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Polytechnique Fédérale de Lausanne (EPFL), Sion 1950, Switzerland

E-mail: antonio.tinti@[uniroma1.it/epfl.ch]

Received 22 October 2024, revised 19 April 2025
Accepted for publication 15 May 2025
Published 5 June 2025

Corresponding editor: Dr Lorna Brigham

Abstract
Finding proper collective variables for complex systems and processes is one of the most
challenging tasks in simulations, which limits the interpretation of experimental and simulated
data and the application of enhanced sampling techniques. Here, we propose a machine learning
(ML) approach able to distill few, physically relevant variables by associating instantaneous
configurations of the system to their corresponding inherent structures as defined in liquids
theory. We apply this approach to the challenging case of structural transitions in nanoclusters,
managing to characterize and explore the structural complexity of an experimentally relevant
system constituted by 147 gold atoms. Our inherent-structure variables are shown to be effective
at computing complex free-energy landscapes, transition rates, and at describing
non-equilibrium melting and freezing processes. In addition, we illustrate the generality of this
ML strategy by deploying it to understand conformational rearrangements of the bradykinin
peptide, indicating its applicability to a vast range of systems, including liquids, glasses, and
proteins.
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1. Introduction

Describing atomic/molecular processes is a notoriously dif-
ficult endeavor [1] even in apparently simple cases such as
the isomerization of a small molecule [2]. Producing a low-
dimensional representation of such processes usually requires
the introduction of functions of the system coordinates, called
collective variables (CVs). CVs can be exploited in advanced
simulation techniques [3–5] for accelerated sampling, free-
energy (FE) calculations, and identification of transitionmech-
anisms for a variety of phenomena, including transitions in
hard [3], soft, and biological [2] matter, and chemical reactions
[6]. More generally, starting from the unpractical description
in terms of atomic coordinates, CVs attempt to distil essen-
tial physical information about complex processes including
non-equilibrium ones [7].

Recently, machine learning (ML) has emerged as an invalu-
able tool for the discovery of CVs [8–12] in overly complic-
ated systems or when physical intuition fails. In this work, we
introduce a generally applicable ML approach for characteriz-
ing structural transitions of actual physical systems. We define
CVs capable of discriminating structural motifs in noisy finite-
temperature configurations based on their zero-temperature
counterparts, taking inspiration from the inherent structure
concept which we borrow from the theory of liquids [13]
(figure 1(a)). In order to devise few, physically informed CVs,
we employ a neural network characterized by the convergent-
divergent architecture typical of autoencoders. We train the
network such that, while taking structural descriptors evalu-
ated on finite-temperature realizations as inputs, it learns to
associate them to the zero-temperature counterparts of the
original descriptors in the output (figure 1(b)). The result-
ing latent variables, which we call inherent structure variables
(ISVs), can be thus computed on-the-fly during the dynam-
ical evolution of a system. In addition, they offer a unified
description of instantaneous configurations belonging to dif-
ferent temperatures, as they refer to the associated inherent
configurations. For the same reason, ISVs can be adopted
to describe both equilibrium and non-equilibrium conditions.
The present approach constitutes therefore a unique mapping
between instantaneous configurations and a universal repres-
entation that enables, within the same framework, phase space
exploration, FE and rate calculations or trajectory analysis,
and are general interest for any system in which structural
diversity is an issue, e.g. nanoclusters [14, 15], bulk crystals
[3, 16], glasses [17, 18], and biomolecules [19, 20].

Here, the ISV approach is applied to structural transitions
in metal nanoclusters, a challenging class of experimentally
relevant systems characterized by a startling variety of motifs

[21]. Indeed, due to their small size, metal nanoclusters can
break translational and rotational symmetries, allowing for
multiple twinned structures such as icosahedra (Ih) and deca-
hedra (Dh) in addition to standard crystal lattices, as face-
centered-cubic (fcc) [21, 22]. Moreover, they support sev-
eral types of surface and internal defects and overall shapes
[23–25]. Additionally, we showcase the generality of the ISV
approach by applying it to detect dynamical conformational
changes in the bradykinin (BK) peptide.

Navigating the structural complexity of clusters has been a
long-standing challenge [26]. The fact that dozens of structural
families can be identified in metal nanoclusters [27] makes
the question about the kinetics and mechanisms of transitions
between them even more urgent: how do the atoms of an fcc
nanocluster rearrange into a decahedral one? At what rates
does such a process take place? Previous studies [14, 28] of
structural transitions in metal nanoclusters have relied on care-
fully identified CVs tailored for a specific transition. However,
considering the structural complexity of metal clusters, CVs
capable of capturing the fine structural details and navigat-
ing the variety of structural motifs is crucial and non-trivial.
Parallel tempering (PT) has proven an effective means to
explore the structural landscape of coinage metals [29, 30]
exploiting configuration exchanges between replicas at differ-
ent temperatures to overcome FE barriers without the need of
specifying CVs. Building upon this large database of struc-
tures, we recently usedML to construct a low dimensional rep-
resentation of such a landscape that is both physically mean-
ingful and capable of discriminating fine structural details
[27]. The key idea was using a translationally and rotationally
invariant representation of the cluster, the radial distribution
function (RDF), and reduce its dimensionality using a convo-
lutional autoencoder. This approach allowed us to classify loc-
ally minimized structures into tens of structural families.

The CVs we defined in [27] are efficient at classifying
structures after the removal of thermal noise by means of
energy minimization. However, in order to study the finite-
temperature evolution of nanoclusters and employ enhanced
simulation approaches, CVs able to deal with noisy, finite-
temperature configurations are needed. This is the goal of
the present work that was achieved by the ML approach
introduced above (figure 1) using RDFs as suitable structural
descriptors. In fact, the ISV concept can be implemented using
different descriptors depending on the system of interest and
on the required level of detail, as demonstrated in the addi-
tional biomolecule case we considered, where an interatomic
distance matrix is employed.

