. Therefore, the fuzzy output is set to NM.

Fig. 13.  Inputs variables (SInC  and its variation CSI) for Hybrid InC-FLC under different illumination 
conditions: (a–b): under 1000 W/m2. (c–d): under 500 W/m2. (e–f): under 200 W/m2.
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•	 SInC  is PM and CSI is ZE, as shown at Point J in Fig. 13e–f: The operating point is far to the left of the 
MPP. Therefore, the fuzzy output is set to NB.

These two additional rules enhance MPP tracking under low irradiance conditions. They also allow for fine-
tuning all the membership function boundaries, leading to improved overall system performance.

Figure  15 depicts the Simulink implementation of the hybrid InC-FLC MPPT algorithm. This algorithm 
uses SInC  and its rate of change (CSI) as fuzzy inputs. Table 5 presents the fuzzy rule base designed for this 
algorithm40.

Figure 16 presents a detailed flowchart of the proposed fuzzy logic-based MPPT control strategy, designed 
for real-time operation. The process begins with the measurement of PV panel voltage and current, followed by 

Fuzzy 
rules

SInC = IP V
VP V

+ dIP V
dVP V

NB NM NS ZE PS PM PB

CSI

NB PB PM ZE ZE ZE NM NB

NS PB PM PS ZE NS NM NB

ZE PB PM PS ZE NM NB NB

PS PB PM PS ZE NS NM NB

PB PB PM ZE ZE ZE NM NB

Table 5.  Fuzzy rule base for the InC-FLC MPPT controller, using SInC  and its rate of change (CSI) as input 
variables.

 

Fig. 15.  Simulink Circuit Diagram of the Hybrid InC-FLC MPPT Controller using  SInC  and CSI  as input 
variables.

 

Fuzzy Rules SInC = IP V
VP V

+ dIP V
dVP V

NB NM NS ZE PS PM PB

PB PM PS ZE NS NM NM

Table 4.  Fuzzy rule base for the InC-FLC MPPT controller, using SInC  as single input variable.

 

Fig. 14.  Simulink Circuit Diagram of the Hybrid InC-FLC MPPT Controller using SInC  as single variable 
input.
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the calculation of the sum of Conductance and Incremental Conductance (SInC) and its rate of change (CSI). 
These inputs are fed into the FLC, which applies predefined rules to classify the duty cycle adjustment (∆D)40.

The system continuously updates the duty cycle and controls the DC-DC converter to maintain operation 
at the MPP. A feedback loop ensures that the system dynamically adapts to changes in irradiance, temperature, 
and load conditions. If the system is far from the MPP, ∆D is set to big or medium; if near the MPP, ∆D is set 
to small or zero. This continuous adjustment ensures optimal performance under varying operating scenarios.

Simulation results and discussion
A MATLAB/Simulink simulation of a PV system was developed to assess the dynamic performance of various 
MPPT techniques. The system comprised a SunPower SPR 210 PV panel, a DC-DC boost converter controlled by 
a 10 kHz PWM signal, and a 50Ω resistive load (Fig. 1). The simulation was designed to evaluate the effectiveness 
of the proposed MPPT control strategies under dynamic meteorological conditions and sudden load  variations.

Key performance metrics were used to quantify the effectiveness of each algorithm, including:

•	 Average MPPT Efficiency in order to measure the controller’s ability to extract the maximum available power 
from the PV array expressed as:

	
MP P T Efficiency =

( ∑N

i=1 Ppv (i)∑N

i=1 Popt (i)

)
× 100 (%)� (12)

•	 Convergence Time to quantify the speed at which the MPPT controller reaches the new MPP after a change 
in operating conditions.

•	 Root Mean Square Error (RMSE) to evaluate the tracking accuracy by quantifying the deviation between the 
actual and theoretical optimal power. It is defined as:

	

RSME =

√√√√ 1
N

N∑
i=1

(Ppv (i) − Popt (i))2� (13)

•	 Normalized RMS Value (RMS%) with respect to the optimal power in order to assesse the stability of the pow-
er output relative to the optimal power. It is calculated as:

Fig. 16.  Flowchart of our proposed algorithm.
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RMS% =

√
1
N

∑N

i=1 Ppv (i)2

Popt

� (14)

Testing robustness under dynamic irradiance conditions
The study was conducted under dynamic conditions, where irradiance levels were subjected to stepwise changes 
at 0.2-s intervals, with a fixed ambient temperature of 25 °C (Fig. 17). The irradiance profile ranged from 200 to 
1000 W/m2, simulating real-world variations in solar irradiance. This dynamic profile was designed to rigorously 
test the ability of the MPPT algorithms to adapt to rapid changes in environmental conditions, which are critical 
for practical applications.

