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We derive an analytic form of the joint prior of effective spin parameters, χeff and χp, assuming an
isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical
Bayesian inference for studying the population properties of merging compact binaries observed with
gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation
(KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where
both jχeff j and χp are small. Our analytic approach provides accurate computations of the joint prior across
the entire parameter space and enables more reliable population inference. Employing our analytic prior,
we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the
LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due
to the use of the inaccurate prior evaluations areOð1Þ, implying the bias is already at the concerning level if
one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates
with the increasing number of events, our analytic prior will be more crucial in future analyses.
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I. INTRODUCTION

About one hundred events have been detected [1–4]
since the first direct detection of gravitational waves (GWs)
from the binary black hole (BBH) merger in 2015 [5]. The
fourth observing run of the LIGO-Virgo-KAGRA collabo-
ration (LVK) [6–9] is currently ongoing and expected to
discover additional hundreds of BBH events. This growing
number of events provides unprecedented findings about
the nature of black holes. However, the astrophysical
processes that govern the formation and evolution of
BBHs remain largely unknown (see, e.g., [10] for recent
reviews).
Various BBH formation channels have been discussed

([11,12] for reviews), including isolated binaries [13], and
dynamical capture in globular clusters [14] and active

galactic nuclei [15]. These channels are further categorized
based on specific characteristics, such as stellar metallicity
(e.g., [16]) and environmental conditions (e.g., [17]). Each
formation channel exhibits a characteristic parameter dis-
tribution, which can be tested with BBHs observed by LVK
(e.g., [18,19]). Using parametric models that extract the
characteristics of these formation channels, LVK has
estimated the distribution of source parameters (such as
masses) and the associated merger rate density based on the
latest GW transient catalogs [20–22]. In addition, non-
parametric approaches have been used to capture the
parameter distributions in a more model-agnostic way
(e.g., [23–27]).
One promising approach for uncovering the origins of

BBH systems is to measure black-hole (BH) spins [28–36].
While individual spin components are difficult to measure,
certain combinations of these components can be more
reliably constrained. The effective inspiral spin, denoted by
χeff , is one such parameter, defined by the mass-weighted
average of the aligned spin components [37]

χeff ≔
a1 cosϑ1 þ qa2 cosϑ2

1þ q
; ð1Þ
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where ai denotes the dimensionless spin magnitude of the
ith object, ϑi denotes the polar tilt angle, and q ≤ 1 is the
mass ratio. Its distribution is a powerful tool to distinguish
the origins of BBHs [38,39].
Another important spin parameter is the effective pre-

cessing spin, denoted by χp, which is given by [40]

χp ≔ max

�
a1 sinϑ1;

�
3þ 4q
4þ 3q

�
qa2 sin ϑ2

�
: ð2Þ

This parameter captures the magnitude of spin components
perpendicular to the orbital angular momentum, which are
responsible for precession effects in orbital motion.
Nonzero values of χp indicate misalignments between
the spins and the orbital angular momentum, which
provides useful information to distinguish the formation
channels. Some generalizations of this parameter have
recently been discussed [41–44].
In the latest analysis by LVK with the gravitational wave

transient catalog 3 (GWTC-3) [22], the distribution of χeff
and χp is modeled as Gaussian distribution [45], and its
mean and covariance are estimated. According to their
results, the χeff distribution is well described by a narrow
Gaussian with a slightly positive mean 0.05 and standard
deviation around 0.1. For χp, the distribution is explained
either by a flat distribution centered at χp ¼ 0 or a narrow
distribution centered around χp ≈ 0.2.
Hierarchical Bayesian inference is commonly used to

extract the population property of GW sources [46–48].
The likelihood function in this inference involves the
evidence for each event and the selection function that
characterizes observational selection effects. Each compo-
nent requires the evaluation of a high-dimensional integral
over θ. These integrals are computed using Monte-Carlo
methods, where random samples of θ are drawn from
reference distributions, and Monte-Carlo sums are calcu-
lated with appropriate reweighting of them. For evaluating
the evidence, posterior samples are obtained from the
parameter estimation of each event, and their weights in
the reweighting process are inversely proportional to the
prior distribution assumed in that analysis. For evaluating
the selection function, typically, a large number of simu-
lated signals are injected into data to study the search
sensitivities, and their weights are inversely proportional to
the distribution from which the simulated signals are
drawn.
For inferring the distribution of χeff and χp, those

reweighting processes require their joint distribution con-
ditioned on q, denoted by πðχeff ; χpjqÞ, computed from the
prior distribution or the distribution populating the simu-
lated signals. Typically, these distributions are isotropic
with respect to component spins and uniform in their
magnitudes. In past LVK analyses, the derivation of the
analytic formula of joint prior distribution πðχeff ; χpjqÞ was
left undone. Instead, πðχeff ; χpjqÞ was evaluated using the

analytic expression of πðχeff jqÞ found in Ref. [49], com-
bined with the kernel density estimation (KDE) approach to
evaluate πðχpjχeff ; qÞ.
In this paper, we derive an analytic formula of

