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We derive an analytic form of the joint prior of effective spin parameters, y.; and y,, assuming an
isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical
Bayesian inference for studying the population properties of merging compact binaries observed with
gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation
(KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where
both |y.¢| and Xp are small. Our analytic approach provides accurate computations of the joint prior across
the entire parameter space and enables more reliable population inference. Employing our analytic prior,
we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the
LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due
to the use of the inaccurate prior evaluations are O(1), implying the bias is already at the concerning level if
one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates
with the increasing number of events, our analytic prior will be more crucial in future analyses.
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I. INTRODUCTION

About one hundred events have been detected [1-4]
since the first direct detection of gravitational waves (GWs)
from the binary black hole (BBH) merger in 2015 [5]. The
fourth observing run of the LIGO-Virgo-KAGRA collabo-
ration (LVK) [6-9] is currently ongoing and expected to
discover additional hundreds of BBH events. This growing
number of events provides unprecedented findings about
the nature of black holes. However, the astrophysical
processes that govern the formation and evolution of
BBHs remain largely unknown (see, e.g., [10] for recent
reviews).

Various BBH formation channels have been discussed
([11,12] for reviews), including isolated binaries [13], and
dynamical capture in globular clusters [14] and active
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galactic nuclei [15]. These channels are further categorized
based on specific characteristics, such as stellar metallicity
(e.g., [16]) and environmental conditions (e.g., [17]). Each
formation channel exhibits a characteristic parameter dis-
tribution, which can be tested with BBHs observed by LVK
(e.g., [18,19]). Using parametric models that extract the
characteristics of these formation channels, LVK has
estimated the distribution of source parameters (such as
masses) and the associated merger rate density based on the
latest GW transient catalogs [20-22]. In addition, non-
parametric approaches have been used to capture the
parameter distributions in a more model-agnostic way
(e.g., [23-27)).

One promising approach for uncovering the origins of
BBH systems is to measure black-hole (BH) spins [28-36].
While individual spin components are difficult to measure,
certain combinations of these components can be more
reliably constrained. The effective inspiral spin, denoted by
Xeff» 1S one such parameter, defined by the mass-weighted
average of the aligned spin components [37]

_a;cosd; + ga, cos 9,
Xeff = 1+gq

(1)
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where a; denotes the dimensionless spin magnitude of the
ith object, J; denotes the polar tilt angle, and ¢ < 1 is the
mass ratio. Its distribution is a powerful tool to distinguish
the origins of BBHs [38,39].

Another important spin parameter is the effective pre-
cessing spin, denoted by y,, which is given by [40]

3+4

Xp = max (al sin 9, (4+3q> qa, sin 192>. (2)
q

This parameter captures the magnitude of spin components
perpendicular to the orbital angular momentum, which are
responsible for precession effects in orbital motion.
Nonzero values of y, indicate misalignments between
the spins and the orbital angular momentum, which
provides useful information to distinguish the formation
channels. Some generalizations of this parameter have
recently been discussed [41-44].

In the latest analysis by LVK with the gravitational wave
transient catalog 3 (GWTC-3) [22], the distribution of y.g
and y, is modeled as Gaussian distribution [45], and its
mean and covariance are estimated. According to their
results, the y. distribution is well described by a narrow
Gaussian with a slightly positive mean 0.05 and standard
deviation around 0.1. For y,, the distribution is explained
either by a flat distribution centered at y, = 0 or a narrow
distribution centered around y, =~ 0.2.

Hierarchical Bayesian inference is commonly used to
extract the population property of GW sources [46—438].
The likelihood function in this inference involves the
evidence for each event and the selection function that
characterizes observational selection effects. Each compo-
nent requires the evaluation of a high-dimensional integral
over 6. These integrals are computed using Monte-Carlo
methods, where random samples of 6 are drawn from
reference distributions, and Monte-Carlo sums are calcu-
lated with appropriate reweighting of them. For evaluating
the evidence, posterior samples are obtained from the
parameter estimation of each event, and their weights in
the reweighting process are inversely proportional to the
prior distribution assumed in that analysis. For evaluating
the selection function, typically, a large number of simu-
lated signals are injected into data to study the search
sensitivities, and their weights are inversely proportional to
the distribution from which the simulated signals are
drawn.

