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Abstract—With the proliferation of electric vehicles (EVs), 

vehicle-to-grid (V2G) capability emerges as a potential resource 

for load restoration after a large disruption. This paper presents a 

real-time post-disaster load restoration method for the 

coordinated power distribution networks (PDN) and urban traffic 

networks (UTN) with V2G response. The multi-period restoration 

problem is modeled as a dynamic programming-based multi-stage 

robust optimization model, addressing uncertainties of renewable 

generation and traffic demands. It incorporates a dynamic traffic 

assignment scheme to characterize vehicle travels and V2G 

services within short time slots. Then, an improved robust dual 

dynamic programming algorithm is proposed to solve the multi-

stage robust optimization problem. For online application, the 

solved value functions from each stage serve as per-period policies, 

leveraging knowledge of future uncertainties to quickly guide real-

time load restoration through distributed resource dispatch, 

network reconfiguration, and V2G assignments. Numerical 

experiments with a 33-bus PDN and 20-road UTN, plus a real-

world 91-bus PDN with 35-road UTN, validate the effectiveness of 

proposed restoration method. 

 

Index Terms—Vehicle-to-grid, power-transportation system, 

post-disaster real-time restoration, dynamic traffic flow, multi-

stage optimization, uncertainties. 

NOMENCLATURE 

Indices and Sets 

g, d Set of DG, set of loads 

w, i Set of DRE, set of PDN bus 

ij+/−(i)
 Set of PDN lines from/to bus i 

kb/h Set of UTN path containing road b/node h 

h(c)
 Set of UTN node (with FCS) 

b, t Set of UTN road, set of time intervals  

rs Set of O-D pairs 

u/o Superscript for EVs supporting V2G response or not 

m Set of island subsystems after reconfiguration 

sSt Set of valid iterations and sample points at stage t 

Parameters 

csd, cul  Penalties of load shedding, DRE curtailment  

 
 

rtv, 𝜇h,t
cm  Coefficient of traveling and V2G compensation 

V, Rg
+(−)  Nominal voltage magnitude, DG ramp limitation 

ωd  Critical ratio of load d 

ϕi  Root bus indicator, if a DG is located to i, ϕi = 1 

rij, xij  Resistance and reactance in line ij 

L(Q)Dd,t (Re)Active load demand of load d at period t 

tanφw/h   Power factor for DRE w or FCS located to node h 

frs,t   Forecast traffic demand for O-D pair rs at period t 

Arw,t   Forecast available power of DRE w at period t 


b
, h  Capacity of road b and FCS in node h 

Nsp   Limitation of switch operation times 

tb
0, p   Travel time of road a, factor for EV flow to power 

(∙)̅, (∙)  Upper/lower output limit of equipment (∙) 

Variables 

Ylij,m,t  Binary statues for line ij whether in subsystem m 

Yni,m,t Binary statues for bus i whether in subsystem m 

Yfij,t, Gti,t Unit commodity on line ij and generated from bus i 

νij,t
op/cl

 Binary statues for open/close of switch in line ij 

P(Q)d
g,t

  (Re)Active output of DG g at period t 

Vi,t Voltage magnitude in bus i at period t 

Vij,t  Auxiliary variable for voltage magnitude 

P(Q)r
w,t

   (Re)Active output of DER e at period t 

P(Q)f
ij,t

   (Re)Active power flow in line ij at period t 

P(Q)vg
h,t

 (Re)Active V2G power to FCS in node h at period t 

Lsd,t  Shedding power of load d at period t 

ub,k,t, qb,k,t  Inflow and outflow of road b, path k at period t 

xb,k,t

qd
, xb,k,t

ge
   Queue/total EV flow in road b, path k at period t 

yh,k,t, zh,k,t  Inflow and outflow of node h, path k at period t 

y
h,k,t
cs , zh,k,t

cs  Inflow and outflow of FCS in node h at period t 

xh,k,t

qu
, xh,k,t

sv   Queue and service flow of FCS in node h, period t 

y
h,k,t
sv , zh,k,t

fr
  Service/free inflow in FCS in node h at period t 

ξw,t, ςrs,t  Forecast error for DRE power and traffic demand  

I. INTRODUCTION 

ith the proliferation of EVs supporting the zero-carbon 

transition, numerous fast charging stations (FCSs) 

have been established, affecting both power flow in 

power distribution networks (PDN) and traffic flow in 

urban traffic networks (UTN) [1]. This deepens the coupling 

between PDN and UTN, where coordinated operation has 

shown economic and flexible benefits [2], [3]. As natural 
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disasters become more frequent and severe [4], resilient 

coordination of PDN and UTN during extreme events is crucial 

[5], especially for post-disaster restoration. Developing a real-

time load restoration strategy is essential to quickly serve 

critical users and provide emergency power for key 

transportation components like traffic control systems. 

For load restoration in coupled PDN and UTN systems, while 

implementing distributed resource dispatch and network 

reconfiguration in PDN, many studies utilize mobile energy 

storage in UTN to actively support underpowered PDN buses 

[6]-[7]. With the advent of vehicle-to-grid (V2G) technology, 

electric vehicles (EVs) have also emerged as potential mobile 

resources. Some studies [8]-[10], propose using EVs for PDN 

load restoration via V2G. However, these studies [6]-[10] often 

overlook the coordinated assignment and congestion issues of 

emergency devices or V2G EVs with regular vehicles based on 

UTN road parameters and origin-destination (O-D) traffic 

demand. Recent works in Refs. [11] address the coordinated 

assignment of V2G-participating EVs with other vehicles but 

enforce changes to the EVs’ travel destinations. In fact, EV 

owners with sufficient power should be able to opt for V2G 

response en route without altering their travel plans, 

incentivized by earning compensations. Moreover, existing 

relevant methods are computationally intensive, primarily 

focusing on day-ahead deployment or scheduling strategies, 

with few supporting rapid real-time restoration. 

In the real-time operation of coordinated PDN and UTN, 

most studies use a rolling horizon scheme known as model 

predictive control (MPC) to manage computational demands 

[12], [13], [14]. To manage uncertainties like distributed 

renewable energies (DRE), several studies have integrated two-

stage stochastic optimization (SO) and robust optimization 

(RO) with MPC method [15]. While MPC-based methods 

employing mobile emergency generators explored in [12], 

introducing EVs as real-time restoration resources adds 

significant complexity. This complexity arises from the real-

time need to manage congestion, queuing, and EV services in 

UTN within shorter time intervals, typically less than 15 

minutes, necessitating a dynamic traffic assignment (DTA) 

model. Unlike the static [2], [6], [11] and semi-dynamic [3] 

traffic assignment models, commonly used in day-ahead 

strategies, the DTA model accommodates UTN dynamics more 

effectively but is more complex to implement. The 

characteristics of different traffic assignment models are 

summarized and compared in Table Ⅰ. Although recent study 

[5] introduced a resilient scheduling model for integrated PDN 

and UTN under extreme events using the DTA model, it lacks 

support for real-time computation and does not consider V2G 

as restoration resources. 
TABLE Ⅰ  

FEATURES OF DIFFERENT TRAFFIC ASSIGNMENT MODELS 
Traffic 

assignment 
model 

Representative 

Ref. 