Figure 18 presents shows simulated PV system performance using P&O (Fig. 18a,b) and InC (Fig. 18c,d) 
MPPT algorithms. For each algorithm, the PV panel power output and duty cycle evolution are depicted (black 
lines), alongside their optimal values (dotted red lines) over the simulation period, which follows the irradiance 
profile shown in Fig. 17. The results demonstrate that both the P&O and InC algorithms effectively track the 
MPP, achieving efficiencies of 95.41% and 95.6%, respectively.

However, both methods exhibit persistent oscillations around the MPP due to continuous duty cycle 
modulation. These oscillations, while not entirely eliminating the effectiveness of the algorithms, resulted in 
energy losses and reduced system stability. To address these limitations, a FLC approach can be employed. By 
dynamically modifying the duty cycle based on the deviation from the estimated MPP, the FLC-based algorithms 
were able to accelerate convergence and reduce oscillations, thereby improving tracking accuracy and system 
stability.

Figure 19 presents the simulation results of the PV system using the first hybrid P&O-FLC MPPT algorithm, 
which employs ∆P/∆V  and ∆P  as input variables. The figure illustrates the PV panel power output, duty cycle 
evolution, and their corresponding optimal values (represented by dotted red lines) over the simulation period. 
Additionally, the input and output voltage and current values of the DC/DC converter are displayed (black and 
blue lines, respectively).

The results demonstrate that the controller successfully tracked the MPPT under fluctuating irradiance 
conditions, achieving an average MPPT efficiency of 97.5%. During periods of steady irradiance, the electrical 
quantities remained stable and closely aligned with their optimal values, highlighting the effectiveness of the 
MPPT control. The duty cycle variation was more substantial when the operating point was distant from the 
MPP, but it decreased significantly or became negligible as the operating point converged toward the MPP. This 
adaptive behavior highlights the controller’s ability to dynamically adjust its response based on its proximity to 
the MPP, ensuring efficient and stable operation under varying environmental conditions.

Figure  20 illustrates PV system simulation results using the second hybrid P&O-FLC MPPT algorithm, 
where the input variables are ∆P/∆V  and CE. The figure illustrates the PV panel power output, duty cycle 
evolution, and their corresponding optimal values (represented by dotted red lines) over the simulation period. 
Additionally, the input and output voltage and current values of the DC/DC converter are displayed (black and 
blue lines, respectively).

The findings demonstrate the MPPT controller’s effectiveness in precisely tracking the MPP across varying 
conditions, achieving an average MPPT efficiency of 96.82%. Compared to the previous FLC algorithm (using 
∆P/∆V  and ∆P  as inputs), the second hybrid P&O-FLC algorithm demonstrates also an improved and 
tracking speed, particularly near the MPP and under low irradiance conditions. Such a performance is attributed 
to the inclusion of CE, which provides additional information about the rate of change of the P–V curve slope, 
enabling faster and more precise adjustments to the duty cycle. However, the lower  magnitude of CE under high 
irradiance conditions can introduce minor oscillations in the electrical quantities. To address this, a compromise 
can be made between reducing oscillations under high irradiance and maintaining high efficiency across all 
irradiance levels. This trade-off ensures that the algorithm remains robust and effective under a wide range of 
operating conditions.

Fig. 17.  Irradiance profile.
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Figure 21 illustrates the simulated behavior of the PV system using the third Hybrid InC-FLC algorithm, 
where SInC( sum of Conductance and Incremental Conductance) serves as the main input variable. The results 
confirm that this algorithm provides robust MPPT performance under both steady-state and dynamic irradiance 
conditions, achieving an average MPPT efficiency of 96.6%.

This algorithm is more efficient and easier to implement compared to its predecessors, particularly in terms 
of precision near the MPP. The SInC  value serves as a reliable indicator of the operating point’s proximity 
to the MPP: a larger SInC  value indicates a greater distance from the MPP, while the MPP is reached when 
SInC  equals zero. This contrasts with previous algorithms that relied on the P–V slope (∆P/∆V ) as an input 
variable, which exhibited a limitation: when the operating point is on the right side of the MPP (∆P/∆V < 0), 
a higher absolute value of P–V slope indicates a greater distance from the MPP. However, when ∆P/∆V > 0, 
there is a point where the P–V slope becomes constant, regardless of the distance from the MPP. This limitation 
necessitates the use of a second input variable and carefully tuned membership functions and rules to optimize 
MPPT control.

