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ABSTRACT
The polynomial family pn(λ, s), obtained from Mellin transforms of
Gegenbauer polynomialsCλ

n(x),mimics Riemann’s zeta function ζ(s).
They have zeros only on the critical line �s = 1

2 and obey a reflec-
tive functional equation. We show the zeros of pn(λ, s) and pn+2(λ, s)
interlace on the critical line. To do this, we construct a new family of
orthogonal polynomials Qn(λ, s) which embed suitably transformed
versions of pn(λ, s) and pn+2(λ, s). In the final section, we identify a
related polynomial system rn(λ, s)which is an orthogonal system for
certain values of λ. Taking the limit as λ → ∞, we obtain a further
orthogonal polynomial system which belongs to the Meixner family
of orthogonal polynomials.
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1. Introduction

Many questions inmathematics require understanding the deeper interplay between addi-
tion and multiplication, a famous example being the enigma of the Riemann zeta function
ζ(s) [1]. It can be written as a power sum and an Euler product, yet does not satisfy a
second-order differential equation, whilst the distribution of its non-trivial zeros inside
the critical strip is linked to the distribution of the prime numbers.

Progress with peering inside the critical strip has historically been elusive, and so
more lateral approaches have been developed. One approach is to study functions that
have similar properties to ζ(s), such as the rational approximations to ζ(s) considered by
Ball [2].

In [3], the authors examined families of polynomials pn(λ, s), whose zeros all lie on the
critical line �s = 1/2. They obey a similar reflective functional equation to that for the
Bernoulli and Euler polynomials [4], satisfying pn(λ, s) = (−1)[n/2]pn(λ, 1 − s), a signed
version of the reflection formula for the Riemann xi function ξ(s) = ξ(1 − s). The polyno-
mials families pn(λ, s) arise in finiteMellin transforms of Gegenbauer polynomials, similar
to results of Bump et al. [5–7], where Mellin transforms of the orthogonal family of Her-
mite polynomials are identified in consideration of Riemann’s analytic continuation and
second proof for the functional equation for ζ(s).
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It was remarked in [3] that ‘the zeros of pn(λ, s) and pn+2(λ, s) appear to obey an interlac-
ing property with regard to their positions on the critical line �s = 1/2’. This is similar to
the real zeros of orthogonal polynomials [8–10], which also interlace, partially motivating
the results of this paper, although the polynomials pn(λ, s) do not form an orthogonal poly-
nomial system. Another motivating factor is to further understand the effect of the finite
Mellin transform on the orthogonality of the polynomials undergoing the transformation.

We establish that the zeros of the transformed polynomials pn(λ, s) and pn+2(λ, s) do
interlace, by applying an embedding technique to the shifted and rotated polynomials
q⊥
n (λ, x) = (−i)np2n(λ, ix + 1/2). This approach yields in Theorem 3.2 new families of
orthogonal polynomials Q(l)

n (λ, x), for l ∈ N and n = 0, 1, 2, 3, . . . , where the interlacing
properties from the zeros of Q(l)

n (λ, x) transfer to the zeros of pn(λ, s).
In Theorem 4.1, we deduce that for λ ∈ (−∞, 1/2) ∪ (1/2, 1) the polynomial families

rn(λ, x) = q⊥
n (λ − 2n, x), form an orthogonal system, related to Mellin transforms of the

Gegenbauer family of orthogonal polynomials. By taking the limit as λ → ∞, in both fam-
ilies either q⊥

n (λ, x) or rn(λ, x) (normalized to be monic), we obtain an orthogonal family
of monic Meixner polynomials of the second kindmn(x), as detailed in Theorem 4.2.

Our starting point is the generalized (finite) Mellin transform [11,12] considered by
Coffey and the second author [5,13], where f �→ M(f ), with

M(f )(λ, s) =
∫ 1

0

xs−1

(1 − x2)3/4−λ/2 f (x) dx.

They applied (see [13], Equation 1.2) this transformation to the Gegenbauer family of
orthogonal polynomials {C(λ)

n (x)}∞n=0, defined for λ > −1/2, λ 	= 0, [12,14–17] by the
generating function

1
(1 − 2xt + t2)λ

=
∞∑
n=0

C(λ)
n (x)tn,

yielding the sequence of functions {Mn(λ, s)}∞n=0, where

Mn(λ, s) = M(C(λ)
n )(λ, s) =

∫ 1

0

xs−1

(1 − x2)3/4−λ/2C
(λ)
n (x) dx. (1.1)

The Gegenbauer family of polynomials satisfy respectively the raising and lowering differ-
ential difference relations [18–21]

(n + 1)C(λ)
n+1(x) = (n + 2λ)xC(λ)

n (x) − (1 − x2)
d
dx

C(λ)
n (x), (1.2)

(n + 2λ − 1)C(λ)
n−1(x) = nxC(λ)

n (x) + (1 − x2)
d
dx

C(λ)
n (x), (1.3)

which on application of the generalized Mellin transform to the raising relation (1.2) leads
to the recurrence relation