For inferring the distribution of y.; and y,, those
reweighting processes require their joint distribution con-
ditioned on ¢, denoted by 7(ys. x,|¢), computed from the
prior distribution or the distribution populating the simu-
lated signals. Typically, these distributions are isotropic
with respect to component spins and uniform in their
magnitudes. In past LVK analyses, the derivation of the
analytic formula of joint prior distribution 7 (y.¢. xp|q) Was
left undone. Instead, 7 (¥, xp|g) Was evaluated using the

analytic expression of z(y.s|g) found in Ref. [49], com-
bined with the kernel density estimation (KDE) approach to
evaluate 7z(yp|yes. )-

In this paper, we derive an analytic formula of
7(Yett- Xp|q)- By comparing our analytic method with the
conventional numerical method, we find that the latter
method fails to capture specific structures of 7 (yes. ¥p|q).
introducing numerical errors in the population inference.
Furthermore, this analytic approach is faster and eliminates
the stochastic uncertainty inherent in the numerical meth-
ods. To investigate potential biases in the GWTC-3
analysis, we reanalyzed the GWTC-3 BBHs with our
analytic formula of (e, xp|q)-

The structure of the paper is as follows: In Sec. II, we
review the conventional numerical approach, then present
an analytic approach, and evaluate how closely these
approaches represent the true distribution. In Sec. III, we
reanalyze GWTC-3 BBH events with a model presented
in [22] using numerical or analytic methods to calculate the
prior distribution. Then we compare the results to evaluate
the bias caused by numerical methods quantitatively. In
Sec. IV, we summarize the findings and conclude the paper.

II. JOINT DISTRIBUTION OF EFFECTIVE SPINS

In this section, we derive an analytic formula of
7(Yett- Xplg) and compare it with that computed with the
conventional numerical method. It is required to numeri-
cally compute the likelihood function of the population
inference, which is given by [46—48]

Pl « [T 2. o)

Z;(A) represents the evidence for the ith event, given by

Z,(A) = / Pooo (011 A)p(d110,)d6,. (4)

where p,,,(0|A) represents a parametrized model distri-
bution of @, 6;, and d; represent the source parameters and
data for the ith event respectively, and p(d;|6;) represents
the likelihood function. a(A) represents the selection
function, given by

a(A) = / 40D 4s(0) prop (1A, (5)

where pg.(0) is the probability of detecting a GW signal
with the source parameter values of 6.

As explained in the previous section, those integrals are
computed with Monte-Carlo methods. Z;(A) is computed
with posterior samples from the parameter estimation of the

ith event, {¢/ }flzl“"
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Niam j
1 ppop(¢1A)

Néﬂﬂlp j=1 ﬂPE(H{)

Zi(A) «

where 7pg(@) is the prior distribution assumed in the
parameter estimation. a(A) is computed with simulated
signals injected into data. They are analyzed by search
pipelines and the Monte-Carlo sum is evaluated over the
subset of signals successfully recovered by the pipelines

1 ppop (9k|A)

a(A) =
Ninj k:found Pinj (gk)

; (7)

where N, is the total number of injections, pj,;(6) is the
probability density from which the injection source param-
eters are drawn, 6, is the kth recovered injection during the
injection campaign.

”()(effv)(pM) = /daldazﬂ(“l)”(az)5<)(eff—

In past LVK analyses, both 7pg (€) and p;,;(6) are isotropic
in spin orientations and uniform in spin magnitudes. Let
a; = (a;,cos9;, ¢;), where ¢; is the azimuthal angle of the
ith spin around the orbital angular momentum. The isotropic
and uniform-in-magnitude spin prior is given by

1
m(a;) = 470,

(8)

where a,,,, denotes the maximum spin magnitude. Here, we
assume that the spin magnitudes of both compact objects
share the same range, such that 0 < aq, ar < dpax-

In population inference which focuses exclusively on y .
and y,, the other spin components are marginalized over,
resulting in the following expression for the joint prior:

ay cos & + qa, cos I,
1+g¢q

. 3+4q .
X 6<;(p — max <a1 sind;, <4+3q> qa, sin 82> > 9)

In past LVK analyses, this integral was partly computed
using KDE. We instead calculate this integral analyticly to
evaluate this joint prior more accurately.