Despite its advantages, the effectiveness of the InC-FLC algorithm heavily relies on the accuracy of 
measurement tools, particularly due to the challenges associated with performing accurate division operations. 
Additionally, as shown in Fig. 21, small oscillations of the electrical quantities around the MPP are observed 
under high irradiance, and the MPP tracking speed under low irradiance conditions remains suboptimal. 
To address these limitations, the incorporation of the rate of change of SInC( CSI) as an additional input 
variable greatly improves the algorithm’s precision in identifying and tracking the MPP, especially in challenging 
operating environments.

Figure 22 illustrates the simulation results of the proposed algorithm. This fourth Hybrid InC-FLC algorithm 
employs SInC  and its rate of change (CSI) as fuzzy input variables. The results demonstrate that this algorithm 
achieves robust MPPT performance, with an average efficiency of 97.7% and rapid, accurate MPP tracking under 
both high and low irradiance conditions. Notably, the algorithm effectively mitigates oscillations in the electrical 
quantities, ensuring stable and efficient power extraction.

(c) (d)

(a) (b)

Fig. 18.  Simulation results of PV System. (a and b): PV Power and duty cycle using P&O MPPT algorithm. (c 
and d): PV Power and duty cycle using Inc MPPT algorithm.
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The inclusion of CSI  as a second input variable enhances the algorithm’s ability to dynamically adjust the 
duty cycle step size based on the rate of change of SInC, enabling faster convergence and improved accuracy 
near the MPP. This makes the algorithm particularly effective under rapidly changing environmental conditions.

However, the algorithm’s performance remains sensitive to the precision of measurement instruments, 
as accurate calculations of SInC  and CSI  are critical for optimal operation. Additionally, careful tuning of 
membership functions and fuzzy rules is essential to maximize the controller’s effectiveness across different 
irradiance levels. These design considerations ensure that the algorithm maintains high performance and 
adaptability in real-world applications.

Table 6 quantifies the simulation results by comparing the average MPPT efficiency, convergence time to 
the MPP, root mean square (RMS) and root mean square error (RMSE) for each method. For simplicity and 
readability, the algorithms are abbreviated as follows:

•	 Algorithm 1: The first Hybrid P&O-FLC algorithm (using ∆P/∆V  and ∆P  as input variables).
•	 Algorithm 2: The second Hybrid P&O-FLC algorithm (using ∆P/∆V  and its rate of change (CE) as input 

variables).
•	 Algorithm 3: The third Hybrid InC-FLC algorithm (using SInC  as the input variable).
•	 Proposed Algorithm: The fourth Hybrid InC-FLC algorithm (using SInC  and CSI  as input variables).

The proposed algorithm achieves the highest average MPPT efficiency (97.7%), the fastest average convergence 
time (53.5 ms), the lowest RMSE (8.6), and the highest RSM (97.8%), outperforming both conventional and other 
hybrid FLC methods. These results highlight the robustness and adaptability of the proposed algorithm, making 
it a promising solution for real-world PV systems operating in dynamic and unpredictable environments.

Testing robustness under dynamic load variation
To provide a more comprehensive evaluation of the proposed MPPT control strategy’s robustness, as well as that 
of the other algorithms under study, simulations were performed under conditions of dynamic load variation. 
As illustrated in Fig. 23, the load resistance was abruptly changed from 50Ω to 20Ω at t = 0.2s, and then from 
20Ω to 35Ω at t = 0.4s. These tests were performed under two different irradiance levels: 500 W/m2 (Fig. 24) 
and 1000 W/m2 (Fig. 25).

Fig. 19.  Simulation results of PV System using the first Hybrid MPPT controller. (a): PV Power output. (b): 
duty cycle of PWM signal. (c): Input and output voltage of DC/DC converter. (d): Input and output current of 
DC/DC converter.
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Fig. 21.  Simulation results of PV System using the third Hybrid MPPT controller. (a): PV Power output. (b): 
duty cycle of PWM signal.

 

(a) (b)

(c) (d)

Fig. 20.  Simulation results of PV System using the second Hybrid MPPT controller. (a): PV Power output. (b): 
duty cycle of PWM signal. (c): Input and output voltage of DC/DC converter. (d): Input and output current of 
DC/DC converter.
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Figures 24 and 25 illustrate the simulated behavior of a PV system using three different MPPT algorithms:

•	 Figures a and b Results obtained with the Incremental Conductance (InC) MPPT algorithm.
•	 Figures c and d Results from the first Hybrid FLC MPPT algorithm (using ∆P/∆V  and ∆P  as input varia-

bles).

