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Abstract: The Dynamic Stiffness Matrix (DSM) of a structure is a frequency-dependent
stiffness matrix relating the actions (forces and moments) and displacements (translations
and rotations) when the structure vibrates at a given frequency. The DSM may be used
to find the natural frequencies, modes, and structural response. For many structures,
including skeletal frames of prismatic members, exact transcendental expressions for
the DSM are readily available. This paper presents a mathematical proof of a linear
determinantal relationship between the DSM of a skeletal frame when it is undamaged,
cracked, and hinged at the crack location. The rotational stiffness or flexibility of the crack
also appears as a linear term. This relationship gives, for the first time, an explicit equation
to directly calculate the stiffness of the rotational spring representing a crack from measured
natural frequencies for any potential crack location. Numerical examples demonstrate that
computing the DSM of the intact and hinged structures gives an efficient solution method
for the inverse problem of identifying crack location and severity. This paper also shows
that an approximate DSM based on a finite element model can be used in the same way,
making this procedure more versatile. Furthermore, new approximate expressions for the
natural frequencies of structures with very small or very severe cracks are derived. An
interesting relationship between the square of the bending moment in an undamaged beam
and the determinant of the DSM of a hinged beam is also derived. This relationship, which
can also be inferred from previous work, leads to a better understanding of the effect of
crack location in specific vibration modes.

Keywords: crack detection; dynamic stiffness method; natural frequencies; crack location;
crack severity

1. Introduction
The increasing capabilities of sensors and the expectations of public and government

bodies regarding the safety and reliability of structures have resulted in an increase in
research on structural health monitoring. This means that methods for the early detection
of damage and, if present, finding its location and assessing its severity are seen as having
significant potential for practical applications. One of the common topics of research is
the effect of cracks on the vibration behaviour of structures and the use of this knowledge
in identification of cracks [1–5]. The method of measuring frequency changes to establish
the location and severity of damage has received the attention of researchers for several
decades, and a recent literature review focussed on these efforts can be found in [6].
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In the context of structural health monitoring, damage is broadly defined as changes
to the material and/or geometric properties of a system which adversely affect its current
or future performance [7]. This paper is limited to an investigation into the use of frequency
measurements for detecting cracks, specifically focussed on identifying the location of a
crack without any knowledge of severity through measurements of multiple frequencies.
Cracks may be treated as small slots which generate changes in the cross-sectional area,
breaking the structural continuity. Following Irwin [8], this slot can be modelled as a
rotational spring whose stiffness is computed through the local compliance obtained from
fracture mechanics using strain energy density functions [9]. For the purpose of structural
analysis, cracked structures are represented by connecting the structural parts on either
side of the crack, assuming translational rigidity but representing rotationally flexibility
by means of a spring of finite rotational stiffness [10]. The effect of damage over a finite
domain in a structure such as a beam with reduced cross-sectional area over a length [11] is
more noticeable than the effect of damage occurring over a very small domain such as a
crack. Therefore, detecting and assessing cracks is a more challenging task.

Although numerous papers on determining the natural frequency of a cracked struc-
ture directly for a given crack severity at a prescribed location have been published, to
the authors’ knowledge, there are no published works that give a method for calculating
the rotational stiffness (or flexibility) of the crack at a given location. This paper is an
attempt to address this gap, using the Dynamic Stiffness Matrix method, which has been
in use for several decades for the vibration analysis of frameworks [12,13], with subse-
quent advances in its development and applications making it suitable for more complex
structural systems [14].

This paper is organised as follows. Mathematical derivations are presented in Section 2.
In Section 3, this is followed by a numerical example using a portal frame with a crack
to demonstrate the use of the derivations in Section 2. Section 4 shows how the derived
formulae can be applied using the finite element method. Conclusions are presented in
Section 5. The coefficients of the exact Dynamic Stiffness Matrix of a beam element are
given in Appendix A and the dynamic stiffness formulation for the frame used in the
example is given in Appendix B.

2. Mathematical Derivations
The task of finding the location of a crack from frequency measurements without

knowing the severity of the crack is possible because of an equation that gives the rotational
stiffness of the cracked section in terms of the measured frequencies at any given location.
This stiffness calculation can be performed at any of the measured natural frequencies, and
irrespective of the mode number, the calculated stiffness will be the same if the correct
location of the crack is used. Thus, plotting the calculated stiffness against possible crack
location for the measured natural frequencies for the first few modes can reveal the crack
location at the intersection of the curves.

Thus, the first step is to obtain an equation for the rotational stiffness of the cracked
section as a function of the frequency and the crack location. This is achieved using an
interesting relationship between the determinants of the Dynamic Stiffness Matrix (DSM) of
three structures, namely the intact structure, the structure with a hinge at the crack location,
and the actual structure with a crack of finite severity.