A. KDE prior

We begin by reviewing the numerical method employed
in the GWTC-3 analysis. The joint distribution is decom-
posed as

ﬂ()(effv)(p"]) = ”<)(p|)(eff79)”<)(eff|fJ)- (10)

The term z(y.s|q) is evaluated with its analytic expression
given by Eq. (10) in Ref. [49], while z(y,|resr.q) is
calculated numerically.

For the numerical evaluation of 7(y,|yes.q), KDE is
applied to random samples drawn from the prior. Since this
probability is conditioned by y.y, the actual degree of
freedom for this draw is three [50]. Samples of a,, a,, and
cos &, are drawn from the uniform priors, and the values of
cos 9, are determined by Eq. (1) Unphysical samples with
|cos9,| > 1 are rejected. This procedure is repeated until a
sufficient number, 10,000 by default, of samples are
obtained. Once a sufficient number of samples is obtained,
Xp samples are generated according to (2), and KDE with
the Gaussian kernel is applied to them. Due to the Jacobian
of the transformation to y. from cosd;, each sample has
the weight,

|
dcos 9 (ay, ay, feir: €08 92)  1+g¢

O et a

(11)

The boundary conditions must be set carefully because
KDE, in general, tends to have biases near the boundaries
[51]. In the numerical evaluation of 7(y,|yes.q). the
boundary condition is 7(0|yerr. ) = 7(¥ p max Xerr» 4) = O.
Here, ) max 18 the physically maximum value for y,, given

Xeit and g

X pmax = g})zzf(xp)

| anl<vi;
\/algnax - ((1 + Q) IZCff' - amaxQ)z Ez(?:x‘ > #qq
(12)

To prevent the density from spilling out of [0, ¥, ax], KDE
for grids in [gy, max- (1 =€)y, max] are evaluated first,
where ¢ is a small constant; ¢ = 0.02 is chosen in the
GWTC-3 inference. Then the boundary conditions are
manually provided; other values are calculated by inter-
polation. Finally, the function is normalized to achieve

X p.max
A w(rplier- ) = 1. (13)

An implementation of this method can be found at [52],
though with a different choice of e. z(yplrer.q) as
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constructed above will henceforth be referred to as “the
KDE prior” in this paper.

This numerical method has several limitations. First, the
use of KDE may obscure certain structures in the prior
distribution. For example, the KDE prior may not capture
the discontinuous derivative behavior due to the max
function in Eq. (9). Second, this method can be computa-
tionally expensive when dealing with a large number of
events. In particular, this method is slow if we give large
l¥efr| because many random samples are rejected during the
sampling process. Third, this method introduces an addi-
tional source of uncertainty to the final results from the
probabilistic nature of KDE. Because KDE relies on
random samples, the results have statistical errors, but this
is not an inherent property of the prior distribution.

B. Analytic prior

To overcome the limitations of the KDE prior, here we
present an analytic joint prior. The difficulty to compute
Eq. (9) arises from the large number of conditional
branches. In Ref. [49], the author first specifies the
branching cases and then provides primitive functions

However, the conditional expressions to be considered for
computing 7 (¥, ¥p|q) are complex depending on g, v,
and y,,. Furthermore, the number of cases to be considered
is much larger than z(y.|q), and it is not easy to consider
in advance how many cases will be needed.

Instead, we adopt an approach in which we first identify
the primitive function of the integral and then assign the
appropriate integral domain. To achieve this procedure, we
give the integral domain a; € (0, 1) and 9; € [0, z] by a step

function:
O(x) = {

The following scaling relation with respect to a,,,, holds:

1 x>0

. 14
0 x<0O (14)

1

a2

:a)

Nett X
”()(effJ(p <L 2

[ Qaamale)' (15)
a

Thus, without loss of generality, we assume ap,, = 1
hereafter. By the simple transformation of the integral
variables z; := a; cos d; and x; = ag; sind;, we get