MPPT algorithms Average MPPT efficiency (%) Convergence time RMSE RMS

P&O algorithm 95.41
Min: 30 ms
Max: 125 ms
Average: 65 ms

8.98 96.34%

InC algorithm 95.6
Min: 30 ms
Max: 115 ms
Average: 60 ms

8.9 96.4

Algorithm 1 97.5
Min: 35 ms
Max: 104 ms
Average: 56.6 ms

8.66 97.65%

Algorithm 2 96.82
Min: 35 ms
Max: 127 ms
Average: 70.87 ms

9.1 97.18%

Algorithm 3 96.6
Min: 30 ms
Max: 135 ms
Average: 76 ms

9 96.89%

Proposed algorithm 97.7
Min: 26 ms
Max: 89 ms
Average: 53.5 ms

8.6 97.8%

Table 6.  Performances of the proposed MPPT algorithms.

 

Fig. 22.  Simulation results of PV System using the fourth Hybrid MPPT controller. (a): PV Power output. (b): 
duty cycle of PWM signal. (c): Input and output voltage of DC/DC converter. (d): Input and output current of 
DC/DC converter.

 

Scientific Reports |        (2025) 15:19235 20| https://doi.org/10.1038/s41598-025-03154-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Figures e and f Results achieved with the proposed Hybrid FLC MPPT algorithm (using SInC  and its rate of 
change (CSI) as fuzzy input variables).

Fig. 24.  Simulation results of PV System under load variation and under constant irradiance of 500 W/m2: 
(a) PV Power output, (b) duty cycle of PWM signal using P&O MPPT algorithm. (c) PV Power output, (d) 
duty cycle of PWM signal using the first Hybrid MPPT controller. (e) PV Power output, (f) duty cycle of PWM 
signal using the proposed Hybrid MPPT controller.

 

Fig. 23.  Load variation profile.
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The figures illustrate the PV panel power and the duty cycle evolution, along with their corresponding optimal 
values (represented by dotted red lines) over the simulation period. These results highlight the consistent 
performance of the PV system and the proposed MPPT control strategy, even under sudden load variations.

Table 7 compares the performance of the proposed Hybrid InC-FLC algorithm with the traditional 
Incremental Conductance (InC) algorithm and the first P&O Hybrid FLC approach under two irradiance levels 
(1000 W/m2 and 500 W/m2) under load variation. The metrics used for evaluation are the RMSE and the RSM, 
which measure tracking accuracy and system efficiency, respectively.

The proposed Hybrid InC-FLC algorithm demonstrated superior performance under dynamic load 
variations, achieving the lowest RMSE (25.15 at 1000 W/m2 and 9.3 at 500 W/m2) and the highest RSM (97.92% 
at 1000 W/m2 and 97.88% at 500 W/m2) compared to both the Incremental Conductance (InC) algorithm and 
the first Hybrid FLC algorithm. These results confirm the algorithm’s ability to maintain high accuracy, fast 

Irradiance level MPPT algorithms RMSE RMS (%)

1000 W/m2

InC algorithm 27.11 97.14

Algorithm 1 27.4690 96.94

Proposed algorithm 25.1514 97.92

500 W/m2

InC algorithm 10.3091 96.57

Algorithm 1 10.2597 97.35

Proposed algorithm 9.3007 97.88

Table 7.  Performances of the proposed MPPT algorithms.

 

Fig. 25.  Simulation results of PV System under load variation and under constant irradiance of 1000 W/m2: 
(a) PV Power output, (b) duty cycle of PWM signal using P&O MPPT algorithm. (c) PV Power output, (d) 
duty cycle of PWM signal using the first Hybrid MPPT controller. (e) PV Power output, (f) duty cycle of PWM 
signal using the proposed Hybrid MPPT controller.
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convergence, and stability even under sudden load changes and varying irradiance levels. While the InC and 
first Hybrid FLC algorithms also performed well, the proposed algorithm consistently showed lower oscillations 
and better adaptability, making it a robust and reliable solution for real-world PV systems operating in dynamic 
environments.

Table 8 provides a comprehensive overview of the algorithms’ performance, detailing their respective 
advantages and disadvantages. For instance, the P&O algorithm is easy to implement and requires minimal 
computational resources but may exhibit oscillations around the MPP and can be slow to converge under 
rapidly changing conditions. The InC algorithm shows fewer oscillations and faster convergence compared to 
P&O but remains sensitive to measurement accuracy. The hybrid FLC algorithms (Algorithm 1, Algorithm 2, 
and Algorithm 3) demonstrate improved performance, with better tracking accuracy and reduced oscillations. 
However, they face challenges such as constant P–V slopes to the left of the MPP or sensitivity to measurement 
precision. The proposed algorithm stands out for its excellent MPP tracking performance under various 
conditions, achieving higher overall efficiency and eliminating steady-state oscillations. However, it remains 
sensitive to measurement accuracy and division calculations, which are critical for optimal performance.