Time 

interval 

Real-time 

congestion, queuing, 
and EV service 

Static [2], [6], [11] 90 min × 

Semi-static [3] 15-90min × 

Dynamic [5], [28] 15min √ 

Due to the inherent short-sightedness of MPC-based 

methods, several advanced real-time dispatch approaches have 

emerged in other broader energy system operations. Some 

research applies linear affine rules to model the relationships 

between variables, extending MPC’s foresight [16], [17]. 

However, these affine solutions often yield suboptimal results 

due to linear approximation. Alternatively, other studies split 

multi-period optimization into single-stage problems connected 

by cascaded value functions that incorporate future 

information, thus addressing MPC’s limitations and forming a 

dynamic programming (DP)-formulated multi-stage 

optimization model [18]. To tackle uncertainties in real-time 

dispatch, DP-formulated multi-stage SO and RO models have 

been employed in energy storage systems [19], microgrids [20], 

and rapid-response devices [21], utilizing stochastic or robust 

dual dynamic programming (SDDP [18] or RDDP [22]) or their 

variants [21], [23] to secure high-quality outcomes. Notably, 

DP-based multi-stage RO sidesteps the complexities introduced 

by extensive scenario trees in SO counterparts while delivering 

robust solutions, making it particularly effective for enhancing 

system resilience and restoration. However, within the context 

of coordinated PDN and UTN, designing a restoration-oriented 

traffic-power flow model that incorporates V2G services for 

real-time interactions between PDN and UTN, and integrating 

it tractably into a DP-based multi-stage optimization scheme, 

remains a challenging and unexplored issue. 

In summary, existing studies exhibit the following research 

gaps: 

• A gap exists for a post-disaster load restoration model in 

coordinated PDN and UTN systems that effectively utilizes 

V2G responses to support critical loads while accommodating 

the coordinated assignment of V2G-participating EVs with 

other vehicles. This includes characterizing traffic congestion, 

queuing, and EV services in UTN within short time intervals. 

• There is a lack of an real-time optimization framework for 

post-disaster load restoration in coordinated PDN and UTN that 

addresses the short-sightedness of traditional MPC methods, 

supports rapid computations, and effectively handles 

uncertainties. 

In response, this paper introduces a novel real-time post-

disaster load restoration method for coordinated PDN and UTN. 

The contributions are summarized as follows: 

1) A robust load restoration method is proposed that real-time 

synchronizes distributed resource dispatch in the PDN, network 

reconfiguration, and congestion-aware V2G responses in the 

UTN to restore critical loads following a disaster. 

2) A practical application framework is developed to support 

the real-time restoration. The multi-period restoration is offline 

formulated and tackled as a DP-based multi-stage RO problem 

to account for uncertainties in DRE generation and O-D traffic 

demands. Then, a policy-guided decision scheme is featured in 

real-time restoration, derived from solved value functions that 

leveraging knowledge of future uncertainties, which addresses 

the short-sightedness of traditional MPC-based method and can 

cope with uncertainties effectively. 

3) An improved RDDP algorithm is customized for the 

efficient solution of the DP-based multi-stage RO restoration 

problem. It employs approximate convex hulls and Lagrange 

hyperplanes to construct value functions’ upper and lower 

bounds at each stage, refining solutions through iterative 

forward and backward passes until convergence is achieved. 

The rest of this paper is organized as follows. The detailed 

formulation of proposed post-disaster restoration model is 

provided in Section II, and Section Ⅲ presents the practical 
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application framework. Numerical simulation results are 

reported in Section Ⅳ. Section Ⅴ concludes this study. 

Ⅱ. MATHEMATICAL FORMULATION  

A. Problem Descriptions   

This study addresses the post-disaster restoration where 

connections between PDN and substations are disrupted, and 

certain PDN lines are damaged after a natural disaster. 

Although society resumes normal operations, some loads 

remain without power due to damage in the PDN lines. Grid 

repairs may take hours or days, while vehicles in the UTN 

resume operations [5], [11], [24]. The proposed V2G-based 

restoration scheme allows supporting-V2G EVs to assist in load 

restoration without disrupting their normal O-D tasks. EVs 

voluntarily assess compensation rewards and travel time costs 

to decide whether to participate, ensuring both safety and user 

autonomy.  

Fig. 1 outlines the proposed restoration scheme. In the PDN, 

distributed generators (DGs) and DREs are urgently dispatched, 

and switches are operated to reconfigure the network into island 

subsystems to support critical loads. Under V2G coordination, 

network reconfiguration needs to consider the aggregation of 

not only DGs and DREs near critical load buses in the PDN, but 

nearby FCSs for V2G services. Therefore, to enhance load 

restoration, the optimization for reconfiguration should align 

with the spatial and temporal status of vehicles within the 

coordinated PDN and UTN system.  

In UTN, varied vehicle travel demands are injected into 

origin nodes each operation interval, creating multiple O-D 

tasks. Considering the emergency context, FCSs allocated in 

UTN nodes are not available for charging services. Vehicles 

starting from origins per period are classified into EVs with 

sufficient power that can participate in V2G responses and other 

vehicles (including EVs unable to support V2G and fuel 

vehicles). FCSs set compensations to encourage EVs in the 

UTN for V2G responses, based on the pre-calculated marginal 

prices [25] of the connected PDN buses, reflecting their power 

status—whether normal or in shortage. Additionally, 

congestion and time costs are also considered to ensure the 

practically viable assignment of V2G EVs and other vehicles in 

the UTN. 

Substation

DG

DRE
DG

DRE

DG

Desti-
nation

Origin 

EVs with 
sufficient 

power

Other 
vehicles

DRE
Contingency

Contingency

Normal/short 
power supply 

bus
/

FCS 

FCS FCS 
/

Low/high 
compensation 

signal 

/
FCS (dis-)/ 
conducting 

V2G response

/
Routing of 

(others)/EVs 
supporting V2G

PDN

UTN

  
Fig. 1. Illustration of restoration of coordinated PDN and UTN with V2G 

response 

B. Deterministic model formulation 

This section presents the basically deterministic formulation 

for the proposed post-disaster restoration method, excluding 

uncertainties and the real-time computation framework. The 

objective function (1) coordinates the operation of the PDN and 

UTN systems. In the PDN, the objective is to minimize overall 

load shedding costs, considering the importance ratio of each 

load to prioritize critical loads, and to maximize the utilization 

of DRE resources. In the UTN, operation costs, including travel 

and queue time costs offset by V2G profits, are minimized. The 

DTA model used captures the evolution of traffic flow over 

short time segments, where traffic flow and travel time are 

positively correlated, differing from the Bureau function-based 

time variable used in STA models. Further details are provided 

in subsequent descriptions. 
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Constraints (2)-(20) based on the linearized DistFlow model 