πðχeff ; χpjqÞ. By comparing our analytic method with the
conventional numerical method, we find that the latter
method fails to capture specific structures of πðχeff ; χpjqÞ,
introducing numerical errors in the population inference.
Furthermore, this analytic approach is faster and eliminates
the stochastic uncertainty inherent in the numerical meth-
ods. To investigate potential biases in the GWTC-3
analysis, we reanalyzed the GWTC-3 BBHs with our
analytic formula of πðχeff ; χpjqÞ.
The structure of the paper is as follows: In Sec. II, we

review the conventional numerical approach, then present
an analytic approach, and evaluate how closely these
approaches represent the true distribution. In Sec. III, we
reanalyze GWTC-3 BBH events with a model presented
in [22] using numerical or analytic methods to calculate the
prior distribution. Then we compare the results to evaluate
the bias caused by numerical methods quantitatively. In
Sec. IV, we summarize the findings and conclude the paper.

II. JOINT DISTRIBUTION OF EFFECTIVE SPINS

In this section, we derive an analytic formula of
πðχeff ; χpjqÞ and compare it with that computed with the
conventional numerical method. It is required to numeri-
cally compute the likelihood function of the population
inference, which is given by [46–48]

pðfdigjΛÞ ∝
YNev

i¼1

ZiðΛÞ
αðΛÞ : ð3Þ

ZiðΛÞ represents the evidence for the ith event, given by

ZiðΛÞ ¼
Z

ppopðθijΛÞpðdijθiÞdθi; ð4Þ

where ppopðθjΛÞ represents a parametrized model distri-
bution of θ, θi, and di represent the source parameters and
data for the ith event respectively, and pðdijθiÞ represents
the likelihood function. αðΛÞ represents the selection
function, given by

αðΛÞ ≔
Z

dθpdetðθÞppopðθjΛÞ; ð5Þ

where pdetðθÞ is the probability of detecting a GW signal
with the source parameter values of θ.
As explained in the previous section, those integrals are

computed with Monte-Carlo methods. ZiðΛÞ is computed
with posterior samples from the parameter estimation of the

ith event, fθjigN
i
samp

j¼1
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ZiðΛÞ ∝
1

Ni
samp

XNi
samp

j¼1

ppopðθji jΛÞ
πPEðθjiÞ

; ð6Þ

where πPEðθÞ is the prior distribution assumed in the
parameter estimation. αðΛÞ is computed with simulated
signals injected into data. They are analyzed by search
pipelines and the Monte-Carlo sum is evaluated over the
subset of signals successfully recovered by the pipelines

αðΛÞ ¼ 1

Ninj

X
k∶found

ppopðθkjΛÞ
pinjðθkÞ

; ð7Þ

where Ninj is the total number of injections, pinjðθÞ is the
probability density from which the injection source param-
eters are drawn, θk is the kth recovered injection during the
injection campaign.

In past LVKanalyses, both πPEðθÞ andpinjðθÞ are isotropic
in spin orientations and uniform in spin magnitudes. Let
ai ¼ ðai; cos ϑi;ϕiÞ, where ϕi is the azimuthal angle of the
ith spin around the orbital angular momentum. The isotropic
and uniform-in-magnitude spin prior is given by

πðaiÞ ¼
1

4πamax
; ð8Þ

where amax denotes the maximum spin magnitude. Here, we
assume that the spin magnitudes of both compact objects
share the same range, such that 0 ≤ a1; a2 ≤ amax.
In population inference which focuses exclusively on χeff

and χp, the other spin components are marginalized over,
resulting in the following expression for the joint prior:

πðχeff ; χpjqÞ ¼
Z

da1da2πða1Þπða2Þδ
�
χeff −

a1 cos ϑ1 þ qa2 cosϑ2
1þ q

�

× δ

�
χp −max

�
a1 sinϑ1;

�
3þ 4q
4þ 3q

�
qa2 sin ϑ2

��
: ð9Þ

In past LVK analyses, this integral was partly computed
using KDE. We instead calculate this integral analyticly to
evaluate this joint prior more accurately.