The first system considered in this work is a gold nano-
cluster of 147 atoms (Au147), which is a magic number
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for the formation of Ih, Dh, and fcc clusters. This cluster
was specifically selected because it is characterized by the
coexistence, over a wide range of temperatures, of a much
widervariety of structural motifs with respect to other ele-
mental clusters of similar size [30]. This structural wealth
was confirmed by scanning transmission electron micro-
scopy (STEM) of size-selected nanoclusters, which is repor-
ted below. As a consequence of the competition of many struc-
tural motifs, Au147 represents a vastly challenging system des-
pite the relatively small number of atoms and the consequent
affordability of computer simulations [29, 31].

To demonstrate the generality of the proposed approach,
we additionally considered the challenging case of tracking
in real-time the dynamical conformational changes of a small
and flexible biomolecule in water, a BK-derived decapeptide
[32]. BK is a hormone involved in inflammation, blood vessel
dilation and pain perception that binds to specific G-protein
coupled receptors (GPCR) [33]. To circumvent the scarce
availability of structural data on GPCRs BK and other natural
agonists have been used as templates in the design of novel
drugs targeting this receptor family [34]. Additionally, BK is
a curvature-sensing peptide that has been engineered to recog-
nize and purify nanoscale vesicles such as liposomes and small
exosomes from the blood serum [32]. Structural characteriza-
tion of BK remains elusive, as existing studies report conflict-
ing conformational data [34, 35], leaving its precise structure
in water unresolved. We thus use this challenging case to fur-
ther put the ISV framework to the test. For BK, the chosen
descriptor was the distance matrix between the α-carbons,
while the training set was generated using Hamiltonian rep-
lica exchange. These different implementation choices further
underscore the flexibility of the ISV approach and of the pro-
posed neural network architecture.

2. Results and discussions

2.1. Inherent structural variables by ML

In this section, we devise an approach to build a low-
dimensional structural description that enables on-the-fly
structural analysis and biasing of molecular simulations. In
order to achieve this goal, instantaneous configurations are
used as an input, differently from similar approaches aiming
at the static classification of [27] which rely solely on locally
minimised structures. The proposed approach for obtaining
descriptors with a general structural meaning from instantan-
eous configurations draws inspiration from the inherent struc-
ture idea pioneered by Stillinger and Weber for liquids [13]:
each instantaneous configuration is thought as a fluctuation
around the closest local minimum on the potential energy
surface [36]; by quenching, one can refer each dynamical
configuration to its inherent structure which does not depend
on the particular way the original configuration was obtained
(equilibrium or non-equilibrium simulations, different temper-
atures, protocols, etc), see figure 1(a).

Similarly to our previous attempts, we leverage RDFs
as a convenient translationally and rotationally invariant

description of the atomic structures. From a structural point
of view, RDFs are particularly convenient descriptors as they
contain extensive information about the structure of clusters
[14, 27]—both long and short range order—regardless of
whether they are instantaneous configurations or locally min-
imized ones. The major drawback of RDFs, which has so far
limited their use as CVs, is related to their relatively high
dimensionality. This limitation can be alleviated by means of
ML. Alternative descriptors, such as SOAP [37] or ACE [38],
could be used when a detailed description of the local environ-
ment of individual atoms is required. However, for the nano-
cluster system hereby considered, RDFs are both computation-
ally more efficient and more sensitive to discriminate struc-
tural motifs in clusters [39], as they are able to also provide
abundant information regarding the overall cluster shape.

We propose to couple and compress the high-dimensional
information contained in RDFs relative to instantaneous and
inherent configurations by means of a conveniently modi-
fied convolutional autoencoder. Autoencoders are neural net-
works with a convergent-divergent architecture as sketched in
figure 1(b), well-suited for reducing the dimensionality of data
[40]. In our implementation (figure 1(b)), the RDF computed
from a specific instantaneous atomic configuration is fed to
the autoencoder. In parallel, the same atomic configuration is
subjected to a short energy minimization to quench it to the
local minimum, resulting in a noise-free RDF. The network is
then taught to minimize the mean squared error loss between
the output and the inherent-structure RDF, at variance with the
usual autoencoder strategy of matching identical inputs and
outputs. Thus, in a single step, our network is capable of ana-
lyzing instantaneous atomic configurations and match them
with their inherent structure, while producing a low dimen-
sional representation. In data science terms, the strategy can be
summarized as a classification task where each instantaneous-
configuration RDF is labeled according to its inherent coun-
terpart. In summary, by non-linearly combining information
from the input and the output, the bottleneck obtained by such
an approach provides a limited number of descriptors, the
ISVs, capable of assigning similar values to different instant-
aneous configurations which share the same inherent structure.

As an application, we considered a real-world example,
a gold nanocluster consisting of 147 gold atoms, Au147.
Interactions are modeled via the many-body ‘Gupta’ second-
moment tight-binding QEq potential [41]. This potential is
known to capture well the of variety structural motifs of gold
at this size [27], which correspond to those experimentally
observed in our STEM data shown in the following. We note
that other approaches, such as DFT calculations, could in prin-
ciple be used in conjunction with the ISVs, although it is
outside the scope of this work which is focused on demon-
strating the generality of the approach. The training set was
taken from [29], using Au147 configurations generated by PT
at different temperatures. Details about dataset and training are
reported in the Methods section and in the supplementary text.

The most important hyperparameter of the autoen-
coder is the bottleneck size; here we found that the
optimal compromise between information compression and
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Figure 1. Proposed approach to distill inherent structural variables. (a) Schematic representation of the relation between instantaneous
configurations at finite temperature and the related inherent structures on the potential energy surface. Instantaneous configurations are
affected by significant thermal noise. A local minimisation removes the thermal contribution and allows obtaining of the corresponding
inherent structure. (b) Sketch the of working principle behind the ISV encoder-decoder neural network. Structural descriptors of the system,
such as the radial distribution function (RDF), constitute the encoder’s input, whose output is used by the decoder to reconstruct the inherent
state counterpart of the original descriptors. The mean square error (MSE) loss function is used to measure the performance of the network
in validation and training.

reconstruction performance was achieved for a bottleneck
of size 2 (see figure S3). By comparing the generated space
against the structural classification of [27], the two ISVs were
found to be expressive enough to encode the fine structural
details of the Au nanoclusters (see figure S4).