[26] ensure power and voltage magnitudes are within 

permissible ranges during the restoration process. Constraints 

(2) and (3) limit the active, reactive power, and ramping 

capabilities of DGs. Constraints (4)-(5) define the consumption 

and available power characteristics of DERs. Constraints (6)-

(13) facilitate PDN reconfiguration into islanded subsystems 

through switch operations. Specifically, Constraints (6) and (7) 

ensure a radial topology for the PDN and that each bus belongs 

to a subsystem. Constraint (8) allows only lines with both ends 

within the same subsystem to remain active. Constraints (9)-

(11), employing the single-commodity flow method [27], 

guarantee connectivity of PDN subsystems post-

reconfiguration: Constraint (9) ensures inflow-outflow balance 

at each bus using commodity flow, constraint (10) mandates 

that root buses with DGs send out commodity flow, and 

constraint (11) verifies that active lines contribute to subsystem 

connectivity. Constraint (12) indicates power flow changes due 

to switch operations, with Constraint (13) limiting the total 

number of switch operations. Voltage regulations through 

Constraints (14)-(16) fix zero voltage drop at disconnected 

PDN lines. Constraints (17) and (18) maintain active and 

reactive power flow balance, while Constraints (19)-(20) 

enforce network capacity limits. 
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Fig. 2. Schematic of the DTA model 

To simulate real-time traffic assignment in UTN, where 

decision intervals often do not exceed 15 minutes, traditional 

static [2] or semi-static [3] models used for day-ahead 

scheduling become unsuitable. This paper employs a DTA 

model tailored for such short intervals, outlined in constraints 

(30)-(48) and derived from [28]. In the post-disaster scenario 

considered in this study, where the goal is to restore critical 

loads and normalize societal operations, the social optimal 

criterion is adopted, consistent with approaches used in extreme 

case scheduling of PDN and UTN [5], [29]. Fig. 2 illustrates the 

DTA model without differentiating superscripts for EVs 

supporting V2G (u) and other vehicles (o) for simplicity. 

Constraint (21) matches the uncertain traffic demands injected 

into O-D pairs with the inflow at the starting roads of potential 

routes. For example, b1 and b5 denote the start and end roads of 

route k1 in Fig. 2(a), respectively. Constraint (22) ensures the 

total inflow at the starting roads equals the total outflow at the 

ending roads daily. Indicator parameters δb,k
r

 and δb,k
s

 identify 

start and end roads within a route. For instance, if road b is the 

start of route k, then δb,k
r

 = 1; otherwise, it is 0. Constraints (23)-

(24) describe the dynamic changes in traffic flow on each road, 

addressing delays and queuing due to limited road capacity, as 

shown in Fig. 2(b). Finally, constraint (25) establishes the 

outflow capacity limit. 
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Fig. 2(c) demonstrates the traffic flow model at normal and 

FCS nodes within the UTN, where b1 is the preceding road, and 

b2 is the succeeding road of node h. Constraints (26)-(27) 

establish that the inflow at each node matches the outflow from 

its preceding road, and the outflow aligns with the inflow from 

its succeeding road. Parameters σb,h,k

pr
 and σb,h,k

su  determine 

whether road b is a predecessor or successor to node h in route 

k. If road b is the predecessor of node h, then σb,h,k

pr
 = 1; 

otherwise, it is 0. Constraint (28)-(29) ensures that the inflow 

and outflow of EVs supporting V2G at normal nodes, as well 

as other vehicles at both FCS and regular nodes, are balanced. 

Constraint (30) specifies that the inflow of EVs supporting V2G 

at FCS nodes includes both V2G response and non-response 

flows, while constraint (31) similarly defines the outflow. 

Constraint (32) guarantees the balance of total inflow and 

outflow for EVs participating in V2G responses. Constraints 

(33)-(34) account for dynamic queue and services in V2G flows 

within FCS nodes, considering the limited capacity of the FCSs. 

Constraint (35) sets the FCS capacities for V2G responses. 

Constraint (36) limits the V2G response flow for each route, 

ensuring it does not exceed the total number of injected V2G-

supported EVs minus those that have already completed a V2G 

response. Constraint (37) permits EVs with sufficient power to 

opt in or out of V2G activities, while ensuring the number of 

participants does not exceed the totally injected limit. 

Constraints (38) specify that the power returned to the PDN by 

FCSs in each period is proportional to the current V2G flow. 

Finally, Constraint (39) defines the reactive power 

characteristics of FCSs. 

 
/ /
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, ,

, , , , , , , , ,u cs u fr u c

h k t h k t h k t hz z z h k t= +       (31) 

 , ,
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h k t h k t h

t t
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 

=        (32) 
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
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h
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k

Pvg x p n t

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 , , , ,c

h t h t hQev Pvg tan h t=      (39) 

It is worth mentioning that Refs. [30] and [31] propose DTA 

under user equilibrium to model UTN operation, reformulating 

the model using variational inequality and an iterative method 

to handle non-linearity. Ref. [5] considers extreme conditions, 

similar to this study, with a social optimality-based DTA 

formulation. Due to the complexity of time-dependent travel 

variables, the model is also nonlinear, requiring an iterative 

framework with alternating updates and fixed flow propagation 

variables, like in [30] and [31]. The DTA model employed in 

this study maps time-varying travel times to output EV flows 

(Fig. 2(b)), discretizing nonlinear flow constraints and 

transforming the model into a linear optimization problem. This 

makes it easier to integrate into uncertainty-aware scheduling 

models. 

C. Uncertainties characterization 

The DRE output and O-D traffic demands are considered as 

uncertain variables in this study, as shown in (40). To capture 

these uncertainties, we introduce a data-driven polyhedral 

uncertainty set based on PCA [32], focusing on relative 

prediction errors. μ
t
re and μ

t
ta represent the mean matrices, and 

Dt
re  and Dt

ta  are the covariance matrices for DRE output and 

traffic demands at period t, derived via PCA. The normalized 

uncertain parameter is denoted by θt
re(ta)

, and adjustable factors 

1
re(ta)

 and 2
re(ta)

 balance cost-effectiveness and robustness.  

 
/

, ,{ | },  { | },u o

t w t t rs tw rs t =  =  ξ ς  (40) 

   
1 11 1

2 2

,

re re re ta ta ta

t t t t t t t t

re re ta ta

t t t t t

re re ta ta

t t

t

 

   
= + = +

   
   

 =         
   

      
   

ξ μ D θ ς μ D θ

ξ θ ς θ

θ θ

  (41) 

The proposed data-driven uncertainty set reduces the 

conservatism inherent in the traditional box uncertainty set used 

in the RO method [21]. This is achieved in two ways: 1. It uses 

historical data to determine the center of the uncertainty set, and 

2. It adopts a polyhedral form, which effectively eliminates 

regions with extremely low probabilities compared to the box 

form. Additionally, to further reduce conservatism, the values 

of parameters 1
re(ta)

 and 2
re(ta)

 can be adjusted. 

D. Reformulation to DP-based multi-stage RO model 

To enable real-time application, we reformulate the above 

deterministic model into a DP-based multi-stage RO model. 

Firstly, a multi-stage RO problem (42) is set up to integrate the 

proposed restoration approach and uncertainty set, where the 

nested “max-min” operators are used to make resilient 

decisions that can withstand the worst-case scenario, ensuring 

feasibility across all scenarios under post-disaster conditions. 

 

1 22 2 2

1 1 2 2
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−

+ +



+   =

  

p p pξ ς ξ ς
c p c p c p

D p h

E p D p ξ ς h ξ ς

p ξ ς

 (42) 

where, pt denotes the dispatch variables for the PDN and UTN 

systems in period t. The vector pt-1 covers the decisions made in 

the preceding periods [1:t−1]. The cost coefficients for real-

time decisions in period t are denoted by ct. Each period’s 

decision pt is dependent only on the uncertainty realizations ξt, 

ςt for that period, adhering to stage-wise independence. Dt 

represents the coefficient matrices for the constraints (2)-(39). 

