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Finding proper collective variables for complex systems and processes is one of the most

challenging tasks in simulations, which limits the interpretation of experimental and sim-

ulated data and the application of enhanced sampling techniques. Here, we propose a

machine learning approach able to distill few, physically relevant variables by associating

instantaneous configurations of the system to their corresponding inherent structures as

defined in liquids theory. We apply this approach to the challenging case of structural tran-

sitions in nanoclusters, managing to characterize and explore the structural complexity of

an experimentally relevant system constituted by 147 gold atoms. Our inherent-structure

variables are shown to be e!ective at computing complex free-energy landscapes, transi-

tion rates, and at describing non-equilibrium melting and freezing processes. In addition,

we illustrate the generality of this machine learning strategy by deploying it to understand

conformational rearrangements of the bradykinin peptide, indicating its applicability to a
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vast range of systems, including liquids, glasses, and proteins.

1 Introduction

Describing atomic/molecular processes is a notoriously di”cult endeavour [1] even in apparently simple cases

such as the isomerization of a small molecule [2]. Producing a low-dimensional representation of such processes

usually requires the introduction of functions of the system coordinates, called collective variables (CVs).

CVs can be exploited in advanced simulation techniques [3, 4, 5] for accelerated sampling, free-energy (FE)

calculations, and identification of transition mechanisms for a variety of phenomena, including transitions in

hard [3], soft, and biological [2] matter, and chemical reactions [6]. More generally, starting from the unpractical

description in terms of atomic coordinates, CVs attempt to distil essential physical information about complex

processes including non-equilibrium ones [7].

Recently, machine learning (ML) has emerged as an invaluable tool for the discovery of CVs [8, 9, 10,

11, 12] in overly complicated systems or when physical intuition fails. In this work, we introduce a generally

applicable ML approach for characterizing structural transitions of actual physical systems. We define CVs

capable of discriminating structural motifs in noisy finite-temperature configurations based on their zero-

temperature counterparts, taking inspiration from the inherent structure concept which we borrow from the

theory of liquids [13] (figure 1(a)). In order to devise few, physically informed CVs, we employ a neural network

characterized by the convergent-divergent architecture typical of autoencoders. We train the network such

that, while taking structural descriptors evaluated on finite-temperature realizations as inputs, it learns to

associate them to the zero-temperature counterparts of the original descriptors in the output (figure 1(b)).

The resulting latent variables, which we call inherent structure variables (ISVs), can be thus computed on-the-

fly during the dynamical evolution of a system. In addition, they o!er a unified description of instantaneous

configurations belonging to di!erent temperatures, as they refer to the associated inherent configurations.

For the same reason, ISVs can be adopted to describe both equilibrium and non-equilibrium conditions. The

present approach constitutes therefore a unique mapping between instantaneous configurations and a universal

representation that enables, within the same framework, phase space exploration, FE and rate calculations

or trajectory analysis, and are general interest for any system in which structural diversity is an issue, e.g.,

nanoclusters [14, 15], bulk crystals [3, 16], glasses [17, 18], and biomolecules [19, 20].

Here, the ISV approach is applied to structural transitions in metal nanoclusters, a challenging class of

experimentally relevant systems characterized by a startling variety of motifs [21]. Indeed, due to their small size,

metal nanoclusters can break translational and rotational symmetries, allowing for multiple twinned structures

such as icosahedra (Ih) and decahedra (Dh) in addition to standard crystal lattices, as face-centered-cubic (fcc)
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[21, 22]. Moreover, they support several types of surface and internal defects and overall shapes [23, 24, 25].

Additionally, we showcase the generality of the ISV approach by applying it to detect dynamical conformational

changes in the bradykinin peptide.

Navigating the structural complexity of clusters has been a long-standing challenge [26]. The fact that

dozens of structural families can be identified in metal nanoclusters [27] makes the question about the kinetics

and mechanisms of transitions between them even more urgent: how do the atoms of an fcc nanocluster

rearrange into a decahedral one? At what rates does such a process take place? Previous studies [14, 28]

of structural transitions in metal nanoclusters have relied on carefully identified CVs tailored for a specific

transition. However, considering the structural complexity of metal clusters, CVs capable of capturing the fine

structural details and navigating the variety of structural motifs is crucial and non-trivial. Parallel tempering

(PT) has proven an e!ective means to explore the structural landscape of coinage metals [29, 30] exploiting

configuration exchanges between replicas at di!erent temperatures to overcome FE barriers without the need

of specifying CVs. Building upon this large database of structures, we recently used ML to construct a low

dimensional representation of such a landscape that is both physically meaningful and capable of discriminating

fine structural details [27]. The key idea was using a translationally and rotationally invariant representation

of the cluster, the radial distribution function (RDF), and reduce its dimensionality using a convolutional

autoencoder. This approach allowed us to classify locally minimised structures into tens of structural families.

The CVs we defined in [27] are e”cient at classifying structures after the removal of thermal noise by

means of energy minimisation. However, in order to study the finite-temperature evolution of nanoclusters

and employ enhanced simulation approaches, CVs able to deal with noisy, finite-temperature configurations

are needed. This is the goal of the present work that was achieved by the ML approach introduced above

(figure 1) using RDFs as suitable structural descriptors. In fact, the ISV concept can be implemented using

di!erent descriptors depending on the system of interest and on the required level of detail, as demonstrated

in the additional biomolecule case we considered, where an interatomic distance matrix is employed.

The first system considered in this work is a gold nanocluster of 147 atoms (Au147), which is a magic number

for the formation of Ih, Dh, and fcc clusters. This cluster was specifically selected because it is characterized

by the coexistence, over a wide range of temperatures, of a much widervariety of structural motifs with respect

to other elemental clusters of similar size [30]. This structural wealth was confirmed by scanning transmission

electron microscopy (STEM) of size-selected nanoclusters, which is reported below. As a consequence of the

competition of many structural motifs, Au147 represents a vastly challenging system despite the relatively small

number of atoms and the consequent a!ordability of computer simulations [31, 29].