7(ye dz/dz/dx/dx ———50(x)0(x
()(ff)(p|61 / 1 2 1 25, 2 +Z1X2+Zz (x1)0(x)
71+ gz 34+ 4q
X5<}{eff_ 11 +q2>5<)(p —max<x1,4+3qqx2 @(1 —x% —Z%)G(l —x% —Z%) (16)
The integral can be reduced to the sum of one-dimensional integrals as (see Appendix for details)
(et plg) = I + 1 + I3 + 1y, (17)
where
1 —l— q 4+ 3¢ X ;
=t tetne (a5t Jot
max 4 + 3q min 4 + 3q
x [F( 0+ @ty st ) = F (A0 + ot s et (19
I, = 1 + q@ max min max min
2= (2p)O(1 = 1) O (3™ — X [F (x5 |(1 + )xetr. xp. 0. 9) = F(G™|(1 + q)xerr 25, 0.9)]  (19)
l1+qg4+3q 4+ 3q :
- ® ® __ -1 @ (xnax _ ymin
max min 4 + 3q
X {F<X3 (1 + Q))(etf’:)) _|_4 )(p’ ps ) < (1 + Q))(ett’:,) +ag Ap> Xps 1)] (20)
14+qg4+ 3q
Iy =—— @ mm
4+ 3¢q
F max s s min off» , 0’ ] 21
P (e +q>xeff3+4xp ) ( 0+ aen s 3 0.1)] ell
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and

x‘{‘a"—min<1/q—( ) b +q){eff+1/1—)(p>

(22)
2
max __ 1 >
X — mln(q, (L4 q)xetr + M)
(23)
ain = max(—q, (1 + q)xerr — M)
. 2
X = mln(m, (1 + @)xete + 1/ 4* = (mq) ;(%)
(24)
| 2
X = max <_m’ (I + @eit =/ 4° = (%) X%)
. 2
Xy = mln(1 (14 Qe + 1/ 4 = (ﬁiz) )(%)
(25)

443¢\ 2
X" = max (—1, (L4 q@)xere =/ 4° — (3143) xﬁ)

These expressions have roots whose contents can be negative, but they are greater than or equal to zero because of step
functions. The one-dimensional function F(x|a, b, c,d) is defined as

x b x% + c?
F(x , )._A dx(x_a>2+b210g( 7z ) (26)
and has an analytic form

xla c b? xX—a a
F(x|a,b,c,d) = <b b b> + log <Jz) [arctan( 5 ) + arctan (E)} (27)
G(x|a, p) = Img(x|a. f) + g(x|a, =p) = g(Ola. ) — g(Ola, =), (28)

log(x - i) log (#5544 ) + Lia (525;) Bl <1

g(xla. f) = { 4 (loglx = a = ))? + Lia (5% p=1a<0 (29)

log(a + i — pi)log(a — x + i) — Li, ((‘;f%) otherwise,

¢ log(1-7) These expressions provide .the fully anglytic formulas to

Liy(z) = — / dy —=——~2. (30)  compute 7(xer, ¥p|q). We will refer to this approach as “the
0 Z analytic prior.”

The analytic prior in the two-dimensional plane is shown

in Fig. 1. In both cases, the joint distributions are symmetric

around y.; = 0. The two-dimensional distribution takes its

The branching of g(x|a,f) arises in order to avoid
transcending branch cuts of complex logarithm function
and the dilogarithm function denoted by Li,(z), which are o
both on the real axis. The more detailed derivation of an ~ supremum at the limit of yes = 0,y, — 0. The larger

analytic form of F(x|a, b, c,d) is given in the Appendix.  the value of |y is, the slower the rise of 7(y,|yes. q)
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q=20.50

1.0 1.0

0.8 0.8

0.6 0.6
a 2,
=< =
0.4 0.4
0.2 0.2
0.0+ T T 1 0.0+ T —r— T 1
-1.0 —-0.5 0.0 0.5 1.0 -1.0 —-0.5 0.0 0.5 1.0
Xeff Xeff

FIG. 1. The analytic joint prior on y, v, for ¢ = 1 (left panel) and g = 0.5 (right panel). Contours show 1/2¢, 10, ..., 30 regions. In
gray is shown the area where y.q—y, pairs cannot physically be achieved simultaneously [obtained from (12)].

at y, =0 is. The contours are nearly parallel to the  terms of a one-dimensional distribution z(y,|yes. q). The
Xp = const line near the y,, = 1 limit, suggesting the steep ~ KDE prior is evaluated 1000 times. Its median and 90%
decline at the y,, = 1 boundary. In addition, the right panel interval are shown to capture the probabilistic uncertainty.
(g = 0.5) illustrates that the contours have cusps around Figure 2 shows the case of y. = 0.2, =0.8. The