A. KDE prior

We begin by reviewing the numerical method employed
in the GWTC-3 analysis. The joint distribution is decom-
posed as

πðχeff ; χpjqÞ ¼ πðχpjχeff ; qÞπðχeff jqÞ: ð10Þ

The term πðχeff jqÞ is evaluated with its analytic expression
given by Eq. (10) in Ref. [49], while πðχpjχeff ; qÞ is
calculated numerically.
For the numerical evaluation of πðχpjχeff ; qÞ, KDE is

applied to random samples drawn from the prior. Since this
probability is conditioned by χeff, the actual degree of
freedom for this draw is three [50]. Samples of a1, a2, and
cosϑ2 are drawn from the uniform priors, and the values of
cosϑ1 are determined by Eq. (1) Unphysical samples with
j cosϑ1j ≥ 1 are rejected. This procedure is repeated until a
sufficient number, 10,000 by default, of samples are
obtained. Once a sufficient number of samples is obtained,
χp samples are generated according to (2), and KDE with
the Gaussian kernel is applied to them. Due to the Jacobian
of the transformation to χeff from cosϑ1, each sample has
the weight,

∂cos ϑ1ða1; a2; χeff ; cosϑ2Þ
∂χeff

¼ 1þ q
a1

: ð11Þ

The boundary conditions must be set carefully because
KDE, in general, tends to have biases near the boundaries
[51]. In the numerical evaluation of πðχpjχeff ; qÞ, the
boundary condition is πð0jχeff ; qÞ ¼ πðχp;maxjχeff ; qÞ ¼ 0.
Here, χp;max is the physically maximum value for χp given
χeff and q

χp;max ≔ max
q;χeff

ðχpÞ

¼
8<
:

amax
jχeff j
amax

≤ q
1þqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2max − ðð1þ qÞjχeff j − amaxqÞ2
p jχeff j

amax
> q

1þq

:

ð12Þ
To prevent the density from spilling out of ½0; χp;max�, KDE
for grids in ½εχp;max; ð1 − εÞχp;max� are evaluated first,
where ε is a small constant; ε ¼ 0.02 is chosen in the
GWTC-3 inference. Then the boundary conditions are
manually provided; other values are calculated by inter-
polation. Finally, the function is normalized to achieveZ

χp;max

0

πðχpjχeff ; qÞ ¼ 1: ð13Þ

An implementation of this method can be found at [52],
though with a different choice of ε. πðχpjχeff ; qÞ as
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constructed above will henceforth be referred to as “the
KDE prior” in this paper.
This numerical method has several limitations. First, the

use of KDE may obscure certain structures in the prior
distribution. For example, the KDE prior may not capture
the discontinuous derivative behavior due to the max
function in Eq. (9). Second, this method can be computa-
tionally expensive when dealing with a large number of
events. In particular, this method is slow if we give large
jχeff j because many random samples are rejected during the
sampling process. Third, this method introduces an addi-
tional source of uncertainty to the final results from the
probabilistic nature of KDE. Because KDE relies on
random samples, the results have statistical errors, but this
is not an inherent property of the prior distribution.

B. Analytic prior

To overcome the limitations of the KDE prior, here we
present an analytic joint prior. The difficulty to compute
Eq. (9) arises from the large number of conditional
branches. In Ref. [49], the author first specifies the
branching cases and then provides primitive functions.

However, the conditional expressions to be considered for
computing πðχeff ; χpjqÞ are complex depending on q; χeff ,
and χp. Furthermore, the number of cases to be considered
is much larger than πðχeff jqÞ, and it is not easy to consider
in advance how many cases will be needed.
Instead, we adopt an approach in which we first identify

the primitive function of the integral and then assign the
appropriate integral domain. To achieve this procedure, we
give the integral domain ai ∈ ð0; 1Þ and ϑi ∈ ½0; π� by a step
function:

ΘðxÞ ¼
�
1 x > 0

0 x < 0
: ð14Þ

The following scaling relation with respect to amax holds:

πðχeff ;χpjq;amax¼aÞ¼ 1

a2
π

�
χeff
a

;
χp
a

����q;amax¼1

�
: ð15Þ

Thus, without loss of generality, we assume amax ¼ 1
hereafter. By the simple transformation of the integral
variables zi ≔ ai cosϑi and xi ≔ ai sinϑi, we get

πðχeff ; χpjqÞ ¼
1

4

Z
dz1

Z
dz2

Z
dx1

Z
dx2

x1
x21 þ z21

x2
x22 þ z22

Θðx1ÞΘðx2Þ

× δ

�
χeff −

z1 þ qz2
1þ q

�
δ

�
χp −max

�
x1;

3þ 4q
4þ 3q

qx2

��
Θð1 − x21 − z21ÞΘð1 − x22 − z22Þ: ð16Þ

The integral can be reduced to the sum of one-dimensional integrals as (see Appendix for details)

πðχeff ; χpjqÞ ¼ I1 þ I2 þ I3 þ I4; ð17Þ

where

I1 ¼
1þ q
8q

ΘðχpÞΘ
�
q −

4þ 3q
3þ 4q

χp

�
Θðxmax

1 − xmin
1 Þ

×

�
F

�
xmax
1 jð1þ qÞχeff ; χp;

4þ 3q
3þ 4q

χp; q

�
− F

�
xmin
1 jð1þ qÞχeff ; χp;