The Dynamic Stiffness Method takes into account the distribution of mass and stiff-
ness in structural elements exactly. The new equation we present here for the rotational
stiffness and its proof is valid whether or not we have the expressions for the exact stiffness
coefficients. Although these expressions are used in illustrating the applicability of the
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method in one of the examples presented here, it is not necessary to be able to express the
stiffness in an exact form and in Section 4, the finite element method is used to show this.

2.1. A Relationship Between the Determinants of the DSM of the Intact, Cracked, and
Hinged Structures

Although the methodology being discussed is applicable to any skeletal structure with
a DSM, for illustrative purposes, let us consider the vibration of a single-bay two-storey
plane frame with a crack within its top horizontal member represented by a spring, limiting
the relative rotation of the two segments of the beam at the crack, as shown in Figure 1a.
For the purpose of the derivations, let the spring connection be removed from the structure
and its effect represented by two equal and opposite internal bending moments, which are
now shown as external to the split structure in Figure 1b. The rotations of the structure at
the two sides of the crack location are labelled θ1 and θ2. According to Newton’s third law,
the associated internal bending moments (M,−M) will be equal and opposite, noting that
the crack effect represented by a rotational spring does not introduce a discontinuity in the
bending moment. Then, for the structure shown in Figure 1b, the following DSM equation
can be derived: [

K11 K12

K12 K22

](
θ1

θ2

)
=

(
M
−M

)
(1)

where each element Kij (i, j = 1, 2) of the matrix represents the stiffness coefficient, in this
case the moment required to cause a unit rotation, which may be obtained from the DSM of
the structure through condensation, leading us to define the internal moments as

M = K11θ1 + K12θ2

−M = K12θ1 + K22θ2
(2)
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Figure 1. Cracked frame and its models. (a) Crack modelled by a rotational restraint; (b) rotational
restraint effect represented by internal moments.

It may be worth mentioning that the general derivations here are performed to obtain a
fundamental relationship between the characteristics of the structure and it is not necessary
to know what these coefficients are. For any linear elastic structure, there exists a unique
relationship between the actions (these may be forces or moments) and displacements
(these may be translations or rotations). The relationship in Equation (2) applies for the
structure in Figure 1b. In the special case when there is no spring in the structure, M = 0
and Equation (2) lead to the determinantal equation for the frame hinged at the point p
(the location of the crack is shown as a vector to show that the position could be anywhere
in the structure) with the form

Dh(p, ω) = K11K22 − K2
12 (3)
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Using the rotational spring model for a crack of stiffness k,

M = k(θ2 − θ1) (4)

the rotations either side of the crack are related by

θ2 = M/k + θ1 (5)

which, when substituted into Equation (2), gives

M = k (K11+K12)
(k−K12)

θ1

−M = k (K12+K22)
(k+K22)

θ1
(6)

Adding expressions for M in Equation (6) gives the determinant for the cracked
structure as

DC(p, ω, k) = (K 11 + K12)(k + K22) + (K12 + K 22)(k − K12) (7)

The determinant is a function of the crack location p, the frequency ω, and rotational
stiffness of the beam at the crack k.

For the original (intact, undamaged) structure, the continuity in the slope requires that

θ2 = θ1 = θ (8)

Substituting Equation (8) into Equation (2), the moment over rotation ratio for the
original structure is obtained

M = (K 11 + K12)θ−M = (K 12 + K22)θ (9)

leading to the determinantal equation for the original structure as

Do(p, ω) = K11 + 2K12+K22 (10)

It may be noted that this determinant is still expressed as a function of the potential
crack location p, because the stiffness coefficients are formed for the structure with a node
at this location.

Equations (3), (7) and (10) give the following determinantal relationship:

DC(p, ω, k) = Dh(p, ω) + kDo(p, ω) (11)

which is true at any frequency. However, its potential use in crack detection comes from
applying it at the natural frequencies ωc of the cracked structure, where

DC(p, ωc, k) = 0 (12)

Thus, from Equation (11),

Dh(p, ωc) + kDo(p, ωc) = 0 (13)

so that
k = −Dh(p, ωc)/Do(p, ωc) (14)
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2.2. Identifying Crack Location from the Measured Frequencies

The above relationship has significant implications because it provides a direct way
to calculate the equivalent rotational stiffness at a crack as a function of any potential
location and the measured natural frequencies. For example, given experimental results
{ωc} = {ωc1, ωc2, ωc3} for the first three natural frequencies of the cracked structure, then
for any potential crack location p, the stiffness can be calculated directly from Equation (14).
Then, using the same procedure employed commonly by other researchers [15,16], that
is, by plotting the stiffness against the test location of the crack, the correct crack location
can be identified as the point where all three curves meet. The difference between this
approach and the earlier work [15,16] is that Equation (14) permits direct computation of
the stiffness from the determinants of two Dynamic Stiffness Matrices, without having to
calculate natural frequencies. This has been demonstrated by applying it to a portal frame
in Section 3, and its use in conjunction with a finite element method is given in Section 4.