Zp ~ 0.4 due to the behavior of the max function. analytic prior and the histogram are in good agreement.
In addition, the analytic prior and the KDE prior are in good

agreement except for around y,, = 0.775, where the analytic
prior has a cusp. This cusp corresponds to the point where
the second input to the max function, ((3 +4q)/(4 + 3q))
qa, sin §,, becomes physically impossible to be y,,

C. Comparisons with the KDE prior

Figures 2 and 3 compare the analytic prior with histo-
grams from random samples or with the KDE prior, in

Xegt = 0.2, ¢ =0.8
I I I T I I T
[ Random 1000000 samples === Analytical prior
—— KDE prior

N

/o \

7pE(Xp| Xeft, @)

-0.00 0.25 0.50 0.75 1.00
Xp

FIG.2. Comparison of different evaluation methods for z(y, |y, ¢). For both panels, the analytic evaluation of z(y,|¥.s, ¢) is shown
in green. In the left panel, the red histogram shows the behavior of random samples drawn from uniform-in-magnitude and isotropic spin
prior. In the right panel, in blue is the evaluation of 7z(y,|ycs. ¢) by the KDE prior. The blue bold line indicates the median of the
evaluation and the blue colored area indicates the 90% region. Given parameters are y. = 0.2, g = 0.8.
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et = 0.01, ¢ =08

1.751 Random 1000000 samples
1.50 A
<= 1.257 ChORR n o
s |
= |
= 1.00 14 \\
= i y
20751 1 1
& : ]
)
0.501 in,
(] »
1 \\
0.2511 N
: 1
0.00 L4 | . . ';
0.00 0.25 0.50 0.75 1.00
Xp
FIG. 3.

Tl (1+q)brer| <1

V@ = (1= +@)len])? (1+a) el 21,
(31)

Xp

and appears as the point where /, becomes zero because of
the step functions.

Figure 3 depicts the case of y.; = 0.01, g = 0.8. We see
notable differences between the analytic and the KDE
priors around the boundaries and the cusp. In addition, the
median of the KDE prior is larger than the analytic prior for
0.2 < xp £0.7. The bandwidth of the KDE, constructed
from 10000 random samples, is around 0.2. This value is
too large to effectively capture the sharp behaviors near the
boundaries and the cusp. This results not only in discrep-
ancies around the boundaries and cusp, but also in the
overestimation in 0.2 < y, < 0.7 through the normalization

procedure (13). This bias can be reduced by increasing the
|

1
ppop(ml |A> = fpeak [? €X

oy,

Ppop(Z|A) & (1 + Z)K_l—c’

Xefft — Heff

(e

=== Analytical prior
— KDE prior

Same as Fig. 2, but we give y.; = 0.01,4 = 0.8.

number of samples, though this comes at the expense of
higher computational costs. Such discrepancies are gen-
erally unavoidable for small values of |y.s| and can have a
substantial impact on population inference when the under-
lying distribution is concentrated in that parameter region.

III. REANALYSES OF GWTC-3 BBH POPULATION

In this section, we reanalyze GWTC-3 BBHs using both
the analytic prior and the KDE prior, then compare their
results.

A. Model description

In the GWTC-3 population analysis, LVK studied the
spin distribution with the Gaussian Spin Model [22,45]. The
source parameters of interest in this model are
(my, 4.2 et xp) and the distributions of these parameters

are described by the parametric functions

(1 + ayms

—Hm 2
) )] 0= ) g S o
Poop(4|A) o g%, (33)
dv
dz (34)
)2_2p<)(eff_/"eff> ()(p_ﬂp> + <Zp_,up>2:|i|‘ (35)
Oeff Op Op

Prop et 1l o exp {-za 1p2> [(

Oecff

The hyperparameters included in A and their prior are summarized in Table I.
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TABLE . Summary of hyperparameters we investigate. In the last column, U(a, b) means uniform distribution between a and b,
while G(u, ) means Gaussian distribution whose mean is y and the standard deviation is 6. For M ;,, we fix the value to be 5M,.
Hyperparameter Related source parameter Description Hyperprior

a m Power-law index for m, distribution U(-5,4)