(n + 1)Mn+1(λ, s) =
(
n + λ − s + 1

2

)
Mn(λ, s + 1) + (s − 1)Mn(λ, s − 1). (1.4)
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It was shown in [13] that the Mellin transformed functions can be written as a product of
Gamma factors and polynomials in s. Here we write them such that

Mn(λ, s) =

⎧⎪⎪⎨
⎪⎪⎩
pn(λ, s)�((s + 1)/2)

�(n, λ, s)
, for n odd,

pn(λ, s)�(s/2)
�(n, λ, s)

, for n even,
(1.5)

where

�(n, λ, s) = 2�((s + n + λ)/2 + 1/4)
�(λ/2 + 1/4)

. (1.6)

The trivial zeros for ζ(s) lie at the negative even integers, and from (1.6), analogous
zeros arise when �((s + n + λ)/2 + 1/4) → ±∞. This happens when (s + n + λ)/2 +
1/4 is a non-positive integer −m, say with m ≥ 0. In the case λ = 1/2 for the Legendre
polynomials, the ‘trivial’ zeros occur when s = n−m−1, with integerm ≥ n − 1.

Carrying out the integration in (1.1) for the cases 0 ≤ n ≤ 4 we find the pn(λ, s), 0 ≤
n ≤ 4 are polynomials in s given by

p0(λ, s) = 1, p1(λ, s) = 2λ, p2(λ, s) = 1
4
(2s − 1)λ(2λ + 1),

p3(λ, s) = 1
6
(2s − 1)λ(λ + 1)(2λ + 1),

p4(λ, s) = 1
96

λ(λ + 1)(2λ + 1)(6λ + 15 + 4s(s − 1)(2λ + 3)).

It can be seen that p2(λ, s) and p3(λ, s) both have one zero at 1/2 and p4(λ, s) has zeros
at 1/2 ± i

√
(λ + 3)/(2λ + 3). These zeros lie on the critical line �(s) = 1/2 and it was

shown in Theorem 5.1 of [3] that this is true for all pn(λ, s). The approach employed the
polynomials qn(λ, z) = pn(λ, z + 1/2), and establishing that the zeros of the qn(λ, z) lie on
the imaginary axis. This result will be re-derived at the end of Section 3 using an alternative
argument.

Although the zeros of qn+2(λ, z) and qn(λ, z) appeared to interlace on the imaginary
axis, no proof was forthcoming. In what follows, we will establish that this is true for the
case n being an even non-negative integer. A similar argument can be used to establish that
the zeros of qn+2(λ, z) and qn(λ, z) also interlace when n is an odd non-negative integer.

We begin with an example. Consider the zeros of q8(λ, z) and q10(λ, z), with λ = 1. The
five zeros of q10(1, z) are shown, to two decimal places, in bold below and between them
are the four zeros of q8(1, z).

−9.15 i, −5.61 i, −2.05 i, −0.71 i, 0, 0.71 i, 2.05 i, 5.61 i, 9.15 i.

These zeros can be seen to interlace on the imaginary axis.
To aide our calculations, we now make a further transformation to introduce the poly-

nomials q⊥
n (λ, x) defined by q⊥

n (λ, x) = (−i)nq2n(λ, ix). The first six of these polynomials
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are

q⊥
0 (λ, x) = 1,

q⊥
1 (λ, x) = 1

2!
xλ(2λ + 1),

q⊥
2 (λ, x) = − 1

4!
λ(λ + 1)(2λ + 1)(λ + 3 − x2(2λ + 3)),

q⊥
3 (λ, x) = − 1

6!
xλ(λ + 1)(λ + 2)(2λ + 1)(2λ + 5)

(
7λ + 33 − x2(2λ + 3)

)
,

q⊥
4 (λ, x) = 1

8!
λ(λ + 1)(λ + 2)(λ + 3)(2λ + 1)(2λ + 5)

× (
15(λ + 5)(λ + 7) − 2x2(2λ + 7)(11λ + 69)

+ x4(2λ + 3)(2λ + 7)
)
,

q⊥
5 (λ, x) = 1

10!
xλ(λ + 1)((λ + 2)(λ + 3)(λ + 4)(2λ + 1)(2λ + 5)(2λ + 9)

× (
12369 + λ(3260 + 211λ) − 10x2(2λ+7)(5λ+39)

+ x4(2λ + 3)(2λ + 7)
)
.

(1.7)

The above transformation rotates all of the zeros of q2n(λ, x) about the origin, from the
imaginary axis onto the real axis. Hence the zeros of the polynomials q⊥

n (λ, x) all lie on the
real axis and by construction the zeros of q⊥

n (λ, x) interlace on the real axis, if and only if
the zeros of q2n(λ, x) interlace on the imaginary axis.

Remark 1.1: We note in passing that the polynomials listed above are comprised entirely
from either even powers of x or odd powers of x. As such they alternate between even and
odd functions, for consecutive values of n.