2.3. Direct Calculation of the Natural Frequencies of a Cracked Structure

The determinantal relationship in Equation (11) also leads to approximate equations
for the changes in a natural frequency due to a crack, when the crack severity is either very
small or very large, as explained below.

Equation (11) may be written in terms of the rotational flexibility of the crack f = 1/k, as

f DC(p, ω, f ) = f Dh(p, ω) + Do(p, ω) (15)

Consider a crack of very small flexibility f which causes a natural frequency ωo of the
original structure to change by δω, so that

f DC(p, ωo + δω, f ) = f Dh(p, ωo + δω) + Do(p, ωo + δω) = 0 (16)

Because ωo is a natural frequency of the original structure,

Do(p, ωo) = 0 (17)

Taking the first term of the Taylor series, the determinantal values of the hinged and
original structures at frequency ωo + δω may be expressed as follows:

Dh(p, ωo + δω) = Dh(p, ωo) + D′
h(p, ωo)δω (18)

DO(p, ωo + δω) = DO(p, ωo) + D′
o(p, ωo)δω (19)

where a dash denotes differentiation with respect to ω.
Substituting Equation (17) into Equation (19) gives

DO(p, ωo + δω) = D′
o(p, ωo)δω (20)

Substituting Equations (18) and (20) into Equation (16) gives

f Dh(p, ωo) + f D′
h(p, ωo)δω + D′

o(p, ωo)δω = 0 (21)

so that

δω =
− f Dh(p, ωo)

f D′
h(p, ωo) + D′

o(p, ωo)
(22)
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Equation (22) gives the change in frequency from that of an undamaged structure due
to the presence of a crack with a small equivalent joint flexibility f . As f → 0 ,

δω → − f Dh(p, ωo)

D′
o(p, ωo)

(23)

Thus, the decrease in frequency due to a small joint flexibility is proportional to
the flexibility.

Similarly for a severely cracked structure, the change in natural frequency δω com-
pared to the natural frequency ωh of a structure with a hinge at the crack location can be
obtained as follows.

Equation (11) gives

DC(p, ωh + δω, k) = Dh(p, ωh + δω) + kDo(p, ωh + δω) = 0 (24)

A first-order Taylor series approximation gives

Dh(p, ωh) + D′
h(p, ωh)δω + kDo(p, ωh) + kD′

o(p, ωh)δω = 0 (25)

Since, for the hinged structure,

Dh(p, ωh) = 0, (26)

Equation (25) reduces to

D′
h(p, ωh)δω + kDo(p, ωh) + kD′

o(p, ωh)δω = 0 (27)

so that

δω =
−kDO(p, ωh)

D′
h(p, ωh) + kD′

o(p, ωh)
(28)

As k → 0 ,

δω → −kDO(p, ωh)

D′
h(p, ωh)

(29)

Thus, in this case, the deviation in frequency of a severely cracked beam from that of
a hinged beam (with the hinge located at the same position as the crack) is proportional
to the rotational stiffness at the very small crack. It should noted that while Equation (23)
gives the variation in the natural frequency of a slightly cracked beam as a small deviation
from that of an intact beam, Equation (29) gives the deviation of the natural frequency of a
beam with a severe crack as a small deviation from the natural frequency of a beam with a
hinge at the crack location.

In Section 3, calculations based on Equation (14), which is exact, are used to investigate
the validity of the approximate Equations (23) and (29), for cracks with, respectively,
very small and very large severity. The results suggest that these equations may serve as
potential tools to quickly calculate the frequencies of a cracked structure for very slight
cracks and very severe cracks. Before proceeding with presentation of numerical results,
the DSM will be used to explain the lack of sensitivity of the natural frequencies to cracks
in certain regions.

2.4. Relationship Between the Moment in the Original Structure and the Determinant of a
Hinged Structure

The derivations in the preceding section lead to an interesting relationship between
the bending moment in an undamaged structure at one of its natural frequencies at any
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given point, and the determinantal equation for a structure with a hinge at that particular
location as shown below.