M ok m; Max value for power-law part of m;, U(60Mg, 100M )
M i m; Min value for power-law part of m; SMg

Hm m Gaussian mean for peak part of m; U(20M 4, 100M )
Om m Gaussian width for peak part of m; U(1My, 10M)
S peak m Fraction of masses in Gaussian part in m; distribution U(,1)

B, q Power-law index for ¢ distribution U(-2,10)

K b4 Power-law index for z distribution G(u=0,0=06)
Ueit Keif Gaussian mean for y.q distribution U(-1,1)

Ceff Keif Gaussian width for y.q distribution U(0.05,1)

Hp Xp Gaussian mean for y,, distribution U(0.05,1)

o, Ip Gaussian width for y,, distribution U(0.05,1)

p Xt Xp Correlation between y.¢ and y,, U(-0.75,0.75)

We analyze the same set of the BBH events analyzed in
the GWTC-3 population inference for the Gaussian Spin Model,
which comprises 69 BBHs in total. For evaluating Z;, we
use the posterior samples available at [53]. We use the same
sets of posterior samples employed in the GWTC-3
population inference: Overall posterior samples
for O1/02 events, PrecessingIMRPHM samples for
the new events reported in GWTC-2, and C01:Mixed
samples for the new events in GWTC-3. We use the so-
called “Nocosmo” samples, which are the posterior sam-
ples obtained with the distance prior zzpg(Dy ) « D?. For
evaluating a(A), we adopt a set of public injections [54].
We also employ the same inference code used for the
GWTC-3 analysis. It is available at [55] and built upon the
EMCEE package [56]. For the calculation of redshift dis-
tribution (33), the Planck15 cosmology [57] implemented
in ASTROPY [58-60] is adopted

Hy = 67.9 kms~! Mpc™!, Q. =0.3065. (36)

Approximating integrals using Monte Carlo sums can
yield unphysical results when a small number of samples
dominate the total contribution. To avoid such situations,
the inference has thresholds based on the effective sample
size of the Monte-Carlo integration, which is defined by

Wi 2
Negr = % (37)

where w; is the weight for the ith sample [61]. We impose
the same threshold as in the GWTC-3 analysis: N > 10
for evaluating Z;, and N > 4N, for a(A) [62]. If these
conditions are not satisfied, p({d;}|A) is set to zero. In the
GWTC-3 population inference [22], the number of pos-
terior samples used for evaluating Z; was reduced to 4000,
but we found that this may impose a significant limitation
on the region of prior space due to the N threshold.

Therefore, our analysis uses all the posterior samples per
event. We confirm that if the sample size is reduced to
4000, the result of the inference with the KDE prior is
consistent with the result shown in [22].

B. Results of the inference

Figure 4 shows the posterior distributions of hyperpara-
meters related to . and y,. These distributions remain
largely unaffected by the prior replacement, although small
differences are observed in o, and o,,. The distribution of o
gets narrower, with its 90% credible interval changing from
Oei = 0.10810937 t0 Gor = 010975055, The distribution of
o) shifts to higher values, with its 90% credible interval

changing from o, = 0.14270% to 6, = 0.1767 ;.

Figure 5 shows the recovered distributions for y.; and
Xp- Reflecting the subtle changes in o and o, the
distribution of y.; becomes slightly narrower, while the
distribution of y,, broadens slightly. No notable differences
are observed for hyperparameters related to masses and
redshift.

Figure 6 shows the errors in log,y p({d;}|A) due to the
use of the KDE prior, computed on the samples of A
obtained by the inference using the analytic prior. They
are computed as the differences between the values of
log,o p(d;|A) computed with the analytic and KDE priors.
Around 15% of the samples do not meet the thresholds for
Ngr, and errors are not computed for these samples. As
shown in the figure, the errors are already non-negligible and
can reach ~1. Recently, Ref. [63] proposed a new threshold
to assess the Monte-Carlo integration, (AlnZ)> 1,
where (AlnZ) is the average variance over the hyper-
posteriors. If this threshold is used, the current systematic
bias of the numerical approach is already at a level that could
threaten the astrophysical interpretation.