Et links dynamic constraints, such as DGs ramping (3) and 

dynamic traffic flow evolution (23)-(24), across stages. ht is a 

right-hand side function matrix that varies with ξt and ςt. 

Then, the problem (42) is transformed into Bellman’s DP 

formulation, as detailed in (43)-(45), where the T-period 

restoration is recast as T-stage problems Q
t
 (t[1,T]) linked 

through cascaded value functions t+1  (t[1,T-1]). The DP-

based multi-stage RO model is leaded by follows: 

 

1 1 1 2 1

1 1 1

1

min  ( )

         . .  

               n m

s t

=



 

c p + p

D p h

p

Q

 (43) 

The value function t+1(pt) quantifies the total future cost 

associated with decision pt under the worst-case uncertainties 

realization for the restoration of coupled PDN and UTN. It is 

calculated as: 

 
1 1 1 1 1 1 1( ) max{ ( ; , ) : , }t t t t t t t t t + + + + + + += p p ξ ξQ  (44) 

where, t-th stage problem Qt (pt-1; ξt, ςt) is defined as: 

 

1 1

1

( ; , ) min  ( )

           . . ( , )

                 ,

t t t t t t t t

t t t t t t t

n m

t

s t

t

− +

−

=

+ 

  

p ξ ς c p + p

E p D p h ξ ς

p

Q

 (45) 

Ⅲ. PROPOSED SOLUTION METHOD AND APPLICATION 

FRAMEWORK 

In the proposed application framework, the DP-based multi-

stage RO model is solved by a proposed improved RDDP 

algorithm to derive optimal decision policies. Then, the real-

time restoration decisions are swiftly made through the solution 

of T policy-guided single-period problems.  

A. Offline optimization  

The offline optimization focuses on formulating and solving 

the model proposed in Section II. This type of DP-based multi-

stage RO model can be tackled using either the traditional [22] 

or enhanced RDDP algorithms [19], both of which require the 

value function t+1(pt) to be convexity. However, the presence 

of both binary and continuous elements in the state variable pt 

introduces non-convexity. To address this issue, we employ a 

smoothing technique inspired by SDDiP [23], which binarizes 

all state variables, thereby converting pt into a binarized form   

p
 

t using a piecewise approach. This allows the non-convex 

t+1(pt) to be transformed into t+1(p
 

t ) with a convex lower 

envelope. Following this, an improved RDDP algorithm is 

developed that establishes two bounds for the value functions 

as t+1(p
 

t )  t+1(p
 

t )  t+1(p
 

t ). This approach decomposes 

the DP problem into T upper and lower approximation 

subproblems (denoted by (46) and (47)), which are iteratively 

refined to close the gap between the bounds and the actual value 

function until convergence is achieved. 

 

11
,

1

( ) max min  ( )

          . .  ( , )

                ,

t t t

tt t t t t

t t t t t t t

n m

t

s t

t

  
+−



 

−

 +

=

+ 

 

ξ ς
p c p + p

E p D p h ξ ς

p

Q

 (46) 



6 

 

 

1 1

1

( ; , ) min  ( )

             . .  ( , )

                   ,

t t t t t ttt

t t t t t t t

n m

t

s t

t

  

− +

 

−

 +

= +

+ 

 

p ξ ς c p p

E p D p h ξ ς

p
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 (47) 

For the lower approximation of  t+1(p
 

t-1 ), the hyperplane 

method is utilized. Traditional Benders hyperplanes are 

ineffective for the multi-stage RO model due to the 

inapplicability of the strong dual theorem with discrete 

variables. To address this, the improved RDDP algorithm 

employs Lagrangian hyperplanes, as in SDDiP [23], to establish 

a tight lower bound for DP-based multi-stage models with 

mixed-integer recourse variables, using the zero-gap 

Lagrangian dual theorem. These Lagrangian hyperplanes are 

constructed by solving a relaxation problem for Qt based on 

uncertainty realizations (ξt, ςt) from the upper approximation 

problem (48). 
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 (48) 

Through the solution of (48), the coefficient of the 

Lagrangian hyperplanes, denoted as πt
* , along with the 

objective value Φt
* , can be determined. The Lagrangian 

hyperplanes are then added into refine t+1(p
 

t ) in problem (48) 

and are expressed as t+1(pt
)  Φt+1

* + πt+1
*p

t
. 

In the upper approximation problem (46), the upper bound 

t+1(p
 

t ) is obtained using a convex hull-based method. The 

conventional RDDP algorithm constructs the convex hull by 

enumerating extreme points [22], but this process is 

computationally demanding. To improve efficiency, this study 

introduces an approximate convex hull construction technique 

that employs convex combinations of sample points and penalty 

boundaries. The detailed formulation is provided as follows: 

 

1

1
,

( )

1

( ) max min  ( )

          . .  ( , )

                1,  0,  

                ,  0,  

t t t
t

t t

t

t

s k

t t t t t s t t t

s S

t t t t t t t

s s t

s S

s

s t t t t t

s S

s t

s S

 

 




+

  + −

−




 

−



 + −  +



= + +

+ 

=   

+ − = 







ξ ς

p

p c p + α Δ Δ

E p D p h ξ ς

p Δ Δ p Δ

Q

1

0

                , , ,

t

n m n m

t t t s

−

+ − +  +



  

Δ

Δ Δ p

 (49) 

In equation (49), the candidate state variable p
 

t for t+1(p
 

t ) 

is classified as either inside or outside the convex hull. If p
 

t  

falls within the range of previous sample points, t+1(p
 

t ) is 

expressed as a convex combination of these past points, denoted 

by (p
t
s, t

 s), using coefficients λs. For decisions outside this 

range, penalties are applied via boundary lines with adaptive 

penalty slopes αt
k [19], whose formulation is shown in (50). To 

handle the bilevel problem (49), vertex enumeration for t is 

adopted. The iterative construction of the convex hull t+1(p
 

t ) 

is shown in Fig. 3. 

 
*( )max{ ,  1: ( 2)}k j

t t j k k=    α π  (50) 

where πt
*(j)

 represents historical values from iterations 1 to k. 

The parameter ρ, tested to be between 1.5 and 2.0, ensures RIA 

remains above t+1(p
 

t ). With thes adaptive αt
k, the convex hull 

can explore more sample points at the beginning of the 

improved RDDP iteration, accelerating convergence and 

ensuring the optimality of solutions by the end of the iteration.  

The use of the approximate convex hull method for upper 

approximation has been effective in multi-stage RO problems 

with continuous recourse variables [19], [33], though its 

application to binary-transformed nonconvex value functions 

have not been investigated. However, Fig. 3 demonstrates that 

the improved RDDP algorithm remains effective in this context. 

The convex lower envelope aligns with the value functions at 

all decision sample points [23], and the upper approximation of 

binary-transformed value functions can match the lower 

envelope. Additionally, the approximate convex hull technique 

has been proven to provide tight and finite upper 

approximations for convex value functions [33]. Thus, despite 

the nonconvex nature of binary-transformed value functions, 

the improved RDDP algorithm is guaranteed to converge 

finitely, due to the effectiveness of both Lagrangian 

hyperplanes and the convex hull approach. 