Multiplying Equation (9) gives

−
(

M
θ

)2
= (K 11 + K12)(K 12 + K22) = K12(K 11 + K22 + 2K12) + K11K22 − K2

12 (30)

Using Equations (3) and (10) in Equation (30),

−
(

M
θ

)2
= K12DO(p, ω) + Dh(p, ω) (31)

At a natural frequency ω0 of the original structure, Equation (17) leads to

−
(

M∗

θ

)2
= Dh(p, ωo) (32)

where M∗ is the bending moment in the undamaged structure when it vibrates at natural
frequency ω0. Equation (32) shows that the value of the determinant of the hinged structure
is proportional to the square of the bending moment of the undamaged structure at the
potential crack location when it vibrates in one of its natural mode shapes. This helps us to
understand why in some locations in a structure the crack severity has little or no effect on
some of the natural frequencies.

Consider vibration at a natural frequency ω0 of an undamaged structure. If the
corresponding natural mode has one or more points of contraflexure p where the bending
moment M∗ is zero, then from Equation (32), if a hinge is inserted at p, then

Dh(p, ωo) = 0 (33)

Then, for a crack of stiffness k located at p, substituting Equations (17) and (33) into
Equation (11),

DC(p, ωo, k) = 0 (34)

irrespective of the magnitude of the stiffness k. This explains the insensitivity of the natural
frequency to the severity of cracks at the points of contraflexure for each particular mode,
in line with the observations in [17–19].

3. Illustrative Examples and Discussion
To investigate the implications of the relationships found in Section 2, consider the

single-bay single-story portal frame consisting of Euler–Bernoulli beams studied by Greco
and Pau [16]. Figure 2 shows the dimensions used. The frame is made of steel with an
elastic modulus of 200 GN/m2 and a density of 7849 kg/m3. The legs and cap have
lengths of 0.8 m and 1.0 m, respectively, and have a uniform rectangular sectional area
of 40 × 8 mm2. Note that only flexural in-plane vibrations are considered and the 40 mm
dimension is the width of the beam measured perpendicular to the plane of vibration.

The first three natural frequencies of the uncracked frame are ωo,1 = 52.9562 rad/s,
ωo,2 = 167.9535 rad/s, and ωo,3 = 348.3005 rad/s. The first and second natural frequencies
of the cracked structure ωc,1 and ωc,2 are plotted against the location of the crack in the
frame in Figure 3a,b, respectively, for three different rotational stiffness values (in kNm/rad).
Due to symmetry, cracks located only in the left-hand half of the frame are considered. The
location is measured vertically from the base of the left-hand leg, then horizontally along
the cap to the centre. The crack in [16] is a rotational spring with stiffness values obtained
from [20] using the indicated ratios of crack depth to beam thickness (d/h).
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The graphs in Figure 3a for the first natural frequency ωc,1, show a point p, 448 mm
above the base of the left-hand leg, where there are no noticeable frequency shifts, irrespec-
tive of the value of k. This is a point of contraflexure in the first natural mode where the
bending moment M∗ is zero. Now, Do(p, ωo,1) is zero, and from Equation (32), Dh(p, ωo,1)

is also zero. So, from Equation (11), DC(p, ωo,1, k) = 0, i.e., the natural frequency of the
cracked structure is identical to that of the original structure. The same phenomenon can
be seen in Figure 3b at points 248 mm above the base of the left-hand leg and 130 mm from
the left of the cap, which are points of contraflexure of the second natural mode.
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3.1. Point of Contraflexure

The implication of Equation (32) can be observed in Figure 4, which shows the variation
in the bending moment along the cap when the intact structure vibrates in the second
natural mode. The regions where the presence of a crack causes only small changes in the
second natural frequency (Figure 3b) can be seen to match the regions where the bending
moment in the original structure for the second natural mode is close to zero (Figure 4). At a
location 130 mm from the left of the cap, the bending moment is zero, and this corresponds
to the location in Figure 3b where the frequency does not change as a result of a crack. This
is a point of insensitivity for this mode, corresponding to a point of contraflexure. Similar
observations can be made for this mode at a point 248 mm above the base of the left-hand
leg, and for the first mode (Figure 3a) at the mid-span of the cap and 448 mm above the
base of the left-hand leg.

