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Abstract

In this work we aim to study, through the use of Direct Numerical Simulations

(DNS), the turbulent drag reduction that occurs in a lubricated channel during

the transport of a fluid at a low Reynolds number. In this situation, one of the

two fluids separates the second from the wall forming a thin layer in contact

with it. In our configuration the thin lubricating layer is adjacent to one of

the wall, which will be called lubricated side. We consider the same density

(ρ1 = ρ2) for the two fluids, we change the viscosity ratio (λ = ν1/ν2) with two

different values: λ = 1 and λ = 0.5. To assess the role of the surface tension we

also performed an additional simulation at λ = 1 varying the We number from

We = 0.055 to We = 0.5. As expected the drag reduction (DR) mechanism is

strongly related to the viscosity ratio, in particular the flow rate increase when

decreasing λ due to a relaminarization of the lubricated layer. Moreover, the

parametric analysis on the effect of viscosity ratio and surface tension allows

us to highlight very interesting modulations of the dynamics of the interface

and of the turbulent kinetic budgets. To date, the latest studies in this area

have been carried out using the Phase Field Method [1] for the description of

the interface. One of the scopes of the present study is to confirm and extend

the existing results by exploring the dynamics of the flow with the use of the

Volume of Fluid (VOF) method [2].
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Chapter 1

Introduction

Experimentally it has been proved that the presence of lubrication inside a

pipeline produces a significant reduction of the wall shear stress, therefore of

the energy spent for the transport of the fluid [3–6]. Our current understanding

is that this reduction can be mainly explained by the action of viscous forces.

Particularly, in the situation in which the lubricated layer has a lower viscosity

the resulting increase of the volume flow rate suggests the establishment of

a friction loss. When considering a two-phase flow with immiscible fluids we

observe a tendency of the less viscous fluid to migrate towards the high shear

region. This behavior has allowed an increase of the energy efficiency in the case

of transport of viscous fluids in pipeline. In particular the pressure required

to sustain the motion is comparable to the scenarios involving only the less

viscous fluid. In order to establish this mechanism the viscosity ratio between

the two fluids needs to be lager enough, otherwise some instabilities can arise.

Other aspects that go beyond the hydrodynamic of the system and therefore

will not be taken into account in this study are related to the adherence of the

lower viscosity fluid. It has been seen that despite the stability of the flows,

the higher viscosity fluid can sometime foul the walls. This aspect represent

an important experimental fact that need to be carefully considered in real

world application, like the construction of a pipeline. Another insight that

require further investigation due to it’s effect on the dynamic of the system, is
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the ratio between the heights of the two layers. This geometrical component

and its optimal value could contribute to complete the understanding of the

phenomenon of the drag reduction. Drag Reduction (DR) is the term used

in literature to describe the mechanism responsible for the effect of reduced

friction at the walls of a channel or a pipeline when to a carrier fluid is added

a second fluid on the top in order to create a small film that separate the

main one from the walls. The lack of time along with the higher priority in

the clarification of the role of the interface, are the main reasons why this

study does not contemplate the geometrical discussion. The present study is

focused on the analysis of a turbulent channel flow, this refers to a situation

in which typically a fluid moves through a rectangular duct. In most of in-

dustrial relevant applications we more often find pipelines. This refers to a

particular channel in which the shape of the cross section is usually circular.

Even though the geometry used in studies (like channels) might differ from

actual applications (like pipelines), the underlying physics remains the same. In

simulations, due to efficiency, complexity and computational reasons is usually

preferred the implementation of simplified geometries. The main phenomena

taken into account in this dissertation can be summarised into three categories.

Drag reduction, which involves, as already mentioned, all the mechanisms

that produce a decrease of resistance as the fluid moves along a channel or a

pipe. Near wall dynamic, which explore the fluid behavior at the boundaries.

Interface effects, where in multi-phase flows (typically liquid-liquid), examine

the the interaction between different phases. All these aspects are crucial in

the understanding of the turbulence dynamic and are yet to be fully explained.

Moreover none of these depend on the selected geometry, which is why we

chose a rectangular duct. The Drag Reduction mechanism responsible for the

effect just described has been explored in several directions. As an example,

the physics of stratified viscous fluid has been largely investigated through the

analysis of the flow instabilities, an extensive review can be found in [36].
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In general, the phenomenon has been qualitatively investigated in its global

aspects, such as pressure drop and flow rate, but a satisfactory description

of flow characteristics has not yet been achieved. This is partly due to ex-

perimental limitations and partly to the limited number of Direct Numerical

Simulations (DNS) conducted. The latter in particular represents the best tool

for the detailed characterization of both phases as well as the evolution of the

interface. Some of the most recent studies adopt the Phase Field Method to

capture the interface [28, 19, 42]. Ahmadi et al. [19] for instance, considered a

turbulent channel flow with two stratified immiscible layers at a shear Reynolds

number Reτ = 100 with the aim of exploring the dynamic of the interface and

how this can affect drag reduction. The choice for the value of the Reynolds

shear stress in their work and accordingly, for comparison in this one, mainly

depends on the complexity and cost of the simulations performed at higher

values. Nevertheless, this value has already overcome the threshold in which

all the dynamic structures required for the investigation of the near-wall layers

and the interface region are already in place. For the simulation, they used the

same density but different viscosity ratio for the two fluids. According to their

results, a non-negligible contribution to DR is related to the energy spent to

deform the interface, and the effect increases when the viscosity ratio decreases.

In a following study [28] the same authors explored the correlation between

the shear stress distribution on the lubricated wall and the elevation of the

interface, to confirm the previous observations. In the present study, our aim

is to extend these findings by simulating the flow with the Volume of Fluid

method. This numerical approach assumes a sharp interface that allows a more

realistic description of the interface compared to the Phase Field, which instead

considers a continuous variation of the flow properties as a function of an order

parameter. The DR is examined here in a channel where a thin layer with

equal or lower viscosity is flowing on top of a thicker layer. Specifically, we



6 Introduction

selected two values for the viscosity ratio, namely λ = 0.5 and λ = 1.

We observed that the DR increases as the viscosity decreases. In particu-

lar, when λ = 0.5 we see a complete relaminarization of the thin layer. The

deformation of the interface and its effect on the DR have been investigated

through the variation of the Weber number, which represents the ratio between

inertial and cohesive forces. Its value produces a more deformable interface

when high, while it is more rigid when low. We observe that when we increase

the Weber to We = 0.5 at λ = 1 the increase of the DR is slightly larger. We

did not find here any appreciable effect related to the capillary forces generated

by the surface tension, namely, we do not observe a turbulence reduction due

to energy spent in deforming the interface. For all simulations, we adopted

Reτ = 100.

The structure of the thesis is as follows. We start below in this chapter

with a recap of the main statistics used in the analysis of turbulent flows, the

following section covers some aspects of the current approach to the interface

capturing methods. The second chapter is a brief literature review about

the drag reduction phenomenon and the dynamic of turbulence. In the third

chapter, we present the methodology followed in this research, highlighting the

methods selected and the differences with respect to previous publications. In

the fourth chapter, we discuss the main results we obtained along with statistics

that explore and reveal possible mechanisms beyond the phenomenon of the

DR. The dissertation ends with the fifth chapter with the conclusions of the

work.

1.1 Turbulent Channel Flow

A well posed problem is defined by 3 conditions as stated by Hadamard in the

19th century.
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1. A solution exists

2. There is only a single solution

3. Small disturbances in the initial or boundary conditions lead only to

small variation of the solution.

The first two represent the idea of deterministic behavior. The problem in

dealing with real phenomena is that the third condition can only be known

with finite accuracy. Navier-Stokes equations are non linear and only in a few

cases can satisfy all the well posed conditions, the third in particular. In the

other cases, the solution becomes unpredictable. After a certain amount of

time, two solutions will begin to diverge completely. For this reason, these

phenomena are investigated through statistics methods. Turbulence originates

as a consequence of instabilities related to the interaction between viscous and

non linear terms. In a turbulent boundary layer, the kinetic energy from the

free-stream flow is converted into turbulent fluctuations and then dissipated into

internal energy by viscous action [1]. This mechanism is continuous without the

presence of stabilizing forces. The complex phenomena of turbulence have been

studied taking into account some patterns in the flow that can be observed

repeatedly. The idea of coherent motion in this framework refers to a three-

dimensional region of the flow over which at least one fundamental flow variable

(velocity component, density, temperature, etc.) exhibits significant correlation

with itself or with another variable over a range of space and/or time that

is significantly larger than the smallest local scales of the flow. Some related

processes are the near-wall high and low speed streaks and quasi-streamwise

vortices (long, thin tubes of vorticity that are oriented mainly in the streamwise

direction).

1.2 Wall Turbulence

Considering the Navier-Stokes equations for an incompressible Newtonian fluid
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∇ · u = 0 (1.1)

∂u
∂t

+ u · ∇u = −1
ρ

∇p+ ν∇2u (1.2)

1.3 Reynolds equations

In terms of mean or time-averaged turbulent variables, we write

ū = lim
T →∞

1
T

∫ T

0
udt. (1.3)

Reynolds’ idea was to split each property into mean plus fluctuating variables



u(x, y, z, t) = ū(x, y, z) + u
′(x, y, z, t),

v(x, y, z, t) = v̄(x, y, z) + v
′(x, y, z, t),

w(x, y, z, t) = w̄(x, y, z) + w
′(x, y, z, t),

p(x, y, z, t) = p̄(x, y, z) + p
′(x, y, z, t).

We can rewrite equations (3.1, 3.2) for each component after time averaging.

We get, respectively, the continuity equation.

∂ū

∂x
+ ∂v̄

∂x
+ ∂w̄

∂x
= 0, (1.4)
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The momentum equation in x, y, z direction

ū
∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
= −∂p̄

∂x
+ ∂

∂x

(
µ
∂ū

∂x
− ρu′2

)
+

∂

∂y

(
µ
∂ū

∂y
− ρu′v′

)
+ ∂

∂z

(
µ
∂ū

∂z
− ρu′w′

)
,

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
= −∂p̄

∂y
+ ∂

∂x

(
µ
∂v̄

∂x
− ρu′v′

)
+

∂

∂y

(
µ
∂v̄

∂y
− ρv′2

)
+ ∂

∂z

(
µ
∂v̄

∂z
− ρv′w′

)
,

ū
∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
= −∂p̄

∂z
+ ∂

∂x

(
µ
∂w̄

∂x
− ρu′w′

)
+

∂

∂y

(
µ
∂w̄

∂y
− ρv′w′

)
+ ∂

∂z

(
µ
∂w̄

∂z
− ρw′2

)
.