The possibility to compute structural CVs directly from
instantaneous structures opens the way to use them on-the-
fly in atomistic simulations, e.g. for analyzing the dynam-
ical structural evolution of the system and to bias trajector-
ies exploiting the intrinsic differentiability of neural networks.
Results below indeed show that the ISVs are suitable for FE
and rate calculations, as well as for analyzing non-equilibrium
processes in complex and realistic systems. We were able to
handle these diverse applications by training the network only
once, as the description conveniently unifies information from
different temperatures contained in the dataset.

We further remark that the proposed strategy is general in
several ways: 1) it can be used in conjunction with simulations
of different kinds, including DFT; 2) due to the flexiblity of
neural networks, it can be used on a variety of physical inputs,
notably different kinds of descriptors; 3) our inherent-structure
approach to CVs could prove beneficial for dynamical analysis
in other fields,including liquids/glasses [18], and proteins [19].

In this regard section 2.5 showcases the performance
attained by ISVs in describing of the complex structural beha-
vior of Bradichinin, a notable oligopepeptide, when solvated
in water.. In addition, in order to demonstrate that the ISV
method can be suited also for the study of larger systems,
the approach was also tested on a larger metal nanocluster:
Au309. Also in this case the resulting variables were able to
effectively discriminate different structural motifs and making
it possible to easily distinguish different regions correspond-
ing to fcc, Dh and amorphous configurations, namely the main
structural families that can be observed in the larger Au cluster
(see figure S25). Our full results for Au309 clusters are repor-
ted in the supplementary materials.

2.2. Free-energy landscape

We computed the FE landscape of Au147 at 400K in the 2D
space defined by the ISVs obtained by the strategy illustrated
in figure 1. We used Monte Carlo Umbrella Sampling sim-
ulations in combination with the weighted histogram ana-
lysis method (WHAM) algorithm to unbias the probabilities of
approximately 15000 restrained simulations spanning all rel-
evant regions of the ISV space. This procedure allowed for the
reconstruction the FE landscape reported in figure 2. Further
details are offered in the Methods section and supplementary
text. Previous attempts to reconstruct the structural FE land-
scape of metal nanoclusters were limited to clusters of few
atoms [42] or to selected structural transformations [14] due
to lack of sufficiently informative and low-dimensional CVs
capable of comprehensively describing the structural wealth
of nanoclusters.

The FE landscape in figure 2(a) offers a high-resolution pic-
ture of Au147 structures at 0.8 times the melting temperature.
At this temperature, the prevailing structure is Dh, followed
by fcc and Ih; amorphous clusters, which occupy the upper
left corner, have large free energies (see the red isolines). As
a first approximation, data show that the FE landscape con-
sists of three main basins: fcc, Dh, and Ih. Interestingly, the
three basins are connected by two kinetic bottlenecks (corres-
ponding to the FE saddle points) separating fcc from Dh and
Dh from Ih. The Dh basin constitutes a central hub through
which all structural transitions at 400K are expected to pass.
Additionally, although not relevant at this temperature, the
mildest slope leading to the amorphous region is found close
to the Dh–Ih bottleneck on the Ih side. As we will see, the
topology and connectivity between these basins, being based
on inherent structural descriptors, offers a general and clear-
cut picture of equilibrium and non-equilibrium transitions for
Au147, including the melting and freezing processes discussed
in section 2.4.
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Figure 2. FE landscape of Au147. (a) Contour plot of the FE landscape obtained by US simulations at 396K, after WHAM calculations.
Color coding of the contours is associated to FE values, as reported in the horizontal colorbar. For values of the free energies above 0.44 eV
are displayed only the isolines. The landscape can be divided, according to the FE, in three main regions: fcc and faulted-fcc structures
region in the bottom left, Ih and mixed structures region in top right and Dh region in the bottom right. Dh region is connected via a
saddle-point to twin and fcc region and via another saddle point to Ih and mixed structure region, while the other two regions are not directly
communicating on the landscape. In the top left is where amorphous structures are located, which are associated with very high free
energies at this specific temperature. (b) Detailed enlargement of the FE contour plot shown in panel (a), showing the fcc and faulted-fcc
region together with the representative structures associated with the local minima and the bottleneck linking the fcc region with the Dh
basin. (c) Detailed enlargement of the FE contour plot shown in panel (a), showing the Dh region and the representative structures
associated with the local minima and the bottleneck connecting the Dh region to Ih and Mixed structures. Atoms colored in green, pink, and
white have fcc, hcp, and undefined coordination, respectively.

The kinetic bottleneck separating the fcc basin from Dh is
characterized by structures with surface defects. These defec-
ted nanoclusters are characterized by the convergence of two
hcp planes (which are the typical feature of twin structures)
that give rise to the first seed of a local five-fold axis [43],
i.e. the distinguishing feature of the decahedral geometry
(figure 2(b)). The saddle point between Dh and Ih features the
formation of an hcp island at the surface of an otherwise deca-
hedral cluster (figure 2(c)).

A closer look to the three main basins highlights the pres-
ence of multiple local minima in the fcc and Dh basins, which
correspond to metastable structures. The former basin is pop-
ulated by fcc and various defected structures thereof, chiefly
characterized by twinning plane(s) (figure 2(b)). Perfect fcc
occupies a rather broad FE minimum at the extreme left.

Immediately close to it, a minimum corresponding to a twin
cluster with the hcp plane immediately below the surface is
found. The basin then forks into a sub-basin on the lower right,
which gathers clusters with a single twinning plane in differ-
ent central positions, and one on the upper right, with multiple
minima corresponding to different arrangements of two hcp
planes.