In addition, the errors are expected to grow as the
number of events increases. It can be understood through
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FIG. 4. Posterior distribution for hyperparameters that impact the y.¢ — y,, distributions.
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FIG. 5. The recovered distributions for y.q; (left panel) and y, (right panel). The thick lines show the median of the recovered
distribution, while the thinner lines show the 90% intervals.
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FIG. 6. The differences between the values of log;, p({d;}|A)
computed with the analytic and KDE priors.

the following relationship between log;o p({d;}|A),
log,oa(A), and log;, Z;:
N

logig p({d;}[A) = Neylogiga(A) + Z log;y Z; + const.
i=1

(38)

The use of the KDE prior introduces small errors in
log;oa(A) and log,y Z;, which accumulate according to
this equation as N, increases. Therefore, this issue is likely
to become more critical in future analyses, such as the
analyses of new events detected in the LVK’s fourth
observing run (O4). Consequently, our analytic prior will
play an essential role.

IV. CONCLUSIONS

We derive an analytic expression for the joint prior
distribution of effective spin parameters y. and y, given
isotropic and uniform-in-magnitude spins. By comparing
our analytic prior with the KDE prior, computed with the
numerical approach employed in Refs. [21,22], we found
that the latter approach causes inaccurate assessments of
7(Yetr- Xplq) in a certain parameter region, especially in the
area of |y.¢| < 0.01. With the analytic prior, we reanalyze
the GWTC-3 BBHs reported by LVK and estimate their spin
distribution by adopting the Gaussian Spin Model employed in
the GWTC-3 analysis. The results are largely unchanged
from those obtained with the KDE prior. However, the errors
in likelihood caused by using the KDE prior are non-
negligible. Since they are expected to grow as the number
of events increases, our analytic prior will play an essential

role in future analyses incorporating new GW events. While
this paper only examines and discusses the application of the
analytic joint prior to the Gaussian Spin Model, this prior
distribution is widely required in hierarchical inference
for models that incorporate the two spin parameters y.s
and y,.
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APPENDIX: DETAILED DERIVATION OF THE ANALYTIC JOINT PRIOR

Our goal is to provide the analytic form of (9). It is easy to integrate with azimuthal angles, as both y.¢ and y,, do not
depend on these parameters. With the definitions of x; = a;sin9;, z; = a; cos J; we have

e
+z1x2+z2

71 +qz 34+4q
X5<)(eff— 11+q2>6<;(p—max<xl,qu2

X O(x1)O(x2)O (amax — x7 = 27)O(amax — X3 = 23)- (A1)

p()(effv)(pm’amax = dz; dz,

By scaling all the integral variables like x; = @y, X}, it can be shown that

U (xer X
”()(effy)(p'q’amax = a) = zﬂ-(%ff,_p 4, Amax = 1>’ (A2)

SO we assume dap,, = 1 and will not refer to it in this appendix. The following equation

3+4q 3+4q
1= @(Xl —4+3qqx2> +®<qu2 —Xl) (A3)

can be used to divide the integral into two parts that provide different results for the max function. Then we can perform the
integral with respect to both x; and x,. These give

443¢\2 3\ (21 +qz
7(etrs Xplq) = /dzl/dZZ 7, 103( + <3+4q> q—§ 6 11+q2—)(eff
44 3q\?
X O(x1p)0(1 = 1p —Z?)®(q2 -4’7 - <3 +4q> ;{%)

+
——/d21/d22 2 log( )5d(Z11 +qqZ2 —)(eff)

x 0(x,)0(1 —xp—z1)®(1—Z%)

4+3q
14+3q 3+4q 721+ q2
1 2 2 S _
83+4 / / 270502 . . o 4+3q 2 2+Z Og(zl_"){p) ( 114 Xeff
3+4q 2
44 3q\?
<001 -3 - oo -3 - (5147) 1)
+3q
14+361/ / . %+4q )(P 10g(Z%)5<ZI+QZ2 _)(ff)
83+4 4 3 1 e
* %LZ b+ a’3 t4q
4 +3q\?
O(r,)0(1 - 22)0( ¢* — >3 - 2) | Ad
<0001 - )0( 7 73 - (140) (a%9)

where we use

(AS)

otherwise.