3.2. Identifying a Single Crack

Now consider how the crack identification procedure can be applied using Equation
(14) and the pseudo-experimental set of cracked natural frequencies used by Greco and
Pau [16], namely {ωc} = {52.955, 167.92, 348.26} rad/s. For each of these natural frequen-
cies, the rotational stiffness associated with the crack is determined using Equation (14)
and plotted against the potential crack location in Figure 5. It may be seen from Figure 5a
that all three curves appear to meet at approximately 300 to 330 mm from the left of the
cap, with a stiffness of approximately 600 kNm/rad (corresponding [20] to d/h < 70%).
The magnified view of this region in Figure 5b shows that the three curves do not cross at
exactly the same point. There are two points of intersection at 300 mm and 330 mm from
the left end of the cap, and the crack location is therefore expected to lie in this range. In
this particular example, the low value of stiffness gives rise to relatively large changes in



J. Exp. Theor. Anal. 2025, 3, 13 10 of 26

the second and third natural frequencies from the intact case. It is also worth noting that
the stiffness values are very sensitive to the accuracy of the pseudo-experimental natural
frequency data. For example, by simply making small changes to the frequency values used
to generate the curves, substantial shifts in the calculated spring stiffness are observed, as
shown in Figure 5c. The range of potential crack location now expands to between 290 mm
and 360 mm from the left end of the cap, and the predicted spring stiffness lies between
450 kNm/rad and 850 kNm/rad. Thus, while Equation (14) facilitates the determination
of the location and severity of a single crack without the need to solve any eigenvalue
problem, it must be noted that the calculated severity is susceptible to large errors due
to any experimental noise, but the location of the crack can be confined to a small region,
within which the crack might be accurately located by a visual search or other means.
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Figure 4. Results for the frame studied by Greco and Pau [16]. Bending moment on the cap for the
second natural mode.

In order to validate this approach, a finite element (FE) model of the portal frame was
created with line elements in ANSYS® Workbench 17.2 [21] where the stiffness and mass
matrices are created separately. The crack was modelled as a reduction in the thickness
of the beam, while the breadth remained at 40mm and the height-reduced segment of the
beam was located such that the centroidal axis was continuous. A reduction of 75% in
the thickness leading to a final thickness of 2 mm was located at a distance of 560 mm
from the bottom of the left leg. After a convergence test, it was found that a mesh of
141 Beam188 elements [21] would give enough reliability. The first mode shape for the
undamaged frame is shown in Figure 6.

Table 1 shows the first three natural frequencies of the intact and cracked frames
obtained using FE and DSM. It can be noted that the values obtained for the intact frame
using the two methods agree very closely. However, there are greater differences when the
crack is introduced, which can be attributed to the assumptions made in the calculation of
the rotational stiffness used in the DSM model. Despite these differences, a comparison
between the two results reveals similar trends in the reduction in each of the frequencies
due to the crack.
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Table 1. First three natural frequencies (rad/s) of intact and cracked frames using FE and DSM.

Frequency Intact Cracked

Number FE DSM Diff. (%) FE DSM Diff. (%)

1 52.9449 52.9562 0.021 52.7968 52.9558 0.300
2 167.8766 167.9535 0.046 165.7525 167.9487 1.308
3 348.1089 348.3005 0.055 342.7706 348.2893 1.585
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Figure 7a plots the crack stiffness against location in the leg for the first three modes,
found by applying Equation (14) at the cracked natural frequencies found by FE. All three
curves appear to merge at approximately 560 mm from the bottom of the leg, which is where
the damage was introduced in the FE model. This shows that while the estimate of the crack
stiffness based on experimental measurements may be very sensitive to frequency values
(this is understandable from the fact that the reduction in stiffness due to cracks causes
only very small changes in the frequencies), the identification of the crack location is less
sensitive and is likely to be less affected by experimental noise. The main difference between
the work by Greco and Pau [16] and what is presented here is that Equation (14) enables
direct calculation of the crack stiffness without the need to find the natural frequencies by
solving the transcendental eigenvalue equations. This greatly speeds up the solution to the
inverse problem.

The calculations are repeated in Figure 7b for a lower crack severity to take account of
the limitation of 50% on crack depth to thickness ratio proposed by Chondros et al. [20].
The results again show that the crack location used in the FE simulation is close to the
zone where the three curves for the stiffness based on Equation (14) meet. Two important
points are mentioned. Firstly, Equation (14) can be used to directly calculate the stiffness
at potential crack locations. By plotting these curves for various modes, the location of
the crack can be identified independently of the crack severity. Secondly, the ability to
perform damage location even with cracks of high severity is demonstrated above with
the 75% crack. However, the determination of crack severity from measured frequencies
is not likely to be as reliable as the location of the crack because of the high sensitivity of
the predicted stiffness to the frequency measurements. Nevertheless, finding the crack
location is practically very useful, and once the crack is located, other methods may be
used to assess the extent of the crack if needed before taking measures to repair or replace
the affected part.