Our argument will utilize the property that consecutive terms in families of orthogonal
polynomials have interlacing zeros. This would be straightforward to establish for all even
n if it could be shown that the q⊥

n (λ, x) satisfied a three term recurrence relation of the form
required for alternatively even and odd function orthogonal polynomials, that is

q⊥
n+1(λ, x) = anxq⊥

n (λ, x) + cnq⊥
n−1(λ, x), (1.8)

where an and cn do not depend on x. This is not the case, as may be seen by attempting to
equate coefficients of powers of x, where it is not possible to choose a4 and c4 so that

q⊥
5 (λ, x) = a4xq⊥

4 (λ, x) + c4q⊥
3 (λ, x).

However there does exist a three-term recurrence relation between q⊥
5 (λ, x), q⊥

4 (λ, x) and
q⊥
3 (λ, x) given by

q⊥
5 (λ, x) = 2(λ + 8) (63 + λ(15 + 2λ))

180(λ + 7)
xq⊥

4 (λ, x)

− (λ + 3)(λ + 9)(2λ + 7)
(
x2 + (7 + λ)2

)
180(λ + 7)

q⊥
3 (λ, x), (1.9)



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 5

as may be verified using the list of polynomials given in (1.7). In Section 3, we will show
that this holds for all n as a consequence of Lemma 2.1. Note that the above coefficient of
q⊥
3 (λ, x) contains x2 and so this is not of the form (1.8). There is a relation of the form (1.8)
but it has q⊥

3 (λ + 2, x) instead of q⊥
3 (λ, x). This relation is

q⊥
5 (λ, x) = 1

90
(λ + 4)(2λ + 9)xq⊥

4 (λ, x)

− 1
180

λ(λ + 1)(λ + 9)(2λ + 1)q⊥
3 (λ + 2, x). (1.10)

We also find that

q⊥
4 (λ, x) = λ(λ + 1)(2λ + 1)(2λ + 3)

56(λ + 4)(2λ + 9)
xq⊥

3 (λ + 2, x)

− λ(λ + 1)(λ + 2)(λ + 3)(2λ + 1)(2λ + 5)
112(λ + 4)(2λ + 9)

q⊥
2 (λ + 4, x),

q⊥
3 (λ + 2, x) = (λ + 2)(λ + 3)(2λ + 5)(2λ + 7)

30(λ + 5)(2λ + 11)
xq⊥

2 (λ + 4, x)

− (λ + 2)(λ + 3)(λ + 4)(2λ + 5)(2λ + 9)
60(2λ + 11)

q⊥
1 (λ + 6, x),

q⊥
2 (λ + 4, x) = (λ + 4)(λ + 5)(2λ + 9)(2λ + 11)

12(λ + 6)(2λ + 13)
xq⊥

1 (λ + 6, x)

− (λ + 4)(λ + 5)(λ + 7)(2λ + 9)
24

q⊥
0 (λ + 8, x).

(1.11)

These may be verified using (1.7) and in Section 3 these λ shifted recurrence relations will
be extended to all index values n.

We now use an idea inspired by García-Ardila, Marcellán and Marriaga, in [22], with
which we define in generality the embedding of q⊥

n+1(λ, x) and q⊥
n (λ, x) in a new family

of polynomial functions Q(l)
n (λ, x). We begin by focusing on the specific case when l = 4.

This embedding of q⊥
5 (λ, x) and q⊥

4 (λ, x) allows to establish a new family of orthogonal
polynomials Q(4)

n (λ, x).
A proof for the generalization of this technique is given in Theorem 3.2, once further

results regarding the recurrence relations arising from the Mellin transforms have been
established.

Definition 1.1: For integer l ≥ 1, we define the polynomials Q(l)
n (λ, x) in terms of the

q⊥
n (λ, x) by

Q(l)
n (λ, x) = q⊥

n (λ + 2l − 2n, x) for 0 ≤ n ≤ l − 1,

Q(l)
n (λ, x) = q⊥

n (λ, x) for l ≤ n ≤ l + 1,

Q(l)
n (λ, x) = xQ(l)

n−1(λ, x) − Q(l)
n−2(λ, x) for l + 2 ≤ n.
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Example 1.1: From the above definition when l = 4, we obtain the polynomialsQ(4)
n (λ, x)

in terms of the q⊥
n (λ, x) such that

Q(4)
n (λ, x) = q⊥

n (λ + 8 − 2n, x) for 0 ≤ n ≤ 3,

Q(4)
4 (λ, x) = q⊥

4 (λ, x),

Q(4)
5 (λ, x) = q⊥

5 (λ, x),

Q(4)
n (λ, x) = xQ(4)

n−1(λ, x) − Q(4)
n−2(λ, x), for 6 ≤ n.

We now have the following theorem.

Theorem 1.1: Let λ > − 1
2 and λ 	= 0. Then the system of polynomials Q(4)

n (λ, x), n =
0, 1, 2, . . ., given in the above example, satisfy a three term recurrence relation of the form

Q(4)
n+1(λ, x) = AnxQ(4)

n (λ, x) + CnQ
(4)
n−1(λ, x),

with AnAn−1Cn < 0 for n ≥ 0. They form an orthogonal polynomial system whose zeros are
real and interlace on the real line.