%[log(xrznax + aZ) - log(xgﬁn + aZ)} Xmax =~ Xmin
X +4a

/ a 2 ®(xmax - x)@(x - xmin)dx =

Now we integrate either z; or z,. Here, we integrate the variable that does not appear in the argument of the logarithmic
function in each integral so that the content of the logarithmic function remains simple. Furthermore, we make the
substitutions z; = x and z, = gx in each integral. Then, if we define
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x b x? + c?
, )._A dx(x_a>2+b210g( 7 ) (A6)

one notices that all the integrals can be described with this function as

F(x

(e xplg) = Iy + 1 + 15 + 1, (A7)
where
1+g¢g
l,=—0
1 8q ()(p)
0 4+ 3¢q 4+ 3q
X/dxa [F<XI(1 + aeir- o 34 vaQ>:|®(1_Xg_(x_(1+Q))(eff)2)®<q2_ (3+4 ) —xz) (A8)
1+q
L =———0(y) /dx 1+ q)xese 2, 0, 9)1O(1 = 5 — (x = (1 + @)xer)*)O(g* = x?) (A9)
1+¢g4+3q
Iy, =———0
3 8q 3+4q ()

0 44 3q 44 3¢
 [ar g |40+ s b 1) 00 =3 =200 (= (553) R - (= (14 ) (A10

_144g4+3¢g
I, = N !
4 8q 3+4q (X)
4+ 3q 44 3q\?
X/dxa{F<x(1+Q)xeff,m1p,0,l>}®(l—x2)®<q2— <3+4q> X — (= (1 +q)rer)? ). (AlD)

After tedious manipulations of step functions, we have (18)—(21) and (22)—(25). So all we have to do is derive an analytic
form of F(x|a,b,c,d). It is obvious that F(x|a,b = 0,c,d) = 0. For b # 0 case, The scaling x = bt derives

b log (t2 ) log< ) b log (tz 2) B2 _
F(x|a,b,c.d) =/ dt = / dt—2b+ log (—2> {arctan <x a) + arctan <g>].
0 (; — %) 41 0 (t _ %) +1 d b b

(A12)
This means F(x|a, b, ¢, d) can be reduced to
log(x* + %)
X|a —_— Al3
Glole) = [ a2 (A13)
It can be shown that G(x|a, f) = —G(—x| — @, #) so we can assume x > 0. This integral can be decomposed by a partial
fractional decomposition of the complex range and a decomposition of the logarithmic function
1 2) 1 1
Gxla. p) = / log(x” + /) +ﬁ / ax 02 =A) / 4 08 £ A1) +ﬂ’ (A14)
(x —a)? X—a—i X—a—i
We define these primitive functions as
log(t — pi)
t—F". AlS
glalap) = [ B2 (A15)

By the transformation t = a + i — (@ + i — pi)s,
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s=(a+i—x)/(a+i-pi) ] i — Bi)(1 —
sian - | L Joellai—pi)(i =)
s
(A16)
With the dilogarithm function
log(1 =7
Liy(z) = —/z g2 =) (A17)
0 Z
this integral has an analytic form
g(x|a, p) =log(a + i — pi)log(a — x + i)
(fa—x+i
—Li) | ———— C. Al8
12(a+i—ﬂi>+ (A18)

Note that this expression is on the branch cut of complex
logarithm function if we provide a <0 and f=1. In
addition, this expression may cross the branch cut of the

|

log(x — i) log (::-Jr/;,

! (log(x —a—i))? + Lip (=)

g(x|a. p) =

dilogarithm function Li,(z) at z > 1. By examining the
complex number that is the argument of the dilogarithm, we
can see that this complex number takes a real number if
f # 1 and that real number is

a—x+1i 1

G A19
ati=pil,_o 1-p (A19)

We provide a threshold based on the relationship between
1/(1 = f) and 1/2 so that the reflected dilogarithm argues
complex number that passes through the real axis by 1/2 or
less after the application of the reflection formula

2

Lis(z) + Liy(1 —2z) = % —log(z)log(1 —z). (A20)
Finally, we have
+ Li, (=21 1Bl <1
2\ a+i-pi
p=1a<0 (A21)

a+i—pi

log(a+ i — pi)log(a — x + i) — Li, ("‘"‘*i) otherwise.

These expressions are identical up to terms containing o and f but not x.
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