(a) 2 sample points (b) 3 sample points
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Fig. 3. Iterative and effectiveness demonstration of improved RDDP algorithm 

The overall execution of the developed improved RDDP 

algorithm will be presented in Fig. 4(b), which is divided into 

Forward pass and Backward pass produces. During the 

Forward pass, which progresses from t  [1:T], the worst-case 

uncertainties realization (ξt, ςt) is identified by solving the 

problem Q t(pt-1
 ), and decision samples p

t
  are generated by 

solving the problem Qt(pt-1
 ;ξt,ςt). In the Backward pass, which 

proceeds from t[T:1], effective sample points are incorporated 

to refine the upper bound in (49), and inequalities are 

formulated to update the lower bound as (48). 

B. Real-time restoration 

To facilitate real-time post-disaster restoration of 

coordinated PDN and UTN systems, a policy-guided decision 

scheme is introduced, according to the real-time measurements 

of DRE outputs and traffic demands. Specifically, by solving 

the proposed DP-based multi-stage RO model in the offline 

optimization, the solved value functions t+1
∗

 for each dispatch 

period (t[1,T-1]) are obtained by filtering out the final t+1 
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after the RDDP algorithm terminates. Aggregating future 

information into hyperplanes formulated policies, real-time 

distributed resource generation, network reconfiguration, and 

V2G responses can be swiftly directed. The policy-guided 

restoration problem (51) for period t follows the same 

formulation as Qt. While the dispatch policy t+1
∗

, along with 

the real-time measured DRE power ξt
*
 and traffic demand ςt

*, 

are input as parameters. 

 
1

* *

min  ( )

 . .  ( , )

t t t t

t t t t t t ts t

  

+

 + 

c p + p

E p D p h ξ ς
 (51) 

Since t+1
∗

 encapsulates aggregated future information, 

including both decision relationships and uncertainties, only T 

single-period problems need to be solved during the real-time 

restoration of the coupled PDN and UTN system. This proposed 

real-time restoration method effectively accounts for 

uncertainties with robustness and overcomes the short-

sightedness of MPC and affine rule-based methods. 

Additionally, it improves computational efficiency by 

eliminating the need for additional rolling horizons.  

C. Overall process of application framework 

The flowchart of the proposed application framework for 

real-time restoration of coordinated PDN and UTN systems is 

summarized in Fig. 4. In the offline optimization, the process 

starts with data initialization, identifying the post-disaster 

system state, and collecting predicted DRE output and traffic 

demand. We pre-solve a deterministic optimal dispatch model 

considering only the PDN and extract the marginal prices (dual 

multipliers) as input for the restoration method. This provides 

more accurate electricity price parameters than studies [28], 

[34], which set prices artificially. Notably, other advanced 

dynamic marginal pricing schemes that account for the PDN-

UTN interaction [25], [30] can also be directly integrated into 

the compensation price acquisition step in the offline portion of 

Fig. 4. The DP-based multi-stage RO model is then formulated 

and solved using the improved RDDP algorithm to derive real-

time policies t+1
∗

. 

In the real-time application, T-period decoupled restoration 

problems are solved sequentially. For each period t, the 

measured DRE power and traffic demand are input into the 

policy-guided restoration problem (51), quickly determining 

binarized restoration decisions p
 

t . The reverse binarization 

method [35] is then applied to convert the binary decision p
 

t

back to its continuous counterpart. 

IV. CASE STUDY 

A. Simulation setting 

The effectiveness of the proposed real-time restoration 

method is demonstrated using a modified IEEE 33-bus PDN 

with a 20-road UTN (33P-20U) and a real-world system in 

Zhejiang Province, China, comprising 91 PDN buses and 35 

UTN roads. It is worth mentioning that the UTN considered in 

this study spans one or more districts within a medium-sized 

city, with the longest road measuring around 50 km [36]. Travel 

on each road, assuming no congestion, can be completed within 

an hour, ensuring high user participation in V2G without 

altering  their  destination.  The  load  shedding penalty is set at 
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Fig. 4. Flowchart demonstration of proposed application framework 

$40/kWh, while the DRE curtailment cost is $8/kWh. The 

queue cost coefficient for UTN nodes and roads is $0.2 per 

vehicle per period, and the total operations for soft open 

switches is capped at 12. Uncertainty factors 1 and 2 are set 

to 2 and 1.5. V2G service prices at each FCS are based on the 

marginal price of the corresponding PDN bus, calculated from 

the dual multiplier after solving the restoration model without 

uncertainties. The convergence criterion for the improved 

RDDP algorithm is set to ε = 0.001, with network parameters, 

load critical ratios, and UTN information integrated into [37]. 

To evaluate the proposed real-time restoration method, three 

comparative techniques are introduced for benchmarking: 

- Case I: MPC-based real-time restoration method that does not 

account for uncertainties [12]. 

- Case II: Affine multi-stage RO formulated offline 

optimization, solved with linear and binary rules; real-time 

restoration guided by affine policies [17]. 

- Case III: DP-based multi-stage SO formulated offline 

optimization, solved via SDDiP; real-time restoration guided by 

expected solved value functions [20]. 

- Case IV: Proposed DP-based multi-stage RO for offline 

optimization, solved with the improved RDDP algorithm; real-

time restoration guided by worst-case solved value functions. 

This section presents both in-sample and out-of-sample tests. 

The in-sample test monitors restoration decisions across all 

periods for the coordinated PDN and UTN, filtering 

uncertainties through offline solutions. The out-of-sample test 

employs the Monte Carlo (MC) method to simulate real-time 

restoration performance across various scenarios, assessing the 

effectiveness of Cases I-IV. 

B. Results of 33P-20U system 

The topology of the 33P-20U system is depicted in Fig. 5, 

showing each FCS at a UTN node connected to a PDN bus, with 

disaster-affected power lines highlighted. After 836.158 

seconds of calculations using the improved RDDP algorithm, 

the offline optimization generates solved value functions for 

real-time restoration policies. The effectiveness of the proposed 

DP-based multi-stage RO model is evaluated by tracking in-
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sample restoration decisions and realized uncertainties, as 

presented in Fig. 6.  