In the Dh basin, the most populated sub-basin corresponds
to a central five-fold axis, with multiple local minima per-
taining to different kinds of surface defects (figure 2(b)). As
expected the absolute FE minimum coincides with the per-
fect Dh structure. Importantly, in between the two main saddle
points separating fcc from Dh and Dh from Ih, a local min-
imum is present characterized by the presence of an hcp
island; although characterized by a relatively large FE, this

5



Rep. Prog. Phys. 88 (2025) 068002 E Telari et al

Figure 3. Experimental HAADF-STEM micrographs of Au147. Gold nanoclusters are size-selected to be composed of 147± 3 atoms and
scans are performed at different temperatures. Representative structures are shown: (a) fcc (300 ◦C), (b) decahedron with the local
pentagonal arrangement marked (350 ◦C), (c) icosahedron (300 ◦C), and (d) amorphous (200 ◦C).

structure occupies a pivotal point for many transitions. Other
local minima exist on the far right in which a groove is
formed at the cluster’s surface. At this temperature, only one
Ih minimum is present, corresponding to the perfect struc-
ture. However, a pseudoplateau is present close to the bottle-
neck, corresponding to mixed structures with mainly amorph-
ous and Ih features [29] that play a major role in melting and
freezing.

To explore the validity of the simulations, we imaged exper-
imentally size-selected gold clusters, soft-landed onto a car-
bon support, with the aberration-corrected high-angle annu-
lar dark field (HAADF) STEM [44]. Imaging at such small
sizes poses intrinsic difficulties, due to the fast structural trans-
itions (see next section) and to the interactions of the electron
beam with the cluster. Nonetheless, results for Au147 confirm
the main structural families found by simulation: fcc features
are clearly visible in several clusters (figure 3(a)); the five-
fold axis characteristic of Dh was also detected (figure 3(b));
regular Ih-like structures with arc-like surface features could
also be imaged, especially at higher temperatures (figure 3(c)).
Finally a proportion of amorphous clusters are seen at all
temperatures (figure 3(d)).

2.3. Transition rates and mechanisms

The description offered by ISVs, other than performing FE
calculations, allows in general to have an on-the-fly descrip-
tion of the dynamics of the system in the low dimensional
space. This feature can be exploited to gather information
from unbiased trajectories and their dynamical evolution. We
made use of that in order to complete the picture offered
by the FE landscape and gather information about the kin-
etics of the main transitions highlighted by the landscape of
figure 2(a). We applied very established methods to obtain
such information, namely Markov state models (MSMs) [45]
together with transition path theory (TPT) [46]. These meth-
ods rely on the analysis of a great collection of relatively
short unbiased trajectories, described by an appropriate set of
observables, in order to quantify the timescales of the slowest
processes of a system. Thanks to the ISVs, we were able to
launch a wealth of unbiased trajectories, about 4000, distrib-
uted over the most relevant regions of the space and track their

dynamical evolution, which then has been fed to the aforemen-
tioned analysis tools (see figures S14–S17).

Analysis of unbiased trajectories allowed us to compute the
committor for the transitions between the three major struc-
tural families, i.e. Ih–Dh and fcc-Dh transition (figures S18–
S19). Given two states A and B, simply defined as regions in
the CV space, for the A→B transition the forward committor
can be defined as q+ = P(τB < τA), τB and τA being the time
intervals needed for a trajectory to visit basin B or A, respect-
ively. In a similar way, the backward committor can be defined
as q− = P(τA < τB) = 1− q+. In a nutshell, the forward com-
mittor measures the probability that a trajectory started at a
given point in the ISV space ends up in state B (q= 1) rather
than A (q= 0). For instance, the forward committor for the
fcc/Dh transition reported in figure 4(a) shows that trajectories
started in the Ih or Dh basins most likely fall in the Dh basin,
while those initialized in the fcc one will fall in fcc. While this
is intuitive, the most important finding is the exact matching
between the regionwhere q= 0.5 computed from unbiased tra-
jectories and the saddle point in the FE landscape computed
independently by US (the fcc/Dh bottleneck). Similarly, the
committor for Ih–Dh transition test has been found to be in
good agreement with the FE landscape (figure S18(b)). This
provides a strong validation of the quality of the ISVs, which
describe these processes without the artefacts due to insuffi-
cient CVs [1].

In addition to the committor, overall transition rates and
mean first passage times (MFPTs) between the three most
relevant basins were computed. The rates were estimated by
feeding to the MSM the stationary probability distribution
computed by means of US simulations (figure 2). The states
chosen for this analysis correspond to the three main basins
(Dh, fcc, and Ih) which are also those relevant for experiments.
The plot in figure 4(b) shows that Ih–Dh is the fastest trans-
ition, happening in ca. 1.5µs; the related FE barrier is ∆F=
6kBT, leading to an estimated prefactor t0 = 3 ns, assuming an
Arrhenius kinetics for the MFPT= t0 exp(∆F/kBT), with kB
the Boltzmann constant and T the absolute temperature. On the
other hand, the fcc-Dh transition, which is characterized by a
slightly higher barrier∆F= 8kBT, takes more than 100 times
more, which corresponds to a much larger effective prefactor,
t0 = 77 ns. This difference can be understood if one considers
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Figure 4. Rates and mechanisms of structural transitions. (a) Plot of the forward committor q+ values of the fcc-Dh transition for different
regions of the landscape computed with TPT and MSM. (b) Graph plot of the rates between the three macro region of the ISVs space,
representing fcc and faulted-fcc structures (green), Ih and mixed structures (orange) and Dh structures (red). Mean first passage times
(MFPT) are written in the table. The arrows width is proportional to the log of the ratio between the rates of the transitions (equal to
MFPT−1) and the smallest rate (Ih→ fcc). The circles areas are proportional to the equilibrium probabilities of finding the system in one of
the three states. (c) Countour plot with only isolines of the FE where two different optimal paths to go from the fcc basin to Dh absolute
minimum are reported. Colorcode of the contour is the same of figure 1(a) and it is reported in the colorbar on the right. (d) FE profile along
the two paths shown in panel (c). The scalebar reports the conversion to kBT units of the FE. (e) Plot versus time of the two ISVs along two
different MD unbiased trajectories, initialized in the q+ = 0.5 region. The two trajectories share same initial structure and opposite initial
velocities and one is plotted in red for positive times, while the other one is plotted reversed for negative times. Continuous thick black line
marks the starting time of both trajectories, while arrows point to the most notable transition steps. Below are reported the most significant
structures encountered along the transition. Atoms colored in green, pink, and white have fcc, hcp, and undefined coordination, respectively.

the presence of multiple local minima in the fcc/twin basin
that effectively slows down diffusion to reach the kinetic bot-
tleneck with Dh.