To demonstrate the generality of the proposed approach, we additionally considered the challenging case

of tracking in real-time the dynamical conformational changes of a small and flexible biomolecule in water,
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a bradykinin-derived decapeptide (BK) [32]. BK is a hormone involved in inflammation, blood vessel dilation

and pain perception that binds to specific G-protein coupled receptors (GPCR) [33]. To circumvent the scarce

availability of structural data on GPCRs BK and other natural agonists have been used as templates in the

design of novel drugs targeting this receptor family [34]. Additionally, BK is a curvature-sensing peptide that

has been engineered to recognise and purify nanoscale vesicles such as liposomes and small exosomes from

the blood serum [32]. Structural characterisation of BK remains elusive, as existing studies report conflicting

conformational data [35, 34], leaving its precise structure in water unresolved. We thus use this challenging

case to further put the ISV framework to the test. For BK, the chosen descriptor was the distance matrix

between the ω-carbons, while the training set was generated using Hamiltonian replica exchange. These di!erent

implementation choices further underscore the flexibility of the ISV approach and of the proposed neural network

architecture.

2 Results and discussions

2.1 Inherent structural variables by machine learning

In this section, we devise an approach to build a low-dimensional structural description that enables on-

the-fly structural analysis and biasing of molecular simulations. In order to achieve this goal, instantaneous

configurations are used as an input, di!erently from similar approaches aiming at the static classification

of [27] which rely solely on locally minimised structures. The proposed approach for obtaining descriptors with

a general structural meaning from instantaneous configurations draws inspiration from the inherent structure

idea pioneered by Stillinger and Weber for liquids [13]: each instantaneous configuration is thought as a

fluctuation around the closest local minimum on the potential energy surface [36]; by quenching, one can refer

each dynamical configuration to its inherent structure which does not depend on the particular way the original

configuration was obtained (equilibrium or non-equilibrium simulations, di!erent temperatures, protocols, etc.),

see figure 1(a).

Similarly to our previous attempts, we leverage RDFs as a convenient translationally and rotationally

invariant description of the atomic structures. From a structural point of view, RDFs are particularly convenient

descriptors as they contain extensive information about the structure of clusters [14, 27] – both long and short

range order – regardless of whether they are instantaneous configurations or locally minimised ones. The major

drawback of RDFs, which has so far limited their use as collective variables, is related to their relatively high

dimensionality. This limitation can be alleviated by means of ML. Alternative descriptors, such as SOAP [37] or

ACE [38], could be used when a detailed description of the local environment of individual atoms is required.

However, for the nanocluster system hereby considered, RDFs are both computationally more e”cient and
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Figure 1: Proposed approach to distill inherent structural variables. (a) Schematic representation of

the relation between instantaneous configurations at finite temperature and the related inherent structures on

the potential energy surface. Instantaneous configurations are a!ected by significant thermal noise. A local

minimisation removes the thermal contribution and allows obtaining of the corresponding inherent structure.

(b) Sketch the of working principle behind the ISV encoder-decoder neural network. Structural descriptors of

the system, such as the radial distribution function (RDF), constitute the encoder’s input, whose output is

used by the decoder to reconstruct the inherent state counterpart of the original descriptors. The Mean Square

Error (MSE) loss function is used to measure the performance of the network in validation and training.

more sensitive to discriminate structural motifs in clusters [39], as they are able to also provide abundant

information regarding the overall cluster shape.

We propose to couple and compress the high-dimensional information contained in RDFs relative to instan-

taneous and inherent configurations by means of a conveniently modified convolutional autoencoder. Autoen-

coders are neural networks with a convergent-divergent architecture as sketched in figure 1(b), well-suited for

reducing the dimensionality of data [40]. In our implementation (figure 1(b)), the RDF computed from a spe-

cific instantaneous atomic configuration is fed to the autoencoder. In parallel, the same atomic configuration is

subjected to a short energy minimisation to quench it to the local minimum, resulting in a noise-free RDF. The

network is then taught to minimise the mean squared error loss between the output and the inherent-structure

RDF, at variance with the usual autoencoder strategy of matching identical inputs and outputs. Thus, in a

single step, our network is capable of analyzing instantaneous atomic configurations and match them with

their inherent structure, while producing a low dimensional representation. In data science terms, the strategy

can be summarized as a classification task where each instantaneous-configuration RDF is labeled according

to its inherent counterpart. In summary, by non-linearly combining information from the input and the output,

the bottleneck obtained by such an approach provides a limited number of descriptors, the ISVs, capable of

assigning similar values to di!erent instantaneous configurations which share the same inherent structure.

As an application, we considered a real-world example, a gold nanocluster consisting of 147 gold atoms,

Au147. Interactions are modeled via the many-body “Gupta” second-moment tight-binding QEq potential [41].
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This potential is known to capture well the of variety structural motifs of gold at this size [27], which correspond

to those experimentally observed in our STEM data shown in the following. We note that other approaches,

such as DFT calculations, could in principle be used in conjunction with the ISVs, although it is outside the

scope of this work which is focused on demonstrating the generality of the approach. The training set was

taken from [29], using Au147 configurations generated by parallel tempering at di!erent temperatures. Details

about dataset and training are reported in the Methods section and in the Supplementary Text.

The most important hyperparameter of the autoencoder is the bottleneck size; here we found that the

optimal compromise between information compression and reconstruction performance was achieved for a

bottleneck of size 2 (see figure S3). By comparing the generated space against the structural classification

of [27], the two ISVs were found to be expressive enough to encode the fine structural details of the Au

nanoclusters (see figure S4).

The possibility to compute structural CVs directly from instantaneous structures opens the way to use

them on-the-fly in atomistic simulations, e.g., for analyzing the dynamical structural evolution of the system

and to bias trajectories exploiting the intrinsic di!erentiability of neural networks. Results below indeed show

that the ISVs are suitable for FE and rate calculations, as well as for analyzing non-equilibrium processes in

complex and realistic systems. We were able to handle these diverse applications by training the network only

once, as the description conveniently unifies information from di!erent temperatures contained in the dataset.

We further remark that the proposed strategy is general in several ways: 1) it can be used in conjunction

with simulations of di!erent kinds, including DFT; 2) due to the flexiblity of neural networks, it can be used on

a variety of physical inputs, notably di!erent kinds of descriptors; 3) our inherent-structure approach to CVs

could prove beneficial for dynamical analysis in other fields,including liquids/glasses [18], and proteins [19].

In this regard Sec. 2.5 showcases the performance attained by ISVs in describing of the complex structural

behavior of Bradichinin, a notable oligopepeptide, when solvated in water.. In addition, in order to demonstrate

that the ISV method can be suited also for the study of larger systems, the approach was also tested on a

larger metal nanocluster: Au309. Also in this case the resulting variables were able to e!ectively discriminate

di!erent structural motifs and making it possible to easily distinguish di!erent regions corresponding to fcc,

Dh and amorphous configurations, namely the main structural families that can be observed in the larger Au

cluster (See Fig. S25). Our full results for Au309 clusters are reported in the Supplementary Materials.