In Fig. 6(a), during low total load demand periods (e.g., 

periods 1-32), the system prioritizes DRE and V2G responses 

to enhance renewable consumption and secure subsidies, while 

DG is flexibly adjusted to maintain power balance. As demand 

rises (after period 33), DG operates at full capacity, with DRE 

and V2G maximally dispatched to restore critical loads, 

showcasing the scheme's flexibility in resource allocation for 

sustainability and social optimality. Figs. 6(b)-(d) reveal that 

DRE output often remains at the lower bound of the uncertainty 

interval, leading to insufficient power generation and load 

shedding. When the uncertainty interval widens and resources 

are ample (initial periods of Figs. 6(b) and 6(d)), DRE output 

fluctuates, resulting in renewable energy curtailment penalties 

due to inadequate DG ramping capacity. Figs. 6(e)-(f) illustrate 

traffic demand uncertainty in the UTN, where non-V2G-

supporting vehicles consistently hit the upper boundary of the 

uncertainty interval, exacerbating congestion. Sufficient PDN 

resources push V2G EVs to the upper boundary, increasing 

system congestion (e.g., periods 2-31), while resource shortages 

drop EVs to the lower boundary, causing more load shedding 

(periods 31-66 and 75-96). During peak evening hours, the 

substantial number of V2G EVs collaborates with DRE to 

address critical loads, reaching the upper boundary and 

triggering DRE curtailment penalties. Overall, the value 

functions embedded in the proposed DP-based multi-stage RO 

model effectively accommodate extreme scenarios, yielding 

resilient real-time restoration policies. 
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Fig. 5. Topology of 33P-20U system with contingencies 

/ Realized traffic demand /Uncertainty interval / Predicted traffic demand

(a) Overall active power dispatch decisions for restoration

(b) Decision of DRE in Bus 14 (c) Decision of DRE in Bus 27 (d) Decision of DRE in Bus 32

(e) Traffic demand of other vehicles (f) Traffic demand of V2G EVs  
Fig. 6. In-sample restoration decisions and uncertainties realization 

The in-sample network reconfiguration decisions are shown 

in Fig. 7. During the initial operational period, the system is 

divided into multiple isolated subsystems based on the post-

disaster topology. When total load demand is low (Fig. 7(a)), 

each subsystem utilizes DRE or V2G responses at FCSs to 

serve a wide range of load buses, enhancing renewable energy 

consumption and social benefits. However, when load demand 

exceeds resource capacity, the topology adjusts to 

accommodate more critical loads. In Fig. 7(b), the DG at Bus 4 

cannot support an independent subsystem, prompting the 

reclassification of DRE at Bus 25 and FCS at Bus 24 for critical 

load restoration. Additionally, the FCS at Bus 30, which has the 

highest V2G response after period 33, is reconfigured to work 

with the DG at Bus 31, demonstrating the flexibility and 

robustness of the proposed scheme. 
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Fig. 7. Network reconfiguration decisions during restoration process 

To monitor the V2G responses in the UTN, Fig. 8 illustrates 

the number of EVs conducting V2G services and the 

corresponding compensation prices at each FCS. The figure 

shows that EVs generally respond to the FCS at node 9, where 

higher compensation prices are offered. Meanwhile, node 8 also 

sees a large number of V2G EVs due to its high capacity and 

central location along multiple routes. This V2G response 

assignment effectively balances economic benefits, traveling 

costs, and equipment parameters. 
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Fig. 8. Quantities of V2G EVs and compensation prices of each FCS 

To further validate the DTA model, Fig. 9 illustrates the in-

sample dynamic node and V2G traffic flow for period 70, while 

Fig. 10 presents inflow, queuing, outflow, and service flows for 

representative UTN nodes and roads across all periods. Unlike 

the STA model, the DTA model dynamically tracks EV 

flows—entering, queuing, and exiting roads and FCS nodes—

providing granular insights in short time intervals, particularly 

for real-time assignment. The inflow-outflow constraints 

between roads and nodes are consistently satisfied. In Fig.10(a), 

morning peak and road capacity limitations lead to increased 

queue flow, with outflow kept at the upper limit to clear 

congestion until the evening peak ends, minimizing travel costs 

in the UTN. Fig. 10(b) shows a similar relationship among node 

inflow, outflow, and queuing. DTA delay ( tb
0 ) creates a 

temporary mismatch between inflow and outflow, enhancing 

traffic assignment flexibility. For example, in Fig. 10(b), node 

outflow is increased in advance to alleviate congestion and free  
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Fig. 9. DTA-based road and node V2G flows in typical restoration period 
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Fig. 10. Analysis of dynamic relationship of queue and EV flow in DTA model 

up FCS capacity for upcoming V2G responses. 

The time-varying V2G outflow from predecessor roads at 

each FCS in the UTN, along with the load levels maintained on 

the PDN buses and surrounding buses, are shown in Fig. 11, 

focusing on the peak load period (33-66). As seen in Fig. 11, 

the trends in the maintaining load levels and V2G outflow from 

predecessor roads are generally aligned, indicating the 

effectiveness of the proposed V2G response method in load 

restoration. On the other hand, the V2G outflow from different 

roads varies significantly over time, even near the same FCS. 

This variation is due to factors such as traffic assignment in the 

UTN and road capacities, underscoring the need for coordinated 

optimization between the PDN and UTN. 
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Fig. 11 Critical loads maintaining performance and corresponding road 

outflows around each FCS  

To assess the effectiveness of Cases Ⅰ-Ⅳ in real-time 

restoration, their computational performance is summarized in 

Table Ⅱ. In Cases Ⅰ and Ⅱ, the MPC method is set with a rolling 

horizon of 4 hours, while Case Ⅲ employs 10 lattices with 50 

samples [18]. Among Cases Ⅱ-Ⅳ, Case Ⅱ has the fastest offline 

computation due to its single-layer MILP reformulation. 

Despite sharing a similar DP-based multi-stage structure, Case 

Ⅲ’s large scenario trees lead to a heavier computational burden, 

resulting in slower offline performance compared to Case Ⅳ. 

For real-time computation, both Cases Ⅲ and Ⅳ demonstrate 

significant efficiency as the policy-guided scheme does not 

require an extended rolling horizon, only needing a single-

period problem per restoration interval. Out-of-sample tests 

further compare the real-time dispatch performance of Cases Ⅰ-

Ⅳ, utilizing 1,000 sampled scenarios for DRE and traffic 

demands through the MC method. The results in Table Ⅲ show 

that Cases Ⅲ and Ⅳ substantially outperform the others in total 

operating cost and load shedding. The period-specific decision 

policies in these cases effectively address future uncertainties, 

overcoming the short-sightedness of the MPC-based methods 

in Cases Ⅰ and Ⅱ. Notably, Case Ⅳ excels over Case Ⅲ by more 

effectively guiding V2G-supporting EVs to address critical 

loads and mitigate risks from uncertainties, leading to reduced 

load shedding and lower travel costs for EVs in V2G services. 

Overall, Case Ⅳ exhibits greater robustness, making it more 

suitable for post-disaster restoration scenarios. 
TABLE Ⅱ 

COMPARISON OF OFFLINE AND REAL-TIME COMPUTATIONAL EFFICIENCY 

ACROSS DIFFERENT CASES ON THE 33P-20U SYSTEM 

Case 
Offline solution 

time (sec.) 