In figure 4(c) we report the most probable paths joining the
fcc minimum with the Dh one, computed by the string method
[47] applied on the FE landscape. At least two independent
paths are possible, one passing through the simple twin min-
imum and one through the region corresponding to clusters
with multiple hcp planes. Even though both pass through the
same transition state, the latter path corresponds to the ener-
getically favored option, as the intermediate barriers are lower
(figure 4(d)). While these paths are the statistically most rel-
evant ones in the limit of low thermal noise, the mechanism of
the transformation can be observed dynamically and in atomic
detail by selecting reactive trajectories for the same transition.
This can be done by launching unbiased trajectories from the

relevant transition state (q+ = 0.5) with different initial velo-
cities and stitching together two reactive branches ending up
in the products (q+ = 1) or in the reactants (q+ = 0).

Figure 4(e) shows two trajectories initialized with opposite
initial velocities, sharing the same initial configuration, selec-
ted in the transition state region. In such a way, due to the
reversibility of the dynamics, the two trajectories can be seen
as two portions of the same dynamical evolution single react-
ive trajectory connecting fcc to Dh, going forward and back-
ward in time. On the ISV plots, we mark the times corres-
ponding to the key structural changes (indicated by the Roman
numerals I to X) during the transition.

In the initial phase (up to I), the cluster fluctuates between
fcc (e1) and hcp islands. At this point an increase in ISV1 coin-
cides with the development of peripheral stacking fault (SF)
with partial {111} surface facet (e2). Very briefly (II to III),
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both ISV1 and ISV2 increase resulting in a higher fraction of
SF in the cluster and then there is a reduction in ISV2 without
much appreciable change in ISV1 (III to IV) leading to the
cluster adopting a twin plus hcp island (e3) and to a lesser
extent twin structures. In this duration the cluster makes an
excursion to the SF again where ISV2 increases and back. The
parallel twin (plus hcp island) develops into a peripheral Dh
(e4) around IV. A sharp rise in ISV1 around V coincides with
the increase of the length of some of the twin planes emanat-
ing from the Dh axis at the expense of the longest twin plane.
Around VI, ISV2 increases slightly in correspondance to the
formation of hcp islands or an additional 5-fold axis when the
hcp islands are on the adjacent {111} facets (e5) which persists
up to to the transition point at 0 ns. Moving on to the forward
branch, around VII, we observe the annihilation of an exiting
peripheral 5-fold axis (e6) and creation of another peripheral
5-fold axis (e7). A further rearrangement pushes this 5-fold
axis inwards (e8). The cluster remains in this arrangement for
a long period (up to VIII) with appearance and disappearance
of hcp islands. A spike in ISV2 around 64 ns results in the
cluster adopting amixed structure (Dh and Ih features co-exist)
very briefly. A slight dip in ISV2 at VIII results in rearrange-
ment of the surface fcc islands which move away from the Dh
axis (e9). This persists up to the beginning of another spike
in ISV2 which indicates a transformation into mixed structure
(e10) with three 5-fold axes. After this the cluster transforms
back (IX) into Dh structure with equi-length twins (e11). A
final lowering in ISV2 around X takes the cluster into best
Dh minimum where the cluster adopts the global minimum
structure (e12).

Overall, the above fcc→Dh transition can be summarized
as—fcc initially forms faulted structures with twins/SFs which
then leads to the formation of a peripheral 5-fold axis. This
undergoes further rearrangement with the 5-fold axis moving
inwards and a quick excursion to the Ih/mix region leading
to Dh with equi-length twins which eventually rearranges to
the global minimum Dh. The initial part of the transition from
fcc to peripheral Dh was previously observed [48] in Cu170
and Ag146 nanoclusters. The twin → Dh transition in Au147
analyzed using disconnectivity graphs [31] suggested that the
transition proceeds via disordering with multiple 5-fold axes
(i.e. Ih/mix structures). In contrast, our results show that dis-
ordering is not necessarily needed to go from twin to Dh.
However, we observed that a quick transformation to Ih/mix
structures lead to the formation of Dh with equi-length twins
which is a feature of the global minimum.

2.4. Venturing into non-equilibrium: melting and freezing

ISVs obtained exploiting the inherent structure description are
also feasible to analyze and drive non-equilibrium simulations.
To demonstrate this point, we performed freezing and melt-
ing simulations for Au147, imposing an increasing or decreas-
ing, respectively, temperature ramp of 1K ns−1 to thousands
of independent replicas, see the Methods section for details.
Figure 5 shows the distribution of structures observed at dif-
ferent temperatures during the freezing process.

A merit of the ISV space is to allow the visualization of
the time-evolution of structural populations, which can then
be compared against the corresponding equilibrium estimates.
These equilibrium distributions were taken from US simula-
tions at 400K and from the PT data of [29] at other temper-
atures. The system starts in the amorphous basin at 600K and
explores a region which coincides with equilibrium expecta-
tions. At lower temperatures (500K), the Ih basin, which is the
closest one to amorphous, becomes densely populated, with
a prevalence of mixed structures; few trajectories also fall in
the Dh and fcc basins. At even lower temperatures (400K),
the amorphous population has disappeared, leaving room to
the three main structural motifs. Interestingly, when one com-
pares the populations obtained in non-equilibrium and in equi-
librium, there is a striking difference concerning Ih and Dh
(figure 5(a)): Ih are kinetically trapped in the freezing simu-
lations accounting for ca. 40% of the population, while the
equilibrium fraction would be negligible. This happens mainly
at the expense of the Dh population that decreases from 80%
down to 50% in non-equilibrium (at 400K). If the cooling is
sufficiently fast (and the temperature is then kept low), it is
possible to select Ih clusters. More generally, ISVs produce
an intuitive map that could be useful for designing controlled
freezing protocols capable of selecting specific polymorphs
[28] in clusters of different metals and sizes; actually, this
approach is expected to be more effective for larger clusters
for which the typical transition rates are slower [49].