(1.5)

1.4 Law of the Wall

We now consider a fully developed region in which the flow is statistically

stationary, independent of x (apart from the pressure) and y. The velocity

statistics only depend on z. The streamwise (x) and the wall-normal (z)

momentum equation then reduces to ([29])

0 = −∂p̄

∂x
+ d

dz

(
µ
dū

dz
− ρu′w′

)
, (1.6)

0 = −∂p̄

∂z
− d

dz

(
ρw′2

)
. (1.7)

Integrating equation (1.7) we obtain

p(x, z) = −ρw′2 + pw. (1.8)

Inserting in (1.6) and considering the term dρw′2/dz = 0 since the constant

value of the pressure gradient in the wall-normal direction which leads to zero

the first term on the right-hand side of equation (1.7) results in the following.
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0 = −
∫ ∂pw

∂x
dz + d

dz

(
µ
dū

dz
−
∫
ρu′w′

)
dz, (1.9)

0 = −∂pw

∂x
z + µ

dū

dz
− ρu′w′ − τw. (1.10)

In the half-channel (symbol h) the contribution of total stress is zero, leading

to

∂pw

∂x
= −1

h
τw. (1.11)

The two contributions of the total stress decrease linearly along the channel, so

we can write

µ
dū

dz
− ρu′w′ =

(
1 − z

h

)
τw. (1.12)

In what follows, the Prandtl approach [3], has been considered because even if

it turned out to be inaccurate, it maintains a strong physical intuition. Prandtl,

in order to evaluate the turbulent stress, assumed the proportionality of this

with dū/dz through a quantity he called mixing length L

τ = µ
dū

dz
+ ρL2

(
dū

dz

)2
. (1.13)

One can notice that the kinetic energy of the turbulent fluctuation is

absorbed approaching the wall, and as a consequence the mixing length becomes

zero. Prandtl suggested that the simplest way to quantify the mixing length

was therefore the relation L = kz, where k is called the van Karman constant

[4]. He also assumed that the Reynolds stress at the wall is constant and takes

the form

τw = ρk2z2
(
dū

dz

)2
. (1.14)

Manipulating the latter equation, we can write
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dū

dz
=

√
τw/ρ

kz
. (1.15)

Since the term
√
τw/ρ has the dimensions of velocity, it has been called Friction

Velocity uτ . Substituting this term, the equation becomes

dū

uτ

= 1
k

dz

z
. (1.16)

The integral of the previous equation is called Law of the Wall. After the

integration we obtain

ū

uτ

= 1
k
ln(z) + C. (1.17)

where C and k are two experimental constants. It is evident that when

z → 0, ū → −∞. We can define z0 as the distance where ū becomes zero, and

in this way we can evaluate the constant C as

C = −1
k
ln
(
z

z0

)
. (1.18)

Inserting this into equation (1.16) yields

ū

uτ

= 1
k
ln
(
z

z0

)
. (1.19)

Prandtl guessed that z0, which has dimensions of a length, had to be propor-

tional to ν/uτ

zo = β
ν

uτ

. (1.20)

Substituting the relation gives

ū

uτ

= 1
k
ln
(
zuτ

νβ

)
, (1.21)

ū

uτ

= 1
k

[
ln
(
zuτ

ν

)
− ln(β)

]
. (1.22)
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Experimental measurements lead to k = 0.41, β = 0.111. The values for

these constants are universal in wall-bounded turbulence and were derived with

accurate empirical measurements. In this way, the previous equation can be

written as

ū

uτ

= 2.5ln
(
zuτ

ν

)
+ 5.5. (1.23)

The two normalizations of the quantity ū/uτ and zuτ/ν can be respectively

defined as u+, z+. The superscript + indicates the non-dimensional quantity

scaled by the wall variables and takes the name of wall unit.

u+ = 2.5ln(z+) + 5.5. (1.24)

This equation is valid only in the region where the viscous effects are negligible,

approaching the wall we can find deviation from this law, where turbulent

stress decreases to zero.

1.5 Mean Velocity Distribution

Fig. 1.1 Normalized mean streamwise velocity profile u+ = ū/uτ plotted against
the wall-normal coordinate z+ = z uτ/ν for single-phase turbulent channel.
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The near-wall can region be sub-divided into three different areas.

• viscous sub-layer 0 < z+ < 10

• buffer layer 10 < z+ < 30

• log-law region z+ > 30

Viscous shear is dominant near the wall, where the effects of turbulence are

negligible. The opposite situation occurs in the outer region, while in the buffer

layer both effects have importance, as we can see in fig.(1.1). Scaling equation

(1.12) with the wall variables, we obtain the relation

du+

dz+ − u′w′

u2
τ

= 1 − z+

Reτ

. (1.25)

In which Reτ = uτh/ν.

1.6 Root Mean Square velocities

Before approaching the statistics and results of the two-phase problem, it is

useful to recall the canonical statistics of the single-phase turbulent channel

flow. In literature it is customary to use the standard deviation of the velocity

fluctuations, namely the root mean square of the velocities, usually these

quantities are normalized by the wall-shear velocity uτ .

urms =

√√√√ 1
N

N∑
i=1

u
′2
i (1.26)

Figure 1.2 shows how the total shear stress decomposes into viscous and

Reynolds contributions across the channel. Figure 1.3 then presents the root-

mean-square intensities of the three velocity components, highlighting the

viscous sublayer, buffer layer and outer region structure. In Chapter 4 we

will use these trend as reference when evaluating the drag reduction in the

lubricated cases.
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Fig. 1.2 Decomposition of total shear stress in single-phase case. Profiles of
the viscous shear stress τv(z) = µ du/dz (solid line) and the Reynolds shear
stress τt(z) = −ρ u′w′ (dashed line), both normalized by the wall shear stress
τw. The sum τv + τt (thin line) is exactly linear in z, balancing the imposed
pressure gradient.

1.7 Direct Numerical Simulation

The mean equations (1.5) have been derived without any approximations.

However, these contain additional unknowns compared to the previous situation,

namely the Reynold stresses. These quantities take the form of correlations

between fluctuations terms. A system with more unknown than equations is

called unclosed and can not be solved. A possible solution is the derivation of a

second order equation for the evolution of the stresses, but unfortunately such

equation contain new third order terms. Proceeding in this way, the closure is

never achieved, at one point it is necessary to introduce approximation. Several

models have been derived in this view. Direct Numerical Simulation consists on
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Fig. 1.3 Velocity fluctuation intensities in single-phase turbulence. Root-mean-
square profiles of the streamwise (urms), spanwise (vrms) and wall-normal (wrms)
velocity fluctuations, normalized by the friction velocity uτ . Panel above, the
outer coordinate z/h. Panel below, same data in inner units z+ = z uτ/ν,
showing the viscous sublayer (z+ < 10), buffer layer (10 < z+ < 30) and
log-law region (z+ > 30).

solving the Navier-Stokes equations without any added model and represents

the most accurate and conceptually simple approach. Unfortunately, its cost

most of the time is computationally prohibitive.
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1.8 Correlated variables and Intensities

If ui
′uj

′ ̸= 0 the two quantities are said to be correlated, if u′
iu

′
j = 0 they are

uncorrelated. When two fluctuating variables a, b have the same sign most of

the time, this makes ab > 0. A measure of the degree of correlation between

two variables ū′
i and ū

′
j is obtained by dividing u′

iu
′
j by the square root of the

product of the variances; this gives a correlation coefficient, defined as

cij =
u

′
iu

′
j√

ū
′2
i ū

′2
j

. (1.27)

After the mean value one of the most important quantity in statistics of

turbulence is the variance,

σ(x)2 = (x− x̄)2. (1.28)

This measure is an estimate of width of the variations compared to the average.

In turbulence, we use the root mean square of the velocity fluctuation, as its

name suggests it gives an idea of the intensity of the turbulence.

1.9 Capturing Interface methods

Two-phase flows are central to a wide range of natural and industrial processes,

from rain formation and breaking waves to spray atomization and bubbly flows.

This paragraph reports a comprehensive survey of interface-capturing methods

used in two-phase flow simulations of present times [42]. We also discuss

enduring challenges in two-phase flow modeling, highlighting the advantages

and disadvantages of different interface-capturing techniques. We will eventually

need to survey this expanding literature but will only concentrate on methods

known to have been used or currently under development due to limitations in

space. For each category, we go through the category over time, tracking the

important milestones, state-of-the-art, and promising directions. Multiphase

flows encompass a broader spectrum and, not least in including problems
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with two fluid phases, constitute one special sub-discipline of computational

fluid dynamics. This review is restricted to immiscible two-phase flows only.

Theoretical studies of such flows go back to the 19th century (e.g. Plateau,

1873), however, there are only few cases for which the analytical solution is

possible even for the easiest problems. Experimental observations are also

difficult to carry out for two-phase flows because of their complex behavior

[11]. It is obvious that the implementation of numerical approaches that allow

for the representation of the free-surface and its coupling with the momentum

conservation equation still requires the solution of accurate, physically-sound,

low computational-cost equations. Creating such methods is hard because of a

number of challenges, such as:

• Applying conservation of mass, momentum and kinetic energy

• Treating large density jumps or property discontinuities across the inter-

face.

• Works with complex topologies and scale separations.

• Correct implementation of the surface tension forces

Interface-capturing procedures are tied to the momentum equation by the

calculation of local density, viscosity and surface tension forces. We will mainly

compare two different approaches for tracking the interface, a sharp-interface

evaluation, such as the Volume of Fluid and diffuse-interface methods, like the

Phase Field, where the phase is modeled by an indicator function. Surface

tension forces can be applied as stresses or body forces, denoted as integral and

volumetric formulations. A discrete balance of surface tension and pressure

gradient terms is a crucial requirement for two-phase flow solvers. Although

the momentum-conservation property is satisfied by the automatic conservation

provided by an integral formulation, the required balance is hard to attain. On

the other hand, volumetric formulations have been more successful in achieving

this goal and hence have been more prevalent in the literature. The momentum

equations in non-conservative and conservative forms are expressed as:
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∂u
∂t

+ ∇ · (u ⊗ u) = 1
ρ

[
−∇P + ∇ · (µ(∇u + ∇uT )) + FST

]

∂(ρu)
∂t

+ ∇ · (ρu ⊗ u) = −∇P + ∇ · (µ(∇u + ∇uT )) + FST

where FST denotes the surface tension force. Ensuring accurate computation of

the normal vector (n) and curvature (κ) is essential for different surface tension

calculation methods. A common approach involves computing normal vectors

by differentiating a smooth field and obtaining curvatures through divergence

of these normals. In sharp-interface approaches like VOF, height-functions

have been used for more accurate estimation, though their accuracy diminishes

at low resolutions.