Real-time computation time/period (sec.) 
Avg. of all samples Max. of all samples 

Ⅰ \ 36.096 38.541 
Ⅱ 97.064 39.105 40.032 
Ⅲ 2,521.730 3.425 3.911 

Ⅳ 836.158 2.039 2.662 

TABLE Ⅲ 

COMPARISON OF STATISTIC AVERAGE OUT-OF-SAMPLE PERFORMANCES UNDER 

DIFFERENT CASES ON 33P-20U SYSTEM 
Case DRE 

curtailment 

(102$) 

Load 

shedding 

(104$) 

V2G 

compensation 

(103$) 

Traveling 

cost 

(104$) 

Total 

operation 

(104$) 

Ⅰ 5.881 8.247 5.352 4.880 12.651 

Ⅱ 3.962 6.337 6.874 3.665 9.355 

Ⅲ 2.503 4.801 6.006 2.086 6.311 

Ⅳ 3.722 3.054 8.902 4.404 6.605 

We conduct numerical experiments to compare the 

performance of the proposed restoration method under different 

levels of supporting-V2G EV penetration, with results shown 

in Table Ⅳ. From Table Ⅳ, it is evident that while the overall 

amount of restored load increases with higher EV penetration, 

the effect of load restoration diminishes when the penetration 

level becomes too high. This is due to the limitations of FCS 

capacity and road capacity in the test system. For example, in 

the +20% case, neither the restored load nor V2G compensation 

significantly increased. Besides, the excessive increase in EV 

flow exceeded the system’s road capacity, resulting in a sharp 

rise in travel costs and overall operation costs. These findings 

highlight the need to dynamically adjust the number of EVs 

according to the system’s capacity to further enhance its 

resilience. 
TABLE Ⅳ 

PERFORMANCES OF PROPOSED METHOD UNDER DIFFERENT SUPPORTING-V2G 

EVS PENETRATION 

Penetration 
level 

Load shedding 
(104$) 

Avg. V2G 
compensation 

(103$) 

Avg. 
traveling 

cost (104$) 

Avg. total 
cost 

(104$) Avg. Max. 
+20% 2.573 2.653 9.955 5.150 6.770 
+10% 2.681 2.783 9.783 4.692 6.434 
Base 3.054 3.212 8.902 4.404 6.605 
−10% 3.402 3.632 8.001 4.220 6.856 

−20% 3.925 4.260 7.199 3.960 7.195 
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To validate the restoration performance under varying 

uncertainty parameters, we examined out-of-sample load 

shedding on the 33P-20U system in Fig. 12 across adjusted 

parameters: 1
re(ta)

[2:2.5], 2
re(ta)

[1.5:2.0], with a resolution 

of 0.02. Initially, as the uncertainty parameters increase, 

restoration improves. However, beyond a certain threshold—

specifically when (1
re, 2

re) exceeds (2.16, 1.72) or (1
ta, 2

ta) 

exceeds (2.38, 1.79)—load shedding increases. This occurs 

because moderate increases in 1
re(ta)

 and 2
re(ta)

 enhance model 

robustness, but excessively high parameters make the model 

overly conservative, considering unrealistic scenarios. This 

premature or over-prepared response can lead to insufficient 

ramping or V2G EVs congestion, reducing restoration 

performance. Therefore, selecting appropriate uncertainty 

parameters is important. 

Decrease
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Increase

1

re2

re 1

ta
2

ta

(a) Sensitivity of DRE uncertainty (b) Sensitivity of traffic demand uncertainty  
Fig. 12 Sensitivity analysis of uncertainty sets for restoration performance 

C. Results of 91P-35U system 

The 91-bus PDN and 35-node UTN (91P-35U) system is 

based on a real-world network in Zhejiang Province, China. The 

geographical layout of electrical lines and transportation routes 

is detailed in [37] and simplified in the topology presented in 

Fig. 13. Disasters have break power supply from all substations, 

and the damaged lines are highlighted in the figure. 

Comprehensive system parameters are provided in [37]. 
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Fig. 13. Topology of 91P-35U system with contingencies 

The proposed method achieves convergence of the improved 

RDDP algorithm’s upper and lower bounds to within 0.1% on 

the 91P-35U system after 1,288 seconds of offline computation, 

generating real-time restoration policies. Fig. 14 illustrates the 

in-sample V2G responses and traffic assignments on roads, 

along with the input marginal price-based compensation for 

V2G services. From Fig. 14(a) and Fig. 14(b), it is evident that 

EVs participating in V2G prioritize periods and FCSs offering 

high compensation prices. The marginal price compensation 

effectively reflects the power shortages at each bus in the PDN, 

enabling the restoration method to strategically dispatch V2G 

EVs to address critical loads in the post-disaster system. Fig. 

14(c) and Fig. 14(d) indicate that other vehicles and V2G EVs 

are overall distributed across different roads to minimize 

congestion  and  queuing,  facilitating  quicker  responses  from 
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Fig. 14. Traffic assignment in nodes and roads and compensation prices in FCS 

(a) Queue flow of EVs supporting V2G

(b) Queue flow of other vehicles  
Fig. 15. Traffic assignment in nodes and roads and compensation prices in FCS 

V2G-enabled EVs. This demonstrates that the proposed method 

effectively balances restoration efforts in the PDN with the 

normal operations of vehicles in the UTN. Moreover, Fig. 15 

tracks in-sample queue flow, showing EVs participating in V2G 

queueing mainly in later periods due to peak compensation 

prices for load demand, while other vehicles queue earlier. To 

avoid congestion that could disrupt V2G service and incur 

penalties from load shedding, non-V2G vehicles take faster 

routes early to complete O-D tasks, which frees up roads for 

V2G EVs later. 
TABLE Ⅴ 

COMPARISON OF OFFLINE AND REAL-TIME COMPUTATIONAL EFFICIENCY 

ACROSS DIFFERENT CASES ON THE 91P-35U SYSTEM 

Case 
Offline 

solution 

time (sec.) 

Real-time computation 

time/ period (sec.) 
Aggregated real-

time computation 

time/ full- period 

restoration (sec.) 
Avg. of all 

samples 
Max. of all 

samples 
Ⅰ \ 67.085 70.189 5,810.128 
Ⅱ 198.155 69.249 72.650 6,041.323 
Ⅲ 3,806.301 3.903 4.847 339.710 
Ⅳ 1,287.992 2.582 3.011 224.618 

Tables Ⅴ and Ⅵ compare the tractability of Cases I-IV in 

large-scale systems and their out-of-sample performance during 

real-time restoration. As shown in Table Ⅴ, although the 

iterative solutions required by the DP-based model increase the 

offline computation time for Cases III and IV, the policy-guided 

restoration scheme eliminates the additional horizons needed by 

traditional MPC-based methods to account for future 

information, significantly enhancing real-time computation 

speed. In full-period restoration,  Cases III and IV require only 

a few minutes to complete, whereas the MPC-based methods 

take over an hour. Furthermore, Case IV is faster in both offline 

and real-time computations because its decision policies 

encompass only one scenario, while Case III averages multiple 
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TABLE Ⅵ 
SPECIFIC COMPARISON OF STATISTIC OUT-OF-SAMPLE PERFORMANCES UNDER DIFFERENT CASES ON 91P-35U SYSTEM 

Case  Avg. PDN operation cost (103$)  Avg. UTN operation cost (103$)  Avg. total 

operation 

cost (103$) 

Avg. total 

load shedding 

(KW) 

Max. total 

load shedding 

(KW) 
 DRE 

curtailment 
Load 

shedding 
 Node 

congestion 
Road 

congestion 

V2G 

compensation 
 

Ⅰ  6.915 258.260  41.510 89.023 10.990  384.718 25,826.334 32,996.761 

Ⅱ  3.580 214.391  38.089 72.160 12.562  315.658 21,439.126 27,218.905 

Ⅲ  1.156 183.115  20.168 56.982 20.080  241.341 18,311.522 23,896.920 

Ⅳ  1.903 169.521  29.801 68.544 23.653  246.116 16,952.098 18,282.073 

 

scenario constraints. Table Ⅵ presents similar findings to Table 

Ⅲ; the out-of-sample results from possible scenarios 

demonstrate the effectiveness of the proposed method, which 

more robustly mobilizes flexible resources like V2G responses 

to pick up critical loads under extreme conditions. Compared to 

the well-performing existing method, Case III, the proposed 

method increases critical load restoration by an average of 7.4% 

and up to 23.49% at maximum. 