Proof: Using the expressions in (1.10), (1.11), and the above definitions of Q(4)
n (λ, x), we

find that the recurrence relation is satisfied.We need to verify the conditionAnAn−1Cn < 0
for n ≥ 0. This is clear when λ > 0 as then An > 0 and Cn < 0 for n ≥ 0. When −1/2 <

λ < 0 all An and Cn have the same sign as before except for A3 ,C3 ,C4 all of which change
sign which means we still have A4A3C4 < 0 and A3A2C3 < 0 as required.

The result follows as the family of polynomials Q(4)
n (λ, x), n = 0, 1, 2, . . . ∞ satisfy the

conditions of Favard’s Theorem (see Theorem 4.4 of [16]), and therefore are orthogonal
polynomials with a positive definite moment function and so have interlacing zeros on the
real line. �

In particular as the zeros of q⊥
n+1(λ, x) = Q(4)

n+1(λ, x) and q⊥
n (λ, x) = Q(4)

n (λ, x) lie on
the real axis and interlace. In turn this shows the zeros of q2n+2(λ, x) and q2n(λ, x) lie on
the imaginary axis and so the zeros of p2n+2(λ, x) and p2n(λ, x) lie on the critical line where
they also interlace. This will be shown to hold for all n in Theorem 3.2.

2. Three lemmas

In this section, we derive three lemmas, each of which determines a three-term
recurrence relation for our finite Mellin transform function Mn(λ, s) in terms of
Mn(λ, s),Mn+2(λ, s),Mn+4(λ, s). The index step of +2 in these three-term recurrences
allows them to be applied to the polynomials q⊥

n (λ, x), via the pn(λ, s), which enables a
clearance of common Gamma factors. The three lemmas are sequential in that the third
lemma relies on the second lemma, which itself relies on the first lemma.
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We begin by returning to the generalized Mellin transform of Equation (1.2), which is
obtained by multiplying both sides by

xs−1

(1 − x2)3/4−λ/2

and integrating, so that

∫ 1

0

xs−1

(1 − x2)3/4−λ/2 (n + 1)C(λ)
n+1(x) dx

=
∫ 1

0

xs−1

(1 − x2)3/4−λ/2 (n + 2λ)xC(λ)
n (x) dx

−
∫ 1

0

xs−1

(1 − x2)3/4−λ/2 (1 − x2)
d
dx

C(λ)
n (x) dx.

This gives us

(n + 1)Mn+1(λ, s) = (n − s + λ + 1/2)Mn(λ, s + 1) + (s − 1)Mn(λ, s − 1). (2.1)

In the same way, (1.3) becomes

(n + 2λ − 1)Mn−1(λ, s) = (n + s + λ − 1/2)Mn(λ, s + 1) − (s − 1)Mn(λ, s − 1). (2.2)

Adding (2.1) and (2.2), we obtain

(n + 1)Mn+1(λ, s) = (−2λ − n + 1)Mn−1(λ, s) + 2(λ + n)Mn(λ, s + 1), (2.3)

and eliminatingMn(λ, s + 1) gives us

(n + 1)(2(λ + n + s) − 1)Mn+1(λ, s) = (2λ + n − 1)(2(λ + n − s) + 1)Mn−1(λ, s)

+ 4(s − 1)(λ + n)Mn(λ, s − 1). (2.4)

Lemma 2.1: The Mn(λ, s) satisfy

(n + 3)(n + 4)(λ + n + 1)(2(λ + n + s) + 5)Mn+4(λ, s)

− 2(2s − 1)(λ + n + 2)
(
λ(2λ + 3) + n2 + 2(λ + 2)n + 3

)
Mn+2(λ, s)

− (λ + n + 3)(2λ + n)(2λ + n + 1)(2(λ + n − s) + 3)Mn(λ, s)) = 0.

Proof: The case n = 0 is easily verified to hold. From (2.3), putting n = k+ 2 then
n = k+ 4, we get

Mk+2(λ, s + 1) = (1 + k + 2λ)Mk+1(λ, s) + (k + 3)Mk+3(λ, s)
2(2 + k + λ)

, (2.5)

Mk+4(λ, s + 1) = (3 + k + 2λ)Mk+3(λ, s) + (k + 5)Mk+5(λ, s)
2(4 + k + λ)

, (2.6)
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and from (2.4), putting n = k+ 1 and replacing s by s+ 1, we get

Mk+1(λ, s) = − (k + 2λ)(2(k + λ − s) + 1)Mk(λ, s + 1)
4s(k + λ + 1)

+ (k + 2)(2(k + λ + s) + 3)Mk+2(λ, s + 1)
4s(k + λ + 1)

. (2.7)

Assume the statement of Lemma 2.1 holds for n ≤ k then, putting n = k and replacing s
by s+ 1, we find

Mk(λ, s + 1)