Conclusion
This study evaluates conventional and hybrid fuzzy logic control (FLC) methods for MPPT in PV systems, 
demonstrating the superiority of hybrid FLC techniques under dynamic conditions. Conventional methods like 
P&O and InC achieve approximately 95% MPPT efficiency but suffer from oscillations and slow convergence 
under rapidly changing irradiance. Among the hybrid methods, the proposed  approach using SInC  and 
its rate of change (CSI) as fuzzy inputs achieves the best performance, with an average efficiency of 97.7%, 
a convergence time of 53 ms, and a RMS of 97.8%. This method maintains stable electrical quantities across 
varying irradiance levels and under load variations, effectively eliminating oscillations and ensuring reliable 
operation under dynamic conditions.

While the first Hybrid-FLC method, using ∆P/∆V  and ∆P  as input variables, achieves 97.5% efficiency, it 
exhibits slight overshoots during abrupt irradiance changes. The second method (∆P/∆V  and CE) improves 
convergence speed under low irradiance but introduces minor oscillations under high irradiance. The third 
method (SInC  only) simplifies design but is sensitive to measurement precision and oscillations.

Interestingly, during simulations, we observed that the proposed method occasionally exhibited a slight delay 
(less than 5 ms) in responding to sudden load variations. While this delay did not significantly impact overall 
efficiency or stability, it highlights the importance of further refining the algorithm’s responsiveness to abrupt 
changes in operating conditions. These findings, combined with the low RMSE and high RMS, underscore the 
robustness and adaptability of the proposed method, making it a promising solution for real-world PV systems 
operating in dynamic environments.

In conclusion, the choice of input variables and fuzzy rule base design significantly impacts MPPT 
performance. The proposed hybrid FLC methods offer a robust and efficient solution for PV systems operating 
under dynamic conditions, making them highly suitable for real-world applications.

MPPT 
algorithms Advantages Disadvantages

P&O 
algorithm

Presents a practical implementation
It requires minimal computational resources

Can experience fluctuations in electrical output around the MPP during 
steady-state
The choice of step size can influence the algorithm’s performance
It may be slow to converge to the MPP under rapidly changing conditions

InC 
algorithm

It exhibits fewer oscillations around the MPP
It generally converges to the MPP more quickly than the P&O algorithm
It can achieve higher precision in tracking the MPP

It may present oscillations during steady-state operation
Its performance can be affected by the accuracy of measurement 
instruments

Algorithm 1

Efficiently establishes the operating point’s location concerning the MPP
Demonstrates good MPP tracking performance on both sides of the MPP using ∆P.
∆P  as a second input can enhance MPPT performance under low irradiance conditions
Well-implemented fuzzy control can eliminate steady-state oscillations
Can achieve higher overall MPPT performance

The P–V slope (∆P/∆V )  can become constant to the left of the MPP, 
hindering the algorithm’s performance

Algorithm 2
Accurately locates the operating point relative to the MPP
Demonstrates good MPP tracking performance on the right side of the MPP
The second input CE can be used to minimize oscillations around the MPP during 
steady-state operation

∆P/∆V  can become constant to the left of the MPP, hindering the 
algorithm’s performance
Precision around the MPP may be lower under low irradiance conditions
While oscillations can be reduced, they may still persist under certain 
conditions, especially if the controller is optimized for a wide range of 
operating conditions

Algorithm 3
It is more efficient and easier to implement compared to previous algorithms
The use of a single input variable (SInC) simplifies the control process
Accurately locates the operating point relative to the MPP
Demonstrates good MPP tracking performance on both sides of the MPP

Its performance can be affected by the accuracy of measurement 
instruments
Can experience variations in electrical output around the MPP under 
steady-state conditions
Issue division calculations

Proposed 
algorithm

Easily identifies the position of the operating point relative to the MPP
Demonstrates excellent MPP tracking performance on both sides of the MPP under 
various conditions
Can achieve higher overall MPPT performance
Well-implemented fuzzy control can eliminate steady-state oscillations

Its performance can be affected by the accuracy of measurement 
instruments
Issue division calculations

Table 8.  Advantage and disadvantage of MPPT algorithms.
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Data availability
The datasets used and/or analysed during the current study is available from Prof. Mustapha Melhaoui (m.mel-
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