2.2 Free-energy landscape

We computed the FE landscape of Au147 at 400 K in the 2D space defined by the ISVs obtained by the strategy

illustrated in figure 1. We used Monte Carlo Umbrella Sampling simulations in combination with the Weighted

Histogram Analysis Method (WHAM) algorithm to unbias the probabilities of approximately 15, 000 restrained
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Figure 2: FE landscape of Au147. (a) Contour plot of the FE landscape obtained by US simulations at

396 K, after WHAM calculations. Color coding of the contours is associated to FE values, as reported in

the horizontal colorbar. For values of the free energies above 0.44 eV are displayed only the isolines. The

landscape can be divided, according to the FE, in three main regions: fcc and faulted-fcc structures region in

the bottom left, Ih and mixed structures region in top right and Dh region in the bottom right. Dh region is

connected via a saddle-point to twin and fcc region and via another saddle point to Ih and mixed structure

region, while the other two regions are not directly communicating on the landscape. In the top left is where

amorphous structures are located, which are associated with very high free energies at this specific temperature.

(b) Detailed enlargement of the FE contour plot shown in panel (a), showing the fcc and faulted-fcc region

together with the representative structures associated with the local minima and the bottleneck linking the fcc

region with the Dh basin. (c) Detailed enlargement of the FE contour plot shown in panel (a), showing the Dh

region and the representative structures associated with the local minima and the bottleneck connecting the

Dh region to Ih and Mixed structures. Atoms colored in green, pink, and white have fcc, hcp, and undefined

coordination, respectively.
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simulations spanning all relevant regions of the ISV space. This procedure allowed for the reconstruction the

FE landscape reported in figure 2. Further details are o!ered in the Methods section and Supplementary Text.

Previous attempts to reconstruct the structural FE landscape of metal nanoclusters were limited to clusters

of few atoms [42] or to selected structural transformations [14] due to lack of su”ciently informative and

low-dimensional CVs capable of comprehensively describing the structural wealth of nanoclusters.

The FE landscape in figure 2(a) o!ers a high-resolution picture of Au147 structures at 0.8 times the melting

temperature. At this temperature, the prevailing structure is Dh, followed by fcc and Ih; amorphous clusters,

which occupy the upper left corner, have large free energies (see the red isolines). As a first approximation, data

show that the FE landscape consists of three main basins: fcc, Dh, and Ih. Interestingly, the three basins are

connected by two kinetic bottlenecks (corresponding to the FE saddle points) separating fcc from Dh and Dh

from Ih. The Dh basin constitutes a central hub through which all structural transitions at 400 K are expected

to pass. Additionally, although not relevant at this temperature, the mildest slope leading to the amorphous

region is found close to the Dh-Ih bottleneck on the Ih side. As we will see, the topology and connectivity

between these basins, being based on inherent structural descriptors, o!ers a general and clear-cut picture of

equilibrium and non-equilibrium transitions for Au147, including the melting and freezing processes discussed

in Section 2.4.

The kinetic bottleneck separating the fcc basin from Dh is characterized by structures with surface defects.

These defected nanoclusters are characterized by the convergence of two hcp planes (which are the typical

feature of twin structures) that give rise to the first seed of a local five-fold axis [43], i.e., the distinguishing

feature of the decahedral geometry (figure 2(b)). The saddle point between Dh and Ih features the formation

of an hcp island at the surface of an otherwise decahedral cluster (figure 2(c)).

A closer look to the three main basins highlights the presence of multiple local minima in the fcc and Dh

basins, which correspond to metastable structures. The former basin is populated by fcc and various defected

structures thereof, chiefly characterized by twinning plane(s) (figure 2(b)). Perfect fcc occupies a rather broad

FE minimum at the extreme left. Immediately close to it, a minimum corresponding to a twin cluster with the

hcp plane immediately below the surface is found. The basin then forks into a sub-basin on the lower right,

which gathers clusters with a single twinning plane in di!erent central positions, and one on the upper right,

with multiple minima corresponding to di!erent arrangements of two hcp planes.

In the Dh basin, the most populated sub-basin corresponds to a central five-fold axis, with multiple local

minima pertaining to di!erent kinds of surface defects (figure 2(b)). As expected the absolute FE minimum

coincides with the perfect Dh structure. Importantly, in between the two main saddle points separating fcc

from Dh and Dh from Ih, a local minimum is present characterized by the presence of an hcp island; although

characterized by a relatively large FE, this structure occupies a pivotal point for many transitions. Other local
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Figure 3: Experimental HAADF-STEM micrographs of Au147. Gold nanoclusters are size-selected to

be composed of 147 ± 3 atoms and scans are performed at di!erent temperatures. Representative structures

are shown: (a) fcc (300 ↑C), (b) decahedron with the local pentagonal arrangement marked (350 ↑C), (c)

icosahedron (300 ↑C), and (d) amorphous (200 ↑C).

minima exist on the far right in which a groove is formed at the cluster’s surface. At this temperature, only

one Ih minimum is present, corresponding to the perfect structure. However, a pseudoplateau is present close

to the bottleneck, corresponding to mixed structures with mainly amorphous and Ih features [29] that play a

major role in melting and freezing.

To explore the validity of the simulations, we imaged experimentally size-selected gold clusters, soft-landed

onto a carbon support, with the aberration-corrected high-angle annular dark field (HAADF) STEM [44].

Imaging at such small sizes poses intrinsic di”culties, due to the fast structural transitions (see next section)

and to the interactions of the electron beam with the cluster. Nonetheless, results for Au147 confirm the

main structural families found by simulation: fcc features are clearly visible in several clusters (figure 3(a));

the five-fold axis characteristic of Dh was also detected (figure 3(b)); regular Ih-like structures with arc-like

surface features could also be imaged, especially at higher temperatures (figure 3(c)). Finally a proportion of

amorphous clusters are seen at all temperatures (figure 3(d)).

2.3 Transition rates and mechanisms

The description o!ered by ISVs, other than performing FE calculations, allows in general to have an on-the-fly

description of the dynamics of the system in the low dimensional space. This feature can be exploited to

gather information from unbiased trajectories and their dynamical evolution. We made use of that in order

to complete the picture o!ered by the FE landscape and gather information about the kinetics of the main

transitions highlighted by the landscape of figure 2(a). We applied very established methods to obtain such

information, namely Markov State Models (MSM) [45] together with Transition Path Theory (TPT) [46].