D. Solution features of improved RDDP 

Fig. 16 shows the iteration curves of the improved RDDP 

algorithm for the 33P-20U and 91P-35U systems, depicting the 

refinement of upper and lower bounds for problem Q1 . The 

optimal   gap converges to under 0.1% after iterations. For 

example, the 33P-20U system reaches a gap below 0.5% in 

about 200 iterations, with full convergence at 331 iterations. 

This indicates that the convergence criterion confidence levels 

are allowed to be adjusted for either improved efficiency or 

higher solution quality, depending on specific needs. 
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G
a
p

(a) 33P-20U system (b) 91P-35U system

 Less than 0.5% 

optimal gap  

 Less than 0.5% 

optimal gap  

 Less than 1% 

optimal gap  

 
Fig. 16. Offline iteration of improved RDDP algorithm on two test systems  

We further compare the average offline lower approximation 

efficiency at each stage and the backward pass time for Case III 

and Case IV, as shown in Table Ⅶ. For large-scale systems, 

Lagrangian hyperplane generation takes no more than 0.03 

seconds per stage, demonstrating the tractability of the lower 

approximation. While the improved RDDP method includes an 

upper approximation, it avoids calculating multiple nodes 

within scenario tree in SDDiP, which slows down the lower 

approximation and backward pass in Case III. 

TABLE Ⅶ  
EFFICIENCY COMPARISON OF OFFLINE SOLUTIONS FOR CASE IV AND CASE III  

IN LOWER APPROXIMATION AND BACKWARD PASS 

 Case Ⅳ  Case Ⅲ 

 33P-20U 91P-35U  33P-20U 91P-35U 

Avg. each stage 

L.P. (10-2sec.) 1.941 2.566 
 

21.773 34.892 

Aggregated B.P. 

(sec.) 599.130 912.598 
 

1,864.921 2,721.08 

L.P.: Lower approximation; B.P.: Forward/Backward pass 

To validate the binarization smoothing technique, we 

compare the proposed method (with smoothing) to the 

unsmoothed RDDP method, which uses Benders hyperplanes 

and LP relaxation for the lower approximation [24], [38], and 

the convex hull method for the upper approximation. Results 

show that the unsmoothed RDDP struggles to converge, 

particularly for the 91P-35U system, with a gap above 10% 

after 800 iterations, due to non-tight lower and upper bounds 

for non-convex problems, as detailed in Table Ⅷ. 

TABLE Ⅷ 
COMPARISON OF ITERATION CHARACTERISTICS FOR SMOOTHING AND NO 

SMOOTHING IN THE RDDP SOLUTION METHOD 
System Model Gap (%) Time (Sec.) Iteration number 

33P-20U 
Smoothing 0.083 836.158 331 

Not smoothing  7.044 1,162.559 605 

91P-35U 
Smoothing 0.091 1,287.992 344 

Not smoothing 10.057 3,034.427 > 800 

Furthermore, we compare the proposed scheme (with 

smoothing) to its not-smoothed counterpart and an ideal 

dispatch model with perfect forecasts. Testing various 

penetration levels of supporting-V2G EVs in the 33P-20U 

system, results in Fig. 17 show that the proposed scheme 

outperforms the unsmoothed one, with the latter failing to 

converge and producing suboptimal dispatch policies. While 

the proposed scheme’s maximum optimal gap is around 10%, 

this is due to both binarization and uncertainties. Moreover, it 

shows significant improvements in real-time restoration 

performance and computational efficiency over recent existing 

studies (Case I-III), highlighting its potential for real-world 

application. 
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Fig. 17. Solution quality and optimal gap validation for smoothing technique 

Ⅴ. DISCUSSION 

(Outages configuration) This study focuses on post-disaster 

load restoration in the context of PDN line failures [11], but can 

be easily adapted to scenarios where both PDN lines and UTN 

roads are affected, such as utility pole collapses. The reason is 

existing studies typically characterize the impact on UTN roads 

by reducing their capacity by a certain percentage [39], which 

only alters input parameters of UTN road capacity without 

affecting the applicability of the proposed method. Besides, the 

proposed method addresses load restoration in post-disaster 

situation, where PDN line outages are predetermined and serve 
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as input parameters for the proposed model. Therefore, the 

stochastic of outages is not included in the consideration, as 

other distribution system restoration studies [9], [24], [40], [41]. 

(Real-world applicability) The real-world applicability of the 

V2G mechanism design can be confirmed by: 1) User 

psychology, where vehicles within the UTN voluntarily 

participate in V2G-based load restoration without disrupting 

their normal O-D tasks, making decisions assessing 

compensation incentives and travel time costs, thus ensuring 

user autonomy; 2) Literature support, where previous studies 

[42], [43] similarly adopt V2G compensations for incentivizing 

load restoration, and studies like [8], [44], [45] emphasizing 

minimal or no disruption to normal travel plans, though this 

paper accounts for real-time restoration absent in those studies; 

and 3) Real-world surveys and cases, where surveys [46], [47], 

and [48] demonstrate that compensation significantly boosts 

participation in V2G, while the 2021 Texas winter storm [49] 

shows users’ willingness to engage in load restoration through 

V2G, and studies from Singapore [50] and Florida practice [51] 

further confirm that EVs can participate in load restoration 

while tending to maintain their original travel plans. 

 (Implications to policy and market design) The proposed 

V2G restoration method, which incentivizes EV participation 

through compensation, offers valuable insights for both policy 

and market design. While no real-world policies currently 

incentivize EV involvement in V2G during extreme events to 

enhance grid resilience [42], [52] this study provides a 

framework for future policy development. In market design, the 

use of pre-calculated local marginal prices as compensation 

reflects the power supply status of PDN buses and creates price 

differentials to adjust V2G incentives. Although more complex 

market mechanisms, such as game-theoretic models involving 

power generators and grids, could be developed, we 

recommend prioritizing straightforward solutions focused on 

critical load restoration in post-disaster scenarios to ensure 

social stability. 

Ⅵ. CONCLUSION 

This paper presents a novel real-time load restoration method 

that utilizes V2G responses within the coordinated framework 

of PDN and UTN. The approach features a practical application 

framework: a DP-based multi-stage RO model is offline 

formulated to characterize the multi-period restoration under 

multiple uncertainties, tackled by an improved RDDP 

algorithm that generates solved value functions for decision-

making. In the online application, a single-period scheme 

efficiently guides real-time load restoration through distributed 

resources dispatch, network reconfiguration, and V2G 

assignments, based on these solved value functions. Numerical 

experiments show that this method effectively overcomes the 

limitations of traditional MPC-based methods and significantly 

reduces computation time, completing full-period restoration in 

minutes compared to over an hour for MPC-based approaches. 

Moreover, the proposed method enhances out-of-sample 

critical load restoration by an average of 7.4%, with a maximum 

improvement of 23.49%. 
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