The Volume of Fluid Method has been developed for locating and advecting

a fluid interface. This method can be described introducing a Color Function

H(x, t) such that H(x, t) = 1 in the presence of a fluid or H(x, t) = 0. As

the fluid moves due to the velocity flow, the color function is updated by the

advection equation

∂H

∂t
+ u · ∇H = 0. (1.29)

The volume fraction of the Volume of Fluid can be defined as

ϕ(x, t) = 1
V0

∫
V
H(x, t)dV ′, (1.30)

where V0 is the volume of a specific cell.

Geometric VOF methods reconstruct the interface within each computational

cell and then advect it. The Piecewise-Linear Interface Calculation Scheme

(PLIC) [12] is widely used, where the interface is approximated by a line or a

plane:



1.9 Capturing Interface methods 19

n · x + α = 0,

with α chosen to enforce that the cut volume equals Ck. The interface normal

n can be computed using methods like the Youngs’ method or the mixed

Youngs-centered (MYC) method.

Algebraic VOF (AVOF) methods approximate the phase indicator function

H using numerical methods, classifiable into compressive and THINC schemes.

Compressive schemes compute fluxes based on interface orientation, while

THINC schemes assume a hyperbolic-tangent profile for H, providing an accu-

racy comparable to geometric VOF at a lower cost.

Level-set methods initially developed for image processing, were adapted for

two-phase flows by Sussman et al. [13]. The level-set function ϕ(x, t) represents

the signed distance to the interface, evolving according to:

∂ϕ

∂t
+ u · ∇ϕ = 0.

Reinitialization restores the signed-distance property of ϕ, essential for accu-

rate normal and curvature calculations. However, mass conservation remains

a significant challenge, mitigated by various correction methods like hybrid

particle level set (HPLS) [14] and adaptive mesh refinement (AMR) [15].

Conservative Level-set methods. To address the issue of mass conservation

while keeping the advantages, a conservative level-set (CLS) method was

proposed by Olsson Kreiss [16]. The idea is that rather than advecting a

signed distance function, CLS evolves an order-parameter ϕ ∈ [0, 1] with a

diffuse-interface profile

ϕ(x) = 1
2

[
1 + tanh

(
s(x)/(2ε)

)]
,
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where s(x) is the signed distance and ε the interfacial thickness. In each time

step ϕ is first advected in conservative, then reinitialized in pseudo-time via

∂ϕ

∂τ
= ∇·

[
ε∇ϕ − ϕ(1 − ϕ) n

]
,

with n = ∇ϕ/|∇ϕ|. This two–step algorithm exactly conserves the total volume

and allows a straightforward computation of normals and curvature directly

from ϕ.

Phase-field methods modify the transport equation to account for the

physical effects governing thin interfaces. These methods use the Cahn-Hilliard

or Allen-Cahn equations derived from the Ginzburg-Landau-Wilson free energy

functional. The Cahn-Hilliard equation conserves total mass and is more

popular in two-phase flow modeling:

∂ϕ

∂t
+ ∇ · (uϕ) = −∇2

[
ϵ2∇2ϕ−W ′(ϕ)

]
,

where ϕ varies between -1 and 1 representing the two phases. Despite advan-

tages in robustness and stability, phase-field methods often require handling

fourth-order spatial derivatives and suffer from artificial energy dissipation.

Hybrid methods, such as CLSVOF [5] and front-tracking coupled with VOF

[6], aim to combine the strengths of different approaches. CLSVOF, for example,

leverages the accurate normal and curvature calculations of level-sets with the

mass conservation of VOF. These methods, while accurate, face challenges in

parallel scalability and computational cost.

The most significant challenge remains the development of methods that ef-

ficiently conserve mass, momentum, and total energy. VOF and phase-field

methods show the most promise for future research and practical applications.

In addition, standardized benchmarks and test cases to evaluate new methods
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in realistic conditions. Further research into multi-physics aspects, such as

electrostatic and acoustic interactions, is also crucial for advancing the field.





Chapter 2

Literature Review

2.1 Turbulent Drag Reduction

The study of immiscible two-phase flows, especially within confined geometries,

has profound implications in various industrial applications such as petroleum

transport and chemical processing. The paper by Ahmadi et al. [19] delves into

the dynamics of turbulent Poiseuille flow involving viscosity-stratified fluids.

The primary objective is to explain how the varying viscosity ratios between two

immiscible liquid layers affect turbulent drag and flow characteristics within a

rectangular channel. The authors employed Direct Numerical Simulation (DNS)

to investigate the complex interactions between two liquid layers of differing

viscosities. The computational setup consisted of a thin upper layer (fluid 1) and

a thicker lower layer (fluid 2) with a thickness ratio h1/h2 = 1/9. Both fluids

had identical densities, thus negating buoyancy effects, but differing viscosities

with three viscosity ratios λ = ν1/ν2 being examined: λ = 1, λ = 0.875, and

λ = 0.75.

The simulations utilized a Phase Field method, governed by the Cahn-Hilliard

equation, to accurately capture the interface dynamics. The governing equations

included the continuity equation, the Navier-Stokes equations for momentum

conservation, and the Cahn-Hilliard equation for the order parameter ϕ, which

differentiates the two phases. The dimensionless form of the governing equations
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was:

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p̃+ 1
Reτ

∇2u + ∇ ·
[
k(ϕ, λ)(∇u + ∇uT )

]
+ 3

√
8

WeCh
µ∇ϕ,

∂ϕ

∂t
= −u · ∇ϕ+ 1

Pe
∇2µ,

where µ is the chemical potential derived from the free energy functional F (ϕ):

F (ϕ) = f0(ϕ) + 1
2Ch

2|∇ϕ|2,

µ = δF

δϕ
= ϕ3 − ϕ− Ch2∇2ϕ.

Viscosity was modeled as a linear function of ϕ:

ν(ϕ) = ν1
1 + ϕ

2 + ν2
1 − ϕ

2 ,

recast in terms of the viscosity ratio λ:

k(ϕ, λ) = ν2 + ν2(λ− 1)ϕ+ 1
2 .

The order parameter ϕ takes opposite values depending on the phase

considered, typically −1 and 1, while varying between these in the interval.

The simulations were conducted in a computational domain of dimensions

4πh×2πh×2h, discretized with 512×256×257 grid nodes. Periodic boundary

conditions were applied along the streamwise and spanwise directions, with

no-slip conditions at the walls. The time integration employed an implicit

Crank-Nicolson scheme for the diffusive terms and an explicit Adams-Bashforth

scheme for the nonlinear terms. The simulations revealed significant modu-

lation of turbulence as a result of the presence of the liquid-liquid interface.

The volume flow rate, normalized by the single-phase flow rate QSP , increased

with decreasing λ. This was attributed to the reduction in the wall-normal

momentum transport caused by the deformable interface, which converted

the mean kinetic energy into the potential energy. The streamwise velocity
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profile exhibited an inflection point at the interface, indicative of the shear

exerted by the layers. Further analysis of velocity fluctuations showed that

near-wall turbulence was slightly enhanced near the bottom wall but signifi-

cantly suppressed near the top wall. This suppression was more pronounced

for lower λ values, as the lower viscosity of fluid 1 facilitated easier deforma-

tion of the interface. The spanwise vorticity profiles indicated the presence

of counter-rotating rolls at the interface, with their strength diminishing with

lower λ. In their work Ahmadi demonstrated that viscosity stratification in

two-phase channel flows can effectively reduce turbulent drag, primarily by alter-

ing the momentum transport and inducing significant changes in flow dynamics.

In the paper Near Wall Surface Tension Active Interface [28] The authors

developed an earlier study to investigate the resonance suppression of tur-

bulence within a viscosity-stratified two-phase flow, with Direct Numerical

Simulation (DNS) and Phase Field Method (PFM). The paper studies the

behavior of immiscible fluid layers in flow driven by an imposed pressure gra-

dient providing insight into the manner in which changes in viscosity ratios

may affect turbulence and wall shear stress in a rectangular channel. Ahmadi

et al., utilized DNS combined with PFM to examine the interfacial processes

between two immiscible fluid layers. The computational setup is a two-layer

configuration which contains a thin upper layer (fluid 1) and a thicker heavy

lower layer (fluid 2) with a depth thickness ratio h2/h1 = 9. The buoyancy

effects have been removed by setting the densities of the two layers to be the

same, but their viscosity has been differentiated with three viscosity ratiosλ = 1,

λ = 0.875, and λ = 0.75. The simulations were performed in a periodic domain

Lx × Ly × Lz = 4πh× 2πh× 2h grid points as before. No-slip conditions were

implemented at the walls, and streamwise as well as spanwise periodic boundary

conditions were applied. Time integration used an IMEX scheme, blending im-

plicit for the linear terms and explicit for the non-linear terms. The simulation

was initialized from a homogenized single-phase turbulent flow at Reτ = 100
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that gradually morphed into a two-phase regime. The liquid-liquid interface

surprisingly induced some remarkable turbulence modulation, especially close

to the liquid-liquid interface and the top wall. This reduction in wall-shear

stress and turbulence suppression extended beyond the immediate vicinity of

the interface, demonstrating the significant impact that the presence of the

interface had on flow dynamics. They showed that the liquid–liquid interface

has a large impact on the mean flow behavior. They found a remarkable

augmentation in volume flow rate, which is the result of the conversion of

the mean kinetic energy to the ionization energy of a deformed interface and

this is the novelty with respect to their previous work. A particular focus of

the study was the wall shear stress inversions and local recirculation regions

that were generated due to the transmission line and interface dynamics, that

highlighted the intricate oscillations between interface and near-wall turbulence.

In the paper Turbulent Drag Reduction by Compliant Lubricating Layer

by Roccon et al. (2021) [35] the setup considered in the previous studies only

differs for the extension of the ℜtau number, here equal to 300. The authors

focus on a channel configuration characterized by two usual 2 fluid layers driven

by an imposed pressure gradient. The thin lubricating layer is here 0.15h thick

and a thicker main fluid layer 1.85h thick), where h denotes the half-channel

height. The 2 fluids have different viscosities η1 and η2, but same density.

The study employs a Phase Filed Method to model the liquid-liquid interface,

characterized by a uniform surface tension σ. The simulations confirmed again

that drag reduction is deeply influenced by the viscosity ratio λ. The volume

flow rates for both layers (Q1, Q2) increased relative to the single-phase case

(Qsp), indicating the drag reduction mechanism. It is important to notice

that the maximum value for the drag reduction was observed for λ = 1,

corresponding to a complete relaminarization of the lubricating layer, while a

smaller decrease in drag reduction was observed for lower λ values. The total
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shear stress (τtot) in the wall-normal direction z/h was decomposed into viscous

shear stress (τv), turbulent shear stress (τt), and capillary stress (τc):

τtot = ⟨η(z)⟩ 1
Reτ

∂ ⟨ux⟩
∂z

+ ⟨u′
xu

′
z⟩ + 3

√
8Ch
We

〈
∂ϕ

∂x

∂ϕ

∂z

〉
.