4þ 3q
3þ 4q

χp; q

��
ð18Þ

I2 ¼ −
1þ q
8q

ΘðχpÞΘð1 − χpÞΘðxmax
2 − xmin

2 Þ½Fðxmax
2 jð1þ qÞχeff ; χp; 0; qÞ − Fðxmin

2 jð1þ qÞχeff ; χp; 0; qÞ� ð19Þ

I3 ¼
1þ q
8q

4þ 3q
3þ 4q

ΘðχpÞΘ
�
q −

4þ 3q
3þ 4q

χp

�
Θðxmax

3 − xmin
3 Þ

×

�
F

�
xmax
3 jð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; χp; 1

�
− F

�
xmin
3 jð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; χp; 1

��
ð20Þ

I4 ¼ −
1þ q
8q

4þ 3q
3þ 4q

ΘðχpÞΘ
�
q −

4þ 3q
3þ 4q

χp

�
Θðxmax

4 − xmin
4 Þ

×

�
F

�
xmax
4 jð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; 0; 1

�
− F

�
xmin
4 jð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; 0; 1

��
ð21Þ
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and 8>>>>><
>>>>>:

xmax
1 ¼ min

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r
; ð1þ qÞχeff þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q !

xmin
1 ¼ max

 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r
; ð1þ qÞχeff −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q ! ð22Þ

8<
:

xmax
2 ¼ min

	
q; ð1þ qÞχeff þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q 

xmin
2 ¼ max

	
−q; ð1þ qÞχeff −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q 
 ð23Þ

8>>><
>>>:

xmax
3 ¼ min

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q
; ð1þ qÞχeff þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r �

xmin
3 ¼ max

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2p

q
; ð1þ qÞχeff −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r � ð24Þ

8>>><
>>>:

xmax
4 ¼ min

�
1; ð1þ qÞχeff þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r �

xmin
4 ¼ max

�
−1; ð1þ qÞχeff −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −

	
4þ3q
3þ4q



2
χ2p

r � : ð25Þ

These expressions have roots whose contents can be negative, but they are greater than or equal to zero because of step
functions. The one-dimensional function Fðxja; b; c; dÞ is defined as

Fðxja; b; c; dÞ ≔
Z

x

0

dx
b

ðx − aÞ2 þ b2
log

�
x2 þ c2

d2

�
; ð26Þ

and has an analytic form

Fðxja; b; c; dÞ ¼ G

�
x
b

���� ab ; cb
�
þ log

�
b2

d2

��
arctan

�
x − a
b

�
þ arctan

�
a
b

��
; ð27Þ

Gðxjα; βÞ ¼ Im½gðxjα; βÞ þ gðxjα;−βÞ − gð0jα; βÞ − gð0jα;−βÞ�; ð28Þ

gðxjα; βÞ ¼

8>>>>><
>>>>>:

logðx − βiÞ log
	

α−xþi
αþi−βi



þ Li2

	
x−βi

αþi−βi



jβj < 1

1
2
ðlogðx − α − iÞÞ2 þ Li2

	
−α

x−α−i



β ¼ 1; α ≤ 0

logðαþ i − βiÞ logðα − xþ iÞ − Li2
	

α−xþi
αþi−βi



otherwise;

ð29Þ

Li2ðzÞ ¼ −
Z

z

0

dz0
logð1 − z0Þ

z0
: ð30Þ

The branching of gðxjα; βÞ arises in order to avoid
transcending branch cuts of complex logarithm function
and the dilogarithm function denoted by Li2ðzÞ, which are
both on the real axis. The more detailed derivation of an
analytic form of Fðxja; b; c; dÞ is given in the Appendix.

These expressions provide the fully analytic formulas to
compute πðχeff ; χpjqÞ. We will refer to this approach as “the
analytic prior.”
The analytic prior in the two-dimensional plane is shown

in Fig. 1. In both cases, the joint distributions are symmetric
around χeff ¼ 0. The two-dimensional distribution takes its
supremum at the limit of χeff ¼ 0; χp → 0. The larger

the value of jχeff j is, the slower the rise of πðχpjχeff ; qÞ
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at χp ¼ 0 is. The contours are nearly parallel to the
χp ¼ const line near the χp ¼ 1 limit, suggesting the steep
decline at the χp ¼ 1 boundary. In addition, the right panel
(q ¼ 0.5) illustrates that the contours have cusps around
χp ≈ 0.4 due to the behavior of the max function.

C. Comparisons with the KDE prior

Figures 2 and 3 compare the analytic prior with histo-
grams from random samples or with the KDE prior, in

terms of a one-dimensional distribution πðχpjχeff ; qÞ. The
KDE prior is evaluated 1000 times. Its median and 90%
interval are shown to capture the probabilistic uncertainty.
Figure 2 shows the case of χeff ¼ 0.2; q ¼ 0.8. The

analytic prior and the histogram are in good agreement.
In addition, the analytic prior and the KDE prior are in good
agreement except for around χp ¼ 0.775, where the analytic
prior has a cusp. This cusp corresponds to the point where
the second input to the max function, ðð3þ 4qÞ=ð4þ 3qÞÞ
qa2 sin ϑ2, becomes physically impossible to be χp

FIG. 1. The analytic joint prior on χeff ; χp for q ¼ 1 (left panel) and q ¼ 0.5 (right panel). Contours show 1=2σ; 1σ;…; 3σ regions. In
gray is shown the area where χeff–χp pairs cannot physically be achieved simultaneously [obtained from (12)].