These methods rely on the analysis of a great collection of relatively short unbiased trajectories, described by

an appropriate set of observables, in order to quantify the timescales of the slowest processes of a system.
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Thanks to the ISVs, we were able to launch a wealth of unbiased trajectories, about 4000, distributed over

the most relevant regions of the space and track their dynamical evolution, which then has been fed to the

aforementioned analysis tools (see Figs. S14-S15-S16-S17).

Analysis of unbiased trajectories allowed us to compute the committor for the transitions between the

three major structural families, i.e. Ih-Dh and fcc-Dh transition (Figs. S18-S19). Given two states A and B,

simply defined as regions in the CV space, for the A → B transition the forward committor can be defined as

q+ = P(εB < εA), εB and εA being the time intervals needed for a trajectory to visit basin B or A, respectively.

In a similar way, the backward committor can be defined as q↓ = P(εA < εB) = 1 ↑ q+. In a nutshell, the

forward committor measures the probability that a trajectory started at a given point in the ISV space ends

up in state B (q = 1) rather than A (q = 0). For instance, the forward committor for the fcc/Dh transition

reported in figure 4(a) shows that trajectories started in the Ih or Dh basins most likely fall in the Dh basin,

while those initialized in the fcc one will fall in fcc. While this is intuitive, the most important finding is the

exact matching between the region where q = 0.5 computed from unbiased trajectories and the saddle point in

the FE landscape computed independently by US (the fcc/Dh bottleneck). Similarly, the committor for Ih-Dh

transition test has been found to be in good agreement with the FE landscape (figure S18(b)). This provides

a strong validation of the quality of the ISVs, which describe these processes without the artefacts due to

insu”cient CVs [1].

In addition to the committor, overall transition rates and mean first passage times between the three most

relevant basins were computed. The rates were estimated by feeding to the MSM the stationary probability

distribution computed by means of US simulations (figure 2). The states chosen for this analysis correspond to

the three main basins (Dh, fcc, and Ih) which are also those relevant for experiments. The plot in figure 4(b)

shows that Ih-Dh is the fastest transition, happening in ca. 1.5 µs; the related FE barrier is !F = 6 kBT ,

leading to an estimated prefactor t0 = 3 ns, assuming an Arrhenius kinetics for the mean first passage time,

MFPT = t0 exp (!F/kBT ), with kB the Boltzmann constant and T the absolute temperature. On the other

hand, the fcc-Dh transition, which is characterized by a slightly higher barrier !F = 8 kBT , takes more than

100 times more, which corresponds to a much larger e!ective prefactor, t0 = 77 ns. This di!erence can be

understood if one considers the presence of multiple local minima in the fcc/twin basin that e!ectively slows

down di!usion to reach the kinetic bottleneck with Dh.

In figure 4(c) we report the most probable paths joining the fcc minimum with the Dh one, computed

by the string method [47] applied on the FE landscape. At least two independent paths are possible, one

passing through the simple twin minimum and one through the region corresponding to clusters with multiple

hcp planes. Even though both pass through the same transition state, the latter path corresponds to the

energetically favored option, as the intermediate barriers are lower (figure 4(d)). While these paths are the
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Figure 4: Rates and mechanisms of structural transitions. (a) Plot of the forward committor q+ values of

the fcc-Dh transition for di!erent regions of the landscape computed with TPT and MSM. (b) Graph plot of

the rates between the three macro region of the ISVs space, representing fcc and faulted-fcc structures (green),

Ih and mixed structures (orange) and Dh structures (red). Mean First Passage Times (MFPT) are written in

the table. The arrows width is proportional to the log of the ratio between the rates of the transitions (equal

to MFPT↓1) and the smallest rate (Ih→fcc). The circles areas are proportional to the equilibrium probabilities

of finding the system in one of the three states. (c) Countour plot with only isolines of the FE where two

di!erent optimal paths to go from the fcc basin to Dh absolute minimum are reported. Colorcode of the

contour is the same of figure 1(a) and it is reported in the colorbar on the right. (d) FE profile along the

two paths shown in panel (c). The scalebar reports the conversion to kbT units of the FE. (e) Plot versus

time of the two ISVs along two di!erent MD unbiased trajectories, initialized in the q+ = 0.5 region. The

two trajectories share same initial structure and opposite initial velocities and one is plotted in red for positive

times, while the other one is plotted reversed for negative times. Continuous thick black line marks the starting

time of both trajectories, while arrows point to the most notable transition steps. Below are reported the most

significant structures encountered along the transition. Atoms colored in green, pink, and white have fcc, hcp,

and undefined coordination, respectively.

11

Page 11 of 29 AUTHOR SUBMITTED MANUSCRIPT - ROPPR-100457.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



statistically most relevant ones in the limit of low thermal noise, the mechanism of the transformation can be

observed dynamically and in atomic detail by selecting reactive trajectories for the same transition. This can

be done by launching unbiased trajectories from the relevant transition state (q+ = 0.5) with di!erent initial

velocities and stitching together two reactive branches ending up in the products (q+ = 1) or in the reactants

(q+ = 0).

Figure 4(e) shows two trajectories initialized with opposite initial velocities, sharing the same initial config-

uration, selected in the transition state region. In such a way, due to the reversibility of the dynamics, the two

trajectories can be seen as two portions of the same dynamical evolution single reactive trajectory connecting

fcc to Dh, going forward and backward in time. On the ISV plots, we mark the times corresponding to the key

structural changes (indicated by the Roman numerals I to X ) during the transition.

In the initial phase (up to I ), the cluster fluctuates between fcc (e1) and hcp islands. At this point an

increase in ISV1 coincides with the development of peripheral stacking fault (SF) with partial {111} surface

facet (e2). Very briefly (II to III ), both ISV1 and ISV2 increase resulting in a higher fraction of SF in the

cluster and then there is a reduction in ISV2 without much appreciable change in ISV1 (III to IV ) leading to

the cluster adopting a twin plus hcp island (e3) and to a lesser extent twin structures. In this duration the

cluster makes an excursion to the SF again where ISV2 increases and back. The parallel twin (plus hcp island)

develops into a peripheral Dh (e4) around IV. A sharp rise in ISV1 around V coincides with the increase of

the length of some of the twin planes emanating from the Dh axis at the expense of the longest twin plane.