The melting simulations follow a similar protocol, with
the initial configurations being extracted from the three main
(meta)stable basins. To achieve melting of Dh and fcc clusters
(figures 6(a) and (b)), the system has to traverse the mixed
region in the Ih basin which, due to its position, plays a major
role in both melting and freezing. Interestingly, if the system
is initialized close to a perfect Ih (figure 6(c)), it still has to
traverse the same mixed region but it reaches it for the first
time at much lower temperatures. The system is thus able to
overcome the Ih–Dh barrier and to populate the Dh basin; Dh
then melts with the usual mechanism at higher temperatures
(>500K). The crucial role played bymixed/Ih structures close
to the melting/freezing temperature is further supported by the
fact that they can be observed by HAADF-STEM at high tem-
peratures (figure 3(c)).

2.5. Generality of ISVs: the case of the BK peptide

In order to demonstrate the generalisability of the proposed
ISV framework, we used it for the real-time classification of
the structural motifs of a biomolecule: the BK peptide. To
study computationally BK structural motifs, we first gener-
ated a dataset of 10 000 structures by runningHamiltonian rep-
lica exchange molecular dynamics (H-REMDs). A 2D repres-
entation of the conformational landscape is then obtained by
training an AE with the same strategy illustrated in figure 1
but using as descriptor of the structures the 10× 10 matrix of
the pairwise distances between α-carbons. At a later stage, a
k-means clustering [50] with 16 centroids was performed to
characterize how different structures were distributed in the
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Figure 5. Freezing of Au147. (a) Comparison between fractions of main structural families vs. temperature observed in freezing simulations
(top panel) and equilibrium simulations (bottom panel) performed in the work of [29]. The structures have been split in the same 4 structural
families shown in figure 2(a). Fractions of amorphous structures are reported by the blue lines, fcc/faulted-fcc by green lines, Dh by red
lines and Ih by orange lines. (b) Instantaneous distributions for all freezing trajectories at three specific temperatures, T0 = 600K,
T1 = 500K, T2 = 400K, highlighted also in the non-equilibrium fractions plot of panel (a). For the plots of T0 and T1 below the points
there are the contour plots of the log densities of PT-MD data from [29] at those specific temperatures. For the plot of T2 the contour plot of
the FE shown in figure 2(a) is shown. Points are colored according to their structure type using the same color code as in panel (a).

2D ISV space generated by the network, shown in figure 7(a).
The structural analysis performed on the k-means clusters sug-
gests that the points in the ISV space can be broadly grouped in
three main structural families corresponding to three different
regions of the space, namely distorted S-shaped conformations
(upper left region), distorted W-shaped conformations with a
N-terminal loop (upper right region), and W-shaped conform-
ations (lower region). For a detailed description of the cluster-
ing, see the supporting materials (figures S20 and S21, tables
S2 and S3) Long (500 ns), unbiased MD simulations started
in each of these regions demonstrate that trajectories remain
confined each within its initial regions presumably signalling
the presence of large free-energy barriers separating the three
structural families (figure 7(b)).

More in detail, the trajectory starting in the upper right
basin spends most of its time in cluster 6, corresponding
to a distorted W-shape with an N-terminal loop in hairpin-
like conformation. The high stability of this conformation is
likely due to the persistent interactions (hydrogen bond or salt
bridge) between the side-chain of Arg1 and the COO– terminal

group of Lys10 or, alternatively, the carbonyl group of Arg9
(figure 7(c)). These interactions are present in all W-shaped
conformations, but the structures in this basin also exhibits
a hydrogen bond between the NH3+ terminal group of Arg1
and the side-chain hydroxyl or the backbone carbonyl group of
Ser6. Due to its remarkable stability, cluster 6 lies at the centre
of all conformational transitions in this basin with cluster 14
and 15 at the periphery (figure 7(c)). This picture is consist-
ent with the relative positions of these clusters in the ISV
space (figure 7(a)), and with the ISV-based analysis of a long
unbiased trajectory initialized by a configuration in cluster 6.

Figure 7(f) shows that the trajectory originating from
cluster 5 spends most of the time in cluster 7. In this
case, the path goes back and forth along the sequence
C5→C13→C2→C7 spanning asymmetric hairpin-like
(clusters 5 and 13), S-shaped (2), and distorted S-shaped
conformations (7) all belonging to the same basin. Finally, the
trajectory starting in cluster 0 and visiting the lower basin of
W-shaped motifs has the highest structural variability and is
described in the supplementary material (figure S22).
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Figure 6. Melting of Au147. (a) Fractions of main structural families
vs temperature observed in melting simulations initialized from a
Dh structure. The structures have been split in the same 4 structural
families shown in figure 2(a). Fractions of amorphous structures are
reported by the blue lines, fcc/faulted-fcc by green lines, Dh by red
lines and Ih by orange lines. (b) Fractions of main structural families
vs temperature observed in melting simulations initialized from an
fcc structure. Same color code of panel (a). (c) Fractions of main
structural families vs temperature observed in melting simulations
initialized from an Ih structure. Same color code of panel (a).

In summary, ISVs have enabled the characterization of
the complex structural landscape of the BK peptides and
the dynamical interconversions between motifs, highlighting
their potential for the study of diverse molecular systems.
Furthermore, these results also demonstrate the flexibility of
ISVs in working with various descriptors, which can thus be
tailored to the specific system or computational needs. In the
BK case, the distance matrix was used that is computationally
more efficient than the RDF.

3. Conclusions

In conclusion, we devised a ML approach to obtain few gen-
eral and yet informative CVs that enable the dynamical ana-
lysis of structural transitions. We coupled information from
instantaneous atomic configurations and the related inherent
structures using autoencoders. This approach distilled a small
set of inherent structural variables capable of finely describ-
ing the structural landscape, evolution, and transitions of metal
nanoclusters, both in equilibrium and in non-equilibrium. Our
ISVs, in conjunction with umbrella sampling, allowed us to
compute a high-resolution two-dimensional FE landscape of
Au147 nanoclusters, revealing that the topology of the struc-
tural space comprises three major FE basins: fcc, Dh, and Ih.
STEM experiments confirmed the existence of these structures
in Au147. In addition, our simulations shown that the minima
are connected by two kinetic bottlenecks with Dh at the center.
The basins are populated by several local FEminima, account-
ing, at finite temperature, for a wealth of metastable states and
structural transitions among them. Transition rates between
the three main FE basins were computed by means of MSMs,
which allowed to validate quality of the ISVs by means of
committor evaluations. In addition, the two ISVs were cap-
able of tracking the structural evolution of non-equilibrium
melting and freezing simulations, rationalizing routes to poly-
morph selection and recurring melting patterns. The scalabil-
ity of the network was checked up to Au clusters of 309 atoms
The generality of the strategy was tested by using ISVs to
describe in real-time the structural rearrangements of the BK
peptide, showing the existence of three basins corresponding
to different motifs and punctuated by local minima. The suc-
cessful analysis of this elusive biological case and the differ-
ent descriptors used showcase the versatility of ISVs, suggest-
ing their applicability in different contexts, including the field
where the idea of inherent structures originated, i.e. liquids
[13] but also glasses [18], colloids [51], and biomolecules [19].