FIG. 2. Comparison of different evaluation methods for πðχpjχeff ; qÞ. For both panels, the analytic evaluation of πðχpjχeff ; qÞ is shown
in green. In the left panel, the red histogram shows the behavior of random samples drawn from uniform-in-magnitude and isotropic spin
prior. In the right panel, in blue is the evaluation of πðχpjχeff ; qÞ by the KDE prior. The blue bold line indicates the median of the
evaluation and the blue colored area indicates the 90% region. Given parameters are χeff ¼ 0.2; q ¼ 0.8.
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χp¼
8<
:

3þ4q
4þ3qq ð1þqÞjχeff j≤1

3þ4q
4þ3q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−ð1−ð1þqÞjχeff jÞ2

p
ð1þqÞjχeff j≥1;

ð31Þ

and appears as the point where I4 becomes zero because of
the step functions.
Figure 3 depicts the case of χeff ¼ 0.01; q ¼ 0.8. We see

notable differences between the analytic and the KDE
priors around the boundaries and the cusp. In addition, the
median of the KDE prior is larger than the analytic prior for
0.2≲ χp ≲ 0.7. The bandwidth of the KDE, constructed
from 10000 random samples, is around 0.2. This value is
too large to effectively capture the sharp behaviors near the
boundaries and the cusp. This results not only in discrep-
ancies around the boundaries and cusp, but also in the
overestimation in 0.2≲ χp ≲ 0.7 through the normalization
procedure (13). This bias can be reduced by increasing the

number of samples, though this comes at the expense of
higher computational costs. Such discrepancies are gen-
erally unavoidable for small values of jχeff j and can have a
substantial impact on population inference when the under-
lying distribution is concentrated in that parameter region.

III. REANALYSES OF GWTC-3 BBH POPULATION

In this section, we reanalyze GWTC-3 BBHs using both
the analytic prior and the KDE prior, then compare their
results.

A. Model description

In the GWTC-3 population analysis, LVK studied the
spin distribution with the Gaussian Spin Model [22,45]. The
source parameters of interest in this model are
ðm1; q; z; χeff ; χpÞ and the distributions of these parameters
are described by the parametric functions

ppopðm1jΛÞ ¼ fpeak

�
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p exp

�
−
1

2

�
m1 − μm

σm

�
2
��

þ ð1 − fpeakÞ
ð1þ αÞmα

1

ðM1þα
Max −M1þα

Min Þ
; ð32Þ

ppopðqjΛÞ ∝ qβq ; ð33Þ

ppopðzjΛÞ ∝ ð1þ zÞκ−1 dVc

dz
; ð34Þ

ppopðχeff ; χpjΛÞ ∝ exp

�
−

1

2ð1 − ρ2Þ
��

χeff − μeff
σeff

�
2

− 2ρ

�
χeff − μeff

σeff

��
χp − μp

σp

�
þ
�
χp − μp

σp

�
2
��

: ð35Þ

The hyperparameters included in Λ and their prior are summarized in Table I.

FIG. 3. Same as Fig. 2, but we give χeff ¼ 0.01; q ¼ 0.8.

ANALYTIC JOINT PRIORS OF EFFECTIVE SPIN … PHYS. REV. D 111, 103046 (2025)

103046-7



We analyze the same set of the BBH events analyzed in
the GWTC-3 population inference for the Gaussian Spin Model,
which comprises 69 BBHs in total. For evaluating Zi, we
use the posterior samples available at [53]. We use the same
sets of posterior samples employed in the GWTC-3
population inference: Overall_posterior samples
for O1/O2 events, PrecessingIMRPHM samples for
the new events reported in GWTC-2, and C01:Mixed
samples for the new events in GWTC-3. We use the so-
called “Nocosmo” samples, which are the posterior sam-
ples obtained with the distance prior πPEðDLÞ ∝ D2

L. For
evaluating αðΛÞ, we adopt a set of public injections [54].
We also employ the same inference code used for the
GWTC-3 analysis. It is available at [55] and built upon the
EMCEE package [56]. For the calculation of redshift dis-
tribution (33), the Planck15 cosmology [57] implemented
in ASTROPY [58–60] is adopted

H0 ¼ 67.9 km s−1Mpc−1; Ωm ¼ 0.3065: ð36Þ

Approximating integrals using Monte Carlo sums can
yield unphysical results when a small number of samples
dominate the total contribution. To avoid such situations,
the inference has thresholds based on the effective sample
size of the Monte-Carlo integration, which is defined by

Neff ¼
ðPiwiÞ2P

iw
2
i

; ð37Þ

where wi is the weight for the ith sample [61]. We impose
the same threshold as in the GWTC-3 analysis: Neff > 10
for evaluating Zi, and Neff > 4Nev for αðΛÞ [62]. If these
conditions are not satisfied, pðfdigjΛÞ is set to zero. In the
GWTC-3 population inference [22], the number of pos-
terior samples used for evaluating Zi was reduced to 4000,
but we found that this may impose a significant limitation
on the region of prior space due to the Neff threshold.