The above example shows how the stiffness vs. possible crack location plots based
on multiple frequency measurements can be examined to locate a crack and estimate its
severity. A similar method is employed in [22,23] based on energy shifts between cracked
and uncracked structures and the notion that the cracked beam can be considered as an
uncracked beam having and equivalent reduced flexural rigidity based on the changes in tip
displacement due to self-weight and that this equivalent value would also give the correct
frequencies. This seems to be an approximation as the deflection ratios calculated based on
reduced flexibility rely on the strain energy associated with the shape of static deformation
due to self-weight. Nevertheless, the method seems to work well. The frequency shift
calculated in this way leads to a numerical procedure to locate the cracks.

It is also worth noting that there are also papers that show how a roving body could be
used to first identify the location of the crack in beams and plates [24,25]. However, these
methods suffer from the limitation that they cannot be used in structures where placement
of a roving body is difficult.

The feasibility of the presented method for practical applications remains to be
verified through experimental work. In general, the feasibility of frequency shift mea-
surements for structural health monitoring depends on many factors, including the
ductility of the material [26].
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3.3. Use of Approximate Linear Relationships to Find Frequencies of Cracked Structures

The exact stiffness–frequency relationship in Equation (14) was used to test the va-
lidity of the approximate linear relationships for cracks of low and high severity given
in Equations (23) and (29), respectively. The results for the first natural frequency of the
above frame, with a crack located 8mm above the base of the left leg, are presented in
Figures 8 and 9.
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Figure 8 shows plots of the calculated crack flexibility f = 1/k against frequency, calcu-
lated using Equation (14), for a slightly cracked structure where the simulated measured fre-
quencies are close to the first natural frequency of the intact structure ωo,1 = 52.9562 rad/s.
In Figure 8a, the plot covers an extremely small frequency range, implying a crack with
almost negligible flexibility. Larger ranges are considered in Figure 8b,c. Each plot reaches
the horizontal axis f = 0 at the frequency ω = ωo,1. It is seen that the plots closely approxi-
mate the straight lines predicted by Equation (23), with a slight discrepancy in Figure 8c
where the crack has the largest flexibility.

Similarly, Figure 9 shows plots of the calculated crack stiffness k against frequency, cal-
culated using Equation (14), for a severely cracked structure where the simulated measured
frequencies are close to the first natural frequency of the structure with a hinge at the crack
location, ωh,1 = 38.8970 rad/s. Each plot reaches the horizontal axis f = 0 at the frequency
ω = ωh,1, and the plots closely approximate the straight lines predicted by Equation (29),
with a slight discrepancy in Figure 9c where the crack has the largest stiffness.

Thus, Equations (23) and (29) provide an easy-to-use approximate tool to evaluate the
frequencies of a cracked structure for any given crack location either for a very small crack
or for a very severe crack.
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Figure 9. First natural frequency of the frame with a severe crack of (a) extremely low stiffness,
(b) very low stiffness, and (c) moderately low stiffness, with predictions from Equation (29) shown by
the dashed line.

4. Practical Application with FE Analysis
While the above derivations and results establish the theoretical foundation for the

proposed approach to locate cracks, its potential application to practical problems remains
to be tested. There are some challenges in achieving this leading to two questions. One
is whether in the presence of uncertainties in experimental measurements this method
would be of any practical use. Secondly, while the DSM approach is elegant, it is not
widely used and then the question arises whether this approach can be used with more
commonly available computational tools. To answer the above questions, this section
presents results from a numerical experiment for the location and severity of a crack based
on FE results, allowing for some experimental uncertainties. The FE scheme was applied
to an Euler–Bernoulli beam, for which the stiffness and mass matrices were obtained for
various combinations of boundary conditions, crack location, and rotational stiffness at
the crack.

In the exact DSM approach, the Dynamic Stiffness Matrices are obtained analytically.
The Dynamic Stiffness Matrix of the cracked beam KD,C from the FE analysis is obtained
using the formula

KD,C = KC − ω2M (35)

where KC is the static stiffness matrix of the cracked beam and M is the mass matrix.
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Similarly, the Dynamic Stiffness Matrices for the original beam and the hinged beam
are given by KD,oandKD,h with subscripts D, o, and h referring to dynamic, original, and
hinged, respectively:

KD,o = Ko − ω2Mo (36)

KD,h = Kh − ω2Mh (37)

A schematic of the beam is shown in Figure 10. The beam of length L, flexural rigidity
EI, and mass per unit length ρA is subdivided into N identical elements. The crack is
located at the right end of the N1th element where N1 < N. The non-dimensional location
of the crack from the left end of the beam is then given by

β =
N1

N
(38)
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The expected linear relationship is given by Equation (14), which may be written in
terms of the location coordinate β (instead of the position vector p) as follows:

k = −Dh(β, ωc)/Do(β, ωc) (39)

A typical set of results is presented in this section, showing the variation in the
calculated stiffness parameter ζ = kL/(EI) against the trial values for crack location β. The
test results were for a crack located at β = 0.4 and various values of ζ.