In the analysis, it is reported that for λ = 1, the viscous shear stress near the

interface presents a quasi-linear profile, typical of laminar flows. For λ = 0.25,

the turbulent stress was higher, suggesting a strong turbulence in the lubricat-

ing layer. The capillary stress, essential for drag reduction, was significant in

decoupling the main and lubricating layers dynamics, with its effects varying

based on the viscosity ratio. The PDFs of the normalized wall shear stress

fluctuations (τ ′
w) provided further insights into drag reduction mechanisms. For

λ = 1, the PDFs at the top wall were nearly symmetric and peaked around zero,

reflecting reduced shear stress fluctuations and relaminarization. For λ = 0.25,

the PDFs were positively skewed, indicating sustained turbulence and higher

wall shear stress fluctuations. Overall, the study highlighted the critical role

of surface tension along with the viscosity ratio. The research identifies two

distinct DR mechanisms: A surface-tension-driven relaminarization for λ = 1

and a viscosity-driven turbulence reduction for smaller value of λ. The results

revealed the complex interaction between viscous, inertial, and capillary forces.

In the second paper by Roccon et al. (2021) [36] five different viscosity

ratios were considered to capture a wide range of cases from 0.25 to 4. DNS

was performed under the constant power input (CPI) method, which keeps

injecting constant power into the flow and changes the flow rate corresponding

to the local pressure gradients at every moment. Phase Field Method (PFM)

was again employed to describe the liquid-liquid interface dynamics. The

simulations were conducted in a computational domain of 4πh× 2πh× 2h, with

512 × 256 × 257 grid points for single-phase cases and 1024 × 512 × 513 for two-

phase simulations, ensuring high-resolution capture of interface dynamics and

turbulence structures. The study reveals that a significant drag reduction can



28 Literature Review

be achieved for λ ≤ 2.00. Interestingly, drag reduction does not monotonically

correlate with the viscosity ratio. The maximum drag reduction was observed

at λ = 1.00, where the flow rate increased by approximately 13%. This behavior

is attributed to two distinct drag reduction mechanisms identified through

detailed energy budget analysis. For λ = 1.00 and λ = 2.00, drag reduction is

predominantly due to surface tension effects, which act as an elasticity element

separating the two fluids. This decouples wall-normal momentum transfer

mechanisms, suppressing turbulence within the lubricating layer and thus

reducing overall drag. Conversely, for λ < 1.00, turbulence is sustained in the

lubricating layer due to a higher local Reynolds number. In this regime, drag

reduction is primarily due to the lower viscosity of the lubricating fluid, which

directly decreases wall friction. Notably, an upper bound for λ exists beyond

which drag reduction is not observed. At λ = 4.00, a slight drag enhancement

was reported, suggesting that the turbulence suppression in the lubricating layer

could not fully offset the increased friction from the more viscous fluid. The

study meticulously dissects the energy balance within the lubricated channel.

Using the energy-box representation, the authors provide a comprehensive

visualization of energy fluxes. The balances of mean kinetic energy (MKE)

and turbulent kinetic energy (TKE), derived from the Navier-Stokes equations,

elucidate the intricate balance of production, transport, and dissipation of

kinetic energy within the lubricated channel flow. In tensor notation, the MKE

transport equation is expressed as:
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D[MKE]
Dt

= −
[
⟨ui⟩

〈
∂p

∂xi

〉]

+
[〈
u′

iu
′
j

〉 ∂ ⟨ui⟩
∂xj

]

−

∂
(〈
u′

iu
′
j

〉
⟨ui⟩

)
∂xj


+
[

1
2ReΠ

∂2 ⟨ui⟩2

∂x2
j

]

−
[

1
ReΠ

∂ ⟨ui⟩
∂xj

∂ ⟨ui⟩
∂xj

]

Where:

• ⟨·⟩ denotes ensemble averaging.

• ui is the i-th component of the mean velocity.

• u′
i is the i-th component of the fluctuating velocity.

• p is the pressure.

• ReΠ is the power Reynolds number, defined as ReΠ = ρuΠh
η2

.

In which

1. Mean Pressure Gradient Term**: −
[
⟨ui⟩

〈
∂p
∂xi

〉]
= Πm Represents the

power injected into the mean flow by the pressure gradient. This term is

a source term for the MKE, as it injects energy into the system.

2. Production Term:
[〈
u′

iu
′
j

〉
∂⟨ui⟩
∂xj

]
= Pk Represents the transfer of energy

from the mean flow to the turbulent fluctuations. This term acts as a

sink for MKE and a source for TKE.

3. Transport by Reynolds Stresses: −
[

∂(⟨u′
iu

′
j⟩⟨ui⟩)

∂xj

]
= Tm Represents the

redistribution of MKE due to Reynolds stresses. This term does not

contribute to the net energy but redistributes it within the flow.
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4. Viscous Diffusion of MKE:
[

1
2ReΠ

∂2⟨ui⟩2

∂x2
j

]
= Dm Represents the diffusion of

MKE due to viscous effects. This term also acts as an internal transport

mechanism.

5. Dissipation of MKE: −
[

1
ReΠ

∂⟨ui⟩
∂xj

∂⟨ui⟩
∂xj

]
= ϵm Represents the viscous dissi-

pation of MKE. This term is a sink for MKE, converting kinetic energy

into thermal energy.

By integrating the MKE and TKE equations over the wall-normal direction,

we obtain the following balance equations:

P̄k + Π̄m + ϵ̄m = 0,

where P̄k, Π̄m, and ϵ̄m are the integral forms of the production, mean pressure

gradient, and dissipation terms, respectively.

−P̄k + ϵ̄k = 0,

ϵ̄k is the integral form of the TKE dissipation term.

Combining the integral MKE and TKE balance equations, we get the total

kinetic energy balance:

Π̄m + ϵ̄m + ϵ̄k = 0,

indicating that the total power injected into the system is ultimately dissipated

by viscosity through both mean and turbulent viscous dissipation.

The findings underscore the significance of viscosity ratio and surface tension

in modulating turbulence and achieving drag reduction.

2.2 Scale by scale energy budget

Wall-bounded turbulence integrates a complex interplay of processes that has

impacts in both physical space and the space of scales. Marati, Casciola, and
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Piva (2004) [28] explore this intricate phenomenon, focusing on the dual nature

of energy fluxes in turbulent channel flows. Their investigation, grounded in

the generalized Kolmogorov equation, clarifies how energy goes through various

scales and spatial regions within a turbulent flow, particularly in the context

of wall-bounded scenarios. As seen beforehand in these studies, the authors

employ again Direct Numerical Simulation (DNS) to simulate a turbulent

channel flow at a friction Reynolds number Reτ = 180. The computational

domain is configured as (4πh, 2h, 2πh), where h again denotes the channel

half-height. This setup ensures statistical homogeneity in the streamwise (x)

and spanwise (z) directions, while maintaining no-slip conditions at the walls.

The flow is driven by a mean pressure gradient, ensuring a constant mass flux

through the channel. The core of the study revolves around the generalized

Kolmogorov equation, which extends the classical framework to account for

inhomogeneities and anisotropies inherent in wall turbulence. This generalized

form is articulated as:

∂ ⟨δu2δui⟩
∂ri

+ ∂ ⟨δu2δUi⟩
∂ri

+ 2 ⟨δuiδuj⟩
∂δUi

∂rj

+
∂
〈
u∗

jδu
2
〉

∂Xcj

+
∂
〈
δu2U∗

j

〉
∂Xcj

+ 2
〈
u∗

jδui

〉 ∂δUi

∂Xcj

= −4 ⟨ϵ∗⟩ + 2ν ∂
2 ⟨δu2⟩
∂ri∂ri

− 2
ρ

∂ ⟨δpδui⟩
∂Xci

+ ν
∂2 ⟨δu2⟩
∂X2

cj

,

where δui = ui(x + r) − ui(x) denotes the velocity increment, and the as-

terisk denotes a midpoint average. This equation encapsulates the spatial

redistribution and scale-to-scale energy transfer within the turbulent flow. The

investigation reveals that the energy fluxes in wall turbulence exhibit distinct

behaviors across different regions of the flow:

1. Viscous Sublayer: Dominated by viscous effects, the scale-to-scale

transfer of energy is negligible. Instead, local production and dissipation

of turbulent kinetic energy (TKE) dominate the dynamics.
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2. Buffer Layer: Identified as the engine of turbulence, this region sees a

significant imbalance where the production of TKE exceeds dissipation.

The surplus energy cascades through scales, feeding the turbulence in

adjacent regions. The spatial flux of TKE generated in the buffer layer is

crucial in sustaining turbulence throughout the channel.

3. Logarithmic Layer: Here, production and dissipation reach an equi-

librium. The turbulent transport of scale energy, driven primarily by

the mean shear, becomes significant. This layer exhibits classical inertial

scaling behaviors, and the fluxes of scale energy align with the predictions

of the generalized Kolmogorov framework.

4. Core Region: Turbulence in this region is maintained by the spatial

flux of TKE from the buffer layer. The production-to-dissipation ratio

approaches unity, and the energy dynamics are governed by the spatial

redistribution of energy generated nearer to the walls.

The study meticulously details the balance of scale energy fluxes. The general-

ized Kolmogorov equation is employed to derive insights into the mechanisms

of energy production, cascade, and dissipation:

∇r · Φr + ∂Φc

∂Yc

= s(r, Yc),

s(r, Yc) = −2 ⟨δuδv⟩
(
dU

dy

)∗

− 4 ⟨ϵ∗⟩ ,

where Φr denotes the scale-energy flux in the space of scales, and Φc represents

the flux in physical space. The source term s(r, Yc) encapsulates the contri-

butions of the production and dissipation of the scale energy. The analysis

demonstrates that in the log-layer, the balance is predominantly influenced by

production and cascade mechanisms. The effective production Πe(r, Yc) and

effective dissipation Ee(r, Yc) are crucial in describing the energy dynamics:

Πe(r, Yc) = Π(r, Yc) + Tc(r, Yc) − P (r, Yc),
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Ee(r, Yc) = E(r, Yc) +Dr(r, Yc) +Dc(r, Yc).

In the buffer layer, the analysis reveals a marked production of scale energy,

which is redistributed by the turbulent transport component of the spatial flux.

This redistribution is vital in sustaining turbulence across the channel. The

authors provide a comprehensive exploration of energy cascade and spatial fluxes

in wall turbulence, leveraging the generalized Kolmogorov equation to unravel

the complex interplay of scale energy transfers and spatial redistributions. Their

findings emphasize the critical role of the buffer layer as the powerhouse of

turbulence, feeding energy into the system and sustaining turbulent fluctuations

across various scales and regions within the channel. This study not only

reinforces classical turbulence theories but also offers new insights into the

behaviors of wall-bounded turbulent flows.