Therefore, our analysis uses all the posterior samples per
event. We confirm that if the sample size is reduced to
4000, the result of the inference with the KDE prior is
consistent with the result shown in [22].

B. Results of the inference

Figure 4 shows the posterior distributions of hyperpara-
meters related to χeff and χp. These distributions remain
largely unaffected by the prior replacement, although small
differences are observed in σeff andσp. The distribution of σeff
gets narrower, with its 90% credible interval changing from
σeff ¼ 0.108þ0.047

−0.035 to σeff ¼ 0.109þ0.036
−0.030 . The distribution of

σp shifts to higher values, with its 90% credible interval
changing from σp ¼ 0.142þ0.163

−0.085 to σp ¼ 0.176þ0.149
−0.105 .

Figure 5 shows the recovered distributions for χeff and
χp. Reflecting the subtle changes in σeff and σp, the
distribution of χeff becomes slightly narrower, while the
distribution of χp broadens slightly. No notable differences
are observed for hyperparameters related to masses and
redshift.
Figure 6 shows the errors in log10 pðfdigjΛÞ due to the

use of the KDE prior, computed on the samples of Λ
obtained by the inference using the analytic prior. They
are computed as the differences between the values of
log10 pðdijΛÞ computed with the analytic and KDE priors.
Around 15% of the samples do not meet the thresholds for
Neff , and errors are not computed for these samples. As
shown in the figure, the errors are already non-negligible and
can reach ∼1. Recently, Ref. [63] proposed a new threshold
to assess the Monte-Carlo integration, hΔ ln L̂i ≳ 1,
where hΔ ln L̂i is the average variance over the hyper-
posteriors. If this threshold is used, the current systematic
bias of the numerical approach is already at a level that could
threaten the astrophysical interpretation.
In addition, the errors are expected to grow as the

number of events increases. It can be understood through

TABLE I. Summary of hyperparameters we investigate. In the last column, Uða; bÞ means uniform distribution between a and b,
while Gðμ; σÞ means Gaussian distribution whose mean is μ and the standard deviation is σ. For Mmin, we fix the value to be 5M⊙.

Hyperparameter Related source parameter Description Hyperprior

α m1 Power-law index for m1 distribution Uð−5; 4Þ
Mmax m1 Max value for power-law part of m1 Uð60M⊙; 100M⊙Þ
Mmin m1 Min value for power-law part of m1 5M⊙
μm m1 Gaussian mean for peak part of m1 Uð20M⊙; 100M⊙Þ
σm m1 Gaussian width for peak part of m1 Uð1M⊙; 10M⊙Þ
fpeak m1 Fraction of masses in Gaussian part in m1 distribution Uð0; 1Þ
βq q Power-law index for q distribution Uð−2; 10Þ
κ z Power-law index for z distribution Gðμ ¼ 0; σ ¼ 6Þ
μeff χeff Gaussian mean for χeff distribution Uð−1; 1Þ
σeff χeff Gaussian width for χeff distribution Uð0.05; 1Þ
μp χp Gaussian mean for χp distribution Uð0.05; 1Þ
σp χp Gaussian width for χp distribution Uð0.05; 1Þ
ρ χeff ; χp Correlation between χeff and χp Uð−0.75; 0.75Þ
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FIG. 4. Posterior distribution for hyperparameters that impact the χeff − χp distributions.

FIG. 5. The recovered distributions for χeff (left panel) and χp (right panel). The thick lines show the median of the recovered
distribution, while the thinner lines show the 90% intervals.
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the following relationship between log10 pðfdigjΛÞ,
log10 αðΛÞ, and log10Zi:

log10 pðfdigjΛÞ ¼ Nev log10 αðΛÞ þ
XNev

i¼1

log10Zi þ const:

ð38Þ
The use of the KDE prior introduces small errors in
log10 αðΛÞ and log10Zi, which accumulate according to
this equation as Nev increases. Therefore, this issue is likely
to become more critical in future analyses, such as the
analyses of new events detected in the LVK’s fourth
observing run (O4). Consequently, our analytic prior will
play an essential role.