Around VI, ISV2 increases slightly in correspondance to the formation of hcp islands or an additional 5-fold

axis when the hcp islands are on the adjacent {111} facets (e5) which persists up to to the transition point

at 0 ns. Moving on to the forward branch, around VII, we observe the annihilation of an exiting peripheral

5-fold axis (e6) and creation of another peripheral 5-fold axis (e7). A further rearrangement pushes this 5-fold

axis inwards (e8). The cluster remains in this arrangement for a long period (up to VIII ) with appearance and

disappearance of hcp islands. A spike in ISV2 around 64 ns results in the cluster adopting a mixed structure

(Dh and Ih features co-exist) very briefly. A slight dip in ISV2 at VIII results in rearrangement of the surface

fcc islands which move away from the Dh axis (e9). This persists up to the beginning of another spike in

ISV2 which indicates a transformation into mixed structure (e10) with three 5-fold axes. After this the cluster

transforms back (IX ) into Dh structure with equi-length twins (e11). A final lowering in ISV2 around X takes

the cluster into best Dh minimum where the cluster adopts the global minimum structure (e12).

Overall, the above fcc → Dh transition can be summarized as ↑ fcc initially forms faulted structures with

twins/stacking faults which then leads to the formation of a peripheral 5-fold axis. This undergoes further

rearrangement with the 5-fold axis moving inwards and a quick excursion to the Ih/mix region leading to

Dh with equi-length twins which eventually rearranges to the global minimum Dh. The initial part of the
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transition from fcc to peripheral Dh was previously observed [48] in Cu170 and Ag146 nanoclusters. The twin

→ Dh transition in Au147 analyzed using disconnectivity graphs [31] suggested that the transition proceeds via

disordering with multiple 5-fold axes (i.e. Ih/mix structures). In contrast, our results show that disordering is

not necessarily needed to go from twin to Dh. However, we observed that a quick transformation to Ih/mix

structures lead to the formation of Dh with equi-length twins which is a feature of the global minimum.

2.4 Venturing into non-equilibrium: melting and freezing

ISVs obtained exploiting the inherent structure description are also feasible to analyze and drive non-equilibrium

simulations. To demonstrate this point, we performed freezing and melting simulations for Au147, imposing an

increasing or decreasing, respectively, temperature ramp of 1 K/ns to thousands of independent replicas, see

the Methods section for details. Figure 5 shows the distribution of structures observed at di!erent temperatures

during the freezing process.

A merit of the ISV space is to allow the visualization of the time-evolution of structural populations, which

can then be compared against the corresponding equilibrium estimates. These equilibrium distributions were

taken from US simulations at 400 K and from the parallel tempering data of [29] at other temperatures.

The system starts in the amorphous basin at 600 K and explores a region which coincides with equilibrium

expectations. At lower temperatures (500 K), the Ih basin, which is the closest one to amorphous, becomes

densely populated, with a prevalence of mixed structures; few trajectories also fall in the Dh and fcc basins.

At even lower temperatures (400 K), the amorphous population has disappeared, leaving room to the three

main structural motifs. Interestingly, when one compares the populations obtained in non-equilibrium and in

equilibrium, there is a striking di!erence concerning Ih and Dh (figure 5(a)): Ih are kinetically trapped in

the freezing simulations accounting for ca. 40% of the population, while the equilibrium fraction would be

negligible. This happens mainly at the expense of the Dh population that decreases from 80% down to 50%

in non-equilibrium (at 400 K). If the cooling is su”ciently fast (and the temperature is then kept low), it is

possible to select Ih clusters. More generally, ISVs produce an intuitive map that could be useful for designing

controlled freezing protocols capable of selecting specific polymorphs [28] in clusters of di!erent metals and

sizes; actually, this approach is expected to be more e!ective for larger clusters for which the typical transition

rates are slower [49].

The melting simulations follow a similar protocol, with the initial configurations being extracted from the

three main (meta)stable basins. To achieve melting of Dh and fcc clusters (figure 6(a) and (b)), the system

has to traverse the mixed region in the Ih basin which, due to its position, plays a major role in both melting

and freezing. Interestingly, if the system is initialized close to a perfect Ih (figure 6(c)), it still has to traverse

the same mixed region but it reaches it for the first time at much lower temperatures. The system is thus
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Figure 5: Freezing of Au147. (a) Comparison between fractions of main structural families vs. temperature

observed in freezing simulations (top panel) and equilibrium simulations (bottom panel) performed in the

work of [29]. The structures have been split in the same 4 structural families shown in figure 2(a). Fractions

of amorphous structures are reported by the blue lines, fcc/faulted-fcc by green lines, Dh by red lines and

Ih by orange lines. (b) Instantaneous distributions for all freezing trajectories at three specific temperatures,

T0 = 600 K, T1 = 500 K, T2 = 400 K, highlighted also in the non-equilibrium fractions plot of panel (a).

For the plots of T0 and T1 below the points there are the contour plots of the log densities of PT-MD data

from [29] at those specific temperatures. For the plot of T2 the contour plot of the FE shown in figure 2(a) is

shown. Points are colored according to their structure type using the same color code as in panel (a).
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Figure 6: Melting of Au147. (a) Fractions of main structural families vs. temperature observed in melting

simulations initialized from a Dh structure. The structures have been split in the same 4 structural families

shown in figure 2(a). Fractions of amorphous structures are reported by the blue lines, fcc/faulted-fcc by green

lines, Dh by red lines and Ih by orange lines. (b) Fractions of main structural families vs. temperature observed

in melting simulations initialized from an fcc structure. Same color code of panel (a). (c) Fractions of main

structural families vs. temperature observed in melting simulations initialized from an Ih structure. Same color

code of panel (a).
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able to overcome the Ih-Dh barrier and to populate the Dh basin; Dh then melts with the usual mechanism at

higher temperatures (> 500 K). The crucial role played by mixed/Ih structures close to the melting/freezing

temperature is further supported by the fact that they can be observed by HAADF-STEM at high temperatures

(figure 3(c)).

2.5 Generality of ISVs: the case of the bradykinin peptide

In order to demonstrate the generalisability of the proposed ISV framework, we used it for the real-time

classification of the structural motifs of a biomolecule: the bradykinin peptide (BK). To study computationally

BK structural motifs, we first generated a dataset of 10,000 structures by running Hamiltonian Replica Exchange

Molecular Dynamics (H-REMD). A 2D representation of the conformational landscape is then obtained by

training an AE with the same strategy illustrated in figure 1 but using as descriptor of the structures the

10↓10 matrix of the pairwise distances between ω-carbons. At a later stage, a k-means clustering [50] with 16

centroids was performed to characterize how di!erent structures were distributed in the 2D ISV space generated

by the network, shown in figure 2.4a. The structural analysis performed on the k-means clusters suggests that

the points in the ISV space can be broadly grouped in three main structural families corresponding to three

di!erent regions of the space, namely distorted S-shaped conformations (upper left region) , distorted W-shaped

conformations with a N-terminal loop (upper right region), and W-shaped conformations (lower region). For a

detailed description of the clustering, see the Supporting Materials (figures S20 and S21, tables S2 and S3 )

Long (500 ns), unbiased MD simulations started in each of these regions demonstrate that trajectories remain

confined each within its initial regions presumably signalling the presence of large free-energy barriers separating

the three structural families (figure 2.4b).