Chapter 3

Methodology

We consider a configuration with two immiscible fluids in a plane channel.

The non-dimensional Navier-Stokes equations for two phase incompressible

Newtonian fluids can be written as

∇ · u = 0, (3.1)

∂u
∂t

+ u · ∇u = −∇p+ 1
Re

∇ · T + 1
We

fσ (3.2)

where u = ū(x) + u′(x, t) is the velocity field, divided into a mean component

and a fluctuation term (marked with the apex ′). Since we are considering a

fully developed turbulent flow, for our purposes the mean velocity field here is

the average over time, streamwise and spanwise directions. We will assume the

following notation for the components of the velocity field

u(x, t) =


u(x, t)

v(x, t)

w(x, t)

 . (3.3)

The other quantities in eq.3.2 are p = p(x, t) which represents the pressure,

ρ = ρ(x, t) the density, µ = µ(x, t) the dynamic viscosity, fσ = fσ(x, t) the force

per unit volume due to surface tension. T = 2µS is the viscous stress tensor,
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where S = [∇u + ∇uT ]/2 is the strain-rate tensor. Re and We are respectively

the Reynolds number and the Weber number, defined as

Re = Ũ L̃ρ̃

µ̃
, We = ρ̃Ũ2h

σ̃
, (3.4)

Where Ũ , L̃, ρ̃, µ̃, σ̃, are the reference quantities used to obtain the non-

dimensional governing equations. In order we have velocity, length, density,

dynamic viscosity, surface tension.

3.1 Volume Of Fluid

As introduced in Chapter 1, the Volume of Fluid (VOF) method is a widely

used interface-capturing technique for two-phase flows. Here, we provide a

detailed description of its implementation in our simulations, focusing on the

specific numerical techniques and setup that enabled our investigation.

Multiphase flows, particularly those undergoing phase change, present them-

selves in both an environmental and economic context. Cloud formation and

rain, filled cooling towers, wet scrubbers and spray combustion all involve the in-

teraction of numerous phases, exchanging mass/momentum/energy dynamically

through interfaces as they develop.The interfaces in such systems are typically

orders of magnitude thinner than other scales in the problem. One must use

a sophisticated modeling approach, which treats them as infinitesimally thin

layers and which reduces interphase coupling conditions down to transport

balances and thermodynamic relationships. Despite such simplifications, direct

numerical simulations (DNS) that explicitly resolve interfaces are still a compu-

tational burden. Interface-resolved simulations fall into two general methods:

interface-tracking and interface-capturing. In interface-tracking methods such

as front-tracking, the interface is explicitly defined by Lagrange markers, which

move with the flow but while visualising interfaces accurately, these methods

struggle with complex topological changes. Interface-capturing methods, on the
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other hand, use methods such as level-set, volume-of-fluid (VoF) and diffuse

interface methods, in these methods the interface is represented implicitly by

solving transport equations for scalar field (s) that define where the interface

happens. These methods have a more natural handling of topological changes,

but can be less accurate in terms of calculating such interface properties as

curvature or normals. In this context Scapin et al. [21] present a volume-of-fluid

method for interface-resolved simulations of two-fluid flows. The method pro-

posed is included in a highly efficient FFT-based two-fluid Navier-Stokes solver

and uses algebraic VoF techniques for interface representation. The solver and

method are extended to allow consideration of thermal energy and vaporized

liquid mass transport. A novel approach to interface velocity computation

provides accurate mass conservation, applicable to both algebraic and geomet-

rical VoF methods. The method is rigorously verified and validated against

several benchmarks, with good mass conservation and overall performance,

which demonstrates its excellence.

The force per unit volume due to surface tension is defined as

fσ = σknδ, (3.5)

where k the curvature of the interface, n the normal vector, δ the Dirac function.

This latter can be approximated by ∇ϕ, in which ϕ is the Volume of Fluid

(VOF) fraction across the interface. In particular ϕ = 0 in fluid 1, while ϕ = 1

in fluid 2 and 0 < ϕ < 1 at the interface.

Following the general VOF framework outlined in Chapter 1, we employ

the MTHINC (multidimensional tangent of hyperbola for interface capturing)

method for the interface reconstruction [30, 23], which approximates the color

function H(x) using a multidimensional hyperbolic tangent profile given by the

function

H(x) ≈ H̃(x) = 1
2(1 + tanh(β(P (x)) + d), (3.6)
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in which x ∈ [0, 1] is a local coordinate system in each cell, β is a constant

parameter that represents the slope of the approximate Heaviside function, d a

normalization parameter and P (x) a linear or quadratic surface function. The

linear expression is given as

P (xj) = ajxj, (3.7)

where the coefficients aj can be algebraically determined by imposing the

components of the normal values and the curvature tensor for P . The parameter

d can be obtained through the constraint

∫
x∈(0,1)

H̃(x)dx = ϕ. (3.8)

Once the normal vector defined as n = ∇ϕ/∥∇ϕ∥ is known, the curvature k is

given by ∂ni/∂xi. Approximating the interface location δ ≈ ∥∇ϕ∥, the surface

tension force can be written as

fjσ = σknjδ ≈ σk
∂ϕ

∂xj

. (3.9)

It has been proved that in most cases VOF results are more accurate compared

to the Phase field at the same resolution [31]. The computational cost of the

Diffusive Interface is instead typically of an order of magnitude less than VOF

at the same resolution.

3.2 Incompressible Two-Fluid Flow Solver

For accurate simulations in the context of incompressible two fluid flow, a pre-

cision at the highest possible level in both space and time is necessary. Unique

challenges need to be addressed when dealing with strong discontinuities of

the interface, such as in scenarios where the density ratio differs between the

fluids for several order of magnitude (as in the air-water system, where the

ratio is 1000). These kinds of discontinuity invalidate simplified methods, like
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the Boussinesq approximation and need to be directly addressed.

The main issue when approaching this kind of problem is mainly computa-

tional cost and efficiency. The Volume of Fluid (VOF) method, discussed in

the section above, is often associated with the projection method when solving

an incompressible fluid dynamic problems. This latter works by decoupling

the velocity field from the pressure field, which is crucial when dealing with

interface instabilities because it provides the flexibility to handle large variations

in pressure and velocity across the interface without including the instability

into the solution. Following then an iterative process ensures the convergence

to a stable solution, reducing the error while maintaining the incompressibility

constraint. One goal required in practical applications is often the second order

accuracy and stability.

Many numerical methods have been developed for this purpose, among

those one of the most prevalent techniques is the pressure-correction method,

which requires the numerical solution of a Poisson equation for pressure at each

time step. In particular, this method developed in 1986 by Jos J. van Kan

[37] results second-order accurate in time and space. The advanced van Kan

method solves the Navier-Stokes equations for incompressible viscous flow using

a Crank-Nicolson type scheme for the prediction step. The projection method

is a particular type of pressure-correction method where the incompressibility

condition required is achieved by first predicting the velocity field without

considering the pressure and then correcting this term through the solution of

the Poisson equation for the pressure. This technique has been widely adopted

and represents a standard due to its reliability and robustness displayed in

a vast range of fluid dynamics applications. The key aspects of this scheme

are presented here. Solving a fluid dynamic incompressible problem with this

approach typically involves the following steps:
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• Discretization. To reduce the computational domain to a discrete space

(grid points). The Navier-Stokes and Continuity equations are then solved

in the discretized domain.

• Prediction Step. Solving the momentum equation for the velocity field

(u∗) without taking into account the pressure gradient.

u∗ − un

∆t = −(un · ∇)un + ν∇2un + fn,

where un is the velocity at the previous time step, ν is the kinematic

viscosity, and fn represents external forces.

• Pressure Poisson Equation. The Pressure Poisson equation is formulated

to guarantee a divergence-free velocity field.

∇2pn+1 = 1
∆t∇ · u∗.

• Solving the Possion Equation. The main advantage of Van Kan’s strategy

is the reduction of the Poisson equation to a one-dimensional problem

that can be solved sequentially. This technique increases not only the

stability but also the efficiency, due to the lower complexity. The Fast

Fourier Transform (FFT) transforms the spatial domain into a frequency

domain allowing a significant increase of the speed process. This approach

is highly beneficial, in particular, with large-scale problems reducing the

computational effort required for solving the equation.

• Correction Step: Correct the velocity term with the computed pressure.

un+1 = u∗ − ∆t∇pn+1.

This ensures the velocity field is divergence-free:

∇ · un+1 = 0.
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This approach has been largely validated in both laminar and turbulent scenarios

and has proven its potential in handling a high Reynolds number and complex

geometry. In the context of the Van Kan pressure correction scheme, another

key component is the calculation of quantities on staggered grids, in contrast

to the collocated grid, where all variables are calculated at the same location.

There is no necessity, from a theoretical point of view, to allocate all variables

in the same place. In contrast, the staggered arrangement introduced in 1965 by

Harlow and Welsh [38] leads to a number of advantages. The main advantage

with this layout is the strong decouple connection between the velocities and the

pressure to avoid the convergence problem and spurious pressure oscillations.

In this work we did not need to study the mesh convergence as we relied on

the same grid validated in the paper related to the code developed by KTH

Royal Institute of Technology in Stockholm used to perform all the simulations

[21]. In their paper, the authors employ a uniform Cartesian mesh with a

staggered layout. The second order accuracy in space was demonstrated by

the central difference discretization while the second order accuracy in time

via Crank–Nicolson for diffusion and Adams–Bashforth for advection. Because

the convergence of the uniform staggered grid had already been established,

we had the possibility to focus on the physics that underpin the phenomenon

of the Drag Reduction with the novel approach of the VOF method.

3.3 Simulations set-up

For all simulations, the flow is periodic in the streamwise x and spanwise y di-

rections, with no-slip conditions in the normal direction z and is driven by a con-

stant pressure gradient. The channel dimensions are Lx×Ly ×Lz = 8h×4h×2h,

with h the half-channel height, the grid we used is Nx×Ny×Nz = 384×192×284.

The reference position of the interface is located at 1.85h, which separates a

lubricating layer of fluid with kinematic viscosity ν1 from a thicker main layer
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Fig. 3.1 Sketch of the computational domain of the channel.

of fluid with kinematic viscosity ν2. The two fluids have the same density.

One of the goals of the present work is to investigate the role of the inter-

face along with the viscosity ratio in the mechanism that produces the drag

reduction. Starting with a single phase flow, all simulations are performed

with an initial Poiseuille profile perturbed by a finite amplitude disturbance.