IV. CONCLUSIONS

We derive an analytic expression for the joint prior
distribution of effective spin parameters χeff and χp given
isotropic and uniform-in-magnitude spins. By comparing
our analytic prior with the KDE prior, computed with the
numerical approach employed in Refs. [21,22], we found
that the latter approach causes inaccurate assessments of
πðχeff ; χpjqÞ in a certain parameter region, especially in the
area of jχeff j ≲ 0.01. With the analytic prior, we reanalyze
theGWTC-3BBHs reported by LVK and estimate their spin
distribution by adopting the Gaussian Spin Model employed in
the GWTC-3 analysis. The results are largely unchanged
from those obtainedwith theKDEprior. However, the errors
in likelihood caused by using the KDE prior are non-
negligible. Since they are expected to grow as the number
of events increases, our analytic prior will play an essential

role in future analyses incorporating new GWevents. While
this paper only examines and discusses the application of the
analytic joint prior to the Gaussian Spin Model, this prior
distribution is widely required in hierarchical inference
for models that incorporate the two spin parameters χeff
and χp.
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APPENDIX: DETAILED DERIVATION OF THE ANALYTIC JOINT PRIOR

Our goal is to provide the analytic form of (9). It is easy to integrate with azimuthal angles, as both χeff and χp do not
depend on these parameters. With the definitions of xi ¼ ai sinϑi; zi ¼ ai cos ϑi we have

pðχeff ; χpjq; amaxÞ ¼
1

4a2max

Z
dz1

Z
dz2

Z
dx1

Z
dx2

x1
x21 þ z21

x2
x22 þ z22

× δ

�
χeff −

z1 þ qz2
1þ q

�
δ

�
χp −max

�
x1;

3þ 4q
4þ 3q

qx2

��
× Θðx1ÞΘðx2ÞΘða2max − x21 − z21ÞΘða2max − x22 − z22Þ: ðA1Þ

By scaling all the integral variables like x1 ¼ amaxx01, it can be shown that

πðχeff ; χpjq; amax ¼ aÞ ¼ 1

a2
π

�
χeff
a

;
χp
a

����q; amax ¼ 1

�
; ðA2Þ

so we assume amax ¼ 1 and will not refer to it in this appendix. The following equation

1 ¼ Θ
�
x1 −

3þ 4q
4þ 3q

qx2

�
þ Θ

�
3þ 4q
4þ 3q

qx2 − x1

�
ðA3Þ

can be used to divide the integral into two parts that provide different results for the max function. Then we can perform the
integral with respect to both x1 and x2. These give

πðχeff ; χpjqÞ ¼
1

8

Z
dz1

Z
dz2

χp
χ2p þ z21

log

�
z22 þ

�
4þ 3q
3þ 4q

�
2 χ2p
q2

�
δ

�
z1 þ qz2
1þ q

− χeff

�

× ΘðχpÞΘð1 − χ2p − z21ÞΘ
�
q2 − q2z22 −

�
4þ 3q
3þ 4q

�
2

χ2p

�

−
1

8

Z
dz1

Z
dz2

χp
χ2p þ z21

logðz22Þδd
�
z1 þ qz2
1þ q

− χeff

�

× ΘðχpÞΘð1 − χ2p − z21ÞΘð1 − z22Þ

þ 1

8

4þ 3q
3þ 4q

Z
dz1

Z
dz2

	
4þ3q
3þ4q



χp	

4þ3q
3þ4q



2
χ2p þ z22

logðz21 þ χ2pÞδ
�
z1 þ qz2
1þ q

− χeff

�

× Θð1 − χ2p − z21ÞΘðχpÞΘ
�
q2 − q2z22 −

�
4þ 3q
3þ 4q

�
2

χ2p

�

−
1

8

4þ 3q
3þ 4q

Z
dz1

Z
dz2

	
4þ3q
3þ4q



χp	

4þ3q
3þ4q



2
χ2p þ q2z22

logðz21Þδ
�
z1 þ qz2
1þ q

− χeff

�

× ΘðχpÞΘð1 − z21ÞΘ
�
q2 − q2z22 −

�
4þ 3q
3þ 4q

�
2

χ2p

�
; ðA4Þ

where we use

Z
x

x2 þ a2
Θðxmax − xÞΘðx − xminÞdx ¼

� 1
2
½logðx2max þ a2Þ − logðx2min þ a2Þ� xmax > xmin

0 otherwise:
ðA5Þ

Now we integrate either z1 or z2. Here, we integrate the variable that does not appear in the argument of the logarithmic
function in each integral so that the content of the logarithmic function remains simple. Furthermore, we make the
substitutions z1 ¼ x and z2 ¼ qx in each integral. Then, if we define
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Fðxja; b; c; dÞ ≔
Z

x

0

dx
b

ðx − aÞ2 þ b2
log

�
x2 þ c2

d2

�
; ðA6Þ

one notices that all the integrals can be described with this function as

πðχeff ; χpjqÞ ¼ I1 þ I2 þ I3 þ I4; ðA7Þ

where

I1 ¼
1þ q
8q

ΘðχpÞ

×
Z

dx
∂

∂x

�
F

�
xjð1þ qÞχeff ; χp;