For this numerical experiment, a cantilever (clamped-free) beam with EI = 521 Nm2,
ρA = 2.65 kg/m and L = 0.4 m, the first three natural frequencies in the undamaged state
are given by {79.86, 500.4, 1401, 2746} Hz. For a simply supported (pinned-pinned) beam of
the same properties and dimensions, the first three natural frequencies in the undamaged
states are {224.2, 896.7, 2018, 3587} Hz. For each beam, a crack was introduced by replacing
rotational continuity with partial elastic restraints, which resulted in approximately a 2 Hz
drop in the fundamental natural frequency. Two hertz was selected as it is a measurable
frequency change in the range of the fundamental frequencies concerned. The question
then is as follows: if there were to be a crack that could result in such a frequency change,
would the proposed approach help to locate the crack? The natural frequencies of the
cracked beams were found to be {77.68, 479.7, 1366, 2713} Hz for the cantilever case and
{222.2, 893.6, 2011, 3556} Hz for the simply supported case. It was decided to introduce an
experimental noise with values ranging up to 2 Hz, which is of the order of the frequency
drop for the first mode.

Figure 11 shows the stiffness–crack location plots for the first four natural frequencies
of the cracked cantilever beam without introducing any experimental noise. As can be
seen, the plots all intersect at the relative length of 0.4, which is the location of the crack.
Thus, the results show that in the absence of any experimental noise, the determinantal
results will predict the location of the crack exactly using the degradations in the first four
natural frequencies.
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Figure 11. Stiffness–crack location plot using the natural frequencies of the cracked cantilever beam
with no experimental noise.

Figure 12 shows the stiffness–crack location plot for different assumed levels of experi-
mental noise. It can be seen that the intersection of the stiffness–crack location curves are no
longer exactly coincident at the crack location, but tend to deviate somewhat. Nevertheless,
as long as the noise is lower than about half the frequency drop due to the crack (1 Hz), a
small zone within which the crack is located can be identified. The results based on the
fundamental natural frequency, which is the most sensitive one, may be unreliable if the
noise level approaches the frequency drop due to the crack, e.g., see Figure 12f. However,
the higher natural frequencies could still be useful in locating the crack.
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Figure 12. Stiffness–crack location plots using the natural frequencies of the cracked cantilever beam
with experimental noise of (a) −0.5 Hz, (b) +0.5 Hz, (c) −1.0 Hz, (d) +1.0 Hz, (e) −2.0 Hz, and
(f) +2.0 Hz.

A similar observation can be made by considering the results for the simply supported
beam. Figure 13 confirms that in the absence of experimental noise, the expected conver-
gence of the stiffness–crack location plot converge at the crack location. Figure 14 shows the
effect of various degrees of experimental noise. There is one important difference between
the cantilever beam and the simply supported beam. For the simply supported beam, due
to its symmetry, there are two potential crack locations for any given set of measurements.
That is, the method shows that the crack is in the vicinity of 0.4 L from either the left support
or the right support. Thus, to identify the actual location of the crack, areas around both
these points need to be inspected.
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Figure 13. Stiffness–crack location plot using the frequencies of the cracked simply supported beam
with no experimental noise.

J. Exp. Theor. Anal. 2025, 3, x FOR PEER REVIEW 23 of 27 
 

 

 

Figure 14. Cont.



J. Exp. Theor. Anal. 2025, 3, 13 23 of 26

J. Exp. Theor. Anal. 2025, 3, x FOR PEER REVIEW 23 of 27 
 

 

 
Figure 14. Stiffness–crack location plot using the natural frequencies of the cracked simply supported
beam with experimental noise of (a) −0.5 Hz, (b) +0.5 Hz, (c) −1.0 Hz, (d) +1.0 Hz, (e) –2.0 Hz,
(f) +2.0 Hz.

The above results show that the use of an approximate method such as FE analysis
will not be a hindrance in the application of the determinantal method proposed here
for locating the crack. However, results based on the fundamental frequency may be too
sensitive to experimental noise, and higher modes may give a better indication of the
location. It should be noted that the measurement of higher frequencies may also involve
higher experimental noise, and the feasibility of the method needs to be verified through
physical experiments.