The film is added once the statistically steady state condition is reached. In

two fluid flows, the value of the surface tension characterizes the behavior of

the interface. In our simulations the variations in surface tension appear in

terms of a Weber number (eq.3.4), which represents a ratio between deforming

inertial forces and cohesive forces, namely the surface tension force. In this

way for high values of We we get more easily deformable interfaces, while

for low We more stable interfaces. All our simulations are run at a shear

Reynolds number Reτ = uτh/ν2 = 100, where, as customary (see the definition

from eq.1.15), uτ =
√
τ/ρ (with

√
τ being the wall shear stress) is the friction

velocity and ν = µ2/ρ2 is the kinematic viscosity of the fluid in the thicker layer.

Unless otherwise stated, we have used as friction units those obtained

considering the value of the wall shear stress calculated as the average between

the two walls. This procedure has the effect that the normalization is the

same for all the simulations regardless of the fact that locally at each of the
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two walls the viscous units would be different. In order to better investigate

the dynamic of the interface for the case λ = 1 we investigate two cases with

different Weber number, We = 0.055 and We = 0.5. The amount of data

considered for the statistics is selected to ensure the statistical convergence.

For the simulation has been run the open source code developed by KTH

Royal Institute of Technology in Stockholm [21]. During our analysis, we refer

for comparison to the aforementioned work by Ahmadi et al. [19, 28], which

reports results of a turbulent channel flow with a lubricating film on one wall.

It is worth pointing out that the parameters explored in their study are slightly

different and we will address the implications further on.





Chapter 4

Results

This chapter highlights the main findings of this thesis. In particular, it

builds up and extends the results already published in our paper and adds

the preliminary developments on the two-points scale energy budget. The

latter provides a meaningful insight on the dynamic of turbulence through

the extension of the Kolmogorov equation to inhomogeneous and anisotropic

conditions. We begin by presenting the classic statistics of single turbulent

channel flow, extended to our two-phase problem reporting as a reference

the single-phase case. These statistics include the discussion on the mean

streamwise velocity, which represents the most straightford visualisation prove

of the drag reduction as well as the volume flow rate, which is shown to increase

in all studied cases with respect to the single phase. We then examine other

statistics already introduced in the first chapter, such as the analysis of the

root-mean square (RMS) velocity fluctuations, which provides insight into

the turbulence intensity distribution along the wall normal direction and the

profiles of the viscous shear stress. Root-mean square vorticity fluctuations

are also taken into account to investigate the dynamic behavior of the vortices

and their impact on the flow, particularly in the region near the interface. To

gain a further understanding of the effects of turbulence around this region,

the probability density functions (PDF) of the normalized Wall-Shear stress

fluctuations and the interface elevation are also included along with their Joint
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Fig. 4.1 Cross-section (y − z) of the instantaneous streamwise velocity u. In
the top left panel the case with λ = 0.5. Top right panel refers to the case
with λ = 1. Bottom panel the case λ = 1, We = 0.5. The white line marks the
position of the interface.

Probability Density Function (JPDF). The final part of the statistical analysis

explores the contribution to the drag reduction of the energy budgets.

4.1 Results and Discussion

In Fig.4.1 we report the contours of the streamwise velocity u in a cross-section

of the channel for the three cases with the lubricating layer together with the

position of the interface identified with a white line. The top left panel shows

the case with λ = 0.5 while the right and bottom panels refer to the case

with λ = 1. Already at first glance, the analysis of the top left panel seems

to suggest that in the lubricating layer we have a laminar behaviour with no

evidence of turbulence. This can be related to the DR mechanism that damping

the turbulent fluctuations produces a relaminarization of the layer. When the

viscosity for the two fluids is the same in the case with We = 0.055 (Fig.4.1,

top right panel) we can still appreciate how the presence of an interface affects

the dynamics near the lubricated wall. Considering the case with We = 0.5
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we can notice a slight increase of turbulence compared to the previous case

probably induced by a larger deformation of the interface. We continue the

analysis reporting the wall normal behavior of the mean streamwise velocity

profile (Fig.4.2). The first thing that we notice for all studied cases is that

the presence of the lubricating layer produces an asymmetric velocity profile.

When considering simulations with constant pressure gradient, this is balanced

by the viscous shear stress at the walls. By observing that the gradient in the

non-lubricated wall increases for both λ values we expect that the value of the

shear stress should in both cases decreased at the other wall (see also Fig.4.4).

What we see is that for the case with the lower viscosity at the lubricated wall

(λ = 0.5) this is compatible with an increase of the velocity in the region close

to the lubricated layer, while for the case when the viscosities are the same

(λ = 1) this has to come with a smaller velocity gradient at the wall. The case

with We = 0.5 is not reported here because basically identical to the other

case with λ = 1.

In Table 4.1 we show the behavior of the total volume flow rate Q of the

two layers and the wall shear stress τw at both walls taking the Single Phase

value as a reference. As a consequence of the presence of the interface there is

a gain of the volume flow rate. This increase reaches its maximum (≃ 22%)

for λ = 0.5. When the viscosity of the two fluids is the same, the increase of

the volume flow rate (≃ 7%) for lower Weber, while for We = 0.5 is slightely
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Fig. 4.2 Normalized mean streamwise velocity u+ as a function of the wall-
normal direction for all the simulated cases. The dotted line at z = 1.85 marks
the mean interface position.
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Table 4.1 Volume flow rate Q/QSP normalized by the reference Single Phase
along with the wall shear stress for the different cases (SinglePhase(SP ),
λ = 1, λ = 0.5 ) at the bottom wall (τw,b) and top wall (τw,t).

Case Q/QSP τw,b/τSP τw,t/τSP

SP 1 1 1
λ = 1,We = 0.055 1.074 1.165 0.824
λ = 1,We = 0.5 1.083 1.194 0.816
λ = 0.5,We = 0.055 1.223 1.392 0.580

higher (≃ 8%). This suggests that the drag reduction is already in place, so

that the mechanism stems from the presence of the interface. Compared to the

work of Ahmadi et al. ([19]), we do not observe here any inflection point close

to the interface.
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Fig. 4.3 Root-mean square velocity fluctuations for single phase and viscosity
stratified flows along the z axis. Streamwise component urms left panel above,
spanwise component vrms right panel above, wall-normal component wrms

bottom panel. The dotted line at z = 1.85 marks the mean interface position.
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To better understand the connection between the dynamic of turbulence

and the viscosity, we analyse the root mean square (RMS) velocities in the

homogeneous and wall normal directions. The velocity fluctuation intensities

can provide an idea of the structure of turbulence. We start by examining the

streamwise velocity fluctuations, urms, in the top left panel in Fig.4.3. The

profile of the SP presents its maximum close to the walls and is symmetrical

to the center line, as expected when the statistics has reached the steady

state. Fluctuations are higher at the vicinity of the walls, where the velocity

gradients are larger. The behavior at the non lubricated wall does not change

remarkably varying the parameters, in particular we can see that values in

that region increase as λ decreases as we expected from the observation of

the mean velocity. On the other hand the behavior at the lubricated wall

is very different. Regardless the viscosity, we observe a strong reduction of

turbulence. We can therefore confirm that relaminarization is taking place in

this region. This process intensifies as λ decreases. It is worth noting that the

urms profile does not show the presence of the interface when the two fluids have

the same viscosity, on the hand we observe an inflection point when viscosity

changes across the interface. We present the values of the spanwise component

vrms in the right panel of Fig.4.3. As for the streamwise one, the fluctuations

are minimal when the value of the viscosity in the lubricating layer is halved.

Regarding the cases at λ = 1, we see that the fluctuating component overcomes

that of the single phase at the lubricated wall for the smaller Weber number.

The behaviour of the wall-normal component wrms (bottom panel of Fig.4.3) is

again qualitatively close to that of the spanwise one, with larger fluctuations for

the case with λ = 1, We = 0.055. It worth observing that in this component

we do have an inflection point when the Weber number is small suggesting

that a larger surface tension might be responsible for this behaviour. These

results differ widely from the ones obtained by Ahmadi et al.[19], where a local

minimum close to the reference location of the interface is observed in most of
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the components.
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Fig. 4.4 Profile of the viscous shear stress τ+
v in the left panel. Turbulent shear

stress τ+
t and the two contributions together τ+

v + τ+
t , respectively continuous

and dashed line on the right panel. The dotted line at z/h = 1.85 marks the
mean interface position.

To gain further understanding on the observed DR, we start looking at

the contributions to the shear stress. In Fig.4.4 top panel we can see the

trend of the viscous shear stress. At the not-lubricated wall layer, profiles have

qualitatively the same trend of the SP case, with larger values of the shear as

expected from the behaviour of the mean velocity, Fig. 4.2. As λ decreases, the

decrease of the shear stress at the lubricated wall produces an equal increase

at the non lubricated wall due to the fact that the the total shear stress must

balance with the applied pressure gradient, which in all our simulations has a

constant value. It is interesting to note that for λ = 0.5 in the low viscosity

layer we can observe a basically linear profile, typical of laminar fluids. This is

an evidence that of a relaminarization effect. We can now extend the analysis to

the other stress contributions. In general, the total stress in two-phase flows is

given by the sum of three contributions, the viscous shear stress, the turbulent

stress and a further contribution produced by the surface tension. We display

in the bottom panel of the Fig.4.4 the turbulent stress profile along with the

sum of this with the viscous term for the different cases examined,

τ+
v (z) + τ+

t (z) = ν+(z)∂ū
+

∂z+ − (u′w′)+. (4.1)
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In a fully developed turbulent channel flow, the integral of the momentum

equation with respect to the wall normal direction, produces a linear relation

between the constant pressure gradient and the total shear stress. It is therefore

possible to estimate the contribution of the capillary stress as a difference from

the other two. The deviation form this straight line then gives us a measure of

the magnitude of this quantity. We can accordingly infer from Fig.4.4 that this

contribution in our numerical results is basically negligible. The variation of

the Weber number does not produce here any significant change of the trend

at λ = 1, so for simplicity we decided not to report the relative profile. It

is important to mention that this behaviour is again different from the one

reported in Ahmadi et al. ([19]), leading us to conclude that in our case even if

we observe a similar effect in terms of Drag Reduction we cannot directly link

the observed changes to the presence of strong capillary stress contribution in

the mean momentum.