= −2(2s + 1)(k + λ + 2)
(
k2 + 2λ2 + 2k(λ + 2) + 3λ + 3

)
Mk+2(λ, s + 1)

(k + λ + 3)(k + 2λ)(k + 2λ + 1)(2k + 2λ − 2s + 1)

+ (k + 3)(k + 4)(k + λ + 1)(2k + 2λ + 2s + 7)Mk+4(λ, s + 1)
(k + λ + 3)(k + 2λ)(k + 2λ + 1)(2k + 2λ − 2s + 1)

. (2.8)

EliminatingMk(λ, s + 1),Mk+2(λ, s + 1) andMk+4(λ, s + 1) from (2.5) to (2.8) we obtain,
after cancelling a non-zero factor, the statement of Lemma 2.1 for the case n = k+ 1
thereby establishing the inductive step. �

Lemma 2.2: The Mn(λ, s) satisfy

(n + 3)(n + 4)(2λ + 2n + 2s + 5)Mn+4(λ, s)

+ (1 − 2s)(2λ + n + 2)(2λ + n + 3)Mn+2(λ, s)

− 8λ(λ + 1)(λ + n + 3)Mn(λ + 2, s)) = 0.

Proof: The case n = 0 is easily verified to hold. From Lemma 2.1, putting n = k−3 and
replacing λ by λ + 2 we get

− (k + λ + 2)(k + 2λ + 1)(k + 2λ + 2)(2k + 2λ − 2s + 1)Mk−3(λ + 2, s)

− 2(2s − 1)(k + λ + 1)
(
k2 + 2λ2 + 2(λ + 1)k + 5λ + 2

)
Mk−1(λ + 2, s)

+ k(k + 1)(k + λ)(2(k + λ + s) + 3)Mk+1(λ + 2, s) = 0. (2.9)

Again from Lemma 2.1 putting n = k−1 then n = k+ 1 we get

− (k + λ + 2)(k + 2λ − 1)(k + 2λ)(2k + 2λ − 2s + 1)Mk−1(λ, s)

− 2(2s − 1)(k + λ + 1)
(
k2 + 2(λ + 1)k + λ(2λ + 1)

)
Mk+1(λ, s)

× (k + 2)(k + 3)(k + λ)(2k + 2λ + 2s + 3)Mk+3(λ, s) = 0 (2.10)

and

− (k + λ + 4)(k + 2λ + 1)(k + 2λ + 2)(2k + 2λ − 2s + 5)Mk+1(λ, s)

− 2(2s − 1)(k + λ + 3)
(
k2 + 2λ2 + 2(λ + 3)k + 5λ + 8

)
Mk+3(λ, s)

+ (k + 4)(k + 5)(k + λ + 2)(2k + 2λ + 2s + 7)Mk+5(λ, s) = 0. (2.11)
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Now assume that Lemma 2.2 holds for n ≤ k. Putting n = k−1 and n = k − 3, we get

− 8λ(λ + 1)(k + λ + 2)Mk−1(λ + 2, s)

+ (1 − 2s)(k + 2λ + 1)(k + 2λ + 2)Mk+1(λ, s)

+ (k + 2)(k + 3)(2k + 2λ + 2s + 3)Mk+3(λ, s) = 0 (2.12)

and

− 8λ(λ + 1)(k + λ)Mk−3(λ + 2, s)

+ (1 − 2s)(k + 2λ − 1)(k + 2λ)Mk−1(λ, s)

+ k(k + 1)(2k + 2λ + 2s − 1)Mk+1(λ, s) = 0. (2.13)

EliminatingMk−3(λ + 2, s),Mk−1(λ, s),Mk−1(λ + 2, s) andMk+1(λ, s) from (2.9)–(2.13)
we obtain, after cancelling a non-zero factor, the statement of Lemma 2.2 for the case
n = k+ 1 thereby establishing the inductive step. �

Lemma 2.3: The Mn(λ, s) satisfy

(n + 3)(n + 4)(2λ + n + 4)(2λ + n + 5)Mn+4(λ, s)

+ 4λ(λ + 1)(2λ + 3)(1 − 2s)Mn+2(λ + 2, s)

− 16λ(λ + 1)(λ + 2)(λ + 3)Mn(λ + 4, s) = 0.

Proof: From Lemma 2.2, replacing λ by λ + 2, we get

− 8(λ + 2)(λ + 3)(λ + n + 5)Mn(λ + 4, s)

+ (1 − 2s)(2(λ + 2) + n + 2)(2(λ + 2) + n + 3)Mn+2(λ + 2, s)

+ (n + 3)(n + 4)(2(λ + 2) + 2n + 2s + 5)Mn+4(λ + 2, s) = 0, (2.14)

replacing n by n+ 2 we get

− 8λ(λ + 1)(λ + n + 5)Mn+2(λ + 2, s)

+ (1 − 2s)(2λ + n + 4)(2λ + n + 5)Mn+4(λ, s)