More in detail, the trajectory starting in the upper right basin spends most of its time in cluster 6,

corresponding to a distorted W-shape with an N-terminal loop in hairpin-like conformation. The high stability

of this conformation is likely due to the persistent interactions (hydrogen bond or salt bridge) between the side-

chain of Arg1 and the COO- terminal group of Lys10 or, alternatively, the carbonyl group of Arg9 (figure 2.4c).

These interactions are present in all W-shaped conformations, but the structures in this basin also exhibits a

hydrogen bond between the NH3+ terminal group of Arg1 and the side-chain hydroxyl or the backbone carbonyl

group of Ser6. Due to its remarkable stability, cluster 6 lies at the centre of all conformational transitions in

this basin with cluster 14 and 15 at the periphery (figure 2.4c). This picture is consistent with the relative

positions of these clusters in the ISV space (figure 2.4a), and with the ISV-based analysis of a long unbiased

trajectory initialized by a configuration in cluster 6.

Figure 2.4f shows that the trajectory originating from cluster 5 spends most of the time in cluster 7. In this

case, the path goes back and forth along the sequence C5→C13→C2→C7 spanning asymmetric hairpin-like
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Points are coloured according the cluster label in panel (a). Structural diagram depicting the main structural

transitions (e) and time history of the ISVs (f) for the trajectory initialised in cluster 5.

Points are coloured according the cluster label in panel (a). Structural diagram depicting the main structural

transitions (e) and time history of the ISVs (f) for the trajectory initialised in cluster 5.

Figure 7: Real-time structural classification of bradykinin peptide dynamics via ISVs. (a) 2D ISV space

generated by training the network using as descriptors the distance matrices of the di!erent BK structures.

The variables have been named BK-ISV to distinguish them from the Au147 ISVs. In the plot, the points are

coloured according to the results of k-means clustering with 16 centroids. (b) Plot of three 500-ns unbiased

trajectories initialised in di!erent regions of the ISV space: from cluster 6 (red), cluster 5 (green), and cluster

0 (yellow). The dark blue points below represent the training data. Structural diagram depicting the main

structural transitions (c) and time history of the ISVs (d) for the trajectory initialised in cluster 6.

Points are coloured according the cluster label in panel (a). Structural diagram depicting the main structural

transitions (e) and time history of the ISVs (f) for the trajectory initialised in cluster 5.
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(clusters 5 and 13), S-shaped (2), and distorted S-shaped conformations (7) all belonging to the same basin.

Finally, the trajectory starting in cluster 0 and visiting the lower basin of W-shaped motifs has the highest

structural variability and is described in the Supplementary Material (figure S22).

In summary, ISVs have enabled the characterization of the complex structural landscape of the BK pep-

tides and the dynamical interconversions between motifs, highlighting their potential for the study of diverse

molecular systems. Furthermore, these results also demonstrate the flexibility of ISVs in working with various

descriptors, which can thus be tailored to the specific system or computational needs. In the BK case, the

distance matrix was used that is computationally more e”cient than the RDF.

3 Conclusions

In conclusion, we devised a ML approach to obtain few general and yet informative collective variables that

enable the dynamical analysis of structural transitions. We coupled information from instantaneous atomic

configurations and the related inherent structures using autoencoders. This approach distilled a small set of

inherent structural variables capable of finely describing the structural landscape, evolution, and transitions of

metal nanoclusters, both in equilibrium and in non-equilibrium. Our ISVs, in conjunction with umbrella sam-

pling, allowed us to compute a high-resolution two-dimensional FE landscape of Au147 nanoclusters, revealing

that the topology of the structural space comprises three major FE basins: fcc, Dh, and Ih. Scanning trans-

mission electron microscopy experiments confirmed the existence of these structures in Au147. In addition, our

simulations shown that the minima are connected by two kinetic bottlenecks with Dh at the centre. The basins

are populated by several local FE minima, accounting, at finite temperature, for a wealth of metastable states

and structural transitions among them. Transition rates between the three main FE basins were computed by

means of Markov state models, which allowed to validate quality of the ISVs by means of committor evalua-

tions. In addition, the two ISVs were capable of tracking the structural evolution of non-equilibrium melting and

freezing simulations, rationalizing routes to polymorph selection and recurring melting patterns. The scalability

of the network was checked up to Au clusters of 309 atoms The generality of the strategy was tested by using

ISVs to describe in real-time the structural rearrangements of the bradykinin peptide, showing the existence

of three basins corresponding to di!erent motifs and punctuated by local minima. The successful analysis

of this elusive biological case and the di!erent descriptors used showcase the versatility of ISVs, suggesting

their applicability in di!erent contexts, including the field where the idea of inherent structures originated, i.e.,

liquids [13] but also glasses [18], colloids [51], and biomolecules [19].
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4 Materials and Methods

4.1 Deep Learning

ISVs are obtained by training a modified autoencoder neural network, which associates to the descriptors of a

non-minimised structure its inherent counterpart, being for Au147 the descriptors the RDFs of the structures,

while for bradykinin the distance matrices of alpha carbons. The network has the typical convergent-divergent

architecture of autoencoders, where the first half, i.e. the encoder, is composed of convolutional layers, while

the second half, i.e. the decoder mirrors the encoder and is composed of deconvolutional layers. The ISVs for

Au147 are obtained as output of the trained encoder. The dataset for the network training is a collection of

613, 872 Au147 structures generated by means of Parallel Tempering. Reducing by 90% the dataset yielded

satisfactory results for the fcc showing that the quality rather than the quantity of data matters, see figures S23

and S24. Every structure was then minimised leading to the computation of the RDF for both instantaneous

and inherent structures. Details about the BK dataset can be found in the bradykinin simulations section.

The network has then been trained with a bottleneck size equal to 2 for both systems, feeding it the non-

minimised structures descriptors and comparing the outputs with the associated inherent structures descriptors

via a Mean Square Error loss function.

For a more detailed description of the dataset, network architecture and training, see Supplementary Text.