We continue our analysis taking into account the vorticity field which is

defined as ω = ∇ × u. In particular we will analyse the wall normal behaviors

of the fluctuating components along homogeneous and wall-normal directions

defined as

ω′
rms =


∂w′

∂y
− ∂v′

∂z

∂u′

∂z
− ∂w′

∂x

∂v′

∂x
− ∂u′

∂y

 . (4.2)

In Fig.4.5 we report the rms vorticity profiles. For the single phase all pro-

files are again symmetric to the centreline of the channel as they are supposed

to be when the flow has reached the statistically steady state. We see again

that the symmetry is lost by introducing the lubricated layer due to the change

of the dynamic behaviour of the flow. As for the turbulent fluctuations, at the

not-lubricated wall, we see that the amplitudes of the vorticity fluctuations

exhibit larger values, compatibly with larger shear at the wall. At the lubricated
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Fig. 4.5 Root-mean square vorticity fluctuations for all the simulated cases
along the normal axis. Streamwise component ω′

x left panel above, spanwise
component ω′

y right panel, wall-normal component ω′
z below. The dotted line

at z = 1.85 marks the mean interface position.

wall, the homogeneous components of the vorticity, ω′
x,rms and ω′

y,rms, can be

described in a similar terms. An effect of the interface is clearly observable.

In particular, for the two cases with the larger value of the Weber number,

we can observe that at the interface the behavior of the fluctuations recalls

somehow the one at the wall in the non lubricated case. This occurrence is

particularly true for the case at λ = 0.5, reported with the dash-dotted curves

in Fig.4.5. Indeed the top left panel, showing the streamwise component we

observe a local maximum at z/h = 1.7 followed by a local minimum. On the

other hand, in the right panel the ω′
y,rms just before the interface shows an

inflection point followed by an increase at interface location. A much smoother

behaviour of the curves is indeed observed for the larger Weber number. Finally,

in the lubricating layer for z/h > 1.85, the dynamics of the fluctuations in the

homogeneous directions show basically the same behavior. Starting from the

value of the fluctuations at the interface location, we can appreciate a sharp



4.2 Probability density functions 53

drop followed by a recovery at the wall. Those extrema represent vortices with

opposite sign and their location corresponds to the location of the centre of

the vortices [34].

Generally speaking, the presence of the interface (the dotted line in the

figure) seems to decouples the dynamics of the vorticity between the two layers.

This observation seems to apply specially to the cases with the smaller value

of the Weber number, where the larger value of the surface tension inhibits

large excursions of the interface The wall-normal component of the vorticity,

ω′
z,rms, instead is not influenced by the presence of the interface as much as the

other components arguably because associated to wall-parallel motions which

are less affected by the surface tension forces for limited interface deformations.

Only the case with λ = 0.5 shows at the top wall an inflection point near the

interface.
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Fig. 4.6 Probability Density Function (PDF) of the normalized Wall-Shear
stress fluctuations τ ′

w = (τw −τw)/τw for all cases. Profiles at the non lubricated
wall are on left panel, while the the right panel refers to the lubricated wall.

4.2 Probability density functions

To understand the dynamics of the flow in the presence of the interface we

computed the Probability Density Function (PDF) of the shear stress at both

walls. In fig.4.6 we show in semi-logarithmic scale the PDF of the wall shear

stress fluctuations τ ′
w defined as
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τ
′

w = τw − τw

τw

(4.3)

where τw is the mean value calculated at the wall we are considering.

At the non lubricated wall all profiles are asymmetrical with a larger ratio

of positive values that implies a higher probability occurrence of positive fluc-

tuations. In general, we notice that the shape of the PDF for the two-phase

flow do not significantly differ from the single-phase case, this means that the

presence of the interface does not affect the dynamic near the opposite wall.

We only appreciate a slightly different behavior of the tails of the PDFs. The

increase probability of larger fluctuations can be traced back to the mean shear

stress at the wall as discussed in the previous paragraph. At the lubricated

wall the PDFs are instead drastically different from those of the single-phase

case. While the latter is statistically identical to the non lubricated wall, the

shape shows substantial differences as λ and We change [19]. In the case

when the two fluids have the same viscosity and We = 0.055 the profile is

shifted towards negative values. In particular when τ
′
w < −1, the change of

sign with respect to the average, suggests the presence of reverse recirculation

areas in which τw locally changes sign. It is interesting to notice that this

large negative fluctuations disappear in the case in which the We number is

higher, namely We = 0.5. Notwithstanding this observation the presence of

positive fluctuations seem to suggests that the turbulence activity is still in

place compared to the case with lower viscosity ratio. In fact, as λ decreases

we see that the curve is confined around the value τw = 0. The reduction of the

shear stress fluctuations confirms the presence of a relaminarization mechanism.

We compare in Fig.4.7 the PDF of the interface elevation η for the different

cases, taking into account the effects of the viscosity ratio and the Weber

number. For all the cases the PDF of the interface is nearly symmetric around

the value z/h = 1.85, namely the reference position of the interface. The effect
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of the Weber number is consistent with the expectations. When We = 0.055

the the PDF is slightly taller and narrower close to the most probable value. A

lower surface tension instead, allows a more deformable interface, so the PDF

widens for the case We=0.5, see also the instantaneous position in Fig. 4.1.

Decreasing the viscosity ratio to λ = 0.5 with We = 0.055 instead the shape of

the pdf is sharper and constrained around the average position of the interface

where it takes its maximum vale. This behavior occurs as a consequence of the

turbulence reduction when decreases the viscosity ratio.

To better investigate the correlation between the interface deformation and

the shear stress we show in fig. 4.8 the Joint Probability Density Functions

(JPDF) between the normalized interface elevation η+ = uτ (η − η)/ν and the

normalized wall-shear stress fluctuations τ ′
w = (τw − τ)/τ for λ = 1 and the

two values of the Weber number under consideration. The contour plot of the

two-dimensional JPDF are shown only for the lubricated wall. We observe that

the different value of the Weber number has a strong effect on the structure of

the correlation. For the case with We=0.055 there is an anti-correlation between

the shear and the interface deformation mostly when the η+ takes positive
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Fig. 4.7 Probability Density Function (PDF) of the interface elevation η/h at
λ = 1 with two different Weber number (We = 0.055, We=0.5) and λ = 0.5
with We = 0.055 using a logarithmic scaling. The dotted line at z = 1.85
marks the reference interface position.
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values. This means that crests of the interface elevation are correlated with

negative fluctuations of the wall shear stress. This behaviour is in agreement

with the work of Ahmadi et al. ([19]) who report a strong correlation between

the crests of the interface and the shear stress inversion. The situation changes

completely when We = 0.5 where, consistently with the PDF of the wall shear

stress fluctuations at the lubricated wall in fig.4.6, the range of the wall shear

stress fluctuations is narrowed. Interestingly, in this case we do not see any

flow recirculation (τ ′
w < −1) associated with the interface deformation and

this instance is happening in this case when the larger excursion around the

mean position due to the lower surface tension should enhance the geometrical

situation described in Ahmadi et al. ([19]).
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Fig. 4.8 Joint Probability Density Function (JPDF) of the normalized Wall-
Shear stress fluctuations τ ′

w = (τw − τ)/τ over the interface elevation η+ in
viscous units for increasing Weber number at λ = 1.

4.3 Turbulent kinetic energy budgets

Lastly, we examine the Turbulent Kinetic Energy (TKE) budget. The equation

of the TKE for the two-fluid case, considering the symmetries of the channel

flow at statistically steady state, can be written as
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−u′w′du

dz
= −1

2
d

dz
u′

iu
′
iw

′ + d

dz
u′

iT
′
i3 (4.4)

−1
ρ

d

dz
p′w′ − ϵ+ ψσ.

In the equation above we have production on the left-hand side and turbulent

convection, viscous diffusion, pressure transport, dissipation ϵ = T ′
ij

∂
∂xj
u′

i and

the contribution due to the surface tension ψσ = 1
W e
u′

jf
′
σ,j on the right-hand

side.

1.5 2
z/h

-0.1

0

0.1

T
K

E

Production
Turbulent Convenction
Viscous Diffusion
Dissipation

Presssure Transport

Surface Tension

 λ = 1

1.5 2
z/h

-0.1

0

0.1

T
K

E

Production
Turbulent Convection
Viscous Diffusion
Dissipation

Pressure Transport

Surface Tension

We=0.5

1.5
z/h

0

T
K

E

Production
Turbulent Convection
Viscous Diffusion
Dissipation

Pressure Transport

Surface Tension

λ = 0.5

Fig. 4.9 Profiles of the contributions to the TKE budget near the lubricated
wall region for the cases λ = 1 (top left We = 0.0055 and right panel We = 0.5,
respectively) and for λ = 0.5 bottom panel.

Profiles of the various component of the TKE budget for the three simulations

are reported in Fig.4.9. The contributions at the non lubricated wall normalized

considering the friction velocity related to the thicker fluid does not present

any significant deviation from the standard well known trends for the single
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phase turbulent channel flow, for this reason we did not report the plots of

those profiles. In Fig. 4.9 we report instead the various terms of the equation

(4.4) close to the lubricated wall normalized by u4
τ/ν. We start analyzing the

cases where two fluids have equal viscosity i.e. λ = 1 (top right and left panels

of Fig.4.9). Similarly to classical turbulent channel flow, in the bulk only

dissipation and production present a significant contribution to the balance.

Approaching the interface for increasing values of the wall-normal direction,

production starts to decrease. In both cases (but also for the lower viscosity

case that we will discuss later) the peak of the production has been moved far

away from the lubricated wall, suggesting that the turbulence is sustained by

fluctuations occurring in the non lubricating layer but close to the interface.

This observation is in agreement with the dynamics of vorticity discussed in

Fig.4.5. As expected, in correspondence of the maximum of production we

observe negative values of convection, diffusion and pressure terms which are

related with the redistribution of the turbulence kinetic energy via these three

processes starting from the production layer.

Looking at the surface tension term we observe that its value is substantially

negative, reaching its lowest value in the vicinity of the interface. This result

suggests that the effect of the interface in energetic terms is that of a sink.

Comparing the two results at λ = 1 we can try to infer the role of the interface

dynamics. Our results suggest that even if in the case with larger We the

interface excursion is larger, its explicit dynamic role is mostly controlled by

the surface tension that is one order of magnitude larger for the case shown in

the top left panel of Fig. 4.9. It is worth mentioning that even if, according to

our data, the magnitude of the contribution of the surface tension on the TKE

budget is very small compared to the previous study by Zonta et al. ([42]), we

still observe the same overall effect in terms of Drag Reduction. Continuing

our analysis of the various terms in the lubricating layer we report that the

most of the terms become not relevant, with the exception of the pressure term
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which presents a larger peak for the case at We = 0.0055.

We conclude our analysis of the turbulent kinetic energy budget looking

at the case with λ = 0.5 in the bottom panel of Fig. 4.9. As mentioned

before, also in this case we observe a peak of the turbulent production in the

proximity of the interface in the side far from the wall. However its numerical

value is nearly halved with respect to the previous cases, consistently with the

observation that a nearly complete relaminarization is occurring for this case.