+ (n + 5)(n + 6)(2λ + 2(n + 2) + 2s + 5)Mn+6(λ, s) = 0, (2.15)

and replacing n by n+ 4 we get

− 8λ(λ + 1)(λ + n + 7)Mn+4(λ + 2, s)

+ (1 − 2s)(2λ + n + 6)(2λ + n + 7)Mn+6(λ, s)

+ (n + 7)(n + 8)(2λ + 2(n + 4) + 2s + 5)Mn+8(λ, s) = 0, (2.16)

and from Lemma 2.1, replacing n by n+ 4, we have that

− (λ + n + 7)(2λ + n + 4)(2λ + n + 5)(2λ + 2(n + 4) − 2s + 3)Mn+4(λ, s)

− 2(2s − 1)(λ + n + 6)
(
λ(2λ + 3) + 2(λ + 2)(n + 4) + (n + 4)2 + 3

)
Mn+6(λ, s)

+ (n + 7)(n + 8)(λ + n + 5)(2λ + 2(n + 4) + 2s + 5)Mn+8(λ, s) = 0. (2.17)

EliminatingMn+8(λ, s),Mn+6(λ, s) andMn+4(λ + 2, s) from (2.14)–(2.17) we obtain, after
cancelling a non-zero factor, the statement of Lemma 2.3. �
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3. TheMellin polynomials

In this section, we relate the lemmas of Section 2 to the pn(λ, s) polynomials, obtaining the
corresponding three-term recurrence relations for the q⊥

n (λ, x) polynomials.

Theorem 3.1: The functions pn(λ, s) satisfy the three-term recurrence relation

16(n + 3)(n + 4)(λ + n + 1)pn+4(λ, s)

− 8(2s − 1)(λ + n + 2)
(
λ(2λ + 3) + n2 + 2(λ + 2)n + 3

)
pn+2(λ, s)

− (λ + n + 3)(2λ + n)(2λ + n + 1)(2(λ + n − s)+3)(2(λ + n + s)+1)pn(λ, s) = 0.
(3.1)

Corollary 3.1: The sequence {pn(λ, s)}∞n=0 is a sequence of polynomials in s.

Proof: If we substitute (1.5) into the statement of Lemma 2.1, we can adjust the Gamma
function factors so that all terms have the same factors. These may then be cancelled to
obtain the recurrence relation stated.

To see the corollary, because p0(λ, s), p1(λ, s), p2(λ, s), p3(λ, s) and p4(λ, s) are all poly-
nomials in s it follows from the recurrence relation (3.1), that pn(λ, s) is a polynomial in s
for all n ≥ 0. �

Now the polynomials qn(λ, s) are defined by qn(λ, s) = pn(λ, s + 1/2), so in turn they
satisfy

4(n + 3)(n + 4)(λ + n + 1)qn+4(λ, s)

− 4s(λ + n + 2)
(
λ(2λ + 3) + n2 + 2(λ + 2)n + 3

)
qn+2(λ, s)

− (λ + n + 3)(2λ + n)(2λ + n + 1)(λ + n − s + 1)(λ + n + s + 1)qn(λ, s) = 0.

Furthermore, the polynomials q⊥
n (λ, x) are defined by q⊥

n (λ, x) = (−i)nq2n(λ, ix), so they
satisfy

4(n + 2)(2n + 3)(λ + 2n + 1)q⊥
n+2(λ, x)

− 2(λ + 2(n + 1)) (λ(2λ + 3) + 4n(λ + n + 2) + 3) xq⊥
n+1(λ, x)

+ (λ + n)(λ + 2n + 3)(2(λ + n) + 1)
(
(λ + 1)2 + 4n(λ + n + 1) + x2

)
q⊥
n (λ, x)

= 0. (3.2)

Setting n = 3 in Equation (3.2), we obtain the required expression given in (1.9).
In the same way from Lemma 2.2, we find that the polynomials q⊥

n (λ, x) satisfy

4(n + 2)(2n + 3)q⊥
n+2(λ, x) − 2(λ + n + 1)(2(λ + n) + 3)xq⊥

n+1(λ, x)

+ λ(λ + 1)(2λ + 1)(λ + 2n + 3)q⊥
n (λ + 2, x) = 0. (3.3)
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Similarly, from Lemma 2.3, the polynomials q⊥
n (λ, x) satisfy

4(n + 2)(2n + 3)(λ + n + 2)(2(λ + n) + 5)q⊥
n+2(λ, x)

− 2λ(λ + 1)(2λ + 1)(2λ + 3)xq⊥
n+1(λ + 2, x)

+ λ(λ + 1)(λ + 2)(λ + 3)(2λ + 1)(2λ + 5)q⊥
n (λ + 4, x) = 0. (3.4)

We are now in a position to generalize Theorem 1.1 and show that the zeros of p2l+2(λ, s)
interlace on the critical line with those of p2l(λ, s). The proof follows the discussion in
Section 1. We first note that from (3.3) we have

q⊥
n+2(λ, x) = 2(λ + n + 1)(2(λ + n) + 3)

4(n + 2)(2n + 3)
xq⊥

n+1(λ, x)