4þ 3q
3þ 4q

χp; q

��
Θð1 − χ2p − ðx − ð1þ qÞχeffÞ2ÞΘ

�
q2 −

�
4þ 3q
3þ 4q

�
2

χ2p − x2
�

ðA8Þ

I2 ¼ −
1þ q
8q

ΘðχpÞ
Z

dx
∂

∂x
½Fðxjð1þ qÞχeff ; χp; 0; qÞ�Θð1 − χ2p − ðx − ð1þ qÞχeffÞ2ÞΘðq2 − x2Þ ðA9Þ

I3 ¼
1þ q
8q

4þ 3q
3þ 4q

ΘðχpÞ

×
Z

dx
∂

∂x

�
F

�
xjð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; χp; 1

��
Θð1 − χ2p − x2ÞΘ

�
q2 −

�
4þ 3q
3þ 4q

�
2

χ2p − ðx − ð1þ qÞχeffÞ2
�

ðA10Þ

I4 ¼ −
1þ q
8q

4þ 3q
3þ 4q

ΘðχpÞ

×
Z

dx
∂

∂x

�
F

�
xjð1þ qÞχeff ;

4þ 3q
3þ 4q

χp; 0; 1

��
Θð1 − x2ÞΘ

�
q2 −

�
4þ 3q
3þ 4q

�
2

χ2p − ðx − ð1þ qÞχeffÞ2
�
: ðA11Þ

After tedious manipulations of step functions, we have (18)–(21) and (22)–(25). So all we have to do is derive an analytic
form of Fðxja; b; c; dÞ. It is obvious that Fðxja; b ¼ 0; c; dÞ ¼ 0. For b ≠ 0 case, The scaling x ¼ bt derives

Fðxja; b; c; dÞ ¼
Z

x=b

0

dt
log
	
t2 þ c2

b2



− log

	
d2

b2



	
t − a

b



2 þ 1

¼
Z

x=b

0

dt
log
	
t2 þ c2

b2



	
t − a

b



2 þ 1

þ log

�
b2

d2

��
arctan

�
x − a
b

�
þ arctan

�
a
b

��
:

ðA12Þ

This means Fðxja; b; c; dÞ can be reduced to

Gðxjα; βÞ ≔
Z

x

0

dx
logðx2 þ β2Þ
ðx − αÞ2 þ 1

: ðA13Þ

It can be shown that Gðxjα; βÞ ¼ −Gð−xj − α; βÞ so we can assume x ≥ 0. This integral can be decomposed by a partial
fractional decomposition of the complex range and a decomposition of the logarithmic function

Gðxjα; βÞ ¼
Z

x

0

dx
logðx2 þ β2Þ
ðx − αÞ2 þ 1

¼ Im

�Z
x

0

dx
logðx − βiÞ
x − α − i

þ
Z

x

0

dx
logðxþ βiÞ
x − α − i

�
: ðA14Þ

We define these primitive functions as

gðxjα; βÞ ≔
Z

x
dt
logðt − βiÞ
t − α − i

: ðA15Þ

By the transformation t ¼ αþ i − ðαþ i − βiÞs,
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gðxjα; βÞ ¼
Z

s¼ðαþi−xÞ=ðαþi−βiÞ
ds

log½ðαþ i − βiÞð1 − sÞ�
s

:

ðA16Þ

With the dilogarithm function

Li2ðzÞ ¼ −
Z

z

0

dz0
logð1 − z0Þ

z0
; ðA17Þ

this integral has an analytic form

gðxjα; βÞ ¼ logðαþ i − βiÞ logðα − xþ iÞ

− Li2

�
α − xþ i
αþ i − βi

�
þ C: ðA18Þ

Note that this expression is on the branch cut of complex
logarithm function if we provide α ≤ 0 and β ¼ 1. In
addition, this expression may cross the branch cut of the

dilogarithm function Li2ðzÞ at z > 1. By examining the
complex number that is the argument of the dilogarithm, we
can see that this complex number takes a real number if
β ≠ 1 and that real number is

α − xþ i
αþ i − βi

����
x¼ αβ

β−1

¼ 1

1 − β
: ðA19Þ

We provide a threshold based on the relationship between
1=ð1 − βÞ and 1=2 so that the reflected dilogarithm argues
complex number that passes through the real axis by 1=2 or
less after the application of the reflection formula

Li2ðzÞ þ Li2ð1 − zÞ ¼ π2

6
− logðzÞ logð1 − zÞ: ðA20Þ

Finally, we have

gðxjα; βÞ ¼

8>>>>><
>>>>>:

logðx − βiÞ log
	

α−xþi
αþi−βi



þ Li2

	
x−βi

αþi−βi



jβj < 1

1
2
ðlogðx − α − iÞÞ2 þ Li2

	
−α

x−α−i



β ¼ 1; α ≤ 0

logðαþ i − βiÞ logðα − xþ iÞ − Li2
	

α−xþi
αþi−βi



otherwise:

ðA21Þ

These expressions are identical up to terms containing α and β but not x.
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