On the other hand, examining the term due to the surface tension we see that

the value of this contribution is lower than that shown for the case without

viscosity difference at the same Weber. In line with the previous discussion,

it is possible to explain this result considering that the forces due to surface

tension are also modulated by the deformation that we expect smaller in this

case because of the absence of turbulence.

4.4 Single point scale energy budget

To understand the dynamic of turbulence is necessary to look into the processes

that involves the transfer of energy across the various length scales of eddies

[26]. An eddy is conceived to be a turbulent motion localized within a region

of size L. Turbulence can be considered to be composed by eddies of different

sizes. Largest eddies created by instabilities in the mean flow break-up and

evolve into smaller vortices. There is a continuous cascade of energy from large

scale down to the small. Wall-bounded turbulent flows are characterized by a

mean velocity gradient which produces a strong inhomogeneity in the energy

flux in the wall normal direction [26]. In this study has been considered a

channel with dimensions Lx ×Ly ×Lz = 8h× 4h× 2h, with h the half-channel

height (see fig.3.1). The computational domain is composed by Nx ×Ny ×Nz =

304 × 200 × 352 points. The flow is periodic in the streamwise x and spanwise y

directions, with no-slip conditions in the normal direction z and it is driven by
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a constant pressure gradient. The velocity field is, as customary, decomposed

into a mean and a fluctuating component,

u = u(x) + u′(x, t) (4.5)

The first tool to investigate the dynamic of the channel is given by the analysis

of the Turbulent Kinetic Energy (TKE) budget described by the following

equation,
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Fig. 4.10 Budget of turbulent kinetic energy (TKE) vs. wall-normal position
z+ in the single-phase channel at Reτ = 100. Curves show: (1) production
P (z+), (2) turbulent transport T (z+), (3) viscous diffusion D(z+), (4) pressure
transport Π(z+), and (5) dissipation ε(z+). All terms are normalized by u4

τ/h.
Note how production peaks in the buffer layer (5 < z+ < 30) and is balanced
by dissipation in the log layer (z+ > 30), with viscous diffusion dominating
very near the wall (z+ < 5).
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2
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dz2u
′
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′
i − 1

ρ

d

dz
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where respectively we have production, turbulent convection, viscous diffusion,

pressure transport, pseudo-dissipation ϵ = ν∂u′
i/∂xj∂u

′
i/∂xj.

The above equation can be written in terms of the turbulent kinetic energy

q = u′
iu

′
i/2,
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dϕ

dz
= −u′w′du

dz
− ϵ, (4.7)

where has been introduced the spatial flux ϕ = qw′ + p′w′/ρ − νdq/dz. The

divergence of the flux balances with production and pseudo-dissipation [27].

The terms in the equation 4.7 allow for the identification of different regions

in the flow. The first one close to the wall, dominated by dissipation, is

normally referred to as the viscous sublayer (z+ < 5). In turn, the intermediate

region where production is predominant is generally called the buffer layer

(5 < z+ < 30). The region above, conventionally called logarithmic (z+ > 30

and z/h < 0.3) approximately balances production with dissipation and the

rate of spatial energy flux is nearly zero. The superscript + as customary

implies non-dimensionalization in viscous units. In fig.4.10 profiles are all

symmetrical to the center line, this represent a confirmation that the statistics

has reached the steady state. At the walls the terms of diffusion and dissipation

balance each other while all other terms are zero due to the boundary conditions.

Around the peak of the production the flux contributes to the energy supply of

regions both below and above. Through the region where the ratio between

production and dissipation is approximately constant, the flux feeds the energy

in the bulk region (where mean shear is negligible).

4.5 Two point scale energy budget

The equation 4.7 alone can not describe the full dynamic of turbulence. Different

phenomena occurring in wall-bounded turbulence strongly depend not only

on the geometrical space (namely the distance from the wall), but also on

the range of scales. The energy associated with a specific scale of motion is

transferred both to other scales and across region of shear. It is necessary a

description based on the physical space and the space of scales to address the

dynamic of wall-bounded turbulence. The theoretical framework that combined
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these approaches is represented by the Kolmogorov equation, which assuming

homogeneity and isotropy describes the transfer of energy among scales,

∂δqδu
′
i

∂ri

= −4ϵ+ 2ν ∂

∂ri

(
∂δq

∂ri

)
(4.8)

where δq = δu
′2 = δu

′
iδu

′
i is the second order structure function, δu′

i = u
′
i(xs +

rs) − u
′
i(xs) the fluctuating velocity increment and r = (rx, ry, rz) separation

vector [28]. It is customary refer to δu′2 as a scale energy inasmuch it represents

the amount of fluctuation energy at scale r = √
rsrs. In the inertial range

where the viscous effects are negligible, the energy flux is balanced by the

energy dissipation. Approaching the viscous sublayer instead, the dissipation

is balanced by the viscous diffusion while the inertial term vanishes. In wall

turbulence inhomogeneous and anisotropic flows affect all relevant processes

in various ranges of scales that may vary appreciably in the different flow

regions. Those effects extend up to the smallest scales where even a reverse

energy cascade occurs [28–30]. The extension of the Kolmogorov Equation to

inhomogeneous condition in the augmented space (rx, ry, rz, zc) can be written

as

∂δqδu
′
i

∂ri

+ ∂δqδū
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(
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(
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′
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dū
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+ 2w′∗δuδ
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dū

dz

)
+ 4ϵ∗

)
,

(4.9)

where the asterisk denotes a mid-point average (u′
i(xs) + u

′
i(xs + rs))/2 and

zc = (z′
s − zs)/2 with z′

s = zs + rs. This equation for r ≫ l, where l is

the correlation length, reduces, within a factor 4, to the single-point energy

budget 4.10. Equation 4.9 can give an insight of how turbulence is generated,

redistributed and dissipated through the space of scales and physical space of

wall turbulence [31]. Formally the scale energy budget can be recast as

∇ · (Φri
+ Φzc) = ξ(ri, zc) (4.10)
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Where the terms in the equation represent respectively

• Φri
in the space of scales

• Φzc in the geometrical space

• ξ(ri, zc) is the scale energy source

We are overall considering an four-dimensional augmented space (rx, ry, rz, zc)

[32]. In homogeneous conditions consistently with the classical Richardson

cascade, the source term is always negative ξ(r) ≤ 0 [31]. The energy transfer

mechanism begins at largest scales where ξ(∞) = 0, then moves toward small

scales where ξ(0) = −4ϵ∗. In wall turbulence may occurs that at some scales

the production exceeds the dissipation, namely the source term reaches positive

values.

The following analysis is performed on the hyper-planes (rx, 0, 0, zc) and

(0, ry, 0, zc) in order to investigate the energy processes at fixed wall distance.
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Fig. 4.11 Energy budget in the viscous sub-layer z+ = 4, (r+
x = 1, r+

y = 1)

The first scale energy budget considered 4.11 is related to the viscous sublayer

region. In the streamwise direction (left panel) all terms are very small except

for the viscous diffusion. There is no significant deviation of the trends at

larger sales. The picture in the spanwise direction is instead very different.

Despite the proximity to the wall the profiles are in agreement with the trends

at further distances. Moving towards the bulk region, in the buffer layer fig.4.12,
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Fig. 4.12 Energy budget in the buffer layer z+ = 20, (r+
x = 1, r+

y = 1)
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Fig. 4.13 Energy budget in the log-region z+ = 50, (r+
x = 1, r+

y = 1)

an excess of scale energy can be seen when r+
x > 250 in the streamwise direction.

The picture reproduce, a part form the source term, the classic behavior of

turbulence, where the energy is produced at large scales, then transferred to

small scales and diffused by viscous forces. The strangest phenomena here

occurs in the spanwise direction. As shown in the right panel of the fig.4.12 a

strong peak appears at small scales for r+
y ≈ 45. This peak produces a large

reverse energy flux towards smaller and larger scales. The last energy budget

4.13 is related to the log-region. At this distance from the wall, the streamwise

production occurs at large scales. The generation process is followed by the

inertial energy cascade. In this region the homogeneous local conditions are

fulfilled. The energy cascade rate ∂δqδu′
i/∂ri is always positive as expected.

Instead, considering the spanwise scales of the energy budget at the same wall

distance (right panel), it can be notice that the production has much higher
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values at smaller scales. Furthermore for scales 45 < r+
y < 70 the production

exceeds the dissipation, namely ξ(r) ≥ 0. This is an unexpected result in the

log-layer which is universally considered an equilibrium layer where these two

quantities balance. As a consequence the positive divergence of the flux in

eq.4.10 means that the inertial energy transfer feeds scales in both directions,

therefore a reverse energy flux takes place.

In this chapter, we assessed the role of the interface in the mechanism of

drag reduction. The main difference compared to previous studies consists in

the selection of the Volume of Fluid (VoF) method for tracking the interface as

an alternative approach to the Phase-Filed method. Our analysis confirmed

the increase of DR when decreasing the viscosity ratio, as a result of a near

complete relaminarization of the lubricated layer and a corresponding increase

in the volume flow rate of 20%. On the other hand, unlike previous results, we

did not observe a significant contribution of the surface tension to the turbulent

kinetic energy, in terms of work spent to deform the interface. The two-point

scale energy budget further explores the redistribution and energy transfer

across different scales within the turbulent flow. These findings are consistent

with the statistical trends presented in the preceding sections.
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Conclusions

In this work we performed a Direct Numerical Simulation of a two-phase

turbulent channel flow to investigate the drag reduction associated to the

presence of a thin layer of a lubricating fluid near one of the two walls. To

the best of the author’s knowledge this is the first study where such flow is

conducted using the Volume of Fluid. We considered a configuration of the

two immiscible fluids with same density. For the viscosity ratio, two different

values were selected, λ = 1 and λ = 0.5. For the case with same viscosity we

run two simulation with different Weber number, We = 0.055 and We = 0.5.

Compared to the single phase case the presence of a lubricating layer strongly

modify the mean statistics analyzed. In particular we observe a strong increase

of the flow rate. In the case of λ = 0.5, a nearly complete relaminarization

of the lubricated layer was observed, while the increase in the volume flow

rate reached a value of 20%. Even when keeping the viscosity ratio λ = 1,

an increase in the volume flow rate was observed, which proves that the drag

reduction mechanism is already in place, with a slightly higher value when

the Weber number is larger. The simulations were conducted at a relatively

small shear Reynolds number, Reτ = 100, however the parametric analysis on

the effect of viscosity ratio and surface tension allowed us to highlight very

interesting modulations of the dynamics of the interface and of the turbulent

kinetic budgets. Our results show some differences compared to the previous
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the work of Ahmadi et al [28, 19], which can be easily traced back to the

method used for the interface capturing method.
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