− λ(λ + 1)(2λ + 1)(λ + 2n + 3)
4(n + 2)(2n + 3)

q⊥
n (λ + 2, x). (3.5)

From (3.4), after replacing n by n−1, we have

q⊥
n+1(λ, x) = 2λ(λ + 1)(2λ + 1)(2λ + 3)

4(n + 1)(2n + 1)(λ + n + 1)(2(n + λ) + 3)
xq⊥

n (λ + 2, x)

− λ(λ + 1)(λ + 2)(λ + 3)(2λ + 1)(2λ + 5)
4(n + 1)(2n + 1)(λ + n + 1)(2(n + λ) + 3)

q⊥
n−1(λ + 4, x). (3.6)

Again from (3.4), after replacing n by n−2 and λ by λ + 2, we have

q⊥
n (λ + 2, x) = 2(λ + 2)(λ + 3)(2λ + 5)(2λ + 7)

4n(2n − 1)(λ + n + 2)(2(n + λ) + 5)
xq⊥

n−1(λ + 4, x)

− (λ + 2)(λ + 3)(λ + 4)(λ + 5)(2λ + 5)(2λ + 9)
4n(2n − 1)(λ + n + 2)(2(n + λ) + 5)

q⊥
n−2(λ + 6, x). (3.7)

This may be continued until we reach

q⊥
2 (λ + 2n − 2, x)

= 2(λ + 2n − 2)(λ + 2n − 1)(2λ + 4n − 3)(2λ + 4n − 1)
24(λ + 2n)(2λ + 4n + 1)

xq⊥
1 (λ + 2n, x)

− (λ + 2n − 2)(λ + 2n − 1)(2λ + 4n − 3)(λ + 2n + 1)
24

q⊥
0 (λ + 2n + 2, x). (3.8)

Applying the embedding construction in Definition 1.1 to q⊥
l+1(λ, x) and q⊥

l (λ, x), we
now show that the Q(l)

n (λ, x), n = 0, 1, 2, . . . are a new family of orthogonal polynomial
functions.

Theorem 3.2: Let λ > − 1
2 and λ 	= 0. Then for integer l ≥ 1, the system of polynomials

Q(l)
n (λ, x), n = 0, 1, 2, . . ., satisfy a three-term recurrence relation of the form

Q(l)
n+1(λ, x) = AnxQ(l)

n (λ, x) + CnQ
(l)
n−1(λ, x),

with AnAn−1Cn < 0 for n ≥ 1. They form an orthogonal polynomial system whose zeros are
real and interlace on the real line.



12 J. L. HINDMARSH ANDM. C. LETTINGTON

Proof: Equations (3.5)–(3.8) and the definition of the Q(l)
n serve to define An and Cn and

show the recursion relation above is satisfied. We also see the condition AnAn−1Cn < 0
for n ≥ 0 is satisfied. This is clear when λ > 0 as then An > 0 and Cn < 0 for n ≥ 0.
When −1/2 < λ < 0 all An and Cn have the same sign as before except for Al ,Cl ,Cl+1
all of which change sign which means we still have Al+1 Al Cl+1 < 0 and Al Al−1 Cl < 0 as
required. We may use Favard’s theorem (see Theorem 4.4 of [16]) to deduce that the poly-
nomials Q(l)

n are orthogonal polynomials with a positive definite moment function and so
have interlacing zeros. This shows that the zeros of q⊥

l (λ, x) and q⊥
l+1(λ, x) lie on the real

axis and interlace. Because they lie on the real axis the zeros of q2l(λ, x) and q2l+2(λ, x)
lie on the imaginary axis and interlace, and the zeros of p2l(λ, x) and p2l+2(λ, x) lie on the
critical line and interlace. �

4. Related orthogonal polynomial systems

Applying Lemma 2.3 we found that the polynomials q⊥
n (λ, x) satisfy the relation (3.4). We

now consider values of λ for which the shifted polynomial sequence {rn(λ, x)}∞n=0 defined
by

rn(λ, x) = q⊥
n (λ − 2n, x)

forms an orthogonal polynomial system.

Theorem 4.1: The polynomials {rn(λ, x)}∞n=0 form an orthogonal polynomial system with a
positive definite moment function if and only if λ ∈ (−∞, 1/2) ∪ (1/2, 1).

Proof: These polynomials satisfy anrn+1(λ, x) = bnxrn(λ, x) − cnrn−1(λ, x) , where

an = 4(n + 1)(2n + 1)(−2λ + 2n + 1)(−λ + n + 1),

bn = 2(−2λ + 4n + 1)(−2λ + 4n + 3)(−λ + 2n + 1)(−λ + 2n + 2),

cn = (−2λ + 4n − 1)(−2λ + 4n + 3)(−λ + 2n − 1)(2n − λ)

× (−λ + 2n + 1)(−λ + 2n + 2).