5. Concluding Remarks
1. It has been proven that the determinant of the dynamic stiffness matrix of a skeletal

structure with a crack represented by a joint with rotational flexibility can be expressed
as a linear sum of the corresponding determinants of the undamaged structure and
the structure with a hinge at the crack location weighted by the rotational stiffness.
This then leads to an equation for the rotational stiffness of the cracked section given
by the ratio of the determinants of the hinged structure and the intact structure
calculated at the natural frequencies of the cracked structure. As the calculated
stiffness is independent of the mode used, the intersection of the stiffness–potential
crack location curves reveals the correct crack location and the stiffness.

This discovery helps us to decouple the severity and location of the crack, which
are the main unknowns in a damaged structure, and can therefore be used to
simplify identification techniques by avoiding the need to solve eigenvalue
problems at a large number of trial values of stiffness and location, making the
procedure computationally efficient.
The applicability of this method for both the exact Dynamic Stiffness Method and
the finite element method has been demonstrated through numerical examples.

2. It has also been shown that the determinant of the hinged structure is proportional to
the square of the bending moment of the undamaged structure at the potential crack
location when it vibrates in one of its natural mode shapes.

This relationship helps to explain the fact that any cracks in the vicinity of a point
of contraflexure in a particular mode of vibration of the undamaged structure
would have little or no effect on the corresponding natural frequency. It shows
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that no change in a particular natural frequency does not imply the absence
of a crack and stresses the need to track more than one natural frequency in
crack detection.

3. Approximate equations for the natural frequencies of structures with either very
slight cracks or very severe cracks, as deviations from the natural frequencies of
intact structures or structures with a hinge at the crack location, respectively, are also
presented with numerical results showing their validity and limitations.

Author Contributions: Conceptualization, J.D.L.R., S.I. and D.K.; methodology, J.D.L.R., S.I., D.K.
and Y.M.; software, J.D.L.R. and Y.M.; validation, J.D.L.R. and Y.M.; formal analysis, J.D.L.R., S.I.
and D.K.; investigation, J.D.L.R.; writing—original draft preparation, J.D.L.R.; writing—review and
editing, S.I., D.K. and Y.M.; supervision, S.I., D.K. and Y.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The frame studied in the paper is based on [16] from Computers & Structures,
92-93, pp 328-336, Greco, A.; Pau, A. Damage identification in Euler frames. 2012, Copyright
Elsevier (2012).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Beam Dynamic Stiffness Matrix Used
In order to obtain the assembly capabilities used in the finite element method, the

spectral element developed will use two nodes with two degrees of freedom (DOF) at each
node, namely the transverse displacement and rotation that have to be related to the nodal
actions (forces and moments) using the sign convention shown in Figure A1.
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The stiffness terms, also referred to as the dynamic stability functions [12], are given 
in Table A1, in terms of the frequency parameter 𝜆, which is related to the frequency 𝜔 
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Figure A1. Spectral element sign convention.

The DSM equation for an Euler–Bernoulli beam element of length Le, flexural rigidity
EI, and mass per unit length µ is given by
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The stiffness terms, also referred to as the dynamic stability functions [12], are given
in Table A1, in terms of the frequency parameter λ, which is related to the frequency ω by

λ4

Le
4 =

µ

EI
ω2 (A2)

Table A1. Dynamic Stiffness Matrix element definition.

Se
λ[cosh(λLe)sin(λLe)−sinh(λLe)cos(λLe)]

1−cosh(λLe)cos(λLe)
SCe

λ[sinh(λLe)−sin(λLe)]
1−cosh(λLe)cos(λLe)

Te
λ3[cosh(λLe)sin(λLe)+sinh(λLe)cos(λLe)]

1−cosh(λLe)cos(λLe)
Tte

λ3[sinh(λLe)+sin(λLe)]
1−cosh(λLe)cos(λLe)

Qe
λ2[sin(λLe)sinh(λLe)]
1−cosh(λLe)cos(λLe)

Qqe
λ2[cosh(λLe)−cos(λLe)]

1−cosh(λLe)cos(λLe)

Appendix B. Determinantal Equation from DSM
Here, we will present the validation of Equation (11) for the frequency values that

produce DC(p, ω, k) = 0, for a constant value of the spring stiffness in different assumed
positions of damage, and the stiffness will be obtained from the slope of the graph Dh(p, ω)

vs. D0(ω).
D0(ω) and Dc(ω) are obtained using Figures A2 and A3, respectively. The overall

DSM for calculating each determinant is located next to the graphical sketch of the structure
with the numbers indicating the degree of freedom and the labels for the different beam
elements correspond to the lengths of the frame components and the DSM terms are defined
in Appendix A.
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Figure A2. Intact frame model and DSM to calculate D0(ω).

The second degree of freedom refers to the lateral displacement of the legs that is
affected by the mass of the cap by

m =
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