4. Materials and methods

4.1. Deep learning

ISVs are obtained by training a modified autoencoder neural
network, which associates to the descriptors of a non-
minimized structure its inherent counterpart, being for Au147
the descriptors the RDFs of the structures, while for BK
the distance matrices of alpha carbons. The network has
the typical convergent-divergent architecture of autoencoders,
where the first half, i.e. the encoder, is composed of convo-
lutional layers, while the second half, i.e. the decoder mir-
rors the encoder and is composed of deconvolutional lay-
ers. The ISVs for Au147 are obtained as output of the trained
encoder. The dataset for the network training is a collec-
tion of 613,872 Au147 structures generated by means of
PT. Reducing by 90% the dataset yielded satisfactory res-
ults for the fcc showing that the quality rather than the
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Figure 7. Real-time structural classification of bradykinin peptide dynamics via ISVs. (a) 2D ISV space generated by training the network
using as descriptors the distance matrices of the different BK structures. The variables have been named BK-ISV to distinguish them from
the Au147 ISVs. In the plot, the points are colored according to the results of k-means clustering with 16 centroids. (b) Plot of three 500 ns
unbiased trajectories initialized in different regions of the ISV space: from cluster 6 (red), cluster 5 (green), and cluster 0 (yellow). The dark
blue points below represent the training data. Structural diagram depicting the main structural transitions (c) and time history of the ISVs (d)
for the trajectory initialized in cluster 6. Points are coloured according the cluster label in panel (a). Structural diagram depicting the main
structural transitions (e) and time history of the ISVs (f) for the trajectory initialized in cluster 5.

quantity of data matters, see figures S23 and S24. Every struc-
ture was then minimized leading to the computation of the
RDF for both instantaneous and inherent structures. Details
about the BK dataset can be found in the BK simulations
section.

The network has then been trained with a bottleneck size
equal to 2 for both systems, feeding it the non-minimized
structures descriptors and comparing the outputs with the asso-
ciated inherent structures descriptors via a mean square error
loss function.

For a more detailed description of the dataset [52], network
architecture and training, see supplementary text.

4.2. Umbrella sampling Monte Carlo simulations

Umbrella sampling simulations [53] were performed using
a Metropolis Monte Carlo code which was custom written

in C++ for this purpose (supplementary text). A total of
15022 simulations, distributed all over the ISV landscape have
been performed. Simulations have been initialized using the
thermalized structure in the training dataset that is closest to
the restraining value. After careful tuning the harmonic spring
constant of the umbrellas has been set equal to 0.1 eV. The
simulations consisted in a total of 20 · 106 MC moves. CVs
values have been sampled every 5 · 103 moves for a total of
4 · 103 samples for every simulation. After discarding the first
1/4 of samples, random sampling with replacement was used
to generate 10 different samplings from the original popula-
tions. FEwas then reconstructed using each of these samplings
allowing for the statistical error estimation via the boostrap-
ping method. For the reconstruction of the FE landscape for
each boostrap realization the WHAM algorithm [54] has been
used in the implementation byGrossfield [55]. Amore detailed
description of the simulations procedure with information on
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the convergence of the FE reconstruction is provided in the
supplementary text.

4.3. Molecular dynamics and MSMs

MD simulations were performed using the LAMMPS code
[56] augmented with custom Python code to perform on-the-
fly estimation of the ISVs. Simulations have been thermal-
ized using a Langevin thermostat with a time constant of
1.0 ps. A 5 fs timestep was used during integration. Each
integration was carried for 0.5µs (corresponding to 100 · 106
timesteps), during which the sampling of the ISVs was per-
formed every 50 ps resulting in a total of 104 samples for
every simulation. A grand total of 4448 of these simulations
have been performed, starting from initial configurations dis-
tributed all over the most relevant regions of the FE land-
scape (figure S14(a)). These simulations amounted to a total
sampling time of 2.2ms. Again simulations have been initial-
ized by picking the thermalized structure of the training data-
set closest to the selected starting point. MSM [45] calcula-
tions have been performed using the DeepTime [57] library.
This analysis has been conducted in the ISV space, leveraging
information on the stationary distribution obtained by the US
calculations. Committor was estimated using TPT [46, 58] as
implemented in DeepTime library [57]. Additional informa-
tion regarding MSM is reported in the supplementary text.

4.4. Non equilibrium simulations

Non equilibrium MD simulations (freezing and melting) were
performed using the LAMMPS code using a Langevin ther-
mostat with the same time settings described in the previ-
ous section. The freezing simulations start from a highly dis-
ordered liquid configuration which is equilibrated at 600K for
1 ns. The temperature is then decreased at a rate of 1K ns−1

to a final temperature of 300K. In the case of melting we
considered four different initial configurations—fcc, twin, Ih,
and Dh. The initial configurations are equilibrated at 300K
for 1 ns and then the temperature is raised to 600K at a rate
of 1K ns−1. In both the cases, configurations were sampled
every 5 ps in the temperature range of 450–550K and 50 ps at
other temperatures. A total of 4200 freezing simulations and
300 melting simulations were performed.