The sequence {rn(λ, x)}∞n=0 will be an orthogonal polynomial system with a positive
definite moment function if and only if

an−1cn
bnbn−1

> 0 ∀ n ≥ 1. (4.1)

The monic version of this sequence {̂rn(λ, x)}∞n=0 is given by

r̂n(λ, x) = an−1an−1 · · · a0
bn−1bn−2 · · · b0 rn(λ, x),

and satisfies

r̂n+1(λ, x) = xr̂n(λ, x) − an−1cn
bnbn−1

r̂n−1. (4.2)
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The condition (4.1) will be satisfied if, for a given λ,

n(2n − 1)(−2λ + 2n − 1)(n − λ)

(−2λ + 4n − 3)(−2λ + 4n − 1)
> 0 ∀ n ≥ 1.

This will be the case if and only ifλ ∈ (−∞, 1/2) or λ ∈ (1/2, 1). Therefore the sequence of
polynomials {rn(λ, x)}∞n=0 will be an orthogonal polynomial systemwith a positive definite
moment function if and only if λ ∈ (−∞, 1/2) ∪ (1/2, 1). �

We now consider the sequence {̂rn(λ, x)}∞n=0 in the case λ → ∞. We find that

r̂0(λ, x) = 1,

r̂1(λ, x) = x,

r̂2(λ, x) = −λ + (2λ − 5)x2 + 1
2λ − 5

,

r̂3(λ, x) = x
(−7λ + (2λ − 9)x2 + 9

)
2λ − 9

,

r̂4(λ, x) = 15
(
λ2 − 4λ + 3

)
4λ2 − 44λ + 117

+ x4 + 2(19 − 11λ)x2

2λ − 13
.

Taking the limit as λ → ∞ for these polynomials and defining the polynomialsmn(x) such
that

mn(x) = r̂n(∞, x) = lim
λ→∞ r̂n(λ, x) (4.3)

we find that first few terms are given by

m0(x) = 1, m1(x) = x,

m2(x) = x2 − 1
2
, m3(x) = x3 − 7x

2
,

m4(x) = x4 − 11x2 + 15
4
.

Our new polynomialsmn(x) are in fact an orthogonal polynomial family, as detailed in the
following theorem.

Theorem 4.2: The polynomials {mn(x)}∞n=0, defined in (4.3), satisfy the three-term recur-
rence relation

mn+1(x) = xmn(x) − n
(
n − 1

2

)
mn−1(x),

and belong the Meixner class of orthogonal polynomials of the second kind. They arise in the
limit as λ → ∞ for both the r̂n(λ, x) and q⊥

n (λ, x) polynomial families, so that

mn(x) = lim
λ→∞ q⊥

n (λ, x) = lim
λ→∞ r̂n(λ, x),
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with generating function

G(x, t) =
∞∑
n=0

mn(x)
n!

tn = (
1 + t2

)− 1
4 ex tan−1 t

=
⎛
⎝ ∞∏

j=0
exp

(
x(−1)jt2j+1

2j + 1

)⎞
⎠ ( ∞∑

k=0

(−1k)
(− 1

4
k

)
t2k

)
.

Proof: We see that the limits exist for r̂0(λ, x) and r̂1(λ, x). We also have

lim
λ→∞

an−1cn
bnbn−1

= n
(
n − 1

2

)
.

Therefore, by induction, all limits exist and the recurrence relation follows from (4.2).
Regarding the generating function and that the polynomialsmn(x) belong to the class of

Meixner orthogonal polynomials of the second kind, we refer to [16, p. 179, equation 3.17]
with δ = 0 and η = 1/2. The alternative expressions for the generating function are
obtained after the application of Gregory’s series for arctan x and the negative binomial
expansion.

For the q⊥
n (λ, x), they satisfy (3.2) which may be written as

anq⊥
n+1(λ, x) = bnq⊥

n (λ, x) − cnq⊥
n−1(λ, x),

with

an = 4(n + 1)(2n + 1)(λ + 2n − 1),

bn = 2(λ + 2n)(λ(2λ + 3) + 4(n − 1)(λ + n + 1) + 3),

cn = (λ + n − 1)(λ + 2n + 1)(2λ + 2n − 1),(
(λ + 1)2 + 4(n − 1)(λ + n) + x2

)
.

As the term cn contains the term x2, q⊥
n (λ, x) do not satisfy a three-term recurrence relation

of the form required to be an orthogonal polynomial system.
We now repeat the above argument used for r̂n(λ, x), obtaining themonic version of the

sequence to establish the same recurrence relation holds for this polynomial family. Taking
into account that in the limit as λ → ∞, we have q⊥

0 (λ, x) = 1 and q⊥
1 (λ, x) = x, the same

initial values for r̂0(λ, x) and r̂1(λ, x), it follows that both polynomials equate to mn(x), as
required. �

5. Areas for further consideration

The orthogonal polynomials considered here can be viewed as bi-variate in the two vari-
ables λ and s. Initial investigations have been fruitful and this will be a topic for future
research. Connections also exist between orthogonal polynomials and random matrix
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theory [23], including discrete and q-analogues which may lead to tangible mathematical
applications of these results.
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