4.2 Umbrella Sampling Monte Carlo simulations

Umbrella sampling simulations [52] were performed using a Metropolis Monte Carlo code which was custom

written in C++ for this purpose (Supplementary Text). A total of 15, 022 simulations, distributed all over

the ISV landscape have been performed. Simulations have been initialized using the thermalized structure in

the training dataset that is closest to the restraining value. After careful tuning the harmonic spring constant

of the umbrellas has been set equal to 0.1 eV. The simulations consisted in a total of 20 · 106 MC moves.

CVs values have been sampled every 5 · 103 moves for a total of 4 · 103 samples for every simulation. After

discarding the first 1/4 of samples, random sampling with replacement was used to generate 10 di!erent

samplings from the original populations. FE was then reconstructed using each of these samplings allowing

for the statistical error estimation via the boostrapping method. For the reconstruction of the FE landscape

for each boostrap realization the WHAM algorithm [53] has been used in the implementation by Grossfield

[54]. A more detailed description of the simulations procedure with information on the convergence of the FE

reconstruction is provided in the Supplementary Text.
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4.3 Molecular Dynamics and Markov State Models

MD simulations were performed using the LAMMPS code [55] augmented with custom Python code to perform

on-the-fly estimation of the ISVs. Simulations have been thermalized using a Langevin thermostat with a

time constant of 1.0 ps. A 5 fs timestep was used during integration. Each integration was carried for 0.5

µs (corresponding to 100 · 106 timesteps), during which the sampling of the ISVs was performed every 50

ps resulting in a total of 104 samples for every simulation. A grand total of 4, 448 of these simulations

have been performed, starting from initial configurations distributed all over the most relevant regions of

the FE landscape (figure S14(a)). These simulations amounted to a total sampling time of 2.2 ms. Again

simulations have been initialized by picking the thermalized structure of the training dataset closest to the

selected starting point. MSM [45] calculations have been performed using the DeepTime [56] library. This

analysis has been conducted in the ISV space, leveraging information on the stationary distribution obtained

by the US calculations. Committor was estimated using Transition Path Theory [57, 46] as implemented in

DeepTime library [56]. Additional information regarding MSM is reported in the Supplementary Text.

4.4 Non Equilibrium simulations

Non Equilibrium MD simulations (freezing and melting) were performed using the LAMMPS code using a

Langevin thermostat with the same time settings described in the previous section. The freezing simulations

start from a highly disordered liquid configuration which is equilibrated at 600 K for 1 ns. The temperature is

then decreased at a rate of 1 K/ns to a final temperature of 300 K. In the case of melting we considered four

di!erent initial configurations – fcc, twin, Ih, and Dh. The initial configurations are equilibrated at 300 K for

1 ns and then the temperature is raised to 600 K at a rate of 1 K/ns. In both the cases, configurations were

sampled every 5 ps in the temperature range of 450 K to 550 K and 50 ps at other temperatures. A total of

4200 freezing simulations and 300 melting simulations were performed.

4.5 Bradykinin simulations

The BK decapeptide by Gori et al. [32] (RPPGFSPFRK) was built using the xleap tool of the AmberTools23

[58] package. All simulations have been performed with the Amber18 suite [59] of programs using the force

field !14SB [60] and the TIP3P water model [61]. Seven sodium and ten chloride ions were added to neutralize

the charge of the cationic peptide and reach a 0.15 M concentration of NaCl. The system first underwent 1000

steps of steepest descent minimisation followed by 9000 steps of conjugate gradient minimisation. The system

was then equilibrated for 2 ns in the NPT ensemble keeping the temperature at 300 K with the Langevin

thermostat with collision frequency of 1 ps↓1, and the pressure at 1 atm using the Berendsen barostat with

pressure relaxation time of 2 ps. The equilibration continued for other 2 ns in the NVT ensemble(simulated via
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Langevin Thermostat) keeping the temperature fixed at 300 K. In Hamiltonian Relica Exchange simulaitions

several replicas of the system were run in parallel at the same temperature. The replicas share the same

features, yet they are characterized by di!erent potential energy functions. In our case, the torsional term of

the force field had been altered by scaling factors ci . We used 32 replicas with exponentially decreasing ci ,

from 1.0 in the unperturbed replica to 0.10 in the last replica (1.0, 0.93, 0.86, 0.80, 0.74, 0.69, 0.64, 0.60,0.56,

0.52, 0.48, 0.45, 0.42, 0.39, 0.36, 0.33, 0.31, 0.29, 0.27, 0.25, 0.23, 0.22, 0.20, 0.19, 0.17, 0.16, 0.15, 0.14,

0.13, 0.12, 0.11, 0.10). We checked that this settings allow for an acceptance probability of the exchanges of

70%. Each replica was equilibrated for 2 ns in the NVT ensemble with its specific scaled potential. The H-

REMD simulation was run for 100 ns using the same settings as the NVT simulation, with exchange attempts

every 1 ps. The classification obtained by k-means clustering in the ISV space was validated against a purely

structural classification obtained by the quality threshold method [62]. In the latter case, the metrics employed

was the maximum di!erence between distances of corresponding pairs of carbon atoms. As summarised in

tables S2 and S3 some clear correlations emerge in the two classifications. For instance, ISV-clusters 6, 8, and

9 (W-shaped conformations) correspond to QT-clusters 2, 1, and 5 respectively also representing the same

structural motif. Similarly, ISV-cluster 2, corresponding to S-shaped conformations, is mapped into QT-cluster

6 populated by a majority of S-shaped conformations. In the case of hairpin-like and extended conformations,

the correspondence between clusters is more complex. However, also in this case ISV-clusters tend to be mapped

into QT-clusters exhibiting the same structural motif.

4.6 Experimental Methodology

The Swansea University Nanocluster Source (SUNS), located at the B07 beamline of the Diamond Light Source

synchrotron, was used to produce and deposit gold clusters for experimental Scanning Transmission Electron

Microscope (STEM) imaging and thus structure comparison with the theoretical results via the Simulation

Atlas approach [44, 63, 64]. Size-selected Au147 clusters (N=147 ± 3 atoms) were deposited onto silicon

nitride heating chips (DENS Solutions) using this DC magnetron-sputtering, inert-gas condensation cluster

beam source coupled with a lateral time-of-flight mass selector and deposition stage [65, 66]. The mass filter

(resolution M/!M=25 ) was calibrated with a beam of Ar+ ions. To reduce cluster agglomeration, the cluster

beam was rastered across the support to deposit a uniform coverage (approximately 1% by projected surface

area) on the Silicon Nitride imaging window. Clusters were soft-landed [67] at a kinetic energy of 1 eV/atom

and allowed to di!use and immobilise at pre-formed defect sites created in advance by sputtering of the

window with an Ar+ beam at 500 V for 10 minutes [68]. The agglomeration observed could be associated

with harmonics of the incidence Au147 clusters (see below).