4.5. BK simulations

The BK decapeptide by Gori et al [32] (RPPGFSPFRK) was
built using the xleap tool of the AmberTools23 [59] pack-
age. All simulations have been performed with the Amber18
suite [60] of programs using the force field ff14SB [61] and
the TIP3P water model [62]. Seven sodium and ten chlor-
ide ions were added to neutralize the charge of the cationic
peptide and reach a 0.15M concentration of NaCl. The sys-
tem first underwent 1000 steps of steepest descent minimiz-
ation followed by 9000 steps of conjugate gradient minim-
isation. The system was then equilibrated for 2 ns in the NPT
ensemble keeping the temperature at 300K with the Langevin
thermostat with collision frequency of 1 ps−1, and the pressure

at 1 atm using the Berendsen barostat with pressure relaxa-
tion time of 2 ps. The equilibration continued for other 2 ns
in the NVT ensemble(simulated via Langevin Thermostat)
keeping the temperature fixed at 300K. In Hamiltonian rep-
lica exchange simulations several replicas of the system were
run in parallel at the same temperature. The replicas share the
same features, yet they are characterized by different poten-
tial energy functions. In our case, the torsional term of the
force field had been altered by scaling factors ci. We used
32 replicas with exponentially decreasing ci, from 1.0 in the
unperturbed replica to 0.10 in the last replica (1.0, 0.93, 0.86,
0.80, 0.74, 0.69, 0.64, 0.60,0.56, 0.52, 0.48, 0.45, 0.42, 0.39,
0.36, 0.33, 0.31, 0.29, 0.27, 0.25, 0.23, 0.22, 0.20, 0.19, 0.17,
0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10). We checked that this
settings allow for an acceptance probability of the exchanges
of 70%. Each replica was equilibrated for 2 ns in the NVT
ensemble with its specific scaled potential. The H-REMD sim-
ulation was run for 100 ns using the same settings as the NVT
simulation, with exchange attempts every 1 ps. The classific-
ation obtained by k-means clustering in the ISV space was
validated against a purely structural classification obtained
by the quality threshold method [63]. In the latter case, the
metrics employed was the maximum difference between dis-
tances of corresponding pairs of carbon atoms. As summar-
ized in tables S2 and S3 some clear correlations emerge in
the two classifications. For instance, ISV-clusters 6, 8, and
9 (W-shaped conformations) correspond to QT-clusters 2, 1,
and 5 respectively also representing the same structural motif.
Similarly, ISV-cluster 2, corresponding to S-shaped conform-
ations, is mapped into QT-cluster 6 populated by a majority
of S-shaped conformations. In the case of hairpin-like and
extended conformations, the correspondence between clusters
is more complex. However, also in this case ISV-clusters tend
to be mapped into QT-clusters exhibiting the same structural
motif.

4.6. Experimental methodology

The Swansea University Nanocluster Source, located at the
B07 beamline of the Diamond Light Source synchrotron, was
used to produce and deposit gold clusters for experimental
STEM imaging and thus structure comparison with the the-
oretical results via the Simulation Atlas approach [44, 64,
65]. Size-selected Au147 clusters (N = 147± 3 atoms) were
deposited onto silicon nitride heating chips (DENS Solutions)
using this DC magnetron-sputtering, inert-gas condensation
cluster beam source coupled with a lateral time-of-flight mass
selector and deposition stage [66, 67]. The mass filter (resolu-
tionM/∆M= 25) was calibrated with a beam of Ar+ ions. To
reduce cluster agglomeration, the cluster beam was rastered
across the support to deposit a uniform coverage (approx-
imately 1% by projected surface area) on the silicon nitride
imaging window. Clusters were soft-landed [68] at a kinetic
energy of 1 eV atom−1 and allowed to diffuse and immobilise
at pre-formed defect sites created in advance by sputtering of
the window with an Ar+ beam at 500V for 10min [69]. The
agglomeration observed could be associated with harmonics
of the incidence Au147 clusters (see below).
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HAADF-STEM images were acquired with a JEOL
ARM300F (GRAND-ARM) microscope at the electron
Physical Sciences Imaging Centre at Diamond Light Source.
The electron beam energy was 300 kV and beam current was
approximately 30 pA. The probe semi-angle was approxim-
ately 23mrad and the HAADF detector had an inner col-
lection angle of approximately 58mrad (outer angle approx-
imately 215mrad). A DENS Solutions Wildfire holder was
used to heat the samples to a range of temperatures (100 ◦C,
150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C consecutively).
Temperature is monitored by a 4-point probe and is typic-
ally stable to within±1 ◦C; all samples were measured within
a central window to ensure accuracy. Videos were acquired
using a plug-in for Digital Micrograph, with a frame acquisi-
tion time of 1.31 s.

The cluster structure typically fluctuates from frame to
frame. The structural assignment of each frame in each cluster
video was accomplished by comparison with a Simulation
Atlas generated using the abTEM Python package [70]. The
PRISM algorithm [71] was used to simulate images (electron
energy of 200 keV), a convergence semi-angle of 28mrad,
an interpolation factor of 4 and 10 frozen phonon iterations.
Poisson noise was added to the simulated data to approximate
an electron fluence of 1 · 105 e−/Å−2 (which is on the order
of the fluence used in our imaging). We note that the elec-
tron energy and convergence semi-angle of the simulations
do not exactly match those of the experiment, but the relev-
ant structural elements used to assign the cluster structures do
not depend on the microscope parameters and so the isomers
can be assigned regardless.

The Au147 clusters were identified as the smallest clusters
in each video frame; also found on the surface were lar-
ger clusters—being multiples of 147 atoms, as judged by
their integrated intensities [72], presumably formed by sur-
face agglomeration. The illustrative example images shown in
figure 3 are low-noise Au147 clusters. The images shown were
chosen to illustrate the principal structural motifs observed in
the experiments. These images were processed by application
of a high frequency filter to suppress noise and adjustment
of brightness and contrast. A color gradient was also mapped
onto the greyscale images to better highlight the structural fea-
tures. The processed frames are compared with the best fits
in the simulation atlases for icosahedral, decahedral and fcc
structures of an Au147 cluster. The atlases cover the full range
of polar and azimuthal orientations. Recent examples of this
approach are [22, 73] and [74]. Key to the manual best match-
ing process are the patterns and symmetries in the core region
of the nanoparticle, where the signal is highest.
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