HAADF-STEM images were acquired with a JEOL ARM300F (GRAND-ARM) microscope at the electron
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Physical Sciences Imaging Centre (ePSIC) at Diamond Light Source. The electron beam energy was 300 kV and

beam current was approximately 30 pA. The probe semi-angle was approximately 23 mrad and the HAADF

detector had an inner collection angle of approximately 58 mrad (outer angle approximately 215 mrad). A

DENS Solutions Wildfire holder was used to heat the samples to a range of temperatures (100 ↑C, 150 ↑C, 200

↑C, 250 ↑C, 300 ↑C and 350 ↑C consecutively). Temperature is monitored by a 4-point probe and is typically

stable to within ±1 ↑C; all samples were measured within a central window to ensure accuracy. Videos were

acquired using a plug-in for Digital Micrograph, with a frame acquisition time of 1.31 s.

The cluster structure typically fluctuates from frame to frame. The structural assignment of each frame

in each cluster video was accomplished by comparison with a Simulation Atlas generated using the abTEM

Python package [69]. The PRISM algorithm [70] was used to simulate images (electron energy of 200 keV),

a convergence semi-angle of 28 mrad, an interpolation factor of 4 and 10 frozen phonon iterations. Poisson

noise was added to the simulated data to approximate an electron fluence of 1 · 105 e↓/Å↓2 (which is on the

order of the fluence used in our imaging). We note that the electron energy and convergence semi-angle of

the simulations do not exactly match those of the experiment, but the relevant structural elements used to

assign the cluster structures do not depend on the microscope parameters and so the isomers can be assigned

regardless.

The Au147 clusters were identified as the smallest clusters in each video frame; also found on the surface

were larger clusters ↑ being multiples of 147 atoms, as judged by their integrated intensities [71], presumably

formed by surface agglomeration. The illustrative example images shown in figure 3 are low-noise Au147 clusters.

The images shown were chosen to illustrate the principal structural motifs observed in the experiments. These

images were processed by application of a high frequency filter to suppress noise and adjustment of brightness

and contrast. A colour gradient was also mapped onto the greyscale images to better highlight the structural

features. The processed frames are compared with the best fits in the simulation atlases for icosahedral,

decahedral and fcc structures of an Au147 cluster. The atlases cover the full range of polar and azimuthal

orientations. Recent examples of this approach are [22], [72] and [73]. Key to the manual best matching

process are the patterns and symmetries in the core region of the nanoparticle, where the signal is highest.

22

Page 22 of 29AUTHOR SUBMITTED MANUSCRIPT - ROPPR-100457.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Acknowledgments

We thank John Russo for useful discussions.

Funding: We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mis-

sion 4, Component 2, Investment 1.1, Call for tender No. 104 published on 2.2.2022 by the Italian Ministry of

University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title PINENUT

– CUP D53D23002340006 - Grant Assignment Decree No. 957 adopted on 30/06/2023 by the Italian Ministry

of University and Research (MUR). We thank Diamond Light Source for access to and support in use of the

electron Physical Science Imaging Centre (Instrument E02, Proposal Number: MG28449), and gratefully ac-

knowledge EPSRC grant EP/V029797/2 for support of the electron microscopy. tealMR is grateful to EPSRC

(via Swansea University) and Johnson Matthey for a PhD scholarship. HH is grateful to EPSRC (via the M2A

CDT at Swansea University) and Diamond Light Source for an EngD scholarship.

Author contributions: E.T. and A.T. designed the Machine Learning algorithms and programmed the

MD/MC simulation codes. E.T. coded the Neural Networks, performed equilibrium simulations and analyzed

simulation data. A.T. supervised simulation work and data analysis. C.G. and L.K.K. performed bradykinin sim-

ulations. C.G. performed bradykinin structural analysis. M.S. performed structural analysis and non-equilibrium

simulations. E.T., A.T., R.F., and A.G. conceptualized the work.

H.H. produced the clusters under the supervision of B.v.I., G.H. and R.E.P. M.D. performed ac-STEM imaging

of clusters under the supervision of T.S.; T.S. produced the Simulation Atlas. M.R. matched experimental

images to the simulation atlas under the supervision of R.E.P.; H.H, B.v.I., G.H., T.S., M.R., and R.E.P. wrote

the experimental section of the manuscript under the coordination of R.E.P. .

L.M. supervised rare event methodology, R.F. and A.G. supervised the work. A.G. wrote the original draft,

which was reviewed and approved by all authors.

Competing interests: There are no competing interests to declare.

Data and materials availability: Data and code will be opely available on dedicated repositories.

Supplementary materials

Supplementary Text, Figs. S1 to S19, Table S1

23

Page 23 of 29 AUTHOR SUBMITTED MANUSCRIPT - ROPPR-100457.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



References

[1] Peter G Bolhuis et al. “Transition path sampling: Throwing ropes over rough mountain passes, in the

dark”. In: Annual review of physical chemistry 53.1 (2002), pp. 291–318.

[2] Peter G Bolhuis, Christoph Dellago, and David Chandler. “Reaction coordinates of biomolecular isomer-

ization”. In: Proceedings of the National Academy of Sciences 97.11 (2000), pp. 5877–5882.

[3] Daan Frenkel and Anthony JC Ladd. “New Monte Carlo method to compute the free energy of arbitrary

solids. Application to the fcc and hcp phases of hard spheres”. In: The Journal of chemical physics 81.7

(1984), pp. 3188–3193.

[4] Alessandro Laio and Michele Parrinello. “Escaping free-energy minima”. In: Proceedings of the national

academy of sciences 99.20 (2002), pp. 12562–12566.

[5] Luca Maragliano and Eric Vanden-Eijnden. “A temperature accelerated method for sampling free energy

and determining reaction pathways in rare events simulations”. In: Chemical physics letters 426.1-3

(2006), pp. 168–175.

[6] Phillip L Geissler et al. “Autoionization in liquid water”. In: Science 291.5511 (2001), pp. 2121–2124.

[7] Rosalind J Allen, Chantal Valeriani, and Pieter Rein Ten Wolde. “Forward flux sampling for rare event

simulations”. In: Journal of physics: Condensed matter 21.46 (2009), p. 463102.

[8] Mohammad M Sultan and Vijay S Pande. “Automated design of collective variables using supervised

machine learning”. In: The Journal of chemical physics 149.9 (2018).
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